WO2022033112A1 - 三维物体增材制造方法及装置、存储介质、计算机设备 - Google Patents

三维物体增材制造方法及装置、存储介质、计算机设备 Download PDF

Info

Publication number
WO2022033112A1
WO2022033112A1 PCT/CN2021/095862 CN2021095862W WO2022033112A1 WO 2022033112 A1 WO2022033112 A1 WO 2022033112A1 CN 2021095862 W CN2021095862 W CN 2021095862W WO 2022033112 A1 WO2022033112 A1 WO 2022033112A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder material
liquid material
layer
active component
group
Prior art date
Application number
PCT/CN2021/095862
Other languages
English (en)
French (fr)
Inventor
何兴帮
杨前程
Original Assignee
珠海赛纳三维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海赛纳三维科技有限公司 filed Critical 珠海赛纳三维科技有限公司
Priority to EP21855168.7A priority Critical patent/EP4197745A4/en
Priority to JP2023508595A priority patent/JP7530504B2/ja
Publication of WO2022033112A1 publication Critical patent/WO2022033112A1/zh
Priority to US18/106,404 priority patent/US20230182382A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/006Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
    • C08F283/008Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00 on to unsaturated polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present application relates to the technical field of three-dimensional object forming, and in particular, to a method and device for additive manufacturing of three-dimensional objects, storage media, and computer equipment.
  • the main process of the three-dimensional object additive manufacturing technology is to obtain the digital model of the three-dimensional object, slice and layer the digital model, and perform data processing and conversion on each slice layer to obtain the printing data of each slice layer.
  • the printing device According to the slice layer printing data, layer-by-layer printing is performed and superimposed to produce three-dimensional objects.
  • the inkjet printing technology mainly refers to that the print head on the support platform selectively ejects the photosensitive resin material according to the layer patterning data of the three-dimensional object, also known as the printing data, and the radiation source irradiates the ejected photosensitive resin material to form a cured layer.
  • the selection of materials in inkjet printing technology is relatively narrow, and it is difficult to manufacture high-strength objects, which limits its application in the industrial and aerospace fields.
  • the print head selectively ejects liquid material on the powder material layer according to the layer printing data of the three-dimensional object, wherein the powder material contains a first active component, and the liquid material contains a second active component.
  • the reactive components, the first reactive component and the second reactive component are contacted and chemically reacted to form a cured chip layer.
  • this molding method has a relatively narrow selection range of materials, and because the powder material participates in the chemical reaction, it is easy to reduce the molding accuracy due to the uneven reaction.
  • the embodiments of the present application provide a method and device for additive manufacturing of a three-dimensional object, a storage medium, and computer equipment, which can effectively improve the mechanical strength of the three-dimensional object, reduce the porosity of the three-dimensional object, and improve the density of the three-dimensional object.
  • an embodiment of the present application provides a method for additive manufacturing of a three-dimensional object, the method comprising:
  • the liquid material dissolving at least a portion of the powder material, the liquid material comprising an active component capable of polymerizing;
  • the powder material does not polymerize itself and does not polymerize with the active components, and the powder material layer does not polymerize.
  • the area to which the liquid material is applied is shaped, resulting in sliced layers of the three-dimensional object.
  • the powder material is selected from polystyrene, polyvinyl chloride, polyacrylonitrile, acrylonitrile-styrene-acrylate copolymer, polyamide, polyester, polyurethane , poly(meth)acrylates, polymethyl(meth)acrylates, polyvinyl fluoride, chlorinated polyolefins, block and/or graft copolymers containing At least one of polyvinyl alcohol, cellulose, and modified cellulose.
  • the active component has an active group that can participate in the polymerization reaction, and the active group includes a carbon-carbon double bond, a hydroxyl group, a carboxyl group, a thiirane group , at least one of isocyanate group, carbonate group, epoxy group, cyclic amide group, cyclic lactone structure, cyclic acid anhydride structure and cyclic acetal structure.
  • the active component includes a first active component, the first active component has an active group, and the first active component dissolves at least part of the powder material.
  • the active component further includes a second active component, and the second active component has an active group; the second active component does not dissolve the powder material.
  • the mass proportion of the active component in the liquid material is 50%-100%.
  • the active component includes a first active component having active groups and a second active component, and the first active component is in the liquid material
  • the mass ratio of the liquid material is 10%-95%, and the mass ratio of the second active component in the liquid material is 0%-90%.
  • the first active component is selected from the group consisting of carbon-carbon double bond-containing monomers, epoxy-containing groups and compositions that promote ring-opening polymerization of epoxy groups , at least one of cyclic lactones, sulfur heterocyclic compounds, carbonate compounds, and cyclic amide compounds.
  • the second active component is selected from monomers and/or prepolymers containing carbon-carbon double bonds, diluents and/or prepolymers containing epoxy groups. At least one of polymers, monomers and/or prepolymers that promote ring-opening polymerization of epoxy groups, polyols, cyclic lactones, sulfur heterocyclic compounds, and cyclic amide compounds.
  • the first active component and/or the second active component has a swelling group, and the swelling group can participate in a polymerization reaction, and the The swelling group is selected from at least one of spirocyclic ether structure, spirocyclic orthocarbonate structure, spirocyclic orthoester structure, bicyclic orthoester structure and bicyclic lactone structure.
  • the first active component and/or the second active component has a combination of active groups, and the combination of active groups can form the the swelling group.
  • the active group combination includes any of the combination of a polyol group and an orthocarbonic diester group, an epoxy group and a cyclic lactone structure combination. A sort of.
  • the liquid material further includes a first auxiliary agent
  • the first auxiliary agent includes at least one of a free radical initiator, an anionic initiator, a cationic initiator and a catalyst and/or, the mass proportion of the first auxiliary agent in the liquid material is 0%-10%.
  • the liquid material further includes a second auxiliary agent
  • the second auxiliary agent includes a leveling agent, a defoaming agent, a polymerization inhibitor, a surfactant, and an antioxidant.
  • at least one of plasticizer and dispersant; and/or, the mass proportion of the second auxiliary agent in the liquid material is 0.1%-30%.
  • the liquid material further includes a colorant, and the colorant accounts for 0%-10% by mass in the liquid material.
  • the method before the applying the liquid material on the powder material layer according to the layer printing data, the method further comprises:
  • the layer of powder material is preheated.
  • the method further includes:
  • Heating the layer of powder material after applying the liquid material promotes the active components in the liquid material to dissolve the powder material.
  • the energy includes at least one of radiant energy and thermal energy.
  • the supplying energy to the powder material layer causes the active components in the liquid material to undergo a polymerization reaction, and the liquid is applied in the powder material layer After the area of the material is formed and the sliced layer of the three-dimensional object is obtained, the method further includes:
  • the formation of the powder material layer and the application of the liquid material are repeated, and energy is supplied to at least part of the powder material layer to which the liquid material is applied, and a plurality of sliced layers obtained are superimposed layer by layer to form a three-dimensional object.
  • the method further includes: heat-treating the formed three-dimensional object to improve the mechanical strength of the three-dimensional object.
  • an embodiment of the present application provides a device for additive manufacturing of a three-dimensional object, which is used to implement the above-mentioned method for additive manufacturing of a three-dimensional object, and the device includes:
  • a powder supply part for supplying powder material to form a powder material layer
  • a material dispenser for applying a liquid material on the layer of powder material according to layer printing data, the liquid material dissolving at least a portion of the powder material, the liquid material comprising an active component capable of polymerizing;
  • an energy supply device for supplying energy to the powder material layer, so that the active component in the liquid material undergoes a polymerization reaction, and the powder material does not undergo a polymerization reaction and does not undergo a polymerization reaction with the active component,
  • the region of the powder material layer to which the liquid material is applied is shaped to obtain a sliced layer of a three-dimensional object.
  • the device for additive manufacturing of three-dimensional objects further includes a lifting mechanism, the lifting mechanism is connected to the forming platform, and drives the forming platform to ascend or descend in a vertical direction .
  • the three-dimensional object additive manufacturing apparatus further comprises a preheating part and/or a heating part, the preheating part is used for preheating the powder material layer; the The heating part is used for heating the powder material layer after applying the liquid material, and promoting the active components in the liquid material to dissolve the powder material.
  • the energy supply device, the preheating component and the heating component may be selected from ultraviolet lamps, infrared lamps, microwave emitters, heating wires, heating sheets, At least one of the heating plates.
  • the three-dimensional object additive manufacturing apparatus further includes a temperature monitor, which is used for monitoring the temperature of the powder material layer.
  • the three-dimensional object additive manufacturing apparatus further includes a controller, and the controller is configured to control the powder supply component, the material distributor, the energy Operation of at least one of the supply device, the preheating part, the heating part, and the temperature monitor.
  • embodiments of the present application provide a non-transitory computer-readable storage medium, where the storage medium includes a stored program, and when the program runs, a device where the storage medium is located is controlled to perform the above-mentioned additive manufacturing of three-dimensional objects method.
  • an embodiment of the present application provides a computer device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, which is implemented when the processor executes the computer program.
  • a liquid material containing an active component is applied on the powder material layer, the active component dissolves at least part of the powder material, and the active component Polymerization reaction occurs to form high molecular polymer, and the formed high molecular polymer and powder material form a blend, especially when mixed with dissolved powder material at the molecular level to form a high molecular alloy, which makes the powder material, powder material and active There is a good connection between the polymers of the components and between the printing layers and the layers.
  • the formed high molecular polymer can be mixed with the powder material to obtain a "sea-island structure" or a homogeneous structure with good interface bonding, which improves the mechanical strength of the three-dimensional object.
  • the active components in the liquid material of the present application fill the gaps between the powder materials, dissolve the powder materials, further reduce the porosity inside the three-dimensional object, and improve the density of the three-dimensional object.
  • the active components are polymerized to form a molecular-level mixture of high molecular polymers and powder materials, and colorless or light-colored transparent three-dimensional objects can be easily obtained.
  • the active component in the liquid material of the present application undergoes a polymerization reaction to form a layer of a three-dimensional object and the three-dimensional object obtained by manufacturing basically has no residual small molecular substances, and basically no small molecular substances are precipitated during use, which can meet the requirements of safety and environmental protection. .
  • three-dimensional objects with different properties in different regions can also be realized by adjusting the ejection amount of the liquid material.
  • FIG. 1 is a schematic flowchart of a method for additive manufacturing of a three-dimensional object provided by a specific embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a three-dimensional object additive manufacturing device provided by a specific embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for additive manufacturing of a three-dimensional object in another embodiment of the present application.
  • 4a-4g are schematic structural diagrams of a three-dimensional object formation process provided by specific embodiments of the present application.
  • FIG. 5 is a schematic structural diagram of a storage medium provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a computer device provided in an embodiment of the present application.
  • FIG. 1 is a flowchart of a method for additive manufacturing of a three-dimensional object provided by the present embodiment. Please refer to FIG. 1.
  • the present embodiment provides a method for additive manufacturing of a three-dimensional object, including the following steps:
  • Step S10 using powder material to form a powder material layer
  • Step S20 applying a liquid material on the powder material layer according to the layer printing data, the liquid material dissolving at least a part of the powder material, the liquid material including an active component capable of undergoing a polymerization reaction;
  • Step S30 providing energy to the powder material layer to cause the active components in the liquid material to undergo a polymerization reaction, the powder material itself does not undergo a polymerization reaction and does not undergo a polymerization reaction with the active components, and the powder material does not undergo a polymerization reaction with the active components.
  • the region of the material layer to which the liquid material is applied is shaped, resulting in a sliced layer of a three-dimensional object.
  • the active components in the liquid material undergo a polymerization reaction to form a high-molecular polymer, and the formed high-molecular polymer forms a blend with the powder material, especially a molecular-level mixture with the powder material dissolved in the liquid material.
  • forming a polymer alloy so that there is a good connection between the powder materials, between the powder materials and the polymer of the active component, and between the printing layer and the layer, showing a "sea-island structure" or a homogeneous structure.
  • the mechanical strength of the three-dimensional object can be improved.
  • the sea-island structure is a two-phase system of blends, in which one phase is a continuous phase and the other is a dispersed phase, and the granular powder material is dispersed in the continuous polymer to form a strong connection , which can improve the mechanical strength of three-dimensional objects.
  • the powder material is a material particle in powder form that does not polymerize with the active components in the liquid material, nor does the powder material itself polymerize.
  • the powder material is selected from polystyrene (PS), polyvinyl chloride (PVC), polyacrylonitrile, acrylonitrile-styrene-acrylate copolymer (ASA), polyamide (PA), polyester, polyurethane (PU), poly(meth)acrylates, polymethyl(meth)acrylates, polyvinyl fluoride, chlorinated polyolefins, block and/or graft copolymers containing dissolvable by said active components, At least one of hydroxyl-containing polyvinyl alcohol (PVA), cellulose, and modified cellulose.
  • PVA polyvinyl alcohol
  • the melting point or melting temperature of the powder material in this embodiment may be 60°C to 300°C.
  • the particle shape and particle size of the powder material are not particularly limited.
  • the powder material provided in this embodiment forms the powder material layer
  • the fluidity of the powder material can meet the usage requirements
  • the gap formed between the powder materials can be filled with the applied liquid material
  • the applied liquid material can wet the powder material
  • the surface and/or at least part of the powder material can be dissolved in the liquid material.
  • the powder material in this embodiment may be spherical, dendritic, flake, disc, needle, and rod shapes.
