WO2022032463A1 - 一种透射电镜高分辨原位流体冷冻芯片及其制备方法 - Google Patents

一种透射电镜高分辨原位流体冷冻芯片及其制备方法 Download PDF

Info

Publication number
WO2022032463A1
WO2022032463A1 PCT/CN2020/108322 CN2020108322W WO2022032463A1 WO 2022032463 A1 WO2022032463 A1 WO 2022032463A1 CN 2020108322 W CN2020108322 W CN 2020108322W WO 2022032463 A1 WO2022032463 A1 WO 2022032463A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
resolution
transmission electron
electron microscopy
situ fluid
Prior art date
Application number
PCT/CN2020/108322
Other languages
English (en)
French (fr)
Inventor
廖洪钢
邓俊先
江友红
Original Assignee
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学 filed Critical 厦门大学
Priority to GB2303425.9A priority Critical patent/GB2613733A/en
Priority to PCT/CN2020/108322 priority patent/WO2022032463A1/zh
Priority to US18/020,876 priority patent/US20230326712A1/en
Publication of WO2022032463A1 publication Critical patent/WO2022032463A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/38Cooling arrangements using the Peltier effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/82Connection of interconnections
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/8556Thermoelectric active materials comprising inorganic compositions comprising compounds containing germanium or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2001Maintaining constant desired temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2002Controlling environment of sample
    • H01J2237/2003Environmental cells

