WO2022017037A1 - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
WO2022017037A1
WO2022017037A1 PCT/CN2021/099100 CN2021099100W WO2022017037A1 WO 2022017037 A1 WO2022017037 A1 WO 2022017037A1 CN 2021099100 W CN2021099100 W CN 2021099100W WO 2022017037 A1 WO2022017037 A1 WO 2022017037A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
communication
subframe
resources
resource
Prior art date
Application number
PCT/CN2021/099100
Other languages
English (en)
French (fr)
Inventor
赵毅男
罗超
刘仁茂
Original Assignee
夏普株式会社
赵毅男
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 赵毅男 filed Critical 夏普株式会社
Priority to US18/016,521 priority Critical patent/US20230276473A1/en
Priority to EP21845212.6A priority patent/EP4187999A1/en
Publication of WO2022017037A1 publication Critical patent/WO2022017037A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink

Definitions

  • the present invention relates to the technical field of wireless communication, and in particular, to a method performed by a user equipment and a corresponding user equipment.
  • D2D communication (Device-to-Device communication, direct device-to-device communication) refers to a direct communication method between two user equipments without being forwarded by a base station or a core network.
  • 3GPP 3rd Generation Partnership Project
  • the upper layer supports unicast (Unicast) and multicast (Groupcast) communication functions.
  • LTE Release 13 eD2D The main features introduced by LTE Release 13 eD2D include:
  • V2X stands for Vehicle to everything, hoping to realize the exchange of information between vehicles and all entities that may affect vehicles, with the purpose of reducing accidents, slowing traffic congestion, reducing environmental pollution and providing other information services.
  • the application scenarios of V2X mainly include four aspects:
  • V2V Vehicle to Vehicle, that is, vehicle-to-vehicle communication
  • V2P Vehicle to Pedestrian, that is, the vehicle sends a warning to pedestrians or non-motor vehicles
  • V2N Vehicle to Network, that is, the vehicle is connected to the mobile network
  • V2I Vehicle to Infrastructure, that is, communication between vehicles and road infrastructure.
  • V2X stage 1 introduces a new D2D communication interface called the PC5 interface.
  • the PC5 interface is mainly used to solve the communication problems of cellular vehicle networking in high-speed (up to 250 km/h) and high-node density environments. Vehicles can interact with information such as position, speed and direction through the PC5 interface, that is, vehicles can communicate directly through the PC5 interface.
  • the functions introduced by LTE Release 14 V2X mainly include:
  • the second phase of the V2X research topic belongs to the research scope of LTE Release 15 (see Non-Patent Document 4).
  • the main features introduced include high-order 64QAM modulation, V2X carrier aggregation, short TTI transmission, and a feasibility study of transmit diversity.
  • resource allocation mode 4 (resource allocation mode 4) based on user equipment sensing (sensing) is supported, or transmission mode 4.
  • resource allocation mode 4 the physical layer of the user equipment senses the transmission resources in the resource pool, and reports the set of available transmission resources to the upper layer. After obtaining the report of the physical layer, the upper layer selects the resources specifically used for the transmission of sideline communication.
  • the solution of this patent mainly includes a method for user equipment to select resources for sidelink communication transmission in LTE V2X.
  • resource allocation method 2 a resource allocation method based on user equipment perception is also introduced, which is called resource allocation method 2.
  • resource allocation mode 2 the physical layer of the user equipment senses the transmission resources in the resource pool, and reports the set of available transmission resources to the upper layer. After obtaining the report of the physical layer, the upper layer selects the resources specifically used for the transmission of sideline communication.
  • the solution of the present patent also includes a method for the user equipment to select resources for the transmission of the sidelink communication in the NR sidelink communication.
  • Non-patent document 1 RP-140518, Work item proposal on LTE Device to Device Proximity Services
  • Non-patent document 2 RP-142311, Work Item Proposal for Enhanced LTE Device to Device Proximity Services
  • Non-patent literature 3 RP-152293, New WI proposal: Support for V2V services based on LTE sidelink
  • Non-Patent Document 4 RP-170798, New WID on 3GPP V2X Phase 2
  • Non-Patent Document 5 RP-181480, New SID Proposal: Study on NR V2X
  • the present invention provides a method performed by a user equipment and a user equipment.
  • a method performed by a user equipment comprising the following steps:
  • the user equipment determines the first subframe set A set of time domain resources as the first transmission opportunity
  • the user equipment determines the second subframe set A set of time domain resources as the second transmission opportunity
  • P' rsvp_TX P step ⁇ P rsvp_TX /100
  • the P rsvp_TX represents the resource reservation period indicated by the upper layer
  • P step is determined by the configuration information of time division duplex TDD
  • the second subframe The set satisfies the conditions: -15 ⁇ k ⁇ 15, k ⁇ 0 and k mod P′ rsvp_TX ⁇ 0.
  • the user equipment is an LTE sidelink communication user equipment.
  • the user equipment transmits a physical sideline communication shared channel in one or more subframes included in the first subframe set and the second subframe set PSSCH.
  • a user equipment comprising:
  • the instructions when executed by the processor, cause the user equipment to perform a method according to the above.
  • the NR sidelink communication in the NR sidelink communication, it can effectively ensure that the user equipment will not select more than one sidelink communication resource in the same time slot, and it is guaranteed that the NR sidelink communication user equipment will not select more than one sidelink communication resource.
  • Different sideline communication transmissions do not overlap in the time domain.
  • FIG. 1 is a schematic diagram illustrating sideline communication of an LTE V2X UE.
  • FIG. 2 is a schematic diagram illustrating a resource allocation manner of LTE V2X.
  • FIG. 3 is a schematic diagram illustrating the basic process of the method performed by the user equipment in the first and third embodiments of the invention.
  • FIG. 4 is a schematic diagram illustrating a basic process of a method executed by a user equipment in Embodiment 2 of the invention.
  • FIG. 5 is a block diagram illustrating a user equipment according to an embodiment of the present invention.
  • the 5G mobile communication system and its subsequent evolved versions are used as an example application environment to specifically describe various embodiments according to the present invention.
  • the present invention is not limited to the following embodiments, but can be applied to more other wireless communication systems, such as communication systems after 5G and 4G mobile communication systems before 5G.
  • LTE Long Term Evolution, long term evolution technology
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • DCI Downlink Control Information, downlink control information
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • UE User Equipment, user equipment
  • eNB evolved NodeB, evolved base station
  • gNB NR base station
  • TTI Transmission Time Interval, transmission time interval
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing with Cyclic Prefix
  • C-RNTI Cell Radio Network Temporary Identifier, the temporary identifier of the cell wireless network
  • CSI Channel State Information, channel state information
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • CRS Cell Reference Signal, cell-specific reference signal
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • SCI Sidelink Control Information, side communication control information
  • PSCCH Physical Sidelink Control Channel, Physical Sidelink Communication Control Channel
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • RB Resource Block, resource block
  • CRB Common Resource Block, common resource block
  • CP Cyclic Prefix, cyclic prefix
  • PRB Physical Resource Block, physical resource block
  • PSSCH Physical Sidelink Shared Channel, Physical Sidelink Shared Channel
  • FDM Frequency Division Multiplexing, frequency division multiplexing
  • RRC Radio Resource Control
  • RSRP Reference Signal Receiving Power, reference signal receiving power
  • SRS Sounding Reference Signal, sounding reference signal
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • PSDCH Physical Sidelink Discovery Channel, Physical Sidelink Communication Discovery Channel
  • PSBCH Physical Sidelink Broadcast Channel, Physical Sidelink Communication Broadcast Channel
  • TDD Time Division Duplexing
  • FDD Frequency Division Duplexing, frequency division duplexing
  • SIBl System Information Block Type 1, system information block type 1
  • SLSS Sidelink synchronization Signal, side communication synchronization signal
  • PSSS Primary Sidelink Synchronization Signal, side communication main synchronization signal
  • SSSS Secondary Sidelink Synchronization Signal, side communication auxiliary synchronization signal
  • PCI Physical Cell ID, physical cell identification
  • PSS Primary Synchronization Signal, the main synchronization signal
  • SSS Secondary Synchronization Signal, secondary synchronization signal
  • BWP BandWidth Part, Bandwidth Fragment/Part
  • GNSS Global NaVigation Satellite System, global navigation satellite positioning system
  • SFN System Frame Number, system (wireless) frame number
  • DFN Direct Frame Number, direct frame number
  • SSB Synchronization Signal Block, synchronization system information block
  • EN-DC EUTRA-NR Dual Connection, LTE-NR dual connection
  • MCG Master Cell Group, the main cell group
  • SCG Secondary Cell Group, secondary cell group
  • PCell Primary Cell, the main cell
  • SCell Secondary Cell, secondary cell
  • PSFCH Physical Sidelink Feedback Channel, Physical Sidelink Communication Feedback Channel
  • SPS Semi-Persistant Scheduling, semi-static scheduling
  • PT-RS Phase-Tracking Reference Signals, phase tracking reference signal
  • Transport Block transport block
  • CB Code Block, coding block/code block
  • QPSK Quadrature Phase Shift Keying, quadrature phase shift keying
  • 16/64/256 QAM 16/64/256 Quadrature Amplitude Modulation, Quadrature Amplitude Modulation
  • AGC Auto Gain Control, automatic gain control
  • ARFCN Absolute Radio Frequency Channel Number, absolute radio frequency channel number
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, single carrier-frequency division multiplexing multiple access
  • V2X in the text can also represent sidelink; similarly, sidelink in the text can also represent V2X, and no specific distinction or limitation will be made in the following text.
  • the resource allocation mode of V2X (sidelink) communication in the specification of the present invention and the transmission mode of V2X (sidelink) communication can be equivalently replaced.
  • the resource allocation method referred to in the specification may represent the transmission mode, and the transmission mode referred to may represent the resource allocation method.
  • transmission mode 1 represents a transmission mode (resource allocation method) based on base station scheduling
  • transmission mode 2 represents a transmission mode (resource allocation method) based on user equipment sensing and resource selection.
  • the PSCCH in the specification of the present invention is used to carry the SCI.
  • the PSCCH involved in the description of the present invention corresponds to, or corresponds to, or is related to, or, the scheduled PSSCH indicates the same meaning, and both indicate associated PSSCH or corresponding PSSCH.
  • the PSSCH involved in the description corresponds to, or corresponds to, or has the same meaning as the related SCI (including the first-level SCI and the second-level SCI), which means associated SCI or corresponding SCI.
  • the first-level SCI is called 1st stage SCI or SCI format 0-1, and is transmitted in PSCCH;
  • the second-level SCI is called 2nd stage SCI or SCI format 0-2, and is transmitted in the corresponding PSSCH resources .
  • both UEs performing sidelink communication have network coverage (for example, the UE detects at least one cell that satisfies the "cell selection criterion" on the frequency where sidelink communication needs to be performed, Indicates that the UE has network coverage).
  • Partial-Coverage sidelink communication one of the UEs performing sidelink communication has no network coverage, and the other UE has network coverage.
  • the UE From the UE side, the UE has only two scenarios: no network coverage and network coverage. Part of the network coverage is described in terms of sidelink communication.
  • FIG. 1 is a schematic diagram illustrating sideline communication of an LTE V2X UE.
  • UE1 sends sideline communication control information (SCI format 1) to UE2, which is carried by the physical layer channel PSCCH.
  • SCI format 1 contains PSSCH scheduling information, such as PSSCH frequency domain resources.
