WO2022032783A1 - 显示面板的制造方法及显示面板 - Google Patents

显示面板的制造方法及显示面板 Download PDF

Info

Publication number
WO2022032783A1
WO2022032783A1 PCT/CN2020/114774 CN2020114774W WO2022032783A1 WO 2022032783 A1 WO2022032783 A1 WO 2022032783A1 CN 2020114774 W CN2020114774 W CN 2020114774W WO 2022032783 A1 WO2022032783 A1 WO 2022032783A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display panel
anode
protective layer
manufacturing
Prior art date
Application number
PCT/CN2020/114774
Other languages
English (en)
French (fr)
Inventor
吴令恋
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Publication of WO2022032783A1 publication Critical patent/WO2022032783A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present application relates to the field of display technology, and in particular, to a method for manufacturing a display panel and a display panel.
  • the process of inkjet printing technology includes preparing a pixel defining layer having pixel openings on the anode layer to expose the anode layer through the pixel openings.
  • the surface of the anode layer has a part of the pixel definition layer material remaining, so that the organic functional ink material cannot be spread out, which causes the display panel to emit light unevenly, bright spots or The uneven display of dark spots (mura) seriously affects the display effect of the display panel.
  • the surface of the anode layer has a part of the pixel definition layer material remaining, so that the organic functional ink material cannot be spread out, which causes the display panel to emit light unevenly, bright spots or The uneven display of dark spots (mura) seriously affects the display effect of the display panel.
  • Embodiments of the present application provide a method for manufacturing a display panel and a display panel, which can improve the cleanliness of the surface of the anode layer, thereby solving the problem of uneven lighting, uneven display of bright or dark spots when the display panel emits light.
  • an embodiment of the present application provides a method for manufacturing a display panel, including:
  • An organic functional layer, a cathode layer and an encapsulation layer are sequentially formed on the anode layer.
  • the anode layer and the protective layer are sequentially formed on the substrate, including:
  • a first heating treatment is performed on the preset solution to remove the organic solvent of the preset solution to obtain the protective layer.
  • the preset solution is a diphenyl ether solution
  • the organic solvent is acetone
  • the heating temperature of the first heating treatment is 120°C-180°C.
  • the removing the protective layer to expose the anode layer includes:
  • the protective layer is subjected to a sublimation treatment to expose the anode layer.
  • the protective layer is subjected to sublimation treatment to expose the anode layer, including:
  • the protective layer is subjected to a second heat treatment to expose the anode layer.
  • the heating temperature of the second heating treatment is 200°C-300°C.
  • the method further includes:
  • the pixel defining layer and the anode layer are baked.
  • the side surface of the patterned pixel definition layer has a hydrophilic material film layer, and the top surface of the patterned pixel definition layer is provided with a hydrophobic material film layer.
  • the material of the hydrophilic material film layer is a rigid polymer
  • the material of the hydrophobic material film layer is a flexible polymer
  • the rigid polymer is one or more of a polymer containing an alkyl group in the main chain and a polymer containing a cyclic rigid structure in the main chain, so
  • the flexible polymer is one or more of fluorine-containing polyolefin, fluorine-containing polyalkylene oxide and polysiloxane.
  • the thickness of the protective layer is 10 nanometers to 1000 nanometers.
  • an embodiment of the present application provides a display panel, including:
  • an anode layer the anode layer is disposed on the substrate
  • the pixel definition layer is disposed on the substrate, the pixel definition layer has a pixel opening, and the pixel opening exposes the anode layer;
  • the organic functional layer is disposed on the pixel opening, the organic functional layer is formed by disposing a protective layer on the anode layer, forming a pixel defining layer on the protective layer, and then patterning the a pixel defining layer to form the pixel opening exposing the protective layer, then removing the protective layer to expose the anode layer, and finally printing an organic functional material on the anode layer;
  • the cathode layer is arranged on the organic functional layer
  • an encapsulation layer covering the cathode layer and the pixel defining layer.
  • the protective layer is formed by coating a preset solution on the anode layer, and then performing a first heating treatment on the preset solution.
  • the preset solution is a diphenyl ether solution
  • the organic solvent is acetone
  • the heating temperature of the first heating treatment is 120°C-180°C.
  • the side surface of the patterned pixel definition layer is provided with a hydrophilic material film layer, and the top surface of the patterned pixel definition layer is provided with a hydrophobic material film layer .
  • the material of the hydrophilic material film layer is a rigid polymer
  • the material of the hydrophobic material film layer is a flexible polymer
  • the rigid polymer is one or more of a polymer containing an alkyl group in the main chain and a polymer containing a cyclic rigid structure in the main chain, and the flexible polymer