Definitions

  • the invention relates to the field of chips, in particular to a transmission electron microscope high-resolution in-situ fluid freezing chip and a preparation method thereof.
  • the current in situ TEM technology provides a full dynamic gas-fluid environment, which helps technicians to capture more dynamic structural change information. Capture some important instantaneous information, such as the change of element valence and molecular structure during chemical reaction, the distribution of ions in the electrochemical solid-liquid interface and the electric double layer, and the three-dimensional structure of biomolecules (such as antigen/antibody) when interacting.
  • the instantaneous chemical state and spatial distribution information in these process information are very necessary for technicians to interpret the reaction principle from the molecular and atomic scales, and the characterization of these information requires an invariant state for a long time. These are The current cryogenic cryo-EM and in-situ fluid transmission electron microscopy cannot be achieved. To obtain these information, technicians must realize micro-regional rapid freezing during in-situ testing, combined with high-resolution STEM/EDS/EELES characterization. .
  • the purpose of the present invention is to provide a transmission electron microscope high-resolution in-situ fluid freezing chip capable of micro-region quick freezing during in-situ testing. At the same time, the chip also has the advantages of rapid freezing of micro-regions, high resolution and low sample drift rate.
  • the present invention provides a transmission electron microscope high-resolution in-situ fluid freezing chip, the structure of which is that the upper sheet and the lower sheet are combined by a metal bonding layer, wherein the upper sheet and the lower sheet are divided into front and back.
  • the front side of the lower sheet is directly bonded to the front side of the lower sheet through a metal bonding layer, and an ultra-thin chamber is formed by self-closing;
  • the upper sheet and the lower sheet are made of silicon substrates with silicon nitride or silicon oxide on both sides,
  • the upper sheet is provided with two sample injection ports and a central window 1, and is characterized in that the lower sheet is provided with a support layer, a freezing layer, an insulating layer, a hole and a central window 2; the freezing layer is provided with three contact electrodes, six pairs of Semiconductor film and conductive metal film; there is a circle of conductive metal film on the periphery of the central window 2, the center of which is the central window 2; three contact electrodes are placed on the edge of the chip; one end of the six pairs of semiconductor films is placed on the conductive metal film, and the other end is placed on the conductive metal film.
  • the electrode On the electrode; with the central window 2 as the center, and in the outer edge area larger than the conductive metal film, there are holes left after the silicon is etched away, and the support layer covers the holes; the conductive metal film is placed on the support layer on the holes, The freezing layer is covered with an insulating layer except for the contact electrode area;
  • the area of the upper sheet is slightly smaller than that of the lower sheet, the central window 1 of the upper sheet is aligned with the central window 2 of the lower sheet, and both the central window 1 and the central window 2 have a plurality of small holes.
  • the outer dimension of the lower piece is 2mm*2mm-10mm*10mm; preferably, the outer dimension of the lower piece is 4mm*8mm;
  • the thickness of the metal bonding layer is 50nm-2000nm; the material of the metal bonding layer is a low melting point metal; preferably, the material of the metal bonding layer is In, Sn or Al;
  • the thickness of the silicon nitride or silicon oxide is 5-200nm;
  • the thickness of the silicon substrate is 50-500 ⁇ m
  • the central viewing window 1 of the upper sheet is located at the center of the upper sheet, and the two injection ports are symmetrically arranged with respect to the central viewing window 1 .
  • the support layer is silicon nitride or silicon oxide, and the thickness is 0.5-5 ⁇ m.
  • two electrodes in the three contact electrodes are used as the input current of the positive electrode; one electrode is used as the output current of the negative electrode;
  • the contact electrode is made of gold, silver or copper with a thickness of 50nm-300nm, the length of the positive electrode is 1-1.5mm and the width is 0.5-1.2mm; the length of the negative electrode is 1-1.5mm and the width is 0.4- 0.8mm;
  • the six pairs of semiconductor thin films are six n-type semiconductor thin films and six p-type semiconductor thin films; the six n-type semiconductor thin films are in the shape of L-shaped strips and are placed on the outside of the chip in parallel and symmetrical; six p-type semiconductor thin films are The shape of the semiconductor thin film is a regular rectangle, and is placed in parallel on the inside of the chip; preferably, the n-type semiconductor in the n-type semiconductor thin film is n-type bismuth telluride, n-type silicon germanium, n-type lead telluride, n-type zinc telluride or n-type bismuth selenide; the p-type semiconductor in the p-type semiconductor film is polysilicon, p-type bismuth telluride, p-type silicon germanium or p-type antimony telluride;
  • the length of the semiconductor thin film is 4-6 mm, the width is 0.4-0.8 mm, and the thickness is 50-500 nm.
  • the conductive metal film is a back-shaped conductive metal film formed of conductive metal, and the center of the conductive metal film is the central window 2; preferably, the conductive metal is gold, silver or copper, with a thickness of 50nm-300nm ;
  • the outer square size of the conductive metal film is 100 ⁇ m*100 ⁇ m-500 ⁇ m*500 ⁇ m, and the inner square size is 5 ⁇ m*5 ⁇ m-100 ⁇ m*100 ⁇ m;
  • the insulating layer is a layer of silicon nitride or silicon oxide with a thickness of 30-150 nm.
  • the hole is circular or square; preferably, the diameter of the circular hole is 200 ⁇ m-600 ⁇ m; the size of the square hole is 200 ⁇ m*200 ⁇ m-800 ⁇ m*800 ⁇ m;
  • the central window 1 and the central window 2 are both square central windows; preferably, the size of the square central window is 5 ⁇ m*5 ⁇ m-100 ⁇ m*100 ⁇ m; more preferably, the size of the square central window is 20 ⁇ m*50 ⁇ m;
  • the size of the pores is 0.5 ⁇ m-5 ⁇ m.
  • the preparation method of the top sheet is,
  • the photolithography process is exposure in the hard contact mode of an ultraviolet photolithography machine; the thickness of the silicon nitride or silicon oxide layer is 5-200nm; the development time is 50s;
  • the exposure time is 15s
  • the development time is 50s;
  • the thickness of silicon nitride at the small holes on the back of wafer A-3 is etched to 10nm-15nm, and then the front side of wafer A-3 is placed in acetone and soaked in acetone. , and finally rinsed with acetone to remove the photoresist to obtain wafer A-4;
  • the size of the small hole is 0.5 ⁇ m-5 ⁇ m;
  • the mass percentage concentration of the potassium hydroxide solution is 20%; the etching temperature is 80°C, and the time is 1.5-4h;
  • the time of etching is 2h;
  • the lithography process is exposure in the hard contact mode of the UV lithography machine; the development time is 50s;
  • the exposure time is 15s
  • the wafer A-6 is evaporated with a metal bonding material to form a metal bonding layer, and the wafer A-7 is obtained;
  • the metal is a low melting point metal; the thickness of the metal bonding layer is 50-2000 nm;
  • the metal is In, Sn or Al;
  • the lithography process is exposure in the hard contact mode of an ultraviolet lithography machine; the photoresist used in the lithography process is AZ5214E; the development time is 65s;
  • the exposure time is 20s;
  • the silicon nitride or silicon oxide of the conductive metal is etched on the silicon nitride layer on the back of the wafer B-1, and then the back of the wafer is put into acetone successively. Soak in acetone, and finally rinse with acetone to remove the photoresist to obtain wafer B-2;
  • the size of the outer square of the conductive metal film is 100 ⁇ m*100 ⁇ m-500 ⁇ m*500 ⁇ m, and the size of the inner square is 5 ⁇ m*5 ⁇ m-100 ⁇ m*100 ⁇ m;
  • silicon oxide or silicon nitride is grown on the front side of the etched silicon wafer of wafer B-2 to obtain wafer B-3;
  • the thickness of silicon oxide or silicon nitride is 0.5-5 ⁇ m;
  • the metal thin film is gold, silver or copper, with a thickness of 50nm-300nm;
  • the n-type semiconductor pattern is transferred from the photolithography mask to the front side of the wafer B-5, and then developed in a positive-gel developer, and then rinsed with deionized water to clean the surface to obtain wafer B -6;
  • the n-type semiconductor in the n-type semiconductor thin film is n-type bismuth telluride, n-type silicon germanium, n-type lead telluride, n-type zinc telluride or n-type bismuth selenide;
  • the p-type semiconductor adopts polysilicon, p-type bismuth telluride, p-type silicon germanium or p-type antimony telluride;
  • the p-type semiconductor in the p-type semiconductor thin film is polysilicon, p-type bismuth telluride, p-type silicon germanium or p-type antimony telluride.
  • the thickness of the insulating layer is 30-150 nm;
  • the pinhole pattern of the central window is transferred from the lithography mask to the front side of the wafer B-10, and then developed in a positive gel developer, and then rinsed with deionized water. surface to obtain wafer B-11;
  • the photoresist used in the UV laser direct writing process is AZ5214E; the output power is 260W/us;
  • the size of the small hole is 0.5 ⁇ m-5 ⁇ m;
  • the wafer B-12 is laser diced and divided into independent chips, which are the next wafers.
  • the present invention also protects a method for preparing the transmission electron microscope high-resolution in-situ fluid freezing chip, which is characterized in that:
  • the preparation method of the top sheet is,
  • the photolithography process is exposure in the hard contact mode of an ultraviolet photolithography machine; the thickness of the silicon nitride or silicon oxide layer is 5-200nm; the development time is 50s;
  • the exposure time is 15s
  • the development time is 50s;
  • the thickness of silicon nitride at the small holes on the back of wafer A-3 is etched to 10nm-15nm, and then the front side of wafer A-3 is placed in acetone and soaked in acetone. , and finally rinsed with acetone to remove the photoresist to obtain wafer A-4;
  • the size of the small hole is 0.5 ⁇ m-5 ⁇ m;
