WO2022028330A1 - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
WO2022028330A1
WO2022028330A1 PCT/CN2021/109690 CN2021109690W WO2022028330A1 WO 2022028330 A1 WO2022028330 A1 WO 2022028330A1 CN 2021109690 W CN2021109690 W CN 2021109690W WO 2022028330 A1 WO2022028330 A1 WO 2022028330A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
communication
scheduling
configuration information
configuring
Prior art date
Application number
PCT/CN2021/109690
Other languages
English (en)
French (fr)
Inventor
赵毅男
罗超
刘仁茂
Original Assignee
夏普株式会社
赵毅男
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 赵毅男 filed Critical 夏普株式会社
Publication of WO2022028330A1 publication Critical patent/WO2022028330A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • the present invention relates to the technical field of wireless communication, and in particular, to a method performed by a user equipment and a corresponding user equipment.
  • D2D communication (Device-to-Device communication, direct device-to-device communication) refers to a direct communication method between two user equipments without being forwarded by a base station or a core network.
  • 3GPP 3rd Generation Partnership Project
  • the upper layer supports unicast (Unicast) and multicast (Groupcast) communication functions.
  • LTE Release 13 eD2D The main features introduced by LTE Release 13 eD2D include:
  • V2X stands for Vehicle to everything, hoping to realize the exchange of information between vehicles and all entities that may affect vehicles, with the purpose of reducing accidents, slowing traffic congestion, reducing environmental pollution and providing other information services.
  • the application scenarios of V2X mainly include four aspects:
  • V2V Vehicle to Vehicle, that is, vehicle-to-vehicle communication
  • V2P Vehicle to Pedestrian, that is, the vehicle sends a warning to pedestrians or non-motor vehicles
  • V2N Vehicle to Network, that is, the vehicle is connected to the mobile network
  • V2I Vehicle to Infrastructure, that is, communication between vehicles and road infrastructure.
  • V2X stage 1 introduces a new D2D communication interface called the PC5 interface.
  • the PC5 interface is mainly used to solve the communication problems of cellular vehicle networking in high-speed (up to 250 km/h) and high-node density environments. Vehicles can interact with information such as position, speed and direction through the PC5 interface, that is, vehicles can communicate directly through the PC5 interface.
  • the functions introduced by LTE Release 14 V2X mainly include:
  • the second phase of the V2X research topic belongs to the research scope of LTE Release 15 (see Non-Patent Document 4).
  • the main features introduced include high-order 64QAM modulation, V2X carrier aggregation, short TTI transmission, and a feasibility study of transmit diversity.
  • the NR base station gNB When the NR base station gNB schedules the NR sideline communication transmission mode 1, it supports the configuration scheduling grant of Type 1 (Type 1 configured grant) and the configuration scheduling grant of Type 2 (Type 2 configured grant).
  • a type 1 or type 2 configuration scheduling grant in sidelink communication represents a set of periodic resources for one or more NR sidelink transmissions.
  • the solution of the present invention includes a method for the user equipment to determine the periodic resources for configuring the scheduling grant in the NR sideline communication.
  • Non-patent document 1 RP-140518, Work item proposal on LTE Device to Device Proximity Services
  • Non-patent document 2 RP-142311, Work Item Proposal for Enhanced LTE Device to Device Proximity Services
  • Non-patent literature 3 RP-152293, New WI proposal: Support for V2V services based on LTE sidelink
  • Non-Patent Document 4 RP-170798, New WID on 3GPP V2X Phase 2
  • Non-Patent Document 5 RP-181480, New SID Proposal: Study on NR V2X
  • Non-Patent Document 6 RAN1AH#1901, Chairman notes, section 7.2.4.1.4
  • Non-Patent Document 7 RAN1#96bis, Chairman notes, section 7.2.4.2.1
  • the present invention provides a method performed by a user equipment and a user equipment.
  • the method executed by the user equipment according to the first aspect of the present invention includes: receiving configuration information of a sidelink communication configuration scheduling grant configured grant sent by a base station gNB; determining the configuration indicated by the configuration information configuring the scheduling grant according to at least N extra Scheduling granted resources; using the configured scheduling grant resources to send the physical sideline communication shared channel PSSCH, and the user equipment is a sideline communication user equipment.
  • the configuration information for configuring the scheduling permission in the sideline communication includes a period for configuring the scheduling permission, and a time domain resource offset timeDomainOffset for configuring the scheduling permission.
  • the method according to the first aspect of the present invention further includes: determining that the latest system frame number before receiving the configuration information is timeReferenceSFN.
  • the method according to the first aspect of the present invention further includes: determining that the number of the most recent double frame before receiving the configuration information is timeReferenceSFN 2 .
  • the user equipment determines, according to the timeDomainOffset, and floor(timeReferenceSFN/2), the Periodicity, and the N extra , the configuration indicated by the configuration information for configuring the scheduling permission Schedule permitted resources.
  • the N extra 0; otherwise, the N extra is equal to the number of available time slots for sideline communication transmission in an even-numbered frame.
  • the logical time slot where the S th resource (S th grant) of the configuration scheduling grant is located satisfies the following conditions:
  • ⁇ N represents the number of time slots (or, the number of logical time slots) available for the transmission of line communication within 20ms;
  • logical slot number in the two consecutive frames represents the number of logical time slots in two consecutive frames; the first frame of the two consecutive frames is an even-numbered frame;
  • sl_periodicity is equal to
  • the user equipment transmits sideline communication according to the timeDomainOffset, floor(timeReferenceSFN/2), Periodicity, N extra , and two consecutive system frames
  • the average value of the number of available time slots, N average determines the resource for configuring the scheduling grant indicated by the configuration information for configuring the scheduling grant.
  • the user equipment determines the configuration schedule indicated by the configuration information of the configuration scheduling permission according to the timeDomainOffset, the Periodicity, the double frame number SFN 2 , and the timeReferenceSFN 2 Licensed resources.
  • a communication device is a communication device having a Packet Data Convergence Protocol (PDCP) entity, comprising: a processor; and a memory storing instructions; wherein the instructions execute the above when executed by the processor The method of the first aspect.
  • PDCP Packet Data Convergence Protocol
  • FIG. 1 is a schematic diagram illustrating sideline communication of an LTE V2X UE.
  • FIG. 2 is a schematic diagram illustrating a resource allocation manner of LTE V2X.
  • FIG. 3 is a schematic diagram showing the basic process of the method executed by the user equipment in Embodiment 1, Embodiment 2, Embodiment 3, Embodiment 4, and Embodiment 5 of the invention.
  • FIG. 4 is a block diagram illustrating a user equipment according to an embodiment of the present invention.
  • the 5G mobile communication system and its subsequent evolved versions are used as an example application environment to specifically describe various embodiments according to the present invention.
  • the present invention is not limited to the following embodiments, but can be applied to more other wireless communication systems, such as communication systems after 5G and 4G mobile communication systems before 5G.
  • LTE Long Term Evolution, long term evolution technology
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • DCI Downlink Control Information, downlink control information
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • UE User Equipment, user equipment
  • eNB evolved NodeB, evolved base station
  • gNB NR base station
  • TTI Transmission Time Interval, transmission time interval
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing with Cyclic Prefix
  • C-RNTI Cell Radio Network Temporary Identifier, the temporary identifier of the cell wireless network
  • CSI Channel State Information, channel state information
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • CRS Cell Reference Signal, cell-specific reference signal
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • SCI Sidelink Control Information, side communication control information
  • PSCCH Physical Sidelink Control Channel, Physical Sidelink Communication Control Channel
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • RB Resource Block, resource block
  • CRB Common Resource Block, common resource block
  • CP Cyclic Prefix, cyclic prefix
  • PRB Physical Resource Block, physical resource block
  • PSSCH Physical Sidelink Shared Channel, Physical Sidelink Shared Channel
  • FDM Frequency Division Multiplexing, frequency division multiplexing
  • RRC Radio Resource Control
  • RSRP Reference Signal Receiving Power, reference signal receiving power
  • SRS Sounding Reference Signal, sounding reference signal
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • PSDCH Physical Sidelink Discovery Channel, Physical Sidelink Communication Discovery Channel
  • PSBCH Physical Sidelink Broadcast Channel, Physical Sidelink Communication Broadcast Channel
  • TDD Time Division Duplexing
  • FDD Frequency Division Duplexing, frequency division duplexing
  • SIB1 System Information Block Type 1, system information block type 1
  • SLSS Sidelink synchronization Signal, side communication synchronization signal
  • PSSS Primary Sidelink Synchronization Signal, side communication main synchronization signal
  • SSSS Secondary Sidelink Synchronization Signal, side communication auxiliary synchronization signal
  • PCI Physical Cell ID, physical cell identification
  • PSS Primary Synchronization Signal, the main synchronization signal
  • SSS Secondary Synchronization Signal, secondary synchronization signal
  • BWP BandWidth Part, Bandwidth Fragment/Part
  • GNSS Global Navigation Satellite System, global navigation satellite positioning system
  • SFN System Frame Number, system (wireless) frame number
  • DFN Direct Frame Number, direct frame number
  • SSB Synchronization Signal Block, synchronization system information block
  • EN-DC EUTRA-NR Dual Connection, LTE-NR dual connection
  • MCG Master Cell Group, the main cell group
  • SCG Secondary Cell Group, secondary cell group
  • PCell Primary Cell, the main cell
  • SCell Secondary Cell, secondary cell
  • PSFCH Physical Sidelink Feedback Channel, Physical Sidelink Communication Feedback Channel
  • SPS Semi-Persistant Scheduling, semi-static scheduling
  • PT-RS Phase-Tracking Reference Signals, phase tracking reference signal
  • Transport Block transport block
  • CB Code Block, coding block/code block
  • QPSK Quadrature Phase Shift Keying, quadrature phase shift keying
  • 16/64/256 QAM 16/64/256 Quadrature Amplitude Modulation, Quadrature Amplitude Modulation
  • ARFCN Absolute Radio Frequency Channel Number, absolute radio frequency channel number
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, single carrier-frequency division multiplexing multiple access
  • MAC Medium Access Control, media access control layer
  • V2X in the text can also represent sidelink; similarly, sidelink in the text can also represent V2X, and no specific distinction or limitation will be made in the following text.
  • the resource allocation mode of V2X (sidelink) communication in the specification of the present invention and the transmission mode of V2X (sidelink) communication can be equivalently replaced.
  • the resource allocation method referred to in the specification may represent the transmission mode, and the transmission mode referred to may represent the resource allocation method.
  • the resource allocation mode of V2X (sidelink) communication in the specification of the present invention and the transmission mode of V2X (sidelink) communication can be equivalently replaced.
  • the resource allocation method referred to in the specification may represent the transmission mode, and the transmission mode referred to may represent the resource allocation method.
  • transmission mode 1 represents a transmission mode (resource allocation method) based on base station scheduling
  • transmission mode 2 represents a transmission mode (resource allocation method) based on user equipment sensing and resource selection.
  • the uplink and downlink configuration information involved in the present invention have the same meaning as the TDD configuration information.