  • the compound is one or more of fluorine-containing polyolefin, fluorine-containing polyalkylene oxide and polysiloxane.
  • the method for manufacturing a display panel includes: providing a substrate; sequentially forming an anode layer and a protective layer on the substrate; forming a pixel defining layer on the protective layer; patterning the pixel defining layer , to expose the protective layer; to remove the protective layer to expose the anode layer; to form an organic functional layer, a cathode layer and an encapsulation layer in sequence on the anode layer.
  • a protective layer is formed on the anode layer to protect the anode layer, avoiding the contact between the anode layer and the pixel defining layer, and the protective layer is sublimated after patterning the pixel defining layer, so as to solve the problem that the display panel emits light. There is a problem of uneven light emission, uneven display of bright or dark spots.
  • FIG. 1 is a schematic flowchart of a manufacturing method of a display panel provided by an embodiment of the present application.
  • 2-6 are schematic diagrams of a method for manufacturing a display panel according to an embodiment of the present application.
  • Embodiments of the present application provide a method for manufacturing a display panel and a display panel, which will be described in detail below.
  • FIG. 1 is a schematic flowchart of a manufacturing method of a display panel provided by an embodiment of the present application.
  • the display panel 100 shown in FIG. 6 can be formed by the method of manufacturing the display panel.
  • the specific process of the manufacturing method of the display panel may be as follows:
  • a substrate 10 is provided.
  • the substrate 10 may include a substrate and a plurality of thin film transistors disposed on the substrate.
  • the substrate may be a flexible substrate, such as a polyimide flexible substrate or the like.
  • the thin film transistor may be a bottom gate type or a top gate type structure. Taking a bottom gate type thin film transistor as an example, it may include a gate electrode, a gate insulating layer, an active layer, a dielectric layer and a source and drain layer which are stacked in sequence.
  • the layers include source and drain electrodes.
  • an anode layer 20 may be formed on the substrate 10; a preset solution may be coated on the anode layer 10; and a first heating treatment may be performed on the preset solution to remove the organic solvent of the preset solution to obtain the protection Layer 30.
  • the anode layer 20 may be formed by sputtering.
  • the material of the anode layer 20 is indium tin oxide (Indium Tin Oxides, ITO).
  • the preset solution can be obtained by dissolving the preset solute in an organic solvent.
  • the preset solute may be diphenyl ether. That is, the preset solution is a diphenyl ether solution.
  • the organic solvent can be acetone or other solvents that dissolve diphenyl ether.
  • the heating temperature of the first heating treatment is 120°C-180°C.
  • the temperature of the first heat treatment may be 120°C, 130°C, 140°C, 180°C, and the like.
  • the pixel defining layer 40 may be formed on the protective layer 30 by inkjet printing technology.
  • the pixel defining layer 40 may be patterned through a yellow light process.
  • the yellow light process includes steps such as coating photoresist on the pixel defining layer 40 , exposing, developing, and etching the pixel defining layer 40 .
  • the step "patterning the pixel defining layer 40 to expose the protective layer 30" it may further include:
  • the pixel defining layer 40 and the anode layer 30 are baked.
  • the pixel defining layer 40 can be cured by baking, and the amorphous ITO in the anode layer 20 can also be converted into crystalline ITO.
  • the side surface 41 of the patterned pixel definition layer 40 is provided with a hydrophilic material film layer
  • the top surface 42 of the patterned pixel definition layer 40 is provided with a hydrophobic material film layer.
  • the material of the hydrophilic material film layer is rigid polymer.
  • the rigid polymer may be one or more of a polymer containing an alkyl group in the main chain and a polymer containing a cyclic rigid structure in the main chain.
  • polyimide bisphenol A polycarbonate.
  • the material of the hydrophobic material film layer is a flexible polymer, such as one or more of fluorine-containing polyolefin, fluorine-containing polyalkylene oxide and polysiloxane.
  • the surface of the anode layer 20 is provided with a hydrophilic material film layer.
  • the hydrophilic material solution can be applied to the side surface 41 of the pixel defining layer 40 and the surface of the anode layer 20 respectively, and then the hydrophobic material can be applied to the top surface 42 of the pixel defining layer 40 to form the hydrophilic material
  • the film layer and the film layer of the hydrophobic material are formed, so that when the organic functional layer 50 is formed by inkjet printing, the organic functional material is not stacked on the top surface of the pixel defining layer 40 and evenly spreads on the anode layer 20 .
  • the protective layer 30 may be sublimated to expose the anode layer 20 .
  • the protective layer 30 may be subjected to a second heat treatment by means of thermal conduction to expose the anode layer 20 .
  • performing the second heating treatment on the protective layer 30 by means of thermal conduction may specifically include: placing the substrate 10 on which the anode layer 20, the protective layer 30 and the pixel defining layer 40 are formed on a heating device, and using heating The device heats the protective layer 30 .
