WO2023098812A1 - 由用户设备执行的方法以及用户设备 - Google Patents
由用户设备执行的方法以及用户设备 Download PDFInfo
- Publication number
- WO2023098812A1 WO2023098812A1 PCT/CN2022/135903 CN2022135903W WO2023098812A1 WO 2023098812 A1 WO2023098812 A1 WO 2023098812A1 CN 2022135903 W CN2022135903 W CN 2022135903W WO 2023098812 A1 WO2023098812 A1 WO 2023098812A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- user equipment
- resource
- resources
- sidelink communication
- sidelink
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 75
- 238000004891 communication Methods 0.000 claims abstract description 114
- 230000005540 biological transmission Effects 0.000 claims description 73
- 238000013468 resource allocation Methods 0.000 claims description 40
- 230000008569 process Effects 0.000 claims description 13
- 238000011867 re-evaluation Methods 0.000 claims description 13
- 230000015654 memory Effects 0.000 claims description 9
- 230000008447 perception Effects 0.000 claims description 8
- 238000010586 diagram Methods 0.000 description 11
- 125000004122 cyclic group Chemical group 0.000 description 8
- 238000011160 research Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000011664 signaling Effects 0.000 description 5
- 238000004590 computer program Methods 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 101150096310 SIB1 gene Proteins 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/542—Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
Definitions
- the present invention relates to the technical field of wireless communication, and in particular to a method executed by user equipment and corresponding user equipment.
- D2D communication (Device-to-Device communication, device-to-device direct communication) refers to a direct communication method between two user equipments without being forwarded by a base station or a core network.
- 3GPP 3rd Generation Partnership Project
- the upper layer supports unicast (Unicast) and multicast (Groupcast) communication functions.
- V2X stands for Vehicle to everything. It hopes to realize the interaction between the vehicle and all entity information that may affect the vehicle. The purpose is to reduce accidents, slow down traffic congestion, reduce environmental pollution and provide other information services.
- V2X application scenarios mainly include four aspects:
- V2V Vehicle to Vehicle, that is, vehicle-to-vehicle communication
- V2P Vehicle to Pedestrian, that is, the vehicle sends warnings to pedestrians or non-motorized vehicles
- V2N Vehicle to Network, that is, the vehicle is connected to the mobile network
- V2I Vehicle to Infrastructure, that is, communication between vehicles and road infrastructure.
- V2X stage 1 introduces a new D2D communication interface called PC5 interface.
- the PC5 interface is mainly used to solve the communication problem of cellular vehicle networking under the environment of high speed (up to 250 km/h) and high node density. Vehicles can exchange information such as position, speed and direction through the PC5 interface, that is, direct communication between vehicles can be performed through the PC5 interface.
- the functions introduced by LTE Release 14 V2X mainly include:
- the second phase of the V2X research subject belongs to the research category of LTE Release 15 (see Non-Patent Document 4).
- the main features introduced include high-order 64QAM modulation, V2X carrier aggregation, short TTI transmission, and feasibility research on transmit diversity.
- resource allocation mode 2 (resource allocation mode 2) based on user equipment sensing (sensing), or transmission mode 2, is supported.
- resource allocation mode 2 the physical layer of the user equipment senses the transmission resources in the resource pool, and reports the set of available transmission resources to the upper layer. After obtaining the report from the physical layer, the upper layer (media access control MAC layer) selects resources for sidelink communication transmission.
- pre-emption check means that after the MAC layer selects resources for sidelink communication transmission, it will re-perceive the transmission resources that have been selected and indicated by the sidelink communication control information SCI at a certain point in the future to determine whether the resources are used Reserved or preempted by other user equipment. If the transmission resource is reserved or preempted by other user equipment, the MAC layer can trigger resource reselection for the resource to replace the transmission resource preempted by other user equipment.
- Re-evaluation means that after the MAC layer selects resources for sidelink communication transmission, it will re-perceive the transmission resources that have been selected and have not been indicated by the sidelink communication control information SCI at a certain point in the future to determine whether the resources are used by other resources. reserved for user equipment. If the transmission resource is reserved by other user equipments, the MAC layer can trigger resource reselection for the resource to replace the transmission resources reserved by other user equipments.
- the enhancement of side communication includes the following two aspects:
- Standardize resource allocation methods for reducing power saving of sidelink communication user equipment including but not limited to: resource allocation methods based on partial sensing and resource allocation methods based on random resource selection;
- the solution of this patent includes a method for partial perception of the physical layer of the sidelink communication user equipment in sidelink communication enhancement; and also includes sidelink communication medium access control layer MAC triggering the physical layer to perform resource preemption check and re-evaluation a method of
- Non-Patent Document 1 RP-140518, Work item proposal on LTE Device to Device Proximity Services
- Non-Patent Document 2 RP-142311, Work Item Proposal for Enhanced LTE Device to Device Proximity Services
- Non-Patent Document 3 RP-152293, New WI proposal: Support for V2V services based on LTE sidelink
- Non-Patent Document 4 RP-170798, New WID on 3GPP V2X Phase 2
- Non-Patent Document 5 RP-181480, New SID Proposal: Study on NR V2X
- Non-Patent Document 6 RP-202846, WID revision: NR sidelink enhancement
- the present invention provides a method executed by user equipment and the user equipment.
- the method performed by the user equipment according to the first aspect of the present invention includes: a higher layer requests or triggers the user equipment to determine a sidelink communication resource subset; and determines a set of candidate time slots.
- the high layer selects sidelink communication resources in the sidelink communication resource subset for PSSCH/PSCCH transmission; and/or the resource allocation method of the user equipment is based on A resource allocation manner of partial perception; and/or the high layer requests the user equipment to determine the subset of sidelink communication resources on time slot n.
- the higher layer provides at least a resource reservation interval to the physical layer.
- the method according to the first aspect of the present invention further includes: a physical layer reporting the set of candidate time slots to the high layer.
- the manner in which the user equipment determines the set of candidate time slots depends on the implementation of the user equipment; and/or the user equipment is in the resource selection window [n+T1, n+T2] to determine the set of candidate time slots.
- the high layer selects a sidelink communication resource from the subset of sidelink communication resources for PSSCH/PSCCH transmission as part of a process of re-evaluation or preemption check.
- the high layer provides at least a first resource set and a second resource set to the physical layer, the first resource set is subject to the resources of the preemption check, and the second Resource collections subject to re-evaluated resources.
- the high layer provides the physical layer with the first candidate for the initial resource selection associated with or corresponding to the first resource set and/or the second resource set
- the time slot set, and/or the high layer provides the physical layer with the period number associated with or corresponding to the first resource set and/or the second resource set in the sidelink communication scheduling grant.
- the determining the set of candidate time slots is determining a second set of candidate time slots, the user equipment at least according to the first set of candidate time slots during the initial resource selection, And/or the cycle number, and/or the time slot n, determine the second set of candidate time slots.
- a user equipment comprising: a processor; and a memory storing instructions; wherein the instructions, when executed by the processor, perform the method according to the first aspect.
- the physical layer when the media access control MAC layer provides resources to the physical layer for preemption check or re-evaluation, the physical layer can effectively determine the set of candidate time slots to ensure that the candidate time slots
- the slot set includes the time slots where the above-mentioned preemption check or re-evaluation resources are located.
- the sidelink communication user equipment can effectively determine whether the transmission resources are reserved or preempted by other user equipments, which improves the reliability of the sidelink communication.
- Fig. 1 is a schematic diagram showing LTE V2X UE sidelink communication.
- FIG. 2 is a schematic diagram showing a resource allocation method of LTE V2X.
- Fig. 3 is a schematic diagram showing the basic process of the method executed by the user equipment in the first embodiment of the invention.
- Fig. 4 is a schematic diagram showing the basic process of the method executed by the user equipment in the second embodiment of the invention.
- FIG. 5 is a block diagram illustrating a user equipment according to an embodiment of the present invention.