  • the average particle size of the powder material is 1 ⁇ m to 400 ⁇ m, such as 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 30 ⁇ m, 50 ⁇ m, 100 ⁇ m, 150 ⁇ m, 200 ⁇ m, 250 ⁇ m, 300 ⁇ m, 350 ⁇ m or 400 ⁇ m, and the average particle size of the powder material is preferably 30 ⁇ m to 200 ⁇ m.
  • the particle gap in the powder material is about 5 nm to 100 ⁇ m, for example, it can be 5 nm, 10 nm, 100 nm, 250 nm, 500 nm, 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 25 ⁇ m, 50 ⁇ m, 75 ⁇ m or 100 ⁇ m, which is not limited herein.
  • the particle gap of the powder material in this embodiment is in the range of 5 nm to 100 ⁇ m.
  • the thickness of the powder material layer is 10 ⁇ m ⁇ 500 ⁇ m, for example, it may be 10 ⁇ m, 25 ⁇ m, 50 ⁇ m, 75 ⁇ m, 100 ⁇ m, 125 ⁇ m, 150 ⁇ m, 200 ⁇ m, 300 ⁇ m, 400 ⁇ m or 500 ⁇ m.
  • the thickness of the powder material layer is preferably 50 ⁇ m to 150 ⁇ m. It can be understood that when the thickness of the powder material layer is thinner, an object with higher resolution can be formed, but the time taken to manufacture the object is greatly increased, and the manufacturing cost is increased; when the thickness of the powder material layer is thicker, the liquid material infiltrates. The powder material takes longer, and the resolution of the resulting object is reduced, making it difficult to achieve expectations.
  • the powder material in the present application may also include additives, and the additives include at least one of flow aids and fillers.
  • flow aids are used to improve the fluidity of powder materials, such as silicon dioxide, talc, etc.
  • fillers are used to improve the mechanical strength of three-dimensional objects, such as graphene, carbon nanotubes, glass Fiber, kaolin, etc. are not limited in this embodiment.
  • the liquid material includes an active component capable of polymerizing, which dissolves at least a portion of the powder material.
  • the active ingredient completely dissolves the powder material in contact with the active ingredient.
  • the active components in the liquid material have active groups that can participate in the polymerization reaction, and the active groups include carbon-carbon double bonds, hydroxyl groups, carboxyl groups, thiirane groups, isocyanate groups, and carbonate groups. , at least one of epoxy group, cyclic amide group, cyclic lactone structure, cyclic acid anhydride structure and cyclic acetal structure. It should be noted that the active component does not undergo a polymerization reaction with the powder material. In this embodiment, based on the total mass of the liquid material being 100%, the mass proportion of the active component in the liquid material is 50%-100%.
  • the active ingredient includes a first active ingredient having an active group that dissolves at least a portion of the powder material.
  • the first active component may be a substance including only one dissolvable powder material, or a mixture of substances including multiple dissolvable powder materials, and the solubility of the multiple substances to the powder material may be different or the same.
  • the dissolution mentioned in this example refers to all possible situations except complete insolubility.
  • at least 1% of the powdered material dissolves when 1 g of the powdered material is placed in 100 g of the active ingredient.
  • the first active component completely dissolves the powder material.
  • the dissolution is not limited to normal temperature, and the active ingredient can also be dissolved in the powder material under the condition of heating and/or stirring; The powder material dissolves slowly upon contact, and the powder material can be heated to increase the rate of dissolution.
  • the mass proportion of the first active component in the liquid material is 10%-95%.
  • it can be 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 95%.
  • the mass ratio can also be matched according to the actual usage, which is not done here. limited.
  • the mass ratio of the first active component in the liquid material is 30%-95%.
  • the mass proportion of the first active component in the liquid material is greater than or equal to 30%.
  • the first active component can be selected from the group consisting of monomers containing carbon-carbon double bonds, epoxy-containing groups and compositions that promote ring-opening polymerization of epoxy groups, cyclic lactones, sulfur heterocyclic compounds, carbonates At least one of compounds and cyclic amide compounds.
  • the carbon-carbon double bond-containing monomer may be (meth)acrylates, vinyl ethers, allyl ethers, styrene, acryloyl morpholine, N-vinyl pyrrolidone, and the like.
  • the epoxy group-containing and ring-opening-polymerizing-promoting epoxy group-containing compositions may be epoxy diluents and/or hydroxyl-containing small molecules or prepolymers, epoxy diluents and/or carboxyl-containing Small molecules or prepolymers.
  • the cyclic lactone can be ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, etc.; the thio heterocyclic compound such as thiirane, thietane, etc.; the carbonate Such compounds can be dimethyl carbonate, diethyl carbonate, etc.; cyclic amide compounds can be caprolactam and the like.
  • the first active component may be styrene or ⁇ -butyrolactone
  • the powder material may be polystyrene that can be dissolved by styrene or ⁇ -butyrolactone.
  • the first active component may also be a (meth)acrylate monomer
  • the powder material may be poly(meth)acrylate, cellulose, modified cellulose, Hydroxyl-containing polyvinyl alcohol, polyester, polyurethane, modified polyamide, etc.
  • the first active component can also be acryloyl morpholine
  • the powder material can be polyurethane, cellulose, modified cellulose, hydroxyl-containing polyvinyl alcohol, etc. that can be partially dissolved by acryloyl morpholine.
  • the first active component can also be epichlorohydrin, epoxy diluent, and the powder material can also be polycarbonate, modified polyamide, cellulose ester, fiber that can be dissolved by epichlorohydrin or epoxy diluent. ether, etc.
  • the first active component can be ⁇ -butyrolactone
  • the powder material can also be polyacrylonitrile, cellulose acetate, polymethyl methacrylate, polyvinyl fluoride, polystyrene, etc. that can be dissolved by ⁇ -butyrolactone.
  • the first active component can also be ⁇ -caprolactone
  • the powder material can also be chlorinated polyolefin, polyurethane, etc. that can be dissolved by ⁇ -caprolactone.
  • the active component may also include a second active component, the second active component has an active group; the second active component does not dissolve the powder material, that is, the second active component Completely insoluble powder materials.
  • the second reactive component can undergo a polymerization reaction by itself, or can participate in a polymerization reaction together with the first reactive component.
  • the mass ratio of the second active component in the liquid material is 0%-90%.
  • it can be 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90%.
  • the mass ratio can also be matched according to the actual usage. This is not limited.
  • the mass ratio of the second active component in the liquid material is 20%-70%.
  • the second active component can be filled into the voids between particles of the powder material or inside the powder particles, thereby reducing the porosity of the molded object and increasing the molding density of the object. Further, the second active component can also form properties complementary to the first active component, so that the three-dimensional object has higher properties than when only the first active component is contained.
  • the second active component is selected from monomers and/or prepolymers containing carbon-carbon double bonds, diluents and/or prepolymers containing epoxy groups, promoting epoxy groups At least one of monomers and/or prepolymers, polyols, cyclic lactones, sulfur heterocyclic compounds, and cyclic amide compounds that undergo ring-opening polymerization.
  • the carbon-carbon double bond-containing prepolymer may be, for example, epoxy or (modified) acrylate prepolymer, polyester acrylate prepolymer, urethane acrylate prepolymer, pure Acrylic prepolymers, etc.
  • the epoxy group-containing prepolymer can be, for example, E-51, E-41, etc.
  • the polyol prepolymer can be, for example, polyester diol, polyether diol, polycaprolactone diol Polyols, polycarbonate diols, etc.
  • the cyclic lactone can be, for example, lactide, glycolide, etc. The cyclic lactone itself is solid and has poor solubility.
  • Some compounds with a cyclic acetal structure such as trioxymethylene, are solids themselves.
  • (Meth)acrylate monomers have different solubility in polymers due to their structural differences, such as isobornyl acrylate, isobornyl methacrylate, lauryl acrylate, lauryl methacrylate, cyclotrimethylol Propane acetal acrylate and the like have poor dissolving effect on polyurethane powder and are basically insoluble.
  • the first active component and/or the second active component has a swelling group
  • the swelling group can participate in the polymerization reaction
  • the swelling group is selected from the spirocyclic ether structure, At least one of spirocyclic orthocarbonate structure, spirocyclic orthoester structure, bicyclic orthoester structure and bicyclic lactone structure.
  • the active ingredient containing an intumescent group can be 3,9-diethyl-3,9propenyloxymethyl-1,5,7,11-tetraoxaspiro[5,5]undecane, 3,9-Dihydroxyethyl-3'9'-benzyl-1,5,7,11-tetraoxaspiro[5,5]undecane, etc.
  • the first reactive component and/or the second reactive component has a combination of reactive groups that can form the swelling group during the polymerization reaction.
  • the active group combination includes any one of a combination of a polyhydric alcohol group and an orthocarbonic acid diester group, and a combination of an epoxy group and a cyclic lactone structure.
  • the first active component and/or the second active component has a swelling group or a combination of active groups that can form a swelling group.
  • the swellable group also undergoes a chemical reaction, so that the volume of the formed polymer expands, and the volume of the object does not shrink due to the curing process, and the final three-dimensional object has a higher dimensional accuracy.
  • the volume expansion caused by the intumescent group can reduce the porosity of the powder material, densify the polymer powder, and improve the mechanical properties and mechanical strength of the object.
  • the molecular structure of the first active component and/or the second active component may also contain a functional group that does not participate in the polymerization reaction, and the functional group may be a hydrophilic group.
  • the hydrophilic group can improve the water solubility of the first active component and/or the second active component.
  • the hydrophilic group may be a hydroxyl group, a carboxyl group, or the like.
  • the functional group can also be a group containing a flame retardant function, such as a phosphate group, etc., and the functional group can also be a group containing a bactericidal function, such as a quaternary ammonium salt group.
  • the liquid material further includes a first auxiliary agent
  • the first auxiliary agent is used to initiate or catalyze the polymerization reaction of the active component
  • the first auxiliary agent includes a free radical initiator, an anionic initiator, a cationic initiator and at least one of the catalysts.
  • the mass proportion of the first auxiliary agent in the liquid material is 0%-10%, for example, it can be 0%, 1%, 2%, 3% %, 4%, 5%, 6%, 7%, 8%, 9% or 10%.
  • the mass ratio can also be matched according to the actual usage, which is not limited here.
  • the free radical initiator can be a high temperature free radical initiator, such as: tert-butyl benzoyl peroxide, dodecanoyl peroxide, dicumyl peroxide, 2-ethylhexyl peroxide tert-amyl peroxide, tert-butyl 2-ethylhexyl peroxide, tert-butyl peroxide (TBHP), tert-amyl peroxide (TAHP), di-tert-butyl peroxide (DTBP), di-tert-amyl peroxide (DTAP), Dicumyl peroxide (DCP), 3,3-bis(tert-butylperoxy)butyric acid acetic acid, 3,3-bis(tert-amylperoxy)butyric acid ethyl ester, tert-butyl peroxybenzoate (TBPB), one of tert-butyl peroxide 3,3,5-trimethylhexanoate (TB
  • the free radical initiator can also be a light free radical initiator, such as: benzoin ether, benzoin ⁇ , ⁇ -dimethylbenzyl ketal, ⁇ , ⁇ -diethoxyacetophenone, 2-hydroxy- 2Methyl-phenylacetone-1,1-hydroxy-cyclohexylbenzophenone, 2-hydroxy-2-methyl-p-hydroxyethyl ether phenylacetone-1, [2-methyl 1-(4 -Methylmercaptophenyl)-2-morpholinoacetone-1], [2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butanone-1], benzoylformate , 2,4,6-trimethylphenylacyl-ethoxy-phenylphosphine oxide, 2,4,6-trimethylphenylacyl-diphenylphosphine oxide, bis(2,4,6- One or more of trimethyl phenyl acyl) phenyl phosphine oxide, 4-p
  • the anionic initiator can be butyllithium, butyllithium oxide and the like.
  • the cationic initiator can be a mixture of triarylsulfonium hexafluorophosphate, blocked phosphate cationic initiator, 4-(phenylthio)phenyldiphenylsulfonium hexafluorophosphate, 4-isobutylbenzene Base-4'-methylphenyliodonium hexafluorophosphate, ⁇ 6-cumene ferrocene (II) hexafluorophosphate mixture.
  • the catalyst can be ethylene glycol, stannous isooctanoate, stannous octoate, dibutyltin dilaurate, methyl fluorosulfonic acid, ethyl fluorosulfonic acid, methyl nitrobenzene sulfonic acid, methyl methanesulfonate Or tetraphenylporphyrin aluminides and so on.
  • the liquid material also includes a second auxiliary agent, and the second auxiliary agent is selected from at least one of a leveling agent, a defoaming agent, a surfactant, a polymerization inhibitor, an antioxidant, a plasticizer, and a dispersing agent.
  • the mass ratio of the second auxiliary agent in the liquid material is 0.1%-30%, for example, it can be 0.1%, 1%, 5%, 10% %, 15%, 20%, 25% or 30%. Of course, the mass ratio can also be matched according to the actual usage, which is not limited here.
  • the mass ratio of the leveling agent in the liquid material is 0.01%-3%; the mass ratio of the defoaming agent in the liquid material is 0.01%-3%; the mass ratio of the surfactant in the liquid material is 0.01%-3%; The ratio is 0%-5%; the mass ratio of the polymerization inhibitor in the liquid material is 0.05%-3%; the mass ratio of the antioxidant in the liquid material is 0.05%-3%; the plasticizer in the liquid material The mass ratio of the dispersant in the liquid material is 0%-25%; the mass ratio of the dispersant in the liquid material is 0%-5%.
  • the function of the leveling agent is to improve the fluidity of the liquid material and the wetting performance of the powder material, and at the same time adjust the surface tension of the liquid material to enable normal printing.
  • the leveling agent used can meet the above performance requirements, there is no restriction on which leveling agent to choose, for example, it can be BYK333, BYK377, BYK1798, BYK-UV3530, BYK-UV3575, BYK-UV3535, etc. , TEGO wet 500, TEGO wet 270, TEGO Glide450, TEGO RAD 2010, TEGO RAD 2011, TEGO RAD 2100, TEGO RAD 2200, etc.
  • the function of the defoamer is to inhibit, reduce and eliminate the bubbles in the liquid material.
  • the defoamer used can achieve the above effect, there is no restriction on which defoamer to choose.
  • it can be BYK055 and BYK088 of BYK. , BYK020, BYK025, etc., TEGO Airex 920, TEGO Airex 921, TEGO Airex 986, TEGO Foamex 810, TEGO Foamex N, etc. from Digao Company, Efka 7081, Efka7082, etc. from Efka Company.
  • the function of the polymerization inhibitor can be to improve the stability of the active component at high temperature, to prevent the active component from polymerizing in a non-printing state, and to improve the storage stability of the liquid material.
  • it can be hydroquinone, p-hydroxyanisole, p-benzoquinone, 2-tert-butyl hydroquinone, phenothiazine, etc., and can be Rayon's GENORAD*16, GENORAD*18, GENORAD*20, GENORAD*22, etc., BASF's Tinuvin234, Tinuvin770, Irganox245, Cytec S100, Cytec 130, etc., Ciba's Irgastab UV10, Irgastab UV 22, etc.
  • the function of the surfactant is to adjust the surface tension of the active component suitable for inkjet printing, and to improve the fluidity of the composition and the wetting performance of the powder material.
  • it can be BYK333, BYK325N, BYK345, BYK346, BYK370, BYK800D of BYK company, TEGO 4000, TEGO WET 260, TEGO WET 270, TEGO WET KL245, TEGO Airex 920, TEGO Airex 921 of Digao company.
  • antioxidants are mainly to delay or inhibit the oxidation of polymers, such as 2,6-di-tert-butyl-4-methylphenol, ⁇ -tetra[3-(3,5-di-tert-butyl-4- Hydroxyphenyl)propionic acid] pentaerythritol ester, ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid n-octadecyl ester, 1,1,3-tris(2-methyl- 4-Hydroxy-5-tert-butylphenyl)butane, 4-[(4,6-dioctylthio-1,3,5-triazin-2-yl)amino]-2,6-di-tert-butyl Ethyl phenol, dilauryl thiodipropionate, tris(nonylphenyl) phosphite, triphenyl phosphite, 2-
  • plasticizers are to improve the toughness of finished three-dimensional objects, such as dioctyl phthalate, butyl benzyl phthalate, diisononyl phthalate, and diisodecyl phthalate.
  • the function of the dispersant is mainly to improve and improve the dispersion stability of the colorant. For example, there is no restriction on which dispersant to choose.
  • the liquid material also includes a colorant, and the colorant accounts for 0-10% by mass in the liquid material, for example, it can be 0%, 1%, 2%, 4%, 6%, 8% or 10% . Of course, its mass ratio can also be matched according to the actual usage, which is not limited here.
  • the liquid material does not contain a colorant
  • the active component dissolves the powder material
