WO2022030066A1 - 空調回転体及び空気処理装置 - Google Patents

空調回転体及び空気処理装置 Download PDF

Info

Publication number
WO2022030066A1
WO2022030066A1 PCT/JP2021/018563 JP2021018563W WO2022030066A1 WO 2022030066 A1 WO2022030066 A1 WO 2022030066A1 JP 2021018563 W JP2021018563 W JP 2021018563W WO 2022030066 A1 WO2022030066 A1 WO 2022030066A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
air
rotating body
seal member
axial direction
Prior art date
Application number
PCT/JP2021/018563
Other languages
English (en)
French (fr)
Inventor
維大 大堂
隆 高橋
英作 大久保
秀和 田中
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202180057262.XA priority Critical patent/CN116096476A/zh
Priority to EP21853887.4A priority patent/EP4154969A4/en
Publication of WO2022030066A1 publication Critical patent/WO2022030066A1/ja
Priority to US18/103,920 priority patent/US20230173429A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/34Specific shapes
    • B01D2253/342Monoliths
    • B01D2253/3425Honeycomb shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/4009Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1004Bearings or driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1012Details of the casing or cover
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1096Rotary wheel comprising sealing means

Definitions

  • This disclosure relates to an air-conditioning rotating body and an air treatment device.
  • An air treatment device that rotates a rotor made of a material with excellent heat storage properties such as aluminum and stainless steel around the axis, arranges a part of the rotor in the exhaust passage, and arranges the other region in the air supply passage. , It is used as a heat exchanger that exchanges heat between exhaust and air supply.
  • a rotor having a honeycomb structure carrying an adsorbent such as zeolite or porous silica is rotated around the axis, and the treated air passes through a part of the rotor and the regenerated air passes through the other regions.
  • the air treatment device configured to do so is used for humidity control, deodorization, and the like.
  • Patent Document 1 discloses that spokes are provided on both end planes of a case accommodating a rotor (honeycomb body) and ventilation holes are provided between the spokes to form a seal member having a width larger than the width of the ventilation holes.
  • the seal member and the flat portions at both ends of the case are in contact with each other and the honeycomb body is not in direct contact with the seal member, wear of the honeycomb body can be prevented.
  • An object of the present disclosure is to make it possible to suppress air leakage caused by wear of a seal member that partitions an air passage in an air-conditioned rotating body having a rotor.
  • the first aspect of the present disclosure is an air-conditioned rotating body having a columnar rotor (10) rotatably housed in a casing (50) and processing air passing axially through the rotor (10).
  • the casing (50) is provided with a seal member (51) extending in the radial direction of the rotor (10) and partitioning an air passage, and is provided with a seal member (51) in the rotor (10) in the axial direction.
  • At least one spoke (25) in contact with the seal member (51) is provided on the end face, and the contact point with the spoke (25) in the seal member (51) is the rotation of the rotor (10). It is an air-conditioning rotating body characterized by moving in the radial direction with the movement.
  • the contact point between the spoke (25) provided on the axial end surface of the rotor (10) and the seal member (51) that partitions the air passage is as the rotor (10) rotates. Move in the radial direction. Therefore, it is possible to prevent the load from being concentrated on the specific portion of the seal member (51) and the wear from progressing locally to cause air leakage.
  • the second aspect of the present disclosure is, in the first aspect, the air-conditioned rotating body, wherein the seal member (51) is in contact with a plurality of the spokes (25).
  • the structure in which the seal member (51) is supported by the spokes (25) at multiple points makes it possible to further suppress local wear of the seal member (51).
  • a third aspect of the present disclosure is, in the first or second aspect, the air-conditioned rotating body, wherein the spoke (25) is curved in the circumferential direction of the rotor (10).
  • the support point of the seal member (51) can be moved when the rotor (10) rotates, so that the seal can be sealed. Local wear of the member (51) can be suppressed.
  • a fourth aspect of the present disclosure is that, in any one of the first to third aspects, the end face of the rotor (10) is further provided with a reinforcing rib (26) extending in the radial direction. It is a characteristic air-conditioning rotating body.
  • the support structure of the rotor (10) can be reinforced and the deflection of the rotor (10) can be suppressed. Therefore, it is possible to suppress an increase in the distance between the rotor (10) and the seal member (51), so that air leakage can be suppressed.
  • a fifth aspect of the present disclosure is, in any one of the first to fourth aspects, an annular member (27) that surrounds the center of the rotor (10) in the circumferential direction on the end face of the rotor (10). , 28) is an air-conditioned rotating body characterized by being further provided.
  • the arrangement of the annular member (27,28) increases the support points of the seal member (51), so that the load per support point of the seal member (51) is dispersed, so that the seal is sealed. Local wear of the member (51) can be further suppressed.
  • the spokes (25) can be reinforced by connecting the annular member (27,28) to the spokes (25).
  • a sixth aspect of the present disclosure is any one of the first to fifth aspects, wherein the spokes (25) are provided on both end faces in the axial direction of the rotor (10), and the spokes (25) are provided on both end faces in the axial direction.
  • the spokes (25) provided in each of the above are air-conditioned rotating bodies characterized in that they overlap each other when viewed from the axial direction.
  • the air flowing into the rotor (10) from the axially one-sided opening region of the rotor (10) does not collide with the axially opposite non-opening region of the rotor (10). It can flow out of the open area on the other side. Therefore, it is possible to increase the substantial opening area on both sides of the rotor (10) in the axial direction and improve the air conditioning capacity.
  • a seventh aspect of the present disclosure is an air treatment apparatus including the air-conditioned rotating body (30) according to any one of the first to sixth aspects.
  • the performance of the air treatment device (1) for example, the dehumidifying / humidifying performance
  • the air-conditioning rotating body (30) capable of suppressing air leakage due to the wear of the seal member (51) that partitions the air passage is provided.
  • heat exchange performance can be improved.
  • FIG. 1 is a schematic diagram showing an overall configuration of an air treatment device according to an embodiment.
  • FIG. 2 is a schematic view showing a cross-sectional configuration of the air-conditioning rotating body according to the embodiment.
  • FIG. 3 is a perspective view of a rotor constituting the air-conditioned rotating body according to the embodiment.
  • FIG. 4 is a perspective view of a protective container for accommodating the rotor shown in FIG.
  • FIG. 5 is a perspective view showing how the rotor shown in FIG. 3 is housed in the protective container shown in FIG.
  • FIG. 6 is a perspective view showing a state in which the rotor shown in FIG. 3 is housed in the protective container shown in FIG.
  • FIG. 1 is a schematic diagram showing an overall configuration of an air treatment device according to an embodiment.
  • FIG. 2 is a schematic view showing a cross-sectional configuration of the air-conditioning rotating body according to the embodiment.
  • FIG. 3 is a perspective view of a rotor constituting the air-conditioned rotating body
  • FIG. 7 is a perspective view showing a state in which the air-conditioning rotating body according to the embodiment is housed in the casing by partially cutting out.
  • FIG. 8 is a plan view of the air-conditioning rotating body according to the embodiment as viewed from the axial direction of the rotor.
  • FIG. 9 is a plan view of the air-conditioning rotating body according to the modified example 1 as viewed from the axial direction of the rotor.
  • FIG. 10 is a plan view of the air-conditioning rotating body according to the modified example 2 as viewed from the axial direction of the rotor.
  • FIG. 11 is a diagram showing a state in which spokes are mirror-symmetrically provided on both end faces in the axial direction of the rotor in the air-conditioning rotating body according to the modified example 3.
  • the air treatment device (1) of the present embodiment is configured as, for example, a dehumidifying / humidifying device, and as shown in FIG. 1, an air passage (3) partitioned by a partition wall (2) is inside the air treatment device (1). ) And (4) are provided.
  • the outside air (OA) taken in from the outside is supplied to the room as a supply air (SA) via the air passage (3), and the return air (RA) taken in from the room is It is discharged to the outside as exhaust gas (EA) via the air passage (4).
  • the air-conditioning rotating body (30) of the present embodiment includes, for example, a columnar rotor (10) made of a honeycomb-shaped adsorption element on which zeolite or the like is supported, and a rotating shaft (11) inserted in the center of the rotor (10).
  • the axis of rotation (11) is arranged on the boundary between the air passages (3) and (4).
  • the air conditioning rotating body (30) is arranged so as to extend over both the air passages (3) and (4).
  • the air passages (3) and (4) are configured so that air passes through the rotor (10) so as to face each other in the axial direction. Seal members (51) that partition the air passages (3) and (4) slidably abut on both end faces in the axial direction of the air-conditioning rotating body (30).
  • a heat exchanger (5) is arranged upstream (outdoor) of the air conditioning rotating body (30), and a compressor (6) is arranged downstream (indoor side) of the air conditioning rotating body (30). And the blower (7) are arranged in order.
  • a heat exchanger (8) is arranged upstream (indoor side) of the air conditioning rotating body (30), and a blower (9) is arranged downstream (outdoor side) of the air conditioning rotating body (30). Be placed.
  • dehumidified air is generated by adsorbing water vapor from the air passing through the air passage (3) to the adsorbent of the rotor (10) while rotating the rotor (10). do.
  • the adsorbent is regenerated by desorbing water vapor from the adsorbent of the rotor (10) by the air that has been heated to a predetermined temperature and passes through the air passage (4).