  • the mass percentage concentration of the potassium hydroxide solution is 20%; the etching temperature is 80°C, and the time is 1.5-4h;
  • the time of etching is 2h;
  • the lithography process is exposure in the hard contact mode of the UV lithography machine; the development time is 50s;
  • the exposure time is 15s
  • the wafer A-6 is evaporated with a metal bonding material to form a metal bonding layer, and the wafer A-7 is obtained;
  • the metal is a low melting point metal; the thickness of the metal bonding layer is 50-2000 nm;
  • the metal is In, Sn or Al;
  • the preparation method of the lower tablet is,
  • the lithography process is exposure in the hard contact mode of an ultraviolet lithography machine; the photoresist used in the lithography process is AZ5214E; the development time is 65s;
  • the exposure time is 20s;
  • the silicon nitride or silicon oxide of the conductive metal is etched on the silicon nitride layer on the back of the wafer B-1, and then the back of the wafer is put into acetone successively. Soak in acetone, and finally rinse with acetone to remove the photoresist to obtain wafer B-2;
  • the size of the outer square of the conductive metal film is 100 ⁇ m*100 ⁇ m-500 ⁇ m*500 ⁇ m, and the size of the inner square is 5 ⁇ m*5 ⁇ m-100 ⁇ m*100 ⁇ m;
  • silicon oxide or silicon nitride is grown on the front side of the etched silicon wafer of wafer B-2 to obtain wafer B-3;
  • the thickness of silicon oxide or silicon nitride is 0.5-5 ⁇ m;
  • the metal thin film is gold, silver or copper, with a thickness of 50nm-300nm;
  • the n-type semiconductor pattern is transferred from the photolithography mask to the front side of the wafer B-5, and then developed in a positive gel developer, and then rinsed with deionized water to clean the surface to obtain wafer B -6;
  • the n-type semiconductor in the n-type semiconductor thin film is n-type bismuth telluride, n-type silicon germanium, n-type lead telluride, n-type zinc telluride or n-type bismuth selenide;
  • the p-type semiconductor adopts polysilicon, p-type bismuth telluride, p-type silicon germanium or p-type antimony telluride;
  • the p-type semiconductor in the p-type semiconductor film is polysilicon, p-type bismuth telluride, p-type silicon germanium or p-type antimony telluride;
  • the thickness of the insulating layer is 30-150 nm;
  • the pinhole pattern of the central window is transferred from the lithography mask to the front side of the wafer B-10, and then developed in a positive gel developer, and then rinsed with deionized water. surface to obtain wafer B-11;
  • the photoresist used in the UV laser direct writing process is AZ5214E; the output power is 260W/us;
  • the size of the small hole is 0.5 ⁇ m-5 ⁇ m;
  • Assembly Assemble the obtained upper and lower films under a microscope, and align the central windows of the upper and lower films.
  • the temperature control area of the chip of the invention is small (100 ⁇ m*100 ⁇ m-500 ⁇ m*500 ⁇ m area), and the heat insulation treatment is designed, so that the heat transfer is small, so the micro-area rapid temperature control can be realized.
  • Fig. 1 is the frozen layer structure schematic diagram of the lower sheet of the chip of the present invention
  • Fig. 2 is the structural schematic diagram after corroding holes in the preparation process of the chip of the present invention
  • FIG. 3 is a schematic structural diagram after the holes are etched and the conductive metal film and the contact electrodes are plated during the preparation process of the chip of the present invention
  • Fig. 4 is the structure schematic diagram of plating the n-type semiconductor thin film on the basis of Fig. 3;
  • Fig. 5 is the structural representation of plating p-type semiconductor thin film on the basis of Fig. 4;
  • FIG. 6 is a schematic diagram of the lower chip structure of the chip of the present invention.
  • FIG. 7 is a schematic structural diagram of the chip of the present invention before the upper and lower sheets are combined;
  • FIG. 8 is a schematic structural diagram of the chip of the present invention after the upper and lower sheets are combined;
  • FIG. 9 is an enlarged view of 51 center windows 1 and 52 center windows 2;
  • Figure 10 is an enlarged view of 52 center windows 1 and 52 center windows 2;
  • Fig. 11 is the electron microscope image of the sample observed using the chip of the present invention.
  • Figure 12 is a temperature standard curve obtained using the chip of the present invention.
  • 1 is the high-resolution in-situ fluid cryochip for transmission electron microscopy
  • 2 is the upper film
  • 3 is the lower film
  • 4 is the metal bonding layer
  • 5 is the central window
  • 51 is the central window of the upper film
  • 7 is the injection port
  • 8 is the support layer
  • 9 is the freezing layer
  • 10 is the insulating layer
  • 11 is the three contact electrodes
  • 12 is the silicon substrate
  • 13 and 14 are both silicon nitride or silicon oxide layers 15 is a hole
  • 161 is an n-type semiconductor film
  • 162 is a p-type semiconductor film
  • 17 is a conductive metal film.
  • Example 1 Preparation of high-resolution in situ fluid cryochip for transmission electron microscopy
  • the preparation method of the top sheet is,
  • the photolithography process is exposure in the hard contact mode of an ultraviolet photolithography machine; the thickness of the silicon nitride or silicon oxide layer is 5-200nm; the development time is 50s;
  • the exposure time is 15s
  • the development time is 50s;
  • the thickness of silicon nitride at the small holes on the back of wafer A-3 is etched to 10nm-15nm, and then the front side of wafer A-3 is placed in acetone and soaked in acetone. , and finally rinsed with acetone to remove the photoresist to obtain wafer A-4;
  • the size of the small hole is 0.5 ⁇ m-5 ⁇ m;
  • the mass percentage concentration of the potassium hydroxide solution is 20%; the etching temperature is 80°C, and the time is 1.5-4h;
  • the time of etching is 2h;
  • the lithography process is exposure in the hard contact mode of the UV lithography machine; the development time is 50s;
  • the exposure time is 15s
  • the wafer A-6 is evaporated with a metal bonding material to form a metal bonding layer, and the wafer A-7 is obtained;
  • the metal is a low melting point metal; the thickness of the metal bonding layer is 50-2000 nm;
  • the metal is In, Sn or Al;
  • the preparation method of the lower tablet is,
  • the lithography process is exposure in the hard contact mode of an ultraviolet lithography machine; the photoresist used in the lithography process is AZ5214E; the development time is 65s;
  • the exposure time is 20s;
  • the silicon nitride or silicon oxide of the conductive metal is etched on the silicon nitride layer on the back of the wafer B-1, and then the back of the wafer is put into acetone successively. Soak in acetone, and finally rinse with acetone to remove the photoresist to obtain wafer B-2;
  • the size of the outer square of the conductive metal film is 100 ⁇ m*100 ⁇ m-500 ⁇ m*500 ⁇ m, and the size of the inner square is 5 ⁇ m*5 ⁇ m-100 ⁇ m*100 ⁇ m;
  • silicon oxide or silicon nitride is grown on the front side of the etched silicon wafer of wafer B-2 to obtain wafer B-3;
  • the thickness of silicon oxide or silicon nitride is 0.5-5 ⁇ m;
  • the metal thin film is gold, silver or copper, with a thickness of 50nm-300nm;
  • the n-type semiconductor pattern is transferred from the photolithography mask to the front side of the wafer B-5, and then developed in a positive-gel developer, and then rinsed with deionized water to clean the surface to obtain wafer B -6;
  • the n-type semiconductor in the n-type semiconductor thin film is n-type bismuth telluride, n-type silicon germanium, n-type lead telluride, n-type zinc telluride or n-type bismuth selenide;
  • the p-type semiconductor adopts polysilicon, p-type bismuth telluride, p-type silicon germanium or p-type antimony telluride;
  • the p-type semiconductor in the p-type semiconductor film is polysilicon, p-type bismuth telluride, p-type silicon germanium or p-type antimony telluride;
  • the thickness of the insulating layer is 30-150 nm;
  • the pinhole pattern of the central window is transferred from the lithography mask to the front side of the wafer B-10, and then developed in a positive gel developer, and then rinsed with deionized water. surface to obtain wafer B-11;
  • the photoresist used in the UV laser direct writing process is AZ5214E; the output power is 260W/us;
  • the size of the small hole is 0.5 ⁇ m-5 ⁇ m;
  • Assembly Assemble the obtained upper and lower films under a microscope, and align the central windows of the upper and lower films.
  • the supersaturated calcium hydroxide aqueous solution (containing trace calcium hydroxide particles in the solution) was injected into the sample injection port of the transmission electron microscope high-resolution in-situ fluid freezing chip prepared in Example 1, and the temperature was controlled by external temperature control equipment.
  • Software set the chip temperature to -30 °C, and obtain the electron microscope image of Figure 11. It is observed from A and B of Figure 11 that in the process of decreasing the temperature, due to the increase of solute solubility, the nanoparticles become smaller.
  • the particle morphology and outline are clear, indicating that the imaging resolution of the chip in the electron microscope is high; at the same time, the position of the sample does not shift during the entire shooting process, indicating that the chip has good stability and low sample drift rate during the experiment.
  • the transmission electron microscope high-resolution in-situ fluid freezing chip is used to measure the temperature reached by the chip under different output powers by using a thermometer to obtain a temperature standard curve, and then accurately control the temperature by accurately adjusting the output power of the power supply equipment.
  • the results are shown in Figure 12. From the line graph in Figure 12, it can be seen that the temperature difference reaches 70 degrees within 5-6s, and the cooling rate is fast. And it can be stable at -50 degrees Celsius for a long time, which shows that the temperature control precision is high, and it also shows that the chip temperature control range of the present invention is large. Low temperature to high temperature can be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明公开了一种透射电镜高分辨原位流体冷冻芯片及其制备方法。所述芯片的下片设置有支撑层、冷冻层、绝缘层,孔洞以及中心视窗;所述冷冻层设置有三个接触电极、六对半导体薄膜以及导电金属薄膜;中心视窗的外围有一圈导电金属薄膜,其中心为中心视窗;三个接触电极置于芯片边缘;六对半导体薄膜一端搭在导电金属薄膜上,另一端搭在电极上;以中心视窗为中心,且在大于导电金属薄膜的外边缘区域内,硅腐蚀掉后留有孔洞,支撑层覆盖在孔洞的上方;导电金属薄膜置于孔洞上的支撑层上,冷冻层除接触电极区域的上方覆盖绝缘层;中心视窗上均有多个小孔。所述芯片具有微区快速冷冻,分辨率高,样品漂移率低的优点。