  • UE1 sends sideline communication data to UE2, which is carried by the physical layer channel PSSCH.
  • the PSCCH and the corresponding PSSCH are in a frequency division multiplexing manner, that is, the PSCCH and the corresponding PSSCH are located in the same subframe in the time domain, and are located in different RBs in the frequency domain.
  • a transport block TB may contain only one initial transmission, or one initial transmission and one blind retransmission (representing retransmission not based on HARQ feedback).
  • SCI format 1 can be carried in PSCCH, wherein SCI format 1 at least includes frequency domain resource information of PSSCH. For example, for the frequency domain resource indication field, SCI format 1 indicates the starting sub-channel number and the number of consecutive sub-channels of the PSSCH corresponding to the PSCCH.
  • PSSCH occupies one subframe in the time domain, and adopts frequency division multiplexing (FDM) with the corresponding PSCCH.
  • PSSCH occupies one or more consecutive sub-channels in the frequency domain, sub-channels represent n subCHsize consecutive RBs in the frequency domain, n subCHsize is configured by the RRC parameter, the number of starting sub-channels and consecutive sub-channels Indicated by the frequency domain resource indication field of SCI format 1.
  • FIG. 2 shows two resource allocation methods of LTE V2X, which are respectively called resource allocation based on base station scheduling (Transmission Mode 3) and resource allocation based on UE sensing (Transmission Mode 4).
  • transmission mode 3 of LTE V2X corresponds to transmission mode 1 in NR V2X, which is based on base station scheduling
  • transmission mode 4 of LTE V2X corresponds to transmission mode 2 in NR V2X, which is based on UE perception. transfer mode.
  • the base station can configure the resource allocation mode of the UE through UE-level dedicated RRC signaling (dedicated RRC signaling) SL-V2X-ConfigDedicated, or the transmission mode of the UE. ,Specifically:
  • Resource allocation method based on base station scheduling indicates that the frequency domain resources used for sidelink communication come from the scheduling of the base station.
  • Transmission mode 3 includes two scheduling methods, namely dynamic scheduling and semi-persistent scheduling (SPS).
  • SPS semi-persistent scheduling
  • the UL grant (DCI format 5A) includes the frequency domain resources of PSSCH, and the CRC of the PDCCH or EPDCCH carrying the DCI format 5A is scrambled by SL-V-RNTI.
  • the base station configures one or more (up to 8) configured scheduling grants (configured grants) through IE: SPS-ConfigSL-r14, each configured scheduling grant contains a scheduling grant number (index) and scheduling grants Licensed resource period.
  • the UL grant (DCI format 5A) includes the frequency domain resources of the PSSCH, and the indication information (3 bits) of the scheduling grant number and the indication information of the SPS activation (activate) or release (release, or deactivation).
  • the CRC of the PDCCH or EPDCCH carrying DCI format 5A is scrambled by SL-SPS-V-RNTI.
  • the RRC signaling SL-V2X-ConfigDedicated when the RRC signaling SL-V2X-ConfigDedicated is set to scheduled-r14, it indicates that the UE is configured as a transmission mode based on the base station scheduling.
  • the base station configures SL-V-RNTI or SL-SPS-V-RNTI through RRC signaling, and uses PDCCH or EPDCCH (DCI format 5A, the CRC is scrambled with SL-V-RNTI or scrambled with SL-SPS-V-RNTI) ) sends an uplink scheduling grant UL grant to the UE.
  • the above-mentioned uplink scheduling grant UL grant at least includes scheduling information of PSSCH frequency domain resources in sidelink communication.
  • the UE When the UE successfully monitors the PDCCH or EPDCCH scrambled by SL-V-RNTI or SL-SPS-V-RNTI, it uses the PSSCH frequency domain resource indication field in the uplink scheduling grant UL grant (DCI format 5A) as the PSCCH Indication information of the frequency domain resources of PSSCH in (SCI format 1), and send PSCCH (SCI format 1) and the corresponding PSSCH.
  • DCI format 5A the PSSCH frequency domain resource indication field in the uplink scheduling grant UL grant
  • the UE receives SL-SPS-V-RNTI scrambled DCI format 5A on downlink subframe n. If the indication information of SPS activation is included in the DCI format 5A, the UE determines the frequency domain resources of the PSSCH according to the indication information in the DCI format 5A, and determines the time domain resources of the PSSCH (the transmission subframe of the PSSCH) according to information such as subframe n.
  • Resource allocation method based on UE sensing indicates that the resources used for sidelink communication are based on the UE sensing process of the set of candidate available resources.
  • the RRC signaling SL-V2X-ConfigDedicated is set to ue-Selected-r14, it indicates that the UE is configured as the transmission mode based on UE sensing.
  • the base station configures the available transmission resource pool, and the UE determines the PSSCH sidelink transmission resources in the transmission resource pool (resource pool) according to certain rules (see the LTE V2X UE sensing process section for a detailed process description). , and send PSCCH (SCI format 1) and corresponding PSSCH.
  • the resources sent and received by the UE belong to the resource pool resource pool.
  • the base station schedules transmission resources for the sidelink UE in the resource pool, or, for the transmission mode based on UE perception in sidelink communication, the UE determines transmission resources in the resource pool.
  • the parameter set numerology includes the subcarrier spacing and the cyclic prefix CP length.
  • Table 4.2-1 shows the set of supported transmission parameters, as follows shown.
  • ⁇ ⁇ f 2 ⁇ ⁇ 15[kHz] CP (Cyclic Prefix) 0 15 normal 1 30 normal 2 60 normal, extended 3 120 normal 4 240 normal
  • each slot (slot) contains 14 OFDM symbols; for extended CP, each slot contains 12 OFDM symbols.
  • NR and LTE have the same definition of subframe, which means 1ms.
  • subframe For the subcarrier spacing configuration ⁇ , the slot number in a subframe (1ms) can be expressed as The range is 0 to The slot number in a system frame (frame, duration 10ms) can be expressed as The range is 0 to in, and The definitions of the cases at different subcarrier spacing ⁇ are shown in the table below.
  • Table 4.3.2-1 The number of symbols contained in each slot in normal CP, the number of slots contained in each system frame, and the number of slots contained in each subframe
  • Table 4.3.2-2 The number of symbols contained in each slot when the CP is extended (60kHz), the number of slots contained in each system frame, and the number of slots contained in each subframe
  • the numbered SFN of a system frame ranges from 0 to 1023.
  • the concept of direct system frame number DFN is introduced in sideline communication, and the numbering range is also from 0 to 1023.
  • the above description of the relationship between system frames and numerology can also be applied to direct system frames.
  • the duration of a direct system frame Also equal to 10ms, for a subcarrier spacing of 15kHz, a direct system frame includes 10 slots, and so on.
  • DFN is used for timing on sidelink carriers.
  • LTE only supports subcarrier spacing of 15kHz.
  • Extended CP is supported in LTE, and normal CP is also supported.
  • the subframe subframe has a duration of 1ms and includes two slots, each of which has a duration of 0.5ms.
  • each subframe contains 14 OFDM symbols, and each slot in the subframe contains 7 OFDM symbols; for extended CP, each subframe contains 12 OFDM symbols, and each slot in the subframe contains 6 OFDM symbols.
  • the resource block RB is defined in the frequency domain as consecutive sub-carriers, eg for a sub-carrier spacing of 15 kHz, the RB is 180 kHz in the frequency domain.
  • the resource element RE represents 1 subcarrier in the frequency domain and 1 OFDM symbol in the time domain.
  • the method for determining the subframe resource pool is based on all subframes in the range of SFN#0-SFN#1023, totaling 10240 subframes.
  • the subframe set that may belong to the V2X UE sending PSSCH subframe resource pool is expressed as satisfy:
  • the subframes in the above-mentioned subframe set are numbered relative to the subframe #0 of SFN#0 or DFN#0, that is, The subframe corresponding to SFN#0 or subframe #0 of DFN#0,
  • the above-mentioned subframe set includes all subframes after removing the following subframes (subframes included in a, b, and c):
  • Subframes configured with SLSS the number is denoted as N SLSS ;
  • reserved subframes wherein the method for determining the reserved subframes is:
  • L bitmap represents the length of the bitmap configured by the resource pool, which is configured by the upper layer, and the bitmap can be expressed as The subframes corresponding to the numbers of the subframes 1 r belong to reserved subframes.
  • the subframes in the subframe set are arranged in ascending order of subframe numbers.
  • LTE V2X transmission mode 4 when the UE determines the resources for sending sidelink communication through the sensing process, the UE reserves resources for periodic service data. It is assumed that the subframe resource for sending PSSCH determined by the UE is expressed as a subframe Then the UE is in the subframe Reserve resources.
  • P rsvp_TX′ P step ⁇ P rsvp_TX /100.
  • P step represents the number of available uplink subframes in P serv.
  • the determination of P step for edge connection transmission modes 3 and 4 is shown in Table 1, as shown in the following table.
  • P rsvp_TX represents a resource reservation interval indicated by an upper layer.
  • LTE V2X UE determines the resource reservation indication field in SCI format1
  • the resource reservation interval indicated by the upper layer is denoted as P rsvp_TX .
  • the upper layer requests sidelink data to be sent in subframe #n, and the UE is in subframe #n.
  • the UE determines the available resources in the candidate resource set between subframe #(n+T1) and subframe #(n+T2) according to the SCI format 1 successfully decoded above, And report the determined available resources to the upper layer.
  • subframe #n belongs to the subframe set So otherwise, Indicates that the first subframe after subframe #n belongs to the subframe set subframe. T1 and T2 depend on the specific implementation of the UE.
  • each candidate resource can be called a candidate single subframe resource (candidate single subframe resource), using R x , y to represent.
  • R x , y The specific definition of R x, y is:
  • v represents the time domain subframe
  • the UE assumes that between subframe #(n+T1) and subframe #(n+T2), any consecutive L subCH sub-channels belonging to the PSSCH resource pool correspond to a candidate single subframe resource.
  • the candidate resource set is represented by SA.
  • the UE reports the candidate single subframe resources that have not been removed to the higher layers, so that the upper layers (eg, the MAC layer) can perform sidelink communication resources s Choice.
  • the upper layers eg, the MAC layer
  • FIG. 3 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 1 of the present invention.
  • the steps performed by the user equipment include:
  • step S101 the MAC entity (MAC entity) of the sideline communication user equipment receives the configuration information of the upper layer, and is configured by the upper layers to transmit the sideline communication based on sensing.
  • the user equipment is an LTE sideline communication user equipment.
  • step S102 the sideline communication user equipment selects time domain and frequency domain resources of a first transmission opportunity (transmission opportunity).
  • the user equipment randomly selects time domain and frequency domain resources of the first transmission opportunity.
  • the user equipment selects the time-domain and frequency-domain resources of the first transmission opportunity from the perceived resources indicated (or reported) by the physical layer of the user equipment.
  • the user equipment randomly selects time domain and frequency domain resources of the first transmission opportunity from the perceived resources indicated (or, reported) by the physical layer of the user equipment.
  • step S103 the sideline communication user equipment selects time domain and frequency domain resources of the second transmission opportunity.
  • the time domain and frequency domain resources of the second transmission opportunity correspond to the time domain and frequency domain resources of HARQ retransmission.
  • the second transmission opportunity includes one or more than one transmission opportunity.
  • HARQ retransmissions if the number of HARQ retransmissions (HARQ retransmissions) is equal to 1, optionally, if in the sensed resources indicated (or reported) by the physical layer of the user equipment, (optionally, the After the user equipment has selected the time domain and frequency domain resources of the first transmission opportunity), there are available resources (available resources) for more transmission opportunities (left), and, optionally, , the remaining available resources meet the following conditions (meet the condition):