  • the polymer formed by the polymerization reaction of the active component and the powder material are mixed at the molecular level. At this time, it is easy to obtain colorless or light-colored transparent three-dimensional objects.
  • Colored three-dimensional objects can be realized when the liquid material contains colorants.
  • Colorants can be dyes or pigments.
  • Pigment can be selected from CIPigment White 6, CIPigment Red 3, CIPigment Red 5, CIPigment Red 7, CIPigment Red 9, CIPigment Red 12, CIPigment Red 13, CIPigment Red 21, CIPigment Red 31, CIPigment Red 49:1, CIPigment Red 58:1, CIPigment Red 175; CIPigment Yellow 63, CIPigment Yellow 3, CIPigment Yellow 12, CIPigment Yellow 16, CIPigment Yellow 83; CIPigment Blue 1, CIPigment One or more of Blue 10, CI Pigment Blue B, Phthalocyanine Blue BX, Phthalocyanine Blue BS, CI Pigment Blue 61:1, etc.
  • the dyestuff can specifically be selected from CI acid red 37, CI acid red 89 (weak acid red 3B, 2BS), CI acid red 145 (weak acid scarlet GL), CI acid orange 67 (weak acid yellow RXL), CI acid orange 116 ( Acid orange AGT), CI acid orange 156 (weak acid orange 3G), CI acid yellow 42 (weak acid yellow Rs, acid yellow R), CI acid yellow 49 (acid yellow GR200), CI acid blue 277, CI acid blue 344 , CI Acid Blue 350, CI Acid Blue 9 (Brilliant Blue FCF), CI Green 17, CI Acid Green 28, CI Acid Green 41, CI Acid Green 81, CI Acid Violet 17 (Acid Violet 4BNS), CI Acid Violet 54 ( Weak acid brilliant red 10B), CI acid violet 48, CI acid brown 75, CI acid brown 98, CI acid brown 165, CI acid brown 348, CI acid brown 349, CI acid black 26, CI acid black 63,
  • the active components undergo a polymerization reaction to form a slice layer of the three-dimensional object, and no small molecular substances remain in the manufactured three-dimensional object, and no small molecular substances are precipitated during the use process, which achieves safety and environmental protection. Require.
  • Table 1 lists the composition examples of some liquid materials in this application:
  • the liquid material of Example 1 has a good molding effect on some powder materials such as polyurethane powder, poly(meth)acrylate, and cellulose acetate.
  • the liquid material of Example 2 has a good molding effect on some polyurethane powders and chlorinated polyolefins.
  • the liquid material of Example 3 has good molding effect on some powders such as polyacrylonitrile, cellulose acetate, polymethyl methacrylate, polyvinyl fluoride and polystyrene.
  • the liquid material of Example 4 has a good molding effect on some polyurethane powders, cellulose acetate powders, etc., wherein epoxy resin E-41 and ⁇ -caprolactone can form intumescent groups during the reaction.
  • FIG. 2 is a schematic structural diagram of a three-dimensional object additive manufacturing device provided by a specific embodiment of the present application. As shown in FIG. 2 , an embodiment of the present application further provides a three-dimensional object additive manufacturing device for implementing the above-mentioned three-dimensional object additive manufacturing. The method, the device includes:
  • a material dispenser 6 for applying a liquid material on the powder material layer according to the layer printing data, the liquid material dissolving at least part of the powder material, the liquid material comprising an active component capable of polymerizing;
  • An energy supply device 8 for supplying energy to the powder material layer, so that the active component in the liquid material undergoes a polymerization reaction, and the powder material does not undergo a polymerization reaction and does not undergo a polymerization reaction with the active component , the region where the liquid material is applied in the powder material layer is formed to obtain a slice layer of a three-dimensional object.
  • the powder supply component 2 includes a powder storage chamber 23 , a lifter 22 and a powder spreader 21 .
  • the powder storage chamber is used to store powder materials 0 .
  • the powder storage chamber 23 has a movable support plate 231 inside.
  • the lifter 22 It is connected with the support plate 231, which can drive the support plate 231 to rise or fall in the Z direction; the powder spreader 21 is used to spread the powder material 0 in the powder storage cavity 23 onto the forming platform 3 to form the powder material layer L0.
  • the pulverizer 21 can be a pulverizing stick or a scraper.
  • the material distributor 6 is an inkjet print head, and the print head can be a single-pass print head or a multi-channel print head.
  • the number of print heads is related to the type of liquid material used and the amount of liquid material to be applied, For example, when the liquid material includes functional materials of different colors, the liquid materials of different colors are ejected through different print heads or different channels of the same print head. For example, when the amount of liquid material that needs to be applied is larger than the volume of a single ink droplet to meet the demand, in order to improve printing efficiency, multiple print heads or multiple channels can be used to eject the same kind of material at the same time.
  • the energy provided by the energy supply device 8 may be radiant energy or thermal energy, and the energy supply device may be selected from at least one of ultraviolet lamps, infrared lamps, microwave emitters, heating wires, heating sheets, and heating plates. It should be noted that the specific choice of which form of energy supply device and the type of active components in the liquid material is related to the type of active components and the type of the first auxiliary, when the active components in the liquid material undergo photopolymerization. During the reaction, the energy supply device 8 provides radiant energy such as ultraviolet radiation at this time, and the photopolymerization reaction of the active component is triggered by the ultraviolet radiation; when the active component in the liquid material undergoes thermal polymerization, the energy supply device provides thermal energy at this time. Such as infrared lamps, microwaves, heating wires, heating sheets, and heating plates, which can initiate thermal polymerization of active components through thermal energy.
  • the device for additive manufacturing of three-dimensional objects further includes a lifting mechanism 4, which is connected to the forming platform 3 and drives the forming platform 3 to ascend or descend in a vertical direction.
  • a lifting mechanism 4 which is connected to the forming platform 3 and drives the forming platform 3 to ascend or descend in a vertical direction.
  • the apparatus for additive manufacturing of three-dimensional objects further comprises a preheating part 5 and/or a heating part 10, and the preheating part 5 is used for preheating the powder material layer to promote active groups in the liquid material.
  • the heating component 10 is used for heating the powder material layer after the liquid material is applied, so as to promote the active components in the liquid material to dissolve the powder material.
  • the preheating part 5 and the heating part 10 can be selected from at least one of ultraviolet lamps, infrared lamps, microwave emitters, heating wires, heating sheets, and heating plates, respectively.
  • the preheating part 5 , the material distributor 6 , the heating part 10 and the energy supply device 8 can be installed on the guide rail 11 in sequence and can move on the guide rail 11 .
  • the energy supply device 8 is a device for providing thermal energy
  • the heating component 10 can be eliminated, and the energy supply device 8 is used to heat the powder material layer applied with the liquid material and initiate a polymerization reaction.
  • the three-dimensional object additive manufacturing apparatus may further comprise a temperature monitor (not shown in the figures) for monitoring the temperature of the powder material layer.
  • the three-dimensional object additive manufacturing device further includes a controller 9, which is used to control the powder supply part 2, the material distributor 6, the energy supply device 8, the preheating part 5, the operation of at least one of the heating component 10 and the temperature monitor.
  • the temperature monitor feeds back the monitored temperature to the controller 9, and the controller controls the amount of energy provided by the preheating part 5 and/or the heating part 10 and the energy supply device 8 according to the information fed back by the temperature monitor.
  • FIG. 3 is a schematic flowchart of a method for additive manufacturing of a three-dimensional object in another embodiment of the present application. As shown in FIG. 3 , the method for additive manufacturing of a three-dimensional object is further explained in detail below in conjunction with a three-dimensional object additive manufacturing device:
  • Step S01 acquiring a digital model of a three-dimensional object, slicing and layering the digital model of the three-dimensional object, obtaining a plurality of slice layers and layer image data, and generating layer print data according to the layer image data.
  • the original data of the three-dimensional object can be obtained by scanning and three-dimensional modeling can be performed to obtain a digital model of the three-dimensional object, or the digital model of the three-dimensional object can be obtained by designing and constructing a three-dimensional object model, and the digital model can be formatted.
  • Conversion such as converting into STL format, PLY format, WRL format and other formats that can be recognized by slicing software, and then use slicing software to slice and layer the model to obtain slice layer image data, and process the layer image data to obtain a representation of the object.
  • layer print data includes information representing the shape of the object, and/or information representing the color of the object.
  • a powder material layer is formed by using a powder material.
  • the powder supply part 2 can be used to provide the powder material 0 to the forming platform 3 to form the powder material layer L0 .
  • Step S11 preheating the powder material layer.
  • the preheating component 5 preheats the powder material layer L0 to increase the temperature of the powder material, which is helpful for the powder material layer L0 in step S20.
  • the rate of dissolution of the active ingredient into the powder material is facilitated when the liquid material is applied.
  • the preheating temperature is related to the properties of the powder material used, preferably the preheating temperature is below the melting point or melting temperature of the powder material.
  • the powder material can be prevented from sticking, which is conducive to the penetration of the liquid material into the gaps between the powder material particles, thereby improving the active component’s Dissolution rate of powder material.
  • Step S20 applying a liquid material on the powder material layer according to the layer printing data.
  • the material dispenser 6 can apply the liquid material 7 on the powder material layer L0 according to the layer printing data to form a layer patterned area 31; the liquid material 7 penetrates into the gap of the powder material and covers The surface layer of the powder material, thereby wetting the surface of the powder material.
  • the liquid material 7 includes an active component capable of polymerizing, which dissolves at least part of the powder material. As shown in FIG. 4d , the powder material in the layer patterned region 31 is dissolved by the active component, so that the powder material and the active component are mixed at the molecular level.
  • Step S21 heating the powder material layer after applying the liquid material to promote the active components in the liquid material to dissolve the powder material.
  • the heating component 10 heats the powder material layer L0 on the powder material layer L0 applied with the liquid material 7, which further promotes the active component to dissolve the powder material, so that the powder material can be completely dissolved in a short time, and the powder material and the The active components are mixed at the molecular level and mixed evenly, so that the active components undergo a polymerization reaction, and the formed polymer and powder materials also reach the molecular level of mixing, thereby forming a polymer alloy and improving the mechanical strength of the formed three-dimensional object.
  • step S30 energy is supplied to the powder material layer, so that the active components in the liquid material undergo a polymerization reaction, and the region where the liquid material is applied in the powder material layer is formed to obtain a slice layer of a three-dimensional object.
  • the energy supply device 8 provides energy to the powder material layer L0 to polymerize the active components to form a high molecular polymer to form the slice layer Lw of the three-dimensional object.
  • the energy provided by the energy supply device 8 can further promote the active components to dissolve the powder materials, the active components undergo a polymerization reaction to form high molecular polymers, and the formed high molecular polymers are blended with the powder materials.
  • the active components undergo a polymerization reaction to form high molecular polymers
  • the formed high molecular polymers are blended with the powder materials.
  • it is mixed with dissolved powder materials at the molecular level to form polymer alloys, so that there is a good connection between powder materials, between powder materials and polymers of active components, and between printing layers and layers.
  • the formed high molecular polymer can be mixed with the powder material to obtain a "sea-island structure" or a homogeneous structure with good interface bonding, which improves the mechanical strength of the three-dimensional object.
  • the material distributor 6 applies the liquid material 7 on the powder material layer L0 according to the layer printing data, and the spray amount of the liquid material can be adjusted to realize three-dimensional objects with different properties in different regions.
  • step S30 the method further includes: step S40, confirming whether the current slice layer is the last layer.
  • the forming platform 3 is driven by the lifting mechanism 4 to descend by at least one layer thickness, and the powder supply part 2 provides a new The powder material layer L0 is on top of the previously formed layer, the liquid material dispenser 6 applies the liquid material 7 according to the layer printing data to form a new layer patterned area 31 on the powder material layer L0, the energy supply device 8 supplies energy to the layer pattern The region 31 is processed to form a new slice layer of the three-dimensional object; this process is repeated to form the three-dimensional object W.
  • Step S50 when it is confirmed that the current slice layer is the last layer, heat treatment is performed on the formed three-dimensional object to improve the mechanical strength of the three-dimensional object.
  • the whole three-dimensional object w is heated by using the preheating part 5 and/or the heating part 10, or the whole three-dimensional object w is taken out and placed in a heating furnace for heating (Fig. Not shown), on the one hand, the powder dissolution effect is better, the porosity between powder materials is reduced, and the compactness of the molded object is higher, and on the other hand, the active component is further polymerized, thereby improving the tensile strength of the three-dimensional object w.
  • An embodiment of the present application further provides a non-transitory computer-readable storage medium.
  • the storage medium 91 includes a stored program 911, and when the program runs, the device where the storage medium 91 is located is controlled to execute the above-mentioned A method for additive manufacturing of three-dimensional objects.
  • the computer device 100 in this embodiment includes: a processor 101 , a memory 102 , and a computer program 103 stored in the memory 102 and running on the processor 101 .
  • the processor 101 executes the computer program 103, the method for additive manufacturing of the three-dimensional object in the embodiment is implemented. To avoid repetition, details are not described here.
  • the computer device 100 may be a desktop computer, a notebook computer, a palmtop computer, a cloud server and other computing devices.
  • the computer equipment may include, but is not limited to, the processor 101 and the memory 102 .
  • FIG. 6 is only an example of the computer device 100, and does not constitute a limitation to the computer device 100, and may include more or less components than the one shown, or combine some components, or different components
  • computer equipment may also include input and output devices, network access devices, buses, and the like.
  • the so-called processor 101 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 102 may be an internal storage unit of the computer device 100 , such as a hard disk or a memory of the computer device 100 .
  • the memory 102 can also be an external storage device of the computer device 100, such as a pluggable hard disk, a smart memory card (Smart Media Card, SMC), a Secure Digital (Secure Digital, SD) card, a flash memory card (Flash card) equipped on the computer device 100. Card), etc.
  • the memory 102 may also include both an internal storage unit of the computer device 100 and an external storage device.
  • the memory 102 is used to store computer programs and other programs and data required by the computer device.
  • the memory 102 may also be used to temporarily store data that has been or will be output.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)

