WO2022030470A1 - 室温硬化性樹脂組成物、コーティング剤、接着剤及びシーリング剤、並びに物品 - Google Patents

室温硬化性樹脂組成物、コーティング剤、接着剤及びシーリング剤、並びに物品 Download PDF

Info

Publication number
WO2022030470A1
WO2022030470A1 PCT/JP2021/028719 JP2021028719W WO2022030470A1 WO 2022030470 A1 WO2022030470 A1 WO 2022030470A1 JP 2021028719 W JP2021028719 W JP 2021028719W WO 2022030470 A1 WO2022030470 A1 WO 2022030470A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
parts
room temperature
curable resin
Prior art date
Application number
PCT/JP2021/028719
Other languages
English (en)
French (fr)
Inventor
優大 今坂
大樹 片山
隆文 坂本
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2022541552A priority Critical patent/JPWO2022030470A1/ja
Publication of WO2022030470A1 publication Critical patent/WO2022030470A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers

Definitions

  • a silicon-containing group (hereinafter, also referred to as “reactive silicon-containing group”) that can be crosslinked by forming a siloxane bond, a hydroxyl group bonded to a silicon atom (that is, a silanol group) or a hydrolyzable silyl is present.
  • the present invention relates to a room temperature curable resin composition (room temperature curable organopolysiloxane composition) containing a silicone polymer (organopolysiloxane) having a group at both ends of the molecular chain as a main component. Further, the present invention relates to a coating agent, an adhesive and a sealing agent made of the room temperature curable resin composition, and an article coated, adhered and sealed with a cured product of the room temperature curable resin composition.
  • the polymer having this reactive silicon-containing group has the presence of water or moisture in the atmosphere. It can be used for a room temperature curable composition that is cross-linked and cured at room temperature (23 ° C. ⁇ 15 ° C.) under the conditions.
  • silicone polymers those having a silicon-containing structure (particularly preferably a linear organopolysiloxane structure) in the main chain are generally known as silicone polymers.
  • the room temperature curable (RTV) organopolysiloxane composition using these as the main agent (base silicone polymer) is liquid at room temperature (23 ° C ⁇ 15 ° C), and is cured (crosslinking reaction) to form a silicone rubber elastic body (silicone elastomer). ), And it is widely used in coating agents, adhesives, building sealants, etc. by utilizing the characteristics.
  • RTV resin compositions In these room temperature curable (RTV) resin compositions, a hydrolyzable organosilane compound, a partially hydrolyzed condensate thereof, and the like are used as a cross-linking agent and a stabilizer.
  • a bifunctional hydrolyzable organosilane compound having two hydrolyzable groups in one molecule is called a chain length extender among cross-linking agents, and it is sealed by extending the chain length of the main agent (base silicone polymer). Gives moderate elongation to agents and cured RTV rubber.
  • RTV room temperature curable organopolysiloxane compositions
  • the de-alcohol type which releases alcohol and cures by hydrolysis / condensation reaction during cross-linking, has no unpleasant odor and does not corrode metals. It is preferably used for the purpose (Patent Documents 1 and 2).
  • the de-alcohol type has lower reactivity with water (moisture) in the atmosphere than other conventionally known curing types such as de-acetone type, de-oxime type, and de-aminoxie type. Due to the slow curing rate, there have been no hydrolyzable organosilane compounds that can be used as chain length extenders for silicone polymers (main agents) in industrially practical dealcohol-type room temperature curable (RTV) compositions. There was also no composition containing.
  • the present invention is a room temperature curable resin composition containing a hydrolyzable organosilane compound as a chain length extender, which is rapidly rubberized and exhibits appropriate elongation due to the chain length extension effect, the room temperature curable resin composition. It is an object of the present invention to provide an article which is coated, adhered and sealed with a coating agent, an adhesive and a sealing agent comprising, and a cured product of the room temperature curable resin composition.
  • a room temperature curable resin composition containing a specific organoximethylene group-containing organosilane compound represented by the following formula (1) has the above-mentioned problems. We have found that it is useful for solving the problem, and completed the present invention.
  • the present invention provides the following room temperature curable resin composition (specifically, a coating agent, an adhesive and a sealing agent), an article having a cured product of the composition, and the like.
  • E The room temperature curable resin composition according to [1], which contains 1 to 1,000 parts by mass of a filler.
  • a coating agent comprising the room temperature curable resin composition according to [1] or [2].
  • An adhesive comprising the room temperature curable resin composition according to [1] or [2].
  • a sealing agent comprising the room temperature curable resin composition according to [1] or [2].
  • the room temperature curable resin composition of the present invention cures extremely quickly due to the inclusion of a specific organoximethylene group-containing organosilane compound, and exhibits appropriate elongation in the rubber cured product due to the chain length extending effect. Has the effect of
  • the component (A) used in the present invention is a silanol group (a hydroxyl group bonded to a silicon atom) at both ends of the molecular chain, or an alkoxysilyl group such as a trialkoxysilyl group or a dialkoxyorganosilyl group. It is a silicone polymer (main agent) sealed with a degradable silyl group. As such a silicone polymer, a silicone polymer (organopolysiloxane) is preferable.
  • a linear diorganopolysiloxane having both ends of the molecular chain represented by the following formula (2) or (3) sealed with a silanol group or a hydrolyzable silyl group is used.
  • R 4 is an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms or an unsubstituted or substituted aryl group having 6 to 10 carbon atoms
  • X is an oxygen atom or 2 to 8 carbon atoms. It is a valent hydrocarbon group
  • Y is a hydrolyzable group
  • b is 0 or 1.
  • m is a number such that the viscosity of this diorganopolysiloxane at 23 ° C.
  • the viscosity is a numerical value measured by a rotational viscometer (for example, BL type, BH type, BS type, cone plate type, etc.) (hereinafter, the same applies). Further, the number of repetitions (m) or the degree of polymerization of the diorganosiloxane unit in the diorganopolysiloxane represented by the above formula (2) or (3) is determined by gel permeation chromatography (GPC) analysis using toluene or the like as a developing solvent. It is obtained as a polystyrene-equivalent number average degree of polymerization (or number average molecular weight) or the like.
  • GPC gel permeation chromatography
  • the unsubstituted or substituted alkyl group having 1 to 10 carbon atoms or the unsubstituted or substituted aryl group having 6 to 10 carbon atoms includes a methyl group and an ethyl.
  • Alkyl group such as group, n-propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group; cyclopentyl group, cyclohexyl Cycloalkyl groups such as groups; aryl groups such as phenyl group, trill group, xsilyl group, ⁇ -, ⁇ -naphthyl group; and some or all of the hydrogen atoms of these groups are F, Cl, Br and the like.
  • Examples of groups substituted with a halogen atom, a cyano group, or the like, such as a 3-chloropropyl group, a 3,3,3-trifluoropropyl group, a 2-cyanoethyl group, and the like can be exemplified.
  • an alkyl group such as a methyl group or an ethyl group is preferable, and a methyl group is particularly preferable.
  • Y is a hydrolyzable group, for example, an alkoxy group such as a methoxy group, an ethoxy group or a propoxy group; an alkoxyalkoxy group such as a methoxyethoxy group, an ethoxyethoxy group or a methoxypropoxy group; an acetoxy group.
  • Octanoyloxy group asyloxy group such as benzoyloxy group; alkenyloxy group such as vinyloxy group, allyloxy group, propenyloxy group, isopropenyloxy group, 1-ethyl-2-methylvinyloxy group; dimethylketooxym group, Ketooxym group such as methylethylketooxym group, diethylketoxim group; amino group such as dimethylamino group, diethylamino group, butylamino group, cyclohexylamino group; aminoxy group such as dimethylaminoxy group and diethylaminoxy group; N-methylacetamide group , N-ethylacetamide group, N-methylbenzamide group and other amide groups and the like.
  • an alkoxy group is preferable, and a methoxy group, an ethoxy group and a propoxy group are more preferable.
  • the structure of the linear diorganopolysiloxane represented by the above formula (2) or (3) includes, for example, a diorganopolysiloxane having both ends of the molecular chain blocked by a silanol group and a diorganohydroxysilylethyl group blocking having both ends of the molecular chain.
  • Diorganopolysiloxane diorganohydroxysilylpropyl group-blocked diorganopolysiloxane at both ends of the molecular chain, trialkoxysiloxy group-blocked diorganopolysiloxane at both ends of the molecular chain, dialkanosiloxy group-blocked diorganopolysiloxane at both ends of the molecular chain, Trialkoxysilylethyl group-blocked diorganopolysiloxane at both ends of the molecular chain, trialkoxysilylpropyl group-blocked diorganopolysiloxane at both ends of the molecular chain, dialkoxysilylethyl group-blocked diorganopolysiloxane at both ends of the molecular chain, both ends of the molecular chain Examples thereof include dialkoxyorganosilylpropyl group-blocking diorganopolysiloxane.
  • the silicone polymer in which both ends of the molecular chain of the component (A) are sealed with a silanol group or a hydrolyzable silyl group may be used alone or in combination of two or more having different structures and degrees of polymerization.
  • composition of the present invention has an organoximethylene group such as a methoxymethyl group or an ethoxymethyl group (that is, an organoxy-substituted methyl group or ⁇ -organoxy) on a silicon atom represented by the following formula (1). It contains a bifunctional hydrolyzable organosilane compound having two organoxi groups (eg, methoxy group, ethoxy group, etc.) directly bonded to the same silicon atom as well as containing (group).