- 3GPP 3rd Generation Partnership Project
- the third generation partnership project the third generation partnership project
- LTE Long Term Evolution, long-term evolution technology
- PDCCH Physical Downlink Control Channel, physical downlink control channel
- DCI Downlink Control Information, downlink control information
- PDSCH Physical Downlink Shared Channel, physical downlink shared channel
- UE User Equipment, user equipment
- eNB evolved NodeB, evolved base station
- gNB NR base station
- TTI Transmission Time Interval, transmission time interval
- OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
- CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing with cyclic prefix
- C-RNTI Cell Radio Network Temporary Identifier, cell radio network temporary identifier
- CSI Channel State Information, channel state information
- CSI-RS Channel State Information Reference Signal, channel state information reference signal
- CRS Cell Reference Signal, cell-specific reference signal
- PUCCH Physical Uplink Control Channel, physical uplink control channel
- PUSCH Physical Uplink Shared Channel, physical uplink shared channel
- UL-SCH Uplink Shared Channel, uplink shared channel
- SCI Sidelink Control Information, side communication control information
- PSCCH Physical Sidelink Control Channel, physical sidelink communication control channel
- MCS Modulation and Coding Scheme
- RB Resource Block, resource block
- CRB Common Resource Block, public resource block
- CP Cyclic Prefix, cyclic prefix
- PRB Physical Resource Block, physical resource block
- PSSCH Physical Sidelink Shared Channel, physical sidelink shared channel
- FDM Frequency Division Multiplexing, Frequency Division Multiplexing
- RRC Radio Resource Control, radio resource control
- RSRP Reference Signal Receiving Power, reference signal receiving power
- SRS Sounding Reference Signal, sounding reference signal
- DMRS Demodulation Reference Signal, demodulation reference signal
- CRC Cyclic Redundancy Check, Cyclic Redundancy Check
- PSDCH Physical Sidelink Discovery Channel, physical sidelink communication discovery channel
- PSBCH Physical Sidelink Broadcast Channel, physical sidelink broadcast channel
- TDD Time Division Duplexing, Time Division Duplex
- FDD Frequency Division Duplexing, Frequency Division Duplex
- SIB1 System Information Block Type 1, system information block type l
- SLSS Sidelink synchronization Signal, side communication synchronization signal
- PSSS Primary Sidelink Synchronization Signal, primary sidelink synchronization signal
- SSSS Secondary Sidelink Synchronization Signal, side communication secondary synchronization signal
- PCI Physical Cell ID, physical cell identification
- PSS Primary Synchronization Signal, primary synchronization signal
- SSS Secondary Synchronization Signal, secondary synchronization signal
- BWP BandWidth Part, bandwidth fragment/part
- GNSS Global Navigation Satellite System, global navigation satellite positioning system
- SFN System Frame Number, system (wireless) frame number
- DFN Direct Frame Number, direct frame number
- SSB Synchronization Signal Block, Synchronization System Information Block
- EN-DC EUTRA-NR Dual Connection, LTE-NR Dual Connection
- MCG Master Cell Group, main cell group
- SCG Secondary Cell Group, secondary cell group
- PCell Primary Cell, main cell
- SCell Secondary Cell, auxiliary cell
- PSFCH Physical Sidelink Feedback Channel, physical sidelink communication feedback channel
- SPS Semi-Persistant Scheduling, semi-static scheduling
- PT-RS Phase-Tracking Reference Signals, phase tracking reference signal
- CB Code Block, coding block/code block
- QPSK Quadrature Phase Shift Keying, Quadrature Phase Shift Keying
- 16/64/256 QAM 16/64/256 Quadrature Amplitude Modulation, quadrature amplitude modulation
- AGC Auto Gain Control, automatic gain control
- ARFCN Absolute Radio Frequency Channel Number, Absolute Radio Frequency Channel Number
- SC-FDMA Single Carrier-Frequency Division Multiple Access, single carrier-frequency division multiple access
- MAC Medium Access Control, media access control layer
- V2X in this article can also mean sidelink; similarly, sidelink in this article can also mean V2X, which will not be specifically distinguished and limited in the following text.
- the resource allocation method of V2X (sidelink) communication in the description of the present invention and the transmission mode of V2X (sidelink) communication can be equivalently replaced.
- the resource allocation manner mentioned in the specification may represent a transmission mode, and the transmission mode involved may represent a resource allocation manner.
- transmission mode 1 represents a transmission mode (resource allocation method) based on base station scheduling
- transmission mode 2 represents a transmission mode (resource allocation method) based on user equipment sensing and resource selection.
- the PSCCH in the specification of the present invention is used to carry the SCI.
- the PSCCHs involved in the description of the present invention correspond to, or correspond to, or relate to, or the scheduled PSSCHs have the same meaning, and they all represent associated PSSCH or corresponding PSSCH.
- the corresponding, or corresponding, or related SCIs (including the first-level SCI and the second-level SCI) of the PSSCH mentioned in the specification have the same meaning, and all indicate associated SCI or corresponding SCI.
- the first level SCI is called 1st stage SCI or SCI format 1-A, which is transmitted in PSCCH;
- the second level SCI is called 2nd stage SCI or SCI format 2-A (or, SCI format 2-B) , transmitted in the resources of the corresponding PSSCH.
- Partial-Coverage sidelink communication one of the UEs performing sidelink communication has no network coverage, and the other UE has network coverage.
- the UE From the perspective of the UE side, the UE has only two scenarios: no network coverage and network coverage. Partial network coverage is described from the perspective of sidelink communication.
- Fig. 1 is a schematic diagram showing LTE V2X UE sidelink communication.
- UE1 sends sidelink communication control information (SCI format 1) to UE2, which is carried by the physical layer channel PSCCH.
- SCI format 1 includes PSSCH scheduling information, such as PSSCH frequency domain resources.
- UE1 sends sidelink communication data to UE2, which is carried by the physical layer channel PSSCH.
- the PSCCH and the corresponding PSSCH adopt frequency division multiplexing, that is, the PSCCH and the corresponding PSSCH are located in the same subframe in the time domain, and are located in different RBs in the frequency domain.
- a transmission block TB may contain only one initial transmission, or one initial transmission and one blind retransmission (blind retransmission, which means retransmission not based on HARQ feedback).
- SCI format 1 can be carried in PSCCH, wherein SCI format 1 includes at least frequency domain resource information of PSSCH. For example, for the frequency domain resource indication field, SCI format 1 indicates the starting sub-channel number and the number of continuous sub-channels of the PSSCH corresponding to the PSCCH.
- PSSCH occupies one subframe in the time domain, and the corresponding PSCCH adopts frequency division multiplexing (FDM).
- PSSCH occupies one or more continuous sub-channels in the frequency domain.
- the sub-channel represents n subCHsize consecutive RBs in the frequency domain.
- the n subCHsize is configured by the RRC parameter, the number of starting sub-channels and continuous sub-channels Indicated by the frequency domain resource indication field of SCI format 1.
- Figure 2 shows two resource allocation methods of LTE V2X, which are called resource allocation based on base station scheduling (Transmission Mode 3) and resource allocation based on UE sensing (Transmission Mode 4).
- transmission mode 3 of LTE V2X corresponds to transmission mode 1 in NR V2X, which is a transmission mode based on base station scheduling
- transmission mode 4 of LTE V2X corresponds to transmission mode 2 in NR V2X, which is based on UE perception transfer mode.
- the base station can configure the resource allocation mode of the UE through UE-level dedicated RRC signaling (dedicated RRC signaling) SL-V2X-ConfigDedicated, or called the transmission mode of the UE , Specifically:
- Resource allocation method based on base station scheduling means that the frequency domain resources used by the sidelink sidelink communication come from the scheduling of the base station.
- Transmission mode 3 includes two scheduling methods, namely dynamic scheduling and semi-persistent scheduling (SPS).
- SPS semi-persistent scheduling
- the UL grant DCI format 5A
- the CRC of PDCCH or EPDCCH carrying DCI format 5A is scrambled by SL-V-RNTI.
- the base station configures one or more (up to 8) configured scheduling grants (configured grants) through IE: SPS-ConfigSL-r14, and each configured scheduling grant contains a scheduling grant number (index) and scheduling Licensed resource period.
- the UL grant (DCI format 5A) includes the frequency domain resources of the PSSCH, and the indication information (3 bits) of the scheduling grant number and the indication information of SPS activation (activate) or release (release, or deactivation).
- the CRC of PDCCH or EPDCCH carrying DCI format 5A is scrambled by SL-SPS-V-RNTI.
- the RRC signaling SL-V2X-ConfigDedicated when the RRC signaling SL-V2X-ConfigDedicated is set to scheduled-r14, it means that the UE is configured in a transmission mode based on base station scheduling.