  • the heat exchanger (5) in the air passage (3) operates as an evaporator
  • the heat exchanger (8) in the air passage (4) operates as a condenser.
  • the air treatment device (1) When the air treatment device (1) is humidified, water vapor is adsorbed from the air passing through the air passage (4) to the adsorbent of the rotor (10) while rotating the rotor (10). On the other hand, humidified air is generated and the adsorbent is regenerated by desorbing water vapor from the adsorbent of the rotor (10) by the air that has been heated to a predetermined temperature and passes through the air passage (3).
  • the heat exchanger (5) in the air passage (3) operates as a condenser
  • the heat exchanger (8) in the air passage (4) operates as an evaporator.
  • the air-conditioning rotating body (30) is rotatably housed in the casing (50) as shown in FIG.
  • the air-conditioned rotating body (30) has a protective container (20) that protects the rotor (10).
  • the protective container (20) includes a side plate (22) that covers the outer peripheral side surface of the rotor (10).
  • the protective container (20) is integrated with the rotor (10) and rotates around the rotation axis (11).
  • the casing (50) has a substantially rectangular upper plate portion (50a), a lower plate portion (50b), and an upper plate portion that face each other in the axial direction of the rotor (10) with the air conditioning rotating body (30) in between. It is composed of a support portion (50c) that connects (50a) and a lower plate portion (50b) at each of the four corners.
  • the upper plate portion (50a) is provided with an exhaust port (53) connected to the downstream side of the air passage (3) and an intake port (54) connected to the upstream side of the air passage (4).
  • the lower plate portion (50b) is provided with an intake port (52) connected to the upstream side of the air passage (3) and an exhaust port (55) connected to the downstream side of the air passage (4).
  • the intake port (52), (54) and the exhaust port (53), (55) each have a substantially semicircular shape when viewed from the axial direction of the rotor (10).
  • the intake port (52) of the lower plate portion (50b) and the exhaust port (53) of the upper plate portion (50a) overlap each other when viewed from the axial direction of the rotor (10).
  • the intake port (54) of the upper plate portion (50a) and the exhaust port (55) of the lower plate portion (50b) overlap each other when viewed from the axial direction of the rotor (10).
  • Seals are provided at the boundary between the exhaust port (53) and the intake port (54) in the upper plate portion (50a) and at the boundary between the intake port (52) and the exhaust port (55) in the lower plate portion (50b).
  • the member (51) is arranged.
  • the seal member (51) slidably contacts each end face in the axial direction of the air-conditioning rotating body (30). As a result, the air taken in from the intake port (52) of the lower plate portion (50b) passes between the rotor (10) and the lower plate portion (50b) without passing through the rotor (10). It is possible to prevent leakage to the exhaust port (55) of the lower plate portion (50b).
  • the air taken in from the intake port (54) of the upper plate portion (50a) passes between the rotor (10) and the upper plate portion (50a) without passing through the rotor (10), and is above. It is possible to prevent leakage to the exhaust port (53) of the plate portion (50a).
  • a rotor side seal portion (23) is provided on the outer peripheral portion of the rotor (10), specifically, on the upper portion and the lower portion of the side plate (22) covering the outer peripheral side surface of the rotor (10), respectively. Further, a casing side seal portion (56) is provided at a position facing the rotor side seal portion (23) in each of the upper plate portion (50a) and the lower plate portion (50b).
  • the rotor side seal portion (23) and the casing side seal portion (56) form a labyrinth seal structure (100) that meshes with each other. In other words, a labyrinth seal structure (100) is provided between the outer peripheral portion of the rotor (10) and the casing (50).
  • the labyrinth seal structure (100) can suppress both air leakage from the rotor center side to the outer peripheral side and air leakage from the rotor outer peripheral side to the center side.
  • the labyrinth seal structure (100) has a first protruding portion that protrudes in the axial direction of the rotor (10) toward the casing (50) and a first protruding portion that protrudes in the axial direction of the rotor (10) toward the rotor (10). Two protrusions may be provided.
  • the labyrinth seal structure (100) is configured by the engagement of the protruding portions protruding in the rotor axial direction, it becomes easy to maintain the sealing performance even if the outer peripheral portion of the rotor (10) fluctuates in the axial direction due to, for example, shaft shake.
  • the rotor (10) is a honeycomb-shaped adsorption element on which, for example, zeolite or the like is supported, and is configured as a cylindrical body having a through hole (15) in the center as shown in FIG.
  • the protective container (20) that protects the rotor (10) is fitted into the through hole (15) of the rotor (10) and supports the rotating shaft (11).
  • the protective container (20) may be, for example, a resin molded product or may be made of sheet metal.
  • the side plate (22) is configured to be separable into an upper plate (22A) and a lower plate (22B) so that the protective container (20) can be easily attached to and removed from the rotor (10).
  • An annular rotor-side seal portion (23) is provided on the upper portion and the lower portion of the side plate (22), respectively.
  • An annular gear (24) for rotating the air-conditioning rotating body (30) by a motor and a small gear (not shown) is provided at the center of the outer peripheral side surface of the side plate (22).
  • the inner cylinder (21) and the side plate (22) are connected by spokes (25) and reinforcing ribs (26) in contact with each axial end surface of the rotor (10).
  • the opening region where the spokes (25) and the reinforcing ribs (26) are not provided becomes the ventilation holes of the air conditioning rotating body (30).
  • the spokes (25) may be curved in the circumferential direction of the rotor (10).
  • the reinforcing ribs (26) may extend radially and may bite into each axial end face of the rotor (10).
  • a groove (10a) for biting a part of the reinforcing rib (26) is formed along the radial end surface on the end face in the axial direction.
  • a sheet-shaped seal member (51) that separates the air passages (3) and (4) slidably abuts on each end face in the axial direction of the air-conditioning rotating body (30).
  • the sealing member (51) is made of an elastic body such as rubber, and is arranged along the radial direction of the rotor (10).
  • a resin material having excellent slidability is applied to the tip surface (sliding surface) of the seal member (51).
  • it may be coated with a metal material.
  • the tip portion of the seal member (51) may be formed of a resin material or a metal material having excellent slidability.
  • 57) is formed.
  • the seal member (51) is held by sandwiching a part of the seal member (51) between the side surface of the support member (57) and the plate-shaped body (58).
  • the support member (57) extends 180 ° in two opposite directions along the radial direction from the inner cylinder (21) of the protective container (20).
  • the seat surface of the seal member (51) with respect to the axial direction of the rotor (10), the contact area between each end surface in the axial direction of the air-conditioning rotating body (30) and the seal member (51).
  • the seat surface of the seal member (51) is arranged vertically along the axial direction of the rotor (10) with respect to the axial displacement of each component such as the rotor (10). It also makes it easier to maintain the seal structure.
  • the spokes (25) intervene in order to rotate the air-conditioning rotating body (30), that is, the rotor (10) with the spokes (25) arranged on each end face in the axial direction of the rotor (10).
  • This makes it possible to avoid a situation in which the rotor (10) comes into direct contact with the sealing member (51).
  • wear of the rotor (10) can be suppressed.
  • the air-conditioning rotating body (30) is rotatably housed in the casing (50).
  • a motor (60) and a small gear (62) connected to the rotating shaft (61) of the motor (60) are provided in the vicinity of the air-conditioning rotating body (30) in the lower plate portion (50b) of the casing (50).
  • the small gear (62) is rotationally driven by the motor (60)
  • the annular gear (24) of the side plate (22) covering the outer peripheral side surface of the rotor (10) is rotationally driven by the small gear (62), and the air-conditioned rotating body (30).
  • Rotates When the small gear (62) is rotationally driven by the motor (60), the annular gear (24) of the side plate (22) covering the outer peripheral side surface of the rotor (10) is rotationally driven by the small gear (62), and the air-conditioned rotating body (30).
  • the rotating shaft (11) of the air-conditioning rotating body (30), that is, the rotor (10) is fixedly supported by the inner cylinder (21) of the protective container (20), and the upper and lower of the inner cylinder (21) in the rotating shaft (11).
  • the portion protruding from the end is rotatably held by the bearing portion (12).
  • Intake ports (52), (54) and exhaust ports (53), (55) are on opposite surfaces of the air-conditioning rotating body (30) in the upper plate portion (50a) and the lower plate portion (50b), respectively.
  • a bearing support portion (13) is provided along the boundary with and.
  • the bearing portion (12) is attached to the bearing support portion (13).
  • the support member (57) holding the seal member (51) is attached to the side of the bearing support portion (13) facing the air-conditioning rotating body (30).
  • annular support member (59) made of resin is formed.
  • the casing-side seal portion (56) is attached to the annular support member (59) on the side facing the air-conditioning rotating body (30).
  • the outer peripheral end surface of the rotor (10) in the support member (57) is connected to the inner peripheral side surface of the annular support member (59).
  • FIG. 8 is a plan view of the air-conditioning rotating body (30) viewed from above in the axial direction of the rotor (10) with the upper plate portion (50a) of the casing (50) removed.
  • the structure for holding the seal member (51) (support member (57), etc.) is not shown.
  • spokes (25) having a thickness of, for example, about 1 to 2 mm are provided as steps on each end face in the axial direction of the rotor (10), and the seal member (51) is provided as a spoke (51).