  • the organosilane compound containing an organoximethylene group as a component B) has two organoxi groups directly bonded to a silicon atom in the component (B) at both ends of the silicone polymer as a component (A).
  • R 1 , R 2 and R 3 are independently unsubstituted or substituted alkyl groups having 1 to 10 carbon atoms or unsubstituted or substituted aryl groups having 6 to 10 carbon atoms, respectively.
  • R 1 , R 2 and R 3 independently represent an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms or an unsubstituted or substituted aryl group having 6 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms may be linear, cyclic or branched, and specific examples thereof include methyl, ethyl and n-propyl.
  • Alkyl groups examples thereof include cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and isobornyl groups.
  • aryl group having 6 to 10 carbon atoms include phenyl, tolyl, xsilyl, ⁇ -naphthyl, ⁇ -naphthyl group and the like.
  • a part or all of the hydrogen atoms of these groups may be substituted with halogen atoms such as an alkyl group, an aryl group, F, Cl and Br, a cyano group and the like, and among these, R 1 , R As 2 and R 3 , an alkyl group such as a methyl group or an ethyl group and a phenyl group are preferable, and a methyl group is more preferable from the viewpoints of reactivity, availability, productivity and cost.
  • component (B) examples include dimethoxy (methyl) (methoxymethyl) silane, diethoxy (methyl) (methoxymethyl) silane, dimethoxy (methyl) (ethoxymethyl) silane, diethoxy (methyl) (ethoxymethyl) silane, and the like.
  • Dialkoxy (alkyl) (alkoxymethyl) such as dimethoxy (ethyl) (methoxymethyl) silane, diethoxy (ethyl) (methoxymethyl) silane, dimethoxy (ethyl) (ethoxymethyl) silane, diethoxy (ethyl) (ethoxymethyl) silane can be mentioned.
  • the organosilane compound containing an organoximethylene group as a component (B) may be used alone or in combination of two or more.
  • the blending amount of the component (B) is 0.001 to 30 parts by mass, preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the component (A).
  • the component (C) used in the composition of the present invention is a cross-linking agent other than the organoximethylene group-containing organosilane compound of the component (B), and is a hydrolyzable (organo) silane compound and / or its own. Partially hydrolyzed condensates can be used.
  • the component (C) acts as a curing agent (crosslinking agent) that crosslinks and cures the composition of the present invention.
  • component (C) examples include methyltrimethoxysilane, ethyltrimethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, ethyltriexisilane, vinyltriethoxysilane, phenyltriethoxysilane and the like.
  • Ethyltriacetoxysilane Triacyloxysilane such as vinyltriacetoxysilane, tetraethoxysilane, tetramethoxysilane, ethylsilicate, methylsilicate, etc., 3 or 4 hydrolyzable groups in one molecule
  • Hydrolytic (organo) silanes having three, particularly three, and partial hydrolysis condensates of these silanes (residual hydrolyzable groups in one molecule obtained by partially hydrolyzing and condensing the silane compound).
  • Organosiloxane oligomers having at least two, preferably three or more). These can be used alone or in combination of two or more.
  • the component (C) does not have a monovalent hydrocarbon group containing a functional group having a hetero atom in the molecule, and in this respect, carbon funk which is an adhesion promoter of the component (F) described later. It is clearly distinguished from tional silane (silane coupling agent).
  • the blending amount of the component (C) is 0.001 to 30 parts by mass, preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the component (A). If the amount of the component (C) is too small, sufficient curability cannot be obtained, and if it is too large, the curability is too fast, and as a result, sufficient working time cannot be obtained and it may be economically disadvantageous.
  • Component (D) used in the composition of the present invention is a curing catalyst (non-metallic organic catalyst and / or metallic catalyst) and promotes curing of the room temperature curable resin composition of the present invention. To work for.
  • a curing catalyst non-metallic organic catalyst and / or metallic catalyst
  • non-metallic organic catalyst of the curing catalyst known ones as a curing accelerator of the condensation curing type organopolysiloxane composition can be used, and are not particularly limited.
  • phosphazene-containing compounds such as N, N, N', N', N'', N''-hexamethyl-N'''-(trimethylsilylmethyl) -phosphorimidic triamide, n-octylamine, hexylamine.
  • Amine compounds such as dodecylamine phosphate, tetramethylguanidine or salts thereof, quaternary ammonium salts such as benzyltriethylammonium acetate, dialkylhydroxylamines such as dimethylhydroxylamine and diethylhydroxylamine, tetramethylguanidylpropyltrimethoxy.
  • Examples thereof include hydrolyzable silanes and siloxanes containing a guanidyl group such as silane, tetramethylguanidylpropylmethyldimethoxysilane, tetramethylguanidylpropyltris (trimethylsiloxy) silane, and non-metal organic catalysts. Not limited to these. Further, the non-metal organic catalyst may be used alone or in combination of two or more.
  • alkyl tin ester compounds such as dibutyl tin diacetate, dibutyl tin dilaurate, dibutyl tin dioctate, dioctyl tin dineodecanoate, di-n-butyl-dimethoxytin, tetraisopropoxytitanium, tetra-n-butoxytitanium, tetrakis.
  • Titanium ester or titanium chelate compound such as titanium, dipropoxybis (acetylacetonato) titanium, titanium isopropoxyoctylene glycol, zinc naphthenate, zinc stearate, zinc-2-ethyloctate, iron Alcolate aluminum compounds such as -2-ethylhexoate, cobalt-2-ethylhexoate, manganese-2-ethylhexoate, cobalt naphthenate, aluminum isopropylate, aluminum secondary butyrate, aluminum alkylacetate di
  • Aluminum chelate compounds such as isopropylate, aluminum bisethylacetate acetate and monoacetylacetonate, and organic metals such as bismuth neodecanoate (III), bismuth 2-ethylhexanoate (III), bismuth citrate (III), and bismuth octylate.
  • Examples thereof include lower fatty acid salts of alkali metals such as compounds, potassium acetate, sodium acetate and lithium oxalate, but the metal-based catalyst is not limited thereto. Further, the metal-based catalyst may be used alone or in combination of two or more.
  • the blending amount of the curing catalyst of the component (D) is 0.001 to 20 parts by mass, preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the component (A). If the amount of the component (D) is too small, it will not be sufficiently cured, and if it is too large, the curing will be too fast, and as a result, sufficient working time may not be obtained and it may be economically disadvantageous.
  • Component (E) is a filler (inorganic filler and / or organic resin filler), which is an optional component that can be blended into the composition of the present invention as needed, and is formed from this composition. Used to give the cured product sufficient mechanical strength.
  • Known fillers can be used, for example, fine powder silica, fumigant silica, precipitated silica, silica whose surface is hydrophobized with an organic silicon compound, glass beads, glass balloons, and the like.
  • fillers such as bentonite, asbestos, glass fiber, carbon fiber, calcium carbonate, heavy calcium carbonate, magnesium carbonate, metal carbonate such as zinc carbonate, glass wool, fine powder mica, molten silica powder, polystyrene, polyvinyl chloride, Synthetic resin powder such as polypropylene is used.
  • inorganic fillers such as silica, calcium carbonate, and zeolite are preferable, and aerosol silica and calcium carbonate whose surface is hydrophobized are particularly preferable.
  • the blending amount of the filler of the component (E) may be 0 to 1,000 parts by mass, particularly 1 to 1,000 parts by mass, and particularly 1 to 400 parts by mass with respect to 100 parts by mass of the component (A). preferable.
  • the cured product obtained from this composition tends to exhibit sufficient mechanical strength when it is blended than when it is not blended, and when it is used in a larger amount than 1,000 parts by mass, the viscosity of the composition increases. Not only does the workability deteriorate, but also the rubber strength after curing tends to decrease, making it difficult to obtain rubber elasticity.
  • Component (F) is an adhesion promoter (carbon functional silane (silane coupling agent)), which is an optional component that can be blended into the composition of the present invention as needed, and is formed from this composition. It is used to give sufficient adhesion to the cured product. Specifically, aminosilanes such as ⁇ -aminopropyltriethoxysilane and 3-2- (aminoethylamino) propyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl).
  • adhesion promoter carbon functional silane (silane coupling agent)
  • aminosilanes such as ⁇ -aminopropyltriethoxysilane and 3-2- (aminoethylamino) propyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclo
  • Epoxysilanes such as ethyltrimethoxysilane, (meth) acrylic silanes such as ⁇ - (meth) acryloxypropyltrimethoxysilane, ⁇ - (meth) acryloxypropyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane 1 containing functional groups having heteroatoms such as nitrogen atom, oxygen atom, sulfur atom, etc., such as mercaptosilanes such as mercaptosilanes and isocyanate silanes such as ⁇ -isocyanoxide propyltrimethoxysilane 1 It is preferable to add a hydrolyzable organosilane compound (so-called carbon functional silane or a silane coupling agent) having a valent hydrocarbon group in the molecule.
  • a hydrolyzable organosilane compound so-called carbon functional silane or a silane coupling agent
  • the component (F) has a monovalent hydrocarbon group containing a functional group having a heteroatom in the molecule, and in this respect, the hydrolyzable (organo) silane compound of the component (C) described above. And / or its partial hydrolysis condensates are clearly distinguished.
  • the blending amount of the adhesion promoter of the component (F) is preferably 0 to 30 parts by mass, particularly 0.1 to 30 parts by mass, and particularly preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the component (A). If it exceeds 30 parts by mass, the curability may be insufficient or it may be economically disadvantageous.