- the base station configures SL-V-RNTI or SL-SPS-V-RNTI through RRC signaling, and uses PDCCH or EPDCCH (DCI format 5A, CRC uses SL-V-RNTI scrambling or SL-SPS-V-RNTI scrambling ) sending an uplink scheduling grant UL grant to the UE.
- the above-mentioned uplink scheduling grant UL grant includes at least scheduling information of PSSCH frequency domain resources in sidelink communication.
- the PSSCH frequency domain resource indication field in the uplink scheduling grant UL grant (DCI format 5A) is used as the PSCCH (SCI format 1) PSSCH frequency domain resource indication information, and send PSCCH (SCI format 1) and the corresponding PSSCH.
- the UE receives the DCI format 5A scrambled by SL-SPS-V-RNTI on the downlink subframe n. If DCI format 5A contains SPS activation indication information, the UE determines the frequency domain resources of PSSCH according to the indication information in DCI format 5A, and determines the time domain resources of PSSCH (PSSCH transmission subframe) according to subframe n and other information.
- Resource allocation mode based on UE sensing means that the resources used for sidelink communication are based on the UE's sensing process of the set of candidate available resources.
- the RRC signaling SL-V2X-ConfigDedicated is set to ue-Selected-r14, it indicates that the UE is configured as a transmission mode based on UE sensing.
- the base station configures the available transmission resource pool, and the UE determines the sidelink transmission resources of the PSSCH in the transmission resource pool (resource pool) according to certain rules (for a detailed process description, refer to the LTE V2X UE sensing process section) , and send PSCCH (SCI format 1) and corresponding PSSCH.
- the resources sent and received by the UE belong to the resource pool resource pool.
- the base station schedules transmission resources for sidelink UEs in the resource pool, or, for the transmission mode based on UE perception in sidelink communication, the UE determines transmission resources in the resource pool.
- the sidelink communication user equipment selects candidate resources within a time window, and determines the reserved resources according to the reserved resources indicated by the PSCCH sent by other user equipments in the listening time slot. There are overlapping candidate resources, and these overlapping candidate resources are excluded.
- the physical layer reports the set of candidate resources that are not excluded to the MAC layer, and the MAC layer selects transmission resources for the PSSCH/PSCCH.
- the resource allocation method based on partial perception means that the sidelink communication user equipment does not need to monitor the PSCCH on all consecutive time slots in the time domain, but only needs to monitor the PSCCH in some (discrete) time slots; the perception-based The resource allocation mode means that the sidelink communication user equipment continuously monitors the PSCCH in the time slots except for sending sidelink communication transmissions.
- the upper layer requests or triggers the physical layer to determine resources for PSSCH/PSCCH transmission on time slot n (for sensing or partial sensing).
- the resource selection window is defined as [n+T1, n+T2], that is, the user equipment selects transmission resources within this window.
- T1 satisfies the condition The selection of T1 depends on the implementation of the user equipment; the RRC configuration information includes a configuration list sl-SelectionWindowList of a resource selection window, wherein, the list corresponds to a given priority prio TX (priority of transmitting PSSCH) element representation It is T 2min .
- T2 satisfies the condition T 2min ⁇ T2 ⁇ remaining PDB, and the selection of T2 depends on the implementation of the user equipment; otherwise, T2 is set to remaining PDB.
- T2 is set to remaining PDB.
- ⁇ SL represents the subcarrier spacing parameter of side communication, that is, the subcarrier spacing is
- Candidate single-slot resource R x, y (candidate single-slot resource)
- t' y SL represents any time slot in the set of candidate time slots in the resource selection window.
- L subCH represents the number of subchannels provided by a higher layer (or, upper layer) for PSSCH/PSCCH transmission.
- the parameter set numerology includes two meanings of subcarrier spacing and cyclic prefix CP length.
- Table 4.2-1 shows the supported transmission parameter set, as follows shown.
- each slot contains 14 OFDM symbols; for an extended CP, each slot contains 12 OFDM symbols.
- NR and LTE have the same definition for a subframe (subframe), which means 1 ms.
- subframe For subcarrier spacing configuration ⁇ , the slot number in 1 subframe (1ms) can be expressed as range from 0 to The slot number in a system frame (frame, duration 10ms) can be expressed as range from 0 to in, and The definition of the situation at different subcarrier spacing ⁇ is shown in the table below.
- Table 4.3.2-1 The number of symbols contained in each slot in normal CP, the number of slots contained in each system frame, and the number of slots contained in each subframe
- Table 4.3.2-2 The number of symbols contained in each slot when the CP is extended (60kHz), the number of slots contained in each system frame, and the number of slots contained in each subframe
- the number SFN of the system frame ranges from 0 to 1023.
- the concept of direct system frame number DFN is introduced in side communication, and the number range is also 0 to 1023.
- the above description of the relationship between system frame and numerology can also be applied to direct system frame, for example, the duration of a direct system frame Also equal to 10ms, for a subcarrier spacing of 15kHz, a direct system frame includes 10 time slots, and so on. DFN is applied to the timing timing on the sidelink carrier.
- LTE including LTE V2X parameter set and time slot slot in LTE (including LTE V2X) and subframe subframe
- LTE only supports subcarrier spacing of 15kHz.
- Extended (Extended) CP is supported in LTE, and normal CP is also supported.
- the subframe subframe has a duration of 1 ms and includes two slots, and each slot has a duration of 0.5 ms.
- each subframe contains 14 OFDM symbols, and each slot in the subframe contains 7 OFDM symbols; for extended CP, each subframe contains 12 OFDM symbols, and each slot in the subframe contains 6 OFDM symbols.
- a resource block RB is defined in the frequency domain as consecutive subcarriers, for example, for a subcarrier spacing of 15kHz, the RB is 180kHz in the frequency domain.
- a resource element RE represents one subcarrier in the frequency domain and one OFDM symbol in the time domain.
- Preemption check in NR sideline communication (pre-emDtion check)
- the preemption check means that after the MAC layer selects resources for sidelink communication transmission, it will re-perceive the transmission resources that have been selected and indicated by the sidelink communication control information SCI at a certain point in the future to determine whether the resources are used Reserved or preempted by other user equipment. If the transmission resource is reserved or preempted by other user equipment, the MAC layer can trigger resource re-selection (resource re-selection) on the resource to replace the transmission resource reserved or preempted by other user equipment.
- resource re-selection resource re-selection
- Re-evaluation means that after the MAC layer selects resources for sidelink communication transmission, it will re-perceive the transmission resources that have been selected and have not been indicated by the sidelink communication control information SCI at a certain point in the future to determine whether the resources are used by other resources. reserved for user equipment. If the transmission resource is reserved by other user equipments, the MAC layer can trigger resource reselection for the resource to replace the transmission resources reserved by other user equipments.
- Fig. 3 is a schematic diagram showing the basic process of the method executed by the user equipment according to Embodiment 1 of the present invention.
- the steps performed by the user equipment include:
- a higher layer (higher layer, or upper layer) requests (request, or triggers) a sidelink communication user equipment (physical layer) to determine a sidelink communication resource subset.
- the high layer selects the sidelink communication resource from the sidelink communication resource subset for the transmission of the PSSCH/PSCCH.
- the upper layer (or upper layer) represents a medium access control (MAC) layer.
- MAC medium access control
- the resource allocation manner of the user equipment is a resource allocation manner based on partial sensing.
- the high layer requests the sidelink communication user equipment to determine the sidelink communication resource subset on the time slot slot n.
- the higher layer provides at least a resource reservation interval (resource reservation interval) P rsvp_TX to the physical layer.
- resource reservation interval is not equal to 0 milliseconds.
- step S102 the sidelink communication user equipment determines a set of candidate slots (candidate slots).
- the manner in which the user equipment determines the set of candidate time slots depends on the implementation of the user equipment (up to UE implementation).
- the user equipment determines the set of candidate time slots in a resource selection window [n+T1, n+T2].
- step S103 the physical layer reports the set of candidate time slots to a higher layer.
- Fig. 4 is a schematic diagram showing the basic process of the method executed by the user equipment according to Embodiment 2 of the present invention.
- the steps performed by the user equipment include:
- a higher layer (higher layer, or upper layer) requests (request, or triggers) a sidelink communication user equipment (physical layer) to determine a sidelink communication resource subset.