  • the seal member (51) and the rotor (10) are prevented from coming into direct contact with each other.
  • wear of the rotor (10) can be suppressed.
  • the material of the spoke (25) more slidable than the material of the rotor (10) the seal that comes into contact with the spoke (25) when the air-conditioning rotating body (30) rotates. Wear of the member (51) can be suppressed.
  • the thickness of the spoke (25) should be about 3 mm or less. It is preferably present, and more preferably about 1.5 mm or less.
  • the contact point (indicated by the broken line circle in FIG. 8) of the seal member (51) extending in the radial direction of the rotor (10) with the spoke (25) is the rotor (10).
  • the shape of the spoke (25) (the shape seen from the axial direction of the rotor (10)) is set so as to move in the radial direction with rotation. For example, as shown in FIG. 8, if the spoke (25) is shaped like an arc that curves in the circumferential direction of the rotor (10), the seal member in the spoke (25) is rotated as the rotor (10) rotates.
  • the contact point with (51) moves on the arc-shaped spokes (25) from the radially inner side to the radial outer side of the rotor (10).
  • FIG. 8 the movement locus of the contact point between the spoke (25) and the seal member (51) when the air-conditioning rotating body (30) rotates counterclockwise when viewed from the upper side in the axial direction of the rotor (10) is shown by a solid line. It is indicated by an arrow. Focusing on the seal member (51), the contact point with the spoke (25) moves in the radial direction as the rotor (10) rotates.
  • the shape of the spoke (25) is not particularly limited as long as it has a portion extending diagonally with respect to the radial direction of the rotor (10), but the spoke (25) may have an arc shape, for example, an S shape or a zigzag shape. There may be.
  • the seal member (51) may come into contact with a plurality of spokes (25) at an arbitrary rotation position of the air conditioning rotating body (30).
  • the seal member (51) corresponding to the radius of the rotor (10) is in contact with the three spokes (25).
  • each end face in the axial direction of the rotor (10) may be provided with reinforcing ribs (26) extending in the radial direction. At least a part of the reinforcing rib (26) may bite into the axial end face of the rotor (10) by, for example, about 1 cm.
  • Reinforcing ribs (26) may be connected to one or more spokes (25). The end face of the reinforcing rib (26) may be flush with the end face of the spoke (25) in the axial direction of the rotor (10), or the end face of the reinforcing rib (26) may be flush with the end face of the spoke (25). May also be low. In the latter case, the contact between the reinforcing rib (26) and the seal member (51) can be suppressed, and the wear of the seal member (51) can be suppressed.
  • the contact point between the spokes (25) provided on the axial end surface of the rotor (10) and the seal member (51) for partitioning the air passage is the rotor ( It moves in the radial direction with the rotation of 10). Therefore, it is possible to prevent the load from being concentrated on the specific portion of the seal member (51) and the wear from progressing locally to cause air leakage. Further, since the frequency of replacement of the seal member (51) due to the wear of the seal member (51) can be reduced, an increase in cost and a decrease in operating rate can be suppressed.
  • the seal member (51) may come into contact with a plurality of spokes (25). In this way, the seal member (51) is supported by the spokes (25) at multiple points. Where the load received by the seal member (51) is equal to the force with which the seal member (51) deformed by contact with the spoke (25) tries to return to its original shape, the seal member (51) has multiple points on the spoke (25). ), The load per contact point in the seal member (51) is distributed. Since the amount of wear of the seal member (51) is proportional to the load received by the seal member (51), the seal member (51) has a structure in which the seal member (51) is supported by the spokes (25) at multiple points. Local wear can be further suppressed. On the other hand, in the configuration of Patent Document 1, since the end portion of the seal member always contacts the rotor case and the load is concentrated, wear progresses at the end portion of the seal member.
  • the spokes (25) may have a shape curved in the circumferential direction of the rotor (10).
  • the support point of the seal member (51) moves in the radial direction of the rotor (10) as the rotor (10) rotates. Can be made to. As a result, local wear of the seal member (51) can be suppressed.
  • a reinforcing rib (26) extending in the radial direction may be provided on the axial end surface of the rotor (10).
  • the support structure of the rotor (10) can be reinforced and the deflection of the rotor (10) can be suppressed. Therefore, it is possible to suppress an increase in the distance between the rotor (10) and the seal member (51), so that air leakage can be suppressed.
  • the air-conditioning rotating body (30) capable of suppressing air leakage due to wear of the seal member (51) for partitioning the air passages (3) and (4) is provided. .. Therefore, the performance of the air treatment device (1), for example, the dehumidifying / humidifying performance and the heat exchange performance can be improved.
  • the present modification 1 differs from the above-described embodiment in that the annular member (27) that surrounds the center of the rotor (10) in the circumferential direction on the axial end surface of the rotor (10). Specifically, a perfect circular member concentric with the rotor (10) is provided.
  • the same components as those in the embodiment shown in FIG. 8 are designated by the same reference numerals.
  • the following effects can be obtained. That is, since the support points of the seal member (51) increase due to the arrangement of the annular member (27), the load per support point in the seal member (51) is dispersed, so that the local area of the seal member (51) is distributed. Wear can be further suppressed. Further, the spoke (25) can be reinforced by connecting the annular member (27) to the spoke (25).
  • a perfect circular member concentric with the rotor (10) is provided as the annular member (27).
  • an elliptical member having a focal point at the center of the rotor (10) is provided as the annular member (28).
  • the same components as those of the modification 1 shown in FIG. 9 are designated by the same reference numerals.
  • the annular member (27) shown in FIG. 9 is shown by a broken line.
  • the contact point of the seal member (51) with the annular member (28) becomes the rotor (10) as the rotor (10) rotates. Since it moves in the radial direction of the seal member (51), local wear of the sealing member (51) can be suppressed. In this case, it is more preferable to make the radial width of the rotor (10) in the annular member (28) smaller than the moving distance of the contact point with the annular member (28) in the seal member (51).
  • the spokes (25) are provided on both end faces in the axial direction of the rotor (10), and the spokes (25) provided on both end faces are the rotor (10). ) Are arranged so as to overlap when viewed from the axial direction.
  • FIG. 11 (a) shows a plane configuration in which the protective container (20) including the rotation axis (11) is viewed from one side in the axial direction of the rotor (10), and (b) is the rotation axis (11).
  • the side configuration of the protective container (20) including the rotor (10) viewed from the radial direction is shown, and (a) shows the protective container (20) including the rotation shaft (11) in the axial direction of the rotor (10).
  • the plane configuration seen from the other side is shown.
  • the same components as those in the embodiment shown in FIG. 8 are designated by the same reference numerals.
  • the protective container (20) is not provided with the reinforcing rib (26), while the annular member (27) similar to the modification 1 is provided.
  • the annular members (27) provided on the end faces of the rotor (10) in the axial direction are arranged so as to overlap each other when viewed from the axial direction of the rotor (10).
  • spokes (25) and the like are provided mirror-symmetrically on both end faces in the axial direction of the rotor (10). Therefore, the air flowing into the rotor (10) from the opening region on one side in the axial direction in the rotor (10) does not collide with the non-opening region on the other side in the axial direction in the rotor (10), and the other side thereof. Can flow out of the open area of. Therefore, it is possible to increase the substantial opening area on both sides of the rotor (10) in the axial direction and improve the air conditioning capacity.
  • the reinforcing ribs (26) may be arranged on the end faces of the rotor (10) in the axial direction so as to overlap each other when viewed from the axial direction of the rotor (10).
  • the protective container (20) does not have to be provided with the annular member (27).
  • an annular member (28) similar to the modified example 2 is arranged on each end surface of the rotor (10) in the axial direction so as to overlap each other when viewed from the axial direction of the rotor (10). You may.
  • the air treatment device (1) is dehumidified and humidified by using a honeycomb-shaped adsorption element carrying zeolite as the rotor (10) of the air-conditioning rotating body (30). It was configured as a device. However, instead of this, for example, an air-conditioning rotating body having a honeycomb-shaped adsorbent element carrying another adsorbent such as porous silica or activated alumina as a rotor is used to configure a deodorizing device, a gas separating device, or the like. May be.
  • a heat exchanger may be configured by using an air-conditioned rotating body having a rotor made of a material having excellent heat storage properties such as aluminum or stainless steel.
  • the air-conditioning rotating body (30) is arranged in the air treatment device (1) so that the radial direction of the rotor (10) is along the horizontal direction.
  • the air-conditioning rotating body (30) may be arranged in the air treatment device (1) so that the radial direction of the rotor (10) is along the vertical (vertical) direction.
  • the air treatment device (1) is provided with two air passages (3) and (4) so that the air conditioning rotating body (30) extends over both the air passages (3) and (4).
  • the number of air passages provided in the air treatment device (1) (that is, the number of air passages in which the air conditioning rotating body (30) is arranged) is not particularly limited, and may be three or more.
  • the present disclosure is useful for air-conditioning rotating bodies and air treatment devices.
  • Air treatment device 10 Rotor 25 Spokes 26 Reinforcing ribs 27, 28 Ring member 30 Air conditioning rotating body 50 Casing 51 Sealing member