  • Component (G) is a plasticizer, which is an optional component that can be blended into the composition of the present invention as needed, and impairs the mechanical properties and flame retardancy of the cured product formed from this composition. It is possible to adjust the viscosity so that it is easy to handle in construction.
  • DMP dimethyl phthalate
  • DEP diethyl phthalate
  • DBP di-n-butyl phthalate
  • DHP diheptyl phthalate
  • phthalic acid phthalic acid
  • Dioctyl DOP
  • Diisononyl phthalate DINP
  • Diisodecyl phthalate DIDP
  • Ditridecyl phthalate DTDP
  • Butyl benzyl phthalate BBP
  • Dicyclohexyl phthalate DCHP
  • Tetrahydrophthalate ester Dioctyl adipate (DIDP) DOA
  • diisononyl adipate DINA
  • diisodecyl adipate DIDA
  • bis (2-ethylhexyl) azelaite DOZ
  • dibutyl sebacate DOS
  • Dibutyl maleate DBM
  • Di-2-ethylhexyl maleate DOM
  • Dibutyl fumarate DF
  • Tricresyl Tricresyl
  • ком ⁇ онент include trimellitic acid-based plasticizers, polyester-based plasticizers, chlorinated paraffin, stearic acid.
  • a silicone oil non-functional organopolysiloxane
  • dimethylpolysiloxane a petroleum-based high boiling point solvent
  • silicone oil is particularly preferable.
  • an organopolysiloxane represented by the following formula (4) (diorganopolysiloxane having a triorganosiloxy group-sealed molecular chain at both ends).
  • R 5 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms and which does not contain an aliphatic unsaturated bond, and n is 23 ° C. of the organopolysiloxane. Is a number having a viscosity of 1.5 to 1,000,000 mPa ⁇ s.
  • R 5 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms and containing no aliphatic unsaturated bond, and specifically, it is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • Alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group, etc.
  • Aryl groups such as phenyl group, trill group, xylyl group and naphthyl group, aralkyl groups such as benzyl group, phenylethyl group and phenylpropyl group, and some or all of the hydrogen atoms of these groups are F, Cl, Br. Examples thereof include those substituted with a halogen atom such as chloromethyl group, chloropropyl group, bromoethyl group, trifluoropropyl group and the like.
  • n indicating the number of repetitions (degree of polymerization) of the diorganosiloxane unit is 3 to 3,000, preferably 5 to 2,000. It may be preferably an integer of about 10 to 1,000.
  • the blending amount of the component (G) is preferably 0 to 1,000 parts by mass, more preferably 1 to 1,000 parts by mass, and further preferably 1 to 200 parts by mass with respect to 100 parts by mass of the component (A). It is a department. When the amount of the component (G) is within the above range, the viscosity can be adjusted to be easy to handle in construction without impairing the mechanical properties and flame retardancy of the composition of the present invention, which is preferable.
  • composition of the present invention contains, as necessary, known additives such as pigments, dyes, antioxidants, antioxidants, antistatic agents, antimony oxide, and flame retardants such as chlorinated paraffin. can do. Further, a polyether, an antifungal agent, and an antibacterial agent as a thixophilic improver can be blended.
  • composition of the present invention may use an organic solvent if necessary.
  • organic solvent include aliphatic hydrocarbon compounds such as n-hexane, n-heptane, isooctane, and isododecane, aromatic hydrocarbon compounds such as toluene and xylene, hexamethyldisiloxane, octamethyltrisiloxane, and decamethyltetra.
  • Siloxane dodecamethylpentasiloxane
  • chain siloxane such as 2- (trimethylsiloxy) -1,1,1,2,3,3,3-heptamethyltrisiloxane, octamethylcyclopentasiloxane, decamethylcyclopentasiloxane, etc. Cyclic siloxane and the like.
  • the amount of the organic solvent may be appropriately adjusted within a range that does not interfere with the effect of the present invention.
  • composition of the present invention can be used as a one-component type composition, a two-component type or more multi-component type composition, or the like.
  • the composition of the present invention can be obtained by uniformly mixing each of the above components and a predetermined amount of the above various additives with the above components in a dry atmosphere. Further, the composition of the present invention is cured by being left at room temperature, and known methods and conditions according to the type of the composition can be adopted as the molding method, curing conditions and the like.
  • composition of the present invention is stored at room temperature (23 ° C.) in the absence of water (humidity), that is, in a closed container in which moisture is shielded, and exposed to water in the air during use. It cures easily at ⁇ 15 ° C.).
  • Two-component or higher multi-component compositions are stored in the absence of water, that is, in a closed container that is shielded from moisture, and multiple compositions that are individually stored for use are separated from each other by the presence of water in the air. By mixing underneath, it is easily cured at room temperature (23 ° C ⁇ 15 ° C).
  • the cured product (silicone rubber cured product) of the composition of the present invention exhibits good flexibility and has rubber elasticity, so that it is useful as a coating agent, an adhesive, a sealing agent (for example, a building sealant, etc.).
  • a coating agent for example, a building sealant, etc.
  • the method of using the composition of the present invention as a coating agent, an adhesive, and a sealing agent may be in accordance with conventionally known methods of use, and is not particularly limited.
  • Examples of the article having a coating layer made of a cured product of the composition of the present invention include articles made of glass, various resins, various metals and the like, but the material and shape of the base material are described. Not particularly limited.
  • Examples of the article bonded and / or sealed with the cured product of the composition of the present invention include articles composed of glass, various metals and the like, but the material and shape of the base material are particularly limited. Not done.
  • part means “part by mass”
  • viscosity indicates a value measured by a rotational viscometer at 23 ° C.
  • Example 1-1 100 parts by mass of dimethylpolysiloxane in which both ends of the molecular chain having a viscosity of 5,000 mPa ⁇ s are sealed with hydroxyl groups (silanol groups), 1.0 part by mass of n-octylamine, and 0.6 parts by mass of dioctyltinneodecanoate. , 1.5 parts by mass of dimethoxy (methyl) (methoxymethyl) silane and 0.3 part by mass of vinyltrimethoxysilane were added and mixed uniformly under moisture insulation to obtain Composition 1.
  • Example 1-2 Composition 2 was obtained in the same manner as in Example 1-1 except that 1.0 part by mass of tetramethylguanidine was used instead of 1.0 part by mass of n-octylamine.
  • Composition 3 was obtained in the same manner as in Example 1-1 except that 1.5 parts by mass of dimethoxy (methyl) (methoxymethyl) silane was not added.
  • Composition 4 was obtained in the same manner as in Example 1-2 except that 1.2 parts by mass of dimethyldimethoxysilane was added instead of 1.5 parts by mass of dimethoxy (methyl) (methoxymethyl) silane.
  • Example 2-1 Surface-treated calcium carbonate (trade name; Viscoexcel 30K, manufactured by Shiraishi Kogyo Co., Ltd.) 80 parts by mass in 100 parts by mass of dimethylpolysiloxane in which both ends of the molecular chain having a viscosity of 5,000 mPa ⁇ s are sealed with a hydroxyl group (silanol group).
  • Heavy calcium carbonate (trade name; Super S, manufactured by Maruo Calcium Co., Ltd.) 60 parts by mass was dispersed and mixed until uniform, and then 5.0 parts by mass of tetramethylguanidylpropyltrimethoxysilane, dioctylsuzuji.
  • composition 5 3.0 parts by mass of neodecanoate, 1.5 parts by mass of dimethoxy (methyl) (methoxymethyl) silane, and 0.3 parts by mass of vinyltrimethoxysilane and mix thoroughly under reduced pressure to obtain composition 5. rice field.
  • Example 3-1 Further, the composition 6 was obtained in the same manner as in Example 1-1 except that 1.0 part by mass of 3- (2-aminoethylamino) propyltrimethoxysilane was blended as an adhesion accelerator.
  • Example 3-2 The composition was the same as in Example 3-1 except that 1.0 part by mass of 3-aminopropyltrimethoxysilane was added instead of 1.0 part by mass of 3- (2-aminoethylamino) propyltrimethoxysilane. I got 7.
  • Example 4-1 Further, the composition 8 was obtained in the same manner as in Example 1-1 except that 10 parts by mass of dimethylpolysiloxane, which was a trimethylsiloxy group-sealed dimethylpolysiloxane having a viscosity of 100 mPa ⁇ s at both ends of the molecular chain, was blended as a plasticizer.
  • dimethylpolysiloxane which was a trimethylsiloxy group-sealed dimethylpolysiloxane having a viscosity of 100 mPa ⁇ s at both ends of the molecular chain
  • Example 4-2 Further, the composition 9 was obtained in the same manner as in Example 1-1 except that 20 parts by mass of dimethylpolysiloxane, which was a trimethylsiloxy group-sealed dimethylpolysiloxane having a viscosity of 100 mPa ⁇ s at both ends of the molecular chain, was blended as a plasticizer.
  • dimethylpolysiloxane which was a trimethylsiloxy group-sealed dimethylpolysiloxane having a viscosity of 100 mPa ⁇ s at both ends of the molecular chain
  • composition 11 was obtained in the same manner as in Example 2-1 except that 1.2 parts by mass of dimethyldimethoxysilane was used instead of 1.5 parts by mass of dimethoxy (methyl) (methoxymethyl) silane.
  • composition 12 was obtained in the same manner as in Example 3-1 except that 1.2 parts by mass of dimethyldimethoxysilane was added instead of 1.5 parts by mass of dimethoxy (methyl) (methoxymethyl) silane.
  • composition 13 was obtained in the same manner as in Example 3-2 except that 1.2 parts by mass of dimethyldimethoxysilane was added instead of 1.5 parts by mass of dimethoxy (methyl) (methoxymethyl) silane.
  • composition 14 was obtained in the same manner as in Example 4-1 except that 1.2 parts by mass of dimethyldimethoxysilane was added instead of 1.5 parts by mass of dimethoxy (methyl) (methoxymethyl) silane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