  • the time domain resource subframe set of the second transmission opportunity optionally, the time domain resource subframe set of the second transmission opportunity and satisfy -15 ⁇ k ⁇ 15, and k ⁇ 0, and optionally, and satisfy
  • the user equipment randomly selects time domain and frequency domain resources of the second transmission opportunity.
  • FIG. 4 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 2 of the present invention.
  • the steps performed by the user equipment include:
  • step S201 the MAC entity (MAC entity) of the sideline communication user equipment receives the configuration information of the upper layer, and is configured by the upper layers to transmit the sideline communication based on sensing.
  • the sensing-based lateral communication transmission is NR lateral communication resource allocation mode 2.
  • the user equipment is an NR sidelink communication user equipment.
  • step S202 the sideline communication user equipment selects time domain and frequency domain resources of a first transmission opportunity (transmission opportunity).
  • the user equipment randomly selects time domain and frequency domain resources of the first transmission opportunity.
  • the user equipment selects the time-domain and frequency-domain resources of the first transmission opportunity from the perceived resources indicated (or reported) by the physical layer of the user equipment.
  • the user equipment randomly selects time domain and frequency domain resources of the first transmission opportunity from the perceived resources indicated (or, reported) by the physical layer of the user equipment.
  • the user equipment uses the time domain and frequency domain resources of the first transmission opportunity to select a first periodic sideline communication resource (representing a The time-frequency resources correspond to the time-domain and frequency-domain resources of the first transmission opportunity).
  • the user equipment considers the first periodic sideline communication resource as a new transmission opportunity (new transmission opportunities).
  • step S203 the sidelink communication user equipment selects time domain and frequency domain resources of other transmission opportunities.
  • the time domain and frequency domain resources of the other transmission opportunities correspond to the time domain and frequency domain resources of HARQ retransmission.
  • the other transmission opportunities include one or more than one transmission opportunity.
  • HARQ retransmissions if the number of HARQ retransmissions (HARQ retransmissions) is equal to 1 or more than 1, optionally, if in the perceived resources indicated (or reported) by the physical layer of the user equipment, (may be Optionally, after the user equipment has selected the time domain and frequency domain resources of the first transmission opportunity), there are available resources (available resources) for more transmission opportunities (left):
  • the user equipment randomly selects the time domain and frequency domain resources of the other transmission opportunities.
  • the user equipment uses the time domain and frequency domain resources of the other transmission opportunities, and according to the resource reservation interval (resource reservation interval), selects a second periodic sideline communication resource (representing each cycle).
  • the time-frequency resources in the above all correspond to the time-domain and frequency-domain resources of the other transmission opportunities).
  • the user equipment considers the second periodic sideline communication resource as retransmission opportunities (retransmission opportunities).
  • the second periodic sideline communication resources are not overlapped (not overlapped); and/or the first periodic sideline communication resources are not overlapped (not overlapped); and/or the first periodic lateral communication resource and the second periodic lateral communication resource are not overlapped (not overlapped),
  • the (corresponding) sideline communication resources of the retransmission opportunity are not overlapped (not overlapped); and/or the sideline communication resources (corresponding to) of the initial transmission opportunity are not overlapped (not overlapped) and/or the (corresponding) sideline communication resources of the retransmission opportunity and the (corresponding) sideline communication resources of the initial transmission opportunity are not overlapped (not overlapped).
  • FIG. 3 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 3 of the present invention.
  • Embodiment 3 of the present invention will be described in detail with reference to the basic process diagram shown in FIG. 3 .
  • the steps performed by the user equipment include:
  • step S101 the MAC entity (MAC entity) of the sideline communication user equipment receives the configuration information of the upper layer, and is configured by the upper layers to transmit the sideline communication based on sensing.
  • the user equipment is an LTE sideline communication user equipment.
  • step S102 the sideline communication user equipment selects time domain and frequency domain resources of a first transmission opportunity (transmission opportunity).
  • the user equipment randomly selects time domain and frequency domain resources of the first transmission opportunity.
  • the user equipment selects the time-domain and frequency-domain resources of the first transmission opportunity from the perceived resources indicated (or reported) by the physical layer of the user equipment.
  • the user equipment randomly selects time domain and frequency domain resources of the first transmission opportunity from the perceived resources indicated (or, reported) by the physical layer of the user equipment.
  • the user equipment uses the time domain and frequency domain resources of the first transmission opportunity to select a first periodic sideline communication resource (representing a The time-frequency resources correspond to the time-domain and frequency-domain resources of the first transmission opportunity).
  • the user equipment considers the first periodic sideline communication resource as a new transmission opportunity (new transmission opportunities).
  • step S103 the sideline communication user equipment selects time domain and frequency domain resources of the second transmission opportunity.
  • the time domain and frequency domain resources of the second transmission opportunity correspond to the time domain and frequency domain resources of HARQ retransmission.
  • HARQ retransmissions if the number of HARQ retransmissions (HARQ retransmissions) is equal to 1, optionally, if in the sensed resources indicated (or reported) by the physical layer of the user equipment, (optionally, the After the user equipment has selected the time domain and frequency domain resources of the first transmission opportunity), there are available resources (available resources) for more transmission opportunities (left); and, optionally , the remaining available resources meet the following conditions (meet the condition):
  • the time domain resource subframe set of the second transmission opportunity And satisfy -15 ⁇ k ⁇ 15, and k ⁇ 0.
  • the user equipment randomly selects time domain and frequency domain resources of the second transmission opportunity.
  • the user equipment uses the time domain and frequency domain resources of the second transmission opportunity, and selects a second periodic sidelink communication resource (representing each The time-frequency resources in the period all correspond to the time-domain and frequency-domain resources of the second transmission opportunity).
  • the user equipment considers the second periodic sideline communication resource as retransmission opportunities (retransmission opportunities).
  • the second periodic sideline communication resources are not overlapped (not overlapped); and/or the first periodic sideline communication resources are not overlapped (not overlapped); and/or the first periodic lateral communication resource and the second periodic lateral communication resource are not overlapped (not overlapped),
  • the (corresponding) sideline communication resources of the retransmission opportunity are not overlapped (not overlapped); and/or the sideline communication resources (corresponding to) of the initial transmission opportunity are not overlapped (not overlapped) and/or the (corresponding) sideline communication resources of the retransmission opportunity and the (corresponding) sideline communication resources of the initial transmission opportunity are not overlapped (not overlapped).
  • FIG. 5 is a block diagram showing a user equipment UE according to the present invention.
  • the user equipment UE80 includes a processor 801 and a memory 802 .
  • the processor 801 may include, for example, a microprocessor, a microcontroller, an embedded processor, or the like.
  • the memory 802 may include, for example, volatile memory (eg, random access memory RAM), a hard disk drive (HDD), non-volatile memory (eg, flash memory), or other memory, and the like.
  • Program instructions are stored on the memory 802 . When the instructions are executed by the processor 801, the above method described in detail in the present invention and executed by the user equipment can be executed.
  • the method and related apparatus of the present invention have been described above with reference to the preferred embodiments. Those skilled in the art can understand that the methods shown above are only exemplary, and the various embodiments described above can be combined with each other under the condition that no contradiction occurs.
  • the method of the present invention is not limited to the steps and sequences shown above.
  • the network node and user equipment shown above may include more modules, for example, may also include modules that can be developed or developed in the future and can be used for a base station, an MME, or a UE, and so on.
  • the various identifiers shown above are only exemplary and not restrictive, and the present invention is not limited to specific information elements exemplified by these identifiers. Numerous changes and modifications may occur to those skilled in the art in light of the teachings of the illustrated embodiments.
  • the above-described embodiments of the present invention may be implemented by software, hardware, or a combination of both software and hardware.
  • the various components inside the base station and the user equipment in the above embodiments may be implemented by various devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing Controllers, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), Programmable Logic Devices (CPLDs), etc.
  • DSP digital signal processing
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • CPLDs Programmable Logic Devices
  • base station may refer to a mobile communication data and control switching center with larger transmit power and wider coverage area, including functions such as resource allocation and scheduling, data reception and transmission, and the like.
  • User equipment may refer to a user's mobile terminal, for example, including a mobile phone, a notebook, and other terminal equipment that can wirelessly communicate with a base station or a micro base station.
  • embodiments of the invention disclosed herein may be implemented on a computer program product.
  • the computer program product is a product having a computer-readable medium on which computer program logic is encoded that, when executed on a computing device, provides relevant operations to achieve The above technical solutions of the present invention.
  • computer program logic When executed on at least one processor of a computing system, computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present invention.
  • Such arrangements of the present invention are typically provided as software, code and/or other data structures arranged or encoded on a computer readable medium such as an optical medium (eg CD-ROM), floppy or hard disk, or such as one or more Firmware or other medium of microcode on a ROM or RAM or PROM chip, or a downloadable software image in one or more modules, a shared database, etc.
  • Software or firmware or such a configuration may be installed on a computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
  • each functional module or each feature of the base station device and the terminal device used in each of the above embodiments may be implemented or executed by a circuit, which is usually one or more integrated circuits.
  • Circuits designed to perform the various functions described in this specification may include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs) or general purpose integrated circuits, field programmable gate arrays (FPGAs) or other Program logic devices, discrete gate or transistor logic, or discrete hardware components, or any combination of the above.
  • a general-purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
  • the general-purpose processor or each circuit described above may be configured by digital circuits, or may be configured by logic circuits.
  • the present invention can also use the integrated circuit obtained by using the advanced technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种由用户设备执行的方法以及用户设备,所述方法包括:用户设备的MAC实体接收上层的配置信息,由上层配置为基于感知的侧行通信传输;用户设备选择第一传输机会的时域和频域资源;用户设备选择第二传输机会的时域和频域资源。