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

空調回転体(30)は、ケーシング(50)内に回転自在に収容された円柱状のロータ(10)を有し、当該ロータ(10)を軸方向に通過する空気を処理する。ケーシング(50)には、ロータ(10)の径方向に延びると共に空気通路を区画するシール部材(51)が設けられる。ロータ(10)における軸方向の端面には、シール部材(51)と接触する少なくとも1つのスポーク(25)が設けられる。シール部材(51)におけるスポーク(25)との接触点は、ロータ(10)の回転に伴ってロータ(10)の径方向に移動する。

Description

空調回転体及び空気処理装置
 本開示は、空調回転体及び空気処理装置に関するものである。
 アルミニウムやステンレス等の蓄熱性に優れた材料からなるロータを軸心回りに回転させ、当該ロータの一部の領域を排気通路に配置し、他の領域を給気通路に配置した空気処理装置が、排気と給気との間で熱交換を行う熱交換器として利用されている。
 また、ゼオライトや多孔性シリカ等の吸着材を担持させたハニカム構造を有するロータを軸心回りに回転させ、当該ロータの一部の領域を処理空気が通過し、他の領域を再生空気が通過するように構成した空気処理装置が、調湿や脱臭等に利用されている。
 空調回転体となるロータを用いた空気処理装置においては、ロータはケース内に回転自在に収容され、空気通路を区画するシール部材がロータの径や外周に沿って設けられる。特許文献1は、ロータ(ハニカム体)を収容するケースの両端平面部にスポークを設けると共にスポーク間に通気孔を設け、シール部材の幅を通気孔の幅よりも大きく形成することを開示する。特許文献1の構成では、シール部材とケースの両端平面部とが接し、ハニカム体がシール部材と直接接することがないため、ハニカム体の摩耗を防止できる。
特許第3755708号公報
 しかしながら、特許文献1の構成では、シール部材の端部が常にケースの両端平面部と接触して荷重が集中するため、シール部材の端部が他の部分よりも早く削れて摩耗が進行してしまう。その結果、シール部材の端部で空気漏れが生じ、有効換気量の低下や、不要な風量増加などの問題が発生してしまう。
 本開示の目的は、ロータを有する空調回転体において、空気通路を区画するシール部材の摩耗に起因する空気漏れを抑制できるようにすることにある。
 本開示の第1の態様は、ケーシング(50)内に回転自在に収容された円柱状のロータ(10)を有し、当該ロータ(10)を軸方向に通過する空気を処理する空調回転体(30)であって、前記ケーシング(50)には、前記ロータ(10)の径方向に延びると共に空気通路を区画するシール部材(51)が設けられ、前記ロータ(10)における前記軸方向の端面には、前記シール部材(51)と接触する少なくとも1つのスポーク(25)が設けられ、前記シール部材(51)における前記スポーク(25)との接触点は、前記ロータ(10)の回転に伴って前記径方向に移動することを特徴とする空調回転体である。
 第1の態様では、ロータ(10)の軸方向の端面に設けられたスポーク(25)と、空気通路を区画するシール部材(51)との接触点が、ロータ(10)の回転に伴って径方向に移動する。このため、シール部材(51)の特定部分に荷重が集中して局所的に摩耗が進行し、空気漏れが生じることを抑制できる。
 本開示の第2の態様は、第1の態様において、前記シール部材(51)は、複数の前記スポーク(25)と接触することを特徴とする空調回転体である。
 第2の態様では、シール部材(51)が多点でスポーク(25)に支持される構造によって、シール部材(51)の局所的な磨耗をより一層抑制できる。
 本開示の第3の態様は、第1又は第2の態様において、前記スポーク(25)は、前記ロータ(10)の周方向に湾曲することを特徴とする空調回転体である。
 第3の態様では、周方向に湾曲したスポーク(25)でシール部材(51)を支えることによって、ロータ(10)の回転時にシール部材(51)の支持点を移動させることができるので、シール部材(51)の局所的な磨耗を抑制できる。
 本開示の第4の態様は、第1~第3の態様のいずれか1つにおいて、前記ロータ(10)の前記端面には、前記径方向に延びる補強リブ(26)がさらに設けられることを特徴とする空調回転体である。
 第4の態様では、ロータ(10)における軸方向の端面に補強リブ(26)を設けるため、ロータ(10)の支持構造を補強して、ロータ(10)のたわみを抑制できる。従って、ロータ(10)とシール部材(51)との間隔が拡大することを抑制できるので、空気漏れを抑制できる。
 本開示の第5の態様は、第1~第4の態様のいずれか1つにおいて、前記ロータ(10)の前記端面には、前記ロータ(10)の中心を周方向に囲む環状部材(27,28)がさらに設けられることを特徴とする空調回転体である。
 第5の態様では、環状部材(27,28)の配置により、シール部材(51)の支持点が増大するため、シール部材(51)における支持点1つ当たりの荷重が分散されるので、シール部材(51)の局所的な磨耗をより一層抑制できる。また、環状部材(27,28)をスポーク(25)と接続することによって、スポーク(25)を補強することができる。
 本開示の第6の態様は、第1~第5の態様のいずれか1つおいて、前記スポーク(25)は、前記ロータ(10)における前記軸方向の両端面に設けられ、当該両端面にそれぞれ設けられた前記スポーク(25)は、前記軸方向から見て重なり合うことを特徴とする空調回転体である。
 第6の態様では、ロータ(10)における軸方向の一方側の開口領域からロータ(10)に流入した空気は、ロータ(10)における軸方向の他方側の非開口領域に衝突することなく、当該他方側の開口領域から流出することができる。従って、ロータ(10)における軸方向両側において実質的な開口面積を増大させて、空調能力を向上させることができる。
 本開示の第7の態様は、第1~第6の態様のいずれか1つの空調回転体(30)を備えることを特徴とする空気処理装置である。
 第7の態様では、空気通路を区画するシール部材(51)の摩耗に起因する空気漏れを抑制できる空調回転体(30)を備えるため、空気処理装置(1)の性能、例えば、除加湿性能や熱交換性能等を向上させることができる。
図1は、実施形態に係る空気処理装置の全体構成を示す模式図である。 図2は、実施形態に係る空調回転体の断面構成を示す模式図である。 図3は、実施形態に係る空調回転体を構成するロータの斜視図である。 図4は、図3に示すロータを収納するための保護容器の斜視図である。 図5は、図4に示す保護容器に、図3に示すロータを収納する様子を示す斜視図である。 図6は、図4に示す保護容器に、図3に示すロータが収納された状態を示す斜視図である。 図7は、実施形態に係る空調回転体がケーシング内に収容された状態を一部切り欠いて示す斜視図である。 図8は、実施形態に係る空調回転体をロータの軸方向から見た平面図である。 図9は、変形例1に係る空調回転体をロータの軸方向から見た平面図である。 図10は、変形例2に係る空調回転体をロータの軸方向から見た平面図である。 図11は、変形例3に係る空調回転体において、ロータの軸方向の両端面にスポークを鏡面対称に設けた様子を示す図である。
 (実施形態)
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。尚、本開示は、以下に示される実施形態に限定されるものではなく、本開示の技術的思想を逸脱しない範囲内で各種の変更が可能である。また、各図面は、本開示を概念的に説明するためのものであるから、理解容易のために必要に応じて寸法、比又は数を誇張又は簡略化して表す場合がある。