速やかにゴム化し、鎖長延長効果により適度な伸びを発現する加水分解性オルガノシラン化合物を鎖長延長剤として含有する室温硬化性樹脂組成物の提供。 (A)分子鎖両末端がシラノール基又は加水分解性シリル基で封鎖されたシリコーンポリマー:100質量部、 (B)下記の式(1)で表されるオルガノキシメチレン基含有オルガノシラン化合物:0.001~30質量部、(式中、R1、R2及びR3は、それぞれ独立して非置換もしくは置換の炭素原子数1~10のアルキル基又は非置換もしくは置換の炭素原子数6~10のアリール基である。) (C)(B)成分以外の架橋剤:0.001~30質量部、及び (D)硬化触媒:0.001~20質量部 を含有するものである室温硬化性樹脂組成物。

Description

室温硬化性樹脂組成物、コーティング剤、接着剤及びシーリング剤、並びに物品
 本発明は、シロキサン結合を形成することにより架橋し得るケイ素含有基(以下、「反応性ケイ素含有基」とも称す。)として、ケイ素原子に結合した水酸基(即ち、シラノール基)又は加水分解性シリル基を分子鎖両末端に有するシリコーンポリマー(オルガノポリシロキサン)を主剤として含有する室温硬化性樹脂組成物(室温硬化性オルガノポリシロキサン組成物)に関するものである。また、該室温硬化性樹脂組成物からなるコーティング剤、接着剤及びシーリング剤、並びに該室温硬化性樹脂組成物の硬化物でコーティング、接着及びシールの少なくともいずれかを施した物品に関する。
 反応性ケイ素含有基、特に加水分解性シリル基は、水在下にて加水分解縮合する性質を有していることから、この反応性ケイ素含有基を有するポリマーは、大気中の水又は湿気の存在下で室温(23℃±15℃)において架橋硬化する室温硬化性組成物に用いることができる。
 これらのポリマーの中でも、その主鎖がケイ素含有構造(特に、好ましくは直鎖状のオルガノポリシロキサン構造)であるものは、一般的にシリコーンポリマーとして知られている。これらを主剤(ベースシリコーンポリマー)として用いた室温硬化性(RTV)オルガノポリシロキサン組成物は、室温(23℃±15℃)では液状であり、硬化(架橋反応)によりシリコーンゴム弾性体(シリコーンエラストマー)となる特徴を有しており、その特徴を利用してコーティング剤、接着剤、建築用シーリング剤等に広く用いられている。これらの室温硬化性(RTV)樹脂組成物には、架橋剤及び安定化剤として、加水分解性オルガノシラン化合物やその部分加水分解縮合物等が使用されている。特に1分子中に二つの加水分解性基をもつ2官能性の加水分解性オルガノシラン化合物は架橋剤の中でも鎖長延長剤と呼ばれ、主剤(ベースシリコーンポリマー)の鎖長を伸ばすことでシーリング剤やRTVゴム硬化物に適度な伸びを与える。
 室温硬化性(RTV)オルガノポリシロキサン組成物は、種々のタイプのものが公知である。とりわけ架橋時の加水分解・縮合反応によりアルコールを放出して硬化する脱アルコールタイプのものは不快臭がない、金属類を腐食しないという特徴により、電気・電子機器等のシーリング用、接着用、コーティング用に好んで使用されている(特許文献1及び2)。
特開2003-147203号公報 特許第5997778号公報
 しかしながら、脱アルコールタイプのものは従来公知の他の硬化タイプである脱アセトンタイプ、脱オキシムタイプ、脱アミノキシタイプ等のものと比較すると、大気中の水(湿気)との反応性が低く、硬化速度が遅いことから、これまで工業的に実用可能な脱アルコールタイプの室温硬化性(RTV)組成物においてシリコーンポリマー(主剤)の鎖長延長剤となる加水分解性オルガノシラン化合物はなく、それらを含む組成物もなかった。
 したがって、本発明は、速やかにゴム化し、鎖長延長効果により適度な伸びを発現する加水分解性オルガノシラン化合物を鎖長延長剤として含有する室温硬化性樹脂組成物、該室温硬化性樹脂組成物からなるコーティング剤、接着剤及びシーリング剤、並びに該室温硬化性樹脂組成物の硬化物でコーティング、接着及びシールの少なくともいずれかを施した物品を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意研究した結果、下記式(1)で表される特定のオルガノキシメチレン基含有オルガノシラン化合物を含む室温硬化性樹脂組成物が上述した課題の解決に有用であることを見出し、本発明を完成した。
 即ち、本発明は、下記の室温硬化性樹脂組成物(具体的には、コーティング剤、接着剤及びシーリング剤)、並びに該組成物の硬化物を有する物品等を提供するものである。
[1]
(A)分子鎖両末端がシラノール基又は加水分解性シリル基で封鎖されたシリコーンポリマー:100質量部、
(B)下記の式(1)で表されるオルガノキシメチレン基含有オルガノシラン化合物:0.001~30質量部、
Figure JPOXMLDOC01-appb-C000002
(式中、R1、R2及びR3は、それぞれ独立して非置換もしくは置換の炭素原子数1~10のアルキル基又は非置換もしくは置換の炭素原子数6~10のアリール基である。)
(C)(B)成分以外の架橋剤:0.001~30質量部、及び
(D)硬化触媒:0.001~20質量部
を含有するものである室温硬化性樹脂組成物。

