WO2022194243A1 - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
WO2022194243A1
WO2022194243A1 PCT/CN2022/081433 CN2022081433W WO2022194243A1 WO 2022194243 A1 WO2022194243 A1 WO 2022194243A1 CN 2022081433 W CN2022081433 W CN 2022081433W WO 2022194243 A1 WO2022194243 A1 WO 2022194243A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
time slots
communication
resource
pssch
Prior art date
Application number
PCT/CN2022/081433
Other languages
English (en)
French (fr)
Inventor
赵毅男
罗超
刘仁茂
Original Assignee
夏普株式会社
赵毅男
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 赵毅男 filed Critical 夏普株式会社
Publication of WO2022194243A1 publication Critical patent/WO2022194243A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the technical field of wireless communication, and in particular, to a method performed by a user equipment and a corresponding user equipment.
  • D2D communication (Device-to-Device communication, direct device-to-device communication) refers to a direct communication method between two user equipments without being forwarded by a base station or a core network.
  • 3GPP 3rd Generation Partnership Project
  • the upper layer supports unicast (Unicast) and multicast (Groupcast) communication functions.
  • LTE Release 13 eD2D The main features introduced by LTE Release 13 eD2D include:
  • V2X stands for Vehicle to everything, hoping to realize the exchange of information between vehicles and all entities that may affect vehicles, with the purpose of reducing accidents, slowing traffic congestion, reducing environmental pollution and providing other information services.
  • the application scenarios of V2X mainly include four aspects:
  • V2V Vehicle to Vehicle, that is, vehicle-to-vehicle communication
  • V2P Vehicle to Pedestrian, that is, the vehicle sends a warning to pedestrians or non-motor vehicles
  • V2N Vehicle to Network, that is, the vehicle is connected to the mobile network
  • V2I Vehicle to Infrastructure, that is, communication between vehicles and road infrastructure.
  • V2X stage 1 introduces a new D2D communication interface called the PC5 interface.
  • the PC5 interface is mainly used to solve the communication problems of cellular vehicle networking in high-speed (up to 250 km/h) and high-node density environments. Vehicles can interact with information such as position, speed and direction through the PC5 interface, that is, vehicles can communicate directly through the PC5 interface.
  • the functions introduced by LTE Release 14 V2X mainly include:
  • the second phase of the V2X research topic belongs to the research scope of LTE Release 15 (see Non-Patent Document 4).
  • the main features introduced include high-order 64QAM modulation, V2X carrier aggregation, short TTI transmission, and a feasibility study of transmit diversity.
  • resource allocation mode 2 (resource allocation mode 2) based on user equipment sensing (sensing) is supported, or transmission mode 2.
  • resource allocation mode 2 the physical layer of the user equipment senses the transmission resources in the resource pool, and reports the set of available transmission resources to the upper layer. After obtaining the report of the physical layer, the upper layer selects the resources specifically used for the transmission of sideline communication.
  • Non-Patent Document 6 a standardization research topic (see Non-Patent Document 6) based on the already standardized NR sidelink enhancement was approved.
  • the enhancement of sideline communication includes the following two aspects:
  • Standardize resource allocation methods for reducing the power consumption of sideline communication user equipment including but not limited to: resource allocation methods based on partial sensing, and resource allocation methods based on random resource selection;
  • the solution of the present patent includes a method for the sideline communication user equipment to determine the set of monitored time slots in the resource allocation method based on partial sensing in the sideline communication enhancement.
  • Non-patent document 1 RP-140518, Work item proposal on LTE Device to Device Proximity Services
  • Non-patent document 2 RP-142311, Work Item Proposal for Enhanced LTE Device to Device Proximity Services
  • Non-patent literature 3 RP-152293, New WI proposal: Support for V2V services based on LTE sidelink
  • Non-Patent Document 4 RP-170798, New WID on 3GPP V2X Phase 2
  • Non-Patent Document 5 RP-181480, New SID Proposal: Study on NR V2X
  • Non-Patent Document 6 RP-202846, WID revision: NR sidelink enhancement
  • the present invention provides a method performed by a user equipment and a user equipment.
  • the method performed by the user equipment according to the first aspect of the present invention includes: a higher layer requesting or triggering the user equipment to determine the transmission resources of PSSCH/PSCCH; the user equipment determining a set of candidate time slots; and the user equipment determining the monitoring set of time slots.
  • the resource allocation method of the user equipment is a resource allocation method based on partial perception.
  • the manner in which the user equipment determines the set of candidate time slots depends on the implementation of the user equipment.
  • the set of listening time slots monitored by the user equipment at least includes time slots in, is any time slot in the candidate time slot set;
  • P reserve is determined by all or part of the reserved resource period included in the resource pool configuration information;
  • k represents an integer.
  • P reserve is any one of all or part of reserved resource periods, or equal to the greatest common divisor of all or part of reserved resource periods.
  • k is determined by a bitmap, either depending on the implementation of the user equipment, or configured by RRC signaling.
  • the listening time slot set excludes or does not include one or more of the PSFCH resources including the physical sidelink communication feedback channel when the RRC parameter sl-LengthSymbols is less than or equal to 9 time slots, wherein the sl-LengthSymbols represents the number of OFDM symbols used for sideline communication transmission in one time slot.
  • the set of listening time slots excludes or does not include one or more of the time slots in which the PSSCH transmission symbol number 1 d is less than 6 in the time slot, wherein 1 d represents the number of OFDM symbols for transmitting PSSCH in one time slot in sideline communication.
  • the set of listening time slots excludes or does not include one or more time slots that do not correspond to the demodulation reference signal DMRS time domain pattern of one or more PSSCHs.
  • User equipment comprising: a processor; and a memory storing instructions; wherein the instructions, when executed by the processor, execute any one of the above-mentioned first aspects of the present invention method.
  • the number of time slots in the time slot set that the user equipment needs to monitor can be reduced, the power consumption of the sideline communication user equipment is effectively reduced, and the equipment usage time is prolonged.
  • FIG. 1 is a schematic diagram illustrating sideline communication of an LTE V2X UE.
  • FIG. 2 is a schematic diagram illustrating a resource allocation manner of LTE V2X.
  • FIG. 3 is a schematic diagram showing the basic process of the method executed by the user equipment in the first, second and third embodiments of the invention.
  • FIG. 4 is a block diagram illustrating a user equipment according to an embodiment of the present invention.
  • the 5G mobile communication system and its subsequent evolved versions are used as an example application environment to specifically describe various embodiments according to the present invention.
  • the present invention is not limited to the following embodiments, but can be applied to more other wireless communication systems, such as communication systems after 5G and 4G mobile communication systems before 5G.
  • LTE Long Term Evolution, long term evolution technology
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • DCI Downlink Control Information, downlink control information
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • UE User Equipment, user equipment
  • eNB evolved NodeB, evolved base station
  • gNB NR base station
  • TTI Transmission Time Interval, transmission time interval
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing with Cyclic Prefix
  • C-RNTI Cell Radio Network Temporary Identifier, the temporary identifier of the cell wireless network
  • CSI Channel State Information, channel state information
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • CRS Cell Reference Signal, cell-specific reference signal
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • SCI Sidelink Control Information, side communication control information
  • PSCCH Physical Sidelink Control Channel, Physical Sidelink Communication Control Channel
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • RB Resource Block, resource block
  • CRB Common Resource Block, common resource block
  • CP Cyclic Prefix, cyclic prefix
  • PRB Physical Resource Block, physical resource block
  • PSSCH Physical Sidelink Shared Channel, Physical Sidelink Shared Channel
  • FDM Frequency Division Multiplexing, frequency division multiplexing
  • RRC Radio Resource Control
  • RSRP Reference Signal Receiving Power, reference signal receiving power
  • SRS Sounding Reference Signal, sounding reference signal
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • PSDCH Physical Sidelink Discovery Channel, Physical Sidelink Communication Discovery Channel
  • PSBCH Physical Sidelink Broadcast Channel, Physical Sidelink Communication Broadcast Channel
  • TDD Time Division Duplexing
  • FDD Frequency Division Duplexing, frequency division duplexing
  • SIB1 System Information Block Type 1, system information block type 1
  • SLSS Sidelink synchronization Signal, side communication synchronization signal
  • PSSS Primary Sidelink Syncthronization Signal, side communication main synchronization signal
  • SSSS Secondary Sidelink Synchronization Signal, side communication auxiliary synchronization signal
  • PCI Physical Cell ID, physical cell identification
  • PSS Primary Synchronization Signal, the main synchronization signal
  • SSS Secondary Synchronization Signal, secondary synchronization signal
  • BWP BandWidth Part, Bandwidth Fragment/Part
  • GNSS Global Navigation Satellite System, global navigation satellite positioning system
  • SFN System Frame Number, system (wireless) frame number
  • DFN Direct Frame Number, direct frame number
  • SSB Synchronization Signal Block, synchronization system information block
  • EN-DC EUTRA-NR Dual Connection, LTE-NR dual connection
  • MCG Master Cell Group, the main cell group
  • SCG Secondary Cell Group, secondary cell group
  • PCell Primary Cell, the main cell
  • SCell Secondary Cell, secondary cell
  • PSFCH Physical Sidelink Feedback Channel, Physical Sidelink Communication Feedback Channel
  • SPS Semi-Persistant Scheduling, semi-static scheduling
  • PT-RS Phase-Tracking Reference Signals, phase tracking reference signal
  • Transport Block transport block
  • CB Code Block, coding block/code block
  • QPSK Quadrature Phase Shift Keying, quadrature phase shift keying
  • 16/64/256 QAM 16/64/256 Quadrature Amplitude Modulation, Quadrature Amplitude Modulation
  • AGC Auto Gain Control, automatic gain control