Abstract

提供一种三维物体增材制造方法及装置、存储介质、计算机设备,其中,方法包括:利用粉末材料形成粉末材料层;根据层打印数据在粉末材料层上施加液体材料,液体材料溶解至少部分粉末材料,液体材料包括能够发生聚合反应的活性组分;及提供能量至粉末材料层,使液体材料中的活性组分发生聚合反应,粉末材料自身不发生聚合反应且不与活性组分发生聚合反应,粉末材料层中施加液体材料的区域成型,得到三维物体的切片层。提供的三维物体增材制造方法及装置、存储介质、计算机设备,能够有效提高三维物体的机械强度,降低三维物体的孔隙率,提高三维物体的致密度。

Description

三维物体增材制造方法及装置、存储介质、计算机设备
本申请要求于2020年08月11日提交中国专利局,申请号为202010802200.4,申请名称为“三维物体增材制造方法及装置、存储介质、计算机设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及三维物体成型技术领域,尤其涉及三维物体增材制造方法及装置、存储介质、计算机设备。
背景技术
三维物体增材制造技术其主要过程是获取三维物体的数字模型,并对所述数字模型进行切片分层以及对每个切片层进行数据处理和转换从而得到每个切片层的打印数据,打印装置根据切片层打印数据进行逐层打印并叠加制造出三维物体。
现有三维物体增材制造技术包括喷墨打印技术和粉末与喷墨打印相结合的技术。其中,喷墨打印技术主要是指在支撑平台上打印头根据三维物体的层图案化数据也称打印数据选择性喷射光敏树脂材料,辐射源对已喷射的光敏树脂材料进行照射从而形成固化的层;然而,喷墨打印技术中对材料的选择范围比较窄,难以制造出高强度的物体,限制了其在工业领域、航天领域的应用。
现有粉末与喷墨打印相结合的技术,在粉末材料层上打印头根据三维物体的层打印数据选择性喷射液体材料,其中,粉末材料中含有第一活性组分,液体材料中含有第二活性组分,第一活性组分和第二活性组分接触发生化学反应,以形成固化的切片层。然而这种成型方式对材料的选择范围比较窄,而且由于粉末材料参与化学反应容易由于反应不均匀导致成型精度降低。
申请内容
本申请实施例提供三维物体增材制造方法及装置、存储介质、计算机设备,能有效提高三维物体的机械强度,降低三维物体的孔隙率,提高三维物体的致密度。
第一方面,本申请实施例提供一种三维物体增材制造方法,所述方法包括:
利用粉末材料形成粉末材料层;
根据层打印数据在所述粉末材料层上施加液体材料,所述液体材料溶解至少部分 所述粉末材料,所述液体材料包括能够发生聚合反应的活性组分;及
提供能量至所述粉末材料层,使所述液体材料中的活性组分发生聚合反应,所述粉末材料自身不发生聚合反应且不与所述活性组分发生聚合反应,所述粉末材料层中施加所述液体材料的区域成型,得到三维物体的切片层。
结合第一方面,在一种可行的实施方式中,所述粉末材料选自聚苯乙烯、聚氯乙烯、聚丙烯腈、丙烯腈-苯乙烯-丙烯酸酯共聚物、聚酰胺、聚酯、聚氨酯、聚(甲基)丙烯酸酯、聚(甲基)丙烯酸甲酯、聚氟乙烯、氯化聚烯烃、含有可被所述活性组分溶解的嵌段和/或接枝共聚物、含有羟基的聚乙烯醇、纤维素、改性纤维素中的至少一种。
结合第一方面,在一种可行的实施方式中,所述活性组分具有可参与聚合反应的活性基团,所述活性基团包括碳碳双键、羟基、羧基、硫杂环丙烷基团、异氰酸酯基、碳酸酯类基团、环氧基团、环状酰胺基团、环状内酯结构、环状酸酐结构、环状缩醛结构中的至少一种。
结合第一方面,在一种可行的实施方式中,所述活性组分包括第一活性组分,所述第一活性组分具有活性基团,所述第一活性组分溶解至少部分所述粉末材料。
结合第一方面,在一种可行的实施方式中,所述活性组分还包括第二活性组分,所述第二活性组分具有活性基团;所述第二活性组分不溶解所述粉末材料。
结合第一方面,在一种可行的实施方式中,所述活性组分在所述液体材料中的质量占比为50%-100%。
结合第一方面,在一种可行的实施方式中,所述活性组分包括具有活性基团的第一活性组分及第二活性组分,所述第一活性组分在所述液体材料中的质量占比为10%-95%,所述第二活性组分在所述液体材料中质量占比为0%-90%。
结合第一方面,在一种可行的实施方式中,所述第一活性组分选自含碳碳双键的单体、含环氧基团和促使环氧基团发生开环聚合的组合物、环状内酯、硫杂环化合物、碳酸酯类化合物、环状酰胺类化合物中的至少一种。
结合第一方面,在一种可行的实施方式中,所述第二活性组分选自含碳碳双键的单体和/或预聚物、含环氧基团的稀释剂和/或预聚物、促使环氧基团发生开环聚合的单体和/或预聚物、多元醇、环状内脂、硫杂环化合物、环状酰胺类化合物中的至少一种。
结合第一方面,在一种可行的实施方式中,所述第一活性组分和/或所述第二活性 组分具有膨胀性基团,所述膨胀性基团可参与聚合反应,所述膨胀性基团选自螺环醚结构、螺环原碳酸酯结构、螺环原酸酯结构、双环原酸酯结构、双环内酯结构中的至少一种。
结合第一方面,在一种可行的实施方式中,所述第一活性组分和/或所述第二活性组分具有活性基团组合,所述活性基团组合在聚合反应中可形成所述膨胀性基团。
结合第一方面,在一种可行的实施方式中,所述活性基团组合包括多元醇类基团与原碳酸二脂类基团组合、环氧基团与环状内酯结构组合中的任意一种。
结合第一方面,在一种可行的实施方式中,所述液体材料还包括第一助剂,所述第一助剂包括自由基引发剂、阴离子引发剂、阳离子引发剂和催化剂中的至少一种;和/或,所述第一助剂在所述液体材料中的质量占比为0%-10%。
结合第一方面,在一种可行的实施方式中,所述液体材料还包括第二助剂,所述第二助剂包括流平剂、消泡剂、阻聚剂、表面活性剂、抗氧化剂、增塑剂、分散剂中的至少一种;和/或,所述第二助剂在所述液体材料中的质量占比为0.1%-30%。
结合第一方面,在一种可行的实施方式中,所述液体材料还包括着色剂,所述着色剂在所述液体材料中的质量占比为0%-10%。
结合第一方面,在一种可行的实施方式中,在所述根据层打印数据在所述粉末材料层上施加液体材料之前,所述方法还包括:
预热所述粉末材料层。
结合第一方面,在一种可行的实施方式中,在所述根据层打印数据在所述粉末材料层上施加液体材料之后,所述方法还包括:
对施加所述液体材料后的粉末材料层进行加热,促进所述液体材料中的活性组分溶解所述粉末材料。
结合第一方面,在一种可行的实施方式中,所述能量包括辐射能、热能中的至少一种。
结合第一方面,在一种可行的实施方式中,在所述提供能量至所述粉末材料层,使所述液体材料中的活性组分发生聚合反应,所述粉末材料层中施加所述液体材料的区域成型,得到三维物体的切片层之后,所述方法还包括:
重复形成粉末材料层和施加液体材料,并给至少部分施加液体材料的粉末材料层 提供能量,获得的多个切片层逐层叠加形成三维物体。
结合第一方面,在一种可行的实施方式中,在形成三维物体之后,所述方法还包括:对形成的三维物体进行热处理,以提高所述三维物体的机械强度。
第二方面,本申请实施例提供一种三维物体增材制造装置,用于实施上述的三维物体增材制造方法,装置包括:
供粉部件,用于提供粉末材料以形成粉末材料层;
成型平台,用于承载所述粉末材料层;
材料分配器,用于根据层打印数据在所述粉末材料层上施加液体材料,所述液体材料溶解至少部分所述粉末材料,所述液体材料包括能够发生聚合反应的活性组分;
能量供应装置,用于提供能量至所述粉末材料层,使所述液体材料中的活性组分发生聚合反应,所述粉末材料自身不发生聚合反应且不与所述活性组分发生聚合反应,所述粉末材料层中施加所述液体材料的区域成型,得到三维物体的切片层。
结合第二方面,在一种可行的实施方式中,所述三维物体增材制造装置还包括升降机构,所述升降机构与所述成型平台连接,驱动所述成型平台沿竖直方向上升或下降。
结合第二方面,在一种可行的实施方式中,所述三维物体增材制造装置还包括预热部件和/或加热部件,所述预热部件用于预热所述粉末材料层;所述加热部件用于加热所述施加所述液体材料后的粉末材料层,促进所述液体材料中的活性组分溶解所述粉末材料。
结合第二方面,在一种可行的实施方式中,所述能量供应装置、所述预热部件和所述加热部件分别可选自紫外灯、红外灯、微波发射器、加热丝、加热片、加热板中至少一种。
结合第二方面,在一种可行的实施方式中,所述三维物体增材制造装置还包括温度监控器,所述温度监控器用于监测所述粉末材料层的温度。
结合第二方面,在一种可行的实施方式中,所述三维物体增材制造装置还包括控制器,所述控制器用于用于控制所述供粉部件、所述材料分配器、所述能量供应装置、所述预热部件、所述加热部件、所述温度监控器中至少其一的工作。
第三方面,本申请实施例提供一种非暂时性计算机可读存储介质,所述存储介质 包括存储的程序,在所述程序运行时控制所述存储介质所在设备执行上述的三维物体增材制造方法。
第四方面,本申请实施例提供一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的三维物体增材制造方法。
本申请的技术方案至少具有以下有益的效果:
本申请实施例提供的三维物体增材制造方法及装置、存储介质、计算机设备,在粉末材料层上施加含有活性组分的液体材料,活性组分溶解至少部分粉末材料,且所述活性组分发生聚合反应形成高分子聚合物,形成的高分子聚合物与粉末材料形成共混物,尤其与溶解的粉末材料达到分子级别的混合,形成高分子合金,使得粉末材料之间、粉末材料与活性组分的聚合物之间、打印层与层之间都有很好的连接作用。另外,形成的高分子聚合物与粉末材料混合可以得到界面结合良好的“海-岛结构”或均相结构,提高三维物体的机械强度。
本申请的液体材料中的活性组分填充粉末材料之间的间隙,溶解粉末材料,进一步降低三维物体内部的孔隙率,提高三维物体的致密度。活性组分发生聚合反应形成高分子聚合物与粉末材料达到分子级别的混合,容易获得无色或浅色透明的三维物体。
本申请的液体材料中的活性组分发生聚合反应以形成三维物体的层及制造得到的三维物体中基本没有小分子物质残留,使用过程中也基本没有小分子物质析出,可以达到安全环保的要求。
本申请中还可以通过调节液体材料的喷射量,从而实现不同区域不同性能的三维物体。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请具体实施例提供的三维物体增材制造方法的流程示意图;
图2为本申请具体实施例提供的三维物体增材制造装置的结构示意图;
图3为本申请又一实施例中三维物体增材制造方法的流程示意图;
图4a-4g为本申请具体实施例提供的三维物体形成过程的结构示意图;
图5为本申请实施例中提供的存储介质的结构示意图;
图6为本申请实施例中提供的计算机设备的结构示意图。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其它含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图1为本实施例提供的三维物体增材制造方法的流程图,请参阅图1,本实施例提供一种三维物体增材制造方法,包括以下步骤:
步骤S10,利用粉末材料形成粉末材料层;
步骤S20,根据层打印数据在所述粉末材料层上施加液体材料,所述液体材料溶解至少部分所述粉末材料,所述液体材料包括能够发生聚合反应的活性组分;及
步骤S30,提供能量至所述粉末材料层,使所述液体材料中的活性组分发生聚合反应,所述粉末材料自身不发生聚合反应且不与所述活性组分发生聚合反应,所述粉末材料层中施加所述液体材料的区域成型,得到三维物体的切片层。
在本方案中,液体材料中的活性组分发生聚合反应形成高分子聚合物,形成的高分子聚合物与粉末材料形成共混物,尤其与溶解于液体材料中的粉末材料达到分子级别的混合,形成高分子合金,使得粉末材料之间、粉末材料与活性组分的聚合物之间、 打印层与层之间都有很好的连接作用,呈现“海-岛结构”或均相结构,能够提高三维物体的机械强度。
需要说明的是,海-岛结构是共混物的两相体系,其中,一相为连续相,一相为分散相,颗粒状的粉末材料分散在连续的聚合物中,形成较强的连接,可以提高三维物体的机械强度。
具体地,粉末材料是呈粉末状的材料颗粒,其与液体材料中的活性组分不发生聚合反应,粉末材料自身也不发生聚合反应。可选地,粉末材料选自聚苯乙烯(PS)、聚氯乙烯(PVC)、聚丙烯腈、丙烯腈-苯乙烯-丙烯酸酯共聚物(ASA)、聚酰胺(PA)、聚酯、聚氨酯(PU)、聚(甲基)丙烯酸酯、聚(甲基)丙烯酸甲酯、聚氟乙烯、氯化聚烯烃、含有可被所述活性组分溶解的嵌段和/或接枝共聚物、含有羟基的聚乙烯醇(PVA)、纤维素、改性纤维素中的至少一种。
本实施例中的粉末材料的熔点或熔融温度可以为60℃~300℃。粉末材料的颗粒形状和颗粒大小没有特殊限制。本实施例提供的粉末材料在形成粉末材料层时,粉末材料的流动性能够满足使用需求、粉末材料之间形成的间隙能被施加的液体材料填满,并且施加的液体材料能润湿粉末材料的表面和/或者至少部分粉末材料能够溶解于液体材料中。
可选地,根据制造粉末材料工艺的差异,本实施例中粉末材料可以是球状、树枝状、片状、盘状、针状和棒状等形状。粉末材料的平均粒径为1μm~400μm,例如可以是1μm、5μm、10μm、30μm、50μm、100μm、150μm、200μm、250μm、300μm、350μm或400μm,粉末材料的平均粒径优选为30μm~200μm。粉末材料中的颗粒间隙大概为5nm~100μm,例如可以是5nm、10nm、100nm、250nm、500nm、1μm、5μm、10μm、25μm、50μm、75μm或100μm,在此不做限定。本实施例中的粉末材料的颗粒间隙在5nm~100μm范围内,当对粉末材料层选择性施加液体材料时,液体材料能通过间隙快速渗透到粉末材料层内部和保留部分在表层,从而润湿选定区域内的粉末材料的表面,并至少部分溶解粉末材料。需要说明的是,本实施例中的溶解是指除完全不溶解以外的所有可能情况。