Description

一种透射电镜高分辨原位流体冷冻芯片及其制备方法 技术领域
本发明涉及芯片领域,尤其涉及一种透射电镜高分辨原位流体冷冻芯片及其制备方法。
背景技术
目前原位透射电镜技术提供的是全程动态气流体环境,这一方面有助于技术人员捕捉更多动态的结构变化信息,但另一方面由于分子高速运动,技术人员很难在动态过程中高分辨捕捉某些重要的瞬时信息,如化学反应过程中元素价态、分子结构的变化信息,电化学固液界面双电层中离子的分布信息,生物分子(如抗原/抗体)相互作用时三维结构的变化等等,而这些过程信息中的瞬时化学状态、空间分布信息对于技术人员从分子、原子尺度解读反应原理是十分必要的,这些信息表征则需要较长时间的一个不变状态,这些是目前已有的低温冷冻电镜和原位流体透射电镜都无法实现的,要想获取这些信息技术人员就必须实现在原位测试过程中进行微区快速冷冻,再结合高分辨STEM/EDS/EELES表征。
发明内容
本发明的目的在于提供一种在原位测试过程中能够进行微区快速冷冻的透射电镜高分辨原位流体冷冻芯片。同时该芯片还具有微区快速冷冻,分辨率高,样品漂移率低的优点。
为实现上述目的,本发明提供一种透射电镜高分辨原位流体冷冻芯片,其结构为上片和下片通过金属键合层组合,其中上片和下片均分为正面和背面,上片的正面直接与下片的正面通过金属键合层粘结,自封闭形成一个超薄的腔室;所述上片和下片的材质均为两面有氮化硅或氧化硅的硅基片,上片设置有两个注样口和一个中心视窗1,其特征在于,下片设置有支撑层、冷冻层、绝缘层,孔洞以及中心视窗2;所述冷冻层设置有三个接触电极、六对半导体薄膜以及导电金属薄膜;中心视窗2的外围有一圈导电金属薄膜,其中心为中心视窗2;三个接触电极置于芯片边缘;六对半导体薄膜一端搭在导电金属薄膜上,另一端搭在电极上;以中心视窗2为中心,且在大于导电金属薄膜的外边缘区域内,硅腐蚀掉后留有孔洞,支撑层覆盖在孔洞的上方;导电金属薄膜置于孔洞上的支撑层上,冷冻层除接触电极区域的上方覆盖绝缘层;
所述上片的面积略小于下片的面积,上片的中心视窗1与下片的中心视窗2对齐,中心视窗1和中心视窗2上均有多个小孔。
进一步,所述下片的外形尺寸为2mm*2mm-10mm*10mm;优选的,所述下片的外形尺寸为4mm*8mm;
任选的,金属键合层的厚度为50nm-2000nm;金属键合层的材料为低熔点金属;优选的,金属键合层的材料为In、Sn或Al;
任选的,所述氮化硅或氧化硅的厚度为5-200nm;
任选的,所述硅基片的厚度为50-500μm;
所述上片的中心视窗1位于上片中心处,两个注样口关于中心视窗1对称布置。
进一步,所述支撑层为氮化硅或氧化硅,厚度为0.5-5μm。
进一步,所述冷冻层中,所述三个接触电极中的两个电极作为正极的输入电流;一个电极作为负极的输出电流;
任选的,所述接触电极采用的是金、银或铜,厚度为50nm-300nm,正极的长为1-1.5mm,宽为0.5-1.2mm;负极的长1-1.5mm,宽0.4-0.8mm;
任选的,所述六对半导体薄膜为六块n型半导体薄膜和六块P型半导体薄膜;六块n型半导体薄膜的形状为L型条状,平行对称置于芯片外侧;六块P型半导体薄膜的形状为规则矩形,平行并列置于芯片内侧;优选的,所述n型半导体薄膜中的n型半导体采用的是n 型碲化铋、n型锗化硅、n型碲化铅、n型碲化锌或n型硒化铋;p型半导体薄膜中的p型半导体采用的是多晶硅、p型碲化铋、p型锗化硅或p型碲化锑;
任选的,所述半导体薄膜的长为4-6mm,宽为0.4-0.8mm,厚度为50nm-500nm。
进一步,所述导电金属薄膜为由导电金属形成的回字形导电金属薄膜,导电金属薄膜的中心为中心视窗2;优选的,所述导电金属采用的是金、银或铜,厚度为50nm-300nm;
所述导电金属薄膜的外方形尺寸为100μm*100μm-500μm*500μm,内方形尺寸为5μm*5μm-100μm*100μm;
进一步,所述绝缘层为一层氮化硅或氧化硅,厚度为30-150nm。
进一步,所述孔洞为圆形或方形;优选的,圆形孔洞的直径为200μm-600μm;方形孔洞的尺寸为200μm*200μm-800μm*800μm;
任选的,所述中心视窗1和中心视窗2均为方形中心视窗;优选的,所述方形中心视窗的大小为5μm*5μm-100μm*100μm;更优选的,所述方形中心视窗的大小为20μm*50μm;
任选的,所述小孔的大小为0.5μm-5μm。
进一步,所述上片的制备方法为,
S1.利用光刻工艺,将中心视窗图案从光刻掩膜版转移到两面带有氮化硅或氧化硅层的Si(100)晶圆A,然后在正胶显影液中显影得到晶圆A-1;
优选的,光刻工艺为在紫外光刻机的hard contact模式下曝光;所述氮化硅或氧化硅层的厚度5-200nm;显影的时间为50s;
更优选的,曝光的时间为15s;
S2.利用反应离子刻蚀工艺,在所述晶圆A-1的正面的氮化硅层上刻蚀出中心视窗,然后将晶圆A-1的正面朝上放入丙酮浸泡,最后用大量去离子水冲洗,去除光刻胶,得到晶圆A-2;
S3.利用紫外激光直写工艺,将中心视窗的小孔图案从光刻掩膜版转移到晶圆A-2的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆A-3;
优选的,所述显影的时间为50s;
S4.利用反应离子刻蚀工艺,在晶圆A-3的背面的小孔处的氮化硅厚度刻蚀至10nm-15nm,然后将晶圆A-3的正面朝上先后放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆A-4;
优选的,所述小孔的大小为0.5μm-5μm;
S5.将晶圆A-4的背面朝上放入氢氧化钾溶液中进行湿法刻蚀,刻蚀直至正面只留下薄膜窗口,取出晶圆A-4用大量去离子水冲洗,得到晶圆A-5;
优选的,所述氢氧化钾溶液的质量百分比浓度为20%;所述刻蚀的温度为80℃,时间为1.5-4h;
更优选的,刻蚀的时间为2h;
S6.利用光刻工艺,将键合层图案从光刻掩膜版转移到晶圆A-5的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆A-6;
优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光;所述显影的时间为50s;
更优选的,所述曝光时间为15s;
S7.利用热蒸发镀膜工艺,将晶圆A-6蒸镀金属键合材料形成金属键合层,得到晶圆A-7;
优选的,所述金属为低熔点金属;所述金属键合层的厚度为50-2000nm;
更优选的,所述金属为In、Sn或Al;
S8.将晶圆A-7进行激光划片,分成独立芯片即为上片。
进一步,所述下片的制备方法为,
S1.准备两面带有氮化硅或氧化硅层的Si(100)晶圆B,优选的,氮化硅或氧化硅层厚度5-200nm;
S2.利用光刻工艺,将中心视窗外圈导电金属载膜图案从光刻掩膜版转移到上述晶圆的背面,然后在正胶显影液中显影,再用去离子水清洗表面得到晶圆B-1;
优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光;光刻工艺中使用的光刻胶为AZ5214E;显影的时间为65s;
更优选的,曝光的时间为20s;
S3.利用反应离子刻蚀工艺,在晶圆B-1的背面的氮化硅层上刻蚀出导电金属的氮化硅或氧化硅刻蚀掉,然后将晶圆背面朝上先后放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆B-2;
优选的,所述导电金属薄膜的外方形尺寸为100μm*100μm-500μm*500μm,内方形尺寸为5μm*5μm-100μm*100μm;
S4.利用PECVD工艺,在晶圆B-2腐蚀后的硅片上正面生长氧化硅或氮化硅,得到晶圆B-3;
优选的,氧化硅或氮化硅的厚度为0.5-5μm;
S5.利用光刻工艺,将金属薄膜图案及接触电极图案从光刻掩膜版转移到晶圆B-3的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-4;
S6.利用直流磁控溅射,在晶圆B-4的正面溅射一层金属薄膜,然后将晶圆B-4的正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下金属薄膜,得到晶圆B-5;
任选的,所述金属薄膜采用的是金、银或铜,厚度为50nm-300nm;
S7.利用光刻工艺,将n型半导体图案从光刻掩膜版转移到晶圆B-5的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-6;
S8.用射频磁控溅射,在晶圆B-6的正面溅射一层n型半导体薄膜,然后将晶圆B-6的正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下n型半导体薄膜,得到晶圆B-7;
优选的,所述n型半导体薄膜中的n型半导体采用的是n型碲化铋、n型锗化硅、n型碲化铅、n型碲化锌或n型硒化铋;
S9.利用光刻工艺,将p型半导体图案从光刻掩膜版转移到晶圆B-7的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-8;
优选的,所述p型半导体采用的是多晶硅、p型碲化铋、p型锗化硅或p型碲化锑;
S10.利用射频磁控溅射,在晶圆B-8的正面溅射一层p型半导体薄膜,然后将晶圆11的正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下p型半导体薄膜,得到晶圆B-9;
优选的,所述p型半导体薄膜中的p型半导体采用的是多晶硅、p型碲化铋、p型锗化硅或p型碲化锑。
S11.利用PECVD工艺,在晶圆B-9的半导体薄膜生长一层氮化硅或氧化硅或氧化铝作为绝缘层,得到晶圆B-10;
优选的,所述绝缘层的厚度为30-150nm;
S12.利用紫外激光直写光刻工艺,将中心视窗的小孔图案从光刻掩膜版转移到晶圆B-10的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-11;
优选的,所述紫外激光直写工艺的所用光刻胶为AZ5214E;输出功率为260W/us;
S13.利用反应离子刻蚀工艺,在晶圆B-11的背面的小孔处的氮化硅或氧化硅刻蚀,然后将晶圆B-11的正面朝上放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆B-12;
优选的,所述小孔的大小为0.5μm-5μm;
S14.将晶圆B-12进行激光划片,分成独立芯片即为下片。
本发明还保护一种所述透射电镜高分辨原位流体冷冻芯片的制备方法,其特征在于,
所述上片的制备方法为,
S1.利用光刻工艺,将中心视窗图案从光刻掩膜版转移到两面带有氮化硅或氧化硅层的Si(100)晶圆A,然后在正胶显影液中显影得到晶圆A-1;
优选的,光刻工艺为在紫外光刻机的hard contact模式下曝光;所述氮化硅或氧化硅层的厚度5-200nm;显影的时间为50s;
更优选的,曝光的时间为15s;
S2.利用反应离子刻蚀工艺,在所述晶圆A-1的正面的氮化硅层上刻蚀出中心视窗,然后将晶圆A-1的正面朝上放入丙酮浸泡,最后用大量去离子水冲洗,去除光刻胶,得到晶圆A-2;
S3.利用紫外激光直写工艺,将中心视窗的小孔图案从光刻掩膜版转移到晶圆A-2的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆A-3;
优选的,所述显影的时间为50s;
S4.利用反应离子刻蚀工艺,在晶圆A-3的背面的小孔处的氮化硅厚度刻蚀至10nm-15nm,然后将晶圆A-3的正面朝上先后放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆A-4;
优选的,所述小孔的大小为0.5μm-5μm;
S5.将晶圆A-4的背面朝上放入氢氧化钾溶液中进行湿法刻蚀,刻蚀直至正面只留下薄膜窗口,取出晶圆A-4用大量去离子水冲洗,得到晶圆A-5;
优选的,所述氢氧化钾溶液的质量百分比浓度为20%;所述刻蚀的温度为80℃,时间为1.5-4h;
更优选的,刻蚀的时间为2h;
S6.利用光刻工艺,将键合层图案从光刻掩膜版转移到晶圆A-5的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆A-6;
优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光;所述显影的时间为50s;
更优选的,所述曝光时间为15s;
S7.利用热蒸发镀膜工艺,将晶圆A-6蒸镀金属键合材料形成金属键合层,得到晶圆A-7;
优选的,所述金属为低熔点金属;所述金属键合层的厚度为50-2000nm;
更优选的,所述金属为In、Sn或Al;
S8.将晶圆A-7进行激光划片,分成独立芯片即为上片;