[2]
 更に、(A)成分100質量部に対して、
(E)充填剤:1~1,000質量部
を含有するものである[1]に記載の室温硬化性樹脂組成物。

[3]
 [1]又は[2]に記載の室温硬化性樹脂組成物からなるコーティング剤。

[4]
 [1]又は[2]に記載の室温硬化性樹脂組成物からなる接着剤。

[5]
 [1]又は[2]に記載の室温硬化性樹脂組成物からなるシーリング剤。

[6]
 [1]又は[2]に記載の室温硬化性樹脂組成物の硬化物からなる被覆層を有する物品。

[7]
 [1]又は[2]に記載の室温硬化性樹脂組成物の硬化物で接着及び/又はシールされた物品。
 本発明の室温硬化性樹脂組成物は、特定のオルガノキシメチレン基含有オルガノシラン化合物が配合されていることにより、極めて速やかに硬化し、鎖長延長効果により、ゴム硬化物に適度な伸びを発現するという効果を有する。
 以下、本発明につき更に詳しく説明する。
(A)成分
 本発明に用いられる(A)成分は、分子鎖両末端がシラノール基(ケイ素原子に結合した水酸基)又は、トリアルコキシシリル基やジアルコキシオルガノシリル基などのアルコキシシリル基等の加水分解性シリル基で封鎖されたシリコーンポリマー(主剤)である。このようなシリコーンポリマーとしては、シリコーンポリマー(オルガノポリシロキサン)が好ましい。
 シリコーンポリマーとして、具体的には、下記式(2)又は(3)で表される分子鎖両末端がシラノール基又は加水分解性シリル基で封鎖された直鎖状ジオルガノポリシロキサンが用いられる。
Figure JPOXMLDOC01-appb-C000003
(式中R4は非置換もしくは置換の炭素原子数1~10のアルキル基又は非置換もしくは置換の炭素原子数6~10のアリール基であり、Xは酸素原子又は炭素数1~8の二価炭化水素基であり、Yは加水分解性基であり、bは0又は1である。mはこのジオルガノポリシロキサンの23℃における粘度が100~1,000,000mPa・sとなる数であり、平均値として30~2,000、好ましくは50~1,200、より好ましくは100~800程度の数である。)