可选地,粉末材料层的厚度为10μm~500μm,例如可以是10μm、25μm、50μm、75μm、100μm、125μm、150μm、200μm、300μm、400μm或500μm。 粉末材料层的厚度优选为50μm~150μm。可以理解地,当粉末材料层的厚度较薄时,能够形成分辨率较高的物体,但是制造物体所花费的时间大大加长,制造成本增高;当粉末材料层的厚度较厚时,液体材料浸润粉末材料的时间加长,并且制造形成的物体分辨率下降,难以达到预期。
本申请中粉末材料还可以包括添加剂,所述添加剂包括流动助剂、填料中的至少一种。其中,流动助剂用来改善粉末材料的流动性,流动助剂例如可以是二氧化硅、滑石粉等;填料用来提高三维物体的机械强度,填料例如可以是石墨烯、碳纳米管、玻璃纤维、高岭土等,在本实施例中不做限制。
在本实施例中,液体材料包括能够发生聚合反应的活性组分,所述活性组分溶解至少部分粉末材料。优选地,所述活性组分完全溶解与所述活性组分接触的粉末材料。
进一步地,液体材料中的活性组分具有可参与聚合反应的活性基团,所述活性基团包括碳碳双键、羟基、羧基、硫杂环丙烷基团、异氰酸酯基、碳酸酯类基团、环氧基团、环状酰胺基团、环状内酯结构、环状酸酐结构、环状缩醛结构中的至少一种。需要说明的是,活性组分与粉末材料不发生聚合反应。在本实施例中,以液体材料的总质量为100%计,所述活性组分在所述液体材料中的质量占比为50%-100%。
所述活性组分包括第一活性组分,所述第一活性组分具有活性基团,所述第一活性组分溶解至少部分所述粉末材料。具体的,第一活性组分可以是仅包括一种可溶解粉末材料的物质,或者是包括多种可溶解粉末材料的物质的混合物,多种物质对粉末材料的溶解度可以不同也可以相同。
需要说明的是,本实施例中所述溶解是指除了完全不溶解以外的所有可能情况。例如当1g粉末材料置于100g活性组分中有至少1%的粉末材料溶解。优选地,第一活性组分完全溶解粉末材料。所述溶解不限制于常温下,还可以在加热和/或搅拌的情况下实现的活性组分溶解粉末材料;所述溶解不限于一次溶解还可以分次分阶段溶解,如在活性组分与粉末材料接触时发生缓慢溶解,可以加热粉末材料以加快溶解速率。
在本实施例中,以液体材料的总质量为100%计,所述第一活性组分在所述液体材料中的质量占比为10%-95%。例如可以是10%、20%、30%、40%、50%、60%、70%、80%或95%,当然,其质量占比还可以根据实际使用情况进行配比,在此不做限定。优选地,所述第一活性组分在所述液体材料中质量占比为30%-95%。本实施例中第一 活性组分在液体材料中的质量占比大于或等于30%,通过提高液体材料中第一活性组分的占比可以提高第一活性组分对粉末材料的溶解速率和溶解程度,从而提高打印物体的机械强度。
所述第一活性组分可以选自含碳碳双键的单体、含环氧基团和促使环氧基团发生开环聚合的组合物、环状内酯、硫杂环化合物、碳酸酯类化合物、环状酰胺类化合物中的至少一种。具体地,所述含碳碳双键的单体可以是(甲基)丙烯酸酯类、乙烯基醚类、烯丙基醚类、苯乙烯、丙烯酰吗啉、N-乙烯基吡咯烷酮等。所述含环氧基团和促使环氧基团发生开环聚合的组合物可以是含有环氧稀释剂和/或含有羟基的小分子或预聚物、环氧稀释剂和/或含有羧基的小分子或预聚物。所述环状内酯可以是γ-丁内酯、δ-戊内酯、ε-己内酯等;所述硫杂环化合物如硫杂环丙烷、硫杂环丁烷等;所述碳酸酯类化合物可以是碳酸二甲酯、碳酸二乙酯等;环状酰胺类化合物可以是己内酰胺等。
示例性地,第一活性组分可以是苯乙烯或γ-丁内酯,粉末材料可以是能够被苯乙烯或γ-丁内酯溶解的聚苯乙烯。
第一活性组分还可以是(甲基)丙烯酸酯类单体,粉末材料可以是被(甲基)丙烯酸酯类单体溶解的聚(甲基)丙烯酸酯、纤维素、改性纤维素、含有羟基的聚乙烯醇、聚酯、聚氨酯、改性聚酰胺等。
第一活性组分还可以是丙烯酰吗啉,粉末材料可以是能够被丙烯酰吗啉部分溶解的聚氨酯、纤维素、改性纤维素、含有羟基的聚乙烯醇等。
第一活性组分还可以是环氧氯丙烷、环氧稀释剂,粉末材料还可以是能够被环氧氯丙烷或环氧稀释剂溶解的聚碳酸酯、改性聚酰胺、纤维素酯、纤维素醚等。
第一活性组分可以是γ-丁内酯,粉末材料还可以是能够被γ-丁内酯溶解的聚丙烯腈、乙酸纤维、聚甲基丙烯酸甲酯、聚氟乙烯和聚苯乙烯等。
第一活性组分还可以是ε-己内酯,粉末材料还可以是能够被ε-己内酯溶解的氯化聚烯烃、聚氨酯等。
进一步地,所述活性组分还可以包括第二活性组分,所述第二活性组分具有活性基团;所述第二活性组分不溶解所述粉末材料,即,第二活性组分完全不溶解粉末材料。可选地,第二活性组分可以自身发生聚合反应,或能与第一活性组分一起参与聚 合反应。
在本实施例中,以液体材料的总质量为100%计,所述第二活性组分在所述液体材料中质量占比为0%-90%。例如可以是0%、10%、20%、30%、40%、50%、60%、70%、80%或90%,当然,其质量占比还可以根据实际使用情况进行配比,在此不做限定。优选地,所述第二活性组分在所述液体材料中质量占比为20%-70%。通过控制液体材料中第二活性组分的占比,在保证第一活性组分溶解粉末材料的前提下,第二活性组分与第一活性组分形成性能互补,使三维物体具有比仅含第一活性组分时更高的性能,如降低收缩率。需要说明的是,在三维物体增材制造过程中,第二活性组分可以填充至粉末材料的颗粒之间或粉末颗粒内部的空隙中,减小成型物体的孔隙率,提高物体的成型密度。进一步地,第二活性组分还可以与第一活性组分形成性能互补,使三维物体具有比仅含第一活性组分时更高的性能。
在具体实施例中,所述第二活性组分选自含碳碳双键的单体和/或预聚物、含环氧基团的稀释剂和/或预聚物、促使环氧基团发生开环聚合的单体和/或预聚物、多元醇、环状内脂、硫杂环化合物、环状酰胺类化合物中的至少一种。
示例性地,所述含碳碳双键的预聚物例如可以是环氧或(改性)丙烯酸酯类预聚物、聚酯丙烯酸酯类预聚物、聚氨酯丙烯酸酯类预聚物、纯丙烯酸酯类预聚物等。所述含有环氧基团的预聚物例如可以是E-51、E-41等;所述多元醇预聚物例如可以是聚酯二元醇、聚醚二元醇、聚己内酯二元醇、聚碳酸酯二元醇等。环状内酯例如可以是丙交酯、乙交酯等,环状内酯本身为固体,溶解力差。部分具有环状缩醛结构的化合物,如三聚甲醛,其本身为固体。(甲基)丙烯酸酯类单体由于其结构差异,对聚合物溶解能力不一样,如丙烯酸异冰片酯、甲基丙烯酸异冰片酯、丙烯酸月桂酯、甲基丙烯酸月桂酯、环三羟甲基丙烷甲缩醛丙烯酸酯等对聚氨酯类粉末溶解效果差,基本不溶。
进一步地,所述第一活性组分和/或所述第二活性组分具有膨胀性基团,所述膨胀性基团可参与聚合反应,所述膨胀性基团选自螺环醚结构、螺环原碳酸酯结构、螺环原酸酯结构、双环原酸酯结构、双环内酯结构中的至少一种。例如,含有膨胀性基团的活性组分可以是3,9-二乙基-3,9丙烯氧甲基-1,5,7,11-四氧杂螺[5,5]十一烷、3,9-二羟乙基-3’9’-苯甲基-1,5,7,11-四氧杂螺环[5,5]十一烷等。
或者,所述第一活性组分和/或所述第二活性组分具有活性基团组合,所述活性基团组合在聚合反应中可形成所述膨胀性基团。
所述活性基团组合包括多元醇类基团与原碳酸二脂类基团组合、环氧基团与环状内酯结构组合中的任意一种。
可以理解地,第一活性组分和/或第二活性组分具有膨胀性基团或可形成膨胀性基团的活性基团组合,在第一活性组分和/或第二活性组分发生聚合反应的过程中,膨胀性基团也会发生化学反应,使得形成的聚合物体积膨胀,不会由于固化过程导致物体的体积收缩,最终成型的三维物体的尺寸精度更高。另外膨胀性基团引起的体积膨胀可以降低粉末材料的孔隙率,使得聚合物粉末致密化,提升物体的力学性能与机械强度。
本实施例中,第一活性组分和/或第二活性组分分子结构上还可以含有不参与聚合反应的功能性基团,功能性基团可以是亲水性基团,可以理解地,亲水性基团可以提高第一活性组分和/或第二活性组分的水溶性。具体地,亲水性基团可以是羟基、羧基等。功能性基团还可以是含阻燃功能的基团,例如磷酸酯类基团等,功能性基团还可以是含杀菌功能的基团,例如季胺盐基团等。
进一步地,液体材料还包括第一助剂,第一助剂用于引发或催化所述活性组分发生聚合反应,所述第一助剂包括自由基引发剂、阴离子引发剂、阳离子引发剂和催化剂中的至少一种。具体地,以液体材料的总质量为100%计,所述第一助剂在所述液体材料中的质量占比为0%-10%,例如可以是0%、1%、2%、3%、4%、5%、6%、7%、8%、9%或10%。当然,其质量占比还可以根据实际使用情况进行配比,在此不做限定。
所述自由基引发剂可以是高温自由基引发剂,如:过氧化苯甲酰叔丁酯、过氧化十二酰、过氧化二异丙苯、过氧化2-乙基己基酸叔戊酯、过氧化2-乙基己基酸叔丁酯、过氧化叔丁基(TBHP)、过氧化叔戊基(TAHP)、过氧化二叔丁基(DTBP)、过氧化二叔戊基(DTAP)、过氧化二异丙苯(DCP)、3,3-双(叔丁基过氧)丁酸乙酸、3,3-双(叔戊基过氧)丁酸乙酯、过氧化苯甲酸叔丁酯(TBPB)、过氧化3,3,5-三甲基己酸叔丁酯(TBPMH)、过氧化苯甲酸叔戊酯(TAPB)、过氧化醋酸叔戊酯(TAPA)等中的一种或多种。
所述自由基引发剂还可以是光自由基引发剂,如:安息香乙醚、安息香α,α-二 甲基苯偶酰缩酮、α,α-二乙氧基苯乙酮、2-羟基-2甲基-苯基丙酮-1,1-羟基-环己基苯甲酮、2-羟基-2-甲基-对羟乙基醚基苯基丙酮-1、[2-甲基1-(4-甲巯基苯基)-2-吗啉丙酮-1]、[2-苄基-2-二甲氨基-1-(4-吗啉苯基)丁酮-1]、苯甲酰甲酸酯、2,4,6-三甲基苯基酰基-乙氧基-苯基氧化膦、2,4,6-三甲基苯基酰基-二苯基氧化膦、双(2,4,6-三甲基苯基酰基)苯基氧化膦、4-对甲苯巯基二苯甲酮等中的一种或多种。
所述阴离子引发剂可以是丁基锂、丁基氧锂等。
所述阳离子引发剂可以是三芳基硫鎓六氟磷酸盐混合物、封闭型磷酸盐阳离子引发剂、4-(苯硫基)苯基二苯基硫鎓六氟磷酸盐、4-异丁基苯基-4’-甲基苯基碘鎓六氟磷酸盐、η6-异丙苯茂铁(Ⅱ)六氟磷酸盐混合液。
所述催化剂可以是乙二醇、异辛酸亚锡、辛酸亚锡、二月桂酸二丁基锡、甲基氟磺酸、乙基氟磺酸、甲基硝基苯磺酸、甲基磺酸甲酯或四苯基卟啉铝化物等等。
进一步地,液体材料还包括第二助剂,所述第二助剂选自流平剂、消泡剂、表面活性剂、阻聚剂、抗氧化剂、增塑剂、分散剂中的至少一种。具体地,以液体材料的总质量为100%计,所述第二助剂在所述液体材料中的质量占比为0.1%-30%,例如可以是0.1%、1%、5%、10%、15%、20%、25%或30%。当然,其质量占比还可以根据实际使用情况进行配比,在此不做限定。
示例性地,流平剂在液体材料中的质量占比为0.01%-3%;消泡剂在液体材料中的质量占比为0.01%-3%;表面活性剂在液体材料中的质量占比为0%-5%;阻聚剂在液体材料中的质量占比为0.05%-3%;抗氧化剂在液体材料中的质量占比为0.05%-3%;增塑剂在液体材料中的质量占比为0%-25%;分散剂在液体材料中的质量占比为0%-5%。
需要说明的是,所述流平剂的作用是提高液体材料的流动性以及对粉末材料的润湿性能,同时调整液体材料的表面张力使其能够正常打印。本申请中只要所用流平剂能满足上述性能要求,具体选择哪种流平剂不受限制,例如可以是毕克公司的BYK333、BYK377、BYK1798、BYK-UV3530、BYK-UV3575、BYK-UV3535等,迪高公司的TEGO wet 500、TEGO wet 270、TEGO Glide450、TEGO RAD 2010、TEGO RAD 2011、TEGO RAD 2100、TEGO RAD 2200等。
消泡剂的作用是抑制、降低、消除液体材料中的气泡,本申请中只要所用消泡剂 能达到上述效果具体选择哪种消泡剂不受限制,例如可以是毕克公司的BYK055、BYK088、BYK020、BYK025等,迪高公司的TEGO Airex 920、TEGO Airex 921、TEGO Airex 986、TEGO Foamex 810、TEGO Foamex N等,埃夫卡公司的Efka 7081、Efka7082等。
阻聚剂的作用可以是提高活性组分在高温下的稳定性,可以是阻止活性组分在非打印状态下发生聚合反应,提高液体材料的贮存稳定性。例如可以是对苯二酚、对羟基苯甲醚、对苯醌、2-叔丁基对苯二酚、吩噻嗪等,可以是瑞昂的GENORAD*16、GENORAD*18、GENORAD*20、GENORAD*22等,巴斯夫的Tinuvin234、Tinuvin770、Irganox245、氰特S100、氰特130等,汽巴的Irgastab UV10、Irgastab UV 22等。
表面活性剂的作用是调整活性组分的表面张力适合喷墨打印,提升组合物的流动性和对粉末材料的润湿性能。例如可以是BYK公司的BYK333、BYK325N、BYK345、BYK346、BYK370、BYK800D,迪高公司TEGO 4000、TEGO WET 260、TEGO WET 270、TEGO WET KL245、TEGO Airex 920、TEGO Airex 921。
抗氧化剂的作用主要是延缓或抑制聚合物氧化,例如可以是2,6-二叔丁基-4-甲基苯酚、:β-四[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯、1,1,3-三(2-甲基-4-羟基-5-叔丁苯基)丁烷、4-[(4,6-二辛硫基-1,3,5-三嗪-2-基)氨基]-2,6-二叔丁基苯酚、硫代二丙酸双月桂酯、三(壬基苯基)亚磷酸酯、亚磷酸三苯酯、2-巯基苯并咪唑等。
增塑剂的作用主要是改善三维物体成品的韧性,例如可以是邻苯二甲酸二辛酯、邻苯二甲酸丁苄酯、邻苯二甲酸二异壬酯、邻苯二甲酸二异癸酯、己二酸二乙酯、己二酸二丁酯、己二酸二异丁酯、己二酸二(2-丁氧基乙基)酯、己二酸二(2-乙基己基)酯、柠檬酸三乙酯、乙酰柠檬酸三乙酯、柠檬酸三丁酯、乙酰柠檬酸三丁酯。