  • the heating device conducts heat to the substrate 10 , thereby indirectly heating the protective layer 30 to sublime the protective layer 30 .
  • the heating device may be a heating plate, which is heated by means of electric heating, and its shape may be a circle, a rectangle, or the like.
  • the substrate 10 on which the anode layer 20, the protective layer 30 and the pixel defining layer 40 are formed can also be placed in a baking oven, and the oven is baked to conduct heat to the protective layer 30, sublime it.
  • a baking oven is baked to conduct heat to the protective layer 30, sublime it.
  • other direct or indirect ways of conducting heat conduction to the protective layer 30 may also be used, which will not be repeated here.
  • the heating temperature of the second heat treatment is less than 300°C and more than 200°C.
  • the thickness of the protective layer 30 is 10 nanometers to 1000 nanometers.
  • the thickness of the protective layer 30 may be 10 nanometers, 20 nanometers, 100 nanometers, 200 nanometers, 500 nanometers, 1000 nanometers, and so on.
  • the thickness of the protective layer 30 is not more than 1000 nanometers, so as to prevent the sublimation time from being too long due to the thick thickness. Meanwhile, the thickness of the protective layer 30 is not less than 10 nanometers to ensure that the protective layer can block the anode layer 20 and the pixel defining layer 40 before patterning.
  • an organic functional layer 50 is formed on the anode layer 20 by inkjet printing technology, and then a cathode layer 60 and an encapsulation layer 70 are sequentially formed on the organic layer functional layer 50 .
  • the organic functional layer 50 may also be dried to cure the organic functional layer 50 .
  • the specific way of drying treatment can be hot plate drying method (HPB) or vacuum drying method (VCD).
  • the organic functional layer 50 may include a plurality of light-emitting devices, each of which includes a first electrode and a hole injection layer, a hole transport layer, an organic light-emitting layer, an electron transport layer, and an electron injection layer sequentially stacked on the first electrode. layer and the second electrode.
  • the first electrode of each light emitting device is connected to the drain of the thin film transistor of the substrate 10 through a connection hole, so that the organic light emitting layer of the organic functional layer 50 can emit light under the driving of the thin film transistor.
  • the encapsulation layer 70 may be a transparent insulating material.
  • the encapsulation layer 70 may be a single layer or a multi-layer structure.
  • the display panel 100 in the embodiment of the present application may be top-emitting or bottom-emitting.
  • the display panel 100 When the display panel 100 is top-emitting, the light emitted from the display panel 100 is transmitted through the cathode layer 60 opposite to the anode layer 20 .
  • the anode layer 20 Being a reflective electrode
  • the cathode layer 60 is a transparent electrode.
  • the display panel 100 When the display panel 100 is bottom-emitting, the light emitted from the display panel 100 is transmitted through the anode layer 20 .
  • the anode layer 20 is a transparent electrode
  • the cathode layer 60 is a reflective electrode.
  • the manufacturing method of the display panel includes: providing a substrate 10 ; forming an anode layer 20 and a protective layer 30 on the substrate 10 in sequence; forming a pixel defining layer on the protective layer 30 40 ; pattern the pixel defining layer 40 to expose the protective layer 30 ; remove the protective layer 30 to expose the anode layer 20 ; sequentially form an organic functional layer 50 and a cathode layer on the anode layer 20 60 and encapsulation layer 70.
  • a protective layer 30 is formed on the anode layer 20 to protect the anode layer 20, so that the contact between the anode layer 20 and the pixel defining layer 40 is avoided, and the protective layer 30 is sublimated after patterning the pixel defining layer 40, thereby
  • the cleanliness of the surface of the anode layer 20 is improved, and the residual material of the pixel defining layer is reduced, so that the organic functional ink can be spread evenly on the anode layer 20, thereby solving the problem of uneven lighting, bright spots or dark spots when the display panel 100 emits light
  • the problem of uneven display is improved, and the display effect of the display panel is improved.
  • FIG. 5 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • the display panel 100 includes a substrate 10 , an anode layer 20 , a pixel defining layer 40 , an organic functional layer 50 , a cathode layer 60 and an encapsulation layer 70 .
  • the anode layer 20 is disposed on the substrate 10 .
  • the pixel definition layer 40 is disposed on the substrate 10 , and the pixel definition layer 40 has a pixel opening 43 , and the pixel opening 43 exposes the anode layer 20 .
  • the organic functional layer 50 is disposed on the pixel opening 43.
  • the organic functional layer 50 is formed by disposing the protective layer 30 on the anode layer 20, forming the pixel defining layer 40 on the protective layer 30, and then patterning the pixel defining layer 40 to form exposed
  • the pixel opening 43 of the protective layer 20 is formed, and then the protective layer 20 is removed to expose the anode layer 20 , and finally an organic functional material is printed on the anode layer 20 .
  • the cathode layer 60 is disposed on the organic functional layer 50 .
  • the encapsulation layer 70 covers the cathode layer 60 and the pixel defining layer 40 .