  • the uplink and downlink configuration information and TDD configuration information in the text can be replaced equally.
  • the sidelink uplink and downlink configuration information and the sidelink TDD configuration information can be replaced equally, and they have the same meaning.
  • the TDD configuration information and sidelink TDD configuration information involved in the embodiments of the present invention include at least one TDD configuration style.
  • the TDD configuration pattern includes corresponding configuration information, such as configuration period, reference subcarrier spacing, and the like.
  • uplink resources may refer to sidelink resources, and sidelink resources may represent uplink resources.
  • uplink slot resources correspond to sidelink slot resources, and uplink symbol resources correspond to sidelink symbol resources.
  • DCI activation activate
  • de-activation de-activate, or release, release
  • mod represents a remainder operation
  • a mod b represents the remainder obtained by dividing a by b.
  • both UEs performing sidelink communication have network coverage (for example, the UE detects at least one cell that satisfies the "cell selection criterion" on the frequency where sidelink communication needs to be performed, Indicates that the UE has network coverage).
  • Partial-Coverage sidelink communication one of the UEs performing sidelink communication has no network coverage, and the other UE has network coverage.
  • the UE From the UE side, the UE has only two scenarios: no network coverage and network coverage. Part of the network coverage is described in terms of sidelink communication.
  • FIG. 1 is a schematic diagram illustrating sideline communication of an LTE V2X UE.
  • UE1 sends sideline communication control information (SCI format 1) to UE2, which is carried by the physical layer channel PSCCH.
  • SCI format 1 contains PSSCH scheduling information, such as PSSCH frequency domain resources.
  • UE1 sends sideline communication data to UE2, which is carried by the physical layer channel PSSCH.
  • the PSCCH and the corresponding PSSCH are in a frequency division multiplexing manner, that is, the PSCCH and the corresponding PSSCH are located in the same subframe in the time domain, and are located in different RBs in the frequency domain.
  • the specific design methods of PSCCH and PSSCH are as follows:
  • SCI format 1 can be carried in PSCCH, wherein SCI format 1 at least includes frequency domain resource information of PSSCH. For example, for the frequency domain resource indication field, SCI format 1 indicates the starting sub-channel number and the number of consecutive sub-channels of the PSSCH corresponding to the PSCCH.
  • PSSCH occupies one subframe in the time domain, and adopts frequency division multiplexing (FDM) with the corresponding PSCCH.
  • PSSCH occupies one or more consecutive sub-channels in the frequency domain, sub-channels represent n subCHsize consecutive RBs in the frequency domain, n subCHsize is configured by the RRC parameter, the number of starting sub-channels and consecutive sub-channels Indicated by the frequency domain resource indication field of SCI format 1.
  • FIG. 2 shows two resource allocation methods of LTE V2X, which are respectively called resource allocation based on base station scheduling (Transmission Mode 3) and resource allocation based on UE sensing (Transmission Mode 4).
  • the base station can configure the resource allocation mode of the UE through UE-level dedicated RRC signaling (dedicated RRC signaling) SL-V2X-ConfigDedicated, or the transmission mode of the UE. ,Specifically:
  • Resource allocation method based on base station scheduling indicates that the frequency domain resources used for sidelink communication come from the scheduling of the base station.
  • Transmission mode 3 includes two scheduling methods, namely dynamic scheduling and semi-persistent scheduling (SPS).
  • SPS semi-persistent scheduling
  • the UL grant (DCI format 5A) includes the frequency domain resources of PSSCH, and the CRC of the PDCCH or EPDCCH carrying the DCI format 5A is scrambled by SL-V-RNTI.
  • the base station configures one or more (up to 8) configured scheduling grants (configured grants) through IE: SPS-ConfigSL-r14, each configured scheduling grant contains a scheduling grant number (index) and scheduling grants Licensed resource period.
  • the UL grant (DCI format 5A) includes the frequency domain resources of the PSSCH, and the indication information (3 bits) of the scheduling grant number and the indication information of the SPS activation (activate) or release (release, or deactivation).
  • the CRC of the PDCCH or EPDCCH carrying DCI format 5A is scrambled by SL-SPS-V-RNTI.
  • the RRC signaling SL-V2X-ConfigDedicated when the RRC signaling SL-V2X-ConfigDedicated is set to scheduled-r14, it indicates that the UE is configured as a transmission mode based on the base station scheduling.
  • the base station configures SL-V-RNTI or SL-SPS-V-RNTI through RRC signaling, and uses PDCCH or EPDCCH (DCI format 5A, the CRC is scrambled with SL-V-RNTI or scrambled with SL-SPS-V-RNTI) ) sends an uplink scheduling grant UL grant to the UE.
  • the above-mentioned uplink scheduling grant UL grant at least includes scheduling information of PSSCH frequency domain resources in sidelink communication.
  • the UE When the UE successfully monitors the PDCCH or EPDCCH scrambled by SL-V-RNTI or SL-SPS-V-RNTI, it uses the PSSCH frequency domain resource indication field in the uplink scheduling grant UL grant (DCI format 5A) as the PSCCH Indication information of the frequency domain resources of PSSCH in (SCI format 1), and send PSCCH (SCI format 1) and the corresponding PSSCH.
  • DCI format 5A the PSSCH frequency domain resource indication field in the uplink scheduling grant UL grant
  • the UE receives SL-SPS-V-RNTI scrambled DCI format 5A on downlink subframe n. If the indication information of SPS activation is included in the DCI format 5A, the UE determines the frequency domain resources of the PSSCH according to the indication information in the DCI format 5A, and determines the time domain resources of the PSSCH (the transmission subframe of the PSSCH) according to information such as subframe n.
  • Resource allocation method based on UE sensing indicates that the resources used for sidelink communication are based on the UE sensing process of the set of candidate available resources.
  • the RRC signaling SL-V2X-ConfigDedicated is set to ue-Selected-r14, it indicates that the UE is configured as the transmission mode based on UE sensing.
  • the base station configures the available transmission resource pool, and the UE determines the PSSCH sidelink transmission resources in the transmission resource pool (resource pool) according to certain rules (see the LTE V2X UE sensing process section for a detailed process description). , and send PSCCH (SCI format 1) and corresponding PSSCH.
  • the carriers involved in the description of the present invention all represent a continuous segment of frequency domain resources in the frequency domain.
  • the NR carrier represents the frequency at which the serving cell of the UE works.
  • the UE performs reception of downlink transmission from the base station and uplink transmission of the UE itself.
  • the sidelink carrier indicates the frequency at which the UE performs sidelink communication transmission and reception.
  • a sidelink carrier referred to in the description of the present invention may represent an NR sidelink carrier, or an LTE sidelink carrier.
  • the UE transmits and receives the NR sidelink communication; on the LTE sidelink carrier, the UE performs the transmission and reception of the LTE sidelink communication.
  • Two identical carriers indicate that the frequency domain resources occupied by the two carriers are exactly the same; if the frequency domain resources of the two carriers do not completely overlap, the two carriers are called different carriers.
  • the parameter set numerology includes the subcarrier spacing and the cyclic prefix CP length.
  • Table 4.2-1 shows the set of supported transmission parameters, as follows shown.
  • ⁇ ⁇ f 2 ⁇ ⁇ 15[kHz] CP (Cyclic Prefix) 0 15 normal 1 30 normal 2 60 normal, extended 3 120 normal 4 240 normal
  • each slot (slot) contains 14 OFDM symbols; for extended CP, each slot contains 12 OFDM symbols.
  • NR and LTE have the same definition of subframe, which means lms.
  • subframe means lms.
  • the slot number in a subframe (1ms) can be expressed as The range is 0 to
  • the slot number in a system frame (frame, duration 10ms) can be expressed as The range is 0 to in, and
  • the definitions of the cases at different subcarrier spacing ⁇ are shown in the table below.
  • Table 4.3.2-1 The number of symbols contained in each slot in normal CP, the number of slots contained in each system frame, and the number of slots contained in each subframe
  • Table 4.3.2-2 The number of symbols contained in each slot when the CP is extended (60kHz), the number of slots contained in each system frame, and the number of slots contained in each subframe
  • the numbered SFN of a system frame ranges from 0 to 1023.
  • the concept of direct system frame number DFN is introduced in sideline communication, and the numbering range is also 0 to 1023.
  • the above description of the relationship between system frame and numerology can also be applied to direct system frame (Direct Frame).
  • a direct The duration of the system frame is also equal to 10ms, for a subcarrier spacing of 15kHz, a direct system frame includes 10 time slots, and so on.
  • DFN is used for timing on sidelink carriers.
  • the double frame number involved in the description of the present invention represents the number of two consecutive frames in the time domain.
  • the 20ms corresponding to the frame number include two consecutive system frames, the first frame is an even-numbered frame, and the second frame is an odd-numbered frame; or, the first frame is an odd-numbered frame, and the second frame is an even-numbered frame, which is not limited in the present invention .
  • the NR base station gNB configures cell-level TDD configuration information through TDD-UL-DL-ConfigCommon in SIB1, including:
  • ⁇ High-level parameter pattern1 (this information element is mandatory, indicating TDD configuration pattern 1, the same below), including the following high-level parameters:
  • the number of downlink time slots d slots the downlink time slots only contain downlink OFDM symbols (can be called DL-only time slots);
  • the number of uplink time slots u slots the uplink time slot only contains the uplink OFDM symbols (can be called UL-only time slot);
  • the period of the above configuration information is Pms, corresponding to continuous time slot.
  • the first d slots are downlink time slots
  • the u slots are upstream time slots located at the end of the S time slots.
  • d sym downlink OFDM symbols are located after d slots downlink time slots
  • u sym uplink OFDM symbols are located in front of u slots uplink time slots
  • the OFDM symbols are X symbols (X represents flexible symbols).
  • the X symbol may be a downlink symbol, an uplink symbol, or a guard interval symbol between downlink and uplink in different application scenarios. Among them, for normal CP (Normal CP), For Extended CP (Extended CP),
  • the TDD-UL-DL-ConfigCommon in SIB1 may include the high-level parameter pattern2.
  • This information element is Pptal optional, indicating TDD configuration pattern 2, the same below).
  • the configuration information of pattern2 and pattern1 are in the same form (the parameters of pattern2 include: period P2, d slots, 2 , u slots, 2 , d sym, 2 , u sym, 2 ), and the corresponding parameters have the same meanings as the corresponding pattern1 parameters.
  • the reference subcarrier spacing ⁇ ref is the same as pattern1, so the reference subcarrier spacing ⁇ ref will not be configured repeatedly for pattern2 .
  • the period of the above configuration information is P2ms, corresponding to continuous time slot.
  • the first is d slots, 2 downlink time slots, u slots, and 2 uplink time slots are located at the end of the S2 time slots.
  • d sym 2 downlink OFDM symbols are located after the downlink time slot
  • u sym 2 uplink OFDM symbols are located in front of the uplink time slot
  • the OFDM symbols are X symbols (X represents flexible symbols).