  • ARFCN Absolute Radio Frequency Channel Number, absolute radio frequency channel number
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, single carrier-frequency division multiplexing multiple access
  • MAC Medium Access Control, media access control layer
  • V2X in the text can also represent sidelink; similarly, sidelink in the text can also represent V2X, and no specific distinction or limitation will be made in the following text.
  • the resource allocation mode of V2X (sidelink) communication in the specification of the present invention and the transmission mode of V2X (sidelink) communication can be equivalently replaced.
  • the resource allocation method referred to in the specification may represent the transmission mode, and the transmission mode referred to may represent the resource allocation method.
  • transmission mode 1 represents a transmission mode (resource allocation method) based on base station scheduling
  • transmission mode 2 represents a transmission mode (resource allocation method) based on user equipment sensing and resource selection.
  • the PSCCH in the specification of the present invention is used to carry the SCI.
  • the PSCCH involved in the description of the present invention corresponds to, or corresponds to, or is related to, or, the scheduled PSSCH indicates the same meaning, and both indicate associated PSSCH or corresponding PSSCH.
  • the PSSCH involved in the description corresponds to, or corresponds to, or has the same meaning as the related SCI (including the first-level SCI and the second-level SCI), which means associated SCI or corresponding SCI.
  • the first-level SCI is called 1st stage SCI or SCI format 1-A and is transmitted in PSCCH;
  • the second-level SCI is called 2nd stage SCI or SCI format 2-A (or, SCI format 2-B) , transmitted in the corresponding PSSCH resources.
  • both UEs performing sidelink communication have network coverage (for example, the UE detects at least one cell that satisfies the "cell selection criterion" on the frequency where sidelink communication needs to be performed, Indicates that the UE has network coverage).
  • Partial-Coverage sidelink communication one of the UEs performing sidelink communication has no network coverage, and the other UE has network coverage.
  • the UE From the UE side, the UE has only two scenarios: no network coverage and network coverage. Part of the network coverage is described in terms of sidelink communication.
  • FIG. 1 is a schematic diagram illustrating sideline communication of an LTE V2X UE.
  • UE1 sends sideline communication control information (SCI format 1) to UE2, which is carried by the physical layer channel PSCCH.
  • SCI format 1 contains PSSCH scheduling information, such as PSSCH frequency domain resources.
  • UE1 sends sideline communication data to UE2, which is carried by the physical layer channel PSSCH.
  • the PSCCH and the corresponding PSSCH are in a frequency division multiplexing manner, that is, the PSCCH and the corresponding PSSCH are located in the same subframe in the time domain, and are located in different RBs in the frequency domain.
  • a transport block TB may contain only one initial transmission, or one initial transmission and one blind retransmission (blind retransmission, which means retransmission not based on HARQ feedback).
  • SCI format 1 can be carried in PSCCH, wherein SCI format 1 at least includes frequency domain resource information of PSSCH. For example, for the frequency domain resource indication field, SCI format 1 indicates the starting sub-channel number and the number of consecutive sub-channels of the PSSCH corresponding to the PSCCH.
  • PSSCH occupies one subframe in the time domain, and adopts frequency division multiplexing (FDM) with the corresponding PSCCH.
  • PSSCH occupies one or more consecutive sub-channels in the frequency domain, sub-channels represent n subCHsize consecutive RBs in the frequency domain, n subCHsize is configured by the RRC parameter, the number of starting sub-channels and consecutive sub-channels Indicated by the frequency domain resource indication field of SCI format 1.
  • FIG. 2 shows two resource allocation methods of LTE V2X, which are respectively called resource allocation based on base station scheduling (Transmission Mode 3) and resource allocation based on UE sensing (Transmission Mode 4).
  • transmission mode 3 of LTE V2X corresponds to transmission mode 1 in NR V2X, which is based on base station scheduling
  • transmission mode 4 of LTE V2X corresponds to transmission mode 2 in NR V2X, which is based on UE perception. transfer mode.
  • the base station can configure the resource allocation mode of the UE through UE-level dedicated RRC signaling (dedicated RRC signaling) SL-V2X-ConfigDedicated, or the transmission mode of the UE. ,Specifically:
  • Resource allocation method based on base station scheduling indicates that the frequency domain resources used for sidelink communication come from the scheduling of the base station.
  • Transmission mode 3 includes two scheduling methods, namely dynamic scheduling and semi-persistent scheduling (SPS).
  • SPS semi-persistent scheduling
  • the UL grant (DCI format 5A) includes the frequency domain resources of PSSCH, and the CRC of the PDCCH or EPDCCH carrying the DCI format 5A is scrambled by SL-V-RNTI.
  • the base station configures one or more (up to 8) configured scheduling grants (configured grants) through IE: SPS-ConfigSL-r14, each configured scheduling grant contains a scheduling grant number (index) and scheduling grants Licensed resource period.
  • the UL grant (DCI format 5A) includes the frequency domain resources of the PSSCH, and the indication information (3 bits) of the scheduling grant number and the indication information of the SPS activation (activate) or release (release, or deactivation).
  • the CRC of the PDCCH or EPDCCH carrying DCI format 5A is scrambled by SL-SPS-V-RNTI.
  • the RRC signaling SL-V2X-ConfigDedicated when the RRC signaling SL-V2X-ConfigDedicated is set to scheduled-r14, it indicates that the UE is configured as a transmission mode based on the base station scheduling.
  • the base station configures SL-V-RNTI or SL-SPS-V-RNTI through RRC signaling, and uses PDCCH or EPDCCH (DCI format 5A, the CRC is scrambled with SL-V-RNTI or scrambled with SL-SPS-V-RNTI) ) sends an uplink scheduling grant UL grant to the UE.
  • the above-mentioned uplink scheduling grant UL grant at least includes scheduling information of PSSCH frequency domain resources in sidelink communication.
  • the UE When the UE successfully monitors the PDCCH or EPDCCH scrambled by SL-V-RNTI or SL-SPS-V-RNTI, it uses the PSSCH frequency domain resource indication field in the uplink scheduling grant UL grant (DCI format 5A) as the PSCCH Indication information of the frequency domain resources of PSSCH in (SCI format 1), and send PSCCH (SCI format 1) and the corresponding PSSCH.
  • DCI format 5A the PSSCH frequency domain resource indication field in the uplink scheduling grant UL grant
  • the UE receives SL-SPS-V-RNTI scrambled DCI format 5A on downlink subframe n. If the indication information of SPS activation is included in the DCI format 5A, the UE determines the frequency domain resources of the PSSCH according to the indication information in the DCI format 5A, and determines the time domain resources of the PSSCH (the transmission subframe of the PSSCH) according to information such as subframe n.
  • Resource allocation method based on UE sensing indicates that the resources used for sidelink communication are based on the UE sensing process of the set of candidate available resources.
  • the RRC signaling SL-V2X-ConfigDedicated is set to ue-Selected-r14, it indicates that the UE is configured as the transmission mode based on UE sensing.
  • the base station configures the available transmission resource pool, and the UE determines the PSSCH sidelink transmission resources in the transmission resource pool (resource pool) according to certain rules (see the LTE V2X UE sensing process section for a detailed process description). , and send PSCCH (SCI format 1) and corresponding PSSCH.
  • the resources sent and received by the UE belong to the resource pool resource pool.
  • the base station schedules transmission resources for the sidelink UE in the resource pool, or, for the transmission mode based on UE perception in sidelink communication, the UE determines transmission resources in the resource pool.
  • the sidelink communication user equipment selects candidate resources within a time window, and determines and the reserved resources according to the reserved resources indicated by PSCCH sent by other user equipments in the monitoring time slot. There are overlapping candidate resources, and these overlapping candidate resources are excluded.
  • the physical layer reports the set of candidate resources that are not excluded to the MAC layer, and the MAC layer selects transmission resources for PSSCH/PSCCH.
  • the parameter set numerology includes the subcarrier spacing and the cyclic prefix CP length.
  • Table 4.2-1 shows the set of supported transmission parameters, as follows shown.
  • ⁇ ⁇ f 2 ⁇ ⁇ 15[kHz] CP (Cyclic Prefix) 0 15 normal 1 30 normal 2 60 normal, extended 3 120 normal 4 240 normal
  • each slot (slot) contains 14 OFDM symbols; for extended CP, each slot contains 12 OFDM symbols.
  • NR and LTE have the same definition of subframe, which means 1ms.
  • subframe For the subcarrier spacing configuration ⁇ , the slot number in a subframe (1ms) can be expressed as The range is 0 to The slot number in a system frame (frame, duration 10ms) can be expressed as The range is 0 to in, and The definitions of the cases at different subcarrier spacing ⁇ are shown in the table below.
  • Table 4.3.2-1 The number of symbols contained in each slot in normal CP, the number of slots contained in each system frame, and the number of slots contained in each subframe
  • Table 4.3.2-2 The number of symbols contained in each slot when the CP is extended (60kHz), the number of slots contained in each system frame, and the number of slots contained in each subframe
  • the numbered SFN of a system frame ranges from 0 to 1023.
  • the concept of direct system frame number DFN is introduced in sideline communication, and the numbering range is also from 0 to 1023.
  • the above description of the relationship between system frames and numerology can also be applied to direct system frames.
  • the duration of a direct system frame Also equal to 10ms, for a subcarrier spacing of 15kHz, a direct system frame includes 10 slots, and so on.
  • DFN is used for timing on sidelink carriers.
  • LTE only supports subcarrier spacing of 15kHz.
  • Extended CP is supported in LTE, and normal CP is also supported.
  • the subframe subframe has a duration of lms and includes two time slots, each of which has a duration of 0.5ms.
  • each subframe contains 14 OFDM symbols, and each slot in the subframe contains 7 OFDM symbols; for extended CP, each subframe contains 12 OFDM symbols, and each slot in the subframe contains 6 OFDM symbols.
  • the resource block RB is defined in the frequency domain as consecutive sub-carriers, eg for a sub-carrier spacing of 15 kHz, the RB is 180 kHz in the frequency domain.
  • the resource element RE represents 1 subcarrier in the frequency domain and 1 OFDM symbol in the time domain.