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请实施例提供了一种显示面板的制造方法及显示面板,其中,该显示面板的制造方法包括:提供一衬底;在所述衬底上依次形成阳极层和保护层;在所述保护层上形成像素界定层;图案化所述像素界定层,以暴露所述保护层;去除所述保护层,以暴露所述阳极层;在所述阳极层上依次形成有机功能层、阴极层和封装层。

Description

显示面板的制造方法及显示面板 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板的制造方法及显示面板。
背景技术
喷墨打印技术的制程包括在阳极层上制备具有像素开口的像素界定层,以通过该像素开口暴露阳极层。在通过喷墨打印技术形成有机功能层的过程中,阳极层表面有部分有像素界定层材料残留,使得有机功能墨水材料铺展不开,从而引起显示面板在发光时,出现发光不均、亮点或暗点的显示不均(mura)问题,严重影响了显示面板的显示效果。
技术问题
在通过喷墨打印技术形成有机功能层的过程中,阳极层表面有部分有像素界定层材料残留,使得有机功能墨水材料铺展不开,从而引起显示面板在发光时,出现发光不均、亮点或暗点的显示不均(mura)问题,严重影响了显示面板的显示效果。
技术解决方案
本申请实施例提供了一种显示面板的制造方法及显示面板,可以提高阳极层表面的洁净程度,从而解决显示面板在发光时,出现发光不均、亮点或暗点的显示不均的问题。
第一方面,本申请实施例提供了一种显示面板的制造方法,包括:
提供一衬底;
在所述衬底上依次形成阳极层和保护层;
在所述保护层上形成像素界定层;
图案化所述像素界定层,以暴露所述保护层;
去除所述保护层,以暴露所述阳极层;
在所述阳极层上依次形成有机功能层、阴极层和封装层。
在本申请实施例提供的显示面板的制造方法中,在所述衬底上依次形成阳极层和保护层,包括:
在所述衬底上形成阳极层;
在所述阳极层上涂覆预设溶液;
对所述预设溶液进行第一加热处理,以去除所述预设溶液的有机溶剂,得到所述保护层。
在本申请实施例提供的显示面板的制造方法中,所述预设溶液为二苯醚溶液,所述有机溶剂为丙酮。
在本申请实施例提供的显示面板的制造方法中,所述第一加热处理的加热温度为120℃-180℃。
在本申请实施例提供的显示面板的制造方法中,所述去除所述保护层,以暴露所述阳极层,包括:
对所述保护层进行升华处理,以暴露所述阳极层。
在本申请实施例提供的显示面板的制造方法中,对所述保护层进行升华处理,以暴露所述阳极层,包括:
对所述保护层进行第二加热处理,以暴露所述阳极层。
在本申请实施例提供的显示面板的制造方法中,所述第二加热处理的加热温度为200℃-300℃。
在本申请实施例提供的显示面板的制造方法中,在所述图案化所述像素界定层,以暴露所述保护层之后,还包括:
对所述像素界定层和所述阳极层进行烘烤。
在本申请实施例提供的显示面板的制造方法中,图案化后的所述像素界定层的侧面具有亲水性材料膜层,图案化后的所述像素界定层的顶面设置有疏水性材料膜层。
在本申请实施例提供的显示面板的制造方法中,所述亲水性材料膜层的材料为刚性聚合物,所述疏水性材料膜层的材料为柔性聚合物。
在本申请实施例提供的显示面板的制造方法中,所述刚性聚合物为主链中含有烷基的聚合物和主链中含有环状刚性结构的聚合物中的一种或多种,所述柔性聚合物为含氟的聚烯烃、含氟的聚环氧烷烃和聚硅氧烷中的一种或多种。
在本申请实施例提供的显示面板的制造方法中,所述保护层的厚度为10纳米-1000纳米。
第二方面,本申请实施例提供了一种显示面板,包括:
衬底;
阳极层,所述阳极层设置于所述衬底上;
像素界定层,所述像素界定层设置于所述衬底上,所述像素界定层具有像素开口,所述像素开口暴露所述阳极层;
有机功能层,所述有机功能层设置于所述像素开口,所述有机功能层是通过在所述阳极层上设置保护层,再在所述保护层上形成像素界定层,然后图案化所述像素界定层,以形成暴露所述保护层的所述像素开口,然后去除所述保护层以暴露所述阳极层,最后在所述阳极层上打印有机功能材料形成的;
阴极层,所述阴极层设置于所述有机功能层上;
封装层,所述封装层覆盖所述阴极层和所述像素界定层。
在本申请实施例提供的显示面板中,所述保护层是通过在所述阳极层上涂覆预设溶液,再对所述预设溶液进行第一加热处理形成的。
在本申请实施例提供的显示面板中,所述预设溶液为二苯醚溶液,所述有机溶剂为丙酮。