Description

由用户设备执行的方法以及用户设备 技术领域
本发明涉及无线通信技术领域,具体涉及由用户设备执行的方法以及相应的用户设备。
背景技术
在传统的蜂窝网络中,所有的通信都必须经过基站。不同的是,D2D通信(Device-to-Device communication,设备到设备间直接通信)是指两个用户设备之间不经过基站或者核心网的转发而直接进行的通信方式。在2014年3月第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的RAN#63次全会上,关于利用LTE设备实现临近D2D通信业务的研究课题获得批准(参见非专利文献1)。LTE Release 12 D2D引入的功能包括:
1)LTE网络覆盖场景下临近设备之间的发现功能(Discovery);
2)临近设备间的直接广播通信(Broadcast)功能;
3)高层支持单播(Unicast)和组播(Groupcast)通信功能。
在2014年12月的3GPP RAN#66全会上,增强的LTE eD2D(enhanced D2D)的研究项目获得批准(参见非专利文献2)。LTE Release 13 eD2D引入的主要功能包括:
1)无网络覆盖场景和部分网络覆盖场景的D2D发现;
2)D2D通信的优先级处理机制。
基于D2D通信机制的设计,在2015年6月3GPP的RAN#68次全会上,批准了基于D2D通信的V2X可行性研究课题。V2X表示Vehicle to everything,希望实现车辆与一切可能影响车辆的实体信息交互,目的是减少事故发生,减缓交通拥堵,降低环境污染以及提供其他信息服务。V2X的应用场景主要包含4个方面:
1)V2V,Vehicle to Vehicle,即车-车通信;
2)V2P,Vehicle to Pedestrian,即车给行人或非机动车发送警告;
3)V2N,Vehicle to Network,即车辆连接移动网络;
4)V2I,Vehicle to Infrastructure,即车辆与道路基础设施等通信。
3GPP将V2X的研究与标准化工作分为3个阶段。第一阶段于2016年9月完成,主要聚焦于V2V,基于LTE Release 12和Release 13 D2D(也可称为sidelink侧行通信),即邻近通信技术制定(参见非专利文献3)。V2X stage 1引入了一种新的D2D通信接口,称为PC5接口。PC5接口主要用于解决高速(最高250公里/小时)及高节点密度环境下的蜂窝车联网通信问题。车辆可以通过PC5接口进行诸如位置、速度和方向等信息的交互,即车辆间可通过PC5接口进行直接通信。相较于D2D设备间的临近通信,LTE Release 14 V2X引入的功能主要包含:
1)更高密度的DMRS以支持高速场景;
2)引入子信道(sub-channel),增强资源分配方式;
3)引入具有半静态调度(semi-persistent)的用户设备感知(sensing)机制。
V2X研究课题的第二阶段归属于LTE Release 15研究范畴(参见非专利文献4),引入的主要特性包含高阶64QAM调制、V2X载波聚合、短TTI传输,同时包含发射分集的可行性研究。
在2018年6月3GPP RAN#80全会上,相应的第三阶段基于5G NR网络技术的V2X可行性研究课题(参见非专利文献5)获得批准。
在LTE Release 14 V2X课题中,支持一种基于用户设备感知(sensing)的资源分配方式4(resource allocation mode 4),或者称为传输模式4。在资源分配方式4中,用户设备的物理层对资源池内的传输资源进行感知,并向上层报告可用的传输资源的集合。上层在获得物理层的报告后,选择具体用于侧行通信传输的资源。
本专利的方案主要包括在LTE V2X中,用户设备选择用于侧行通信传输的资源的方法。
同时,在NR侧行通信的标准化研究中,类比于LTE V2X,同样引入了一种基于用户设备感知的资源分配方式,称为资源分配方式2。在资源分配方式2中,用户设备的物理层对资源池内的传输资源进行感知,并 向上层报告可用的传输资源的集合。上层在获得物理层的报告后,选择具体用于侧行通信传输的资源。
本专利的方案同样包括在NR侧行通信中,用户设备选择用于侧行通信传输的资源的方法。
现有技术文献
非专利文献
非专利文献1:RP-140518,Work item proposal on LTE Device to Device Proximity Services
非专利文献2:RP-142311,Work Item Proposal for Enhanced LTE Device to Device Proximity Services
非专利文献3:RP-152293,New WI proposal:Support for V2V services based on LTE sidelink
非专利文献4:RP-170798,New WID on 3GPP V2X Phase 2
非专利文献5:RP-181480,New SID Proposal:Study on NR V2X
发明内容
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备。
根据本发明的一个方面,提供一种由用户设备执行的方法,包括如下步骤:
用户设备确定第一子帧集合
Figure PCTCN2021099100-appb-000001
作为第一传输机会的时域资源集合;
用户设备确定第二子帧集合
Figure PCTCN2021099100-appb-000002
作为第二传输机会的时域资源集合;
其中,P′ rsvp_TX=P step×P rsvp_TX/100,所述P rsvp_TX表示高层指示的 资源预留周期,以及,P step由时分双工TDD的配置信息所确定,以及,所述第二子帧集合满足条件:-15≤k≤15,k≠0以及k mod P′ rsvp_TX≠0。
在上述的由用户设备执行的方法中,可选地,所述用户设备为LTE侧行通信用户设备。
在上述的由用户设备执行的方法中,可选地,所述用户设备在所述第一子帧集合和所述第二子帧集合包含的一个或者多个子帧中传输物理侧行通信共享信道PSSCH。
根据本发明的一个方面,提供一种用户设备,包括:
处理器;以及
存储器,存储有指令,
所述指令在由所述处理器运行时,使所述用户设备执行根据上文所描述的方法。
本发明的有益效果
根据本专利的方案,在LTE V2X侧行通信中,可以有效保证用户设备在同一个子帧上不会选择多于1个侧行通信资源,以及,保证了LTE传输中的单载波特性(SC-FDMA),降低传输干扰,提升传输可靠性。
同样地,根据本专利的方案,在NR侧行通信中,可以有效保证用户设备在同一个时隙上不会选择多于1个侧行通信资源,以及,保证了NR侧行通信用户设备的不同的侧行通信传输在时域上不会产生重叠。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1是示出了LTE V2X UE侧行通信的示意图。
图2是示出了LTE V2X的资源分配方式的示意图。
图3是示出了发明的实施例一、三中由用户设备执行的方法的基本过程的示意图。
图4是示出了发明的实施例二中由用户设备执行的方法的基本过程的示意图。
图5是示出了根据本发明的实施例的用户设备的框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
下文以5G移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G移动通信系统等。
下面描述本发明涉及的部分术语,如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的通信系统中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划
LTE:Long Term Evolution,长期演进技术
NR:New Radio,新无线、新空口
PDCCH:Physical Downlink Control Channel,物理下行控制信道
DCI:Downlink Control Information,下行控制信息
PDSCH:Physical Downlink Shared Channel,物理下行共享信道
UE:User Equipment,用户设备
eNB:evolved NodeB,演进型基站
gNB:NR基站
TTI:Transmission Time Interval,传输时间间隔
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
CP-OFDM:Cyclic Prefix Orthogonal Frequency Division Multiplexing,带有循环前缀的正交频分复用
C-RNTI:Cell Radio Network Temporary Identifier,小区无线网络临时标识
CSI:Channel State Information,信道状态信息
HARQ:Hybrid Automatic Repeat Request,混合自动重传请求
CSI-RS:Channel State Information Reference Signal,信道状态信息参考信号
CRS:Cell Reference Signal,小区特定参考信号
PUCCH:Physical Uplink Control Channel,物理上行控制信道
PUSCH:Physical Uplink Shared Channel,物理上行共享信道
UL-SCH:Uplink Shared Channel,上行共享信道
CG:Configured Grant,配置调度许可
Sidelink:侧行通信
SCI:Sidelink Control Information,侧行通信控制信息
PSCCH:Physical Sidelink Control Channel,物理侧行通信控制信道
MCS:Modulation and Coding Scheme,调制编码方案
RB:Resource Block,资源块
RE:Resource Element,资源单元
CRB:Common Resource Block,公共资源块
CP:Cyclic Prefix,循环前缀
PRB:Physical Resource Block,物理资源块
PSSCH:Physical Sidelink Shared Channel,物理侧行通信共享信道
FDM:Frequency Division Multiplexing,频分复用
RRC:Radio Resource Control,无线资源控制
RSRP:Reference Signal Receiving Power,参考信号接收功率
SRS:Sounding Reference Signal,探测参考信号
DMRS:Demodulation Reference Signal,解调参考信号
CRC:Cyclic Redundancy Check,循环冗余校验
PSDCH:Physical Sidelink Discovery Channel,物理侧行通信发现信道
PSBCH:Physical Sidelink Broadcast Channel,物理侧行通信广播信道
SFI:Slot Format Indication,时隙格式指示
TDD:Time Division Duplexing,时分双工
FDD:Frequency Division Duplexing,频分双工
SIBl:System Information Block Type 1,系统信息块类型1
SLSS:Sidelink synchronization Signal,侧行通信同步信号
PSSS:Primary Sidelink Synchronization Signal,侧行通信主同步信号
SSSS:Secondary Sidelink Synchronization Signal,侧行通信辅同步信号
PCI:Physical Cell ID,物理小区标识
PSS:Primary Synchronization Signal,主同步信号
SSS:Secondary Synchronization Signal,辅同步信号
BWP:BandWidth Part,带宽片段/部分
GNSS:Global NaVigation Satellite System,全球导航卫星定位系统
SFN:System Frame Number,系统(无线)帧号
DFN:Direct Frame Number,直接帧号
IE:Information Element,信息元素
SSB:Synchronization Signal Block,同步系统信息块
EN-DC:EUTRA-NR Dual Connection,LTE-NR双连接
MCG:Master Cell Group,主小区组
SCG:Secondary Cell Group,辅小区组
PCell:Primary Cell,主小区
SCell:Secondary Cell,辅小区
PSFCH:Physical Sidelink Feedback Channel,物理侧行通信反馈信道
SPS:Semi-Persistant Scheduling,半静态调度
TA:Timing Advance,上行定时提前量
PT-RS:Phase-Tracking Reference Signals,相位跟踪参考信号
TB:Transport Block,传输块
CB:Code Block,编码块/码块
QPSK:Quadrature Phase Shift Keying,正交相移键控
16/64/256 QAM:16/64/256 Quadrature Amplitude Modulation,正交幅度调制
AGC:Auto Gain Control,自动增益控制
TDRA(field):Time Domain Resource Assignment,时域资源分配指示(域)
FDRA(field):Frequency Domain Resource Assignment,频域资源分配指示(域)
ARFCN:Absolute Radio Frequency Channel Number,绝对无线频率信道编号
SC-FDMA:Single Carrier-Frequency Division Multiple Access,单载波-频分复用多址
下文是与本发明方案相关联现有技术的描述。如无特别说明,具体实施例中与现有技术中相同术语的含义相同。
值得指出的是,本发明说明书中涉及的V2X与sidelink含义相同。文中的V2X也可以表示sidelink;相似地,文中的sidelink也可以表示V2X,后文中不做具体区分和限定。