分散剂的作用主要是提高和改善着色剂的分散稳定性。例如可以是具体选择哪种分散剂不受限制,目前市售的产品较多,可以是BYK102、BYK108、BYK110、BYK180、BYK9133、BYK9076、BYK9131,迪高Dispers 655、Dispers675、Dispers 688、Dispers750、Dispers 670等。
更进一步地,液体材料还包括着色剂,着色剂在液体材料中的质量占比为0~10%,例如可以是0%、1%、2%、4%、6%、8%或10%。当然,其质量占比还可以根据实际 使用情况进行配比,在此不做限定。
当液体材料中不含有着色剂时,由于活性组分溶解粉末材料,活性组分发生聚合反应形成的高分子聚合物与粉末材料达到分子级别的混合,此时容易获得无色或浅色透明的三维物体。
当液体材料中含有着色剂时,可以实现彩色三维物体。着色剂可以是染料或颜料。颜料具体可以选自C.I.Pigment White 6、C.I.Pigment Red 3、C.I.Pigment Red 5、C.I.Pigment Red 7、C.I.Pigment Red 9、C.I.Pigment Red 12、C.I.Pigment Red 13、C.I.Pigment Red 21、C.I.Pigment Red 31、C.I.Pigment Red49:1、C.I.Pigment Red 58:1、C.I.Pigment Red 175;C.I.Pigment Yellow 63、C.I.Pigment Yellow 3、C.I.Pigment Yellow 12、C.I.Pigment Yellow 16、C.I.Pigment Yellow 83;C.I.Pigment Blue 1、C.I.Pigment Blue 10、C.I.Pigment Blue B、Phthalocyanine Blue BX、Phthalocyanine Blue BS、C.I.Pigment Blue61:1等中的一种或多种。
染料具体可以选自C.I.酸性红37、C.I.酸性红89(弱酸性红3B、2BS)、C.I.酸性红145(弱酸性大红GL)、C.I.酸性橙67(弱酸性黄RXL)、C.I.酸性橙116(酸性橙AGT)、C.I.酸性橙156(弱酸性橙3G)、C.I.酸性黄42(弱酸性黄Rs、酸性黄R)、C.I.酸性黄49(酸性黄GR200)、C.I.酸性蓝277、C.I.酸性蓝344、C.I.酸性蓝350、C.I.酸性蓝9(艳蓝FCF)、C.I.绿17、C.I.酸绿28、C.I.酸性绿41、C.I.酸性绿81、C.I.酸性紫17(酸性紫4BNS)、C.I.酸性紫54(弱酸性艳红10B)、C.I.酸性紫48、C.I.酸性棕75、C.I.酸性棕98、C.I.酸性棕165、C.I.酸性棕348、C.I.酸性棕349、C.I.酸性黑26、C.I.酸性黑63、C.I.酸性黑172、C.I.酸性黑194、C.I.酸性黑210、C.I.酸性黑234、C.I.酸性黑235、C.I.酸性黑242等。
本实施例中三维物体增材制造过程中,活性组分发生聚合反应形成三维物体的切片层,制造的三维物体中没有小分子物质残留,使用过程中也没有小分子物质析出,达到安全环保的要求。
表一列举了本申请中部分液体材料的组成示例:
Figure PCTCN2021095862-appb-000001
Figure PCTCN2021095862-appb-000002
如上表所示,其中,示例1的液体材料对一些聚氨酯粉末、聚(甲基)丙烯酸酯、醋酸纤维素等粉末材料具有较好的成型效果。示例2的液体材料对一些聚氨酯粉末、氯化聚烯烃具有较好的成型效果。示例3的液体材料对一些聚丙烯腈、乙酸纤维、聚 甲基丙烯酸甲酯、聚氟乙烯和聚苯乙烯等粉末具有较好的成型效果。示例4的液体材料对一些聚氨酯粉末、醋酸纤维素等粉末具有较好的成型效果,其中环氧树脂E-41与ε-己内酯可以在反应中形成膨胀性基团。
图2为本申请具体实施例提供的三维物体增材制造装置的结构示意图,如图2所示,本申请实施例还提供一种三维物体增材制造装置,用于实施上述三维物体增材制造方法,装置包括:
供粉部件2,用于提供粉末材料以形成粉末材料层;
成型平台3,用于承载所述粉末材料层;
材料分配器6,用于根据层打印数据在所述粉末材料层上施加液体材料,所述液体材料溶解至少部分所述粉末材料,所述液体材料包括能够发生聚合反应的活性组分;
能量供应装置8,用于提供能量至所述粉末材料层,使所述液体材料中的活性组分发生聚合反应,所述粉末材料自身不发生聚合反应且不与所述活性组分发生聚合反应,所述粉末材料层中施加所述液体材料的区域成型,得到三维物体的切片层。
本实施例中,供粉部件2包括储粉腔23、升降器22和铺粉器21,储粉腔用于存储粉末材料0,储粉腔23内部具有可移动的支撑板231,升降器22与支撑板231连接,可带动支撑板231在Z方向上升或下降;铺粉器21用于将储粉腔23中的粉末材料0铺展到成型平台3上以形成粉末材料层L0,常用的铺粉器21可以是铺粉棍或刮板。
材料分配器6是喷墨打印头,打印头可以是单通过打印头或多通道打印头,本实施例中打印头的数量根据所使用的液体材料的种类以及需要施加的液体材料的量有关,例如,液体材料包括不同颜色的功能材料时,不同颜色的液体材料通过不同的打印头或同一打印头的不同通道喷射。例如,当需要施加的液体材料的量较大单个墨滴的体积不足以满足需求时,为了提高打印效率,可以同时使用多个打印头或多个通道喷射相同种类的材料。
能量供应装置8提供的能量可以是辐射能或热能,所述能量供应装置可选自紫外灯、红外灯、微波发射器、加热丝、加热片、加热板中的至少一种。需要说明的是,具体选择哪种形式的能量供应装置和液体材料中的活性组分的种类或者与活性组分的种 类及第一助剂的种类相关,当液体材料中活性组分发生光聚合反应时,此时能量供应装置8提供辐射能如紫外光辐射,通过紫外光辐射引发活性组分发生光聚合反应;当液体材料中活性组分发生热聚合反应时,此时能量供应装置提供热能如红外灯、微波、加热丝、加热片、加热板,通过热能引发活性组分发生热聚合反应。
可选地,所述三维物体增材制造装置还包括升降机构4,所述升降机构4与所述成型平台3连接,驱动所述成型平台3沿竖直方向上升或下降。
可选地,所述三维物体增材制造装置还包括预热部件5和/或加热部件10,所述预热部件5用于预热所述粉末材料层,促进所述液体材料中的活性组分溶解所述粉末材料;加热部件10用于加热施加所述液体材料后的粉末材料层,促进所述液体材料中的活性组分溶解所述粉末材料。预热部件5与加热部件10分别可选自紫外灯、红外灯、微波发射器、加热丝、加热片、加热板中的至少一种。
在本实施例中,预热部件5、材料分配器6、加热部件10和能量供应装置8可以按顺序安装在导轨11上,并能在导轨11上移动。本实施例中当能量供应装置8是提供热能的装置时,加热部件10可以取消,用能量供应装置8对施加有液体材料的粉末材料层进行加热并引发聚合反应。
三维物体增材制造装置还可以包括温度监控器(图中未示出),所述温度监控器用于监测所述粉末材料层的温度。
进一步地,三维物体增材制造装置还包括控制器9,控制器9用于控制所述供粉部件2、所述材料分配器6、所述能量供应装置8、所述预热部件5、所述加热部件10、所述温度监控器中至少其一的工作。例如,温度监控器将监测的温度反馈给控制器9,控制器根据温度监控器反馈的信息控制预热部件5和/或加热部件10以及能量供应装置8提供能量的大小。
图3为本申请又一实施例中三维物体增材制造方法的流程示意图,如图3所示,下面结合三维物体增材制造装置对三维物体增材制造方法进行进一步详细的解释:
步骤S01,获取三维物体的数字模型,将所述三维物体的数字模型进行切片分层,得到多个切片层及层图像数据,并根据所述层图像数据生成层打印数据。
在具体实现方式中,可以通过扫描方式获取三维物体的原始数据并进行三维建模 得到三维物体的数字模型,或者,通过设计构建三维物体模型从而得到三维物体的数字模型,对数字模型进行数据格式转换,例如转换成STL格式、PLY格式、WRL格式等能被切片软件识别的格式,再使用切片软件对模型进行切片分层得到切片层图像数据,并对层图像数据进行处理,得到表示物体的层打印数据。层打印数据包括表示物体形状的信息,和/或表示物体颜色的信息。
步骤S10,利用粉末材料形成粉末材料层。如图4a所示,在具体实施例中,可以使用供粉部件2提供粉末材料0至成型平台3上形成粉末材料层L0。
步骤S11,预热所述粉末材料层。如图4b所示,在具体实施例中,在形成粉末材料层L0后,预热部件5对粉末材料层L0进行预加热,提高粉末材料的温度,有助于步骤S20中在粉末材料层L0上施加液体材料时促进活性组分对粉末材料的溶解速率。预加热的温度与所用的粉末材料的属性有关,优选地,预加热温度低于粉末材料的熔点或熔融温度。可以理解地,本实施例中通过控制预加热温度低于粉末材料的熔点或熔融温度,可以防止粉末材料黏连,有利于液体材料渗透进粉末材料颗粒间的空隙中,从而提高活性组分对粉末材料的溶解速率。
步骤S20,根据层打印数据在所述粉末材料层上施加液体材料。如图4c所示,在具体实施例中,材料分配器6可以根据层打印数据在粉末材料层L0上施加液体材料7形成层图案化区域31;液体材料7渗透到粉末材料的间隙及覆盖在粉末材料的表层,从而润湿粉末材料的表面。
液体材料7包括能够发生聚合反应的活性组分,所述活性组分溶解至少部分粉末材料。如图4d所示,层图案化区域31中的粉末材料被活性组分溶解,使粉末材料与活性组分达到分子级别的混合。
步骤S21,对施加所述液体材料后的粉末材料层进行加热,促进所述液体材料中的活性组分溶解所述粉末材料。如图4e所示,在施加有液体材料7的粉末材料层L0上加热部件10加热粉末材料层L0,进一步促进活性组分溶解粉末材料,使粉末材料能在短时间内完全溶解,粉末材料与活性组分达到分子级别的混合且混合均匀,使得活性组分发生聚合反应,形成的聚合物与粉末材料也达到分子级别的混合,从而形成高分子合金,提高形成的三维物体的机械强度。
步骤S30,提供能量至所述粉末材料层,使所述液体材料中的活性组分发生聚合 反应,所述粉末材料层中施加所述液体材料的区域成型,得到三维物体的切片层。如图4f所示,在具体实施例中,能量供应装置8提供能量至粉末材料层L0上,使活性组分发生聚合反应形成高分子聚合物以形成三维物体的切片层Lw。
如图4f所示,能量供应装置8提供的能量还可进一步促进活性组分溶解粉末材料,所述活性组分发生聚合反应形成高分子聚合物,形成的高分子聚合物与粉末材料形成共混物,尤其与溶解的粉末材料达到分子级别的混合,形成高分子合金,使得粉末材料之间、粉末材料与活性组分的聚合物之间、打印层与层之间都有很好的连接作用。另外,形成的高分子聚合物与粉末材料混合可以得到界面结合良好的“海-岛结构”或均相结构,提高三维物体的机械强度。
本实施例在三维物体增材制造过程中,材料分配器6根据层打印数据在粉末材料层L0上施加液体材料7,可以通过调节液体材料的喷射量,从而实现不同区域不同性能的三维物体。
在步骤S30之后,所述方法还包括:步骤S40,确认当前切片层是否为最后一层。
当确认当前切片层不是最后一层时,重复形成粉末材料层和施加液体材料,并给至少部分施加液体材料的粉末材料层提供能量,获得的多个切片层逐层叠加形成三维物体。
如图4g所示,在三维物体打印过程中,每形成一个三维物体的切片层L W之后,成型平台3在升降机构4的驱动下下降至少一个层厚的距离,供粉部件2提供一个新的粉末材料层L0在先前形成的层之上,液体材料分配器6根据层打印数据施加液体材料7在粉末材料层L0上形成新的层图案化区域31,能量供应装置8提供能量至层图案化区域31以形成三维物体的新的切片层;重复执行此过程,形成三维物体W。
步骤S50,当确认当前切片层是最后一层时,对形成的三维物体进行热处理,以提高所述三维物体的机械强度。
在具体实施例中,在获得三维物体w后,通过使用预加热部件5和/或加热部件10对三维物体w整体进行加热,或者将三维物体w整体取出放置在加热炉中进行加热(图中未示出),一方面使得粉末溶解效果更好、粉末材料间孔隙率降低,成型物件致密度更高,另一方面使活性组分进一步聚合反应,从而提高三维物体w的拉伸强度。
本申请实施例还提供一种非暂时性计算机可读存储介质,如图5所示,所述存储介质91包括存储的程序911,在所述程序运行时控制所述存储介质91所在设备执行上述的三维物体增材制造方法。
本申请实施例还提供一种计算机设备,如图6所示,该实施例的计算机设备100包括:处理器101、存储器102以及存储在存储器102中并可在处理器101上运行的计算机程序103,处理器101执行计算机程序103时实现实施例中的三维物体增材制造方法,为避免重复,此处不一一赘述。
计算机设备100可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。计算机设备可包括,但不仅限于,处理器101、存储器102。本领域技术人员可以理解,图6仅仅是计算机设备100的示例,并不构成对计算机设备100的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如计算机设备还可以包括输入输出设备、网络接入设备、总线等。
所称处理器101可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器102可以是计算机设备100的内部存储单元,例如计算机设备100的硬盘或内存。存储器102也可以是计算机设备100的外部存储设备,例如计算机设备100上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器102还可以既包括计算机设备100的内部存储单元也包括外部存储设备。存储器102用于存储计算机程序以及计算机设备所需的其他程序和数据。存储器102还可以用于暂时地存储已经输出或者将要输出的数据。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (28)