所述下片的制备方法为,
S1.准备两面带有氮化硅或氧化硅层的Si(100)晶圆B,优选的,氮化硅或氧化硅层厚度5-200nm;
S2.利用光刻工艺,将中心视窗外圈导电金属载膜图案从光刻掩膜版转移到上述晶圆的背面,然后在正胶显影液中显影,再用去离子水清洗表面得到晶圆B-1;
优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光;光刻工艺中使用的光刻胶为AZ5214E;显影的时间为65s;
更优选的,曝光的时间为20s;
S3.利用反应离子刻蚀工艺,在晶圆B-1的背面的氮化硅层上刻蚀出导电金属的氮化硅或氧化硅刻蚀掉,然后将晶圆背面朝上先后放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆B-2;
优选的,所述导电金属薄膜的外方形尺寸为100μm*100μm-500μm*500μm,内方形尺寸为5μm*5μm-100μm*100μm;
S4.利用PECVD工艺,在晶圆B-2腐蚀后的硅片上正面生长氧化硅或氮化硅,得到晶圆B-3;
优选的,氧化硅或氮化硅的厚度为0.5-5μm;
S5.利用光刻工艺,将金属薄膜图案及接触电极图案从光刻掩膜版转移到晶圆B-3的正 面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-4;
S6.利用直流磁控溅射,在晶圆B-4的正面溅射一层金属薄膜,然后将晶圆B-4的正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下金属薄膜,得到晶圆B-5;
任选的,所述金属薄膜采用的是金、银或铜,厚度为50nm-300nm;
S7.利用光刻工艺,将n型半导体图案从光刻掩膜版转移到晶圆B-5的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-6;
S8.用射频磁控溅射,在晶圆B-6的正面溅射一层n型半导体薄膜,然后将晶圆B-6的正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下n型半导体薄膜,得到晶圆B-7;
优选的,所述n型半导体薄膜中的n型半导体采用的是n型碲化铋、n型锗化硅、n型碲化铅、n型碲化锌或n型硒化铋;
S9.利用光刻工艺,将p型半导体图案从光刻掩膜版转移到晶圆B-7的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-8;
优选的,所述p型半导体采用的是多晶硅、p型碲化铋、p型锗化硅或p型碲化锑;
S10.利用射频磁控溅射,在晶圆B-8的正面溅射一层p型半导体薄膜,然后将晶圆11的正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下p型半导体薄膜,得到晶圆B-9;
优选的,所述p型半导体薄膜中的p型半导体采用的是多晶硅、p型碲化铋、p型锗化硅或p型碲化锑;
S11.利用PECVD工艺,在晶圆B-9的半导体薄膜生长一层氮化硅或氧化硅或氧化铝作为绝缘层,得到晶圆B-10;
优选的,所述绝缘层的厚度为30-150nm;
S12.利用紫外激光直写光刻工艺,将中心视窗的小孔图案从光刻掩膜版转移到晶圆B-10的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-11;
优选的,所述紫外激光直写工艺的所用光刻胶为AZ5214E;输出功率为260W/us;
S13.利用反应离子刻蚀工艺,在晶圆B-11的背面的小孔处的氮化硅或氧化硅刻蚀,然后将晶圆B-11的正面朝上放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆B-12;
优选的,所述小孔的大小为0.5μm-5μm;
S14.将晶圆B-12进行激光划片,分成独立芯片即为下片;
组装:将所得上片和下片在显微镜下进行组装,使上片和下片的中心视窗对齐即可。
本发明的芯片控温区域小(100μm*100μm-500μm*500μm区域),且设计隔热处理,热传递小,所以可以实现微区快速控温。
附图说明
图1是本发明芯片的下片的冷冻层结构结构示意图;
图2是本发明芯片的下片制备过程中,腐蚀孔洞后的结构示意图;
图3是本发明芯片的下片制备过程中,腐蚀完孔洞,镀完导电金属薄膜和接触电极后的结构示意图;
图4是在图3的基础上镀完n型半导体薄膜的结构示意图;
图5是在图4的基础上镀完p型半导体薄膜的结构示意图;
图6是本发明芯片的下片结构示意图;
图7是本发明芯片的上下片组合前的结构示意图;
图8是本发明芯片的上下片组合后的结构示意图;
图9是51中心视窗1和52中心视窗2的放大图;
图10是52中心视窗1和52中心视窗2的放大图;
图11是使用本发明芯片观测到的样品的电镜图;
图12是使用本发明芯片得到的温度标准曲线。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
按照图1-图10的结构,进行如下芯片的制作。其中1为透射电镜高分辨原位流体冷冻芯片;2为上片;3为下片;4为金属键合层;5为中心视窗;51为上片中心视窗;52为下片中心视窗;6为小孔;7为注样口;8为支撑层;9为冷冻层;10为绝缘层;11为三个接触电极;12为硅基片;13和14均为氮化硅或氧化硅层;15为孔洞;161为n型半导体薄膜;162为p型半导体薄膜;17为导电金属薄膜。
实施例1:透射电镜高分辨原位流体冷冻芯片的制备
上片的制备方法为,
S1.利用光刻工艺,将中心视窗图案从光刻掩膜版转移到两面带有氮化硅或氧化硅层的Si(100)晶圆A,然后在正胶显影液中显影得到晶圆A-1;
优选的,光刻工艺为在紫外光刻机的hard contact模式下曝光;所述氮化硅或氧化硅层的厚度5-200nm;显影的时间为50s;
更优选的,曝光的时间为15s;
S2.利用反应离子刻蚀工艺,在所述晶圆A-1的正面的氮化硅层上刻蚀出中心视窗,然后将晶圆A-1的正面朝上放入丙酮浸泡,最后用大量去离子水冲洗,去除光刻胶,得到晶圆A-2;
S3.利用紫外激光直写工艺,将中心视窗的小孔图案从光刻掩膜版转移到晶圆A-2的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆A-3;
优选的,所述显影的时间为50s;
S4.利用反应离子刻蚀工艺,在晶圆A-3的背面的小孔处的氮化硅厚度刻蚀至10nm-15nm,然后将晶圆A-3的正面朝上先后放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆A-4;
优选的,所述小孔的大小为0.5μm-5μm;
S5.将晶圆A-4的背面朝上放入氢氧化钾溶液中进行湿法刻蚀,刻蚀直至正面只留下薄膜窗口,取出晶圆A-4用大量去离子水冲洗,得到晶圆A-5;
优选的,所述氢氧化钾溶液的质量百分比浓度为20%;所述刻蚀的温度为80℃,时间为1.5-4h;
更优选的,刻蚀的时间为2h;
S6.利用光刻工艺,将键合层图案从光刻掩膜版转移到晶圆A-5的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆A-6;
优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光;所述显影的时间为50s;
更优选的,所述曝光时间为15s;
S7.利用热蒸发镀膜工艺,将晶圆A-6蒸镀金属键合材料形成金属键合层,得到晶圆A-7;
优选的,所述金属为低熔点金属;所述金属键合层的厚度为50-2000nm;
更优选的,所述金属为In、Sn或Al;
S8.将晶圆A-7进行激光划片,分成独立芯片即为上片;
所述下片的制备方法为,
S1.准备两面带有氮化硅或氧化硅层的Si(100)晶圆B,氮化硅或氧化硅层厚度5-200nm;
S2.利用光刻工艺,将中心视窗外圈导电金属载膜图案从光刻掩膜版转移到上述晶圆的背面,然后在正胶显影液中显影,再用去离子水清洗表面得到晶圆B-1;
优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光;光刻工艺中使用的光刻胶为AZ5214E;显影的时间为65s;
更优选的,曝光的时间为20s;
S3.利用反应离子刻蚀工艺,在晶圆B-1的背面的氮化硅层上刻蚀出导电金属的氮化硅或氧化硅刻蚀掉,然后将晶圆背面朝上先后放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆B-2;
优选的,所述导电金属薄膜的外方形尺寸为100μm*100μm-500μm*500μm,内方形尺寸为5μm*5μm-100μm*100μm;
S4.利用PECVD工艺,在晶圆B-2腐蚀后的硅片上正面生长氧化硅或氮化硅,得到晶圆B-3;
优选的,氧化硅或氮化硅的厚度为0.5-5μm;
S5.利用光刻工艺,将金属薄膜图案及接触电极图案从光刻掩膜版转移到晶圆B-3的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-4;
S6.利用直流磁控溅射,在晶圆B-4的正面溅射一层金属薄膜,然后将晶圆B-4的正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下金属薄膜,得到晶圆B-5;
任选的,所述金属薄膜采用的是金、银或铜,厚度为50nm-300nm;
S7.利用光刻工艺,将n型半导体图案从光刻掩膜版转移到晶圆B-5的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-6;
S8.用射频磁控溅射,在晶圆B-6的正面溅射一层n型半导体薄膜,然后将晶圆B-6的正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下n型半导体薄膜,得到晶圆B-7;
优选的,所述n型半导体薄膜中的n型半导体采用的是n型碲化铋、n型锗化硅、n型碲化铅、n型碲化锌或n型硒化铋;;
S9.利用光刻工艺,将p型半导体图案从光刻掩膜版转移到晶圆B-7的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-8;
优选的,所述p型半导体采用的是多晶硅、p型碲化铋、p型锗化硅或p型碲化锑;
S10.利用射频磁控溅射,在晶圆B-8的正面溅射一层p型半导体薄膜,然后将晶圆11的正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下p型半导体薄膜,得到晶圆B-9;
优选的,所述p型半导体薄膜中的p型半导体采用的是多晶硅、p型碲化铋、p型锗化硅或p型碲化锑;
S11.利用PECVD工艺,在晶圆B-9的半导体薄膜生长一层氮化硅或氧化硅或氧化铝作为绝缘层,得到晶圆B-10;
优选的,所述绝缘层的厚度为30-150nm;
S12.利用紫外激光直写光刻工艺,将中心视窗的小孔图案从光刻掩膜版转移到晶圆B-10的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-11;
优选的,所述紫外激光直写工艺的所用光刻胶为AZ5214E;输出功率为260W/us;
S13.利用反应离子刻蚀工艺,在晶圆B-11的背面的小孔处的氮化硅或氧化硅刻蚀,然后将晶圆B-11的正面朝上放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆B-12;
优选的,所述小孔的大小为0.5μm-5μm;
S14.将晶圆B-12进行激光划片,分成独立芯片即为下片;
组装:将所得上片和下片在显微镜下进行组装,使上片和下片的中心视窗对齐即可。
实施例2:透射电镜高分辨原位流体冷冻芯片的使用
将过饱和的氢氧化钙的水溶液(溶液中含有微量氢氧化钙颗粒)注入到实施例1制备得到的透射电镜高分辨原位流体冷冻芯片的注样口,通过外部控温设备,结合控温软件,将芯片温度设置到-30℃,得到图11的电镜图,从图11的A和B观察到在温度降低的过程中,由于溶质溶解度增大,纳米颗粒变小。该过程中颗粒形貌、轮廓清晰,表明给芯片在电镜中的成像分辨率高;同时样品在整个拍摄过程中位置不发生偏移,表明实验过程中芯片稳定性较好,样品漂移率低。
实施例3:温度标准曲线
该透射电镜高分辨原位流体冷冻芯片在使用前通过测温仪测定芯片在不同输出功率下制冷达到的温度,得到温度标准曲线,再通过精确调节电源设备的输出功率进行精确控温。结果见图12。从图12的折线图可以看出5-6s内达到70度的温差,降温速率快。并且能长时间稳定在-50摄氏度,说明控温精度高,同时也说明本发明的芯片控温范围大。低温到高温都可以。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (71)