  • the OFDM symbols available for sideline communication transmission in a time slot are jointly determined by RRC parameters sl-StartSymbol and sl-LengthSymbols.
  • the value range of sl-StartSymbol is 0 to 7 OFDM symbols, and the value range of sl-LengthSymbols is 7 to 14 OFDM symbols. For example, if sl-StartSymbol is configured as 3, and sl-LengthSymbols is configured as 9, in one slot, OFDM symbol 3 to OFDM symbol 11 can be used for sideline communication transmission.
  • ld represents the number of OFDM symbols for transmitting PSSCH in the NR sideline communication. It is worth noting that the number of OFDM symbols for transmitting PSSCH includes AGC symbols and does not include gap symbols (Gap symbols).
  • the AGC symbol represents the OFDM symbol corresponding to sl-StartSymbol
  • the interval symbol represents the OFDM symbol corresponding to (sl-StartSymbol+sl-LengthSymbols-1) (when the time slot does not contain PSFCH resources). Since ld does not contain the last symbol available for sideline communication, the value of ld ranges from 6 to 13.
  • the number in the DM-RS position in the table indicates the relative OFDM number relative to the OFDM symbol corresponding to sl-StartSymbol, that is, the OFDM symbol number corresponding to sl-StartSymbol is 0, and the number 1 indicates that the OFDM symbol corresponding to sl-StartSymbol is after the OFDM symbol. the next OFDM symbol.
  • the time slot contains PSFCH resources
  • the PSFCH resources occupy the last three consecutive symbols in the OFDM symbols that can be used for sidelink communication transmission in the time slot, namely symbols (sl-StartSymbol+sl-LengthSymbols-3) to (sl -StartSymbol+sl-LengthSymbols-1).
  • ld represents the OFDM symbols to symbols (sl-StartSymbol+sl-LengthSymbols-5) corresponding to sl-StartSymbol, a total of (sl-LengthSymbols-4) symbols.
  • FIG. 3 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 1 of the present invention.
  • the steps performed by the user equipment include:
  • a higher layer (higher layer, or upper layer) requests (request, or triggers a trigger) a sideline communication user equipment (physical layer) to determine the transmission resources of PSSCH/PSCCH.
  • the resource allocation manner of the user equipment is a resource allocation manner based on partial sensing.
  • step S102 the sideline communication user equipment determines a set of candidate slots (candidate slots).
  • the manner in which the user equipment determines the set of candidate time slots depends on the implementation of the user equipment (up to UE implementation).
  • step S103 the sideline communication user equipment determines a set of time slots to monitor.
  • the set of monitoring time slots that the user equipment monitors is any time slot in the set of candidate time slots;
  • P reserve is determined by all or part of the reserved resource periods included in the resource pool configuration information (for example, any one of all reserved resource periods, or a part of Any one of the reserved resource periods, or the greatest common divisor of all or part of the reserved resource periods), the present invention does not make any restrictions on this;
  • k represents an integer, equal to 1 or 2 or 3...
  • the listening time slot set excludes or does not include one or more time slots including the PSFCH resource of the physical sideline communication feedback channel when the sl-LengthSymbols is less than or equal to 9.
  • the sl-LengthSymbols represents the number of OFDM symbols used for sideline communication transmission in one time slot.
  • FIG. 3 is a schematic diagram illustrating a basic process of a method executed by a user equipment according to Embodiment 2 of the present invention.
  • the steps performed by the user equipment include:
  • a higher layer (higher layer, or upper layer) requests (request, or triggers a trigger) a sideline communication user equipment (physical layer) to determine the transmission resources of PSSCH/PSCCH.
  • the resource allocation manner of the user equipment is a resource allocation manner based on partial sensing.
  • step S102 the sideline communication user equipment determines a set of candidate slots (candidate slots).
  • the manner in which the user equipment determines the set of candidate time slots depends on the implementation of the user equipment (up to UE implementation).
  • step S103 the sideline communication user equipment determines a set of time slots to monitor.
  • the set of monitoring time slots that the user equipment monitors is any time slot in the set of candidate time slots;
  • P reserve is determined by all or part of the reserved resource periods included in the resource pool configuration information (for example, any one of all reserved resource periods, or a part of Any one of the reserved resource periods, or the greatest common divisor of all or part of the reserved resource periods), the present invention does not make any restrictions on this;
  • k represents an integer, equal to 1 or 2 or 3...
  • the set of listening time slots excludes or does not include one or more of the time slots in which the number of PSSCH transmission symbols 1 d is less than 6 in the time slot.
  • FIG. 3 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 3 of the present invention.
  • Embodiment 3 of the present invention will be described in detail with reference to the basic process diagram shown in FIG. 3 .
  • the steps performed by the user equipment include:
  • a higher layer (higher layer, or upper layer) requests (request, or triggers a trigger) a sideline communication user equipment (physical layer) to determine the transmission resources of PSSCH/PSCCH.
  • the resource allocation manner of the user equipment is a resource allocation manner based on partial sensing.
  • step S102 the sideline communication user equipment determines a set of candidate slots (candidate slots).
  • the manner in which the user equipment determines the set of candidate time slots depends on the implementation of the user equipment (up to UE implementation).
  • step S103 the sideline communication user equipment determines a set of time slots to monitor.
  • the set of monitoring time slots that the user equipment monitors is any time slot in the set of candidate time slots;
  • P reserve is determined by all or part of the reserved resource periods included in the resource pool configuration information (for example, any one of all reserved resource periods, or a part of Any one of the reserved resource periods, or the greatest common divisor of all or part of the reserved resource periods), the present invention does not make any restrictions on this;
  • k represents an integer, equal to 1 or 2 or 3...
  • the listening time slot set excludes or does not include one or more time slots that do not correspond to the DMRS time domain pattern of one or more PSSCHs.
  • FIG. 4 is a block diagram showing a user equipment UE according to the present invention.
  • the user equipment UE80 includes a processor 801 and a memory 802 .
  • the processor 801 may include, for example, a microprocessor, a microcontroller, an embedded processor, or the like.
  • the memory 802 may include, for example, volatile memory (eg, random access memory RAM), a hard disk drive (HDD), non-volatile memory (eg, flash memory), or other memory, or the like.
  • Program instructions are stored on the memory 802 . When the instructions are executed by the processor 801, the above method described in detail in the present invention and executed by the user equipment can be executed.
  • the method and related apparatus of the present invention have been described above with reference to the preferred embodiments. Those skilled in the art can understand that the methods shown above are only exemplary, and the various embodiments described above can be combined with each other under the condition that no contradiction occurs.
  • the method of the present invention is not limited to the steps and sequences shown above.
  • the network node and user equipment shown above may include more modules, for example, may also include modules that can be developed or developed in the future and can be used for base stations, MMEs, or UEs, and so on.
  • the various identifiers shown above are only exemplary and not restrictive, and the present invention is not limited to the specific information elements exemplified by these identifiers. Numerous changes and modifications may occur to those skilled in the art in light of the teachings of the illustrated embodiments.
  • the above-described embodiments of the present invention may be implemented by software, hardware, or a combination of both.
  • the various components inside the base station and the user equipment in the above embodiments may be implemented by various devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing Controllers, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), Programmable Logic Devices (CPLDs), etc.
  • DSP digital signal processing
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • CPLDs Programmable Logic Devices
  • base station may refer to a mobile communication data and control switching center with larger transmission power and wider coverage area, including functions such as resource allocation and scheduling, data reception and transmission, and the like.
  • User equipment may refer to a user mobile terminal, for example, including a mobile phone, a notebook, and other terminal equipment that can wirelessly communicate with a base station or a micro base station.
  • embodiments of the invention disclosed herein may be implemented on a computer program product.
  • the computer program product is a product having a computer-readable medium on which computer program logic is encoded, and when executed on a computing device, the computer program logic provides relevant operations to achieve The above technical solutions of the present invention.
  • computer program logic When executed on at least one processor of a computing system, computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present invention.
  • Such arrangements of the present invention are typically provided as software, code and/or other data structures arranged or encoded on a computer readable medium such as an optical medium (eg CD-ROM), floppy or hard disk, or such as one or more Firmware or other medium of microcode on a ROM or RAM or PROM chip, or a downloadable software image in one or more modules, a shared database, etc.
  • Software or firmware or such a configuration may be installed on a computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
  • each functional module or each feature of the base station device and the terminal device used in each of the above embodiments may be implemented or executed by a circuit, which is usually one or more integrated circuits.
  • Circuits designed to perform the various functions described in this specification may include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs) or general purpose integrated circuits, field programmable gate arrays (FPGAs) or other Program logic devices, discrete gate or transistor logic, or discrete hardware components, or any combination of the above.
  • a general-purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
  • the general-purpose processor or each circuit described above may be configured by digital circuits, or may be configured by logic circuits.
  • the present invention can also use the integrated circuit obtained by using the advanced technology.