 なお、粘度は回転粘度計(例えば、BL型、BH型、BS型、コーンプレート型等)による数値である(以下、同じ。)。また、上記式(2)又は(3)で示されるジオルガノポリシロキサン中におけるジオルガノシロキサン単位の繰り返し数(m)又は重合度は、トルエン等を展開溶媒としてゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めたものである。
 上記式(2)及び(3)において、R4の非置換もしくは置換の炭素原子数1~10のアルキル基又は非置換もしくは置換の炭素原子数6~10のアリール基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基等のアリール基;また、これらの基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等を例示することができる。これらの中でも、メチル基、エチル基等のアルキル基が好ましく、メチル基が特に好ましい。
 上記式(2)及び(3)において、Xは酸素原子又は炭素数1~8の二価炭化水素基であり、-(CH2CH2q-、又は-(CH=CH)q-(qは1~4を表す)であることが好ましい。これらの中でも特に酸素原子、-CH2CH2-、又は-CH=CH-が好ましい。
 上記式(3)において、Yは加水分解性基であり、例えば、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基;メトキシエトキシ基、エトキシエトキシ基、メトキシプロポキシ基等のアルコキシアルコキシ基;アセトキシ基、オクタノイルオキシ基、ベンゾイルオキシ基等のアシロキシ基;ビニロキシ基、アリルオキシ基、プロペニルオキシ基、イソプロペニルオキシ基、1-エチル-2-メチルビニルオキシ基等のアルケニルオキシ基;ジメチルケトオキシム基、メチルエチルケトオキシム基、ジエチルケトオキシム基等のケトオキシム基;ジメチルアミノ基、ジエチルアミノ基、ブチルアミノ基、シクロヘキシルアミノ基等のアミノ基;ジメチルアミノキシ基、ジエチルアミノキシ基等のアミノキシ基;N-メチルアセトアミド基、N-エチルアセトアミド基、N-メチルベンズアミド基等のアミド基等が挙げられる。この中でも、アルコキシ基が好ましく、特には、メトキシ基、エトキシ基及びプロポキシ基がより好ましい。
 上記式(2)又は(3)で表される直鎖状ジオルガノポリシロキサンの構造としては、例えば、分子鎖両末端シラノール基封鎖ジオルガノポリシロキサン、分子鎖両末端ジオルガノヒドロキシシリルエチル基封鎖ジオルガノポリシロキサン、分子鎖両末端ジオルガノヒドロキシシリルプロピル基封鎖ジオルガノポリシロキサン、分子鎖両末端トリアルコキシシロキシ基封鎖ジオルガノポリシロキサン、分子鎖両末端ジアルコキシオルガノシロキシ基封鎖ジオルガノポリシロキサン、分子鎖両末端トリアルコキシシリルエチル基封鎖ジオルガノポリシロキサン、分子鎖両末端トリアルコキシシリルプロピル基封鎖ジオルガノポリシロキサン、分子鎖両末端ジアルコキシオルガノシリルエチル基封鎖ジオルガノポリシロキサン、分子鎖両末端ジアルコキシオルガノシリルプロピル基封鎖ジオルガノポリシロキサン等が挙げられる。
 (A)成分の分子鎖両末端がシラノール基又は加水分解性シリル基で封鎖されたシリコーンポリマーは、1種単独でも構造や重合度の異なる2種以上を組み合わせても使用してもよい。
(B)成分
 本発明の組成物は、下記式(1)で表される、ケイ素原子上にメトキシメチル基、エトキシメチル基等のオルガノキシメチレン基(即ち、オルガノキシ置換メチル基、又はα-オルガノキシ基)を含有すると共に、同一のケイ素原子上に直接結合した2個のオルガノキシ基(例えば、メトキシ基、エトキシ基等)を有する2官能性の加水分解性オルガノシラン化合物を含むものであり、(B)成分のオルガノキシメチレン基含有オルガノシラン化合物は、本発明の組成物中において、(B)成分中のケイ素原子に直接結合した2個のオルガノキシ基が(A)成分のシリコーンポリマーの両末端に存在するシラノール基又は加水分解性シリル基と縮合反応してSi-O-Si結合(シロキサン結合)を形成することによって(A)成分のシリコーンポリマーの鎖長を延長する鎖長延長剤として作用するものである。
Figure JPOXMLDOC01-appb-C000004
(式中、R1、R2及びR3は、それぞれ独立して非置換もしくは置換の炭素原子数1~10のアルキル基又は非置換もしくは置換の炭素原子数6~10のアリール基である。)
 式中、R1、R2及びR3は、それぞれ独立して非置換もしくは置換の炭素原子数1~10のアルキル基又は非置換もしくは置換の炭素原子数6~10のアリール基を表す。上記R1、R2及びR3において、炭素原子数1~10のアルキル基としては、直鎖状、環状、分枝状のいずれでもよく、その具体例としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、t-ブチル、n-ペンチル、ネオペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル基等の直鎖又は分岐鎖アルキル基;シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、イソボルニル基等のシクロアルキル基が挙げられる。また、炭素原子数6~10のアリール基の具体例としては、フェニル、トリル、キシリル、α-ナフチル、β-ナフチル基等が挙げられる。なお、これらの基の水素原子の一部又は全部は、アルキル基、アリール基、F、Cl、Br等のハロゲン原子やシアノ基等で置換されていてもよく、これらの中でも、R1、R2及びR3としては、メチル基、エチル基等のアルキル基、フェニル基が好ましく、反応性や入手の容易さ、生産性、コストの面からメチル基がより好ましい。
 (B)成分の具体例としては、ジメトキシ(メチル)(メトキシメチル)シラン、ジエトキシ(メチル)(メトキシメチル)シラン、ジメトキシ(メチル)(エトキシメチル)シラン、ジエトキシ(メチル)(エトキシメチル)シラン、ジメトキシ(エチル)(メトキシメチル)シラン、ジエトキシ(エチル)(メトキシメチル)シラン、ジメトキシ(エチル)(エトキシメチル)シラン、ジエトキシ(エチル)(エトキシメチル)シラン等のジアルコキシ(アルキル)(アルコキシメチル)シランが挙げられる。
 (B)成分のオルガノキシメチレン基含有オルガノシラン化合物は1種単独で使用してもよく、2種以上を併用してもよい。
 (B)成分の配合量は、(A)成分100質量部に対して0.001~30質量部、好ましくは0.01~20質量部である。
(C)成分
 本発明の組成物で用いられる(C)成分は、(B)成分のオルガノキシメチレン基含有オルガノシラン化合物以外の架橋剤であり、加水分解性(オルガノ)シラン化合物及び/又はその部分加水分解縮合物を使用することができる。(C)成分は本発明の組成物を架橋、硬化する硬化剤(架橋剤)として作用する。
 (C)成分の具体例としては、メチルトリメトキシシラン、エチルトリメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエキシシラン、ビニルトリエトキシシラン、フェニルトリエトキシシラン等のトリアルコキシシラン、メチルトリイソプロペノキシシラン、エチルトリイソプロペノキシシラン、ビニルトリイソプロペノキシシラン、フェニルトリイソプロペノキシシランなどのトリイソプロペノキシシラン等のトリアルケニルオキシシラン、メチルトリアセトキシシラン、エチルトリアセトキシシラン、ビニルトリアセトキシシランなどのトリアセトキシシラン等のトリアシルオキシシラン、テトラエトキシシラン、テトラメトキシシラン、エチルシリケート、メチルシリケートなどの、1分子中に加水分解性基を3個又は4個、特には3個有する加水分解性(オルガノ)シランやこれらのシランの部分加水分解縮合物(該シラン化合物を部分的に加水分解・縮合して得られる、1分子中に残存加水分解性基を少なくとも2個、好ましくは3個以上有するオルガノシロキサンオリゴマー)が挙げられる。これらは1種単独でも2種以上組み合わせても使用することができる。
 なお、(C)成分は、ヘテロ原子を有する官能性基を含有する1価炭化水素基を分子中に有しないものであり、この点において後述する(F)成分の接着促進剤であるカーボンファンクショナルシラン(シランカップリング剤)とは明確に区別される。
 (C)成分の配合量は、上記(A)成分100質量部に対して0.001~30質量部であり、0.01~10質量部が好ましい。(C)成分の配合量が少なすぎると十分な硬化性が得られず、多すぎると硬化性が速すぎる結果、十分な作業時間が得られず、また経済的に不利となる場合がある。
(D)成分
 本発明の組成物で用いられる(D)成分は、硬化触媒(非金属系有機触媒及び/又は金属系触媒)であり、本発明の室温硬化性樹脂組成物の硬化を促進するために作用する。
 該硬化触媒の非金属系有機触媒としては、縮合硬化型オルガノポリシロキサン組成物の硬化促進剤として公知のものを使用することができ、特に制限されるものではない。例えば、N,N,N’,N’,N’’,N’’-ヘキサメチル-N’’’-(トリメチルシリルメチル)-ホスホリミディックトリアミド等のホスファゼン含有化合物、n-オクチルアミン、ヘキシルアミン、リン酸ドデシルアミン、テトラメチルグアニジン等のアミン化合物又はその塩、ベンジルトリエチルアンモニウムアセテート等の第4級アンモニウム塩、ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン、テトラメチルグアニジルプロピルトリメトキシシラン、テトラメチルグアニジルプロピルメチルジメトキシシラン、テトラメチルグアニジルプロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有する加水分解性シラン及びシロキサン等が例示されるが、非金属系有機触媒はこれらに限定されない。また、非金属系有機触媒は1種単独でも2種以上を混合して使用してもよい。
 該硬化触媒の金属系触媒としては、縮合硬化型オルガノポリシロキサンの硬化促進剤として公知のものを使用することができ、特に制限されるものではない。例えば、ジブチルスズジアセテート、ジブチルスズジラウレート、ジブチルスズジオクトエート、ジオクチルスズジネオデカノエート、ジ-n-ブチル-ジメトキシスズ等のアルキルスズエステル化合物、テトライソプロポキシチタン、テトラ-n-ブトキシチタン、テトラキス(2-エチルヘキソキシ)チタン、ジプロポキシビス(アセチルアセトナト)チタン、チタニウムイソプロポキシオクチレングリコール等のチタン酸エステル又はチタンキレート化合物、ナフテン酸亜鉛、ステアリン酸亜鉛、亜鉛-2-エチルオクトエート、鉄-2-エチルヘキソエート、コバルト-2-エチルヘキソエート、マンガン-2-エチルヘキソエート、ナフテン酸コバルト、アルミニウムイソプロピレート、アルミニウムセカンダリーブチレートなどのアルコレートアルミニウム化合物、アルミニウムアルキルアセテート・ジイソプロピレート、アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート等のアルミニウムキレート化合物、ネオデカン酸ビスマス(III)、2-エチルヘキサン酸ビスマス(III)、クエン酸ビスマス(III)、オクチル酸ビスマス等の有機金属化合物、酢酸カリウム、酢酸ナトリウム、シュウ酸リチウム等のアルカリ金属の低級脂肪酸塩が例示されるが、金属系触媒はこれらに限定されない。また、金属系触媒は、1種類単独でも2種類以上を混合して使用してもよい。
 (D)成分の硬化触媒の配合量は、上記(A)成分100質量部に対して0.001~20質量部であり、0.01~10質量部が好ましい。(D)成分の配合量が少なすぎると十分に硬化せず、多すぎると硬化が速すぎる結果、十分な作業時間が得られず、また経済的に不利となる場合がある。
(E)成分
 (E)成分は充填剤(無機質充填剤及び/又は有機樹脂充填剤)であり、本発明の組成物に必要に応じて配合できる任意成分であり、この組成物から形成される硬化物に十分な機械的強度を与えるために使用される。この充填剤としては公知のものを使用することができ、例えば、微粉末シリカ、煙霧質シリカ、沈降性シリカ、これらのシリカ表面を有機ケイ素化合物で疎水化処理したシリカ、ガラスビーズ、ガラスバルーン、透明樹脂ビーズ、シリカエアロゲル、珪藻土、酸化鉄、酸化亜鉛、酸化チタン、煙霧状金属酸化物などの金属酸化物、湿式シリカあるいはこれらの表面をシラン処理したもの、石英粉末、カーボンブラック、タルク、ゼオライト及びベントナイト等の補強剤、アスベスト、ガラス繊維、炭素繊維、炭酸カルシウム、重質炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛などの金属炭酸塩、ガラスウール、微粉マイカ、溶融シリカ粉末、ポリスチレン、ポリ塩化ビニル、ポリプロピレンなどの合成樹脂粉末等が使用される。これらの充填剤のうち、シリカ、炭酸カルシウム、ゼオライトなどの無機質充填剤が好ましく、特に表面を疎水化処理した煙霧質シリカ、炭酸カルシウムが好ましい。
 (E)成分の充填剤の配合量は、前記(A)成分100質量部に対して0~1,000質量部、特に1~1,000質量部、とりわけ1~400質量部とすることが好ましい。未配合の場合より配合した方が、この組成物から得られる硬化物が十分な機械的強度を示す傾向があり、また1,000質量部よりも多量に使用すると、組成物の粘度が増大して作業性が悪くなるばかりでなく、硬化後のゴム強度が低下してゴム弾性が得難くなる傾向がある。