- the high layer selects the sidelink communication resource from the sidelink communication resource subset for the transmission of the PSSCH/PSCCH, optionally as part of the re-evaluation or pre-emption check process.
- the upper layer (or upper layer) represents a medium access control (MAC) layer.
- MAC medium access control
- the resource allocation manner of the user equipment is a resource allocation manner based on partial sensing.
- the high layer requests the sidelink communication user equipment to determine the sidelink communication resource subset on the time slot slot n.
- the higher layer provides at least a resource reservation interval (resource reservation interval) P rsvp_TX to the physical layer.
- resource reservation interval is not equal to 0 milliseconds.
- the higher layer provides at least the first resource set (r 0 ′, r 1 ′, r 2 ′, ...) and the second resource set (r 0 , r 1 , r 2 , . ..).
- the first resource set is subject to pre-emption (check) resources.
- the second set of resources is subject to re-evaluated resources.
- the upper layer provides the physical layer with the first set of candidate time slots during initial resource selection (initial resource selection) of the first resource set and/or the second resource set (associated, or corresponding), And/or, the higher layer provides the physical layer with the cycle number q of the first resource set and/or the second resource set (associated, or corresponding) in the sidelink communication scheduling grant, that is, the first A resource set and/or the second resource set are resources in the qth period in the sidelink communication scheduling grant, where q represents a non-negative integer or a positive integer.
- step S202 the sidelink communication user equipment determines a second set of candidate slots (candidate slots).
- the user equipment determines the second candidate time slot set at least according to the first candidate time slot set during the initial resource selection, and/or the q, and/or the time slot n.
- the second set of candidate time slots represents Sets from later than (or, not earlier than) time from the first time slot to the last time slot. in, Indicates the time slot in the resource pool, and m indicates the subscript.
- T′ max represents the number of time slots in the resource pool within SFN (or, DFN) 0-1023 (10240ms).
- t' y SL represents any one of the first candidate time slots. in,
- FIG. 5 is a block diagram showing a user equipment UE according to the present invention.
- the user equipment UE80 includes a processor 801 and a memory 802 .
- the processor 801 may include, for example, a microprocessor, a microcontroller, an embedded processor, and the like.
- the memory 802 may include, for example, a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a nonvolatile memory (such as a flash memory), or other memories.
- Memory 802 has program instructions stored thereon. When the instruction is executed by the processor 801, the above method described in detail in the present invention and executed by the user equipment may be executed.
- the method and related equipment of the present invention have been described above in conjunction with preferred embodiments. Those skilled in the art can understand that the methods shown above are only exemplary, and the embodiments described above can be combined with each other without conflicts.
- the method of the present invention is not limited to the steps and sequence shown above.
- the network node and user equipment shown above may include more modules, for example, may also include modules that can be developed or developed in the future and can be used for the base station, MME, or UE, and the like.
- the various identifiers shown above are only exemplary rather than restrictive, and the present invention is not limited to specific information elements as examples of these identifiers. Numerous variations and modifications may be made by those skilled in the art in light of the teachings of the illustrated embodiments.
- various components inside the base station and user equipment in the above embodiments can be realized by various devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing Devices, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), Programmable Logic Devices (CPLDs), etc.
- DSP digital signal processing
- ASICs Application Specific Integrated Circuits
- FPGAs Field Programmable Gate Arrays
- CPLDs Programmable Logic Devices
- base station may refer to a mobile communication data and control switching center with relatively large transmission power and wide coverage area, including functions such as resource allocation and scheduling, data reception and transmission.
- User equipment may refer to a user's mobile terminal, including, for example, a mobile phone, a notebook, and other terminal equipment capable of wirelessly communicating with a base station or a micro base station.
- embodiments of the present invention disclosed herein may be implemented on a computer program product.
- the computer program product is a product having a computer-readable medium encoded with computer program logic that, when executed on a computing device, provides associated operations to implement Above-mentioned technical scheme of the present invention.