  • the X symbol may be a downlink symbol, an uplink symbol, or a guard interval symbol between downlink and uplink in different application scenarios. Among them, for normal CP (Normal CP), For Extended CP (Extended CP),
  • the configuration period of the TDD configuration information is (P+P2)ms, including the above-mentioned S and S2 time slots (the first is S in the time domain, and the second is S2 ).
  • Periods P and P2 in the above configuration information must meet the following conditions:
  • P is a divisor of 20, that is, P is divisible by 20, and the first time domain symbol of every 20/P period must be the first symbol of an even frame;
  • P+P2 is a divisor of 20, that is, P+P2 is divisible by 20, and the first time-domain symbol of every 20/(P+P2) period must be the first symbol of an even frame.
  • the range of possible values for P and P2 includes ⁇ 0.5, 0.625, 1, 1.25, 2, 2.5, 5, 10 ⁇ ms.
  • the values of P and P2 also include 3ms and 4ms, which are represented by IE: dl-UL-TransmissionPeriodicity-v1530.
  • IE dl-UL-TransmissionPeriodicity-v1530.
  • the resources sent and received by the UE belong to the resource pool resource pool.
  • the base station schedules transmission resources for the sidelink UE in the resource pool, or, for the transmission mode based on UE perception in sidelink communication ( In the transmission mode 2) in the NR sideline communication, the UE determines the transmission resources in the resource pool.
  • the resources available for sidelink communication transmission may be simply referred to as sidelink communication time slot resources (sidelink slots) or logical time slot resources.
  • the base station may use the number of uplink time slots and the number of uplink symbols included in the same form as the NR TDD configuration pattern (pattern) (or, the sum of the number of uplink time slots and the number of time slots including X symbols), or, The base station indicates the available resources for the above-mentioned lateral communication transmission by the number of time slots available for the lateral communication included in the form of the same NR TDD configuration pattern.
  • the TDD configuration pattern 1 indicates that the number of time slots available for sideline communication in the period P is equal to or, equal to in,
  • represents the subcarrier spacing corresponding to the sideline communication carrier
  • ⁇ L represents the number of symbols in a slot
  • ⁇ Y is equal to the value of the RRC parameter sl-StartSymbol, indicating the number of the start symbol of sideline communication.
  • TDD configuration style 2 indicates that the number of time slots available for sideline communication in period P2 is equal to or, equal to in,
  • represents the subcarrier spacing corresponding to the sideline communication carrier
  • ⁇ L represents the number of symbols in a slot
  • ⁇ Y is equal to the value of the RRC parameter sl-StartSymbol, indicating the number of the start symbol of sideline communication.
  • the number of time slots available for sideline communication transmission is equal to or, equal to
  • the number of time slots available for sideline communication transmission involved in the present invention includes, but is not limited to, the above methods.
  • timeReferenceSFN Take timeReferenceSFN as an example, if timeReferenceSFN is even, then otherwise, Similarly, taking timeReferenceSFN as an example, if timeReferenceSFN is an even number, before the frame corresponding to timeReferenceSFN, there are a total of even-numbered frames, wherein each even-numbered frame contains the number of logical time slots N even ; a total of odd-numbered frames, where each odd-numbered frame contains a logical number of slots N odd .
  • timeReferenceSFN is an odd number, up to the frame corresponding to timeReferenceSFN, a total of even-numbered frames, wherein each even-numbered frame contains the number of logical time slots N even ; a total of odd-numbered frames, where each odd-numbered frame contains a logical number of slots N odd .
  • CG-based PUSCH transmission is also supported.
  • CG stands for configured grant, that is, represents a configured scheduling grant.
  • the base station configures the CG for the UE through RRC signaling.
  • the UE does not need to monitor the DCI dynamic scheduling including the UL grant, and can use the CG configured by the base station to send the PUSCH.
  • the base station configures parameters of PUSCH transmission through RRC signaling configuredGrantConfig, and the RRC signaling configuredGrantConfig includes rrc-ConfiguredUplinkGrant.
  • the configuration scheduling grant configuredGrantConfig includes at least the time domain resources, frequency domain resources and the period of the resources of the semi-persistently scheduled PUSCH.
  • rrc-ConfiguredUplinkGrant includes the scheduling of the above-mentioned time domain resources and frequency domain resources.
  • the UE does not need to monitor the uplink scheduling grant (UL grant) in the DCI.
  • the base station configures the type 1 CG (IE: configuredGrantConfig)
  • the UE can use the configured CG resources to transmit the PUSCH.
  • the base station configures the information of the configuration scheduling grant of type 1 for the UE through RRC signaling, wherein the configuration information for configuring the scheduling grant also includes the period of the resource.
  • the UE can use the resources corresponding to the configured CG for sidelink communication transmission.
  • the base station activates or deactivates the corresponding configuration scheduling grant through DCI.
  • the configuration information for configuring the scheduling permission also includes the period of the resource.
  • FIG. 3 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 1 of the present invention.
  • the steps performed by the user equipment include:
  • step S101 the user equipment receives the configuration information of the sidelink communication configuration scheduling grant sent by the base station gNB.
  • the configuration information of the sideline communication configuration scheduling permission includes a period for configuring the scheduling permission.
  • the configuration information of the sideline communication configuration scheduling permission includes the time domain resource offset timeDomainOffset for configuring the scheduling permission.
  • the user equipment determines that the closest system frame number SFN before (preceding) receiving the configuration information is timeReferenceSFN.
  • step S102 the user equipment determines, according to the timeDomainOffset, and/or floor(timeReferenceSFN/2), and/or the Periodicity, and/or N extra , the resources for configuring the scheduling permission indicated by the configuration information for configuring the scheduling permission .
  • the logical time slot where the S th resource (S th grant) of the configuration scheduling grant is located satisfies the following conditions:
  • ⁇ N represents the number of time slots (or, the number of logical time slots) available for the transmission of line communication within 20ms;
  • the logical slot number in the two consecutive frames represents the number of logical time slots in two (consecutive) frames (that is, within 20ms), optionally, 0 to N-1; optionally, the two The first (or, starting) frame of (consecutive) frames is an even frame or an odd frame;
  • ⁇ N extra in the above formula is optional, that is, N extra may not exist in the formula.
  • step S103 the user equipment transmits the PSSCH, or the PSSCH and the PSCCH, using the resource for which the configuration scheduling grant is made.
  • FIG. 3 is a schematic diagram illustrating a basic process of a method executed by a user equipment according to Embodiment 2 of the present invention.
  • the steps performed by the user equipment include:
  • step S101 the user equipment receives the configuration information of the sidelink communication configuration scheduling grant sent by the base station gNB.
  • the configuration information of the sideline communication configuration scheduling permission includes a period for configuring the scheduling permission.
  • the configuration information of the sideline communication configuration scheduling permission includes the time domain resource offset timeDomainOffset for configuring the scheduling permission.
  • the user equipment determines that the closest system frame number SFN before (preceding) receiving the configuration information is timeReferenceSFN.
  • step S102 the user equipment transmits the average N average of the number of available time slots according to the timeDomainOffset, and/or the Periodicity, and/or the sideline communication in two consecutive system frames, and/or floor(timeReferenceSFN/2 ), and/or N extra , to determine the resource for configuring the scheduling permission indicated by the configuration information for configuring the scheduling permission.
  • the logical time slot where the S th resource (S th grant) of the configuration scheduling grant is located satisfies the following conditions:
  • the logical slot number in the two consecutive frames represents the number of logical time slots in two (consecutive) frames (that is, within 20ms), optionally, 0 to N-1; optionally, the two The first (or, starting) frame of (consecutive) frames is an even frame or an odd frame;
  • ⁇ N extra in the above formula is optional, that is, N extra may not exist in the formula.
  • step S103 the user equipment transmits the PSSCH, or the PSSCH and the PSCCH, using the resource for which the configuration scheduling grant is made.
  • FIG. 3 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 3 of the present invention.
  • Embodiment 3 of the present invention will be described in detail with reference to the basic process diagram shown in FIG. 3 .
  • the steps performed by the user equipment include:
  • step S101 the user equipment receives the configuration information of the sidelink communication configuration scheduling grant sent by the base station gNB.
  • the configuration information of the sideline communication configuration scheduling permission includes a period for configuring the scheduling permission.
  • the configuration information of the sideline communication configuration scheduling permission includes the time domain resource offset timeDomainOffset for configuring the scheduling permission.
  • the user equipment determines that the number of the closest double frame before (preceding) receiving the configuration information is timeReferenceSFN 2 .
  • step S102 the user equipment determines, according to the timeDomainOffset, and/or the Periodicity, and/or the double frame number SFN 2 , and/or the timeReferenceSFN 2 , the configuration scheduling permission indicated by the configuration scheduling permission configuration information. resource.
  • the logical time slot where the S th resource (S th grant) of the configuration scheduling grant is located satisfies the following conditions:
  • ⁇ N represents the number of time slots (or, the number of logical time slots) available for the transmission of line communication within 20ms;
  • the logical slot number in the two consecutive frames represents the number of logical time slots in two (consecutive) frames (that is, within 20ms), optionally, 0 to N-1; optionally, the two The first (or, starting) frame of (consecutive) frames is an even frame or an odd frame;
  • step S103 the user equipment transmits the PSSCH, or the PSSCH and the PSCCH, using the resource for which the configuration scheduling grant is made.
  • FIG. 3 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 4 of the present invention.
  • Embodiment 4 of the present invention will be described in detail with reference to the basic process diagram shown in FIG. 3 .
  • the steps performed by the user equipment include:
  • step S101 the user equipment receives the configuration information of the sidelink communication configuration scheduling grant sent by the base station gNB.
  • the configuration information of the sideline communication configuration scheduling permission includes a period for configuring the scheduling permission.
  • the configuration information of the sideline communication configuration scheduling permission includes the time domain resource offset timeDomainOffset for configuring the scheduling permission.
  • the user equipment determines that the closest system frame number SFN before (preceding) receiving the configuration information is timeReferenceSFN.
  • step S102 the user equipment determines the configuration scheduling permission according to the timeDomainOffset, and/or floor(timeReferenceSFN/2), and/or the Periodicity, and/or N extra,1 , and/or N extra,2
  • the configuration information indicates the resource that is configured to schedule the permission.
  • the logical time slot where the S th resource (S th grant) of the configuration scheduling grant is located satisfies the following conditions:
  • ⁇ N represents the number of time slots (or, the number of logical time slots) available for the transmission of line communication within 20ms;
  • the logical slot number in the frame represents the number of the logical time slot in a system frame (numbered as SFN);
  • N extra, 1 is optional, that is, N extra, 1 may not exist in the formula.
  • N extra, 2 0; otherwise, N extra, 2 is equal to the number of available time slots for sideline communication transmission within an even frame (or, within an odd frame) (or, the number of logical slots),
  • Nextra ,2 0; otherwise, Nextra ,2 is equal to the number of available time slots for sideline communication transmission in an odd-numbered frame (or, in an even-numbered frame) (or, number of logical slots);
  • N extra, 2 is optional, that is, N extra, 2 may not exist in the formula.
  • step S103 the user equipment transmits the PSSCH, or the PSSCH and the PSCCH, using the resource for which the configuration scheduling grant is made.