Abstract

本发明提供了一种由用户设备执行的方法以及用户设备,所述方法包括:高层请求或者触发所述用户设备确定PSSCH/PSCCH的传输资源;所述用户设备确定候选时隙集合;以及所述用户设备确定监听的时隙集合。

Description

由用户设备执行的方法以及用户设备 技术领域
本发明涉及无线通信技术领域,具体涉及由用户设备执行的方法以及相应的用户设备。
背景技术
在传统的蜂窝网络中,所有的通信都必须经过基站。不同的是,D2D通信(Device-to-Device communication,设备到设备间直接通信)是指两个用户设备之间不经过基站或者核心网的转发而直接进行的通信方式。在2014年3月第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的RAN#63次全会上,关于利用LTE设备实现临近D2D通信业务的研究课题获得批准(参见非专利文献1)。LTE Release 12 D2D引入的功能包括:
1)LTE网络覆盖场景下临近设备之间的发现功能(Discovery);
2)临近设备间的直接广播通信(Broadcast)功能;
3)高层支持单播(Unicast)和组播(Groupcast)通信功能。
在2014年12月的3GPP RAN#66全会上,增强的LTE eD2D(enhanced D2D)的研究项目获得批准(参见非专利文献2)。LTE Release 13 eD2D引入的主要功能包括:
1)无网络覆盖场景和部分网络覆盖场景的D2D发现;
2)D2D通信的优先级处理机制。
基于D2D通信机制的设计,在2015年6月3GPP的RAN#68次全会上,批准了基于D2D通信的V2X可行性研究课题。V2X表示Vehicle to everything,希望实现车辆与一切可能影响车辆的实体信息交互,目的是减少事故发生,减缓交通拥堵,降低环境污染以及提供其他信息服务。V2X的应用场景主要包含4个方面:
1)V2V,Vehicle to Vehicle,即车-车通信;
2)V2P,Vehicle to Pedestrian,即车给行人或非机动车发送警告;
3)V2N,Vehicle to Network,即车辆连接移动网络;
4)V2I,Vehicle to Infrastructure,即车辆与道路基础设施等通信。
3GPP将V2X的研究与标准化工作分为3个阶段。第一阶段于2016年9月完成,主要聚焦于V2V,基于LTE Release 12和Release 13 D2D(也可称为sidelink侧行通信),即邻近通信技术制定(参见非专利文献3)。V2X stage 1引入了一种新的D2D通信接口,称为PC5接口。PC5接口主要用于解决高速(最高250公里/小时)及高节点密度环境下的蜂窝车联网通信问题。车辆可以通过PC5接口进行诸如位置、速度和方向等信息的交互,即车辆间可通过PC5接口进行直接通信。相较于D2D设备间的临近通信,LTE Release 14 V2X引入的功能主要包含:
1)更高密度的DMRS以支持高速场景;
2)引入子信道(sub-channel),增强资源分配方式;
3)引入具有半静态调度(semi-persistent)的用户设备感知(sensing)机制。
V2X研究课题的第二阶段归属于LTE Release 15研究范畴(参见非专利文献4),引入的主要特性包含高阶64QAM调制、V2X载波聚合、短TTI传输,同时包含发射分集的可行性研究。
在2018年6月3GPP RAN#80全会上,相应的第三阶段基于5G NR网络技术的V2X可行性研究课题(参见非专利文献5)获得批准。
在5G NR V2X课题中,支持一种基于用户设备感知(sensing)的资源分配方式2(resource allocation mode 2),或者称为传输模式2。在资源分配方式2中,用户设备的物理层对资源池内的传输资源进行感知,并向上层报告可用的传输资源的集合。上层在获得物理层的报告后,选择具体用于侧行通信传输的资源。
在2020年12月3GPP RAN#90e全会上,基于已经标准化的NR侧行通信的增强(NR sidelink enhancement)的标准化研究课题(参见非专利文献6)获得批准。侧行通信的增强中包含如下两个方面:
1)标准化降低侧行通信用户设备功率消耗(power saving)的资源分配方式,包括但不限于:基于部分感知的资源分配方式 (partial sensing),基于随机资源选择的资源分配方式;
2)研究提升NR侧行通信中资源分配方式2的通信可靠性以及降低资源分配方式2的通信时延。
本专利的方案包括在侧行通信增强中,侧行通信用户设备确定基于部分感知的资源分配方式中所监听时隙集合的一种方法。
现有技术文献
非专利文献
非专利文献1:RP-140518,Work item proposal on LTE Device to Device Proximity Services
非专利文献2:RP-142311,Work Item Proposal for Enhanced LTE Device to Device Proximity Services
非专利文献3:RP-152293,New WI proposal:Support for V2V services based on LTE sidelink
非专利文献4:RP-170798,New WID on 3GPP V2X Phase 2
非专利文献5:RP-181480,New SID Proposal:Study on NR V2X
非专利文献6:RP-202846,WID revision:NR sidelink enhancement
发明内容
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备。
根据本发明的第一方面的由用户设备执行的方法,包括:高层请求或者触发所述用户设备确定PSSCH/PSCCH的传输资源;所述用户设备确定候选时隙集合;以及所述用户设备确定监听的时隙集合。
根据本发明的第一方面的由用户设备执行的方法,所述用户设备的资源分配方式为基于部分感知的资源分配方式。
根据本发明的第一方面的由用户设备执行的方法,所述用户设备确定所述候选时隙集合的方式为取决于所述用户设备的实现。
根据本发明的第一方面的由用户设备执行的方法,所述用户设备监听的所述监听时隙集合至少包含时隙
Figure PCTCN2022081433-appb-000001
其中,
Figure PCTCN2022081433-appb-000002
是所述候选时隙集合中的任一个时隙;P reserve由资源池配置信息中包括的全部或者部分预留资源周期所确定;k表示整数。
根据本发明的第一方面的由用户设备执行的方法,P reserve为全部或者部分预留资源周期中的任一个,或者,等于全部或者部分预留资源周期的最大公约数。
根据本发明的第一方面的由用户设备执行的方法,k由一个比特图确定,或者取决于所述用户设备的实现,或者由RRC信令配置。
根据本发明的第一方面的由用户设备执行的方法,所述监听时隙集合除去或者不包含当RRC参数sl-LengthSymbols小于或者等于9时,包含物理侧行通信反馈信道PSFCH资源的一个或者多个时隙,其中,所述sl-LengthSymbols表示一个时隙内用于侧行通信传输的OFDM符号数目。
根据本发明的第一方面的由用户设备执行的方法,所述监听时隙集合除去或者不包含在时隙内PSSCH传输符号数l d小于6的一个或者多个所述时隙,其中,l d表示侧行通信中一个时隙内传输PSSCH的OFDM符号数。
根据本发明的第一方面的由用户设备执行的方法,所述监听时隙集合除去或者不包含未对应一个或者多个PSSCH的解调参考信号DMRS时域样式的一个或者多个时隙。
根据本发明的第二方面的用户设备,包括:处理器;以及存储器,存储有指令;其中,所述指令在由所述处理器运行时执行根据本发明的上述第一方面的任一所述方法。
本发明的有益效果
根据本专利的方案,在NR侧行通信增强中,可以减少用户设备需要监听时隙集合中的时隙数目,有效降低侧行通信用户设备的功率消耗,延长设备使用时间。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1是示出了LTE V2X UE侧行通信的示意图。
图2是示出了LTE V2X的资源分配方式的示意图。
图3是示出了发明的实施例一、二、三中由用户设备执行的方法的基本过程的示意图。
图4是示出了根据本发明的实施例的用户设备的框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
下文以5G移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G移动通信系统等。
下面描述本发明涉及的部分术语,如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的通信系统中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划
LTE:Long Term Evolution,长期演进技术
NR:New Radio,新无线、新空口
PDCCH:Physical Downlink Control Channel,物理下行控制信道
DCI:Downlink Control Information,下行控制信息
PDSCH:Physical Downlink Shared Channel,物理下行共享信道
UE:User Equipment,用户设备
eNB:evolved NodeB,演进型基站
gNB:NR基站
TTI:Transmission Time Interval,传输时间间隔
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
CP-OFDM:Cyclic Prefix Orthogonal Frequency Division Multiplexing,带有循环前缀的正交频分复用
C-RNTI:Cell Radio Network Temporary Identifier,小区无线网络临时标识
CSI:Channel State Information,信道状态信息
HARQ:Hybrid Automatic Repeat Request,混合自动重传请求
CSI-RS:Channel State Information Reference Signal,信道状态信息参考信号
CRS:Cell Reference Signal,小区特定参考信号
PUCCH:Physical Uplink Control Channel,物理上行控制信道
PUSCH:Physical Uplink Shared Channel,物理上行共享信道
UL-SCH:Uplink Shared Channel,上行共享信道
CG:Configured Grant,配置调度许可
Sidelink:侧行通信
SCI:Sidelink Control Information,侧行通信控制信息
PSCCH:Physical Sidelink Control Channel,物理侧行通信控制信道
MCS:Modulation and Coding Scheme,调制编码方案
RB:Resource Block,资源块
RE:Resource Element,资源单元
CRB:Common Resource Block,公共资源块
CP:Cyclic Prefix,循环前缀
PRB:Physical Resource Block,物理资源块
PSSCH:Physical Sidelink Shared Channel,物理侧行通信共享信道
FDM:Frequency Division Multiplexing,频分复用
RRC:Radio Resource Control,无线资源控制
RSRP:Reference Signal Receiving Power,参考信号接收功率
SRS:Sounding Reference Signal,探测参考信号
DMRS:Demodulation Reference Signal,解调参考信号
CRC:Cyclic Redundancy Check,循环冗余校验
PSDCH:Physical Sidelink Discovery Channel,物理侧行通信发现信道