  1. 一种透射电镜高分辨原位流体冷冻芯片,其结构为上片和下片通过金属键合层组合,其中上片和下片均分为正面和背面,上片的正面直接与下片的正面通过金属键合层粘结,自封闭形成一个超薄的腔室;所述上片和下片的材质均为两面有氮化硅或氧化硅的硅基片,上片设置有两个注样口和一个中心视窗1,其特征在于,下片设置有支撑层、冷冻层、绝缘层,孔洞以及中心视窗2;所述冷冻层设置有三个接触电极、六对半导体薄膜以及导电金属薄膜;中心视窗2的外围有一圈导电金属薄膜,其中心为中心视窗2;三个接触电极置于芯片边缘;六对半导体薄膜一端搭在导电金属薄膜上,另一端搭在电极上;以中心视窗2为中心,且在大于导电金属薄膜的外边缘区域内,硅腐蚀掉后留有孔洞,支撑层覆盖在孔洞的上方;导电金属薄膜置于孔洞上的支撑层上,冷冻层除接触电极区域的上方覆盖绝缘层;
    所述上片的面积略小于下片的面积,上片的中心视窗1与下片的中心视窗2对齐,中心视窗1和中心视窗2上均有多个小孔。
  2. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述下片的外形尺寸为2mm*2mm-10mm*10mm。
  3. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述下片的外形尺寸为4mm*8mm。
  4. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述金属键合层的厚度为50nm-2000nm;金属键合层的材料为低熔点金属。
  5. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于,金属键合层的材料为In、Sn或Al。
  6. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述氮化硅或氧化硅的厚度为5-200nm。
  7. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述硅基片的厚度为50-500μm;
  8. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述上片的中心视窗1位于上片中心处,两个注样口关于中心视窗1对称布置。
  9. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述支撑层为氮化硅或氧化硅,厚度为0.5-5μm。
  10. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述冷冻层中,所述三个接触电极中的两个电极作为正极的输入电流;一个电极作为负极的输出电流。
  11. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述接触电极采用的是金、银或铜,厚度为50nm-300nm,正极的长为1-1.5mm,宽为0.5-1.2mm;负极的长1-1.5mm,宽0.4-0.8mm;
  12. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述六对半导体薄膜为六块n型半导体薄膜和六块P型半导体薄膜;六块n型半导体薄膜的形状为L型条状,平行对称置于芯片外侧;六块P型半导体薄膜的形状为规则矩形,平行并列置于芯片内侧。
  13. 如权利要求12所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述n型半导体薄膜中的n型半导体采用的是n型碲化铋、n型锗化硅、n型碲化铅、n型碲化锌或n型硒化铋;p型半导体薄膜中的p型半导体采用的是多晶硅、p型碲化铋、p型锗化硅或p型碲化锑。
  14. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述半导体薄膜的长为4-6mm,宽为0.4-0.8mm,厚度为50nm-500nm。
  15. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述导电金属薄膜为由导电金属形成的回字形导电金属薄膜,导电金属薄膜的中心为中心视窗2。
  16. 如权利要求15所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述导电金属采用的是金、银或铜,厚度为50nm-300nm。
  17. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于所述导电金属薄膜的外方形尺寸为100μm*100μm-500μm*500μm,内方形尺寸为5μm*5μm-100μm*100μm。
  18. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述绝缘层为一层氮化硅或氧化硅,厚度为30-150nm。
  19. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述孔洞为圆形孔洞或方形孔洞。
  20. 如权利要求19所述透射电镜高分辨原位流体冷冻芯片,其特征在于,圆形孔洞的直径为200μm-600μm;方形孔洞的尺寸为200μm*200μm-800μm*800μm。
  21. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述中心视窗1和中心视窗2均为方形中心视窗。
  22. 如权利要求21所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述方形中心视窗的大小为5μm*5μm-100μm*100μm。
  23. 如权利要求21所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述方形中心视窗的大小为20μm*50μm;
  24. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述小孔的大小为0.5μm-5μm。
  25. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述上片的制备方法为,
    S1.利用光刻工艺,将中心视窗图案从光刻掩膜版转移到两面带有氮化硅或氧化硅层的Si(100)晶圆A,然后在正胶显影液中显影得到晶圆A-1;
    S2.利用反应离子刻蚀工艺,在所述晶圆A-1的正面的氮化硅层上刻蚀出中心视窗,然后将晶圆A-1的正面朝上放入丙酮浸泡,最后用大量去离子水冲洗,去除光刻胶,得到晶圆A-2;
    S3.利用紫外激光直写工艺,将中心视窗的小孔图案从光刻掩膜版转移到晶圆A-2的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆A-3;
    S4.利用反应离子刻蚀工艺,在晶圆A-3的背面的小孔处的氮化硅厚度刻蚀至10nm-15nm,然后将晶圆A-3的正面朝上先后放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆A-4;
    S5.将晶圆A-4的背面朝上放入氢氧化钾溶液中进行湿法刻蚀,刻蚀直至正面只留下薄膜窗口,取出晶圆A-4用大量去离子水冲洗,得到晶圆A-5;
    S6.利用光刻工艺,将键合层图案从光刻掩膜版转移到晶圆A-5的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆A-6;
    S7.利用热蒸发镀膜工艺,将晶圆A-6蒸镀金属键合材料形成金属键合层,得到晶圆A-7;
    S8.将晶圆A-7进行激光划片,分成独立芯片即为上片。
  26. 如权利要求25所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述S1步骤中,光刻工艺为在紫外光刻机的hard contact模式下曝光;所述氮化硅或氧化硅层的厚度5-200nm;显影的时间为50s。
  27. 如权利要求26所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述曝光的时间为15s。
  28. 如权利要求25所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述S3步骤中,所述显影的时间为50s。
  29. 如权利要求25所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述S4步骤中,所述小孔的大小为0.5μm-5μm。
  30. 如权利要求25所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述S5步骤中,优选的,所述氢氧化钾溶液的质量百分比浓度为20%;所述刻蚀的温度为80℃,时间为1.5-4h。
  31. 如权利要求30所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述刻蚀的时间为2h。
  32. 如权利要求25所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述S6步骤中,所述光刻工艺为在紫外光刻机的hard contact模式下曝光;所述显影的时间为50s。
  33. 如权利要求32所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述所述曝光时间为15s。
  34. 如权利要求25所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述S7步骤中,所述金属为低熔点金属;所述金属键合层的厚度为50-2000nm。
  35. 如权利要求34所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述金属为In、Sn或Al。
  36. 如权利要求1所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述下片的制备方法为,
    S1.准备两面带有氮化硅或氧化硅层的Si(100)晶圆B;
    S2.利用光刻工艺,将中心视窗外圈导电金属载膜图案从光刻掩膜版转移到上述晶圆的背面,然后在正胶显影液中显影,再用去离子水清洗表面得到晶圆B-1;
    S3.利用反应离子刻蚀工艺,在晶圆B-1的背面的氮化硅层上刻蚀出导电金属的氮化硅或氧化硅刻蚀掉,然后将晶圆背面朝上先后放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆B-2;
    S4.利用PECVD工艺,在晶圆B-2腐蚀后的硅片上正面生长氧化硅或氮化硅,得到晶圆B-3;
    S5.利用光刻工艺,将金属薄膜图案及接触电极图案从光刻掩膜版转移到晶圆B-3的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-4;
    S6.利用直流磁控溅射,在晶圆B-4的正面溅射一层金属薄膜,然后将晶圆B-4的正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下金属薄膜,得到晶圆B-5;
    S7.利用光刻工艺,将n型半导体图案从光刻掩膜版转移到晶圆B-5的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-6;
    S8.用射频磁控溅射,在晶圆B-6的正面溅射一层n型半导体薄膜,然后将晶圆B-6的正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下n型半导体薄膜,得到晶圆B-7;
    S9.利用光刻工艺,将p型半导体图案从光刻掩膜版转移到晶圆B-7的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-8;
    S10.利用射频磁控溅射,在晶圆B-8的正面溅射一层p型半导体薄膜,然后将晶圆11的正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下p型半导体薄膜,得到晶圆B-9;
    S11.利用PECVD工艺,在晶圆B-9的半导体薄膜生长一层氮化硅或氧化硅或氧化铝作为绝缘层,得到晶圆B-10;
    S12.利用紫外激光直写光刻工艺,将中心视窗的小孔图案从光刻掩膜版转移到晶圆B-10的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-11;
    S13.利用反应离子刻蚀工艺,在晶圆B-11的背面的小孔处的氮化硅或氧化硅刻蚀,然后将晶圆B-11的正面朝上放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆B-12;
    S14.将晶圆B-12进行激光划片,分成独立芯片即为下片。
  37. 如权利要求36所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述S1步骤 中,氮化硅或氧化硅层的厚度5-200nm。
  38. 如权利要求36所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述S2步骤中,所述光刻工艺为在紫外光刻机的hard contact模式下曝光;光刻工艺中使用的光刻胶为AZ5214E;显影的时间为65s。
  39. 如权利要求38所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述曝光的时间为20s。