  • FIG. 3 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 5 of the present invention.
  • Embodiment 5 of the present invention will be described in detail with reference to the basic process diagram shown in FIG. 3 .
  • the steps performed by the user equipment include:
  • step S101 the user equipment receives the configuration information of the sidelink communication configuration scheduling grant sent by the base station gNB.
  • the configuration information of the sideline communication configuration scheduling permission includes a period for configuring the scheduling permission.
  • the configuration information of the sideline communication configuration scheduling permission includes the time domain resource offset timeDomainOffset for configuring the scheduling permission.
  • the user equipment determines that the closest system frame number SFN before (preceding) receiving the configuration information is timeReferenceSFN.
  • step S102 the user equipment transmits the average N average of the number of available time slots according to the timeDomainOffset, and/or the Periodicity, and/or the sideline communication in two consecutive system frames, and/or floor(timeReferenceSFN/2 ), and/or N extra, 1 , and/or N extra, 2 , determine the resources for which the configuration scheduling permission is indicated by the configuration information of the configuration scheduling permission.
  • the logical time slot where the S th resource (S th grant) of the configuration scheduling grant is located satisfies the following conditions:
  • the logical slot number in the frame represents the number of the logical time slot in a system frame (numbered as SFN);
  • N extra, 1 is optional, that is, N extra, 1 may not exist in the formula.
  • N extra, 2 is optional, that is, N extra, 2 may not exist in the formula.
  • step S103 the user equipment transmits the PSSCH, or the PSSCH and the PSCCH, using the resource for which the configuration scheduling grant is made.
  • FIG. 4 is a block diagram showing a user equipment UE according to the present invention.
  • the user equipment UE80 includes a processor 801 and a memory 802 .
  • the processor 801 may include, for example, a microprocessor, a microcontroller, an embedded processor, or the like.
  • the memory 802 may include, for example, volatile memory (eg, random access memory RAM), a hard disk drive (HDD), non-volatile memory (eg, flash memory), or other memory, or the like.
  • Program instructions are stored on the memory 802 . When the instructions are executed by the processor 801, the above method described in detail in the present invention and executed by the user equipment can be executed.
  • the method and related apparatus of the present invention have been described above with reference to the preferred embodiments. Those skilled in the art can understand that the methods shown above are only exemplary, and the various embodiments described above can be combined with each other under the condition that no contradiction occurs.
  • the method of the present invention is not limited to the steps and sequences shown above.
  • the network node and user equipment shown above may include more modules, for example, may also include modules that can be developed or developed in the future and can be used for base stations, MMEs, or UEs, and so on.
  • the various identifiers shown above are only exemplary and not restrictive, and the present invention is not limited to the specific information elements exemplified by these identifiers. Numerous changes and modifications may occur to those skilled in the art in light of the teachings of the illustrated embodiments.
  • the above-described embodiments of the present invention may be implemented by software, hardware, or a combination of both.
  • the various components inside the base station and the user equipment in the above embodiments may be implemented by various devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing Controllers, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), Programmable Logic Devices (CPLDs), etc.
  • DSP digital signal processing
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • CPLDs Programmable Logic Devices
  • base station may refer to a mobile communication data and control switching center with larger transmission power and wider coverage area, including functions such as resource allocation and scheduling, data reception and transmission, and the like.
  • User equipment may refer to a user mobile terminal, for example, including a mobile phone, a notebook, and other terminal equipment that can wirelessly communicate with a base station or a micro base station.
  • embodiments of the invention disclosed herein may be implemented on a computer program product.
  • the computer program product is a product having a computer-readable medium on which computer program logic is encoded that, when executed on a computing device, provides relevant operations to achieve The above technical solutions of the present invention.
  • computer program logic When executed on at least one processor of a computing system, computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present invention.
  • Such arrangements of the present invention are typically provided as software, code and/or other data structures arranged or encoded on a computer readable medium such as an optical medium (eg CD-ROM), floppy or hard disk, or such as one or more Firmware or other medium of microcode on a ROM or RAM or PROM chip, or a downloadable software image in one or more modules, a shared database, etc.
  • Software or firmware or such a configuration may be installed on a computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
  • each functional module or each feature of the base station device and the terminal device used in each of the above embodiments may be implemented or executed by a circuit, which is usually one or more integrated circuits.
  • Circuits designed to perform the various functions described in this specification may include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs) or general purpose integrated circuits, field programmable gate arrays (FPGAs) or other Program logic devices, discrete gate or transistor logic, or discrete hardware components, or any combination of the above.
  • a general-purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
  • the general-purpose processor or each circuit described above may be configured by digital circuits, or may be configured by logic circuits.
  • the present invention can also use the integrated circuit obtained by using the advanced technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种由用户设备执行的方法以及用户设备,所述方法包括:接收基站gNB发送的侧行通信配置调度许可configured grant的配置信息;根据至少Nextra确定所述配置调度许可的配置信息指示的配置调度许可的资源;使用所述配置调度许可的资源发送物理侧行通信共享信道PSSCH。