PSBCH:Physical Sidelink Broadcast Channel,物理侧行通信广播信道
SFI:Slot Format Indication,时隙格式指示
TDD:Time Division Duplexing,时分双工
FDD:Frequency Division Duplexing,频分双工
SIB1:System Information Block Type 1,系统信息块类型1
SLSS:Sidelink synchronization Signal,侧行通信同步信号
PSSS:Primary Sidelink Syncthronization Signal,侧行通信主同步信号
SSSS:Secondary Sidelink Synchronization Signal,侧行通信辅同步信号
PCI:Physical Cell ID,物理小区标识
PSS:Primary Synchronization Signal,主同步信号
SSS:Secondary Synchronization Signal,辅同步信号
BWP:BandWidth Part,带宽片段/部分
GNSS:Global Navigation Satellite System,全球导航卫星定位系统
SFN:System Frame Number,系统(无线)帧号
DFN:Direct Frame Number,直接帧号
IE:Information Element,信息元素
SSB:Synchronization Signal Block,同步系统信息块
EN-DC:EUTRA-NR Dual Connection,LTE-NR双连接
MCG:Master Cell Group,主小区组
SCG:Secondary Cell Group,辅小区组
PCell:Primary Cell,主小区
SCell:Secondary Cell,辅小区
PSFCH:Physical Sidelink Feedback Channel,物理侧行通信反馈信道
SPS:Semi-Persistant Scheduling,半静态调度
TA:Timing Advance,上行定时提前量
PT-RS:Phase-Tracking Reference Signals,相位跟踪参考信号
TB:Transport Block,传输块
CB:Code Block,编码块/码块
QPSK:Quadrature Phase Shift Keying,正交相移键控
16/64/256 QAM:16/64/256 Quadrature Amplitude Modulation,正交幅度调制
AGC:Auto Gain Control,自动增益控制
TDRA(field):Time Domain Resource Assignment,时域资源分配指示(域)
FDRA(field):Frequency Domain Resource Assignment,频域资源分配指示(域)
ARFCN:Absolute Radio Frequency Channel Number,绝对无线频率信道编号
SC-FDMA:Single Carrier-Frequency Division Multiple Access,单载波-频分复用多址
MAC:Medium Access Control,媒体接入控制层
下文是与本发明方案相关联现有技术的描述。如无特别说明,具体实施例中与现有技术中相同术语的含义相同。
值得指出的是,本发明说明书中涉及的V2X与sidelink含义相同。文中的V2X也可以表示sidelink;相似地,文中的sidelink也可以表示V2X,后文中不做具体区分和限定。
本发明的说明书中的V2X(sidelink)通信的资源分配方式与V2X(sidelink)通信的传输模式可以等同替换。说明书中涉及的资源分配方式可以表示传输模式,以及,涉及的传输模式可以表示资源分配方式。在NR侧行通信中,传输模式1表示基于基站调度的传输模式(资源分配方 式);传输模式2表示基于用户设备感知(sensing)和资源选择的传输模式(资源分配方式)。
本发明的说明书中的PSCCH用于携带SCI。本发明的说明书中涉及到的PSCCH对应的,或者,相应的,或者,相关的,或者,调度的PSSCH表示的含义均相同,都表示associated PSSCH或者corresponding PSSCH。类似地,说明书中涉及到的PSSCH对应的,或者,相应的,或者,相关的SCI(包括第一级SCI和第二级SCI)表示的含义均相同,都表示associated SCI或者corresponding SCI。值得指出的是,第一级SCI称为1st stage SCI或者SCI format 1-A,在PSCCH中传输;第二级SCI称为2nd stage SCI或者SCI format 2-A(或者,SCI format 2-B),在对应的PSSCH的资源中传输。
Sidelink通信的场景
1)无网络覆盖(Out-of-Coverage)侧行通信:进行sidelink通信的两个UE都没有网络覆盖(例如,UE在需要进行sidelink通信的频率上检测不到任何满足“小区选择准则”的小区,表示该UE无网络覆盖)。
2)有网络覆盖(In-Coverage)侧行通信:进行sidelink通信的两个UE都有网络覆盖(例如,UE在需要进行sidelink通信的频率上至少检测到一个满足“小区选择准则”的小区,表示该UE有网络覆盖)。
3)部分网络覆盖(Partial-Coverage)侧行通信:进行sidelink通信的其中一个UE无网络覆盖,另一个UE有网络覆盖。
从UE侧来讲,该UE仅有无网络覆盖和有网络覆盖两种场景。部分网络覆盖是从sidelink通信的角度来描述的。
LTE V2X(sidelink)通信的基本过程
图1是示出了LTE V2X UE侧行通信的示意图。首先,UE1向UE2 发送侧行通信控制信息(SCI format 1),由物理层信道PSCCH携带。SCI format 1包含PSSCH的调度信息,例如PSSCH的频域资源等。其次,UE1向UE2发送侧行通信数据,由物理层信道PSSCH携带。PSCCH和相应的PSSCH采用频分复用的方式,即PSCCH和相应的PSSCH在时域上位于相同的子帧上,在频域上位于不同的RB上。在LTE V2X中,一个传输块TB可能仅包含一次初始传输,或者包含一次初始传输和一次盲重传(blind retransmission,表示不基于HARQ反馈的重传)。
PSCCH和PSSCH的具体设计方式如下:
1)PSCCH在时域上占据一个子帧,频域上占据两个连续的RB。加扰序列的初始化采用预定义数值510。PSCCH中可携带SCI format 1,其中SCI format 1至少包含PSSCH的频域资源信息。例如,对于频域资源指示域,SCI format 1指示该PSCCH对应的PSSCH的起始sub-channel编号和连续sub-channel的数目。
2)PSSCH在时域上占据一个子帧,和对应的PSCCH采用频分复用(FDM)。PSSCH在频域上占据一个或者多个连续的sub-channel,sub-channel在频域上表示n subCHsize个连续的RB,n subCHsize由RRC参数配置,起始sub-channel和连续sub-channel的数目由SCI format 1的频域资源指示域指示。
LTE V2X的资源分配方式Transmission Mode 3/4
图2是示出了LTE V2X的两种资源分配方式,分别称为基于基站调度的资源分配(Transmission Mode 3)和基于UE感知(sensing)的资源分配(Transmission Mode 4)。在NR侧行通信中,LTE V2X的传输模式3对应NR V2X中的传输模式1,为基于基站调度的传输模式;LTE V2X的传输模式4对应NR V2X中的传输模式2,为基于UE感知的传输模式。LTE V2X中,当存在eNB网络覆盖的情况下,基站可通过UE级的专有RRC信令(dedicated RRC signaling)SL-V2X-ConfigDedicated配置该UE的资源分配方式,或称为该UE的传输模式,具体为:
1)基于基站调度的资源分配方式(Transmission Mode 3):基于基站 调度的资源分配方式表示sidelink侧行通信所使用的频域资源来自于基站的调度。传输模式3包含两种调度方式,分别为动态调度和半静态调度(SPS)。对于动态调度,UL grant(DCI format 5A)中包括PSSCH的频域资源,承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-V-RNTI加扰。对于SPS半静态调度,基站通过IE:SPS-ConfigSL-r14配置一个或者多个(至多8个)配置的调度许可(configured grant),每个配置的调度许可含有一个调度许可编号(index)和调度许可的资源周期。UL grant(DCI format 5A)中包括PSSCH的频域资源,以及,调度许可编号的指示信息(3bits)和SPS激活(activate)或者释放(release,或者,去激活)的指示信息。承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-SPS-V-RNTI加扰。
具体地,当RRC信令SL-V2X-ConfigDedicated置为scheduled-r14时,表示该UE被配置为基于基站调度的传输模式。基站通过RRC信令配置SL-V-RNTI或者SL-SPS-V-RNTI,并通过PDCCH或者EPDCCH(DCI format 5A,CRC采用SL-V-RNTI加扰或者采用SL-SPS-V-RNTI加扰)向UE发送上行调度许可UL grant。上述上行调度许可UL grant中至少包含sidelink通信中PSSCH频域资源的调度信息。当UE成功监听到由SL-V-RNTI加扰或者SL-SPS-V-RNTI加扰的PDCCH或者EPDCCH后,将上行调度许可UL grant(DCI format 5A)中的PSSCH频域资源指示域作为PSCCH(SCI format 1)中PSSCH的频域资源的指示信息,并发送PSCCH(SCI format 1)和相应的PSSCH。
对于传输模式3中的半静态调度SPS,UE在下行子帧n上接收SL-SPS-V-RNTI加扰的DCI format 5A。如果DCI format 5A中包含SPS激活的指示信息,该UE根据DCI format 5A中的指示信息确定PSSCH的频域资源,根据子帧n等信息确定PSSCH的时域资源(PSSCH的发送子帧)。
2)基于UE感知(sensing)的资源分配方式(Transmission Mode 4):基于UE sensing的资源分配方式表示用于sidelink通信的资源基于 UE对候选可用资源集合的感知(sensing)过程。RRC信令SL-V2X-ConfigDedicated置为ue-Selected-r14时表示该UE被配置为基于UE sensing的传输模式。在基于UE sensing的传输模式中,基站配置可用的传输资源池,UE根据一定的规则(详细过程的描述参见LTE V2X UE sensing过程部分)在传输资源池(resource pool)中确定PSSCH的sidelink发送资源,并发送PSCCH(SCI format 1)和相应的PSSCH。
侧行通信资源池(sidelink resource pool)
在侧行通信中,UE的发送和接收的资源均属于资源池resource pool。例如,对于侧行通信中基于基站调度的传输模式,基站在资源池中为sidelink UE调度传输资源,或者,对于侧行通信中基于UE感知的传输模式,UE在资源池中确定传输资源。
基于(部分)感知的资源分配方式
对于基于(部分)感知的资源分配方式,侧行通信用户设备在一个时间窗口内选择候选资源,并根据监听时隙中其他用户设备发送的PSCCH所指示的预留资源,确定和该预留资源有重叠的候选资源,并将这些有重叠的候选资源排除(exclude)。物理层将未被排除的候选资源集合上报至MAC层,MAC层为PSSCH/PSCCH选择传输资源。
NR中(包含NR sidelink)的参数集合(numerology)和NR中(包含NR  sidelink)的时隙slot