  1. 一种三维物体增材制造方法,其特征在于,所述方法包括:
    利用粉末材料形成粉末材料层;
    根据层打印数据在所述粉末材料层上施加液体材料,所述液体材料溶解至少部分所述粉末材料,所述液体材料包括能够发生聚合反应的活性组分;及
    提供能量至所述粉末材料层,使所述液体材料中的活性组分发生聚合反应,所述粉末材料自身不发生聚合反应且不与所述活性组分发生聚合反应,所述粉末材料层中施加所述液体材料的区域成型,得到三维物体的切片层。
  2. 根据权利要求1所述的方法,其特征在于,所述粉末材料选自聚苯乙烯、聚氯乙烯、聚丙烯腈、丙烯腈-苯乙烯-丙烯酸酯共聚物、聚酰胺、聚酯、聚氨酯、聚(甲基)丙烯酸酯、聚(甲基)丙烯酸甲酯、聚氟乙烯、氯化聚烯烃、含有可被所述活性组分溶解的嵌段和/或接枝共聚物、含有羟基的聚乙烯醇、纤维素、改性纤维素中的至少一种。
  3. 根据权利要求1所述的方法,其特征在于,所述活性组分具有可参与聚合反应的活性基团,所述活性基团包括碳碳双键、羟基、羧基、硫杂环丙烷基团、异氰酸酯基、碳酸酯类基团、环氧基团、环状酰胺基团、环状内酯结构、环状酸酐结构、环状缩醛结构中的至少一种。
  4. 根据权利要求3所述的方法,其特征在于,所述活性组分包括第一活性组分,所述第一活性组分具有活性基团,所述第一活性组分溶解至少部分所述粉末材料。
  5. 根据权利要求4所述的方法,其特征在于,所述活性组分还包括第二活性组分,所述第二活性组分具有活性基团;所述第二活性组分不溶解所述粉末材料。
  6. 根据权利要求1所述的方法,其特征在于,所述活性组分在所述液体材料中的质量占比为50%-100%。
  7. 根据权利要求5所述的方法,其特征在于,所述活性组分包括具有活性基团的第一活性组分及第二活性组分,所述第一活性组分在所述液体材料中的质量占比为10%-95%,所述第二活性组分在所述液体材料中质量占比为0%-90%。
  8. 根据权利要求4或7所述的方法,其特征在于,所述第一活性组分选自含碳碳双键的单体、含环氧基团和促使环氧基团发生开环聚合的组合物、环状内酯、硫杂环化合物、碳酸酯类化合物、环状酰胺类化合物中的至少一种。
  9. 根据权利要求5或7所述的方法,其特征在于,所述第二活性组分选自含碳碳双键的单体和/或预聚物、含环氧基团的稀释剂和/或预聚物、促使环氧基团发生开环聚合的单体和/或预聚物、多元醇、环状内脂、硫杂环化合物、环状酰胺类化合物中的至少一种。
  10. 根据权利要求5所述的方法,其特征在于,所述第一活性组分和/或所述第二活性组分具有膨胀性基团,所述膨胀性基团可参与聚合反应,所述膨胀性基团选自螺环醚结构、螺环原碳酸酯结构、螺环原酸酯结构、双环原酸酯结构、双环内酯结构中的至少一种。
  11. 根据权利要求10所述的方法,其特征在于,所述第一活性组分和/或所述第二活性组分具有活性基团组合,所述活性基团组合在聚合反应中可形成所述膨胀性基团。
  12. 根据权利要求11所述的方法,其特征在于,所述活性基团组合包括多元醇类基团与原碳酸二脂类基团组合、环氧基团与环状内酯结构组合中的任意一种。
  13. 根据权利要求1所述的方法,其特征在于,所述液体材料还包括第一助剂,所述第一助剂包括自由基引发剂、阴离子引发剂、阳离子引发剂和催化剂中的至少一种;和/或,所述第一助剂在所述液体材料中的质量占比为0%-10%。
  14. 根据权利要求1所述的方法,其特征在于,所述液体材料还包括第二助剂,所述第二助剂包括流平剂、消泡剂、阻聚剂、表面活性剂、抗氧化剂、增塑剂、分散剂中的至少一种;和/或,所述第二助剂在所述液体材料中的质量占比为0.1%-30%。
  15. 根据权利要求1所述的方法,其特征在于,所述液体材料还包括着色剂,所述着色剂在所述液体材料中的质量占比为0%-10%。
  16. 根据权利要求1所述的方法,其特征在于,在所述根据层打印数据在所述粉末材料层上施加液体材料之前,所述方法还包括:
    预热所述粉末材料层。
  17. 根据权利要求1所述的方法,其特征在于,在所述根据层打印数据在所述粉末材料层上施加液体材料之后,所述方法还包括:
    对施加所述液体材料后的粉末材料层进行加热,促进所述液体材料中的活性组分溶解所述粉末材料。
  18. 根据权利要求1所述的方法,其特征在于,所述能量包括辐射能、热能中的 至少一种。
  19. 根据权利要求1所述的方法,其特征在于,在所述提供能量至所述粉末材料层,使所述液体材料中的活性组分发生聚合反应,所述粉末材料层中施加所述液体材料的区域成型,得到三维物体的切片层之后,所述方法还包括:
    重复形成粉末材料层和施加液体材料,并给至少部分施加液体材料的粉末材料层提供能量,获得的多个切片层逐层叠加形成三维物体。
  20. 根据权利要求19所述的方法,其特征在于,在形成三维物体之后,所述方法还包括:
    对形成的三维物体进行热处理,以提高所述三维物体的机械强度。
  21. 一种三维物体增材制造装置,用于实施上述权利要求1-19任一项所述三维物体增材制造方法,其特征在于,包括:
    供粉部件,用于提供粉末材料以形成粉末材料层;
    成型平台,用于承载所述粉末材料层;
    材料分配器,用于根据层打印数据在所述粉末材料层上施加液体材料,所述液体材料溶解至少部分所述粉末材料,所述液体材料包括能够发生聚合反应的活性组分;
    能量供应装置,用于提供能量至所述粉末材料层,使所述液体材料中的活性组分发生聚合反应,所述粉末材料自身不发生聚合反应且不与所述活性组分发生聚合反应,所述粉末材料层中施加所述液体材料的区域成型,得到三维物体的切片层。
  22. 根据权利要求21所述的装置,其特征在于,所述三维物体增材制造装置还包括升降机构,所述升降机构与所述成型平台连接,驱动所述成型平台沿竖直方向上升或下降。
  23. 根据权利要求21或22所述的装置,其特征在于,所述三维物体增材制造装置还包括预热部件和/或加热部件,所述预热部件用于预热所述粉末材料层;所述加热部件用于加热所述施加所述液体材料后的粉末材料层,促进所述液体材料中的活性组分溶解所述粉末材料。
  24. 根据权利要求23所述的装置,其特征在于,所述能量供应装置、所述预热部件和所述加热部件分别可选自紫外灯、红外灯、微波发射器、加热丝、加热片、加热板中至少一种。
  25. 根据权利要求23所述的装置,其特征在于,所述三维物体增材制造装置还 包括温度监控器,所述温度监控器用于监测所述粉末材料层的温度。
  26. 根据权利要求25所述的装置,其特征在于,所述三维物体增材制造装置还包括控制器,所述控制器用于用于控制所述供粉部件、所述材料分配器、所述能量供应装置、所述预热部件、所述加热部件、所述温度监控器中至少其一的工作。
  27. 一种非暂时性计算机可读存储介质,其特征在于,所述存储介质包括存储的程序,在所述程序运行时控制所述存储介质所在设备执行权利要求1~20任意一项所述的三维物体增材制造方法。
  28. 一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1~20任意一项所述的三维物体增材制造方法。
PCT/CN2021/095862 2020-08-11 2021-05-25 三维物体增材制造方法及装置、存储介质、计算机设备 WO2022033112A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21855168.7A EP4197745A4 (en) 2020-08-11 2021-05-25 METHOD AND DEVICE FOR THE ADDITIVE MANUFACTURING OF THREE-DIMENSIONAL OBJECTS, STORAGE MEDIUM AND COMPUTER DEVICE
JP2023508595A JP7530504B2 (ja) 2020-08-11 2021-05-25 三次元物体の付加製造方法及び装置、記憶媒体、コンピュータ機器
US18/106,404 US20230182382A1 (en) 2020-08-11 2023-02-06 Three-dimensional object additive manufacturing method and device, storage medium, and computer apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010802200.4 2020-08-11
CN202010802200.4A CN111976134B (zh) 2020-08-11 2020-08-11 三维物体增材制造方法及装置、存储介质、计算机设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/106,404 Continuation US20230182382A1 (en) 2020-08-11 2023-02-06 Three-dimensional object additive manufacturing method and device, storage medium, and computer apparatus