Description

由用户设备执行的方法以及用户设备 技术领域
本发明涉及无线通信技术领域,具体涉及由用户设备执行的方法以及相应的用户设备。
背景技术
在传统的蜂窝网络中,所有的通信都必须经过基站。不同的是,D2D通信(Device-to-Device communication,设备到设备间直接通信)是指两个用户设备之间不经过基站或者核心网的转发而直接进行的通信方式。在2014年3月第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的RAN#63次全会上,关于利用LTE设备实现临近D2D通信业务的研究课题获得批准(参见非专利文献1)。LTE Release 12 D2D引入的功能包括:
1)LTE网络覆盖场景下临近设备之间的发现功能(Discovery);
2)临近设备间的直接广播通信(Broadcast)功能;
3)高层支持单播(Unicast)和组播(Groupcast)通信功能。
在2014年12月的3GPP RAN#66全会上,增强的LTE eD2D(enhanced D2D)的研究项目获得批准(参见非专利文献2)。LTE Release 13 eD2D引入的主要功能包括:
1)无网络覆盖场景和部分网络覆盖场景的D2D发现;
2)D2D通信的优先级处理机制。
基于D2D通信机制的设计,在2015年6月3GPP的RAN#68次全会上,批准了基于D2D通信的V2X可行性研究课题。V2X表示Vehicle to everything,希望实现车辆与一切可能影响车辆的实体信息交互,目的是减少事故发生,减缓交通拥堵,降低环境污染以及提供其他信息服务。V2X的应用场景主要包含4个方面:
1)V2V,Vehicle to Vehicle,即车-车通信;
2)V2P,Vehicle to Pedestrian,即车给行人或非机动车发送警告;
3)V2N,Vehicle to Network,即车辆连接移动网络;
4)V2I,Vehicle to Infrastructure,即车辆与道路基础设施等通信。
3GPP将V2X的研究与标准化工作分为3个阶段。第一阶段于2016年9月完成,主要聚焦于V2V,基于LTE Release 12和Release 13 D2D(也可称为sidelink侧行通信),即邻近通信技术制定(参见非专利文献3)。V2X stage 1引入了一种新的D2D通信接口,称为PC5接口。PC5接口主要用于解决高速(最高250公里/小时)及高节点密度环境下的蜂窝车联网通信问题。车辆可以通过PC5接口进行诸如位置、速度和方向等信息的交互,即车辆间可通过PC5接口进行直接通信。相较于D2D设备间的临近通信,LTE Release 14 V2X引入的功能主要包含:
1)更高密度的DMRS以支持高速场景;
2)引入子信道(sub-channel),增强资源分配方式;
3)引入具有半静态调度(semi-persistent)的用户设备感知(sensing)机制。
V2X研究课题的第二阶段归属于LTE Release 15研究范畴(参见非专利文献4),引入的主要特性包含高阶64QAM调制、V2X载波聚合、短TTI传输,同时包含发射分集的可行性研究。
在2018年6月3GPP RAN#80全会上,相应的第三阶段基于5G NR网络技术的V2X可行性研究课题(参见非专利文献5)获得批准。
在2019年1月3GPP RAN1 AH#1901次会议上(参见非专利文献6),关于NR sidelink中传输模式1,达成了如下会议结论:
当NR基站gNB调度NR侧行通信传输模式1时,支持类型1的配置调度许可(Type 1 configured grant)和类型2的配置调度许可(Type 2 configured grant)。
在2019年4月3GPP RAN1#96bis会议上(参见非专利文献7),关于在NR侧行通信中的配置调度许可,达成了如下会议结论:
侧行通信中的类型1或者类型2的配置调度许可表示用于一个或者多个NR侧行通信传输(multiple sidelink transmissions)的周期资源(periodic resources)的集合(set)。
本发明的方案包括在NR侧行通信中,用户设备确定配置调度许可的周期性资源的方法。
现有技术文献
非专利文献
非专利文献1:RP-140518,Work item proposal on LTE Device to Device Proximity Services
非专利文献2:RP-142311,Work Item Proposal for Enhanced LTE Device to Device Proximity Services
非专利文献3:RP-152293,New WI proposal:Support for V2V services based on LTE sidelink
非专利文献4:RP-170798,New WID on 3GPP V2X Phase 2
非专利文献5:RP-181480,New SID Proposal:Study on NR V2X
非专利文献6:RAN1AH#1901,Chairman notes,section 7.2.4.1.4
非专利文献7:RAN1#96bis,Chairman notes,section 7.2.4.2.1
发明内容
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备。
根据本发明的第一方面的由用户设备执行的方法,包括:接收基站gNB发送的侧行通信配置调度许可configured grant的配置信息;根据至少N extra确定所述配置调度许可的配置信息指示的配置调度许可的资源;使用所述配置调度许可的资源发送物理侧行通信共享信道PSSCH,所述用户设备为侧行通信用户设备。
根据本发明的第一方面的方法,所述侧行通信配置调度许可的配置信息中包括配置调度许可的周期Periodicity,以及,包括配置调度许可的时域资源偏移量timeDomainOffset。
根据本发明的第一方面的方法,还包括:确定接收所述配置信息之前 最近的系统帧号为timeReferenceSFN。
根据本发明的第一方面的方法,还包括:确定接收所述配置信息之前最近的双帧编号为timeReferenceSFN 2
根据本发明的第一方面的方法,所述用户设备根据所述timeDomainOffset,和floor(timeReferenceSFN/2),和所述Periodicity,和所述N extra,确定所述配置调度许可的配置信息指示的配置调度许可的资源。
根据本发明的第一方面的方法,如果所述timeReferenceSFN表示一个偶数帧,那么所述N extra=0;否则,所述N extra等于一个偶数帧内的侧行通信传输可用时隙的数目。
根据本发明的第一方面的方法,所述配置调度许可的第S个资源(S th grant)所在的逻辑时隙满足下述条件:
Figure PCTCN2021109690-appb-000001
其中,
■N表示20ms内侧行通信传输可用的时隙数目(或者,逻辑时隙的数目);
■logical slot number in the two consecutive frames表示在两个连续的帧内逻辑时隙的编号;所述两个连续的帧的首个帧为一个偶数帧;
■sl_periodicity等于
Figure PCTCN2021109690-appb-000002
根据本发明的第一方面的方法,所述用户设备根据所述 timeDomainOffset,和floor(timeReferenceSFN/2),和所述Periodicity,和所述N extra,和两个连续系统帧内的侧行通信传输可用时隙数目的平均值N average,确定所述配置调度许可的配置信息指示的配置调度许可的资源。
根据本发明的第一方面的方法,所述用户设备根据所述timeDomainOffset,和所述Periodicity,和双帧编号SFN 2,和所述timeReferenceSFN 2,确定所述配置调度许可的配置信息指示的配置调度许可的资源。
根据本发明的第二方面的通信设备,是具有分组数据汇聚协议PDCP实体的通信设备,包括:处理器;以及存储器,存储有指令;其中,所述指令在由所述处理器运行时执行上述第一方面的所述方法。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1是示出了LTE V2X UE侧行通信的示意图。
图2是示出了LTE V2X的资源分配方式的示意图。
图3是示出了发明的实施例一、实施例二、实施例三、实施例四、实施例五中由用户设备执行的方法的基本过程的示意图。
图4是示出了根据本发明的实施例的用户设备的框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
下文以5G移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限 于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G移动通信系统等。
下面描述本发明涉及的部分术语,如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的通信系统中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划
LTE:Long Term Evolution,长期演进技术
NR:New Radio,新无线、新空口
PDCCH:Physical Downlink Control Channel,物理下行控制信道
DCI:Downlink Control Information,下行控制信息
PDSCH:Physical Downlink Shared Channel,物理下行共享信道
UE:User Equipment,用户设备
eNB:evolved NodeB,演进型基站
gNB:NR基站
TTI:Transmission Time Interval,传输时间间隔
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
CP-OFDM:Cyclic Prefix Orthogonal Frequency Division Multiplexing,带有循环前缀的正交频分复用
C-RNTI:Cell Radio Network Temporary Identifier,小区无线网络临时标识
CSI:Channel State Information,信道状态信息
HARQ:Hybrid Automatic Repeat Request,混合自动重传请求
CSI-RS:Channel State Information Reference Signal,信道状态信息参考信号
CRS:Cell Reference Signal,小区特定参考信号
PUCCH:Physical Uplink Control Channel,物理上行控制信道
PUSCH:Physical Uplink Shared Channel,物理上行共享信道
UL-SCH:Uplink Shared Channel,上行共享信道
CG:Configured Grant,配置调度许可
Sidelink:侧行通信
SCI:Sidelink Control Information,侧行通信控制信息
PSCCH:Physical Sidelink Control Channel,物理侧行通信控制信道
MCS:Modulation and Coding Scheme,调制编码方案
RB:Resource Block,资源块
RE:Resource Element,资源单元
CRB:Common Resource Block,公共资源块
CP:Cyclic Prefix,循环前缀
PRB:Physical Resource Block,物理资源块
PSSCH:Physical Sidelink Shared Channel,物理侧行通信共享信道
FDM:Frequency Division Multiplexing,频分复用
RRC:Radio Resource Control,无线资源控制
RSRP:Reference Signal Receiving Power,参考信号接收功率
SRS:Sounding Reference Signal,探测参考信号
DMRS:Demodulation Reference Signal,解调参考信号
CRC:Cyclic Redundancy Check,循环冗余校验
PSDCH:Physical Sidelink Discovery Channel,物理侧行通信发现信道
PSBCH:Physical Sidelink Broadcast Channel,物理侧行通信广播信道
SFI:Slot Format Indication,时隙格式指示
TDD:Time Division Duplexing,时分双工
FDD:Frequency Division Duplexing,频分双工
SIB1:System Information Block Type 1,系统信息块类型1
SLSS:Sidelink synchronization Signal,侧行通信同步信号
PSSS:Primary Sidelink Synchronization Signal,侧行通信主同步信号
SSSS:Secondary Sidelink Synchronization Signal,侧行通信辅同步信号
PCI:Physical Cell ID,物理小区标识
PSS:Primary Synchronization Signal,主同步信号
SSS:Secondary Synchronization Signal,辅同步信号
BWP:BandWidth Part,带宽片段/部分
GNSS:Global Navigation Satellite System,全球导航卫星定位系统
SFN:System Frame Number,系统(无线)帧号
DFN:Direct Frame Number,直接帧号
IE:Information Element,信息元素
SSB:Synchronization Signal Block,同步系统信息块
EN-DC:EUTRA-NR Dual Connection,LTE-NR双连接
MCG:Master Cell Group,主小区组
SCG:Secondary Cell Group,辅小区组
PCell:Primary Cell,主小区
SCell:Secondary Cell,辅小区
PSFCH:Physical Sidelink Feedback Channel,物理侧行通信反馈信道
SPS:Semi-Persistant Scheduling,半静态调度
TA:Timing Advance,上行定时提前量
PT-RS:Phase-Tracking Reference Signals,相位跟踪参考信号
TB:Transport Block,传输块
CB:Code Block,编码块/码块
QPSK:Quadrature Phase Shift Keying,正交相移键控
16/64/256 QAM:16/64/256 Quadrature Amplitude Modulation,正交幅度调制