本发明的说明书中的V2X(sidelink)通信的资源分配方式与V2X(sidelink)通信的传输模式可以等同替换。说明书中涉及的资源分配方式可以表示传输模式,以及,涉及的传输模式可以表示资源分配方式。在NR侧行通信中,传输模式1表示基于基站调度的传输模式(资源分配方式);传输模式2表示基于用户设备感知(sensing)和资源选择的传输模式(资源分配方式)。
本发明的说明书中的PSCCH用于携带SCI。本发明的说明书中涉及到的PSCCH对应的,或者,相应的,或者,相关的,或者,调度的PSSCH 表示的含义均相同,都表示associated PSSCH或者corresponding PSSCH。类似地,说明书中涉及到的PSSCH对应的,或者,相应的,或者,相关的SCI(包括第一级SCI和第二级SCI)表示的含义均相同,都表示associated SCI或者corresponding SCI。值得指出的是,第一级SCI称为1st stage SCI或者SCI format 0-1,在PSCCH中传输;第二级SCI称为2nd stage SCI或者SCI format 0-2,在对应的PSSCH的资源中传输。
Sidelink通信的场景
1)无网络覆盖(Out-of-Coverage)侧行通信:进行sidelink通信的两个UE都没有网络覆盖(例如,UE在需要进行sidelink通信的频率上检测不到任何满足“小区选择准则”的小区,表示该UE无网络覆盖)。
2)有网络覆盖(In-Coverage)侧行通信:进行sidelink通信的两个UE都有网络覆盖(例如,UE在需要进行sidelink通信的频率上至少检测到一个满足“小区选择准则”的小区,表示该UE有网络覆盖)。
3)部分网络覆盖(Partial-Coverage)侧行通信:进行sidelink通信的其中一个UE无网络覆盖,另一个UE有网络覆盖。
从UE侧来讲,该UE仅有无网络覆盖和有网络覆盖两种场景。部分网络覆盖是从sidelink通信的角度来描述的。
LTE V2X(sidelink)通信的基本过程
图1是示出了LTE V2X UE侧行通信的示意图。首先,UE1向UE2发送侧行通信控制信息(SCI format 1),由物理层信道PSCCH携带。SCI format 1包含PSSCH的调度信息,例如PSSCH的频域资源等。其次,UE1向UE2发送侧行通信数据,由物理层信道PSSCH携带。PSCCH和相应的PSSCH采用频分复用的方式,即PSCCH和相应的PSSCH在时域上位于相同的子帧上,在频域上位于不同的RB上。在LTE V2X中,一个传 输块TB可能仅包含一次初始传输,或者包含一次初始传输和一次盲重传(blind retransmission,表示不基于HARQ反馈的重传)。
PSCCH和PSSCH的具体设计方式如下:
1)PSCCH在时域上占据一个子帧,频域上占据两个连续的RB。加扰序列的初始化采用预定义数值510。PSCCH中可携带SCI format 1,其中SCI format 1至少包含PSSCH的频域资源信息。例如,对于频域资源指示域,SCI format 1指示该PSCCH对应的PSSCH的起始sub-channel编号和连续sub-channel的数目。
2)PSSCH在时域上占据一个子帧,和对应的PSCCH采用频分复用(FDM)。PSSCH在频域上占据一个或者多个连续的sub-channel,sub-channel在频域上表示n subCHsize个连续的RB,n subCHsize由RRC参数配置,起始sub-channel和连续sub-channel的数目由SCI format 1的频域资源指示域指示。
LTE V2X的资源分配方式Transmission Mode 3/4
图2是示出了LTE V2X的两种资源分配方式,分别称为基于基站调度的资源分配(Transmission Mode 3)和基于UE感知(sensing)的资源分配(Transmission Mode 4)。在NR侧行通信中,LTE V2X的传输模式3对应NR V2X中的传输模式1,为基于基站调度的传输模式;LTE V2X的传输模式4对应NR V2X中的传输模式2,为基于UE感知的传输模式。LTE V2X中,当存在eNB网络覆盖的情况下,基站可通过UE级的专有RRC信令(dedicated RRC signaling)SL-V2X-ConfigDedicated配置该UE的资源分配方式,或称为该UE的传输模式,具体为:
1)基于基站调度的资源分配方式(Transmission Mode 3):基于基站调度的资源分配方式表示sidelink侧行通信所使用的频域资源来自于基站的调度。传输模式3包含两种调度方式,分别为动态调度和半静态调度(SPS)。对于动态调度,UL grant(DCI format 5A)中包括PSSCH的频域资源,承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-V-RNTI加扰。对于SPS半静态调度,基 站通过IE:SPS-ConfigSL-r14配置一个或者多个(至多8个)配置的调度许可(configured grant),每个配置的调度许可含有一个调度许可编号(index)和调度许可的资源周期。UL grant(DCI format 5A)中包括PSSCH的频域资源,以及,调度许可编号的指示信息(3bits)和SPS激活(activate)或者释放(release,或者,去激活)的指示信息。承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-SPS-V-RNTI加扰。
具体地,当RRC信令SL-V2X-ConfigDedicated置为scheduled-r14时,表示该UE被配置为基于基站调度的传输模式。基站通过RRC信令配置SL-V-RNTI或者SL-SPS-V-RNTI,并通过PDCCH或者EPDCCH(DCI format 5A,CRC采用SL-V-RNTI加扰或者采用SL-SPS-V-RNTI加扰)向UE发送上行调度许可UL grant。上述上行调度许可UL grant中至少包含sidelink通信中PSSCH频域资源的调度信息。当UE成功监听到由SL-V-RNTI加扰或者SL-SPS-V-RNTI加扰的PDCCH或者EPDCCH后,将上行调度许可UL grant(DCI format 5A)中的PSSCH频域资源指示域作为PSCCH(SCI format 1)中PSSCH的频域资源的指示信息,并发送PSCCH(SCI format 1)和相应的PSSCH。
对于传输模式3中的半静态调度SPS,UE在下行子帧n上接收SL-SPS-V-RNTI加扰的DCI format 5A。如果DCI format 5A中包含SPS激活的指示信息,该UE根据DCI format 5A中的指示信息确定PSSCH的频域资源,根据子帧n等信息确定PSSCH的时域资源(PSSCH的发送子帧)。
2)基于UE感知(sensing)的资源分配方式(Transmission Mode 4):基于UE sensing的资源分配方式表示用于sidelink通信的资源基于UE对候选可用资源集合的感知(sensing)过程。RRC信令SL-V2X-ConfigDedicated置为ue-Selected-r14时表示该UE被配置为基于UE sensing的传输模式。在基于UE sensing的传输模式中,基站配置可用的传输资源池,UE根据一定的规则(详细过程的描述参见LTE V2X UE sensing过程部分)在传输资源池(resource  pool)中确定PSSCH的sidelink发送资源,并发送PSCCH(SCI format 1)和相应的PSSCH。
侧行通信资源池(sidelink resource pool)
在侧行通信中,UE的发送和接收的资源均属于资源池resource pool。例如,对于侧行通信中基于基站调度的传输模式,基站在资源池中为sidelink UE调度传输资源,或者,对于侧行通信中基于UE感知的传输模式,UE在资源池中确定传输资源。
NR中(包含NR sidelink)的参数集合(numerology)和NR中(包含NR  sidelink)的时隙slot
参数集合numerology包含子载波间隔和循环前缀CP长度两方面含义。其中,NR支持5种子载波间隔,分别为15k,30k,60k,120k,240kHz(对应μ=0,1,2,3,4),表格4.2-1示出了支持的传输参数集合,具体如下所示。
表4.2-1 NR支持的子载波间隔
μ Δf=2 μ·15[kHz] CP(循环前缀)
0 15 正常
1 30 正常
2 60 正常,扩展
3 120 正常
4 240 正常
仅当μ=2时,即60kHz子载波间隔的情况下支持扩展(Extended)CP,其他子载波间隔的情况仅支持正常CP。对于正常(Normal)CP,每个时隙(slot)含有14个OFDM符号;对于扩展CP,每个时隙含有12个OFDM符号。对于μ=0,即15kHz子载波间隔,1个时隙=1ms;μ=1,即30kHz子载波间隔,1个时隙=0.5ms;μ=2,即60kHz子载波间隔,1个时隙=0.25ms,以此类推。
NR和LTE对于子帧(subframe)的定义相同,表示1ms。对于子载 波间隔配置μ,1个子帧内(1ms)的slot编号可以表示为
Figure PCTCN2021099100-appb-000003
范围为0到
Figure PCTCN2021099100-appb-000004
1个系统帧(frame,时长10ms)内的slot编号可以表示为
Figure PCTCN2021099100-appb-000005
范围为0到
Figure PCTCN2021099100-appb-000006
其中,
Figure PCTCN2021099100-appb-000007
Figure PCTCN2021099100-appb-000008
在不同子载波间隔μ的情况的定义如下表格所示。
表格4.3.2-1:正常CP时每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
Figure PCTCN2021099100-appb-000009
表格4.3.2-2:扩展CP时(60kHz)每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
Figure PCTCN2021099100-appb-000010
在NR载波上,系统帧(或者,简称为帧)的编号SFN范围为0至1023。在侧行通信中引入了直接系统帧号DFN的概念,编号范围同样为0至1023,上述对于系统帧和numerology之间关系的叙述同样可以应用于直接系统帧,例如,一个直接系统帧的时长同样等于10ms,对于15kHz的子载波间隔,一个直接系统帧包括10个时隙slot,等等。DFN应用于sidelink载波上的定时timing。
LTE中(包含LTE V2X)参数集和LTE中(包含LTE V2X)的时隙slot 和子帧subframe
LTE仅支持15kHz的子载波间隔。LTE中支持扩展(Extended)CP,也支持正常CP。子帧subframe时长为1ms,包含两个时隙slot,每个slot时长为0.5ms。
对于正常(Normal)CP,每个子帧含有14个OFDM符号,子帧中的每个slot包含7个OFDM符号;对于扩展CP,每个子帧含有12个OFDM符号,子帧中的每个slot包含6个OFDM符号。
资源块RB和资源单元RE
资源块RB在频域上定义为
Figure PCTCN2021099100-appb-000011
个连续的子载波,例如对于15kHz的子载波间隔,RB在频域上为180kHz。对于子载波间隔15kHz×2 μ,资源单元RE在频域上表示1个子载波,在时域上表示1个OFDM符号。
LTE V2X UE确定PSSCH子帧资源池(subframe resource pool)的方法
LTE V2X中,子帧资源池的确定方法基于SFN#0-SFN#1023范围内的全部子帧,共计10240个子帧。此处将可能属于V2X UE发送PSSCH子帧资源池的子帧集合表示为
Figure PCTCN2021099100-appb-000012
满足:
1)
Figure PCTCN2021099100-appb-000013
2)上述子帧集合中的子帧相对于SFN#0或者DFN#0的子帧#0进行编号,即
Figure PCTCN2021099100-appb-000014
的子帧对应SFN#0或者DFN#0的子帧#0,
3)上述子帧集合包括除去如下子帧后(a,b,c包含的子帧)的全部子帧:
a)配置了SLSS的子帧,数目表示为N SLSS
b)TDD小区中的下行子帧和特殊子帧,数目表示为N dssf
c)预留(reserved)子帧,其中预留子帧的确定方法为:
子帧编号为0-10239的全部子帧除去N SLSS和N dssf个子帧后,剩余的(10240-N SLSS-N dssf)个子帧按照子帧编号的升序进行排列,此处可以表示为
Figure PCTCN2021099100-appb-000015
r=floor(m·(10240-N SLSS-N dssf)/N reserved)。其中m=0,1,...,N reserved-1,并且N reserved=(10240-N SLSS- N dssf)mod L bitmap。L bitmap表示资源池配置的比特位图长度,由上层配置,比特位图可以表示为
Figure PCTCN2021099100-appb-000016
子帧l r对应编号的子帧属于预留子帧。
4)子帧集合中的子帧按照子帧编号的升序进行排列。
UE确定PSSCH子帧资源池的方法为:对于子帧集合
Figure PCTCN2021099100-appb-000017
中的子帧
Figure PCTCN2021099100-appb-000018
如果满足b k′=1,其中k′=k mod L bitmap,则子帧
Figure PCTCN2021099100-appb-000019
属于PSSCH子帧资源池。
LTE V2X传输模式4(Transmission Mode 4)的预留资源
在LTE V2X传输模式4中,当UE通过sensing过程确定发送sidelink通信的资源时,UE将为周期性的业务数据预留资源。假设UE确定的发送PSSCH的子帧资源表示为子帧
Figure PCTCN2021099100-appb-000020
那么该UE在子帧
Figure PCTCN2021099100-appb-000021