  40. 如权利要求36所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述S3步骤中,所述导电金属薄膜的外方形尺寸为100μm*100μm-500μm*500μm,内方形尺寸为5μm*5μm-100μm*100μm。
  41. 如权利要求36所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述S4步骤中,氧化硅或氮化硅的厚度为0.5-5μm。
  42. 如权利要求36所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述S6步骤中,所述金属薄膜采用的是金、银或铜,厚度为50nm-300nm。
  43. 如权利要求36所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述S8步骤中,所述n型半导体薄膜中的n型半导体采用的是n型碲化铋、n型锗化硅、n型碲化铅、n型碲化锌或n型硒化铋。
  44. 如权利要求36所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述S9步骤中,所述p型半导体采用的是多晶硅、p型碲化铋、p型锗化硅或p型碲化锑。
  45. 如权利要求36所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述S10步骤中,所述p型半导体薄膜中的p型半导体采用的是多晶硅、p型碲化铋、p型锗化硅或p型碲化锑。
  46. 如权利要求36所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述S11步骤中,所述绝缘层的厚度为30-150nm。
  47. 如权利要求36所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述S12步骤中,所述紫外激光直写工艺的所用光刻胶为AZ5214E;输出功率为260W/us。
  48. 如权利要求36所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述S13步骤中,优选的,所述小孔的大小为0.5μm-5μm。
  49. 一种权利要求1-48任一所述透射电镜高分辨原位流体冷冻芯片的制备方法,其特征在于,
    所述上片的制备方法为,
    S1.利用光刻工艺,将中心视窗图案从光刻掩膜版转移到两面带有氮化硅或氧化硅层的Si(100)晶圆A,然后在正胶显影液中显影得到晶圆A-1;
    S2.利用反应离子刻蚀工艺,在所述晶圆A-1的正面的氮化硅层上刻蚀出中心视窗,然后将晶圆A-1的正面朝上放入丙酮浸泡,最后用大量去离子水冲洗,去除光刻胶,得到晶圆A-2;
    S3.利用紫外激光直写工艺,将中心视窗的小孔图案从光刻掩膜版转移到晶圆A-2的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆A-3;
    S4.利用反应离子刻蚀工艺,在晶圆A-3的背面的小孔处的氮化硅厚度刻蚀至10nm-15nm,然后将晶圆A-3的正面朝上先后放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆A-4;
    S5.将晶圆A-4的背面朝上放入氢氧化钾溶液中进行湿法刻蚀,刻蚀直至正面只留下薄膜窗口,取出晶圆A-4用大量去离子水冲洗,得到晶圆A-5;
    S6.利用光刻工艺,将键合层图案从光刻掩膜版转移到晶圆A-5的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆A-6;
    S7.利用热蒸发镀膜工艺,将晶圆A-6蒸镀金属键合材料形成金属键合层,得到晶圆A-7;
    S8.将晶圆A-7进行激光划片,分成独立芯片即为上片;
    所述下片的制备方法为,
    S1.准备两面带有氮化硅或氧化硅层的Si(100)晶圆B;
    S2.利用光刻工艺,将中心视窗外圈导电金属载膜图案从光刻掩膜版转移到上述晶圆的背面,然后在正胶显影液中显影,再用去离子水清洗表面得到晶圆B-1;
    S3.利用反应离子刻蚀工艺,在晶圆B-1的背面的氮化硅层上刻蚀出导电金属的氮化硅或氧化硅刻蚀掉,然后将晶圆背面朝上先后放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆B-2;
    S4.利用PECVD工艺,在晶圆B-2腐蚀后的硅片上正面生长氧化硅或氮化硅,得到晶圆B-3;
    S5.利用光刻工艺,将金属薄膜图案及接触电极图案从光刻掩膜版转移到晶圆B-3的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-4;
    S6.利用直流磁控溅射,在晶圆B-4的正面溅射一层金属薄膜,然后将晶圆B-4的正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下金属薄膜,得到晶圆B-5;
    S7.利用光刻工艺,将n型半导体图案从光刻掩膜版转移到晶圆B-5的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-6;
    S8.用射频磁控溅射,在晶圆B-6的正面溅射一层n型半导体薄膜,然后将晶圆B-6的正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下n型半导体薄膜,得到晶圆B-7;
    S9.利用光刻工艺,将p型半导体图案从光刻掩膜版转移到晶圆B-7的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-8;
    S10.利用射频磁控溅射,在晶圆B-8的正面溅射一层p型半导体薄膜,然后将晶圆11的正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下p型半导体薄膜,得到晶圆B-9;
    S11.利用PECVD工艺,在晶圆B-9的半导体薄膜生长一层氮化硅或氧化硅或氧化铝作为绝缘层,得到晶圆B-10;
    S12.利用紫外激光直写光刻工艺,将中心视窗的小孔图案从光刻掩膜版转移到晶圆B-10的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-11;
    S13.利用反应离子刻蚀工艺,在晶圆B-11的背面的小孔处的氮化硅或氧化硅刻蚀,然后将晶圆B-11的正面朝上放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆B-12;
    S14.将晶圆B-12进行激光划片,分成独立芯片即为下片;
    组装:将所得上片和下片在显微镜下进行组装,使上片和下片的中心视窗对齐即可。
  50. 如权利要求49所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述上片制备的S1步骤中,光刻工艺为在紫外光刻机的hard contact模式下曝光;所述氮化硅或氧化硅层的厚度5-200nm;显影的时间为50s。
  51. 如权利要求50所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述曝光的时间为15s。
  52. 如权利要求49所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述上片制备的S3步骤中,显影的时间为50s。
  53. 如权利要求49所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述上片制备的S4步骤中,小孔的大小为0.5μm-5μm。
  54. 如权利要求49所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述上片制备的S5步骤中,所述氢氧化钾溶液的质量百分比浓度为20%;所述刻蚀的温度为80℃,时间为1.5-4h。
  55. 如权利要求54所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述刻蚀的时间为2h。
  56. 如权利要求49所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述上片制备的S6步骤中,所述光刻工艺为在紫外光刻机的hard contact模式下曝光;所述显影的时间为50s。
  57. 如权利要求56所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述所述曝光时间为15s。
  58. 如权利要求49所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述上片制备的S7步骤中,金属为低熔点金属;所述金属键合层的厚度为50-2000nm。
  59. 如权利要求58所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述金属为In、Sn或Al。
  60. 如权利要求49所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述下片制备的S1步骤中,氮化硅或氧化硅层厚度5-200nm。
  61. 如权利要求49所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述下片制备的S2步骤中,优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光;光刻工艺中使用的光刻胶为AZ5214E;显影的时间为65s。
  62. 如权利要求61所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述曝光的时间为20s。
  63. 如权利要求49所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述下片制备的S3步骤中,所述导电金属薄膜的外方形尺寸为100μm*100μm-500μm*500μm,内方形尺寸为5μm*5μm-100μm*100μm。
  64. 如权利要求49所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述下片制备的S4步骤中,氧化硅或氮化硅的厚度为0.5-5μm。
  65. 如权利要求49所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述下片制备的S6步骤中,金属薄膜采用的是金、银或铜,厚度为50nm-300nm。
  66. 如权利要求49所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述下片制备的S8步骤中,所述n型半导体薄膜中的n型半导体采用的是n型碲化铋、n型锗化硅、n型碲化铅、n型碲化锌或n型硒化铋。
  67. 如权利要求49所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述下片制备的S9步骤中,所述p型半导体采用的是多晶硅、p型碲化铋、p型锗化硅或p型碲化锑。
  68. 如权利要求49所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述下片制备的S10步骤中,所述p型半导体薄膜中的p型半导体采用的是多晶硅、p型碲化铋、p型锗化硅或p型碲化锑。
  69. 如权利要求49所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述下片制备的S11步骤中,所述绝缘层的厚度为30-150nm。
  70. 如权利要求49所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述下片制备的S12步骤中,所述紫外激光直写工艺的所用光刻胶为AZ5214E;输出功率为260W/us。
  71. 如权利要求49所述透射电镜高分辨原位流体冷冻芯片,其特征在于,所述下片制备的S13步骤中,所述小孔的大小为0.5μm-5μm。
PCT/CN2020/108322 2020-08-11 2020-08-11 一种透射电镜高分辨原位流体冷冻芯片及其制备方法 WO2022032463A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB2303425.9A GB2613733A (en) 2020-08-11 2020-08-11 Transmission electron microscope high-resolution in-situ fluid freezing chip and preparation method therefor
PCT/CN2020/108322 WO2022032463A1 (zh) 2020-08-11 2020-08-11 一种透射电镜高分辨原位流体冷冻芯片及其制备方法
US18/020,876 US20230326712A1 (en) 2020-08-11 2020-08-11 Transmission electron microscope high-resolution in situ fluid freezing chip and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108322 WO2022032463A1 (zh) 2020-08-11 2020-08-11 一种透射电镜高分辨原位流体冷冻芯片及其制备方法