AGC:Auto Gain Control,自动增益控制
TDRA(field):Time Domain Resource Assignment,时域资源分配指示(域)
FDRA(field):Frequency Domain Resource Assignment,频域资源分配指示(域)
ARFCN:Absolute Radio Frequency Channel Number,绝对无线频率信道编号
SC-FDMA:Single Carrier-Frequency Division Multiple Access,单载波-频分复用多址
MAC:Medium Access Control,媒体接入控制层
下文是与本发明方案相关联现有技术的描述。如无特别说明,具体实施例中与现有技术中相同术语的含义相同。
值得指出的是,本发明说明书中涉及的V2X与sidelink含义相同。文中的V2X也可以表示sidelink;相似地,文中的sidelink也可以表示V2X,后文中不做具体区分和限定。
本发明的说明书中的V2X(sidelink)通信的资源分配方式与V2X(sidelink)通信的传输模式可以等同替换。说明书中涉及的资源分配方式可以表示传输模式,以及,涉及的传输模式可以表示资源分配方式。
本发明的说明书中的V2X(sidelink)通信的资源分配方式与V2X(sidelink)通信的传输模式可以等同替换。说明书中涉及的资源分配方式可以表示传输模式,以及,涉及的传输模式可以表示资源分配方式。在NR侧行通信中,传输模式1表示基于基站调度的传输模式(资源分配方式);传输模式2表示基于用户设备感知(sensing)和资源选择的传输模式(资源分配方式)。
本发明中涉及的上下行配置信息和TDD配置信息含义相同。文中的上下行配置信息和TDD配置信息可以等同替换。相似地,sidelink上下行配置信息和sidelink TDD配置信息可以等同替换,二者表示的含义相同。
本发明实施例中涉及的TDD配置信息和sidelink TDD配置信息包括至少一种TDD配置样式。TDD配置样式中包含相应的配置信息,例如配置周期,参考子载波间隔等。
本发明的说明书中上行资源可以指代sidelink资源,以及,sidelink资源可以表示上行资源。相似地,上行时隙资源对应sidelink时隙资源,以及,上行符号资源对应sidelink符号资源。
本发明的说明书中类型1的配置调度许可和侧行通信中的类型1的配置调度许可都表示该配置调度许可无需下行控制信息DCI激活(activate)或者去激活(de-activate,或者,释放,release),当配置了类型1的配置调度许可后,UE的MAC实体(MAC entity)将会储存该配置调度许可,用于侧行通信传输。
本发明的说明书中mod表示求余数运算,例如a mod b表示a除以b 得到的余数。
Sidelink通信的场景
1)无网络覆盖(Out-of-Coverage)侧行通信:进行sidelink通信的两个UE都没有网络覆盖(例如,UE在需要进行sidelink通信的频率上检测不到任何满足“小区选择准则”的小区,表示该UE无网络覆盖)。
2)有网络覆盖(In-Coverage)侧行通信:进行sidelink通信的两个UE都有网络覆盖(例如,UE在需要进行sidelink通信的频率上至少检测到一个满足“小区选择准则”的小区,表示该UE有网络覆盖)。
3)部分网络覆盖(Partial-Coverage)侧行通信:进行sidelink通信的其中一个UE无网络覆盖,另一个UE有网络覆盖。
从UE侧来讲,该UE仅有无网络覆盖和有网络覆盖两种场景。部分网络覆盖是从sidelink通信的角度来描述的。
LTE V2X(sidelink)通信的基本过程
图1是示出了LTE V2X UE侧行通信的示意图。首先,UE1向UE2发送侧行通信控制信息(SCI format 1),由物理层信道PSCCH携带。SCI format 1包含PSSCH的调度信息,例如PSSCH的频域资源等。其次,UE1向UE2发送侧行通信数据,由物理层信道PSSCH携带。PSCCH和相应的PSSCH采用频分复用的方式,即PSCCH和相应的PSSCH在时域上位于相同的子帧上,在频域上位于不同的RB上。PSCCH和PSSCH的具体设计方式如下:
1)PSCCH在时域上占据一个子帧,频域上占据两个连续的RB。加扰序列的初始化采用预定义数值510。PSCCH中可携带SCI format 1,其中SCI format 1至少包含PSSCH的频域资源信息。例如,对于频域资源指示域,SCI format 1指示该PSCCH对应的 PSSCH的起始sub-channel编号和连续sub-channel的数目。
2)PSSCH在时域上占据一个子帧,和对应的PSCCH采用频分复用(FDM)。PSSCH在频域上占据一个或者多个连续的sub-channel,sub-channel在频域上表示n subCHsize个连续的RB,n subCHsize由RRC参数配置,起始sub-channel和连续sub-channel的数目由SCI format 1的频域资源指示域指示。
LTE V2X的资源分配方式Transmission Mode 3/4
图2是示出了LTE V2X的两种资源分配方式,分别称为基于基站调度的资源分配(Transmission Mode 3)和基于UE感知(sensing)的资源分配(Transmission Mode 4)。LTE V2X中,当存在eNB网络覆盖的情况下,基站可通过UE级的专有RRC信令(dedicated RRC signaling)SL-V2X-ConfigDedicated配置该UE的资源分配方式,或称为该UE的传输模式,具体为:
1)基于基站调度的资源分配方式(Transmission Mode 3):基于基站调度的资源分配方式表示sidelink侧行通信所使用的频域资源来自于基站的调度。传输模式3包含两种调度方式,分别为动态调度和半静态调度(SPS)。对于动态调度,UL grant(DCI format 5A)中包括PSSCH的频域资源,承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-V-RNTI加扰。对于SPS半静态调度,基站通过IE:SPS-ConfigSL-r14配置一个或者多个(至多8个)配置的调度许可(configured grant),每个配置的调度许可含有一个调度许可编号(index)和调度许可的资源周期。UL grant(DCI format 5A)中包括PSSCH的频域资源,以及,调度许可编号的指示信息(3bits)和SPS激活(activate)或者释放(release,或者,去激活)的指示信息。承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-SPS-V-RNTI加扰。
具体地,当RRC信令SL-V2X-ConfigDedicated置为scheduled-r14时,表示该UE被配置为基于基站调度的传输模式。基站通过RRC 信令配置SL-V-RNTI或者SL-SPS-V-RNTI,并通过PDCCH或者EPDCCH(DCI format 5A,CRC采用SL-V-RNTI加扰或者采用SL-SPS-V-RNTI加扰)向UE发送上行调度许可UL grant。上述上行调度许可UL grant中至少包含sidelink通信中PSSCH频域资源的调度信息。当UE成功监听到由SL-V-RNTI加扰或者SL-SPS-V-RNTI加扰的PDCCH或者EPDCCH后,将上行调度许可UL grant(DCI format 5A)中的PSSCH频域资源指示域作为PSCCH(SCI format 1)中PSSCH的频域资源的指示信息,并发送PSCCH(SCI format 1)和相应的PSSCH。
对于传输模式3中的半静态调度SPS,UE在下行子帧n上接收SL-SPS-V-RNTI加扰的DCI format 5A。如果DCI format 5A中包含SPS激活的指示信息,该UE根据DCI format 5A中的指示信息确定PSSCH的频域资源,根据子帧n等信息确定PSSCH的时域资源(PSSCH的发送子帧)。
2)基于UE感知(sensing)的资源分配方式(Transmission Mode 4):基于UE sensing的资源分配方式表示用于sidelink通信的资源基于UE对候选可用资源集合的感知(sensing)过程。RRC信令SL-V2X-ConfigDedicated置为ue-Selected-r14时表示该UE被配置为基于UE sensing的传输模式。在基于UE sensing的传输模式中,基站配置可用的传输资源池,UE根据一定的规则(详细过程的描述参见LTE V2X UE sensing过程部分)在传输资源池(resource pool)中确定PSSCH的sidelink发送资源,并发送PSCCH(SCI format 1)和相应的PSSCH。
NR载波和sidelink载波
在本发明的说明书中涉及的载波均表示在频域上一段连续的频域资源。NR载波表示UE的服务小区serving cell工作的频率,在NR载波上,UE进行对于来自于基站的下行传输的接收和UE自身的上行传输等。Sidelink载波表示UE进行侧行通信发送和接收所在的频率。在本发明的 说明书中涉及的sidelink载波可以表示NR sidelink载波,或者,LTE sidelink载波。在NR sidelink载波上,UE进行NR侧行通信的传输和接收;在LTE sidelink载波上,UE进行LTE侧行通信的传输和接收。两个相同的载波表示两个载波占据的频域资源完全相同;如果两个载波的频域资源之间不完全重合,那么,这两个载波称作不同的载波。
NR中(包含NR sidelink)的参数集合(numerology)和NR中(包含NR  sidelink)的时隙slot
参数集合numerology包含子载波间隔和循环前缀CP长度两方面含义。其中,NR支持5种子载波间隔,分别为15k,30k,60k,120k,240kHz(对应μ=0,1,2,3,4),表格4.2-1示出了支持的传输参数集合,具体如下所示。
表4.2-1 NR支持的子载波间隔
μ Δf=2 μ·15[kHz] CP(循环前缀)
0 15 正常
1 30 正常
2 60 正常,扩展
3 120 正常
4 240 正常
仅当μ=2时,即60kHz子载波间隔的情况下支持扩展(Extended)CP,其他子载波间隔的情况仅支持正常CP。对于正常(Normal)CP,每个时隙(slot)含有14个OFDM符号;对于扩展CP,每个时隙含有12个OFDM符号。对于μ=0,即15kHz子载波间隔,1个时隙=1ms;μ=1,即30kHz子载波间隔,1个时隙=0.5ms;μ=2,即60kHz子载波间隔,1个时隙=0.25ms,以此类推。
NR和LTE对于子帧(subframe)的定义相同,表示lms。对于子载波间隔配置μ,1个子帧内(1ms)的slot编号可以表示为
Figure PCTCN2021109690-appb-000003
范围为0到
Figure PCTCN2021109690-appb-000004
1个系统帧(frame,时长10ms)内的slot编号可以表示为
Figure PCTCN2021109690-appb-000005
范围为0到
Figure PCTCN2021109690-appb-000006
其中,
Figure PCTCN2021109690-appb-000007
Figure PCTCN2021109690-appb-000008
在不同子载波间隔μ的情况的定义如下表格所示。
表格4.3.2-1:正常CP时每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
Figure PCTCN2021109690-appb-000009
表格4.3.2-2:扩展CP时(60kHz)每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
Figure PCTCN2021109690-appb-000010
在NR载波上,系统帧(或者,简称为帧)的编号SFN范围为0至1023。在侧行通信中引入了直接系统帧号DFN的概念,编号范围同样为0至1023,上述对于系统帧和numerology之间关系的叙述同样可以应用于直接系统帧(Direct Frame),例如,一个直接系统帧的时长同样等于10ms,对于15kHz的子载波间隔,一个直接系统帧包括10个时隙slot,等等。DFN应用于sidelink载波上的定时timing。
在本发明的说明书中涉及的双帧编号表示时域上两个连续的帧的编号,在SFN的编号为0-1023的基础上,双帧编号SFN 2的范围为0-511,每个双帧编号对应的20ms包含两个连续的系统帧,第一帧为偶数帧,第二帧为奇数帧;或者,第一帧为奇数帧,第二帧为偶数帧,本发明对此不做限制。
NR TDD配置信息的指示和确定方法
NR基站gNB通过SIB1中的TDD-UL-DL-ConfigCommon配置小区级的TDD配置信息,其中包括:
●参考的子载波间隔μ ref
●高层参数pattern1(该信息元素为必选,表示TDD配置样式1,下同),其中包括如下高层参数:
■配置周期P(ms);
■下行时隙数目d slots,下行时隙中仅含有下行OFDM符号(可 称为DL-only时隙);
■下行OFDM符号数目d sym
■上行时隙数目u slots,上行时隙中仅含有上行OFDM符号(可称为UL-only时隙);
■上行OFDM符号数目u sym
上述配置信息的周期为Pms,对应连续的
Figure PCTCN2021109690-appb-000011
个时隙。在S个时隙中,首先是d slots个下行时隙,u slots个上行时隙位于S个时隙的最后。d sym个下行OFDM符号位于d slots个下行时隙后,u sym个上行OFDM符号位于u slots个上行时隙前,其余的
Figure PCTCN2021109690-appb-000012
Figure PCTCN2021109690-appb-000013
个OFDM符号为X符号(X表示flexible符号)。X符号在不同的应用场景中可能为下行符号,或者上行符号,或者作为下行上行之间的保护间隔符号。其中,对于正常CP(Normal CP),
Figure PCTCN2021109690-appb-000014
对于扩展CP(Extended CP),
Figure PCTCN2021109690-appb-000015
SIB1中的TDD-UL-DL-ConfigCommon可能包含高层参数pattern2该信息元素为Pptional可选,表示TDD配置样式2,下同)。pattern2和pattern1的配置信息形式相同(pattern2的参数包括:周期P2,d slots,2,u slots,2,d sym,2,u sym,2),相应的参数含义与对应的pattern1参数相同。参考子载波间隔μ ref和pattern1相同,因此对于pattern2不会重复配置参考子载波间隔μ ref。上述配置信息的周期为P2ms,对应连续的
Figure PCTCN2021109690-appb-000016
个时隙。在S2个时隙中,首先是d slots,2个下行时隙,u slots,2个上行时隙位于S2个时隙的最后。d sym,2个下行OFDM符号位于下行时隙后,u sym,2个上行OFDM符号位于上行时隙前,其余的
Figure PCTCN2021109690-appb-000017
Figure PCTCN2021109690-appb-000018