上预留资源。其中j=1,2,...,C resel-1,C resel=10×SL_RESOURCE_RESELECTION_COUNTER,Sl_RESOURCE_RESELECTION_COUNTER由高层配置。如果高层未配置,则C resel=1。P rsvp_TX′=P step×P rsvp_TX/100。LTE V2X包含周期性业务,业务产生的周期约为P serv=100ms。其中,P step表示在P serv内可用的上行子帧数目。如下表格1示出了LTE V2X中P step在不同TDD上下行配置信息时的取值。例如对于TDD UL/DL配置信息2,每个系统帧内包含2个上行子帧。在P serv=100ms的业务周期内,共包含上行子帧20个。表1中示出了针对边缘连接传输模式3和4的P step的确定,具体如下表格所示。
表格1 P step的确定
Figure PCTCN2021099100-appb-000022
P rsvp_TX表示由上层指示的资源预留间隔(resource reservation interval)。
LTE V2X UE确定SCI format1中资源预留指示域
上层指示的资源预留间隔表示为P rsvp_TX。UE根据上层指示,确定X=P rsvp_TX/100的取值,结合如下表格2,UE可以确定SCI中的资源预留指示域(4比特的指示域)。
表格2
Figure PCTCN2021099100-appb-000023
LTE V2X传输模式4(Transmission Mode 4)中UE感知(sensing)的过
对于UE sensing的过程,概括来讲,在LTE V2X传输模式4中,上层在子帧#n请求(request)有sidelink数据需要发送,该UE在子帧
Figure PCTCN2021099100-appb-000024
中监听其他UE发送的SCI format 1,根据上述成功译码的SCI format 1,该UE确定子帧#(n+T1)到子帧#(n+T2)间的候选资源集合中的可用资源,并且将确定的可用资源上报给上层。其 中,如果子帧#n属于子帧集合
Figure PCTCN2021099100-appb-000025
那么
Figure PCTCN2021099100-appb-000026
否则,
Figure PCTCN2021099100-appb-000027
表示子帧#n后的首个属于子帧集合
Figure PCTCN2021099100-appb-000028
的子帧。T1和T2取决于UE的具体实现。
子帧#(n+T1)到子帧#(n+T2)间的候选资源集合中的每个元素,即每个候选资源可称为候选单子帧资源(candidate single subframe resource),采用R x,y来表示。R x,y的具体定义是:
1)x表示频域上连续L subCH个sub-channel#(x+j),其中j=0,1,...,L subCH-1.
2)v表示时域子帧
Figure PCTCN2021099100-appb-000029
UE假设在子帧#(n+T1)到子帧#(n+T2)之间,属于PSSCH资源池的任意连续L subCH个sub-channel对应一个候选单子帧资源。候选资源集合采用SA表示。
记UE在子帧
Figure PCTCN2021099100-appb-000030
接收的SCI format 1中的资源预留指示域为P rsvp_RX。如果UE在子帧
Figure PCTCN2021099100-appb-000031
接收的SCI format 1或者UE假设(assume)在子帧
Figure PCTCN2021099100-appb-000032
上接收到的相同SCI format1中指示的PSSCH资源块(resource blocks)和子帧资源与候选单子帧资源
Figure PCTCN2021099100-appb-000033
重合或者部分重叠时(UE感知的过程同样需要比较RSRP,本发明对此不做赘述),则UE将候选单子帧资源R x,y从S A移除(exclude)。其中,q=l,2,...,Q,以及,j=1,2,...,C resel-1。如果P rsvp_RX<1并且n′-m≤P step×P rsvp_RX,则Q=1/P rsvp_RX;否则,Q=1。
根据包括但不限于上文的方法,在UE进行sensing感知后,UE将未被移除的候选单子帧资源报告给上层(higher layers),以供上层(例如,MAC层)进行侧行通信资源的选择。
以下,对本发明所涉及的具体的示例以及实施例等进行详细说明。另外,如上所述,本公开中记载的示例以及实施例等是为了容易理解本发明而进行的示例性说明,并不是对本发明的限定。
[实施例一]
图3是示出了本发明的实施例一的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例一的由用户设备执行的方法。
如图3所示,在本发明的实施例一中,用户设备执行的步骤包括:
在步骤S101,侧行通信用户设备的MAC实体(MAC entity)接收上层的配置信息,由上层(upper layers)配置为基于感知(sensing)的侧行通信传输。
可选地,所述用户设备是LTE侧行通信用户设备。
在步骤S102,所述侧行通信用户设备选择第一传输机会(transmission opportunity)的时域和频域资源。
可选地,所述用户设备随机(randomly)选择第一传输机会的时域和频域资源。
或者,
可选地,所述用户设备从所述用户设备的物理层指示的(或者,报告的)感知的资源中选择第一传输机会的时域和频域资源。
或者,
可选地,所述用户设备从所述用户设备的物理层指示的(或者,报告的)感知的资源中随机选择第一传输机会的时域和频域资源。
在步骤S103,所述侧行通信用户设备选择第二传输机会的时域和频域资源。
可选地,所述第二传输机会的时域和频域资源对应HARQ重传的时域和频域资源。
可选地,所述第二传输机会包括一个或者多于一个的传输机会。
可选地,如果所述HARQ重传(HARQ retransmission)的数目等于1,可选地,如果所述用户设备的物理层指示的(或者,报告的)感知的资源中,(可选地,所述用户设备选择了所述第一传输机会的时域和频域资源后),剩余(left)有为更多传输机会(for more transmission opportunities)可用的资源(available resources),以及,可选地,所述剩余可用的资源满足下述条件(meet the condition):
■当所述用户设备选择了子帧集合
Figure PCTCN2021099100-appb-000034
可选地,作为所述第一传输机会的时域资源;可选地,所述第二传输机会的时域资源子帧集合
Figure PCTCN2021099100-appb-000035
并且满足-15≤k≤15,并且,k≠0,同时,可选地,并且满足|k|≠P′ rsvp_TX(或者,满足|k|≠n×P′ rsvp_TX,其中,n表示正整数,或者,|k|不是P′ rsvp_TX的正整数倍,或者,mod(|k|,P′ rsvp_TX)≠0(或者,mod(k,P′ rsvp_TX)≠0),或者|k|<P′ rsvp_TX)。
■所述用户设备随机选择所述第二传输机会的时域和频域资源。
[实施例二]
图4是示出了本发明的实施例二的由用户设备执行的方法的基本过程的示意图。
下面,结合图4所示的基本过程图来详细说明本发明的实施例二的由用户设备执行的方法。
如图4所示,在本发明的实施例二中,用户设备执行的步骤包括:
在步骤S201,侧行通信用户设备的MAC实体(MAC entity)接收上层的配置信息,由上层(upper layers)配置为基于感知(sensing)的侧行通信传输。
可选地,所述基于感知的侧行通信传输为NR侧行通信资源分配方式2。
可选地,所述用户设备为NR侧行通信用户设备。
在步骤S202,所述侧行通信用户设备选择第一传输机会(transmission opportunity)的时域和频域资源。
可选地,所述用户设备随机(randomly)选择第一传输机会的时域和频域资源。
或者,
可选地,所述用户设备从所述用户设备的物理层指示的(或者,报告的)感知的资源中选择第一传输机会的时域和频域资源。
或者,
可选地,所述用户设备从所述用户设备的物理层指示的(或者,报告的)感知的资源中随机选择第一传输机会的时域和频域资源。
可选地,所述用户设备使用所述第一传输机会的时域和频域资源,按照资源预留间隔(resource reservation interval),选择第一周期性的侧行通信资源(表示每个周期内的时频资源都对应所述第一传输机会的时域和频域资源)。
可选地,所述用户设备认为(consider)所述第一周期性的侧行通信资源为初传机会(new transmission opportunities)。
在步骤S203,所述侧行通信用户设备选择其他传输机会的时域和频域资源。
可选地,所述其他传输机会的时域和频域资源对应HARQ重传的时域和频域资源。
可选地,所述其他传输机会包括一个或者多于一个的传输机会。
可选地,如果所述HARQ重传(HARQ retransmission)的数目等于1或者多于1,可选地,如果所述用户设备的物理层指示的(或者,报告的)感知的资源中,(可选地,所述用户设备选择了所述第一传输机会的时域和频域资源后),剩余(left)有为更多传输机会(for more transmission opportunities)可用的资源(available resources):
■所述用户设备随机选择所述其他传输机会的时域和频域资源。
可选地,所述用户设备使用所述其他传输机会的时域和频域资源,按照所述资源预留间隔(resource reservation interval),选择第二周期性的侧行通信资源(表示每个周期内的时频资源都对应所述其他传输机会的时域和频域资源)。
可选地,所述用户设备认为(consider)所述第二周期性的侧行通信资源为重传机会(retransmission opportunities)。
可选地,所述第二周期性的侧行通信资源之间不重叠(not overlapped);和/或所述第一周期性的侧行通信资源之间不重叠(not overlapped);和/或所述第一周期性的侧行通信资源和所述第二周期性的侧行通信资源之间不重叠(not overlapped),
或者,
可选地,所述重传机会(对应)的侧行通信资源之间不重叠(not overlapped);和/或所述初传机会(对应)的侧行通信资源之间不重叠(not overlapped);和/或所述重传机会(对应)的侧行通信资源和所述初传机会(对应)的侧行通信资源之间不重叠(not overlapped)。
[实施例三]
图3是示出了本发明的实施例三的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例三的由用户设备执行的方法。
如图3所示,在本发明的实施例三中,用户设备执行的步骤包括:
在步骤S101,侧行通信用户设备的MAC实体(MAC entity)接收上层的配置信息,由上层(upper layers)配置为基于感知(sensing)的侧行通信传输。
可选地,所述用户设备为LTE侧行通信用户设备。
在步骤S102,所述侧行通信用户设备选择第一传输机会(transmission opportunity)的时域和频域资源。
可选地,所述用户设备随机(randomly)选择第一传输机会的时域和 频域资源。
或者,
可选地,所述用户设备从所述用户设备的物理层指示的(或者,报告的)感知的资源中选择第一传输机会的时域和频域资源。
或者,
可选地,所述用户设备从所述用户设备的物理层指示的(或者,报告的)感知的资源中随机选择第一传输机会的时域和频域资源。
可选地,所述用户设备使用所述第一传输机会的时域和频域资源,按照资源预留间隔(resource reservation interval),选择第一周期性的侧行通信资源(表示每个周期内的时频资源都对应所述第一传输机会的时域和频域资源)。
可选地,所述用户设备认为(consider)所述第一周期性的侧行通信资源为初传机会(new transmission opportunities)。
在步骤S103,所述侧行通信用户设备选择第二传输机会的时域和频域资源。
可选地,所述第二传输机会的时域和频域资源对应HARQ重传的时域和频域资源。
可选地,如果所述HARQ重传(HARQ retransmission)的数目等于1,可选地,如果所述用户设备的物理层指示的(或者,报告的)感知的资源中,(可选地,所述用户设备选择了所述第一传输机会的时域和频域资源后),剩余(left)有为更多传输机会(for more transmission opportunities)可用的资源(available resources);以及,可选地,所述剩余可用的资源满足下述条件(meet the condition):
■当所述用户设备选择了子帧集合
Figure PCTCN2021099100-appb-000036
可选地,作为所述第一传输机会的时域资源;可选地,所述第二传输机会的时域资源子帧集合
Figure PCTCN2021099100-appb-000037
并且满足-15≤k≤15,并且,k≠0。
■所述用户设备随机选择所述第二传输机会的时域和频域资源。
可选地,所述用户设备使用所述第二传输机会的时域和频域资源,按照所述资源预留间隔(resource reservation interval),选择第二周期性的侧行通信资源(表示每个周期内的时频资源都对应所述第二传输机会的时域和频域资源)。
可选地,所述用户设备认为(consider)所述第二周期性的侧行通信资源为重传机会(retransmission opportunities)。
可选地,所述第二周期性的侧行通信资源之间不重叠(not overlapped);和/或所述第一周期性的侧行通信资源之间不重叠(not overlapped);和/或所述第一周期性的侧行通信资源和所述第二周期性的侧行通信资源之间不重叠(not overlapped),
或者,
可选地,所述重传机会(对应)的侧行通信资源之间不重叠(not overlapped);和/或所述初传机会(对应)的侧行通信资源之间不重叠(not overlapped);和/或所述重传机会(对应)的侧行通信资源和所述初传机会(对应)的侧行通信资源之间不重叠(not overlapped)。
图5是表示本发明所涉及的用户设备UE的框图。如图5所示,该用户设备UE80包括处理器801和存储器802。处理器801例如可以包括微处理器、微控制器、嵌入式处理器等。存储器802例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器802上存储有程序指令。该指令在由处理器801运行时,可以执行本发明详细描述的由用户设备执行的上述方法。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的, 本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态 机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (4)