- the computer program logic When executed on at least one processor of a computing system, the computer program logic causes the processor to execute the operations (methods) described in the embodiments of the present invention.
- Such arrangements of the invention are typically provided as software, code and/or other data structures arranged or encoded on a computer-readable medium such as an optical medium (e.g., CD-ROM), floppy disk, or hard disk, or as one or more other media of firmware or microcode on a ROM or RAM or PROM chip, or a downloadable software image in one or more modules, a shared database, etc.
- Software or firmware or such configurations can be installed on the computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
- each functional module or each feature of the base station device and terminal device used in each of the above embodiments can be realized or executed by a circuit, and the circuit is generally one or more integrated circuits.
- Circuits designed to perform the various functions described in this specification may include general-purpose processors, digital signal processors (DSPs), application-specific integrated circuits (ASICs) or general-purpose integrated circuits, field-programmable gate arrays (FPGAs), or other possible Program logic devices, discrete gate or transistor logic, or discrete hardware components, or any combination of the above.
- a general-purpose processor can be a microprocessor, or the processor can be an existing processor, controller, microcontroller, or state machine.
- the general-purpose processor or each circuit described above may be configured by a digital circuit, or may be configured by a logic circuit.
- the present invention can also use an integrated circuit obtained by using the advanced technology.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
- Selective Calling Equipment (AREA)
Abstract
本发明提供了一种由用户设备执行的方法以及用户设备,所述方法包括:高层请求或者触发所述用户设备确定侧行通信资源子集;以及确定候选时隙集合。
Description
本发明涉及无线通信技术领域,具体涉及由用户设备执行的方法以及相应的用户设备。
在传统的蜂窝网络中,所有的通信都必须经过基站。不同的是,D2D通信(Device-to-Device communication,设备到设备间直接通信)是指两个用户设备之间不经过基站或者核心网的转发而直接进行的通信方式。在2014年3月第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的RAN#63次全会上,关于利用LTE设备实现临近D2D通信业务的研究课题获得批准(参见非专利文献1)。LTE Release 12 D2D引入的功能包括:
1)LTE网络覆盖场景下临近设备之间的发现功能(Discovery);
2)临近设备间的直接广播通信(Broadcast)功能;
3)高层支持单播(Unicast)和组播(Groupcast)通信功能。
在2014年12月的3GPP RAN#66全会上,增强的LTE eD2D(enhanced D2D)的研究项目获得批准(参见非专利文献2)。LTE Release 13 eD2D引入的主要功能包括:
1)无网络覆盖场景和部分网络覆盖场景的D2D发现;
2)D2D通信的优先级处理机制。
基于D2D通信机制的设计,在2015年6月3GPP的RAN#68次全会上,批准了基于D2D通信的V2X可行性研究课题。V2X表示Vehicle to everything,希望实现车辆与一切可能影响车辆的实体信息交互,目的是减少事故发生,减缓交通拥堵,降低环境污染以及提供其他信息服务。V2X的应用场景主要包含4个方面:
1)V2V,Vehicle to Vehicle,即车-车通信;
2)V2P,Vehicle to Pedestrian,即车给行人或非机动车发送警告;
3)V2N,Vehicle to Network,即车辆连接移动网络;
4)V2I,Vehicle to Infrastructure,即车辆与道路基础设施等通信。
3GPP将V2X的研究与标准化工作分为3个阶段。第一阶段于2016年9月完成,主要聚焦于V2V,基于LTE Release 12和Release 13 D2D(也可称为sidelink侧行通信),即邻近通信技术制定(参见非专利文献3)。V2X stage 1引入了一种新的D2D通信接口,称为PC5接口。PC5接口主要用于解决高速(最高250公里/小时)及高节点密度环境下的蜂窝车联网通信问题。车辆可以通过PC5接口进行诸如位置、速度和方向等信息的交互,即车辆间可通过PC5接口进行直接通信。相较于D2D设备间的临近通信,LTE Release 14 V2X引入的功能主要包含:
1)更高密度的DMRS以支持高速场景;
2)引入子信道(sub-channel),增强资源分配方式;
3)引入具有半静态调度(semi-persistent)的用户设备感知(sensing)机制。
V2X研究课题的第二阶段归属于LTE Release 15研究范畴(参见非专利文献4),引入的主要特性包含高阶64QAM调制、V2X载波聚合、短TTI传输,同时包含发射分集的可行性研究。
在2018年6月3GPP RAN#80全会上,相应的第三阶段基于5G NR网络技术的V2X可行性研究课题(参见非专利文献5)获得批准。
在5G NR V2X课题中,支持一种基于用户设备感知(sensing)的资源分配方式2(resource allocation mode 2),或者称为传输模式2。在资源分配方式2中,用户设备的物理层对资源池内的传输资源进行感知,并向上层报告可用的传输资源的集合。上层(媒体接入控制MAC层)在获得物理层的报告后,选择用于侧行通信传输的资源。
在5G NR V2X中,支持一种抢占检查的机制(pre-emption check)。抢占检查表示MAC层在选择用于侧行通信传输的资源后,在将来的某个时刻对已经选择的并且已经通过侧行通信控制信息SCI指示的传输资源重新进行感知,以判断该资源是否被其他用户设备所预留或者抢占。如果该传输资源被其他用户设备预留或者抢占,MAC层可以对该资源触发资 源重选,用以替代被其他用户设备抢占的传输资源。
相似地,在5G NR V2X中,支持一种重评估的机制(re-evaluation)。重评估表示MAC层在选择用于侧行通信传输的资源后,在将来的某个时刻对已经选择并且尚未通过侧行通信控制信息SCI指示的传输资源重新进行感知,以判断该资源是否被其他用户设备所预留。如果该传输资源被其他用户设备预留,MAC层可以对该资源触发资源重选,用以替代被其他用户设备所预留的传输资源。
在2020年12月3GPP RAN#90e全会上,基于已经标准化的NR侧行通信的增强(NR sidelink enhancement)的标准化研究课题(参见非专利文献6)获得批准。侧行通信的增强中包含如下两个方面:
1)标准化降低侧行通信用户设备功率消耗(power saving)的资源分配方式,包括但不限于:基于部分感知的资源分配方式(partial sensing),基于随机资源选择的资源分配方式;
2)研究提升NR侧行通信中资源分配方式2的通信可靠性以及降低资源分配方式2的通信时延。
本专利的方案包括在侧行通信增强中,侧行通信用户设备物理层进行部分感知的一种方法;以及,还包括侧行通信媒体接入控制层MAC触发物理层进行资源抢占检查和重评估的一种方法。
现有技术文献
非专利文献
非专利文献1:RP-140518,Work item proposal on LTE Device to Device Proximity Services
非专利文献2:RP-142311,Work Item Proposal for Enhanced LTE Device to Device Proximity Services
非专利文献3:RP-152293,New WI proposal:Support for V2V services based on LTE sidelink
非专利文献4:RP-170798,New WID on 3GPP V2X Phase 2
非专利文献5:RP-181480,New SID Proposal:Study on NR V2X
非专利文献6:RP-202846,WID revision:NR sidelink enhancement
发明内容
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备。
根据本发明的第一方面的由用户设备执行的方法,包括:高层请求或者触发所述用户设备确定侧行通信资源子集;以及确定候选时隙集合。
根据本发明的第一方面的所述方法,所述高层在所述侧行通信资源子集中选择侧行通信资源用于PSSCH/PSCCH的传输;和/或所述用户设备的资源分配方式为基于部分感知的资源分配方式;和/或所述高层在时隙n上请求所述用户设备确定所述侧行通信资源子集。
根据本发明的第一方面的所述方法,所述高层向物理层至少提供资源预留间隔。
根据本发明的第一方面的所述方法,还包括:物理层向所述高层上报所述候选时隙集合。
根据本发明的第一方面的所述方法,所述用户设备确定所述候选时隙集合的方式为取决于该用户设备的实现;和/或所述用户设备在资源选择窗口[n+T1,n+T2]中确定所述候选时隙集合。
根据本发明的第一方面的所述方法,所述高层在所述侧行通信资源子集中选择侧行通信资源用于PSSCH/PSCCH的传输,作为重评估或者抢占检查的过程的一部分。
根据本发明的第一方面的所述方法,所述高层向物理层至少提供了第一资源集和第二资源集合,所述第一资源集合从属于所述抢占检查的资源,所述第二资源集合从属于重评估的资源。
根据本发明的第一方面的所述方法,所述高层向所述物理层提供了与所述第一资源集合和/或所述第二资源集合关联或者对应的初始资源选择时的第一候选时隙集合,和/或所述高层向所述物理层提供了与所述第一资源集合和/或所述第二资源集合关联或者对应的在侧行通信调度许可中所在的周期序号。
根据本发明的第一方面的所述方法,所述确定候选时隙集合是确定第二候选时隙集合,所述用户设备至少根据所述初始资源选择时的所述第一候选时隙集合,和/或所述周期序号,和/或所述时隙n,确定所述第二候选时隙集合。
根据本发明的第二方面的用户设备,包括:处理器;以及存储器,存储有指令;其中,所述指令在由所述处理器运行时执行根据所述第一方面的所述方法。