 <空気処理装置の構成>
 本実施形態の空気処理装置(1)は、例えば除加湿装置として構成され、図1に示すように、空気処理装置(1)の内部には、隔壁(2)によって区画された空気通路(3)、(4)が設けられる。空気処理装置(1)において、室外から取り入れた外気(OA)は、空気通路(3)を経由して、給気(SA)として室内に供給され、室内から取り入れた還気(RA)は、空気通路(4)を経由して、排気(EA)として室外に排出される。
 本実施形態の空調回転体(30)は、例えばゼオライト等を担持させたハニカム状吸着素子からなる円柱状のロータ(10)と、ロータ(10)の中心に挿通された回転軸(11)とを有する。回転軸(11)は、空気通路(3)、(4)の境界上に配置される。言い換えると、空調回転体(30)は、空気通路(3)、(4)の両方に亘るように配置される。空気通路(3)、(4)はそれぞれ、ロータ(10)を軸方向に空気が互いに対向して通過するように構成される。空調回転体(30)における軸方向の両端面には、空気通路(3)、(4)を区画するシール部材(51)が摺動可能に当接する。
 空気通路(3)において、空調回転体(30)の上流(室外側)には熱交換器(5)が配置され、空調回転体(30)の下流(室内側)には圧縮機(6)及び送風機(7)が順に配置される。空気通路(4)において、空調回転体(30)の上流(室内側)には熱交換器(8)が配置され、空調回転体(30)の下流(室外側)には送風機(9)が配置される。
 空気処理装置(1)が除湿運転する場合、ロータ(10)を回転させながら、空気通路(3)を通過する空気からロータ(10)の吸着材に水蒸気を吸着させることにより、除湿空気を生成する。一方、所定温度に昇温されて空気通路(4)を通過する空気によってロータ(10)の吸着材から水蒸気を脱着することにより、吸着材を再生する。この場合、空気通路(3)の熱交換器(5)が蒸発器として動作し、空気通路(4)の熱交換器(8)が凝縮器として動作する。
 空気処理装置(1)が加湿運転する場合、ロータ(10)を回転させながら、空気通路(4)を通過する空気からロータ(10)の吸着材に水蒸気を吸着させる。一方、所定温度に昇温されて空気通路(3)を通過する空気によってロータ(10)の吸着材から水蒸気を脱着することにより、加湿空気を生成すると共に吸着材を再生する。この場合、空気通路(3)の熱交換器(5)が凝縮器として動作し、空気通路(4)の熱交換器(8)が蒸発器として動作する。
 <空調回転体の構成>
 空気処理装置(1)において、空調回転体(30)は、図2に示すように、ケーシング(50)内に回転自在に収容される。空調回転体(30)は、ロータ(10)を保護する保護容器(20)を有する。保護容器(20)は、ロータ(10)の外周側面を覆う側板(22)を含む。保護容器(20)は、ロータ(10)と共に一体となって回転軸(11)周りに回転する。
 ケーシング(50)は、空調回転体(30)を間に挟んでロータ(10)の軸方向に対向する略方形状の上板部(50a)及び下板部(50b)、並びに、上板部(50a)と下板部(50b)とをそれぞれの四隅で接続する支柱部(50c)とから構成される。上板部(50a)には、空気通路(3)の下流側と接続する排気口(53)と、空気通路(4)の上流側と接続する吸気口(54)とが設けられる。下板部(50b)には、空気通路(3)の上流側と接続する吸気口(52)と、空気通路(4)の下流側と接続する排気口(55)とが設けられる。吸気口(52)、(54)及び排気口(53)、(55)はそれぞれ、ロータ(10)の軸方向から見て、略半円形状を有する。下板部(50b)の吸気口(52)と、上板部(50a)の排気口(53)とは、ロータ(10)の軸方向から見て、互いに重なり合う。上板部(50a)の吸気口(54)と、下板部(50b)の排気口(55)とは、ロータ(10)の軸方向から見て、互いに重なり合う。
 上板部(50a)における排気口(53)と吸気口(54)との境界、及び、下板部(50b)における吸気口(52)と排気口(55)との境界にはそれぞれ、シール部材(51)が配置される。シール部材(51)は、空調回転体(30)における軸方向の各端面に摺動可能に当接する。これにより、下板部(50b)の吸気口(52)から吸気された空気が、ロータ(10)を通過することなく、ロータ(10)と下板部(50b)との間を通って、下板部(50b)の排気口(55)へ漏れ出すことを抑制できる。また、上板部(50a)の吸気口(54)から吸気された空気が、ロータ(10)を通過することなく、ロータ(10)と上板部(50a)との間を通って、上板部(50a)の排気口(53)へ漏れ出すことを抑制できる。
 ロータ(10)の外周部、具体的には、ロータ(10)の外周側面を覆う側板(22)の上部及び下部にはそれぞれ、ロータ側シール部(23)が設けられる。また、上板部(50a)及び下板部(50b)のそれぞれにおけるロータ側シール部(23)と対向する箇所には、ケーシング側シール部(56)が設けられる。ロータ側シール部(23)とケーシング側シール部(56)とは、互いにかみ合うラビリンスシール構造(100)を構成する。言い換えると、ロータ(10)の外周部と前記ケーシング(50)との間にはラビリンスシール構造(100)が設けられる。これにより、下板部(50b)の吸気口(52)から吸気された空気が、ロータ(10)を迂回して、上板部(50a)の排気口(53)へ漏れ出すことを抑制できる。また、上板部(50a)の吸気口(54)から吸気された空気が、ロータ(10)を迂回して、下板部(50b)の排気口(55)へ漏れ出すことを抑制できる。このように、ラビリンスシール構造(100)により、ロータ中心側から外周側に向かう空気漏れと、ロータ外周側から中心側に向かう空気漏れの両方を抑制できる。ラビリンスシール構造(100)には、ケーシング(50)に向けてロータ(10)の軸方向に突出する第1突出部と、ロータ(10)に向けてロータ(10)の軸方向に突出する第2突出部とを設けてもよい。ロータ軸方向に突出する突出部のかみ合いによりラビリンスシール構造(100)を構成すると、例えば軸ブレによりロータ(10)外周部が軸方向に変動しても、シール性能を維持しやすくなる。
 本実施形態において、ロータ(10)は、例えばゼオライト等を担持させたハニカム状吸着素子であり、図3に示すように、中心に貫通孔(15)を有する円柱体として構成される。ロータ(10)を保護する保護容器(20)は、図4~図6に示すように、ロータ(10)の貫通孔(15)に嵌め込まれ且つ回転軸(11)を支持する内筒(21)と、ロータ(10)の外周側面を覆う環状の側板(22)とを有する。保護容器(20)は、例えば、樹脂成形品であってもよいし、或いは、板金で構成されてもよい。側板(22)は、ロータ(10)に対する保護容器(20)の取り付け、取り外しが容易に行えるように、上側板(22A)と下側板(22B)とに分離可能に構成される。側板(22)の上部及び下部にはそれぞれ、環状のロータ側シール部(23)が設けられる。側板(22)の外周側面の中央部には、図外のモータ及び小型歯車によって空調回転体(30)を回転させるための環状歯車(24)が設けられる。内筒(21)と側板(22)とは、ロータ(10)における軸方向の各端面と接するスポーク(25)及び補強リブ(26)によって接続される。ロータ(10)における軸方向の各端面上で、スポーク(25)及び補強リブ(26)が設けられていない開口領域は、空調回転体(30)の通気孔となる。スポーク(25)は、ロータ(10)の周方向に湾曲してもよい。補強リブ(26)は、径方向に延びると共に、ロータ(10)における軸方向の各端面に食い込んでもよい。図3に示すロータ(10)では、補強リブ(26)の一部を食い込ませるための溝(10a)が軸方向の端面に径方向に沿って形成される。