在本申请实施例提供的显示面板中,所述第一加热处理的加热温度为120℃-180℃。
在本申请实施例提供的显示面板中,图案化后的所述像素界定层的侧面设置有亲水性材料膜层,图案化后的所述像素界定层的顶面设置有疏水性材料膜层。
在本申请实施例提供的显示面板中,所述亲水性材料膜层的材料为刚性聚合物,所述疏水性材料膜层的材料为柔性聚合物。
在本申请实施例提供的显示面板中,所述刚性聚合物为主链中含有烷基的聚合物和主链中含有环状刚性结构的聚合物中的一种或多种,所述柔性聚合物为含氟的聚烯烃、含氟的聚环氧烷烃和聚硅氧烷中的一种或多种。
有益效果
本申请实施例提供的显示面板的制造方法包括:提供一衬底;在所述衬底上依次形成阳极层和保护层;在所述保护层上形成像素界定层;图案化所述像素界定层,以暴露所述保护层;去除所述保护层,以暴露所述阳极层;在所述阳极层上依次形成有机功能层、阴极层和封装层。本方案通过在阳极层上形成一保护层,对阳极层进行保护,避免了阳极层与像素界定层接触,并在图案化像素界定层后将该保护层升华,从而解决显示面板在发光时,出现发光不均、亮点或暗点的显示不均的问题。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的显示面板的制造方法的流程示意图。
图2-图6为本申请实施例提供的显示面板的制造方法的示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者更多个所述特征。
本申请实施例提供了一种显示面板的制造方法及显示面板,以下将分别进行详细说明。
请参阅图1,图1是本申请实施例提供的显示面板的制造方法的流程示意图。通过该显示面板的制造方法可以形成如图6所示的显示面板100。该显示面板的制造方法的具体流程可以如下:
101、提供一衬底10。
其中,该衬底10可以包括基板和设置于基板上的多个薄膜晶体管。该基板可以为柔性基板,比如聚酰亚胺柔性基板等。该薄膜晶体管可以是底栅型或顶栅型结构,以底栅型薄膜晶体管为例,其可包括依次层叠的栅极、栅绝缘层、有源层、介电层和源漏层,源漏层包括源极和漏极。
102、在所述衬底10上依次形成阳极层20和保护层30。
具体的,可以在衬底10上形成阳极层20;在阳极层10上涂覆预设溶液;对所述预设溶液进行第一加热处理,以去除预设溶液的有机溶剂,得到所述保护层30。
其中,阳极层20可以通过溅射镀膜的方式形成。该阳极层20的材料为氧化铟锡(Indium Tin Oxides,ITO)。
其中,该预设溶液可以通过将预设溶质溶解在有机溶剂中得到。该预设溶质可以为二苯醚。即是,该预设溶液为二苯醚溶液。该有机溶剂可以为丙酮或其它能溶解二苯醚的溶剂。
其中,该第一加热处理的加热温度为120℃-180℃。比如,第一加热处理的温度可以为120℃、130℃、140℃、180℃等等。
103、在所述保护层30上形成像素界定层40。
具体可以如图2所示,通过喷墨打印技术在保护层30上形成像素界定层40。
104、图案化所述像素界定层40,以暴露所述保护层30。
具体可以如图3所示,通过黄光制程对像素界定层40进行图案化处理。
其中,黄光制程包括像素界定层40上涂布光阻、曝光、显影、刻蚀像素界定层40等步骤。
在一些实施例中,在步骤“图案化所述像素界定层40,以暴露所述保护层30”之后,还可以包括:
对所述像素界定层40和所述阳极层30进行烘烤。
通过烘烤可以将像素界定层40进行固化,还可以将阳极层20中的非晶态的ITO转化为结晶态的ITO。
在本申请实施例中,图案化后的像素界定层40的侧面41设置有亲水性材料膜层,图案化后的像素界定层40的顶面42设置有疏水性材料膜层。其中,该亲水性材料膜层的材料为刚性聚合物。该刚性聚合物可以为主链中含有烷基的聚合物和主链中含有环状刚性结构的聚合物中的一种或多种。比如,聚酰亚胺、双酚A聚碳酸酯。该疏水性材料膜层的材料为柔性聚合物,比如含氟的聚烯烃、含氟的聚环氧烷烃和聚硅氧烷中的一种或多种。在一些实施例中,该阳极层20的表面设置有亲水性材料膜层。
具体的,可以将亲水性材料溶液分别涂覆于像素界定层40的侧面41和阳极层20的表面,然后将疏水性材料涂覆于像素界定层40的顶面42,形成亲水性材料膜层和疏水性材料膜层,从而使得在通过喷墨打印形成有机功能层50时,有机功能材料不在像素界定层40的顶面堆积,并在阳极层20上均匀平铺。
105、去除所述保护层30,以暴露所述阳极层20。