Publications (1)

Publication Number Publication Date
WO2022032463A1 true WO2022032463A1 (zh) 2022-02-17

Family

ID=80247527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108322 WO2022032463A1 (zh) 2020-08-11 2020-08-11 一种透射电镜高分辨原位流体冷冻芯片及其制备方法

Country Status (3)

Country Link
US (1) US20230326712A1 (zh)
GB (1) GB2613733A (zh)
WO (1) WO2022032463A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114563259A (zh) * 2022-04-29 2022-05-31 北京大学 一种基于微流控芯片制备时间分辨冷冻电镜样品的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010718A2 (en) * 2006-07-21 2008-01-24 Technische Universiteit Delft Method for sample preparation for cryoelectron microscopy (cem), microreactor and loading platform
CN206535564U (zh) * 2017-02-17 2017-10-03 深圳韦拓生物科技有限公司 一种用于细胞冷冻的微流控芯片及混合系统
CN110337706A (zh) * 2016-12-06 2019-10-15 布兰迪斯大学 用于低温电子显微镜的可冻结流体单元
CN111370280A (zh) * 2020-03-12 2020-07-03 厦门超新芯科技有限公司 一种透射电镜高分辨原位气相加热芯片及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010718A2 (en) * 2006-07-21 2008-01-24 Technische Universiteit Delft Method for sample preparation for cryoelectron microscopy (cem), microreactor and loading platform
CN110337706A (zh) * 2016-12-06 2019-10-15 布兰迪斯大学 用于低温电子显微镜的可冻结流体单元
CN206535564U (zh) * 2017-02-17 2017-10-03 深圳韦拓生物科技有限公司 一种用于细胞冷冻的微流控芯片及混合系统
CN111370280A (zh) * 2020-03-12 2020-07-03 厦门超新芯科技有限公司 一种透射电镜高分辨原位气相加热芯片及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114563259A (zh) * 2022-04-29 2022-05-31 北京大学 一种基于微流控芯片制备时间分辨冷冻电镜样品的方法及装置
CN114563259B (zh) * 2022-04-29 2022-07-26 北京大学 一种基于微流控芯片制备时间分辨冷冻电镜样品的方法及装置

Also Published As

Publication number Publication date
GB202303425D0 (en) 2023-04-26
US20230326712A1 (en) 2023-10-12
GB2613733A (en) 2023-06-14

Similar Documents

Publication Publication Date Title
US9040939B2 (en) Membrane supports with reinforcement features
CN111312573B (zh) 一种透射电镜高分辨原位液相加热芯片及其制备方法
US20060025002A1 (en) TEM MEMS device holder and method of fabrication
CN111879796A (zh) 一种透射电镜高分辨原位流体冷冻芯片及其制备方法
US7667945B2 (en) Bipolar carrier wafer and mobile bipolar electrostatic wafer arrangement
CN111370280B (zh) 一种透射电镜高分辨原位气相加热芯片及其制备方法
JP6282342B2 (ja) 接触面の少なくとも一方において、接触面の一方に施与された犠牲層を溶解させながら金属接触面を接合する方法
WO2022082991A1 (zh) 一种透射电镜高分辨原位悬空式温差加压芯片及其制备方法
CN110736760B (zh) 一种透射电镜原位电化学检测芯片及其制作方法
WO2022032463A1 (zh) 一种透射电镜高分辨原位流体冷冻芯片及其制备方法
CN212932446U (zh) 一种透射电镜高分辨原位流体冷冻芯片
US20150338322A1 (en) Membrane supports with reinforcement features
Xu et al. Atomic‐precision repair of a few‐layer 2H‐MoTe2 thin film by phase transition and recrystallization induced by a heterophase interface
CN102969302A (zh) 基于二氧化铪的电子束套刻标记及其制作方法
JP2000077381A (ja) エッチング方法、エッチング装置、及び分析方法
CN111812125A (zh) 一种透射电镜高分辨原位液相变温芯片及其制备方法
KR19980063658A (ko) 피검사체의 전기적 특성을 검사하는 방법 및 장치
WO2022032470A1 (zh) 一种透射电镜高分辨原位液相变温芯片及其制备方法
TW201316371A (zh) 用於電子顯微鏡之樣品承載裝置及其製作方法
CN109037051A (zh) 半导体结构的制备方法及半导体结构
CN212321475U (zh) 一种透射电镜高分辨原位液相变温芯片
CN114112085B (zh) 一种高效率mems高温薄膜热电偶传感器的制造方法
WO2022082989A1 (zh) 一种透射电镜高分辨原位温差加压芯片及其制备方法
CN109728123B (zh) 基于键合基片的超薄硅pin辐射探测器及制备方法
JP6590961B2 (ja) 接触面の少なくとも一方において、接触面の一方に施与された犠牲層を溶解させながら金属接触面を接合する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202303425

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200811

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948962

Country of ref document: EP

Kind code of ref document: A1