 図6に示すように、空調回転体(30)における軸方向の各端面には、空気通路(3)、(4)を区画するシート状のシール部材(51)が摺動可能に当接する。シール部材(51)は、例えばゴム等の弾性体で構成され、ロータ(10)の径方向に沿って配置される。シール部材(51)を弾性体で形成する代わりに、シール部材(51)の耐久性を向上させるために、シール部材(51)の先端表面(摺動面)に摺動性に優れた樹脂材料又は金属材料でコーティングしてもよい。或いは、シール部材(51)の先端部を摺動性に優れた樹脂材料又は金属材料で形成してもよい。
 上板部(50a)及び下板部(50b)にはそれぞれ、吸気口(52)、(54)と排気口(53)、(55)とを区画するように、例えば樹脂製の支持部材(57)が形成される。支持部材(57)の側面と板状体(58)との間にシール部材(51)の一部を挟み込むことにより、シール部材(51)が保持される。支持部材(57)は、保護容器(20)の内筒(21)から径方向に沿って180°反対向きの2方向に延びる。ここで、シール部材(51)のシート面を、ロータ(10)の軸方向に対して傾斜させることにより、空調回転体(30)における軸方向の各端面とシール部材(51)との接触面積にマージンを持たせてもよい。このようにすると、シール部材(51)のシート面を、ロータ(10)の軸方向に沿って垂直に配置する場合と比べて、ロータ(10)等の各構成要素の軸方向変位に対してもシール構造を維持しやすくなる。
 本実施形態では、ロータ(10)における軸方向の各端面上にスポーク(25)を配置した状態で、空調回転体(30)つまりロータ(10)を回転させるため、スポーク(25)が介在することによって、ロータ(10)がシール部材(51)に直接接触する事態を回避できる。これにより、ロータ(10)の摩耗を抑制できる。また、スポーク(25)つまり保護容器(20)の材質として、ロータ(10)の表面材質よりも摺動性の高い材質を用いることにより、シール部材(51)の磨耗を抑制できる。
 図7に示すように、空調回転体(30)は、ケーシング(50)内に回転自在に収容される。ケーシング(50)の下板部(50b)における空調回転体(30)の近傍には、モータ(60)と、モータ(60)の回転軸(61)と接続する小型歯車(62)とが設けられている。モータ(60)によって小型歯車(62)が回転駆動すると、ロータ(10)の外周側面を覆う側板(22)の環状歯車(24)が小型歯車(62)によって回転駆動され、空調回転体(30)が回転する。空調回転体(30)つまりロータ(10)の回転軸(11)は、保護容器(20)の内筒(21)に固定支持されると共に、回転軸(11)における内筒(21)の上下端から突出した部分は、軸受け部(12)により回転可能に保持される。上板部(50a)及び下板部(50b)のそれぞれにおける空調回転体(30)の反対側の面上には、吸気口(52)、(54)と排気口(53)、(55)との境界に沿って、軸受け支持部(13)が設けられる。軸受け部(12)は、軸受け支持部(13)に取り付けられる。シール部材(51)を保持する支持部材(57)は、軸受け支持部(13)における空調回転体(30)に面する側に取り付けられる。
 上板部(50a)における排気口(53)及び吸気口(54)の周縁部、並びに、下板部(50b)における吸気口(52)及び排気口(55)の周縁部にはそれぞれ、例えば樹脂製の環状支持部材(59)が形成される。ケーシング側シール部(56)は、環状支持部材(59)における空調回転体(30)に面する側に取り付けられる。支持部材(57)におけるロータ(10)の外周側の端面は、環状支持部材(59)の内周側面と接続される。
 <シール部材と空調回転体との接触>
 図8は、ケーシング(50)の上板部(50a)を取り外した状態で空調回転体(30)をロータ(10)の軸方向上側から見た平面図である。尚、図8では、シール部材(51)を保持する構造(支持部材(57)等)の図示を省略している。
 本実施形態では、図8に示すように、ロータ(10)における軸方向の各端面上に、例えば厚さ1~2mm程度のスポーク(25)を段差として設けてシール部材(51)をスポーク(25)に接触させることによって、シール部材(51)とロータ(10)とが直接接しないようにする。これにより、ロータ(10)の摩耗を抑制できる。また、スポーク(25)の材質を、ロータ(10)の材質と比べて、より摺動性に優れた材質とすることによって、空調回転体(30)の回転時にスポーク(25)と接触するシール部材(51)の磨耗を抑制できる。
 尚、ロータ(10)における軸方向の各端面とシール部材(51)との隙間が大きくなりすぎると、当該隙間を経由する空気漏れが生じるので、スポーク(25)の厚さは3mm程度以下であることが好ましく、1.5mm程度以下であることがより好ましい。
 本実施形態の特徴の1つとして、ロータ(10)の径方向に延びるシール部材(51)におけるスポーク(25)との接触点(図8で破線丸印で示す)が、ロータ(10)の回転に伴って径方向に移動するように、スポーク(25)の形状(ロータ(10)の軸方向から見た形状)が設定される。例えば、図8に示すように、スポーク(25)の形状を、ロータ(10)の周方向に湾曲する円弧状にすれば、ロータ(10)の回転に伴って、スポーク(25)におけるシール部材(51)との接触点は、円弧状のスポーク(25)上をロータ(10)の径方向内側から径方向外側へと移動する。図8では、ロータ(10)の軸方向上側から見て、空調回転体(30)が反時計回りで回転する場合におけるスポーク(25)とシール部材(51)との接触点の移動軌跡を実線矢印で示している。これをシール部材(51)に着目すれば、ロータ(10)の回転に伴って、スポーク(25)との接触点が径方向に移動することになる。
 尚、スポーク(25)の形状は、ロータ(10)の径方向に対して斜めに延びる部分を有していれば、特に制限されないが、円弧状の他、例えばS字状やジグザグ状等であってもよい。
 また、図8に示すように、空調回転体(30)の任意の回転位置において、シール部材(51)は、複数のスポーク(25)と接触してもよい。図8では、ロータ(10)の半径分のシール部材(51)が、3つのスポーク(25)と接触している。
 さらに、図8に示すように、ロータ(10)における軸方向の各端面には、径方向に延びる補強リブ(26)が設けられてもよい。補強リブ(26)の少なくとも一部は、ロータ(10)における軸方向の端面に例えば1cm程度食い込んでいてもよい。補強リブ(26)は、1つ又は複数のスポーク(25)と接続されてもよい。ロータ(10)の軸方向において、補強リブ(26)の端面とスポーク(25)の端面とを面一にしてもよいし、或いは、補強リブ(26)の端面をスポーク(25)の端面よりも低くしてもよい。後者の場合、補強リブ(26)とシール部材(51)との接触を抑制して、シール部材(51)の摩耗を抑制できる。
 <実施形態の効果>
 本実施形態の空調回転体(30)によると、ロータ(10)の軸方向の端面に設けられたスポーク(25)と、空気通路を区画するシール部材(51)との接触点が、ロータ(10)の回転に伴って径方向に移動する。このため、シール部材(51)の特定部分に荷重が集中して局所的に摩耗が進行し、空気漏れが生じることを抑制できる。また、シール部材(51)の摩耗に起因するシール部材(51)の交換頻度を低減できるので、コストの増大や稼働率の低下を抑制できる。