(F)成分
 (F)成分は接着促進剤(カーボンファンクショナルシラン(シランカップリング剤))であり、本発明の組成物に必要に応じて配合できる任意成分であり、この組成物から形成される硬化物に十分な接着性を与えるために使用される。具体的には、γ-アミノプロピルトリエトキシシラン、3-2-(アミノエチルアミノ)プロピルトリメトキシシラン等のアミノシラン類、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン類、γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-(メタ)アクリロキシプロピルトリエトキシシラン等の(メタ)アクリルシラン類、γ-メルカプトプロピルトリメトキシシラン等のメルカプトシラン類、γ-イソシアネートプロピルトリメトキシシラン等のイソシアネートシラン類などの、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有する官能性基(但し、グアニジル基を除く)を含有する1価炭化水素基を分子中に有する加水分解性オルガノシラン化合物(いわゆるカーボンファンクショナルシラン、又はシランカップリング剤)等を配合することが好ましい。
 なお、(F)成分は、ヘテロ原子を有する官能性基を含有する1価炭化水素基を分子中に有するものであり、この点において前述の(C)成分の加水分解性(オルガノ)シラン化合物及び/又はその部分加水分解縮合物とは明確に区別される。
 (F)成分の接着促進剤の配合量は、前記(A)成分100質量部に対して0~30質量部、特に0.1~30質量部、とりわけ0.1~20質量部が好ましい。30質量部を超えると硬化性が不十分になったり、経済的に不利となる場合がある。
(G)成分
 (G)成分は可塑剤であり、本発明の組成物に必要に応じて配合できる任意成分であり、この組成物から形成される硬化物の機械特性や難燃性を損なうことなく、施工上取り扱い易い粘度に調整することができる。
 本発明の組成物に使用される可塑剤としては、例えば、フタル酸ジメチル(DMP)、フタル酸ジエチル(DEP)、フタル酸ジ-n-ブチル(DBP)、フタル酸ジヘプチル(DHP)、フタル酸ジオクチル(DOP)、フタル酸ジイソノニル(DINP)、フタル酸ジイソデシル(DIDP)、フタル酸ジトリデシル(DTDP)、フタル酸ブチルベンジル(BBP)、フタル酸ジシクロヘキシル(DCHP)、テトラヒドロフタル酸エステル、アジピン酸ジオクチル(DOA)、アジピン酸ジイソノニル(DINA)、アジピン酸ジイソデシル(DIDA)、アジピン酸ジ-n-アルキル、ジブチルジグリコールアジペート(BXA)、アゼライン酸ビス(2-エチルヘキシル)(DOZ)、セバシン酸ジブチル(DBS)、セバシン酸ジオクチル(DOS)、マレイン酸ジブチル(DBM)、マレイン酸ジ-2-エチルヘキシル(DOM)、フマル酸ジブチル(DBF)、リン酸トリクレシル(TCP)、トリエチルホスフェート(TEP)、トリブチルホスフェート(TB20P)、トリス(2-エチルヘキシル)ホスフェート(TOP)、トリ(クロロエチル)ホスフェート(TCEP)、トリスジクロロプロピルホスフェート(CPP)、トリブトキシエチルホスフェート(TBXP)、トリス(β-クロロプロピル)ホスフェート(TMCPP)、トリフェニルホスフェート(TPP)、オクチルジフェニルホスフェート(ODP)、クエン酸アセチルトリエチル、アセチルクエン酸トリブチルなどが挙げられ、その他にはトリメリット酸系可塑剤、ポリエステル系可塑剤、塩素化パラフィン、ステアリン酸系可塑剤など、更にジメチルポリシロキサン等のシリコーンオイル(無官能性オルガノポリシロキサン)、ポリオキシプロピレングリコール系、パラフィン系、ナフテン系、イソパラフィン系等の石油系高沸点溶剤なども用いることができる。これらは1種単独で又は2種以上を組み合わせて用いることができる。その中でも特にシリコーンオイルが好ましい。
 なお、上記のシリコーンオイル(無官能性オルガノポリシロキサン)として、下記式(4)で表されるオルガノポリシロキサン(分子鎖両末端トリオルガノシロキシ基封鎖ジオルガノポリシロキサン)を使用することが好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中、R5は、それぞれ独立に、非置換もしくは置換の、脂肪族不飽和結合を含有しない炭素原子数1~20の1価炭化水素基であり、nは該オルガノポリシロキサンの23℃における粘度が1.5~1,000,000mPa・sとなる数である。)
 上記式(4)において、R5は、それぞれ独立して、非置換もしくは置換の、脂肪族不飽和結合を含有しない炭素原子数1~20の1価炭化水素基であり、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基や、これらの基の水素原子の一部又は全部を、F、Cl、Br等のハロゲン原子で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフルオロプロピル基等が挙げられる。
 なお、上記式(4)で表されるオルガノポリシロキサンにおいて、ジオルガノシロキサン単位の繰り返し数(重合度)を示すnの値としては、3~3,000、好ましくは5~2,000、より好ましくは10~1,000程度の整数であればよい。
 (G)成分の配合量は、(A)成分100質量部に対して0~1,000質量部であることが好ましく、より好ましくは1~1,000質量部、更に好ましくは1~200質量部である。(G)成分の量が上記範囲内にあると本発明の組成物の機械特性や難燃性を損なうことなく、施工上取り扱い易い粘度に調整することができるため好ましい。
[その他の成分]
 また、本発明の組成物には、添加剤として、顔料、染料、老化防止剤、酸化防止剤、帯電防止剤、酸化アンチモン、塩化パラフィン等の難燃剤など公知の添加剤を必要に応じて配合することができる。更に、チクソ性向上剤としてのポリエーテル、防かび剤、抗菌剤を配合することもできる。
 更に、本発明の組成物は、必要に応じて有機溶剤を用いてもよい。有機溶剤としては、n-ヘキサン、n-ヘプタン、イソオクタン、イソドデカンなどの脂肪族炭化水素系化合物、トルエン、キシレンなどの芳香族炭化水素系化合物、ヘキサメチルジシロキサン、オクタメチルトリシロキサン、デカメチルテトラシロキサン、ドデカメチルペンタシロキサン、2-(トリメチルシロキシ)-1,1,1,2,3,3,3-ヘプタメチルトリシロキサンなどの鎖状シロキサン、オクタメチルシクロペンタシロキサン、デカメチルシクロペンタシロキサンなどの環状シロキサンなどが挙げられる。有機溶剤の量は本発明の効果を妨げない範囲で適宜調整すればよい。
 本発明の組成物は、1成分型の組成物、又は2成分型以上の多成分型の組成物等として使用することができる。
 本発明の組成物は、上記各成分、更にはこれに上記各種添加剤の所定量を、乾燥雰囲気中において均一に混合することにより得ることができる。また、本発明の組成物は、室温で放置することにより硬化するが、その成形方法、硬化条件などは、組成物の種類に応じた公知の方法、条件を採用することができる。
 本発明の組成物、特に1成分型の組成物は、水(湿気)の非存在下、即ち湿気を遮断した密閉容器中で保存し、使用時に空気中の水に曝すことによって室温(23℃±15℃)で容易に硬化する。2成分型以上の多成分型の組成物は、水の非存在下、即ち湿気を遮断した密閉容器中で保存し、使用に際して個別に保存された複数の組成物同士を空気中の水の存在下で混合することにより室温(23℃±15℃)で容易に硬化する。
 また、本発明の組成物の硬化物(シリコーンゴム硬化物)は良好な柔軟性を示し、ゴム弾性を有することから、コーティング剤、接着剤、シーリング剤(例えば、建築用シーラント等)として有用である。本発明の組成物をコーティング剤、接着剤、シーリング剤として使用する方法は、従来公知の使用方法に従えばよく、特に制限されるものでない。
 本発明の組成物の硬化物からなる被覆層を有する物品としては、例えば、ガラス類、各種樹脂類、各種金属類等で構成された物品などが例示できるが、基材の材質及び形状については特に限定されない。
 本発明の組成物の硬化物で接着及び/又はシールされた物品としては、例えば、ガラス類、各種金属類等で構成された物品などが例示できるが、基材の材質及び形状については特に限定されない。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記の具体例において、「部」は「質量部」を意味し、また粘度は23℃での回転粘度計による測定値を示したものである。
[実施例1-1]
 粘度5,000mPa・sの分子鎖両末端が水酸基(シラノール基)で封鎖されたジメチルポリシロキサン100質量部に、n-オクチルアミン1.0質量部、ジオクチルスズジネオデカノエート0.6質量部、ジメトキシ(メチル)(メトキシメチル)シラン1.5質量部、ビニルトリメトキシシラン0.3質量部を加え、湿気遮断下で均一に混合し、組成物1を得た。
[実施例1-2]
 n-オクチルアミン1.0質量部の代わりにテトラメチルグアニジン1.0質量部を用いた以外は実施例1-1と同様にして組成物2を得た。
[比較例1-1]
 ジメトキシ(メチル)(メトキシメチル)シラン1.5質量部を添加しないこと以外は実施例1-1と同様にして組成物3を得た。
[比較例1-2]
 ジメトキシ(メチル)(メトキシメチル)シラン1.5質量部の代わりに、ジメチルジメトキシシラン1.2質量部を配合した以外は実施例1-2と同様にして組成物4を得た。
[実施例2-1]
 粘度5,000mPa・sの分子鎖両末端が水酸基(シラノール基)で封鎖されたジメチルポリシロキサン100質量部に、表面処理炭酸カルシウム(商品名;Viscoexcel 30K、白石工業(株)製)80質量部、重質炭酸カルシウム(商品名;スーパーS、丸尾カルシウム(株)製)60質量部を均一になるまで分散混合したのち、テトラメチルグアニジルプロピルトリメトキシシラン5.0質量部、ジオクチルスズジネオデカノエート3.0質量部、ジメトキシ(メチル)(メトキシメチル)シラン1.5質量部、ビニルトリメトキシシラン0.3質量部を加え、減圧下で完全に混合し、組成物5を得た。
[実施例3-1]
 更に、接着促進剤として3-(2-アミノエチルアミノ)プロピルトリメトキシシラン1.0質量部を配合したこと以外は実施例1-1と同様にして組成物6を得た。
[実施例3-2]
 3-(2-アミノエチルアミノ)プロピルトリメトキシシラン1.0質量部に代えて3-アミノプロピルトリメトキシシラン1.0質量部を配合したこと以外は実施例3-1と同様にして組成物7を得た。
[実施例4-1]
 更に、可塑剤として粘度100mPa・sの分子鎖両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン10質量部を配合したこと以外は実施例1-1と同様にして組成物8を得た。
[実施例4-2]
 更に、可塑剤として粘度100mPa・sの分子鎖両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン20質量部を配合したこと以外は実施例1-1と同様にして組成物9を得た。
[比較例2-1]
 ジメトキシ(メチル)(メトキシメチル)シラン1.5質量部の代わりに、1,3-ジメチル-1,3-ジ(メトキシメチル)-1,3-ジビニル-ジシロキサン2.2質量部を用いた以外は実施例2-1と同様にして組成物10を得た。
[比較例2-2]
 ジメトキシ(メチル)(メトキシメチル)シラン1.5質量部の代わりに、ジメチルジメトキシシラン1.2質量部を用いた以外は実施例2-1と同様にして組成物11を得た。
[比較例3-1]
 ジメトキシ(メチル)(メトキシメチル)シラン1.5質量部の代わりに、ジメチルジメトキシシラン1.2質量部を配合した以外は実施例3-1と同様にして組成物12を得た。
[比較例3-2]
 ジメトキシ(メチル)(メトキシメチル)シラン1.5質量部の代わりに、ジメチルジメトキシシラン1.2質量部を配合した以外は実施例3-2と同様にして組成物13を得た。
[比較例4-1]
 ジメトキシ(メチル)(メトキシメチル)シラン1.5質量部の代わりに、ジメチルジメトキシシラン1.2質量部を配合した以外は実施例4-1と同様にして組成物14を得た。
〔試験〕
 実施例1-1~4-2及び比較例1-1~4-1で調製された調製直後の各組成物を厚さ2mmのシート状に押し出し、23℃、50%RHの空気に曝し、次いで、該シートを同じ雰囲気下に7日間放置して得た硬化物の物性(初期物性)を、JIS K-6249に準拠して測定した。なお、硬さは、JIS K-6249のデュロメーターA硬度計又はアスカーCを用いて測定した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表1の結果より、実施例1-1~1-2は対応する比較例1-1~1-2と比べて、反応性が良好であり、高い硬化性を示すことが明らかとなった。
 表2の結果より、実施例2-1~4-2は対応する比較例2-1~4-1と比べて、高い硬化性と鎖長延長効果による高い伸びを示すことが明らかとなった。