具体可以如图4所示,对该保护层30进行升华处理,以暴露阳极层20。
具体的,可以通过热传导的方式对该保护层30进行第二加热处理,以暴露阳极层20。
在一实施方式中,通过热传导的方式对保护层30进行第二加热处理具体可以包括:将形成有阳极层20、保护层30和像素界定层40的衬底10置于加热装置上,利用加热装置对保护层30进行加热。通过加热装置向衬底10传导热量,从而间接的向对保护层30进行加热,使保护层30发生升华。其中,该加热装置可为加热盘,采用电加热的方式进行加热,其形状可以是圆形、矩形等。
在一些实施例中,还可以将形成有阳极层20、保护层30和像素界定层40的衬底10置于一烘烤箱内,通过烘烤箱进行烘烤,向保护层30传导热量,使其升华。当然,还可以采用其它直接或间接的对保护层30进行热传导的方式,在此不再一一赘述。
第二加热处理的加热温度小于300℃,且大于200℃。
在一些实施例中,该保护层30的厚度为10纳米-1000纳米。比如,该保护层30的厚度可以为10纳米、20纳米、100纳米、200纳米、500纳米、1000纳米等等。该保护层30的厚度不大于1000纳米,以防止厚度过大而使升华时间过长。同时,保护层30的厚度不小于10纳米,以确保该保护层能阻隔阳极层20和图案化之前的像素界定层40。
106、在所述阳极层20上依次形成有机功能层50、阴极层60和封装层70。
具体可以如图5-图6所示,通过喷墨打印技术在阳极层20上形成有机功能层50,然后再在有机层功能层50上依次形成阴极层60和封装层70。
在一些实施例中,在形成该有机功能层50后,还可以对该有机功能层50进行干燥处理,以使该有机功能层50固化。干燥处理的具体方式可以为热平板干燥法(HPB)或真空干燥法(VCD)等。
该有机功能层50可包括多个发光器件,每个发光器件包括第一电极以及依次层叠于该第一电极上的空穴注入层、空穴传输层、有机发光层、电子传输层、电子注入层和第二电极。各发光器件的第一电极通过一连接孔与衬底10的薄膜晶体管的漏极连接,从而可在薄膜晶体管的驱动下,使有机功能层50的有机发光层发光。
其中,该封装层70可以为透明绝缘材料。该封装层70可以为单层或多层结构。
本申请实施例中的显示面板100可以是顶发光或者底发光,当显示面板100为顶发光时,显示面板100的出射光线从与阳极层20相对的阴极层60透出,此时阳极层20为反射电极,阴极层60为透明电极。当显示面板100为底发光时,显示面板100的出射光线从阳极层20透出,此时阳极层20为透明电极,阴极层60是反射电极。
由上,本申请实施例提供的显示面板的制造方法包括:提供一衬底10;在所述衬底10上依次形成阳极层20和保护层30;在所述保护层30上形成像素界定层40;图案化所述像素界定层40,以暴露所述保护层30;去除所述保护层30,以暴露所述阳极层20;在所述阳极层20上依次形成有机功能层50、阴极层60和封装层70。本方案通过在阳极层20上形成一保护层30,对阳极层20进行保护,避免了阳极层20与像素界定层40接触,并在图案化像素界定层40后将该保护层30升华,从而提高了阳极层20表面的洁净程度,减少了像素界定层材料的残留,使得有机功能墨水可以在阳极层20上均匀铺展,从而解决显示面板100在发光时,出现发光不均、亮点或暗点的显示不均问题,提高显示面板的显示效果。
请参阅图5,图5是本申请实施例提供的显示面板的结构示意图。该显示面板100包括衬底10、阳极层20、像素界定层40、有机功能层50、阴极层60和封装层70。
其中,阳极层20设置于衬底10上。像素界定层40设置于衬底10上,该像素界定层40具有像素开口43,该像素开口43暴露阳极层20。有机功能层50设置于像素开口43,该有机功能层50是通过在阳极层20上设置保护层30,再在保护层30上形成像素界定层40,然后图案化像素界定层40,以形成暴露保护层20的像素开口43,然后去除保护层20以暴露阳极层20,最后在阳极层20上打印有机功能材料形成的。该阴极层60设置于有机功能层50上。该封装层70覆盖阴极层60和像素界定层40。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种显示面板的制造方法及显示面板进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种显示面板的制造方法,其包括:
    提供一衬底;
    在所述衬底上依次形成阳极层和保护层;