 また、本実施形態の空調回転体(30)において、シール部材(51)は、複数のスポーク(25)と接触してもよい。このようにすると、シール部材(51)が多点でスポーク(25)に支持される構造となる。シール部材(51)が受ける荷重は、スポーク(25)との接触により変形したシール部材(51)が元の形状に戻ろうとする力に等しいところ、シール部材(51)が多点でスポーク(25)に支持されると、シール部材(51)における接触点1つ当たりの荷重が分散される。シール部材(51)の摩耗量は、シール部材(51)が受ける荷重に比例することから、シール部材(51)が多点でスポーク(25)に支持される構造によって、シール部材(51)の局所的な磨耗をより一層抑制できる。それに対して、特許文献1の構成では、シール部材の端部が常にロータケースと接触して荷重が集中するので、シール部材の端部で摩耗が進行してしまう。
 また、本実施形態の空調回転体(30)において、スポーク(25)は、ロータ(10)の周方向に湾曲する形状を有してもよい。このようにすると、湾曲したスポーク(25)でシール部材(51)を支えることによって、ロータ(10)の回転に伴って、シール部材(51)の支持点をロータ(10)の径方向に移動させることができる。これにより、シール部材(51)の局所的な磨耗を抑制できる。
 また、本実施形態の空調回転体(30)において、ロータ(10)における軸方向の端面に、径方向に延びる(つまり直線状の)補強リブ(26)を設けてもよい。このようにすると、ロータ(10)の支持構造を補強して、ロータ(10)のたわみを抑制できる。従って、ロータ(10)とシール部材(51)との間隔が拡大することを抑制できるので、空気漏れを抑制できる。
 また、本実施形態の空気処理装置(1)によると、空気通路(3)、(4)を区画するシール部材(51)の摩耗に起因する空気漏れを抑制できる空調回転体(30)を備える。このため、空気処理装置(1)の性能、例えば、除加湿性能や熱交換性能等を向上させることができる。
 (変形例1)
 以下、本開示の変形例1について、図面を参照しながら説明する。
 本変形例1が前記実施形態と異なっている点は、図9に示すように、ロータ(10)における軸方向の端面に、ロータ(10)の中心を周方向に囲む環状部材(27)、具体的には、ロータ(10)と同心の真円状部材が設けられることである。尚、図9において、図8に示す前記実施形態と同じ構成要素には同じ符号を付す。
 本変形例1では、前記実施形態と同様の効果に加えて、次のような効果を得ることができる。すなわち、環状部材(27)の配置により、シール部材(51)の支持点が増大するため、シール部材(51)における支持点1つ当たりの荷重が分散されるので、シール部材(51)の局所的な磨耗をより一層抑制できる。また、環状部材(27)をスポーク(25)と接続することによって、スポーク(25)を補強することができる。
 (変形例2)
 以下、本開示の変形例2について、図面を参照しながら説明する。
 前記変形例1では、図9に示すように、環状部材(27)として、ロータ(10)と同心の真円状部材を設けた。それに対して、本変形例2では、図10に示すように、環状部材(28)として、ロータ(10)の中心に焦点を持つ楕円状部材を設ける。尚、図10において、図9に示す前記変形例1と同じ構成要素には同じ符号を付す。また、図10において、図9に示す環状部材(27)を破線で示す。
 本変形例2では、前記変形例1と同様の効果に加えて、次のような効果を得ることができる。すなわち、本変形例2の構成では、前記変形例1の構成と比べて、シール部材(51)における環状部材(28)との接触点が、ロータ(10)の回転に伴ってロータ(10)の径方向に移動するので、シール部材(51)の局所的な磨耗を抑制することができる。この場合、シール部材(51)における環状部材(28)との接触点の移動距離と比べて、環状部材(28)におけるロータ(10)の径方向の幅を小さくしておくことがより好ましい。
 尚、環状部材(28)として、ロータ(10)の中心に焦点を持つ楕円状部材に代えて、ロータ(10)に対して偏心させた真円状部材を設けても、本変形例2と同様の効果を得ることができる。
 (変形例3)
 以下、本開示の変形例3について、図面を参照しながら説明する。
 本変形例3では、図11に示すように、スポーク(25)は、ロータ(10)における軸方向の両端面に設けられ、当該両端面にそれぞれ設けられたスポーク(25)は、ロータ(10)の軸方向から見て重なり合うように配置される。図11において、(a)は、回転軸(11)を含む保護容器(20)を、ロータ(10)の軸方向一方側から見た平面構成を示し、(b)は、回転軸(11)を含む保護容器(20)を、ロータ(10)の径方向から見た側面構成を示し、(a)は、回転軸(11)を含む保護容器(20)を、ロータ(10)の軸方向他方側から見た平面構成を示す。尚、図11において、図8に示す前記実施形態と同じ構成要素には同じ符号を付す。
 また、図11に示すように、本変形例3では、保護容器(20)に補強リブ(26)は設けられていない一方、変形例1と同様の環状部材(27)が設けられている。ここで、ロータ(10)における軸方向の各端面に設けられた環状部材(27)は、ロータ(10)の軸方向から見て重なり合うように配置される。
 本変形例3の構成では、ロータ(10)における軸方向の両端面にスポーク(25)等が鏡面対称に設けられる。このため、ロータ(10)における軸方向の一方側の開口領域からロータ(10)に流入した空気は、ロータ(10)における軸方向の他方側の非開口領域に衝突することなく、当該他方側の開口領域から流出することができる。従って、ロータ(10)における軸方向両側において実質的な開口面積を増大させて、空調能力を向上させることができる。
 尚、本変形例3において、ロータ(10)における軸方向の各端面に補強リブ(26)を、ロータ(10)の軸方向から見て重なり合うように配置してもよい。また、保護容器(20)に環状部材(27)を設けなくてもよい。或いは、ロータ(10)における軸方向の各端面に、環状部材(27)に代えて、変形例2と同様の環状部材(28)を、ロータ(10)の軸方向から見て重なり合うように配置してもよい。
 (その他の実施形態)
 前記実施形態(変形例を含む。以下同じ。)では、空調回転体(30)のロータ(10)として、ゼオライトを担持させたハニカム状吸着素子を用いて、空気処理装置(1)を除加湿装置として構成した。しかし、これに代えて、例えば、多孔性シリカや活性アルミナなどの他の吸着材を担持させたハニカム状吸着素子をロータとする空調回転体を用いて、脱臭装置やガス分離装置等を構成してもよい。或いは、例えば、アルミニウムやステンレス等の蓄熱性に優れた材料からなるロータを有する空調回転体を用いて、熱交換器を構成してもよい。
 また、前記実施形態では、空気処理装置(1)内に空調回転体(30)を、ロータ(10)の径方向が水平方向に沿うように配置した。しかし、これに代えて、空気処理装置(1)内に空調回転体(30)を、ロータ(10)の径方向が垂直(鉛直)方向に沿うように配置してもよい。
 また、前記実施形態では、空気処理装置(1)に2つの空気通路(3)、(4)を設け、空調回転体(30)を空気通路(3)、(4)の両方に亘るように配置した。しかし、空気処理装置(1)に設ける空気通路の数(つまり空調回転体(30)が配置される空気通路の数)は特に制限されず、3つ以上でもよい。
 以上、実施形態及び変形例を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態及び変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。
 以上に説明したように、本開示は、空調回転体及び空気処理装置について有用である。
   1  空気処理装置
  10  ロータ
  25  スポーク
  26  補強リブ
  27、28  環状部材
  30  空調回転体
  50  ケーシング
  51  シール部材