参数集合numerology包含子载波间隔和循环前缀CP长度两方面含义。其中,NR支持5种子载波间隔,分别为15k,30k,60k,120k,240kHz(对应μ=0,1,2,3,4),表格4.2-1示出了支持的传输参数集合,具体如下所示。
表4.2-1 NR支持的子载波间隔
μ Δf=2 μ·15[kHz] CP(循环前缀)
0 15 正常
1 30 正常
2 60 正常,扩展
3 120 正常
4 240 正常
仅当μ=2时,即60kHz子载波间隔的情况下支持扩展(Extended)CP,其他子载波间隔的情况仅支持正常CP。对于正常(Normal)CP,每个时隙(slot)含有14个OFDM符号;对于扩展CP,每个时隙含有12个OFDM符号。对于μ=0,即15kHz子载波间隔,1个时隙=1ms;μ=1,即30kHz子载波间隔,1个时隙=0.5ms;μ=2,即60kHz子载波间隔,1个时隙=0.25ms,以此类推。
NR和LTE对于子帧(subframe)的定义相同,表示1ms。对于子载波间隔配置μ,1个子帧内(1ms)的slot编号可以表示为
Figure PCTCN2022081433-appb-000003
范围为0到
Figure PCTCN2022081433-appb-000004
1个系统帧(frame,时长10ms)内的slot编号可以表示为
Figure PCTCN2022081433-appb-000005
范围为0到
Figure PCTCN2022081433-appb-000006
其中,
Figure PCTCN2022081433-appb-000007
Figure PCTCN2022081433-appb-000008
在不同子载波间隔μ的情况的定义如下表格所示。
表格4.3.2-1:正常CP时每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
Figure PCTCN2022081433-appb-000009
表格4.3.2-2:扩展CP时(60kHz)每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
Figure PCTCN2022081433-appb-000010
在NR载波上,系统帧(或者,简称为帧)的编号SFN范围为0至1023。在侧行通信中引入了直接系统帧号DFN的概念,编号范围同样为0至1023,上述对于系统帧和numerology之间关系的叙述同样可以应用于直接系统帧,例如,一个直接系统帧的时长同样等于10ms,对于15kHz的子载波间隔,一个直接系统帧包括10个时隙slot,等等。DFN应用于 sidelink载波上的定时timing。
LTE中(包含LTE V2X)参数集和LTE中(包含LTE V2X)的时隙slot 和子帧subframe
LTE仅支持15kHz的子载波间隔。LTE中支持扩展(Extended)CP,也支持正常CP。子帧subframe时长为lms,包含两个时隙slot,每个slot时长为0.5ms。
对于正常(Normal)CP,每个子帧含有14个OFDM符号,子帧中的每个slot包含7个OFDM符号;对于扩展CP,每个子帧含有12个OFDM符号,子帧中的每个slot包含6个OFDM符号。
资源块RB和资源单元RE
资源块RB在频域上定义为
Figure PCTCN2022081433-appb-000011
个连续的子载波,例如对于15kHz的子载波间隔,RB在频域上为180kHz。对于子载波间隔15kHz×2 μ,资源单元RE在频域上表示1个子载波,在时域上表示1个OFDM符号。
PSSCH的解调参考信号DMRS的时域样式pattern
在NR侧行通信中,一个时隙slot内可用于侧行通信传输的OFDM符号由RRC参数sl-StartSymbol和sl-LengthSymbols共同确定。其中,sl-StartSymbol的取值范围为OFDM符号0至7,sl-LengthSymbols的取值范围为7至14个OFDM符号。例如,sl-StartSymbol配置为3,sl-LengthSymbols配置为9,那么,在一个slot内,OFDM符号3至OFDM符号11可用于侧行通信传输。
在NR侧行通信中,一个时隙slot内DMRS所处的位置如下表格所示:
表格1.PSSCH DM-RS时域位置
Figure PCTCN2022081433-appb-000012
在上述表格中,l d表示NR侧行通信中传输PSSCH的OFDM符号数。值得指出的是,该传输PSSCH的OFDM符号数包含AGC符号,不包含间隔符号(Gap symbol)。其中,AGC符号表示sl-StartSymbol所对应的OFDM符号,间隔符号表示(sl-StartSymbol+sl-LengthSymbols-1)所对应的OFDM符号(时隙slot内不含有PSFCH资源的情况下)。由于l d不包含侧行通信可用符号的最后一个,因此,l d的取值范围为6至13。表格中DM-RS位置的数字表示相对于sl-StartSymbol所对应的OFDM符号的相对OFDM编号,即sl-StartSymbol所对应的OFDM符号编号为0,数字1表示在sl-StartSymbol所对应的OFDM符号后的下一个OFDM符号。当时隙slot内含有PSFCH资源时,该PSFCH资源占据该时隙内可用于侧行通信传输的OFDM符号中的最后连续三个符号,即符号(sl-StartSymbol+sl-LengthSymbols-3)至(sl-StartSymbol+sl-LengthSymbols-1)。该情况下ld表示sl-StartSymbol所对应的OFDM符号至符号(sl-StartSymbol+sl-LengthSymbols-5),共计(sl-LengthSymbols-4)个符号。
以下,对本发明所涉及的具体的示例以及实施例等进行详细说明。另外,如上所述,本公开中记载的示例以及实施例等是为了容易理解本发明而进行的示例性说明,并不是对本发明的限定。
[实施例一]
图3是示出了本发明的实施例一的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例一的由用户设备执行的方法。
如图3所示,在本发明的实施例一中,用户设备执行的步骤包括:
在步骤S101,高层(higher layer,或者上层)请求(request,或者,触发trigger)侧行通信用户设备(物理层)确定PSSCH/PSCCH的传输资源。
可选地,所述用户设备的资源分配方式为基于部分感知(partial sensing)的资源分配方式。
在步骤S102,所述侧行通信用户设备确定候选时隙(candidate slots)集合。
可选地,所述用户设备确定所述候选时隙集合的方式为取决于用户设备的实现(up to UE implementation)。
在步骤S103,所述侧行通信用户设备确定监听的时隙集合。
可选地,所述用户设备监听(shall monitor,或者monitor)的所述监听时隙集合至少包含时隙
Figure PCTCN2022081433-appb-000013
其中,
Figure PCTCN2022081433-appb-000014
是所述候选时隙集合中的任一个时隙;P reserve由资源池配置信息中包括的全部或者部分预留资源周期所确定(例如,为全部预留资源周期中的任一个,或者,部分预留资源周期中的任一个,或者,全部或者部分预留资源周期的最大公约数),本发明对此不做任何限制;k表示整数,等于1或2或3...(或者,仅等于1,或者,仅等于1和2),或者由一个比特图确定,或者,取决于用户设备的实现,或者,由RRC信令配置,本发明对此不做任何限制;以及,可选地,所述监听时隙集合除去(except)或者不包含当sl-LengthSymbols小于或者等于9时,包含物理侧行通信反馈信道PSFCH资源的一个或者多个时隙。其中,所述sl-LengthSymbols表示一个时隙slot 内用于侧行通信传输的OFDM符号数目。
[实施例二]
图3是示出了本发明的实施例二的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例二的由用户设备执行的方法。
如图3所示,在本发明的实施例二中,用户设备执行的步骤包括:
在步骤S101,高层(higher layer,或者上层)请求(request,或者,触发trigger)侧行通信用户设备(物理层)确定PSSCH/PSCCH的传输资源。
可选地,所述用户设备的资源分配方式为基于部分感知(partial sensing)的资源分配方式。
在步骤S102,所述侧行通信用户设备确定候选时隙(candidate slots)集合。
可选地,所述用户设备确定所述候选时隙集合的方式为取决于用户设备的实现(up to UE implementation)。
在步骤S103,所述侧行通信用户设备确定监听的时隙集合。
可选地,所述用户设备监听(shall monitor,或者monitor)的所述监听时隙集合至少包含时隙
Figure PCTCN2022081433-appb-000015
其中,
Figure PCTCN2022081433-appb-000016
是所述候选时隙集合中的任一个时隙;P reserve由资源池配置信息中包括的全部或者部分预留资源周期所确定(例如,为全部预留资源周期中的任一个,或者,部分预留资源周期中的任一个,或者,全部或者部分预留资源周期的最大公约数),本发明对此不做任何限制;k表示整数,等于1或2或3...(或者,仅等于1,或者,仅等于1和2),或者由一个比特图确定,或者,取决于用户设备的实现,或者,由RRC信令配置,本发明对此不做任何限制;以 及,可选地,所述监听时隙集合除去(except)或者不包含在时隙内PSSCH传输符号数l d小于6的一个或者多个所述时隙。
[实施例三]
图3是示出了本发明的实施例三的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例三的由用户设备执行的方法。
如图3所示,在本发明的实施例三中,用户设备执行的步骤包括:
在步骤S101,高层(higher layer,或者上层)请求(request,或者,触发trigger)侧行通信用户设备(物理层)确定PSSCH/PSCCH的传输资源。
可选地,所述用户设备的资源分配方式为基于部分感知(partial sensing)的资源分配方式。
在步骤S102,所述侧行通信用户设备确定候选时隙(candidate slots)集合。
可选地,所述用户设备确定所述候选时隙集合的方式为取决于用户设备的实现(up to UE implementation)。
在步骤S103,所述侧行通信用户设备确定监听的时隙集合。
可选地,所述用户设备监听(shall monitor,或者monitor)的所述监听时隙集合至少包含时隙
Figure PCTCN2022081433-appb-000017
其中,
Figure PCTCN2022081433-appb-000018
是所述候选时隙集合中的任一个时隙;P reserve由资源池配置信息中包括的全部或者部分预留资源周期所确定(例如,为全部预留资源周期中的任一个,或者,部分预留资源周期中的任一个,或者,全部或者部分预留资源周期的最大公约数),本发明对此不做任何限制;k表示整数,等于1或2或3...(或者,仅等于1,或者,仅等于1和2),或者由一个比特图确定,或者,取决于用户设备的实现,或者,由RRC信令配置,本发明对此不做任何限制;以及,可选地,所述监听时隙集合除去(except)或者不包含未对应一个或 者多个PSSCH的DMRS时域样式的一个或者多个时隙。
图4是表示本发明所涉及的用户设备UE的框图。如图4所示,该用户设备UE80包括处理器801和存储器802。处理器801例如可以包括微处理器、微控制器、嵌入式处理器等。存储器802例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器802上存储有程序指令。该指令在由处理器801运行时,可以执行本发明详细描述的由用户设备执行的上述方法。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质, 计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (10)