    在所述保护层上形成像素界定层;
    图案化所述像素界定层,以暴露所述保护层;
    去除所述保护层,以暴露所述阳极层;
    在所述阳极层上依次形成有机功能层、阴极层和封装层。
  2. 如权利要求1所述的显示面板的制造方法,其中,在所述衬底上依次形成阳极层和保护层,包括:
    在所述衬底上形成阳极层;
    在所述阳极层上涂覆预设溶液;
    对所述预设溶液进行第一加热处理,以去除所述预设溶液的有机溶剂,得到所述保护层。
  3. 如权利要求2所述的显示面板的制造方法,其中,所述预设溶液为二苯醚溶液,所述有机溶剂为丙酮。
  4. 如权利要求2所述的显示面板的制造方法,其中,所述第一加热处理的加热温度为120℃-180℃。
  5. 如权利要求1所述的显示面板的制造方法,其中,所述去除所述保护层,以暴露所述阳极层,包括:
    对所述保护层进行升华处理,以暴露所述阳极层。
  6. 如权利要求5所述的显示面板的制造方法,其中,对所述保护层进行升华处理,以暴露所述阳极层,包括:
    对所述保护层进行第二加热处理,以暴露所述阳极层。
  7. 如权利要求6所述的显示面板的制造方法,其中,所述第二加热处理的加热温度为200℃-300℃。
  8. 如权利要求1所述的显示面板的制造方法,其中,在所述图案化所述像素界定层,以暴露所述保护层之后,还包括:
    对所述像素界定层和所述阳极层进行烘烤。
  9. 如权利要求1所述的显示面板的制造方法,其中,图案化后的所述像素界定层的侧面设置有亲水性材料膜层,图案化后的所述像素界定层的顶面设置有疏水性材料膜层。
  10. 如权利要求9所述的显示面板的制造方法,其中,所述亲水性材料膜层的材料为刚性聚合物,所述疏水性材料膜层的材料为柔性聚合物。
  11. 如权利要求10所述的显示面板的制造方法,其中,所述刚性聚合物为主链中含有烷基的聚合物和主链中含有环状刚性结构的聚合物中的一种或多种,所述柔性聚合物为含氟的聚烯烃、含氟的聚环氧烷烃和聚硅氧烷中的一种或多种。
  12. 如权利要求1所述的显示面板的制造方法,其中,所述保护层的厚度为10纳米-1000纳米。
  13. 一种显示面板,其包括:
    衬底;
    阳极层,所述阳极层设置于所述衬底上;
    像素界定层,所述像素界定层设置于所述衬底上,所述像素界定层具有像素开口,所述像素开口暴露所述阳极层;
    有机功能层,所述有机功能层设置于所述像素开口,所述有机功能层是通过在所述阳极层上设置保护层,再在所述保护层上形成像素界定层,然后图案化所述像素界定层,以形成暴露所述保护层的所述像素开口,然后去除所述保护层以暴露所述阳极层,最后在所述阳极层上打印有机功能材料形成的;
    阴极层,所述阴极层设置于所述有机功能层上;
    封装层,所述封装层覆盖所述阴极层和所述像素界定层。
  14. 如权利要求11所述的显示面板,其中,所述保护层是通过在所述阳极层上涂覆预设溶液,再对所述预设溶液进行第一加热处理形成的。
  15. 如权利要求14所述的显示面板,其中,所述预设溶液为二苯醚溶液,所述有机溶剂为丙酮。
  16. 如权利要求14所述的显示面板,其中,所述第一加热处理的加热温度为120℃-180℃。
  17. 如权利要求13所述的显示面板,其中,图案化后的所述像素界定层的侧面设置有亲水性材料膜层,图案化后的所述像素界定层的顶面设置有疏水性材料膜层。
  18. 如权利要求17所述的显示面板,其中,所述亲水性材料膜层的材料为刚性聚合物,所述疏水性材料膜层的材料为柔性聚合物。
  19. 如权利要求18所述的显示面板,其中,所述刚性聚合物为主链中含有烷基的聚合物和主链中含有环状刚性结构的聚合物中的一种或多种,所述柔性聚合物为含氟的聚烯烃、含氟的聚环氧烷烃和聚硅氧烷中的一种或多种。
  20. 如权利要求11所述的显示面板,其中,所述保护层的厚度为10纳米-1000纳米。
PCT/CN2020/114774 2020-08-11 2020-09-11 显示面板的制造方法及显示面板 WO2022032783A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010798981.4A CN111987243B (zh) 2020-08-11 2020-08-11 显示面板的制造方法及显示面板
CN202010798981.4 2020-08-11