  1. 一种由用户设备执行的方法,包括如下步骤:
    用户设备确定第一子帧集合
    Figure PCTCN2021099100-appb-100001
    作为第一传输机会的时域资源集合;
    用户设备确定第二子帧集合
    Figure PCTCN2021099100-appb-100002
    作为第二传输机会的时域资源集合;
    其中,P′ rsvp_TX=P step×P rsvp_TX/100,所述P rsvp_TX表示高层指示的资源预留周期,以及,P step由时分双工TDD的配置信息所确定,以及,所述第二子帧集合满足条件:-15≤k≤15,k≠0以及k mod P′ rsvp_TX≠0。
  2. 根据权利要求1所述的由用户设备执行的方法,其中,
    所述用户设备为LTE侧行通信用户设备。
  3. 根据权利要求1所述的由用户设备执行的方法,其中,
    所述用户设备在所述第一子帧集合和所述第二子帧集合包含的一个或者多个子帧中传输物理侧行通信共享信道PSSCH。
  4. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令,
    所述指令在由所述处理器运行时,使所述用户设备执行根据权利要求1-3中任一项所述的方法。
PCT/CN2021/099100 2020-07-23 2021-06-09 由用户设备执行的方法以及用户设备 WO2022017037A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/016,521 US20230276473A1 (en) 2020-07-23 2021-06-09 Method performed by user equipment, and user equipment
EP21845212.6A EP4187999A1 (en) 2020-07-23 2021-06-09 Method executed by user equipment, and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010720379.9A CN113973283A (zh) 2020-07-23 2020-07-23 由用户设备执行的方法以及用户设备
CN202010720379.9 2020-07-23