Publications (1)

Publication Number Publication Date
WO2022033112A1 true WO2022033112A1 (zh) 2022-02-17

Family

ID=73434103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095862 WO2022033112A1 (zh) 2020-08-11 2021-05-25 三维物体增材制造方法及装置、存储介质、计算机设备

Country Status (5)

Country Link
US (1) US20230182382A1 (zh)
EP (1) EP4197745A4 (zh)
JP (1) JP7530504B2 (zh)
CN (1) CN111976134B (zh)
WO (1) WO2022033112A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111976134B (zh) * 2020-08-11 2021-11-16 珠海赛纳三维科技有限公司 三维物体增材制造方法及装置、存储介质、计算机设备
JP2024505863A (ja) * 2021-01-26 2024-02-08 インテグリス・インコーポレーテッド 金属有機構造体含有体及び関連する方法
CN113478822B (zh) * 2021-06-29 2023-06-06 珠海赛纳三维科技有限公司 三维物体打印方法及设备、存储介质、计算机设备
CN113733554A (zh) * 2021-08-23 2021-12-03 华中科技大学 一种微波与红外辐射复合成形高分子零件的方法与装置
CN114193764B (zh) * 2021-12-10 2023-12-29 珠海赛纳三维科技有限公司 三维成型用材料、三维物体及其打印方法
CN114619668B (zh) * 2022-03-11 2023-04-11 珠海赛纳三维科技有限公司 三维物体打印方法及装置、三维打印材料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1812878A (zh) * 2003-05-21 2006-08-02 Z公司 用于来自三维印刷系统的外观模具的热塑性粉末物料体系
CN103554455A (zh) * 2013-10-09 2014-02-05 杭州福斯特光伏材料股份有限公司 一种用于三维打印的共聚酯热塑性材料及其制备与应用
JP2018199283A (ja) * 2017-05-29 2018-12-20 コニカミノルタ株式会社 立体造形物の製造方法、それに用いる粉末材料、および結合用流体
CN109070445A (zh) * 2016-04-12 2018-12-21 赢创罗姆有限公司 在粘合剂喷射方法中用于填充珠状聚合物层中的间隙的喷雾干燥的软相乳液聚合物
CN111976134A (zh) * 2020-08-11 2020-11-24 珠海赛纳三维科技有限公司 三维物体增材制造方法及装置、存储介质、计算机设备
CN111978707A (zh) * 2020-08-11 2020-11-24 珠海赛纳三维科技有限公司 三维成型用材料、三维物体及其切片层
CN111978479A (zh) * 2020-08-11 2020-11-24 珠海赛纳三维科技有限公司 三维成型用材料、三维物体及其切片层

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE520565C2 (sv) * 2000-06-16 2003-07-29 Ivf Industriforskning Och Utve Sätt och apparat vid framställning av föremål genom FFF
US7120512B2 (en) * 2003-08-25 2006-10-10 Hewlett-Packard Development Company, L.P. Method and a system for solid freeform fabricating using non-reactive powder
EP1661690A4 (en) * 2003-08-27 2009-08-12 Fujifilm Corp METHOD FOR PRODUCING A THREE-DIMENSIONAL MODEL
DE102006038858A1 (de) * 2006-08-20 2008-02-21 Voxeljet Technology Gmbh Selbstaushärtendes Material und Verfahren zum schichtweisen Aufbau von Modellen
WO2008086033A1 (en) 2007-01-10 2008-07-17 Z Corporation Three-dimensional printing material system with improved color, article performance, and ease of use
WO2009145069A1 (ja) 2008-05-26 2009-12-03 ソニー株式会社 造形装置および造形方法
WO2014152531A1 (en) 2013-03-15 2014-09-25 3D Systems, Inc. Three dimensional printing material system
DE102013018182A1 (de) * 2013-10-30 2015-04-30 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit Bindersystem
US11602892B2 (en) 2013-12-23 2023-03-14 3D Systems, Inc. Three dimensional printing materials, systems, and methods
JP2016168704A (ja) 2015-03-12 2016-09-23 セイコーエプソン株式会社 三次元造形装置、製造方法およびコンピュータープログラム
WO2017194122A1 (en) 2016-05-12 2017-11-16 Hewlett-Packard Development Company, L P Temperature control prior to fusion
CN109562567B (zh) 2016-07-22 2022-04-05 科思创(荷兰)有限公司 用于通过加成法制造形成三维物体的方法和组合物
WO2018083500A1 (en) * 2016-11-07 2018-05-11 The University Of Nottingham Additive manufacturing
GB2584493A (en) * 2019-06-07 2020-12-09 Xaar 3D Ltd Radiation source assembly and apparatus for layer-by-layer formation of three-dimensional objects

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1812878A (zh) * 2003-05-21 2006-08-02 Z公司 用于来自三维印刷系统的外观模具的热塑性粉末物料体系
CN103554455A (zh) * 2013-10-09 2014-02-05 杭州福斯特光伏材料股份有限公司 一种用于三维打印的共聚酯热塑性材料及其制备与应用
CN109070445A (zh) * 2016-04-12 2018-12-21 赢创罗姆有限公司 在粘合剂喷射方法中用于填充珠状聚合物层中的间隙的喷雾干燥的软相乳液聚合物
JP2018199283A (ja) * 2017-05-29 2018-12-20 コニカミノルタ株式会社 立体造形物の製造方法、それに用いる粉末材料、および結合用流体
CN111976134A (zh) * 2020-08-11 2020-11-24 珠海赛纳三维科技有限公司 三维物体增材制造方法及装置、存储介质、计算机设备
CN111978707A (zh) * 2020-08-11 2020-11-24 珠海赛纳三维科技有限公司 三维成型用材料、三维物体及其切片层
CN111978479A (zh) * 2020-08-11 2020-11-24 珠海赛纳三维科技有限公司 三维成型用材料、三维物体及其切片层

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4197745A4 *

Also Published As

Publication number Publication date
EP4197745A4 (en) 2024-08-28
CN111976134A (zh) 2020-11-24
JP2023537593A (ja) 2023-09-04
JP7530504B2 (ja) 2024-08-07
CN111976134B (zh) 2021-11-16
US20230182382A1 (en) 2023-06-15
EP4197745A1 (en) 2023-06-21

Similar Documents

Publication Publication Date Title
WO2022033112A1 (zh) 三维物体增材制造方法及装置、存储介质、计算机设备
WO2022033113A1 (zh) 三维成型用材料、三维物体及其切片层
WO2022033114A1 (zh) 三维成型用材料、三维物体及其切片层
WO2020211656A1 (zh) 三维物体成型方法及成型装置
US10125264B2 (en) Compositions for three-dimensional (3D) printing
US20210078243A1 (en) Method of manufacturing three-dimensional object, liquid set for manufacturing three-dimensional object, device for manufacturing three-dimensional object, and gel object
CN113478822B (zh) 三维物体打印方法及设备、存储介质、计算机设备
US20230043266A1 (en) A direct ink writing three-dimensional printing method based on near-infrared photopolymerization
CN113290852B (zh) 三维物体成型方法及装置、存储介质、计算机设备
CN109593168B (zh) 3d喷墨打印用耐高温光固化材料及其制备方法、3d打印制品及3d打印机
JP2019093639A (ja) モデル材用組成物
JP2010228103A (ja) 三次元造形用材料、三次元造形物の製造方法及び三次元造形物
JP2019051679A (ja) 造形物製造用インク組成物、造形物製造用インク組成物を製造する方法、造形物および造形物製造装置
CN114193764B (zh) 三维成型用材料、三维物体及其打印方法
CN114619668B (zh) 三维物体打印方法及装置、三维打印材料
WO2024001603A1 (zh) 三维打印材料及三维物体、三维物体打印方法
KR101492843B1 (ko) 컬러필터용 잉크 및 그의 제조방법과 컬러필터의 제조방법
CN116141682A (zh) 3d打印设备、打印控制方法及装置
CN101393393A (zh) 等离子体显示屏电极形成用浆料组合物
WO2020248653A1 (zh) 三维物体成型方法和成型装置
JP2019056044A (ja) 造形物製造用インク組成物、造形物製造用インク組成物を製造する方法、造形物および造形物製造装置
CN101613544A (zh) 彩色滤光片用喷墨墨水
GB2607660A (en) Printing ink
US20200122385A1 (en) Polymer reinforced materials for inkjet based 3d printing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508595

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021855168

Country of ref document: EP

Effective date: 20230313