  1. 一种由用户设备执行的方法,包括:
    高层请求或者触发所述用户设备确定PSSCH/PSCCH的传输资源;
    所述用户设备确定候选时隙集合;以及
    所述用户设备确定监听的时隙集合。
  2. 根据权利要求1所述的方法,其特征在于,
    所述用户设备的资源分配方式为基于部分感知的资源分配方式。
  3. 根据权利要求1所述的方法,其特征在于,
    所述用户设备确定所述候选时隙集合的方式为取决于所述用户设备的实现。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,
    所述用户设备监听的所述监听时隙集合至少包含时隙
    Figure PCTCN2022081433-appb-100001
    其中,
    Figure PCTCN2022081433-appb-100002
    是所述候选时隙集合中的任一个时隙;P reserve由资源池配置信息中包括的全部或者部分预留资源周期所确定;k表示整数。
  5. 根据权利要求4所述的方法,其特征在于,
    P reserve为全部或者部分预留资源周期中的任一个,或者,等于全部或者部分预留资源周期的最大公约数。
  6. 根据权利要求4所述的方法,其特征在于,
    k由一个比特图确定,或者取决于所述用户设备的实现,或者由RRC信令配置。
  7. 根据权利要求4所述的方法,其特征在于,
    所述监听时隙集合除去或者不包含当RRC参数sl-LengthSymbols小于或者等于9时,包含物理侧行通信反馈信道PSFCH资源的一个或者多个时隙,
    其中,所述sl-LengthSymbols表示一个时隙内用于侧行通信传输的OFDM符号数目。
  8. 根据权利要求4所述的方法,其特征在于,
    所述监听时隙集合除去或者不包含在时隙内PSSCH传输符号数l d小 于6的一个或者多个所述时隙,
    其中,l d表示侧行通信中一个时隙内传输PSSCH的OFDM符号数。
  9. 根据权利要求4所述的方法,其特征在于,
    所述监听时隙集合除去或者不包含未对应一个或者多个PSSCH的解调参考信号DMRS时域样式的一个或者多个时隙。
  10. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令;
    其中,所述指令在由所述处理器运行时执行根据权利要求1至9中任一项所述的方法。
PCT/CN2022/081433 2021-03-18 2022-03-17 由用户设备执行的方法以及用户设备 WO2022194243A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110291015.8A CN115119305A (zh) 2021-03-18 2021-03-18 由用户设备执行的方法以及用户设备
CN202110291015.8 2021-03-18