Publications (1)

Publication Number Publication Date
WO2022017037A1 true WO2022017037A1 (zh) 2022-01-27

Family

ID=79585470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099100 WO2022017037A1 (zh) 2020-07-23 2021-06-09 由用户设备执行的方法以及用户设备

Country Status (4)

Country Link
US (1) US20230276473A1 (zh)
EP (1) EP4187999A1 (zh)
CN (1) CN113973283A (zh)
WO (1) WO2022017037A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117377071A (zh) * 2022-06-27 2024-01-09 夏普株式会社 由用户设备执行的方法以及用户设备
CN117998599A (zh) * 2022-11-02 2024-05-07 夏普株式会社 由用户设备执行的方法以及用户设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803321A (zh) * 2017-11-17 2019-05-24 电信科学技术研究院 一种多业务下的资源选择方法及终端
US20190182806A1 (en) * 2016-08-09 2019-06-13 Lg Electronics Inc. Method whereby terminal transmits and receives sidelink signals in wireless communication system
CN110235494A (zh) * 2017-03-10 2019-09-13 华为技术有限公司 资源选择方法
US20200229146A1 (en) * 2016-08-25 2020-07-16 Qualcomm Incorporated Autonomous resource selection for multiple transmissions in device-to-device communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190182806A1 (en) * 2016-08-09 2019-06-13 Lg Electronics Inc. Method whereby terminal transmits and receives sidelink signals in wireless communication system
US20200229146A1 (en) * 2016-08-25 2020-07-16 Qualcomm Incorporated Autonomous resource selection for multiple transmissions in device-to-device communications
CN110235494A (zh) * 2017-03-10 2019-09-13 华为技术有限公司 资源选择方法
CN109803321A (zh) * 2017-11-17 2019-05-24 电信科学技术研究院 一种多业务下的资源选择方法及终端

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
3GPP RAN#66 PLENARY MEETING, December 2014 (2014-12-01)
3GPP RAN#68 PLENARY MEETING, June 2015 (2015-06-01)
3RD GENERATION PARTNERSHIP PROJECT (3GPP) RAN#63 PLENARY MEETING, March 2014 (2014-03-01)
CATT: "Discussion on shorter resource reservation period in PC5-based V2V", 3GPP DRAFT; R1-1702035, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, GREECE; 20170213 - 20170217, 12 February 2017 (2017-02-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051209197 *
RP-140518, WORK ITEM PROPOSAL ON LTE DEVICE TO DEVICE PROXIMITY SERVICES
RP-142311, WORK ITEM PROPOSAL FOR ENHANCED LTE DEVICE TO DEVICE PROXIMITY SERVICES
RP-152293, NEW WI PROPOSAL: SUPPORT FOR V2V SERVICES BASED ON LTE SIDELINK
RP-170798, NEW WID ON 3GPP V2X PHASE 2
RP-181480, NEW SID PROPOSAL: STUDY ON NR V2X

Also Published As

Publication number Publication date
CN113973283A (zh) 2022-01-25
US20230276473A1 (en) 2023-08-31
EP4187999A1 (en) 2023-05-31

Similar Documents

Publication Publication Date Title
WO2022028413A1 (zh) 由用户设备执行的方法以及用户设备
WO2022111630A1 (zh) 由用户设备执行的方法以及用户设备
WO2022143641A1 (zh) 由用户设备执行的方法以及用户设备
WO2023040961A1 (zh) 由用户设备执行的方法以及用户设备
WO2022017037A1 (zh) 由用户设备执行的方法以及用户设备
WO2021136373A1 (zh) 由用户设备执行的方法以及用户设备
WO2023131074A1 (zh) 由用户设备执行的方法以及用户设备
WO2022267943A1 (zh) 由用户设备执行的方法以及用户设备
WO2022194243A1 (zh) 由用户设备执行的方法以及用户设备
WO2022152163A1 (zh) 由用户设备执行的方法以及用户设备
WO2022028330A1 (zh) 由用户设备执行的方法以及用户设备
WO2021228138A1 (zh) 由用户设备执行的方法以及用户设备
WO2021197379A1 (zh) 由用户设备执行的方法以及用户设备
WO2023078345A1 (zh) 由用户设备执行的方法以及用户设备
WO2023098812A1 (zh) 由用户设备执行的方法以及用户设备
WO2022007664A1 (zh) 由用户设备执行的方法以及用户设备
WO2022143643A1 (zh) 由用户设备执行的方法以及用户设备
WO2022206817A1 (zh) 由用户设备执行的方法以及用户设备
WO2022063070A1 (zh) 由用户设备执行的方法以及用户设备
WO2024001957A1 (zh) 由用户设备执行的方法以及用户设备
WO2023001070A1 (zh) 由用户设备执行的方法以及用户设备
WO2024001958A1 (zh) 由用户设备执行的方法以及用户设备
WO2024067625A1 (zh) 由用户设备执行的方法以及用户设备
WO2023051452A1 (zh) 由用户设备执行的方法以及用户设备
WO2024032504A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845212

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021845212

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021845212

Country of ref document: EP

Effective date: 20230223