Publications (1)

Publication Number Publication Date
WO2022032783A1 true WO2022032783A1 (zh) 2022-02-17

Family

ID=73445349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114774 WO2022032783A1 (zh) 2020-08-11 2020-09-11 显示面板的制造方法及显示面板

Country Status (2)

Country Link
CN (1) CN111987243B (zh)
WO (1) WO2022032783A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106816557A (zh) * 2017-03-02 2017-06-09 广州新视界光电科技有限公司 一种显示基板、显示基板的制作方法以及显示面板
CN108231836A (zh) * 2016-12-09 2018-06-29 乐金显示有限公司 有机发光显示装置及其制造方法
CN108832009A (zh) * 2018-05-29 2018-11-16 深圳市华星光电半导体显示技术有限公司 一种喷墨打印amoled显示面板的制备方法
CN109817826A (zh) * 2019-01-22 2019-05-28 深圳市华星光电半导体显示技术有限公司 一种oled显示面板的制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106611769B (zh) * 2015-10-19 2020-02-21 上海和辉光电有限公司 一种有机电致发光元件
CN109192886B (zh) * 2018-09-05 2021-01-22 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示面板及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231836A (zh) * 2016-12-09 2018-06-29 乐金显示有限公司 有机发光显示装置及其制造方法
CN106816557A (zh) * 2017-03-02 2017-06-09 广州新视界光电科技有限公司 一种显示基板、显示基板的制作方法以及显示面板
CN108832009A (zh) * 2018-05-29 2018-11-16 深圳市华星光电半导体显示技术有限公司 一种喷墨打印amoled显示面板的制备方法
CN109817826A (zh) * 2019-01-22 2019-05-28 深圳市华星光电半导体显示技术有限公司 一种oled显示面板的制作方法

Also Published As

Publication number Publication date
CN111987243A (zh) 2020-11-24
CN111987243B (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
US7645478B2 (en) Methods of making displays
JP6016407B2 (ja) 有機el表示装置の製造方法
JP5096648B1 (ja) 有機elディスプレイパネル及びその製造方法
US7674712B2 (en) Patterning method for light-emitting devices
WO2009084209A1 (ja) 有機elデバイスおよび有機elディスプレイパネル、ならびにそれらの製造方法
US8193018B2 (en) Patterning method for light-emitting devices
US20090004419A1 (en) Multi-layer masking film
JP2012109638A (ja) デバイス
US20090033215A1 (en) Organic el display apparatus
KR100833773B1 (ko) 유기 전계 발광 표시 장치 및 그 제조 방법
JP2006228649A (ja) 有機el装置の製造方法、蒸着ボート
JP2008108482A (ja) 有機el表示装置
KR20080063136A (ko) 유기 전계 발광 디스플레이용 기판 및 그 기판의 제조방법
US7635609B2 (en) Patterning method for light-emitting devices
WO2022032783A1 (zh) 显示面板的制造方法及显示面板
JP2010027210A (ja) 有機発光素子の製造方法及び有機発光素子
JP2017502468A (ja) 有機発光ダイオード
JP2012038574A (ja) 表示装置の製造方法
JP2015079618A (ja) 薄膜トランジスタ基板及びその製造方法、薄膜トランジスタ基板を用いた有機el素子及びその製造方法
JP2015170416A (ja) 薄膜トランジスタ基板の製造方法、薄膜トランジスタ基板
JP4263474B2 (ja) 表示装置用素子基板の製造方法及び転写体
JP2001230078A (ja) 有機ledパネルの製造方法
WO2012017486A1 (ja) 発光素子の製造方法
KR101335422B1 (ko) 유기전계발광소자의 제조방법
US20050003567A1 (en) Manufacturing method of organic electroluminescence display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949280

Country of ref document: EP

Kind code of ref document: A1