Claims (7)

  1. (A)分子鎖両末端がシラノール基又は加水分解性シリル基で封鎖されたシリコーンポリマー:100質量部、
    (B)下記の式(1)で表されるオルガノキシメチレン基含有オルガノシラン化合物:0.001~30質量部、
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1、R2及びR3は、それぞれ独立して非置換もしくは置換の炭素原子数1~10のアルキル基又は非置換もしくは置換の炭素原子数6~10のアリール基である。)
    (C)(B)成分以外の架橋剤:0.001~30質量部、及び
    (D)硬化触媒:0.001~20質量部
    を含有するものである室温硬化性樹脂組成物。
  2.  更に、(A)成分100質量部に対して、
    (E)充填剤:1~1,000質量部
    を含有するものである請求項1に記載の室温硬化性樹脂組成物。
  3.  請求項1又は2に記載の室温硬化性樹脂組成物からなるコーティング剤。
  4.  請求項1又は2に記載の室温硬化性樹脂組成物からなる接着剤。
  5.  請求項1又は2に記載の室温硬化性樹脂組成物からなるシーリング剤。
  6.  請求項1又は2に記載の室温硬化性樹脂組成物の硬化物からなる被覆層を有する物品。
  7.  請求項1又は2に記載の室温硬化性樹脂組成物の硬化物で接着及び/又はシールされた物品。
PCT/JP2021/028719 2020-08-04 2021-08-03 室温硬化性樹脂組成物、コーティング剤、接着剤及びシーリング剤、並びに物品 WO2022030470A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022541552A JPWO2022030470A1 (ja) 2020-08-04 2021-08-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020132088 2020-08-04
JP2020-132088 2020-08-04

Publications (1)

Publication Number Publication Date
WO2022030470A1 true WO2022030470A1 (ja) 2022-02-10

Family

ID=80118072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028719 WO2022030470A1 (ja) 2020-08-04 2021-08-03 室温硬化性樹脂組成物、コーティング剤、接着剤及びシーリング剤、並びに物品

Country Status (2)

Country Link
JP (1) JPWO2022030470A1 (ja)
WO (1) WO2022030470A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536957A (ja) * 2001-08-09 2004-12-09 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング アルコキシ架橋性一成分系湿分硬化性材料
JP2005139452A (ja) * 2003-11-06 2005-06-02 Wacker Chemie Gmbh 湿分硬化エラストマーの弾性を上昇させる方法
JP2007513203A (ja) * 2003-06-26 2007-05-24 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング アルコキシシラン−末端プレポリマー
JP2009513734A (ja) * 2003-07-04 2009-04-02 ワッカー ケミー アクチエンゲゼルシャフト アルコキシシラン末端基を有するプレポリマー
JP2017509777A (ja) * 2014-02-03 2017-04-06 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG メチレン結合した極性基を含むポリシロキサン
WO2020189463A1 (ja) * 2019-03-18 2020-09-24 信越化学工業株式会社 室温硬化性樹脂組成物、コーティング剤、接着剤及びシーリング剤、並びに物品
WO2020209083A1 (ja) * 2019-04-10 2020-10-15 信越化学工業株式会社 オイルシール用室温硬化性オルガノポリシロキサン組成物及び自動車用部品
WO2021095367A1 (ja) * 2019-11-14 2021-05-20 信越化学工業株式会社 オルガノポリシロキサンおよびそれを含有するコーティング用組成物
WO2021117652A1 (ja) * 2019-12-11 2021-06-17 信越化学工業株式会社 オルガノポリシロキサン化合物及びその製造方法、並びに該化合物を含む組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536957A (ja) * 2001-08-09 2004-12-09 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング アルコキシ架橋性一成分系湿分硬化性材料
JP2007513203A (ja) * 2003-06-26 2007-05-24 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング アルコキシシラン−末端プレポリマー
JP2009513734A (ja) * 2003-07-04 2009-04-02 ワッカー ケミー アクチエンゲゼルシャフト アルコキシシラン末端基を有するプレポリマー
JP2005139452A (ja) * 2003-11-06 2005-06-02 Wacker Chemie Gmbh 湿分硬化エラストマーの弾性を上昇させる方法
JP2017509777A (ja) * 2014-02-03 2017-04-06 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG メチレン結合した極性基を含むポリシロキサン
WO2020189463A1 (ja) * 2019-03-18 2020-09-24 信越化学工業株式会社 室温硬化性樹脂組成物、コーティング剤、接着剤及びシーリング剤、並びに物品
WO2020209083A1 (ja) * 2019-04-10 2020-10-15 信越化学工業株式会社 オイルシール用室温硬化性オルガノポリシロキサン組成物及び自動車用部品
WO2021095367A1 (ja) * 2019-11-14 2021-05-20 信越化学工業株式会社 オルガノポリシロキサンおよびそれを含有するコーティング用組成物
WO2021117652A1 (ja) * 2019-12-11 2021-06-17 信越化学工業株式会社 オルガノポリシロキサン化合物及びその製造方法、並びに該化合物を含む組成物

Also Published As

Publication number Publication date
JPWO2022030470A1 (ja) 2022-02-10

Similar Documents

Publication Publication Date Title
JP4833959B2 (ja) 有機ケイ素化合物並びにそれを架橋可能な材料中で用いる使用
WO2020189463A1 (ja) 室温硬化性樹脂組成物、コーティング剤、接着剤及びシーリング剤、並びに物品
WO2015194340A1 (ja) 室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサン組成物の硬化物である成形物
JP6627862B2 (ja) 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物である成形物
JP2018087348A (ja) 室温硬化性組成物、シーリング材及び物品
JP2007314627A (ja) 室温硬化性オルガノポリシロキサン組成物
WO2017187762A1 (ja) 末端シラノール基含有ポリオキシアルキレン系化合物及びその製造方法、室温硬化性組成物、シーリング材並びに物品
JP6760223B2 (ja) 室温硬化性オルガノポリシロキサン組成物、およびこれを含有するシール剤、コーティング剤、接着剤、成形物
WO2020209083A1 (ja) オイルシール用室温硬化性オルガノポリシロキサン組成物及び自動車用部品
JP4658654B2 (ja) 室温硬化性オルガノポリシロキサン組成物
JP7353026B2 (ja) 室温硬化性ポリオルガノシロキサン組成物及びその硬化物
JP5177344B2 (ja) 室温硬化性オルガノポリシロキサン組成物
JP7315008B2 (ja) 室温硬化性樹脂組成物、コーティング剤、接着剤及びシーリング剤、並びに物品
JP6315100B2 (ja) 新規有機チタン化合物、該有機チタン化合物の製造方法、硬化触媒及び室温硬化性オルガノポリシロキサン組成物
WO2022030470A1 (ja) 室温硬化性樹脂組成物、コーティング剤、接着剤及びシーリング剤、並びに物品
JP6156211B2 (ja) 室温硬化性オルガノポリシロキサン組成物及び物品
JP2019112509A (ja) 室温硬化性ポリオルガノシロキサン組成物、その硬化物及び積層体
JP7211494B2 (ja) 室温硬化性オルガノポリシロキサン組成物及びその製造方法
WO2021117652A1 (ja) オルガノポリシロキサン化合物及びその製造方法、並びに該化合物を含む組成物
JP7006058B2 (ja) シーリング材及びシーリング方法
JP7353027B2 (ja) 室温硬化性ポリオルガノシロキサン組成物及びその硬化物
JP7513016B2 (ja) 室温硬化性樹脂組成物、コーティング剤、接着剤及びシーリング剤、並びに物品
WO2021002163A1 (ja) オルガノポリシロキサン化合物、該化合物を含む組成物及びそれらの製造方法
JP2022111452A (ja) 室温硬化性樹脂組成物、コーティング剤、接着剤及びシーリング剤、並びに物品
JP6243922B2 (ja) 室温硬化性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541552

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853601

Country of ref document: EP

Kind code of ref document: A1