本发明的有益效果
根据本专利的方案,在NR侧行通信增强中,当媒体接入控制MAC层向物理层提供资源用以抢占检查或者重评估时,物理层可以有效确定候选时隙集合,以保证该候选时隙集合中包含上述抢占检查或者重评估资源所在的时隙。侧行通信用户设备可以有效确定传输资源是否被其他用户设备所预留或者抢占,提升了侧行通信的可靠性。
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1是示出了LTE V2X UE侧行通信的示意图。
图2是示出了LTE V2X的资源分配方式的示意图。
图3是示出了发明的实施例一中由用户设备执行的方法的基本过程的示意图。
图4是示出了发明的实施例二中由用户设备执行的方法的基本过程的示意图。
图5是示出了根据本发明的实施例的用户设备的框图。
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本 发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
下文以5G移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G移动通信系统等。
下面描述本发明涉及的部分术语,如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的通信系统中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
3GPP:3rd Generation Partnership Proiect,第三代合作伙伴计划
LTE:Long Term Evolution,长期演进技术
NR:New Radio,新无线、新空口
PDCCH:Physical Downlink Control Channel,物理下行控制信道
DCI:Downlink Control Information,下行控制信息
PDSCH:Physical Downlink Shared Channel,物理下行共享信道
UE:User Equipment,用户设备
eNB:evolved NodeB,演进型基站
gNB:NR基站
TTI:Transmission Time Interval,传输时间间隔
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
CP-OFDM:Cyclic Prefix Orthogonal Frequency Division Multiplexing,带有循环前缀的正交频分复用
C-RNTI:Cell Radio Network Temporary Identifier,小区无线网络临时标识
CSI:Channel State Information,信道状态信息
HARQ:Hybrid Automatic Repeat Request,混合自动重传请求
CSI-RS:Channel State Information Reference Signal,信道状态信息参 考信号
CRS:Cell Reference Signal,小区特定参考信号
PUCCH:Physical Uplink Control Channel,物理上行控制信道
PUSCH:Physical Uplink Shared Channel,物理上行共享信道
UL-SCH:Uplink Shared Channel,上行共享信道
CG:Configured Grant,配置调度许可
Sidelink:侧行通信
SCI:Sidelink Control Information,侧行通信控制信息
PSCCH:Physical Sidelink Control Channel,物理侧行通信控制信道
MCS:Modulation and Coding Scheme,调制编码方案
RB:Resource Block,资源块
RE:Resource Element,资源单元
CRB:Common Resource Block,公共资源块
CP:Cyclic Prefix,循环前缀
PRB:Physical Resource Block,物理资源块
PSSCH:Physical Sidelink Shared Channel,物理侧行通信共享信道
FDM:Frequency Division Multiplexing,频分复用
RRC:Radio Resource Control,无线资源控制
RSRP:Reference Signal Receiving Power,参考信号接收功率
SRS:Sounding Reference Signal,探测参考信号
DMRS:Demodulation Reference Signal,解调参考信号
CRC:Cyclic Redundancy Check,循环冗余校验
PSDCH:Physical Sidelink Discovery Channel,物理侧行通信发现信道
PSBCH:Physical Sidelink Broadcast Channel,物理侧行通信广播信道
SFI:Slot Format Indication,时隙格式指示
TDD:Time Division Duplexing,时分双工
FDD:Frequency Division Duplexing,频分双工
SIB1:System Information Block Type 1,系统信息块类型l
SLSS:Sidelink synchronization Signal,侧行通信同步信号
PSSS:Primary Sidelink Synchronization Signal,侧行通信主同步信号
SSSS:Secondary Sidelink Synchronization Signal,侧行通信辅同步信号
PCI:Physical Cell ID,物理小区标识
PSS:Primary Synchronization Signal,主同步信号
SSS:Secondary Synchronization Signal,辅同步信号
BWP:BandWidth Part,带宽片段/部分
GNSS:Global Navigation Satellite System,全球导航卫星定位系统
SFN:System Frame Number,系统(无线)帧号
DFN:Direct Frame Number,直接帧号
IE:Information Element,信息元素
SSB:Synchronization Signal Block,同步系统信息块
EN-DC:EUTRA-NR Dual Connection,LTE-NR双连接
MCG:Master Cell Group,主小区组
SCG:Secondary Cell Group,辅小区组
PCell:Primary Cell,主小区
SCell:Secondary Cell,辅小区
PSFCH:Physical Sidelink Feedback Channel,物理侧行通信反馈信道
SPS:Semi-Persistant Scheduling,半静态调度
TA:Timing Advance,上行定时提前量
PT-RS:Phase-Tracking Reference Signals,相位跟踪参考信号
TB:Transport Block,传输块
CB:Code Block,编码块/码块
QPSK:Quadrature Phase Shift Keying,正交相移键控
16/64/256 QAM:16/64/256 Quadrature Amplitude Modulation,正交幅度调制
AGC:Auto Gain Control,自动增益控制
TDRA(field):Time Domain Resource Assignment,时域资源分配指示(域)
FDRA(field):Frequency Domain Resource Assignment,频域资源分配指示(域)
ARFCN:Absolute Radio Frequency Channel Number,绝对无线频率信道编号
SC-FDMA:Single Carrier-Frequency Division Multiple Access,单载波-频分复用多址
MAC:Medium Access Control,媒体接入控制层
下文是与本发明方案相关联现有技术的描述。如无特别说明,具体实施例中与现有技术中相同术语的含义相同。
值得指出的是,本发明说明书中涉及的V2X与sidelink含义相同。文中的V2X也可以表示sidelink;相似地,文中的sidelink也可以表示V2X,后文中不做具体区分和限定。
本发明的说明书中的V2X(sidelink)通信的资源分配方式与V2X(sidelink)通信的传输模式可以等同替换。说明书中涉及的资源分配方式可以表示传输模式,以及,涉及的传输模式可以表示资源分配方式。在NR侧行通信中,传输模式1表示基于基站调度的传输模式(资源分配方式);传输模式2表示基于用户设备感知(sensing)和资源选择的传输模式(资源分配方式)。
本发明的说明书中的PSCCH用于携带SCI。本发明的说明书中涉及到的PSCCH对应的,或者,相应的,或者,相关的,或者,调度的PSSCH表示的含义均相同,都表示associated PSSCH或者corresponding PSSCH。类似地,说明书中涉及到的PSSCH对应的,或者,相应的,或者,相关的SCI(包括第一级SCI和第二级SCI)表示的含义均相同,都表示associated SCI或者corresponding SCI。值得指出的是,第一级SCI称为1st stage SCI或者SCI format 1-A,在PSCCH中传输;第二级SCI称为2nd stage SCI或者SCI format 2-A(或者,SCI format 2-B),在对应的PSSCH的资源中传输。
本发明的说明书中,[a]表示对a进行上取整运算,即不小于a的最小整数。例如[3.5]=4。
Sidelink通信的场景
1)无网络覆盖(Out-of-Coverage)侧行通信:进行sidelink通信的两个UE都没有网络覆盖(例如,UE在需要进行sidelink通信的频率上检测不到任何满足“小区选择准则”的小区,表示该UE无网络覆盖)。
2)有网络覆盖(In-Coverage)侧行通信:进行sidelink通信的两个UE都有网络覆盖(例如,UE在需要进行sidelink通信的频率上至少检测到一个满足“小区选择准则”的小区,表示该UE有网络覆盖)。
3)部分网络覆盖(Partial-Coverage)侧行通信:进行sidelink通信的其中一个UE无网络覆盖,另一个UE有网络覆盖。
从UE侧来讲,该UE仅有无网络覆盖和有网络覆盖两种场景。部分网络覆盖是从sidelink通信的角度来描述的。
LTE V2X(sidelink)通信的基本过程
图1是示出了LTE V2X UE侧行通信的示意图。首先,UE1向UE2发送侧行通信控制信息(SCI format 1),由物理层信道PSCCH携带。SCI format 1包含PSSCH的调度信息,例如PSSCH的频域资源等。其次,UE1向UE2发送侧行通信数据,由物理层信道PSSCH携带。PSCCH和相应的PSSCH采用频分复用的方式,即PSCCH和相应的PSSCH在时域上位于相同的子帧上,在频域上位于不同的RB上。在LTE V2X中,一个传输块TB可能仅包含一次初始传输,或者包含一次初始传输和一次盲重传(blind retransmission,表示不基于HARQ反馈的重传)。
PSCCH和PSSCH的具体设计方式如下:
1)PSCCH在时域上占据一个子帧,频域上占据两个连续的RB。加扰序列的初始化采用预定义数值510。PSCCH中可携带SCI format 1,其中SCI format 1至少包含PSSCH的频域资源信息。例如,对于频域资源指示域,SCI format 1指示该PSCCH对应的 PSSCH的起始sub-channel编号和连续sub-channel的数目。
2)PSSCH在时域上占据一个子帧,和对应的PSCCH采用频分复用(FDM)。PSSCH在频域上占据一个或者多个连续的sub-channel,sub-channel在频域上表示n
subCHsize个连续的RB,n
subCHsize由RRC参数配置,起始sub-channel和连续sub-channel的数目由SCI format 1的频域资源指示域指示。
LTE V2X的资源分配方式Transmission Mode 3/4