Publications (1)

Publication Number Publication Date
WO2022194243A1 true WO2022194243A1 (zh) 2022-09-22

Family

ID=83321903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081433 WO2022194243A1 (zh) 2021-03-18 2022-03-17 由用户设备执行的方法以及用户设备

Country Status (2)

Country Link
CN (1) CN115119305A (zh)
WO (1) WO2022194243A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116887436A (zh) * 2022-03-28 2023-10-13 夏普株式会社 由用户设备执行的方法以及用户设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803394A (zh) * 2017-11-17 2019-05-24 电信科学技术研究院 多时隙传输的方法和设备
CN111148223A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 通信方法和通信装置
US20200374861A1 (en) * 2019-08-15 2020-11-26 Mikhail Shilov Nr v2x sidelink resource selection and reselection using scheduling window
CN112512124A (zh) * 2021-02-03 2021-03-16 之江实验室 一种确定侧行链路传输资源的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803394A (zh) * 2017-11-17 2019-05-24 电信科学技术研究院 多时隙传输的方法和设备
CN111148223A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 通信方法和通信装置
US20200374861A1 (en) * 2019-08-15 2020-11-26 Mikhail Shilov Nr v2x sidelink resource selection and reselection using scheduling window
CN112512124A (zh) * 2021-02-03 2021-03-16 之江实验室 一种确定侧行链路传输资源的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (INTEL CORPORATION): "R1-200xxxx - FL summary#1 of issues for 7.2.4.2.2 – V2X Mode 2", 3GPP TSG RAN WG1 MEETING #102-E; E-MEETING, AUGUST 17TH – 28TH, 2020; R1- 200XXXX, vol. RAN WG1, 12 August 2020 (2020-08-12), pages 1 - 24, XP009540218 *

Also Published As

Publication number Publication date
CN115119305A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2022028413A1 (zh) 由用户设备执行的方法以及用户设备
WO2022111630A1 (zh) 由用户设备执行的方法以及用户设备
WO2022143641A1 (zh) 由用户设备执行的方法以及用户设备
WO2020088513A1 (zh) 由用户设备执行的方法以及用户设备
WO2022194243A1 (zh) 由用户设备执行的方法以及用户设备
WO2023040961A1 (zh) 由用户设备执行的方法以及用户设备
WO2022267943A1 (zh) 由用户设备执行的方法以及用户设备
WO2022028330A1 (zh) 由用户设备执行的方法以及用户设备
WO2022017037A1 (zh) 由用户设备执行的方法以及用户设备
WO2021228138A1 (zh) 由用户设备执行的方法以及用户设备
WO2021013213A1 (zh) 由用户设备执行的方法以及用户设备
WO2022152163A1 (zh) 由用户设备执行的方法以及用户设备
WO2022007664A1 (zh) 由用户设备执行的方法以及用户设备
WO2022063070A1 (zh) 由用户设备执行的方法以及用户设备
WO2023131074A1 (zh) 由用户设备执行的方法以及用户设备
WO2022143643A1 (zh) 由用户设备执行的方法以及用户设备
WO2022206817A1 (zh) 由用户设备执行的方法以及用户设备
WO2022078292A1 (zh) 由用户设备执行的方法以及用户设备
WO2023098812A1 (zh) 由用户设备执行的方法以及用户设备
WO2023185688A1 (zh) 由用户设备执行的方法以及用户设备
WO2023078345A1 (zh) 由用户设备执行的方法以及用户设备
WO2023051452A1 (zh) 由用户设备执行的方法以及用户设备
WO2024001958A1 (zh) 由用户设备执行的方法以及用户设备
WO2023078389A1 (zh) 由用户设备执行的方法以及用户设备
WO2024067625A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770596

Country of ref document: EP

Kind code of ref document: A1