个OFDM符号为X符号(X表示flexible符号)。X符号在不同的应用场景中可能为下行符号,或者上行符号,或者作为下行上行之间的保护间隔符号。其中,对于正常CP(Normal CP),
Figure PCTCN2021109690-appb-000019
对于扩展CP(Extended CP),
Figure PCTCN2021109690-appb-000020
当TDD-UL-DL-ConfigCommon同时包含pattern1和pattern2时,该TDD配置信息的配置周期为(P+P2)ms,包含上述的S和S2个时隙(时域上首先为S,其次为S2)。
上述配置信息中的周期P和P2需满足如下条件:
1)P为20的约数,即P可被20整除,同时需满足每20/P个周期的首个时域符号是偶数帧的首个符号;
2)P+P2为20的约数,即P+P2可被20整除,同时需满足每20/(P+P2)个周期的首个时域符号是偶数帧的首个符号。
P和P2的可取值范围包括{0.5,0.625,1,1.25,2,2.5,5,10}ms。P和P2的取值也包含3ms和4ms,由IE:dl-UL-TransmissionPeriodicity-v1530表示。当基站在pattern1/2中配置了dl-UL-TransmissionPeriodicity-v1530时,UE忽略对应pattern1/2的dl-UL-TransmissionPeriodicity。
侧行通信资源池(sidelink resource pool)
在侧行通信中,UE的发送和接收的资源均属于资源池resource pool。例如,对于侧行通信中基于基站调度的传输模式(NR侧行通信中传输模式1),基站在资源池中为sidelink UE调度传输资源,或者,对于侧行通信中基于UE感知的传输模式(NR侧行通信中传输模式2),UE在资源池中确定传输资源。
侧行通信传输可用的资源(slots that can be used for sidelink transmission, 或者,称为logical slots)
侧行通信传输可用的资源可以简称为侧行通信时隙资源(sidelink slots)或者逻辑时隙资源。可选地,基站可以通过和NR TDD配置样式(pattern)相同的形式所包含的上行时隙数目以及上行符号数目(或者,上行时隙数目和包含X符号的时隙数目的总和),或者,基站通过NR TDD配置样式相同的形式所包含的侧行通信可用的时隙数目来指示上述侧行通信传输可用的资源。以基站通过和NR TDD配置样式相同的形式指示NR侧行通信传输可用的时隙资源为例,TDD配置样式1指示周期P内 的侧行通信可用的时隙数目等于
Figure PCTCN2021109690-appb-000021
或者,等于
Figure PCTCN2021109690-appb-000022
其中,
■μ表示侧行通信载波对应的子载波间隔;
■L表示一个时隙中的符号数目;
■如果
Figure PCTCN2021109690-appb-000023
则I 1=1;否则,I 1=0。
○Y等于RRC参数sl-StartSymbol的数值,表示侧行通信起始符号的编号。
TDD配置样式2指示周期P2内的侧行通信可用的时隙数目等于
Figure PCTCN2021109690-appb-000024
或者,等于
Figure PCTCN2021109690-appb-000025
其中,
■μ表示侧行通信载波对应的子载波间隔;
■L表示一个时隙中的符号数目;
■如果
Figure PCTCN2021109690-appb-000026
则I 2=1;否则,I 2=0。
○Y等于RRC参数sl-StartSymbol的数值,表示侧行通信起始符号的编号。
根据上述方法,在时长(P+P2)ms内,侧行通信传输可用的时隙数目等于
Figure PCTCN2021109690-appb-000027
Figure PCTCN2021109690-appb-000028
或者,等于
Figure PCTCN2021109690-appb-000029
本发明中涉及的侧行通信传输可用的时隙数目包括但不限于上述方法。
另外,在本发明的说明书中,假设两个连续帧中(假设起始帧为偶数帧even frame)包含的侧行通信传输可用的时隙数目分别为N even和N odd,那么N=N even+N odd=2×N average,其中N表示20ms内侧行通信传输可用的时隙数目(或者,逻辑时隙的数目);N average表示两个连续系统帧内的侧行通信传输可用时隙数目的平均值。以及,
Figure PCTCN2021109690-appb-000030
Figure PCTCN2021109690-appb-000031
Figure PCTCN2021109690-appb-000032
以timeReferenceSFN为例,如果timeReferenceSFN为偶数,则
Figure PCTCN2021109690-appb-000033
否则,
Figure PCTCN2021109690-appb-000034
同样地,以timeReferenceSFN为例,如果timeReferenceSFN为偶数,截至timeReferenceSFN对应的帧以前,共含有
Figure PCTCN2021109690-appb-000035
Figure PCTCN2021109690-appb-000036
个偶数帧,其中每个偶数帧含有逻辑时隙数目N even;共含有
Figure PCTCN2021109690-appb-000037
个奇数帧,其中每个奇数帧含有逻辑时隙数目N odd。如果timeReferenceSFN为奇数,截至timeReferenceSFN对应的帧以前,共含有
Figure PCTCN2021109690-appb-000038
个偶数帧,其中每个偶数帧含有逻辑时隙数目N even;共含有
Figure PCTCN2021109690-appb-000039
个奇数帧,其中每个奇数帧含有逻辑时隙数目N odd
NR配置调度许可(CG)
Rel-15NR中在支持DCI动态调度PUSCH的基础上,同时支持基于CG的PUSCH传输。在本发明的说明书中,CG表示configured grant,即代表配置的调度许可。对于NR type 1配置调度许可,基站通过RRC信令为UE配置CG。在NR type 1配置调度许可的机制中,该UE无需监听包含UL grant的DCI动态调度,可利用基站配置的CG发送PUSCH。具体为:基站通过RRC信令configuredGrantConfig配置PUSCH传输的参数,RRC信令configuredGrantConfig中包含rrc-ConfiguredUplinkGrant。配置调度许可configuredGrantConfig中至少包含半静态调度的PUSCH的时域资源、频域资源以及资源的周期。其中,rrc-ConfiguredUplinkGrant 包含上述时域资源和频域资源的调度。在type 1 CG PUSCH传输中,UE无需监听DCI中的上行调度许可(UL grant),当基站配置了type 1 CG(IE:configuredGrantConfig)后,UE即可以使用配置的CG资源传输PUSCH。
对于NR侧行通信中的类型1的配置调度许可,类似地,基站通过RRC信令为UE配置类型1的配置调度许可的信息,其中,配置调度许可的配置信息中同样包含资源的周期。当基站配置了type 1 CG后,UE即可以使用配置的CG对应的资源进行侧行通信传输。
对于NR侧行通信中的类型2的配置调度许可,基站通过DCI激活,或者,去激活相应的配置调度许可。其中,配置调度许可的配置信息中同样包含资源的周期。当基站激活了type 2 CG后,UE即可以使用激活的CG对应的资源进行侧行通信传输。
以下,对本发明所涉及的具体的示例以及实施例等进行详细说明。另外,如上所述,本公开中记载的示例以及实施例等是为了容易理解本发明而进行的示例性说明,并不是对本发明的限定。
[实施例一]
图3是示出了本发明的实施例一的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例一的由用户设备执行的方法。
如图3所示,在本发明的实施例一中,用户设备执行的步骤包括:
在步骤S101,用户设备接收基站gNB发送的侧行通信配置调度许可的配置信息。
可选地,所述侧行通信配置调度许可的配置信息中包括配置调度许可的周期Periodicity。
可选地,所述侧行通信配置调度许可的配置信息中包括配置调度许可 的时域资源偏移量timeDomainOffset。
可选地,所述用户设备确定接收所述配置信息之前(preceding)最近的(closest)系统帧号SFN为timeReferenceSFN。
在步骤S102,用户设备根据所述timeDomainOffset,和/或floor(timeReferenceSFN/2),和/或所述Periodicity,和/或N extra,确定所述配置调度许可的配置信息指示的配置调度许可的资源。
可选地,所述配置调度许可的第S个资源(S th grant)所在的逻辑时隙满足下述条件:
Figure PCTCN2021109690-appb-000040
其中,可选地,
■Floor(.)表示下取整函数,例如floor(1.5)=1;
■N表示20ms内侧行通信传输可用的时隙数目(或者,逻辑时隙的数目);
■logical slot number in the two consecutive frames表示在两个(连续的)帧内(即20ms内)逻辑时隙的编号,可选地,即为0至N-1;可选地,所述两个(连续的)帧的首个(或者,起始)帧为一个偶数帧或者一个奇数帧;
■可选地,如果所述timeReferenceSFN表示一个偶数帧,那么N extra=0;否则,N extra等于一个偶数帧内(或者,奇数帧内)的侧行通信传输可用时隙的数目(或者,逻辑时隙数目),或 者,如果所述timeReferenceSFN表示一个奇数帧,那么N extra=0;否则,N extra等于一个奇数帧内(或者,偶数帧内)的侧行通信传输可用时隙的数目(或者,逻辑时隙数目);
○上述公式中N extra为可选项,即在公式中可能不存在N extra
■sl_periodicity等于
Figure PCTCN2021109690-appb-000041
其中,ceil(.)表示上取整函数,例如,ceil(1.5)=2。
在步骤S103,所述用户设备使用所述配置调度许可的资源传输PSSCH,或者,PSSCH和PSCCH。
[实施例二]
图3是示出了本发明的实施例二的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例二的由用户设备执行的方法。
如图3所示,在本发明的实施例二中,用户设备执行的步骤包括:
在步骤S101,用户设备接收基站gNB发送的侧行通信配置调度许可的配置信息。
可选地,所述侧行通信配置调度许可的配置信息中包括配置调度许可的周期Periodicity。
可选地,所述侧行通信配置调度许可的配置信息中包括配置调度许可的时域资源偏移量timeDomainOffset。
可选地,所述用户设备确定接收所述配置信息之前(preceding)最近的(closest)系统帧号SFN为timeReferenceSFN。
在步骤S102,用户设备根据所述timeDomainOffset,和/或所述Periodicity,和/或两个连续系统帧内的侧行通信传输可用时隙数目的平均值N average,和/或floor(timeReferenceSFN/2),和/或N extra,确定所述配 置调度许可的配置信息指示的配置调度许可的资源。
可选地,所述配置调度许可的第S个资源(S th grant)所在的逻辑时隙满足下述条件:
Figure PCTCN2021109690-appb-000042
其中,可选地,
■Floor(.)表示下取整函数,例如floor(1.5)=1;
■N表示20ms内侧行通信传输可用的时隙数目(或者,逻辑时隙的数目);可选地,N=N average×2;
■logical slot number in the two consecutive frames表示在两个(连续的)帧内(即20ms内)逻辑时隙的编号,可选地,即为0至N-1;可选地,所述两个(连续的)帧的首个(或者,起始)帧为一个偶数帧或者一个奇数帧;
■可选地,如果所述timeReferenceSFN表示一个偶数帧,那么N extra=0;否则,N extra等于一个偶数帧内(或者,奇数帧内)的侧行通信传输可用时隙的数目(或者,逻辑时隙数目),或者,如果所述timeReferenceSFN表示一个奇数帧,那么N extra=0;否则,N extra等于一个奇数帧内(或者,偶数帧内) 的侧行通信传输可用时隙的数目(或者,逻辑时隙数目);
○上述公式中N extra为可选项,即在公式中可能不存在N extra
■sl_periodicity等于
Figure PCTCN2021109690-appb-000043
其中,ceil(.)表示上取整函数,例如,ceil(1.5)=2。
在步骤S103,所述用户设备使用所述配置调度许可的资源传输PSSCH,或者,PSSCH和PSCCH。
[实施例三]
图3是示出了本发明的实施例三的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例三的由用户设备执行的方法。
如图3所示,在本发明的实施例三中,用户设备执行的步骤包括:
在步骤S101,用户设备接收基站gNB发送的侧行通信配置调度许可的配置信息。
可选地,所述侧行通信配置调度许可的配置信息中包括配置调度许可的周期Periodicity。
可选地,所述侧行通信配置调度许可的配置信息中包括配置调度许可的时域资源偏移量timeDomainOffset。
可选地,所述用户设备确定接收所述配置信息之前(preceding)最近的(closest)双帧编号为timeReferenceSFN 2
在步骤S102,用户设备根据所述timeDomainOffset,和/或所述Periodicity,和/或双帧编号SFN 2,和/或所述timeReferenceSFN 2,确定所述配置调度许可的配置信息指示的配置调度许可的资源。
可选地,所述配置调度许可的第S个资源(S th grant)所在的逻辑时隙满足下述条件:
(SFN 2×N+logical slot number in the two consecutive frames)
=(timeReferenceSFN 2×N+timeDomainOffset+S×sl_periodicity)mod(512×N)
其中,可选地,
■Floor(.)表示下取整函数,例如floor(1.5)=1;
■N表示20ms内侧行通信传输可用的时隙数目(或者,逻辑时隙的数目);
■logical slot number in the two consecutive frames表示在两个(连续的)帧内(即20ms内)逻辑时隙的编号,可选地,即为0至N-1;可选地,所述两个(连续的)帧的首个(或者,起始)帧为一个偶数帧或者一个奇数帧;
■sl_periodicity等于
Figure PCTCN2021109690-appb-000044
其中,ceil(.)表示上取整函数,例如,ceil(1.5)=2。
在步骤S103,所述用户设备使用所述配置调度许可的资源传输PSSCH,或者,PSSCH和PSCCH。
[实施例四]
图3是示出了本发明的实施例四的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例四的由用户设备执行的方法。