图2是示出了LTE V2X的两种资源分配方式,分别称为基于基站调度的资源分配(Transmission Mode 3)和基于UE感知(sensing)的资源分配(Transmission Mode 4)。在NR侧行通信中,LTE V2X的传输模式3对应NR V2X中的传输模式1,为基于基站调度的传输模式;LTE V2X的传输模式4对应NR V2X中的传输模式2,为基于UE感知的传输模式。LTE V2X中,当存在eNB网络覆盖的情况下,基站可通过UE级的专有RRC信令(dedicated RRC signaling)SL-V2X-ConfigDedicated配置该UE的资源分配方式,或称为该UE的传输模式,具体为:
1)基于基站调度的资源分配方式(Transmission Mode 3):基于基站调度的资源分配方式表示sidelink侧行通信所使用的频域资源来自于基站的调度。传输模式3包含两种调度方式,分别为动态调度和半静态调度(SPS)。对于动态调度,UL grant(DCI format 5A)中包括PSSCH的频域资源,承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-V-RNTI加扰。对于SPS半静态调度,基站通过IE:SPS-ConfigSL-r14配置一个或者多个(至多8个)配置的调度许可(configured grant),每个配置的调度许可含有一个调度许可编号(index)和调度许可的资源周期。UL grant(DCI format 5A)中包括PSSCH的频域资源,以及,调度许可编号的指示信息(3bits)和SPS激活(activate)或者释放(release,或者,去激活)的指示信息。承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-SPS-V-RNTI加扰。
具体地,当RRC信令SL-V2X-ConfigDedicated置为scheduled-r14时,表示该UE被配置为基于基站调度的传输模式。基站通过RRC信令配置SL-V-RNTI或者SL-SPS-V-RNTI,并通过PDCCH或者EPDCCH(DCI format 5A,CRC采用SL-V-RNTI加扰或者采用SL-SPS-V-RNTI加扰)向UE发送上行调度许可UL grant。上述上行调度许可UL grant中至少包含sidelink通信中PSSCH频域资源的调度信息。当UE成功监听到由SL-V-RNTI加扰或者SL-SPS-V-RNTI加扰的PDCCH或者EPDCCH后,将上行调度许可UL grant(DCI format 5A)中的PSSCH频域资源指示域作为PSCCH(SCI format 1)中PSSCH的频域资源的指示信息,并发送PSCCH(SCI format 1)和相应的PSSCH。
对于传输模式3中的半静态调度SPS,UE在下行子帧n上接收SL-SPS-V-RNTI加扰的DCI format 5A。如果DCI format 5A中包含SPS激活的指示信息,该UE根据DCI format 5A中的指示信息确定PSSCH的频域资源,根据子帧n等信息确定PSSCH的时域资源(PSSCH的发送子帧)。
2)基于UE感知(sensing)的资源分配方式(Transmission Mode 4):基于UE sensing的资源分配方式表示用于sidelink通信的资源基于UE对候选可用资源集合的感知(sensing)过程。RRC信令SL-V2X-ConfigDedicated置为ue-Selected-r14时表示该UE被配置为基于UE sensing的传输模式。在基于UE sensing的传输模式中,基站配置可用的传输资源池,UE根据一定的规则(详细过程的描述参见LTE V2X UE sensing过程部分)在传输资源池(resource pool)中确定PSSCH的sidelink发送资源,并发送PSCCH(SCI format 1)和相应的PSSCH。
侧行通信资源池(sidelink resource pool)
在侧行通信中,UE的发送和接收的资源均属于资源池resource pool。例如,对于侧行通信中基于基站调度的传输模式,基站在资源池中为 sidelink UE调度传输资源,或者,对于侧行通信中基于UE感知的传输模式,UE在资源池中确定传输资源。
基于(部分)感知的资源分配方式
对于基于(部分)感知的资源分配方式,侧行通信用户设备在一个时间窗口内选择候选资源,并根据监听时隙中其他用户设备发送的PSCCH所指示的预留资源,确定和该预留资源有重叠的候选资源,并将这些有重叠的候选资源排除(exclude)。物理层将未被排除的候选资源集合上报至MAC层,MAC层为PSSCH/PSCCH选择传输资源。
具体地,基于部分感知的资源分配方式,表示侧行通信用户设备在时域上不需要在所有的连续时隙上监听PSCCH,只需要在部分(离散的)时隙中监听PSCCH;基于感知的资源分配方式,表示侧行通信用户设备在除去发送侧行通信传输的时隙上连续监听PSCCH。
资源选择窗口[n+T1,n+T2]
在基于感知(或者,部分感知)的资源分配方式中,高层在时隙n上请求或者触发物理层确定用于PSSCH/PSCCH传输的资源(进行感知或者部分感知)。资源选择窗口定义为[n+T1,n+T2],即用户设备在该窗口内选择传输资源。其中,T1满足条件
T1的选择取决于用户设备的实现;RRC配置信息中包含一个资源选择窗口的配置列表sl-SelectionWindowList,其中,该列表中对应一个给定的优先级prio
TX(传输PSSCH的优先级)的元素表示为T
2min。如果该T
2min小于剩余数据包延迟预算(remaining packet delay budget,简称为remaining PDB),那么,T2满足条件T
2min≤T2≤remaining PDB,T2的选择取决于用户设备的实现;否则T2设置为remaining PDB。
的定义如下(μ
SL表示侧行通信的子载波间隔参数,即子载波间隔为
候选单时隙资源R
x,y(candidate single-slot resource)
一个候选单时隙资源R
x,y表示在时隙t′
y
SL上连续L
subCH个子信道(记为x+j,其中j=0,1,...,L
subCH-1)的集合。其中,t′
y
SL表示资源选择窗口中候选时隙集合中的任一个时隙。L
subCH表示由高层(或者,上层)提供的用于PSSCH/PSCCH传输的子信道的数目。
NR中(包含NR sidelink)的参数集合(numerology)和NR中(包含NR
sidelink)的时隙slot
参数集合numerology包含子载波间隔和循环前缀CP长度两方面含义。其中,NR支持5种子载波间隔,分别为15k,30k,60k,120k,240kHz(对应μ=0,1,2,3,4),表格4.2-1示出了支持的传输参数集合,具体如下所示。
表4.2-1 NR支持的子载波间隔
μ | Δf=2 μ·15[kHz] | CP(循环前缀) |
0 | 15 | 正常 |
1 | 30 | 正常 |
2 | 60 | 正常,扩展 |
3 | 120 | 正常 |
4 | 240 | 正常 |
仅当μ=2时,即60kHz子载波间隔的情况下支持扩展(Extended)CP,其他子载波间隔的情况仅支持正常CP。对于正常(Normal)CP,每个时隙(slot)含有14个OFDM符号;对于扩展CP,每个时隙含有12个OFDM符号。对于μ=0,即15kHz子载波间隔,1个时隙=1ms;μ=1,即30kHz子载波间隔,1个时隙=0.5ms;μ=2,即60kHz子载波间隔,1个时隙=0.25ms,以此类推。
NR和LTE对于子帧(subframe)的定义相同,表示1ms。对于子载波间隔配置μ,1个子帧内(1ms)的slot编号可以表示为
范围为0到
1个系统帧(frame,时长10ms)内的slot编号可以表示为
范围为0到
其中,
和
在不同子载波间隔μ的情况的定义如下表格所示。
表格4.3.2-1:正常CP时每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
表格4.3.2-2:扩展CP时(60kHz)每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
在NR载波上,系统帧(或者,简称为帧)的编号SFN范围为0至1023。在侧行通信中引入了直接系统帧号DFN的概念,编号范围同样为0至1023,上述对于系统帧和numerology之间关系的叙述同样可以应用于直接系统帧,例如,一个直接系统帧的时长同样等于10ms,对于15kHz 的子载波间隔,一个直接系统帧包括10个时隙slot,等等。DFN应用于sidelink载波上的定时timing。
LTE中(包含LTE V2X)参数集和LTE中(包含LTE V2X)的时隙slot
和子帧subframe
LTE仅支持15kHz的子载波间隔。LTE中支持扩展(Extended)CP,也支持正常CP。子帧subframe时长为1ms,包含两个时隙slot,每个slot时长为0.5ms。
对于正常(Normal)CP,每个子帧含有14个OFDM符号,子帧中的每个slot包含7个OFDM符号;对于扩展CP,每个子帧含有12个OFDM符号,子帧中的每个slot包含6个OFDM符号。
资源块RB和资源单元RE
资源块RB在频域上定义为
个连续的子载波,例如对于15kHz的子载波间隔,RB在频域上为180kHz。对于子载波间隔15kHz×2
μ,资源单元RE在频域上表示1个子载波,在时域上表示1个OFDM符号。
NR侧行通信中的抢占检查(pre-emDtion check)
抢占检查表示MAC层在选择用于侧行通信传输的资源后,在将来的某个时刻对已经选择的并且已经通过侧行通信控制信息SCI指示的传输资源重新进行感知,以判断该资源是否被其他用户设备所预留或者抢占。如果该传输资源被其他用户设备预留或者抢占,MAC层可以对该资源触发资源重选(resource re-selection),用以替代被其他用户设备预留或者抢占的传输资源。
NR侧行通信中的重评估(re-evaluation)
在5G NR V2X中,支持一种重评估的机制(re-evaluation)。重评估表示MAC层在选择用于侧行通信传输的资源后,在将来的某个时刻对已经选择并且尚未通过侧行通信控制信息SCI指示的传输资源重新进行感知,以判断该资源是否被其他用户设备所预留。如果该传输资源被其他用户设备预留,MAC层可以对该资源触发资源重选,用以替代被其他用户设备所预留的传输资源。
以下,对本发明所涉及的具体的示例以及实施例等进行详细说明。另外,如上所述,本公开中记载的示例以及实施例等是为了容易理解本发明而进行的示例性说明,并不是对本发明的限定。
[实施例一]
图3是示出了本发明的实施例一的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例一的由用户设备执行的方法。
如图3所示,在本发明的实施例一中,用户设备执行的步骤包括:
在步骤S101,高层(higher layer,或者上层)请求(request,或者,触发trigger)侧行通信用户设备(物理层)确定侧行通信资源子集。
其中,可选地,高层在所述侧行通信资源子集中选择侧行通信资源用于PSSCH/PSCCH的传输。
可选地,所述高层(或者,上层)表示媒体接入控制MAC层。
可选地,所述用户设备的资源分配方式为基于部分感知(partial sensing)的资源分配方式。
可选地,所述高层在时隙slot n上请求侧行通信用户设备确定所述侧行通信资源子集。
其中,可选地,高层向物理层至少提供资源预留间隔(resource reservation interval)P
rsvp_TX。可选地,所述资源预留间隔不等于0毫秒。
在步骤S102,所述侧行通信用户设备确定候选时隙(candidate slots)集合。
可选地,所述用户设备确定所述候选时隙集合的方式为取决于用户设备的实现(up to UE implementation)。
可选地,所述用户设备在资源选择窗口[n+T1,n+T2]中确定所述候选时隙集合。
在步骤S103,物理层向高层上报所述候选时隙集合。
[实施例二]
图4是示出了本发明的实施例二的由用户设备执行的方法的基本过程的示意图。
下面,结合图4所示的基本过程图来详细说明本发明的实施例二的由用户设备执行的方法。
如图4所示,在本发明的实施例二中,用户设备执行的步骤包括:
在步骤S201,高层(higher layer,或者上层)请求(request,或者,触发trigger)侧行通信用户设备(物理层)确定侧行通信资源子集。