Claims (7)

  1.  ケーシング(50)内に回転自在に収容された円柱状のロータ(10)を有し、当該ロータ(10)を軸方向に通過する空気を処理する空調回転体(30)であって、
     前記ケーシング(50)には、前記ロータ(10)の径方向に延びると共に空気通路を区画するシール部材(51)が設けられ、
     前記ロータ(10)における前記軸方向の端面には、前記シール部材(51)と接触する少なくとも1つのスポーク(25)が設けられ、
     前記シール部材(51)における前記スポーク(25)との接触点は、前記ロータ(10)の回転に伴って前記径方向に移動することを特徴とする空調回転体。
  2.  請求項1において、
     前記シール部材(51)は、複数の前記スポーク(25)と接触することを特徴とする空調回転体。
  3.  請求項1又は2において、
     前記スポーク(25)は、前記ロータ(10)の周方向に湾曲することを特徴とする空調回転体。
  4.  請求項1~3のいずれか1項において、
     前記ロータ(10)の前記端面には、前記径方向に延びる補強リブ(26)がさらに設けられることを特徴とする空調回転体。
  5.  請求項1~4のいずれか1項において、
     前記ロータ(10)の前記端面には、前記ロータ(10)の中心を周方向に囲む環状部材(27,28)がさらに設けられることを特徴とする空調回転体。
  6.  請求項1~5のいずれか1項において、
     前記スポーク(25)は、前記ロータ(10)における前記軸方向の両端面に設けられ、当該両端面にそれぞれ設けられた前記スポーク(25)は、前記軸方向から見て重なり合うことを特徴とする空調回転体。
  7.  請求項1~6のいずれか1項に記載の空調回転体(30)を備えることを特徴とする空気処理装置。
PCT/JP2021/018563 2020-08-07 2021-05-17 空調回転体及び空気処理装置 WO2022030066A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180057262.XA CN116096476A (zh) 2020-08-07 2021-05-17 空调旋转体及空气处理装置
EP21853887.4A EP4154969A4 (en) 2020-08-07 2021-05-17 AIR CONDITIONER ROTARY BODY AND AIR TREATMENT DEVICE
US18/103,920 US20230173429A1 (en) 2020-08-07 2023-01-31 Air conditioning rotating body and air treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020134347A JP7041373B2 (ja) 2020-08-07 2020-08-07 空調回転体及び空気処理装置
JP2020-134347 2020-08-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/103,920 Continuation US20230173429A1 (en) 2020-08-07 2023-01-31 Air conditioning rotating body and air treatment device

Publications (1)

Publication Number Publication Date
WO2022030066A1 true WO2022030066A1 (ja) 2022-02-10

Family

ID=80117847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018563 WO2022030066A1 (ja) 2020-08-07 2021-05-17 空調回転体及び空気処理装置

Country Status (5)

Country Link
US (1) US20230173429A1 (ja)
EP (1) EP4154969A4 (ja)
JP (1) JP7041373B2 (ja)
CN (1) CN116096476A (ja)
WO (1) WO2022030066A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023053433A (ja) * 2021-10-01 2023-04-13 パナソニックIpマネジメント株式会社 空気調和機
JP2023158284A (ja) * 2022-04-18 2023-10-30 株式会社西部技研 吸着ロータ及びその収納装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4875520A (en) * 1985-10-22 1989-10-24 Airxchange, Inc. Desiccant heat device
JP2004321964A (ja) * 2003-04-25 2004-11-18 Tokyo Electron Ltd 乾燥空気供給装置
JP3755708B2 (ja) 1998-07-08 2006-03-15 株式会社西部技研 ガス吸着素子およびガス吸着装置
JP2008128633A (ja) * 2006-11-20 2008-06-05 Winiamando Inc 加湿空気清浄機、その制御方法、及び加湿器用ディスク組立体のディスク間隔設定方法
CN202083055U (zh) * 2011-05-17 2011-12-21 宁波真和电器股份有限公司 一种空气净化加湿装置
JP2016073920A (ja) * 2014-10-06 2016-05-12 シャープ株式会社 除湿装置
US20160370022A1 (en) * 2015-06-19 2016-12-22 Samsung Electronics Co., Ltd. Evaporative humidifier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4432409A (en) * 1981-11-03 1984-02-21 Northern Solar Systems, Inc. Rotary heat regenerator wheel and method of manufacture thereof
US5878590A (en) * 1998-02-25 1999-03-09 General Motors Corporation Dehumidifying mechanism for auto air conditioner with improved space utilization and thermal efficiency
KR20050057144A (ko) * 2002-09-20 2005-06-16 동경 엘렉트론 주식회사 건조공기 공급장치 및 처리장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4875520A (en) * 1985-10-22 1989-10-24 Airxchange, Inc. Desiccant heat device
JP3755708B2 (ja) 1998-07-08 2006-03-15 株式会社西部技研 ガス吸着素子およびガス吸着装置
JP2004321964A (ja) * 2003-04-25 2004-11-18 Tokyo Electron Ltd 乾燥空気供給装置
JP2008128633A (ja) * 2006-11-20 2008-06-05 Winiamando Inc 加湿空気清浄機、その制御方法、及び加湿器用ディスク組立体のディスク間隔設定方法
CN202083055U (zh) * 2011-05-17 2011-12-21 宁波真和电器股份有限公司 一种空气净化加湿装置
JP2016073920A (ja) * 2014-10-06 2016-05-12 シャープ株式会社 除湿装置
US20160370022A1 (en) * 2015-06-19 2016-12-22 Samsung Electronics Co., Ltd. Evaporative humidifier

Also Published As

Publication number Publication date
JP7041373B2 (ja) 2022-03-24
US20230173429A1 (en) 2023-06-08
EP4154969A4 (en) 2023-11-15
JP2022030364A (ja) 2022-02-18
EP4154969A1 (en) 2023-03-29
CN116096476A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2022030066A1 (ja) 空調回転体及び空気処理装置
JPH04227816A (ja) 除湿装置
WO2016059888A1 (ja) 除湿装置
KR100675801B1 (ko) 제가습 장치
JP3948248B2 (ja) 吸着ロータ及びそれを用いた吸着装置
EP0528896A1 (en) Dehumidifier
KR102448716B1 (ko) 전열교환기
WO2022030067A1 (ja) 空調回転体及び空気処理装置
JP3861579B2 (ja) 除湿機および局所空間用除湿機
JP5241693B2 (ja) デシカントシステム
EP1598601A2 (en) Humidity adjusting apparatus using desiccant
JP2006071171A (ja) 調湿装置
JP2536860Y2 (ja) 回転型ガス吸着機または熱交換器用シール
JP4682667B2 (ja) 調湿装置
JP4706303B2 (ja) 調湿装置
JP2005095807A (ja) 除湿機
JP2001246220A (ja) 除湿機
JP5356783B2 (ja) 除湿ロータの外周シール構造
US20240077218A1 (en) Dehumidification unit and desiccant drum therein
CN113091164B (zh) 除湿用转子以及除湿机
JPS6316025A (ja) 乾式除湿・脱臭ロ−タ
JP2000218127A (ja) 乾式吸着装置およびその吸着材
JPH038346Y2 (ja)
JP2002102642A (ja) 除湿機
JP5898513B2 (ja) デシカント式換気扇用ローター枠

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021853887

Country of ref document: EP

Effective date: 20221221

NENP Non-entry into the national phase

Ref country code: DE