如图3所示,在本发明的实施例四中,用户设备执行的步骤包括:
在步骤S101,用户设备接收基站gNB发送的侧行通信配置调度许可 的配置信息。
可选地,所述侧行通信配置调度许可的配置信息中包括配置调度许可的周期Periodicity。
可选地,所述侧行通信配置调度许可的配置信息中包括配置调度许可的时域资源偏移量timeDomainOffset。
可选地,所述用户设备确定接收所述配置信息之前(preceding)最近的(closest)系统帧号SFN为timeReferenceSFN。
在步骤S102,用户设备根据所述timeDomainOffset,和/或floor(timeReferenceSFN/2),和/或所述Periodicity,和/或N extra,1,和/或N extra,2,确定所述配置调度许可的配置信息指示的配置调度许可的资源。
可选地,所述配置调度许可的第S个资源(S th grant)所在的逻辑时隙满足下述条件:
Figure PCTCN2021109690-appb-000045
其中,可选地,
■Floor(.)表示下取整函数,例如floor(1.5)=1;
■N表示20ms内侧行通信传输可用的时隙数目(或者,逻辑时隙的数目);
■logical slot number in the frame表示在一个系统帧内(编号为SFN)的逻辑时隙的编号;
■可选地,如果所述SFN表示一个偶数帧,那么N extra,1=0;否则,N extra,1等于一个偶数帧内(或者,奇数帧内)的侧行通信传输可用时隙的数目(或者,逻辑时隙数目),或者,如果所 述SFN表示一个奇数帧,那么N extra,1=0;否则,N extra,1等于一个奇数帧内(或者,偶数帧内)的侧行通信传输可用时隙的数目(或者,逻辑时隙数目);
○上述公式中N extra,1为可选项,即在公式中可能不存在N extra,1
■可选地,如果所述timeReferenceSFN表示一个偶数帧,那么N extra,2=0;否则,N extra,2等于一个偶数帧内(或者,奇数帧内)的侧行通信传输可用时隙的数目(或者,逻辑时隙数目),
或者,如果所述timeReferenceSFN表示一个奇数帧,那么N extra,2=0;否则,N extra,2等于一个奇数帧内(或者,偶数帧内)的侧行通信传输可用时隙的数目(或者,逻辑时隙数目);
○上述公式中N extra,2为可选项,即在公式中可能不存在N extra,2
■sl_periodicity等于
Figure PCTCN2021109690-appb-000046
其中,ceil(.)表示上取整函数,例如,ceil(1.5)=2。
在步骤S103,所述用户设备使用所述配置调度许可的资源传输PSSCH,或者,PSSCH和PSCCH。
[实施例五]
图3是示出了本发明的实施例五的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例五的由用户设备执行的方法。
如图3所示,在本发明的实施例五中,用户设备执行的步骤包括:
在步骤S101,用户设备接收基站gNB发送的侧行通信配置调度许可的配置信息。
可选地,所述侧行通信配置调度许可的配置信息中包括配置调度许可的周期Periodicity。
可选地,所述侧行通信配置调度许可的配置信息中包括配置调度许可的时域资源偏移量timeDomainOffset。
可选地,所述用户设备确定接收所述配置信息之前(preceding)最近的(closest)系统帧号SFN为timeReferenceSFN。
在步骤S102,用户设备根据所述timeDomainOffset,和/或所述Periodicity,和/或两个连续系统帧内的侧行通信传输可用时隙数目的平均值N average,和/或floor(timeReferenceSFN/2),和/或N extra,1,和/或N extra,2,确定所述配置调度许可的配置信息指示的配置调度许可的资源。
可选地,所述配置调度许可的第S个资源(S th grant)所在的逻辑时隙满足下述条件:
Figure PCTCN2021109690-appb-000047
其中,可选地,
■Floor(.)表示下取整函数,例如floor(1.5)=1;
■N表示20ms内侧行通信传输可用的时隙数目(或者,逻辑时隙的数目);可选地,N=N average×2;
■logical slot number in the frame表示在一个系统帧内(编号为SFN)的逻辑时隙的编号;
■可选地,如果所述SFN表示一个偶数帧,那么N extra,1=0;否则,N extra,1等于一个偶数帧内(或者,奇数帧内)的侧行通信传输可用时隙的数目(或者,逻辑时隙数目),或者,如果所述SFN表示一个奇数帧,那么N extra,1=0;否则,N extra,1等于一个奇数帧内(或者,偶数帧内)的侧行通信传输可用时隙的数目(或者,逻辑时隙数目);
○上述公式中N extra,1为可选项,即在公式中可能不存在N extra,1
■可选地,如果所述timeReferenceSFN表示一个偶数帧,那么N extra,2=0;否则,N extra,2等于一个偶数帧内(或者,奇数帧内)的侧行通信传输可用时隙的数目(或者,逻辑时隙数目),或者,如果所述timeReferenceSFN表示一个奇数帧,那么N extra,2=0;否则,N extra,2等于一个奇数帧内(或者,偶数帧内)的侧行通信传输可用时隙的数目(或者,逻辑时隙数目);
○上述公式中N extra,2为可选项,即在公式中可能不存在N extra,2
■sl_periodicity等于
Figure PCTCN2021109690-appb-000048
其中,ceil(.)表示上取整函数,例如,ceil(1.5)=2。
在步骤S103,所述用户设备使用所述配置调度许可的资源传输PSSCH,或者,PSSCH和PSCCH。
图4是表示本发明所涉及的用户设备UE的框图。如图4所示,该用户设备UE80包括处理器801和存储器802。处理器801例如可以包括微处理器、微控制器、嵌入式处理器等。存储器802例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器802上存储有程序指令。该指令在由处理器801运行时,可以执行本发明详细描述的由用户设备执行的上述方法。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计 算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (10)

  1. 一种由用户设备执行的方法,包括:
    接收基站gNB发送的侧行通信配置调度许可configured grant的配置信息;
    根据至少N extra确定所述配置调度许可的配置信息指示的配置调度许可的资源;
    使用所述配置调度许可的资源发送物理侧行通信共享信道PSSCH。
  2. 根据权利要求1所述的方法,其特征在于,
    所述侧行通信配置调度许可的配置信息中包括配置调度许可的周期Periodicity,以及,包括配置调度许可的时域资源偏移量timeDomainOffset。
  3. 根据权利要求1所述的方法,还包括:
    确定接收所述配置信息之前最近的系统帧号为timeReferenceSFN。
  4. 根据权利要求1所述的方法,还包括:
    确定接收所述配置信息之前最近的双帧编号为timeReferenceSFN 2
  5. 根据权利要求3所述的方法,其特征在于,
    所述用户设备根据所述timeDomainOffset,和floor(timeReferenceSFN/2),和所述Periodicity,和所述N extra,确定所述配置调度许可的配置信息指示的配置调度许可的资源。
  6. 根据权利要求5所述的方法,其特征在于,
    如果所述timeReferenceSFN表示一个偶数帧,那么所述N extra=0;否则,所述N extra等于一个偶数帧内的侧行通信传输可用时隙的数目。
  7. 根据权利要求5所述的方法,其特征在于,
    所述配置调度许可的第S个资源(S thgrant)所在的逻辑时隙满足下述条件:
    Figure PCTCN2021109690-appb-100001
    其中,
    ■N表示20ms内侧行通信传输可用的时隙数目(或者,逻辑时隙的数目);
    ■logical slot number in the two consecutive frames表示在两个连续的帧内逻辑时隙的编号;所述两个连续的帧的首个帧为一个偶数帧;
    ■sl_periodicity等于
    Figure PCTCN2021109690-appb-100002
  8. 根据权利要求3所述的方法,其特征在于,
    所述用户设备根据所述timeDomainOffset,和floor(timeReferenceSFN/2),和所述Periodicity,和所述N extra,和两个连续系统帧内的侧行通信传输可用时隙数目的平均值N average,确定所述配置调度许可的配置信息指示的配置调度许可的资源。
  9. 根据权利要求4所述的方法,其特征在于,
    所述用户设备根据所述timeDomainOffset,和所述Periodicity,和双帧编号SFN 2,和所述timeReferenceSFN 2,确定所述配置调度许可的配置信息指示的配置调度许可的资源。
  10. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令;
    其中,所述指令在由所述处理器运行时执行根据权利要求1至9中任一项所述的方法。
PCT/CN2021/109690 2020-08-06 2021-07-30 由用户设备执行的方法以及用户设备 WO2022028330A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010786292.1A CN114071426A (zh) 2020-08-06 2020-08-06 由用户设备执行的方法以及用户设备
CN202010786292.1 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022028330A1 true WO2022028330A1 (zh) 2022-02-10

Family

ID=80116979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109690 WO2022028330A1 (zh) 2020-08-06 2021-07-30 由用户设备执行的方法以及用户设备

Country Status (2)

Country Link
CN (1) CN114071426A (zh)
WO (1) WO2022028330A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117440348A (zh) * 2022-07-11 2024-01-23 夏普株式会社 由用户设备执行的方法以及用户设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020068252A1 (en) * 2018-09-27 2020-04-02 Convida Wireless, Llc Uu based sidelink control for nr v2x
CN111431674A (zh) * 2019-01-10 2020-07-17 夏普株式会社 由用户设备执行的方法以及用户设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020068252A1 (en) * 2018-09-27 2020-04-02 Convida Wireless, Llc Uu based sidelink control for nr v2x
CN111431674A (zh) * 2019-01-10 2020-07-17 夏普株式会社 由用户设备执行的方法以及用户设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OPPO: "Remaining issues of mode 1 resource allocation for NR-V2X", 3GPP TSG RAN WG1 #100BIS R1-2001746, 30 April 2020 (2020-04-30), XP051875245 *
ZTE ET AL.: "Mode 1 resource allocation schemes on sidelink", 3GPP TSG RAN WG1 #99 R1-1912552, 22 November 2019 (2019-11-22), XP051823487 *

Also Published As

Publication number Publication date
CN114071426A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2022028413A1 (zh) 由用户设备执行的方法以及用户设备
WO2022111630A1 (zh) 由用户设备执行的方法以及用户设备
WO2022143641A1 (zh) 由用户设备执行的方法以及用户设备
WO2023040961A1 (zh) 由用户设备执行的方法以及用户设备
WO2020088513A1 (zh) 由用户设备执行的方法以及用户设备
WO2022017037A1 (zh) 由用户设备执行的方法以及用户设备
WO2021190521A1 (zh) 由用户设备执行的方法以及用户设备
WO2021136373A1 (zh) 由用户设备执行的方法以及用户设备
WO2023131074A1 (zh) 由用户设备执行的方法以及用户设备
WO2022028330A1 (zh) 由用户设备执行的方法以及用户设备
WO2022194243A1 (zh) 由用户设备执行的方法以及用户设备
WO2022152163A1 (zh) 由用户设备执行的方法以及用户设备
WO2022267943A1 (zh) 由用户设备执行的方法以及用户设备
WO2021228138A1 (zh) 由用户设备执行的方法以及用户设备
WO2021197379A1 (zh) 由用户设备执行的方法以及用户设备
WO2021013213A1 (zh) 由用户设备执行的方法以及用户设备
WO2022063070A1 (zh) 由用户设备执行的方法以及用户设备
WO2022007664A1 (zh) 由用户设备执行的方法以及用户设备
WO2021088918A1 (zh) 由用户设备执行的方法以及用户设备
WO2021057838A1 (zh) 由用户设备执行的方法以及用户设备
WO2022206817A1 (zh) 由用户设备执行的方法以及用户设备
WO2023078389A1 (zh) 由用户设备执行的方法以及用户设备
WO2023098812A1 (zh) 由用户设备执行的方法以及用户设备
WO2023078345A1 (zh) 由用户设备执行的方法以及用户设备
WO2022143643A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853700

Country of ref document: EP

Kind code of ref document: A1