其中,可选地,高层在所述侧行通信资源子集中选择侧行通信资源用于PSSCH/PSCCH的传输,可选地,作为重评估re-evaluation或者抢占检查pre-emption check过程的一部分。
可选地,所述高层(或者,上层)表示媒体接入控制MAC层。
可选地,所述用户设备的资源分配方式为基于部分感知(partial sensing)的资源分配方式。
可选地,所述高层在时隙slot n上请求侧行通信用户设备确定所述侧行通信资源子集。
其中,可选地,高层向物理层至少提供资源预留间隔(resource reservation interval)P
rsvp_TX。可选地,所述资源预留间隔不等于0毫秒。
以及,可选地,高层向物理层至少提供了第一资源集合(r
0′,r
1′,r
2′,...)和第二资源集合(r
0,r
1,r
2,...)。其中,可选地,所述第一资源集合从属于 (subiect to)抢占(检查)的(pre-emption)资源。所述第二资源集合从属于重评估的资源。
可选地,高层向物理层提供了所述第一资源集合和/或所述第二资源集合(关联,或者,对应)的初始资源选择(initial resource selection)时的第一候选时隙集合,和/或,高层向物理层提供了所述第一资源集合和/或所述第二资源集合(关联,或者,对应)的在侧行通信调度许可中所在的周期序号q,即所述第一资源集合和/或所述第二资源集合是所述侧行通信调度许可中第q个周期内的资源,其中,q表示非负整数,或者,正整数。
在步骤S202,所述侧行通信用户设备确定第二候选时隙(candidate slots)集合。
可选地,所述用户设备至少根据所述初始资源选择时的第一候选时隙集合,和/或所述q,和/或所述时隙n,确定所述第二候选时隙集合。
具体地,所述第二候选时隙集合表示
集合中的从晚于(或者,不早于)时刻
的首个时隙到最后一个时隙。其中,
表示资源池中的时隙,m表示下标。在SFN(或者,DFN)0-1023内,资源池中的时隙表示为
其中,T′
max表示在SFN(或者,DFN)0-1023内(10240ms)资源池中时隙的数目。t′
y
SL表示所述第一候选时隙中的任一时隙。其中,
图5是表示本发明所涉及的用户设备UE的框图。如图5所示,该用户设备UE80包括处理器801和存储器802。处理器801例如可以包括微处理器、微控制器、嵌入式处理器等。存储器802例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器802上存储有程序指令。该指令在由处理器801运行时,可以执行本发明详细描述的由用户设备执行的上述方法。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模 块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。
Claims (10)
- 一种由用户设备执行的方法,包括:高层请求或者触发所述用户设备确定侧行通信资源子集;以及确定候选时隙集合。
- 根据权利要求1所述的方法,其特征在于,所述高层在所述侧行通信资源子集中选择侧行通信资源用于PSSCH/PSCCH的传输;和/或所述用户设备的资源分配方式为基于部分感知的资源分配方式;和/或所述高层在时隙n上请求所述用户设备确定所述侧行通信资源子集。
- 根据权利要求2所述的方法,其特征在于,所述高层向物理层至少提供资源预留间隔。
- 根据权利要求1-3中任一项所述的方法,其特征在于,还包括:物理层向所述高层上报所述候选时隙集合。
- 根据权利要求4所述的方法,其特征在于,所述用户设备确定所述候选时隙集合的方式为取决于该用户设备的实现;和/或所述用户设备在资源选择窗口[n+T1,n+T2]中确定所述候选时隙集合。
- 根据权利要求1-3中任一项所述的方法,其特征在于,所述高层在所述侧行通信资源子集中选择侧行通信资源用于PSSCH/PSCCH的传输,作为重评估或者抢占检查的过程的一部分。
- 根据权利要求6所述的方法,其特征在于,所述高层向物理层至少提供了第一资源集和第二资源集合,所述第一资源集合从属于所述抢占检查的资源,所述第二资源集合从属于重评估的资源。
- 根据权利要求7所述的方法,其特征在于,所述高层向所述物理层提供了与所述第一资源集合和/或所述第二资 源集合关联或者对应的初始资源选择时的第一候选时隙集合,和/或所述高层向所述物理层提供了与所述第一资源集合和/或所述第二资源集合关联或者对应的在侧行通信调度许可中所在的周期序号。
- 根据权利要求8所述的方法,其特征在于,所述确定候选时隙集合是确定第二候选时隙集合,所述用户设备至少根据所述初始资源选择时的所述第一候选时隙集合,和/或所述周期序号,和/或所述时隙n,确定所述第二候选时隙集合。
- 一种用户设备,包括:处理器;以及存储器,存储有指令;其中,所述指令在由所述处理器运行时执行根据权利要求1至9中任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111471783.8 | 2021-12-02 | ||
CN202111471783.8A CN116234015A (zh) | 2021-12-02 | 2021-12-02 | 由用户设备执行的方法以及用户设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023098812A1 true WO2023098812A1 (zh) | 2023-06-08 |
Family
ID=86585972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/135903 WO2023098812A1 (zh) | 2021-12-02 | 2022-12-01 | 由用户设备执行的方法以及用户设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116234015A (zh) |
WO (1) | WO2023098812A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015018096A1 (zh) * | 2013-08-09 | 2015-02-12 | 富士通株式会社 | 信息发送方法、检测方法及其装置、通信系统 |
CN112312526A (zh) * | 2019-08-01 | 2021-02-02 | 华硕电脑股份有限公司 | 无线通信系统装置到装置通信监测功率节省的方法和设备 |
CN112512008A (zh) * | 2020-10-16 | 2021-03-16 | 中兴通讯股份有限公司 | 通信资源选择方法、装置、电子设备和存储介质 |
CN113079571A (zh) * | 2020-01-03 | 2021-07-06 | 夏普株式会社 | 由用户设备执行的方法以及用户设备 |
CN113518099A (zh) * | 2020-04-09 | 2021-10-19 | 夏普株式会社 | 由用户设备执行的方法以及用户设备 |
-
2021
- 2021-12-02 CN CN202111471783.8A patent/CN116234015A/zh active Pending
-
2022
- 2022-12-01 WO PCT/CN2022/135903 patent/WO2023098812A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015018096A1 (zh) * | 2013-08-09 | 2015-02-12 | 富士通株式会社 | 信息发送方法、检测方法及其装置、通信系统 |
CN112312526A (zh) * | 2019-08-01 | 2021-02-02 | 华硕电脑股份有限公司 | 无线通信系统装置到装置通信监测功率节省的方法和设备 |
CN113079571A (zh) * | 2020-01-03 | 2021-07-06 | 夏普株式会社 | 由用户设备执行的方法以及用户设备 |
CN113518099A (zh) * | 2020-04-09 | 2021-10-19 | 夏普株式会社 | 由用户设备执行的方法以及用户设备 |
CN112512008A (zh) * | 2020-10-16 | 2021-03-16 | 中兴通讯股份有限公司 | 通信资源选择方法、装置、电子设备和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN116234015A (zh) | 2023-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022028413A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2022111630A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2022143641A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2022017037A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2023131074A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2023040961A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2022152163A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2020088513A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2024012390A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2024032504A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2024001958A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2024001957A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2023202482A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2022267943A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2023001070A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2022194243A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2021197379A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2022028330A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2021228138A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2021057838A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2023098812A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2023078345A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2023051452A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2023078389A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2024149091A1 (zh) | 由用户设备执行的方法以及用户设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22900616 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |