WO2021057838A1 - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
WO2021057838A1
WO2021057838A1 PCT/CN2020/117366 CN2020117366W WO2021057838A1 WO 2021057838 A1 WO2021057838 A1 WO 2021057838A1 CN 2020117366 W CN2020117366 W CN 2020117366W WO 2021057838 A1 WO2021057838 A1 WO 2021057838A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
user equipment
slot
time slot
transmission
Prior art date
Application number
PCT/CN2020/117366
Other languages
English (en)
French (fr)
Inventor
赵毅男
刘仁茂
罗超
Original Assignee
夏普株式会社
赵毅男
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 赵毅男 filed Critical 夏普株式会社
Publication of WO2021057838A1 publication Critical patent/WO2021057838A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • the present invention relates to the field of wireless communication technology, and in particular to methods executed by user equipment and corresponding user equipment.
  • D2D communication (Device-to-Device communication, device-to-device direct communication) refers to a direct communication method between two user devices without being forwarded by a base station or core network.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • the upper layer supports Unicast and Groupcast communication functions.
  • V2X stands for Vehicle to Everything, and hopes to realize the information interaction between vehicles and all entities that may affect vehicles. The purpose is to reduce accidents, alleviate traffic congestion, reduce environmental pollution, and provide other information services.
  • the application scenarios of V2X mainly include 4 aspects:
  • V2V Vehicle to Vehicle, that is, vehicle-to-vehicle communication
  • V2P Vehicle to Pedestrian, that is, the vehicle sends a warning to pedestrians or non-motorized vehicles
  • V2N Vehicle to Network, that is, the vehicle connects to the mobile network
  • V2I Vehicle to Infrastructure, that is, communication between vehicles and road infrastructure.
  • V2X stage 1 introduced a new D2D communication interface called the PC5 interface.
  • the PC5 interface is mainly used to solve the problem of cellular car networking communication under high-speed (up to 250 km/h) and high-node density environments. Vehicles can interact with information such as position, speed and direction through the PC5 interface, that is, vehicles can communicate directly through the PC5 interface.
  • the functions introduced by LTE Release 14 V2X mainly include:
  • the second phase of the V2X research topic belongs to the LTE Release 15 research category (see Non-Patent Document 4).
  • the main features introduced include high-order 64QAM modulation, V2X carrier aggregation, and short TTI transmission, as well as the feasibility study of transmit diversity.
  • both the scheduling of the same carrier are supported, and cross-carrier scheduling (cross-carrier scheduling) is also supported.
  • the solution of the present invention includes a method for UE in transmission mode 1 to determine PSCCH/PSSCH transmission time slots in NR side-line communication.
  • the sending user equipment is supported to send the received side-traffic HARQ feedback information to the base station gNB.
  • the sending user equipment sends the received HARQ feedback information through the PUCCH.
  • the base station gNB indicates the timing and resource of the PUCCH used for transmitting the HARQ feedback information of the side-line communication in the PDCCH carrying the DCI.
  • the solution of the present invention also includes a method for a transmitting (transmitter) UE in transmission mode 1 in NR side-line communication to determine a PUCCH transmission time slot.
  • NR sidelink that is, the NR carrier and the sidelink carrier are two different carriers.
  • the synchronization source of the side-line communication UE on the sidelink carrier is a synchronization source other than the serving cell where the UE is located, such as other UEs, GNSS, etc.
  • the timing and sidelink on the NR carrier The timing on the carrier is not necessarily the same.
  • the TDD configuration on the NR carrier and the TDD configuration on the sidelink carrier are not necessarily the same.
  • the solution of the present invention also includes a method for the side-line communication UE to report the timing on the sidelink carrier to the base station, and the method for the TDD configuration on the sidelink carrier.
  • Non-Patent Document 1 RP-140518, Work item proposal on LTE Device to Device Proximity Services
  • Non-Patent Document 2 RP-142311, Work Item Proposal for Enhanced LTE Device to Device Proximity Services
  • Non-Patent Document 3 RP-152293, New WI proposal: Support for V2V services based on LTE sidelink
  • Non-Patent Document 4 RP-170798, New WID on 3GPP V2X Phase 2
  • Non-Patent Document 5 RP-181480, New SID Proposal: Study on NR V2X
  • Non-Patent Document 6 RAN1#98, Chairman notes, section 7.2.4.2.1
  • Non-Patent Document 7 RAN1#97, Chairman notes, section 7.2.4.2.1
  • the present invention provides a method executed by a user equipment and a user equipment.
  • the method executed by the user equipment includes: receiving downlink control information DCI sent by a new wireless base station gNB; determining a time length T according to the indication information of the new wireless base station gNB; and determining physical side communication
  • the resource allocation mode of the user equipment is sideline communication resource allocation mode 1; and/or the The DCI includes scheduling information for the user equipment to transmit the PSCCH and/or to transmit the PSSCH; and/or the user equipment determines the time T DL-SL ; and/or the user equipment according to the indication information included in the DCI
  • the time T DL-SL represents the receiving time of receiving the DCI, or represents the starting time of the time slot where the DCI is located, or represents the time slot where the DCI is located End time.
  • the T DL-SL indicates that the subcarrier interval on the new wireless carrier or on the sideline communication carrier is equal to Corresponding time slot number The start or end time of the time slot slot, where the user equipment receives the DCI in the time slot n.
  • the method executed by the user equipment according to the second aspect of the present disclosure includes: receiving the downlink control information DCI sent by the new radio base station gNB; receiving the physical side communication feedback channel PSFCH; determining the time domain resource for the physical uplink control channel PUCCH transmission,
  • the user equipment is a side-line communication user equipment.
  • the resource allocation mode of the user equipment is sideline communication resource allocation mode 1; and/or the The DCI includes the indication information k for the PUCCH to transmit the time domain resource.
  • the user equipment is a sending user equipment; and/or the user equipment receives a receiving user The PSFCH sent by the device; and/or the user equipment receives the PSFCH on the time slot numbered n.
  • the k is in the unit of time slot, and in the step of determining the time domain resource of the physical uplink control channel PUCCH transmission, the user equipment determines that the PUCCH transmission is numbered (n′+k) in the time slot (within slot n′+k) or in the time slot numbered (n′+k) (within slot n′+k), or not earlier than the number It is the first time slot containing PUCCH resources at the time corresponding to the time slot slot of (n′+k), or the first time slot not earlier than the time corresponding to the time slot numbered (n′+k)
  • the n′ represents a specific time slot among one or more time slots that overlap with the slot n on the sideline communication carrier on the new wireless carrier; or the user equipment determines the PUCCH transmission In the slot numbered K or on the slot numbered K, or on the first time slot containing PUCCH resources no earlier than the time corresponding to the slot numbered K, or
  • the one specific time slot represents the first time slot or the last time slot among the multiple time slots, or the multiple time slots contain a physical uplink control channel The time slot of the PUCCH resource, or any one of the multiple time slots.
  • the user equipment determines that the PUCCH transmission is not earlier than the first time of T PSFCH + k time. In a slot or on the first time slot not earlier than the time T PSFCH + k, where the T PSFCH represents the start time or the end time of the time slot numbered n.
  • the communication device is a communication device with a packet data convergence protocol PDCP entity, including: a processor; and a memory storing instructions; wherein the instructions are executed when the processor is running.
  • a packet data convergence protocol PDCP entity including: a processor; and a memory storing instructions; wherein the instructions are executed when the processor is running.
  • Figure 1 is a schematic diagram showing LTE V2X UE side-line communication.
  • Fig. 2 is a schematic diagram showing the resource allocation mode of LTE V2X.
  • FIG. 3 is a schematic diagram showing the basic process of the method executed by the user equipment in Embodiment 1 and Embodiment 2 of the invention.
  • Fig. 4 is a schematic diagram showing the basic process of the method executed by the user equipment in the third and fourth embodiments of the invention.
  • Fig. 5 is a schematic diagram showing the basic process of the method executed by the user equipment in the fifth and sixth embodiments of the invention.
  • Fig. 6 is a block diagram showing a user equipment according to an embodiment of the present invention.
  • 3GPP 3rd Generation Partnership Project
  • the third generation partnership project the third generation partnership project
  • LTE Long Term Evolution, long-term evolution technology
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • DCI Downlink Control Information, downlink control information
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • UE User Equipment, user equipment
  • eNB evolved NodeB, evolved base station
  • gNB NR base station
  • TTI Transmission Time Interval, transmission time interval
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing with Cyclic Prefix
  • C-RNTI Cell Radio Network Temporary Identifier, cell radio network temporary identifier
  • CSI Channel State Information, channel state information
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • CRS Cell Reference Signal, cell specific reference signal
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • SCI Sidelink Control Information, side-line communication control information
  • PSCCH Physical Sidelink Control Channel, physical side link control channel
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • RB Resource Block, resource block
  • CRB Common Resource Block, common resource block
  • CP Cyclic Prefix, cyclic prefix
  • PRB Physical Resource Block, physical resource block
  • PSSCH Physical Sidelink Shared Channel, physical sidelink shared channel
  • FDM Frequency Division Multiplexing, Frequency Division Multiplexing
  • RRC Radio Resource Control, radio resource control
  • RSRP Reference Signal Receiving Power, reference signal received power
  • SRS Sounding Reference Signal, sounding reference signal
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • PSDCH Physical Sidelink Discovery Channel, physical side link discovery channel
  • PSBCH Physical Sidelink Broadcast Channel, physical side-line communication broadcast channel
  • TDD Time Division Duplexing, Time Division Duplexing
  • FDD Frequency Division Duplexing, Frequency Division Duplexing
  • SIB1 System Information Block Type 1, System Information Block Type 1
  • SLSS Sidelink synchronization Signal, side-line communication synchronization signal
  • PSSS Primary Sidelink Synchronization Signal, the main synchronization signal of side-line communication
  • SSSS Secondary Sidelink Synchronization Signal, secondary synchronization signal for side-line communication
  • PCI Physical Cell ID, physical cell ID
  • PSS Primary Synchronization Signal, the primary synchronization signal
  • SSS Secondary Synchronization Signal, secondary synchronization signal
  • BWP BandWidth Part, bandwidth segment/part
  • GNSS Global Navigation Satellite System, Global Navigation Satellite Positioning System
  • SFN System Frame Number, system (wireless) frame number
  • DFN Direct Frame Number, direct frame number
  • SSB Synchronization Signal Block, synchronization system information block
  • EN-DC EUTRA-NR Dual Connection, LTE-NR dual connection
  • MCG Master Cell Group, master cell group
  • SCG Secondary Cell Group, secondary cell group
  • PCell Primary Cell, primary cell
  • SCell Secondary Cell, secondary cell
  • PSFCH Physical Sidelink Feedback Channel, the physical sidelink feedback channel
  • SPS Semi-Persistant Scheduling, semi-static scheduling
  • V2X and sidelink involved in the specification of the present invention have the same meaning.
  • V2X in the text can also mean sidelink; similarly, sidelink in the text can also mean V2X, and no specific distinction and limitation will be made in the following text.
  • the resource allocation mode of V2X (sidelink) communication and the transmission mode of V2X (sidelink) communication in the specification of the present invention can be replaced equally.
  • the resource allocation mode involved in the specification can represent a transmission mode, and the related transmission mode can represent a resource allocation mode.
  • the PSCCH in the specification of the present invention is used to carry SCI.
  • the PSCCH corresponding, or, corresponding, or, related, or scheduled PSSCH means the same meaning, and all means associated PSSCH or corresponding PSSCH.
  • the corresponding, or corresponding, or related PSCCH of the PSSCH referred to in the specification all have the same meaning, and they all mean associated PSCCH or corresponding PSCCH. It is worth pointing out that the PSCCH corresponding to, or, correspondingly, or related to the PSSCH may be one PSCCH or two PSCCHs.
  • PSSCH corresponding, or, corresponding, or related PSCCH contains two PSCCHs (or, two SCI), in the specification of this patent it is referred to as the PSCCH carrying the first level of SCI and the PSCCH carrying the second level of SCI .
  • the uplink and downlink configuration information and TDD configuration information involved in the present invention have the same meaning.
  • the uplink and downlink configuration information and TDD configuration information in the text can be replaced equally.
  • sidelink uplink and downlink configuration information and sidelink TDD configuration information can be replaced equally, and they have the same meaning.
  • the TDD configuration information and sidelink TDD configuration information involved in the embodiment of the present invention include at least one TDD configuration pattern.
  • the TDD configuration pattern contains corresponding configuration information, such as configuration period, reference subcarrier interval, etc.
  • uplink resources may refer to sidelink resources, and sidelink resources may refer to uplink resources.
  • uplink time slot resources correspond to sidelink time slot resources, and uplink symbol resources correspond to sidelink symbol resources.
  • Out-of-Coverage side-line communication Two UEs performing sidelink communication have no network coverage (for example, the UE cannot detect anything that meets the "cell selection criteria" on the frequency where sidelink communication is required. Cell, which means that the UE has no network coverage).
  • Both UEs performing sidelink communication have network coverage (for example, the UE detects at least one cell that meets the "cell selection criteria" on the frequency that needs sidelink communication, Indicates that the UE has network coverage).
  • Partial-Coverage (Partial-Coverage) side-line communication One of the UEs performing sidelink communication has no network coverage, and the other UE has network coverage.
  • the UE From the UE side, the UE has only two scenarios without network coverage and with network coverage. Part of the network coverage is described from the perspective of sidelink communication.
  • FIG. 1 is a schematic diagram showing LTE V2X UE side-line communication.
  • UE1 sends sideline communication control information (SCI format 1) to UE2, which is carried by the physical layer channel PSCCH.
  • SCI format 1 includes PSSCH scheduling information, such as PSSCH frequency domain resources.
  • UE1 sends sideline communication data to UE2, which is carried by the physical layer channel PSSCH.
  • the PSCCH and the corresponding PSSCH adopt a frequency division multiplexing manner, that is, the PSCCH and the corresponding PSSCH are located on the same subframe in the time domain and are located on different RBs in the frequency domain.
  • the specific design methods of PSCCH and PSSCH are as follows:
  • PSCCH occupies one subframe in the time domain and two consecutive RBs in the frequency domain.
  • the initialization of the scrambling sequence uses a predefined value 510.
  • PSCCH can carry SCI format 1, where SCI format 1 contains at least frequency domain resource information of PSSCH. For example, for the frequency domain resource indicator field, SCI format 1 indicates the starting sub-channel number and the number of consecutive sub-channels of the PSSCH corresponding to the PSCCH.
  • the PSSCH occupies a subframe in the time domain, and the corresponding PSCCH adopts frequency division multiplexing (FDM).
  • the PSSCH occupies one or more continuous sub-channels in the frequency domain.
  • the sub-channel represents n subCHsize consecutive RBs in the frequency domain.
  • the n subCHsize is configured by the RRC parameter, and the starting sub-channel and the number of consecutive sub-channels It is indicated by the frequency domain resource indicator field of SCI format 1.
  • Fig. 2 shows two resource allocation methods of LTE V2X, which are respectively called resource allocation based on base station scheduling (Transmission Mode 3) and resource allocation based on UE sensing (sensing) (Transmission Mode 4).
  • the base station can configure the UE's resource allocation mode through UE-level dedicated RRC signaling (dedicated RRC signaling) SL-V2X-ConfigDedicated, or called the UE's transmission mode ,
  • UE-level dedicated RRC signaling dedicated RRC signaling
  • SL-V2X-ConfigDedicated SL-V2X-ConfigDedicated
  • Resource allocation mode based on base station scheduling indicates that the frequency domain resources used for sidelink sideline communication come from the scheduling of the base station.
  • Transmission mode 3 includes two scheduling methods, namely dynamic scheduling and semi-persistent scheduling (SPS).
  • SPS semi-persistent scheduling
  • the UL grant (DCI format 5A) includes the frequency domain resources of the PSSCH, and the CRC of the PDCCH or EPDCCH carrying the DCI format 5A is scrambled by the SL-V-RNTI.
  • the base station configures one or more (up to 8) configured scheduling grants through IE: SPS-ConfigSL-r14, and each configured scheduling grant contains a scheduling grant number (index) and scheduling Licensed resource period.
  • the UL grant (DCI format 5A) includes the frequency domain resources of the PSSCH, as well as the indication information (3 bits) of the scheduling permission number and the indication information of SPS activation (activate) or release (release or deactivation).
  • the CRC of the PDCCH or EPDCCH carrying the DCI format 5A is scrambled by the SL-SPS-V-RNTI.
  • the RRC signaling SL-V2X-ConfigDedicated when the RRC signaling SL-V2X-ConfigDedicated is set to scheduled-r14, it means that the UE is configured in a transmission mode based on base station scheduling.
  • the base station configures SL-V-RNTI or SL-SPS-V-RNTI through RRC signaling, and through PDCCH or EPDCCH (DCI format 5A, CRC uses SL-V-RNTI scrambling or SL-SPS-V-RNTI scrambling) ) Send an uplink scheduling permission UL grant to the UE.
  • the uplink scheduling grant UL grant includes at least the scheduling information of the PSSCH frequency domain resources in the sidelink communication.
  • the PSSCH frequency domain resource indicator field in the uplink scheduling grant UL grant (DCI format 5A) is used as the PSCCH (SCI format 1) indicates the frequency domain resources of the PSSCH, and sends PSCCH (SCI format 1) and the corresponding PSSCH.
  • the UE receives the SL-SPS-V-RNTI scrambled DCI format 5A on the downlink subframe n. If the DCI format 5A contains the indication information of SPS activation, the UE determines the frequency domain resources of the PSSCH according to the indication information in the DCI format 5A, and determines the time domain resources of the PSSCH (PSSCH transmission subframe) according to information such as subframe n.
  • Resource allocation method based on UE sensing indicates that the resources used for sidelink communication are based on the UE's sensing process of the candidate available resource set.
  • RRC signaling SL-V2X-ConfigDedicated is set to ue-Selected-r14, it means that the UE is configured in the transmission mode based on UE sensing.
  • the base station configures the available transmission resource pool, and the UE determines the PSSCH sidelink transmission resource in the transmission resource pool (resource pool) according to certain rules (see the LTE V2X UE sensing process section for detailed process description) , And send PSCCH (SCI format 1) and the corresponding PSSCH.
  • the resources sent and received by the UE belong to the resource pool.
  • the base station schedules transmission resources for the sidelink UE in the resource pool, or for the transmission mode based on UE perception in sideline communication, the UE determines the transmission resources in the resource pool.
  • serving cell serving cell
  • carrier aggregation Carrier Aggregation
  • the serving cell of the UE may be more than one serving cell, including one primary cell (Primary Cell) and one or more secondary cells (SCell).
  • Primary Cell Primary Cell
  • SCell secondary cells
  • the accessed cell may be called the primary cell PCell
  • the base station gNB configures and activates the secondary cell SCell for the UE through high-level RRC signaling.
  • the carriers involved in the specification of the present invention all represent a continuous segment of frequency domain resources in the frequency domain.
  • the NR carrier represents the frequency at which the serving cell of the UE works.
  • the UE receives downlink transmissions from the base station and uplink transmissions of the UE itself.
  • the sidelink carrier indicates the frequency at which the UE performs side-line communication transmission and reception.
  • the sidelink carrier involved in the specification of the present invention may mean an NR sidelink carrier, or an LTE sidelink carrier.
  • the UE performs NR side-line communication transmission and reception; on the LTE sidelink carrier, the UE performs LTE side-line communication transmission and reception.
  • Two identical carriers indicate that the frequency domain resources occupied by the two carriers are completely the same; if the frequency domain resources of the two carriers do not completely overlap, then the two carriers are called different carriers.
  • the synchronization source may be referred to as sync source for short, or sync reference for short.
  • sync source for short
  • sync reference for short.
  • LTE V2X similar to the cellular network communication mechanism, if the UE needs to transmit data, the UE first needs to synchronize the time domain and frequency domain.
  • the timing relationship (or called timing) of the cell can be determined. Timing includes the synchronization of frame timing (10ms timing) and the timing of subframes (or time slots).
  • the UE determines frame synchronization and subframe synchronization according to the received PSS and SSS; in NR, the UE is based on the number of the synchronization system information block SSB and the predefined SSB mapping method Determine frame synchronization and subframe/slot synchronization.
  • the UE determines the timing relationship of sidelink or V2X transmission or reception according to the timing relationship of the selected synchronization source.
  • the UE needs to select the synchronization source. Possible synchronization sources include:
  • the UE determines a synchronization source (Synchronization Source) according to a certain pre-defined priority criterion.
  • the priority criterion includes, but is not limited to: the priority of the base station eNB is higher than that of the sidelink UE, and the higher priority of the signal sent by the sidelink UE is higher RSRP. That is, when other conditions are the same, the UE prefers the base station eNB as the synchronization source compared to the sidelink UE. In the embodiment of the present invention, if the UE is involved in selecting a synchronization source, the UE will determine the synchronization source according to a certain priority criterion by default.
  • the parameter set numerology includes two meanings of subcarrier spacing and cyclic prefix CP length.
  • ⁇ ⁇ f 2 ⁇ ⁇ 15[kHz] CP (cyclic prefix) 0 15 normal 1 30 normal 2 60 Normal, extended 3 120 normal 4 240 normal
  • each slot contains 14 OFDM symbols; for extended CP, each slot contains 12 OFDM symbols.
  • NR and LTE have the same definition of subframe, which means 1ms.
  • subframe means 1ms.
  • the slot number in 1 subframe (1ms) can be expressed as Range from 0 to
  • the slot number in a system frame (frame, 10ms) can be expressed as Range from 0 to among them, with The definition in the case of different subcarrier spacing ⁇ is shown in the following table.
  • Table 4.3.2-1 The number of symbols contained in each slot in normal CP, the number of slots contained in each system frame, and the number of slots contained in each subframe
  • Table 4.3.2-2 The number of symbols contained in each slot when the CP is extended (60kHz), the number of slots contained in each system frame, and the number of slots contained in each subframe
  • the number SFN of the system frame ranges from 0 to 1023.
  • the concept of direct system frame number DFN is introduced in sideline communication, and the number range is also 0 to 1023.
  • the above description of the relationship between system frames and numerology can also be applied to direct system frames, for example, the duration of a direct system frame It is also equal to 10ms.
  • a direct system frame For a subcarrier interval of 15kHz, a direct system frame includes 10 time slots, and so on. DFN is used for timing timing on the sidelink carrier.
  • the NR base station gNB configures cell-level TDD configuration information through TDD-UL-DL-ConfigCommon in SIB1, which includes:
  • ⁇ High-level parameter pattern1 (this information element is mandatory and represents TDD configuration style 1, the same below), which includes the following high-level parameters:
  • the number of downlink time slots d stots the downlink time slots only contain downlink OFDM symbols (may be called DL-only time slots);
  • the number of uplink time slots u slots the uplink time slots only contain uplink OFDM symbols (which can be called UL-only time slots);
  • the period of the above configuration information is P ms, corresponding to continuous Time slots.
  • S time slots there are first d slots downlink time slots, and u slots uplink time slots are located at the end of the S time slots.
  • d sym downlink OFDM symbols are located after d slots downlink time slots, u sym uplink OFDM symbols are located before u slots uplink time slots, and the rest
  • Each OFDM symbol is an X symbol (X represents a flexible symbol).
  • the X symbol may be a downlink symbol, an uplink symbol, or a guard interval symbol between downlink and uplink in different application scenarios. Among them, for normal CP (Normal CP), For extended CP (Extended CP),
  • the TDD-UL-DL-ConfigCommon in the SIB1 may include a high-level parameter pattern2 (this information element is Optional, which represents TDD configuration pattern 2, the same below).
  • the configuration information form of pattern2 and pattern1 is the same (parameters of pattern2 include: period P2, d slots, 2 , u slots, 2 , d sym, 2, u sym, 2 ), and the meaning of the corresponding parameters is the same as the corresponding parameter of pattern1.
  • the reference subcarrier interval ⁇ ref is the same as pattern1, so the reference subcarrier interval ⁇ ref will not be repeatedly configured for pattern2.
  • the period of the above configuration information is P2 ms, corresponding to continuous Time slots.
  • d slots first are d slots, 2 downlink time slots, u slots, and 2 uplink time slots are located at the end of S2 time slots.
  • d svm 2 downlink OFDM symbols are located after the downlink slot
  • u sym 2 uplink OFDM symbols are located before the uplink slot
  • Each OFDM symbol is an X symbol (X represents a flexible symbol).
  • the X symbol may be a downlink symbol, an uplink symbol, or a guard interval symbol between downlink and uplink in different application scenarios. Among them, for normal CP (Normal CP), For extended CP (Extended CP),
  • the configuration period of the TDD configuration information is (P+P2) ms, including the above-mentioned S and S2 time slots (S in the time domain first, followed by S2 ).
  • P is a divisor of 20, that is, P is divisible by 20, and the first time domain symbol of every 20/P cycles is the first symbol of an even frame;
  • P+P2 is a divisor of 20, that is, P+P2 can be divisible by 20, and it needs to satisfy that the first time domain symbol of every 20/(P+P2) period is the first symbol of an even-numbered frame.
  • the possible value ranges of P and P2 include ⁇ 0.5, 0.625, 1, 1.25, 2, 2.5, 5, 10 ⁇ ms.
  • the values of P and P2 also include 3ms and 4ms, which are represented by IE: dl-UL-TransmissionPeriodicity-v1530.
  • IE dl-UL-TransmissionPeriodicity-v1530.
  • TDD uplink and downlink configuration information also known as TDD configuration information
  • TDD configuration information also known as TDD configuration information
  • TDD UL/DL Configuration 0 to 6 TDD UL/DL Configuration 0 to 6
  • D represents a downlink subframe
  • U represents an uplink subframe
  • S represents a special subframe (Special Subframe).
  • the special subframe is composed of a downlink symbol (DwPTS), a guard interval (Gap), and an uplink symbol (UpPTS).
  • the present invention is not related to the specific configuration of the special subframe and will not be repeated here.
  • the LTE base station eNB configures the TDD uplink and downlink configuration information of the cell in SystemInformationBlockType1 (SIB1).
  • SIB1 SystemInformationBlockType1
  • uplink timing advance TA is introduced. For example, when the UE performs initial access, the base station indicates a TA command (TA command) to the UE, and the UE determines the time to send uplink according to the TA indication.
  • TA command TA command
  • the N TA involved in the embodiment of the specification of the present invention includes but is not limited to the above-mentioned N TA determination method.
  • FIG. 3 is a schematic diagram showing the basic process of the method executed by the user equipment in Embodiment 1 and Embodiment 2 of the present invention.
  • the steps performed by the user equipment include:
  • step S101 the side-line communication user equipment receives the DCI sent by the base station gNB.
  • the resource allocation mode of the sidelink UE is side-line communication resource allocation mode 1.
  • the DCI includes scheduling information for the UE to transmit PSCCH and/or PSSCH.
  • the UE determines the receiving time T DL-SL at which the DCI is received, or the UE determines the start time T DL-SL (start of the slot carrying the DCI) of the time slot in which the DCI is located, Alternatively, the UE determines the end time T DL-SL (end of the slot carrying the DCI) of the slot where the DCI is located.
  • the UE determines the scheduling time interval K 2 according to the indication information included in the DCI.
  • the unit of K 2 is a time slot, or an OFDM symbol, and the corresponding sub-carrier interval is equal to the sub-carrier interval of PSCCH transmission or PSSCH transmission or the sub-carrier interval on the side-line communication carrier Or, the subcarrier spacing of the PDCCH carrying the DCI
  • step S102 the sideline communication user equipment determines the time length T according to the instruction information of the base station gNB.
  • the indication information is indication information including uplink timing advance TA information.
  • the indication information is a TA command (TA command).
  • the UE determines N TA according to the value of the indication information.
  • step S103 the side-line communication user equipment determines the time domain resources for PSCCH transmission and/or PSSCH transmission.
  • the time domain resource for PSCCH transmission and/or PSSCH transmission represents a time slot resource for PSCCH transmission and/or PSSCH transmission, or represents a starting time slot resource for PSCCH transmission and/or PSSCH transmission.
  • the UE determines that the time domain resource of the PSCCH transmission and/or PSSCH transmission is not earlier than the time in the UE resource pool The first (first) time slot, or, not earlier than (not earlier than) time in the UE resource pool The first (first) time slot.
  • the steps performed by the user equipment include:
  • step S101 the side-line communication user equipment receives the DCI sent by the base station gNB.
  • the resource allocation mode of the sidelink UE is side-line communication resource allocation mode 1.
  • the DCI includes scheduling information for the UE to transmit PSCCH and/or PSSCH.
  • the UE determines the time T DL-SL .
  • the T DL-SL indicates that the subcarrier interval on the NR carrier (or on the sideline communication carrier) is equal to Corresponding time slot number The start (or end) time of the slot.
  • the UE receives the DCI in time slot n, Equal to the sub-carrier spacing on the side-line communication carrier, It is equal to the subcarrier interval of the PDCCH carrying the DCI on the NR carrier.
  • the UE determines the scheduling time interval K 2 according to the indication information included in the DCI.
  • the unit of K 2 is a time slot, or an OFDM symbol, and the corresponding sub-carrier interval is equal to the sub-carrier interval of PSCCH transmission or PSSCH transmission (or on the side-line communication carrier) Or, the subcarrier spacing of the PDCCH carrying the DCI
  • step S102 the sideline communication user equipment determines the time length T according to the instruction information of the base station gNB.
  • the indication information is indication information including uplink timing advance TA information.
  • the indication information is a TA command (TA command).
  • the UE determines N TA according to the value of the indication information.
  • step S103 the side-line communication user equipment determines the time domain resources for PSCCH transmission and/or PSSCH transmission.
  • the time domain resource for PSCCH transmission and/or PSSCH transmission represents a time slot resource for PSCCH transmission and/or PSSCH transmission, or represents a starting time slot resource for PSCCH transmission and/or PSSCH transmission.
  • the UE determines that the time domain resource of the PSCCH transmission and/or PSSCH transmission is not earlier than the time in the UE resource pool The first (first) time slot, or, not earlier than (not earlier than) time in the UE resource pool The first (first) time slot.
  • Fig. 4 is a schematic diagram showing the basic process of the method executed by the user equipment in the third and fourth embodiments of the present invention.
  • the steps performed by the user equipment include:
  • step S201 the side-line communication user equipment receives the DCI sent by the base station gNB.
  • the resource allocation mode of the sidelink UE is side-line communication resource allocation mode 1.
  • the DCI includes indication information k of PUCCH transmission (PUCCH transmission) time domain resources.
  • the PUCCH is used to transmit HARQ feedback information for side-line communication.
  • the k takes a time slot as a unit.
  • step S202 the side-line communication user equipment receives the PSFCH.
  • the UE is a transmitting user equipment (transmitter UE).
  • the UE receives the PSFCH sent by a receiver UE.
  • the UE receives the PSFCH on the time slot numbered n.
  • step S203 the side-line communication user equipment determines the time domain resource for the PUCCH transmission.
  • the UE determines that the PUCCH transmission is in a slot numbered (n'+k) (within slot n'+k) or on a slot numbered (n'+k) ( within slot n′+k), or on the first time slot containing PUCCH resources (or, within) not earlier than the time corresponding to the slot numbered (n′+k), or not earlier than the number
  • the time slot corresponding to the time slot (n′+k) is on the first time slot (or, inside).
  • the n′ represents a specific time slot in one or more time slots that overlap with the slot n on the sideline communication carrier on the NR carrier.
  • the one specific time slot represents the first time slot or the last time slot among the multiple time slots, or the time slot containing the PUCCH resource among the multiple time slots, or, Any one of the multiple time slots, or,
  • the UE determines that the PUCCH transmission is in a slot numbered K (within slot K) or on a slot numbered K, or no earlier than the corresponding slot slot numbered K On (or, inside) the first time slot containing the PUCCH resource at time, or not earlier than (or, inside) the time corresponding to the time slot numbered K.
  • the time slot K represents a specific time slot in one or more time slots that overlap with slot n+k on the sideline communication carrier on the NR carrier.
  • the one specific time slot represents the first time slot or the last time slot among the multiple time slots, or the time slot containing the PUCCH resource among the multiple time slots, or, Any one of the multiple time slots.
  • the steps performed by the user equipment include:
  • step S201 the side-line communication user equipment receives the DCI sent by the base station gNB.
  • the resource allocation mode of the sidelink UE is side-line communication resource allocation mode 1.
  • the DCI includes indication information k of PUCCH transmission (PUCCH transmission) time domain resources.
  • the PUCCH is used to transmit HARQ feedback information for side-line communication.
  • the k is in the unit of milliseconds or ms, or in the unit of seconds s.
  • step S202 the side-line communication user equipment receives the PSFCH.
  • the UE is a transmitting user equipment (transmitter UE).
  • the UE receives the PSFCH sent by a receiver UE.
  • the UE receives the PSFCH on the time slot numbered n.
  • step S203 the side-line communication user equipment determines the time domain resource for the PUCCH transmission.
  • the UE determines the transmission of the PUCCH not earlier than (not earlier than) the first time slot the time slot T PSFCH + k is at or earlier than (not earlier than) T PSFCH + k first time On a time slot slot.
  • the T PSFCH represents the start time (start) or the end time (end) of the time slot numbered n.
  • Fig. 5 is a schematic diagram showing the basic process of the method executed by the user equipment in the fifth and sixth embodiments of the present invention.
  • the steps performed by the user equipment include:
  • step S501 the side-line communication user equipment receives the side-line communication configuration information sent by the base station gNB.
  • the base station gNB sends the sidelink configuration information through RRC signaling.
  • the sidelink configuration information includes configuration information of a resource allocation mode.
  • the resource allocation configuration information indicates that the resource allocation mode of the UE is transmission mode 1 (mode 1, or a resource allocation mode based on base station scheduling).
  • step S502 the side-line communication user equipment sends the side-line communication user equipment information sidelinkUEInformation to the base station gNB.
  • the sideline communication user equipment information is sideline communication user equipment information on the NR sidelink carrier.
  • the side-line communication user equipment information includes timing (or timing relationship) information.
  • the timing information is a kind of offset between frames.
  • the offset value between the frames is the time difference between the SFN number n and the DFN number n.
  • the number n is zero, or any value between 1 and 1023 other than 0.
  • the unit of the offset value is milliseconds, or time slot, or OFDM symbol.
  • the value of the offset value is a positive number, or, is zero, or, is a negative number,
  • the timing information is a kind of offset between time slots.
  • the unit of the offset value is milliseconds, or time slot, or OFDM symbol.
  • the value of the offset value is a positive number, or, is zero, or, is a negative number,
  • the time sequence information is the number of the DFN and/or the number of the time slot in the DFN.
  • the DFN number and/or the timeslot number in the DFN indicate the DFN number and/or the timeslot number in the DFN where the sideline communication user equipment information is transmitted.
  • the side-line communication user equipment information includes TDD configuration information.
  • the TDD configuration information is the TDD configuration information on the NR sidelink carrier.
  • the steps performed by the user equipment include:
  • step S501 the side-line communication user equipment receives the side-line communication configuration information sent by the base station gNB.
  • the base station gNB sends the sidelink configuration information through RRC signaling.
  • the sidelink configuration information includes configuration information of a resource allocation mode.
  • the resource allocation configuration information indicates that the resource allocation mode of the UE is transmission mode 1 (mode 1, or a resource allocation mode based on base station scheduling).
  • step S502 the side-line communication user equipment sends the side-line communication user equipment information sidelinkUEInformation to the base station gNB.
  • the sideline communication user equipment information is sideline communication user equipment information on the LTE sidelink carrier.
  • the side-line communication user equipment information includes timing (or timing relationship) information.
  • the timing information is a kind of offset between frames.
  • the offset value between the frames is the time difference between the SFN number n and the DFN number n.
  • the number n is zero, or any value between 1 and 1023 other than 0.
  • the unit of the offset value is milliseconds, or time slot, or OFDM symbol.
  • the value of the offset value is a positive number, or, is zero, or, is a negative number,
  • the timing information is a kind of offset between time slots.
  • the unit of the offset value is milliseconds, or time slot, or OFDM symbol.
  • the value of the offset value is a positive number, or, is zero, or, is a negative number,
  • the time sequence information is the number of the DFN and/or the number of the time slot in the DFN.
  • the number of the DFN and/or the number of the time slot in the DFN represents the number of the DFN and/or the number of the time slot in the DFN where the side-line communication user equipment information is transmitted.
  • the side-line communication user equipment information includes TDD configuration information.
  • the TDD configuration information is the TDD configuration information on the LTE sidelink carrier.
  • the TDD configuration information includes 3 bits.
  • the value of the TDD configuration information is equal to 7, or when it is equal to 0, it means that the LTE sidelink carrier is frequency division duplex FDD.
  • Fig. 6 is a block diagram showing a user equipment UE related to the present invention.
  • the user equipment UE80 includes a processor 801 and a memory 802.
  • the processor 801 may include, for example, a microprocessor, a microcontroller, an embedded processor, and the like.
  • the memory 802 may include, for example, a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a non-volatile memory (such as a flash memory), or other memories.
  • the memory 802 stores program instructions. When the instruction is executed by the processor 801, it can execute the above method executed by the user equipment described in detail in the present invention.
  • the method and related equipment of the present invention have been described above in conjunction with preferred embodiments. Those skilled in the art can understand that the methods shown above are only exemplary, and the various embodiments described above can be combined with each other without conflict.
  • the method of the present invention is not limited to the steps and sequence shown above.
  • the network nodes and user equipment shown above may include more modules, for example, may also include modules that can be developed or developed in the future and can be used for base stations, MMEs, or UEs, and so on.
  • the various identifiers shown above are only exemplary rather than restrictive, and the present invention is not limited to specific information elements as examples of these identifiers. Those skilled in the art can make many changes and modifications based on the teaching of the illustrated embodiment.
  • the foregoing embodiments of the present invention can be implemented by software, hardware, or a combination of both software and hardware.
  • the various components inside the base station and user equipment in the above embodiments can be implemented by a variety of devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing Device, application specific integrated circuit (ASIC), field programmable gate array (FPGA), programmable logic device (CPLD), etc.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD programmable logic device
  • base station may refer to a mobile communication data and control switching center with larger transmission power and wider coverage area, including functions such as resource allocation and scheduling, data reception and transmission.
  • User equipment may refer to a user's mobile terminal, for example, including mobile phones, notebooks, and other terminal devices that can communicate with base stations or micro base stations wirelessly.
  • the embodiments of the present invention disclosed herein can be implemented on a computer program product.
  • the computer program product is a product that has a computer-readable medium with computer program logic encoded on the computer-readable medium, and when executed on a computing device, the computer program logic provides related operations to implement The above technical solution of the present invention.
  • the computer program logic When executed on at least one processor of the computing system, the computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present invention.
  • This arrangement of the present invention is typically provided as software, code and/or other data structures arranged or encoded on a computer readable medium such as an optical medium (e.g., CD-ROM), a floppy disk or a hard disk, or as software, code and/or other data structures such as one or more Firmware or microcode on a ROM or RAM or PROM chip, or downloadable software images, shared databases, etc. in one or more modules.
  • Software or firmware or such a configuration may be installed on a computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
  • each functional module or each feature of the base station equipment and terminal equipment used in each of the foregoing embodiments may be implemented or executed by a circuit, and the circuit is usually one or more integrated circuits.
  • Circuits designed to perform the functions described in this specification can include general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC) or general-purpose integrated circuits, field programmable gate arrays (FPGA), or other Programming logic devices, discrete gate or transistor logic, or discrete hardware components, or any combination of the above devices.
  • the general-purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
  • the aforementioned general-purpose processor or each circuit may be configured by a digital circuit, or may be configured by a logic circuit.
  • the present invention can also use integrated circuits obtained by using this advanced technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种由用户设备执行的方法以及用户设备,所述方法包括:接收新无线基站gNB发送的下行控制信息DCI;根据所述新无线基站gNB的指示信息来确定时间长度T;确定物理侧行通信控制信道PSCCH传输的时域资源和/或物理侧行通信共享信道PSSCH传输的时域资源,所述用户设备为侧行通信用户设备。

Description

由用户设备执行的方法以及用户设备 技术领域
本发明涉及无线通信技术领域,具体涉及由用户设备执行的方法以及相应的用户设备。
背景技术
在传统的蜂窝网络中,所有的通信都必须经过基站。不同的是,D2D通信(Device-to-Device communication,设备到设备间直接通信)是指两个用户设备之间不经过基站或者核心网的转发而直接进行的通信方式。在2014年3月第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的RAN#63次全会上,关于利用LTE设备实现临近D2D通信业务的研究课题获得批准(参见非专利文献1)。LTE Release 12 D2D引入的功能包括:
1)LTE网络覆盖场景下临近设备之间的发现功能(Discovery);
2)临近设备间的直接广播通信(Broadcast)功能;
3)高层支持单播(Unicast)和组播(Groupcast)通信功能。
在2014年12月的3GPP RAN#66全会上,增强的LTE eD2D(enhanced D2D)的研究项目获得批准(参见非专利文献2)。LTE Release 13 eD2D引入的主要功能包括:
1)无网络覆盖场景和部分网络覆盖场景的D2D发现;
2)D2D通信的优先级处理机制。
基于D2D通信机制的设计,在2015年6月3GPP的RAN#68次全会上,批准了基于D2D通信的V2X可行性研究课题。V2X表示Vehicle to everything,希望实现车辆与一切可能影响车辆的实体信息交互,目的是减少事故发生,减缓交通拥堵,降低环境污染以及提供其他信息服务。V2X的应用场景主要包含4个方面:
1)V2V,Vehicle to Vehicle,即车-车通信;
2)V2P,Vehicle to Pedestrian,即车给行人或非机动车发送警告;
3)V2N,Vehicle to Network,即车辆连接移动网络;
4)V2I,Vehicle to Infrastructure,即车辆与道路基础设施等通信。
3GPP将V2X的研究与标准化工作分为3个阶段。第一阶段于2016年9月完成,主要聚焦于V2V,基于LTE Release 12和Release 13 D2D(也可称为sidelink侧行通信),即邻近通信技术制定(参见非专利文献3)。V2X stage 1引入了一种新的D2D通信接口,称为PC5接口。PC5接口主要用于解决高速(最高250公里/小时)及高节点密度环境下的蜂窝车联网通信问题。车辆可以通过PC5接口进行诸如位置、速度和方向等信息的交互,即车辆间可通过PC5接口进行直接通信。相较于D2D设备间的临近通信,LTE Release 14 V2X引入的功能主要包含:
1)更高密度的DMRS以支持高速场景;
2)引入子信道(sub-channel),增强资源分配方式;
3)引入具有半静态调度(semi-persistent)的用户设备感知(sensing)机制。
V2X研究课题的第二阶段归属于LTE Release 15研究范畴(参见非专利文献4),引入的主要特性包含高阶64QAM调制、V2X载波聚合、短TTI传输,同时包含发射分集的可行性研究。
在2018年6月3GPP RAN#80全会上,相应的第三阶段基于5G NR网络技术的V2X可行性研究课题(参见非专利文献5)获得批准。
在2019年8月3GPP RAN1#98次会议上(参见非专利文献6),关于NR sidelink中传输传输模式1的调度,达成了如下会议结论:
对于NR sidelink传输模式1的调度,既支持相同载波(sidelink载波和Uu载波相同的情况)的调度,也支持跨载波调度(cross-carrier scheduling)。
本发明的方案包括NR侧行通信中传输模式1的UE确定PSCCH/PSSCH传输时隙的方法。
在2019年5月3GPP RAN1#97次会议上(参见非专利文献7),关于NR sidelink传输模式1的HARQ反馈,达成了如下会议结论:
在NR sidelink传输模式1中,支持发送用户设备将接收到的侧行通 信HARQ反馈信息发送到基站gNB。发送用户设备通过PUCCH发送接收到的HARQ反馈信息。
在2019年8月3GPP RAN1#98次会议上(参见非专利文献6),关于上述PUCCH资源的指示,达成了如下会议结论:
基站gNB在承载DCI的PDCCH中指示用于传输侧行通信HARQ反馈信息的PUCCH的定时关系(timing)和资源(resource)。
本发明的方案也包括NR侧行通信中传输模式1的发送(transmitter)UE确定PUCCH传输时隙的方法。
根据上述关于NR sidelink中传输传输模式1的调度的会议结论(参见非专利文献6),在NR sidelink中支持跨载波调度,即NR载波和sidelink载波是两个不同的载波。这意味着如果侧行通信UE在sidelink载波上的同步源是除该UE所在的服务小区(serving cell)以外的同步源,例如其他UE、GNSS等,则NR载波上的时序(timing)和sidelink载波上的时序(timing)不一定相同。类似地,NR载波上的TDD配置和sidelink载波上的TDD配置不一定相同。
本发明的方案同样包括一种侧行通信UE向基站上报sidelink载波上的时序timing,以及sidelink载波上的TDD配置的方法。
现有技术文献
非专利文献
非专利文献1:RP-140518,Work item proposal on LTE Device to Device Proximity Services
非专利文献2:RP-142311,Work Item Proposal for Enhanced LTE Device to Device Proximity Services
非专利文献3:RP-152293,New WI proposal:Support for V2V services based on LTE sidelink
非专利文献4:RP-170798,New WID on 3GPP V2X Phase 2
非专利文献5:RP-181480,New SID Proposal:Study on NR V2X
非专利文献6:RAN1#98,Chairman notes,section 7.2.4.2.1
非专利文献7:RAN1#97,Chairman notes,section 7.2.4.2.1
发明内容
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备。
根据本公开的第一方面的由用户设备执行的方法,包括:接收新无线基站gNB发送的下行控制信息DCI;根据所述新无线基站gNB的指示信息来确定时间长度T;确定物理侧行通信控制信道PSCCH传输的时域资源和/或物理侧行通信共享信道PSSCH传输的时域资源,所述用户设备为侧行通信用户设备。
根据本公开的第一方面的方法,在所述接收新无线基站gNB发送的下行控制信息DCI的步骤中,所述用户设备的资源分配方式为侧行通信资源分配方式1;和/或所述DCI包含所述用户设备传输所述PSCCH和/或传输所述PSSCH的调度信息;和/或所述用户设备确定时刻T DL-SL;和/或所述用户设备根据所述DCI包含的指示信息来确定调度时间间隔K 2,在所述根据所述新无线基站gNB的指示信息来确定时间长度T的步骤中,所述指示信息包含上行定时提前量TA信息的指示信息;和/或所述指示信息是TA命令;和/或所述用户设备根据所述指示信息的数值来确定N TA,所述时间长度T=N TA×T c,或者,所述时间长度T=N TA×T c/2,其中,Tc表示最小时间粒度,在所述确定物理侧行通信控制信道PSCCH传输的时域资源和/或物理侧行通信共享信道PSSCH传输的时域资源的步骤中,所述PSCCH传输和/或PSSCH传输的时域资源表示所述PSCCH传输和/或所述PSSCH传输的时隙slot资源,或者,表示所述PSCCH传输和/或所述PSSCH传输的起始时隙slot资源;和/或所述用户设备确定所述PSCCH传输和/或PSSCH传输的时域资源为所述用户设备的资源池中不早于时刻
Figure PCTCN2020117366-appb-000001
的首个时隙,或者,为所述用户设备的资源池中不早于时刻
Figure PCTCN2020117366-appb-000002
的首个时隙,其中,
Figure PCTCN2020117366-appb-000003
等于侧行通信载波上的子载波间隔,
Figure PCTCN2020117366-appb-000004
等于新无线载波上承载所述DCI的物理下行控制信道 PDCCH的子载波间隔。
根据本公开的第一方面的方法,所述时刻T DL-SL表示接收所述DCI的接收时刻,或者,表示所述DCI所在时隙的起始时刻,或者,表示所述DCI所在时隙的终止时刻。
根据本公开的第一方面的方法,所述T DL-SL表示在新无线载波上或者在侧行通信载波上子载波间隔等于
Figure PCTCN2020117366-appb-000005
对应的时隙编号
Figure PCTCN2020117366-appb-000006
的时隙slot的起始或终止时刻,其中,所述用户设备在时隙n上接收所述DCI。
根据本公开的第二方面的由用户设备执行的方法,包括:接收新无线基站gNB发送的下行控制信息DCI;接收物理侧行通信反馈信道PSFCH;确定物理上行控制信道PUCCH传输的时域资源,所述用户设备为侧行通信用户设备。
根据本公开的第二方面的方法,在所述接收新无线基站gNB发送的下行控制信息DCI的步骤中,所述用户设备的资源分配方式是侧行通信资源分配方式1;和/或所述DCI包含所述PUCCH传输所述时域资源的指示信息k,在所述接收物理侧行通信反馈信道PSFCH的步骤中,所述用户设备为发送用户设备;和/或所述用户设备接收接收用户设备发送的所述PSFCH;和/或所述用户设备在编号为n的时隙上接收所述PSFCH。
根据本公开的第二方面的方法,所述k以时隙slot为单位,在所述确定物理上行控制信道PUCCH传输的时域资源的步骤中,所述用户设备确定所述PUCCH传输在编号为(n′+k)的时隙slot内(within slot n′+k)或者,在编号为(n′+k)的时隙slot上(within slot n′+k),或者在不早于编号为(n′+k)的时隙slot对应的时刻的首个含有PUCCH资源的时隙上,或者在不早于编号为(n′+k)的时隙slot对应的时刻的首个时隙上,其中,所述n′表示在新无线载波上与侧行通信载波上的所述slot n重叠的一个或者多个时隙中的一个特定时隙;或者所述用户设备确定所述PUCCH传输在编号为K的时隙slot内或者,在编号为K的时隙slot上,或者在不早于编号为K的时隙slot对应的时刻的首个含有PUCCH资源的时 隙上,或者在不早于编号为K的时隙slot对应的时刻的首个时隙上,其中,所述时隙K表示在新无线载波上与侧行通信载波上的slot n+k重叠的一个或者多个时隙中的一个特定时隙。
根据本公开的第二方面的方法,所述一个特定时隙表示所述多个时隙中的第一个时隙,或者最后一个时隙,或者所述多个时隙中含有物理上行控制信道PUCCH资源的时隙,或者所述多个时隙中的任一个时隙。
根据本公开的第二方面的方法,在所述确定物理上行控制信道PUCCH传输的时域资源的步骤中,所述用户设备确定所述PUCCH传输在不早于T PSFCH+k时刻的首个时隙slot内或者,在不早于T PSFCH+k时刻的首个时隙slot上,其中,所述T PSFCH表示所述编号为n的时隙的起始时刻,或者终止时刻。
根据本公开的第三方面的通信设备,是具有分组数据汇聚协议PDCP实体的通信设备,包括:处理器;以及存储器,存储有指令;其中,所述指令在由所述处理器运行时执行上述第一方面的所述方法和/或上述第二方面的所述方法。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1是示出了LTE V2X UE侧行通信的示意图。
图2是示出了LTE V2X的资源分配方式的示意图。
图3是示出了发明的实施例一、实施例二的由用户设备执行的方法的基本过程的示意图。
图4是示出了发明的实施例三、实施例四的由用户设备执行的方法的基本过程的示意图。
图5是示出了发明的实施例五、实施例六的由用户设备执行的方法的基本过程的示意图。
图6是示出了根据本发明的实施例的用户设备的框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
下文以5G移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G移动通信系统等。
下面描述本发明涉及的部分术语,如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的通信系统中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划
LTE:Long Term Evolution,长期演进技术
NR:New Radio,新无线、新空口
PDCCH:Physical Downlink Control Channel,物理下行控制信道
DCI:Downlink Control Information,下行控制信息
PDSCH:Physical Downlink Shared Channel,物理下行共享信道
UE:User Equipment,用户设备
eNB:evolved NodeB,演进型基站
gNB:NR基站
TTI:Transmission Time Interval,传输时间间隔
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
CP-OFDM:Cyclic Prefix Orthogonal Frequency Division Multiplexing,带有循环前缀的正交频分复用
C-RNTI:Cell Radio Network Temporary Identifier,小区无线网络临时标识
CSI:Channel State Information,信道状态信息
HARQ:Hybrid Automatic Repeat Request,混合自动重传请求
CSI-RS:Channel State Information Reference Signal,信道状态信息参考信号
CRS:Cell Reference Signal,小区特定参考信号
PUCCH:Physical Uplink Control Channel,物理上行控制信道
PUSCH:Physical Uplink Shared Channel,物理上行共享信道
UL-SCH:Uplink Shared Channel,上行共享信道
CG:Configured Grant,配置调度许可
Sidelink:侧行通信
SCI:Sidelink Control Information,侧行通信控制信息
PSCCH:Physical Sidelink Control Channel,物理侧行通信控制信道
MCS:Modulation and Coding Scheme,调制编码方案
RB:Resource Block,资源块
RE:Resource Element,资源单元
CRB:Common Resource Block,公共资源块
CP:Cyclic Prefix,循环前缀
PRB:Physical Resource Block,物理资源块
PSSCH:Physical Sidelink Shared Channel,物理侧行通信共享信道
FDM:Frequency Division Multiplexing,频分复用
RRC:Radio Resource Control,无线资源控制
RSRP:Reference Signal Receiving Power,参考信号接收功率
SRS:Sounding Reference Signal,探测参考信号
DMRS:Demodulation Reference Signal,解调参考信号
CRC:Cyclic Redundancy Check,循环冗余校验
PSDCH:Physical Sidelink Discovery Channel,物理侧行通信发现信道
PSBCH:Physical Sidelink Broadcast Channel,物理侧行通信广播信道
SFI:Slot Format Indication,时隙格式指示
TDD:Time Division Duplexing,时分双工
FDD:Frequency Division Duplexing,频分双工
SIB1:System Information Block Type 1,系统信息块类型1
SLSS:Sidelink synchronization Signal,侧行通信同步信号
PSSS:Primary Sidelink Synchronization Signal,侧行通信主同步信号
SSSS:Secondary Sidelink Synchronization Signal,侧行通信辅同步信号
PCI:Physical Cell ID,物理小区标识
PSS:Primary Synchronization Signal,主同步信号
SSS:Secondary Synchronization Signal,辅同步信号
BWP:BandWidth Part,带宽片段/部分
GNSS:Global Navigation Satellite System,全球导航卫星定位系统
SFN:System Frame Number,系统(无线)帧号
DFN:Direct Frame Number,直接帧号
IE:Information Element,信息元素
SSB:Synchronization Signal Block,同步系统信息块
EN-DC:EUTRA-NR Dual Connection,LTE-NR双连接
MCG:Master Cell Group,主小区组
SCG:Secondary Cell Group,辅小区组
PCell:Primary Cell,主小区
SCell:Secondary Cell,辅小区
PSFCH:Physical Sidelink Feedback Channel,物理侧行通信反馈信道
SPS:Semi-Persistant Scheduling,半静态调度
TA:Timing Advance,上行定时提前量
下文是与本发明方案相关联现有技术的描述。如无特别说明,具体实施例中与现有技术中相同术语的含义相同。
值得指出的是,本发明说明书中涉及的V2X与sidelink含义相同。文中的V2X也可以表示sidelink;相似地,文中的sidelink也可以表示V2X,后文中不做具体区分和限定。
本发明的说明书中的V2X(sidelink)通信的资源分配方式与V2X(sidelink)通信的传输模式可以等同替换。说明书中涉及的资源分配方式可以表示传输模式,以及,涉及的传输模式可以表示资源分配方式。
本发明的说明书中的PSCCH用于携带SCI。本发明的说明书中涉及到的PSCCH对应的,或者,相应的,或者,相关的,或者,调度的PSSCH表示的含义均相同,都表示associated PSSCH或者corresponding PSSCH。类似地,说明书中涉及到的PSSCH对应的,或者,相应的,或者,相关的PSCCH表示的含义均相同,都表示associated PSCCH或者corresponding PSCCH。值得指出的是,PSSCH对应的,或者,相应的,或者相关的PSCCH可能是一个PSCCH,或者,两个PSCCH。当PSSCH对应的,或者,相应的,或者相关的PSCCH包含两个PSCCH(或者,两个SCI)时,在本专利的说明书中称为携带第一级SCI的PSCCH和携带第二级SCI的PSCCH。
本发明的说明书中涉及的所有Ts表示的时间长度均相同,为Ts=1/30720(ms);涉及的所有Tc表示的时间长度均相同,满足Tc=(1/64)*Ts。
本发明中涉及的上下行配置信息和TDD配置信息含义相同。文中的上下行配置信息和TDD配置信息可以等同替换。相似地,sidelink上下行配置信息和sidelink TDD配置信息可以等同替换,二者表示的含义相同。
本发明实施例中涉及的TDD配置信息和sidelink TDD配置信息包括至少一种TDD配置样式。TDD配置样式中包含相应的配置信息,例如配置周期,参考子载波间隔等。
本发明的说明书中上行资源可以指代sidelink资源,以及,sidelink资源可以表示上行资源。相似地,上行时隙资源对应sidelink时隙资源,以及,上行符号资源对应sidelink符号资源。
Sidelink通信的场景
1)无网络覆盖(Out-of-Coverage)侧行通信:进行sidelink通信的两个UE都没有网络覆盖(例如,UE在需要进行sidelink通信的频率上检测不到任何满足“小区选择准则”的小区,表示该UE无网络覆盖)。
2)有网络覆盖(In-Coverage)侧行通信:进行sidelink通信的两个 UE都有网络覆盖(例如,UE在需要进行sidelink通信的频率上至少检测到一个满足“小区选择准则”的小区,表示该UE有网络覆盖)。
3)部分网络覆盖(Partial-Coverage)侧行通信:进行sidelink通信的其中一个UE无网络覆盖,另一个UE有网络覆盖。
从UE侧来讲,该UE仅有无网络覆盖和有网络覆盖两种场景。部分网络覆盖是从sidelink通信的角度来描述的。
LTE V2X(sidelink)通信的基本过程
图1是示出了LTE V2X UE侧行通信的示意图。首先,UE1向UE2发送侧行通信控制信息(SCI format 1),由物理层信道PSCCH携带。SCI format 1包含PSSCH的调度信息,例如PSSCH的频域资源等。其次,UE1向UE2发送侧行通信数据,由物理层信道PSSCH携带。PSCCH和相应的PSSCH采用频分复用的方式,即PSCCH和相应的PSSCH在时域上位于相同的子帧上,在频域上位于不同的RB上。PSCCH和PSSCH的具体设计方式如下:
1)PSCCH在时域上占据一个子帧,频域上占据两个连续的RB。加扰序列的初始化采用预定义数值510。PSCCH中可携带SCI format 1,其中SCI format 1至少包含PSSCH的频域资源信息。例如,对于频域资源指示域,SCI format 1指示该PSCCH对应的PSSCH的起始sub-channel编号和连续sub-channel的数目。
2)PSSCH在时域上占据一个子帧,和对应的PSCCH采用频分复用(FDM)。PSSCH在频域上占据一个或者多个连续的sub-channel,sub-channel在频域上表示n subCHsize个连续的RB,n subCHsize由RRC参数配置,起始sub-channel和连续sub-channel的数目由SCI format 1的频域资源指示域指示。
LTE V2X的资源分配方式Transmission Mode 3/4
图2是示出了LTE V2X的两种资源分配方式,分别称为基于基站调度的资源分配(Transmission Mode 3)和基于UE感知(sensing)的资源分配(Transmission Mode 4)。LTE V2X中,当存在eNB网络覆盖的情况下,基站可通过UE级的专有RRC信令(dedicated RRC signaling)SL-V2X-ConfigDedicated配置该UE的资源分配方式,或称为该UE的传输模式,具体为:
1)基于基站调度的资源分配方式(Transmission Mode 3):基于基站调度的资源分配方式表示sidelink侧行通信所使用的频域资源来自于基站的调度。传输模式3包含两种调度方式,分别为动态调度和半静态调度(SPS)。对于动态调度,UL grant(DCI format 5A)中包括PSSCH的频域资源,承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-V-RNTI加扰。对于SPS半静态调度,基站通过IE:SPS-ConfigSL-r14配置一个或者多个(至多8个)配置的调度许可(configured grant),每个配置的调度许可含有一个调度许可编号(index)和调度许可的资源周期。UL grant(DCI format 5A)中包括PSSCH的频域资源,以及,调度许可编号的指示信息(3bits)和SPS激活(activate)或者释放(release,或者,去激活)的指示信息。承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-SPS-V-RNTI加扰。
具体地,当RRC信令SL-V2X-ConfigDedicated置为scheduled-r14时,表示该UE被配置为基于基站调度的传输模式。基站通过RRC信令配置SL-V-RNTI或者SL-SPS-V-RNTI,并通过PDCCH或者EPDCCH(DCI format 5A,CRC采用SL-V-RNTI加扰或者采用SL-SPS-V-RNTI加扰)向UE发送上行调度许可UL grant。上述上行调度许可UL grant中至少包含sidelink通信中PSSCH频域资源的调度信息。当UE成功监听到由SL-V-RNTI加扰或者SL-SPS-V-RNTI加扰的PDCCH或者EPDCCH后,将上行调度许可UL grant(DCI format 5A)中的PSSCH频域资源指示域作为PSCCH(SCI format 1)中PSSCH的频域资源的指示信息,并发送PSCCH(SCI format 1)和相应的PSSCH。
对于传输模式3中的半静态调度SPS,UE在下行子帧n上接收SL-SPS-V-RNTI加扰的DCI format 5A。如果DCI format 5A中包含SPS激活的指示信息,该UE根据DCI format 5A中的指示信息确定PSSCH的频域资源,根据子帧n等信息确定PSSCH的时域资源(PSSCH的发送子帧)。
2)基于UE感知(sensing)的资源分配方式(Transmission Mode 4):基于UE sensing的资源分配方式表示用于sidelink通信的资源基于UE对候选可用资源集合的感知(sensing)过程。RRC信令SL-V2X-ConfigDedicated置为ue-Selected-r14时表示该UE被配置为基于UE sensing的传输模式。在基于UE sensing的传输模式中,基站配置可用的传输资源池,UE根据一定的规则(详细过程的描述参见LTE V2X UE sensing过程部分)在传输资源池(resource pool)中确定PSSCH的sidelink发送资源,并发送PSCCH(SCI format 1)和相应的PSSCH。
侧行通信资源池(sidelink resource pool)
在侧行通信中,UE的发送和接收的资源均属于资源池resource pool。例如,对于侧行通信中基于基站调度的传输模式,基站在资源池中为sidelink UE调度传输资源,或者,对于侧行通信中基于UE感知的传输模式,UE在资源池中确定传输资源。
UE的服务小区(serving cell)
在NR通信系统中,支持载波聚合(Carrier Aggregation)。在载波聚合场景下,UE的服务小区serving cell可能多于一个,包括1个主小区PCell(Primary Cell)和一个或者多个辅小区SCell(Secondary Cell)。其中,当UE进行初始接入时,接入的小区可以称作主小区PCell,基站gNB通过高层RRC信令为该UE配置并激活辅小区SCell。
NR载波和sidelink载波
在本发明的说明书中涉及的载波均表示在频域上一段连续的频域资源。NR载波表示UE的服务小区serving cell工作的频率,在NR载波上,UE进行对于来自于基站的下行传输的接收和UE自身的上行传输等。Sidelink载波表示UE进行侧行通信发送和接收所在的频率。在本发明的说明书中涉及的sidelink载波可以表示NR sidelink载波,或者,LTE sidelink载波。在NR sidelink载波上,UE进行NR侧行通信的传输和接收;在LTE sidelink载波上,UE进行LTE侧行通信的传输和接收。两个相同的载波表示两个载波占据的频域资源完全相同;如果两个载波的频域资源之间不完全重合,那么,这两个载波称作不同的载波。
V2X UE的同步源
同步源(synchronization source)可简称为sync source,或者简称为sync reference。在LTE V2X中,和蜂窝网络通信的机制相似,若UE有数据需要传输,则UE首先需要进行时域和频域的同步。在蜂窝网络通信中,当UE接收主同步PSS和辅同步信号SSS后,可以确定小区的定时关系(或者称为时序timing)。时序timing包含帧定时的同步(10ms定时),和子帧(或者,时隙slot)的定时同步。具体来讲,以时域同步为例,在LTE中,UE根据接收的PSS和SSS确定帧同步和子帧同步;在NR中,UE根据同步系统信息块SSB的编号和预定义的SSB的映射方式确定帧同步和子帧/时隙同步。对于V2X或者sidelink通信,UE根据选择的同步源的定时关系timing确定sidelink或者V2X发送或者接收的定时关系。对于LTE V2X,UE需要选择同步源。可能的同步源包括:
1)eNB;
2)GNSS;
3)LTE sidelink UE。
UE根据预定义一定的优先级准则确定同步源(Synchronization Source)。该优先级准则包括但不限于:基站eNB的优先级高于sidelink  UE,sidelink UE中发送信号RSRP高的优先级较高等。即在其他条件相同的情况下,UE相较于sidelink UE优先选择基站eNB作为同步源。本发明的实施例中如果涉及UE选择同步源,则默认UE会根据一定的优先级准则确定同步源。
NR中(包含NR sidelink)的参数集合(numerology)和NR中(包含NR  sidelink)的时隙slot
参数集合numerology包含子载波间隔和循环前缀CP长度两方面含义。其中,NR支持5种子载波间隔,分别为15k,30k,60k,120k,240kHz(对应μ=0,1,2,3,4),表格4.2-1示出了支持的传输参数集合,具体如下所示。
表4.2-1 NR支持的子载波间隔
μ Δf=2 μ·15[kHz] CP(循环前缀)
0 15 正常
1 30 正常
2 60 正常,扩展
3 120 正常
4 240 正常
仅当μ=2时,即60kHz子载波间隔的情况下支持扩展(Extended)CP,其他子载波间隔的情况仅支持正常CP。对于正常(Normal)CP,每个时隙(slot)含有14个OFDM符号;对于扩展CP,每个时隙含有12个OFDM符号。对于μ=0,即15kHz子载波间隔,1个时隙=1ms;μ=1,即30kHz子载波间隔,1个时隙=0.5ms;μ=2,即60kHz子载波间隔,1个时隙=0.25ms,以此类推。
NR和LTE对于子帧(subframe)的定义相同,表示1ms。对于子载波间隔配置μ,1个子帧内(1ms)的slot编号可以表示为
Figure PCTCN2020117366-appb-000007
范围为0到
Figure PCTCN2020117366-appb-000008
1个系统帧(frame,时长10ms)内的slot编号可以表示为
Figure PCTCN2020117366-appb-000009
范围为0到
Figure PCTCN2020117366-appb-000010
其中,
Figure PCTCN2020117366-appb-000011
Figure PCTCN2020117366-appb-000012
在不同子载波间隔μ的情况的定义如下表格所示。
表格4.3.2-1:正常CP时每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
Figure PCTCN2020117366-appb-000013
表格4.3.2-2:扩展CP时(60kHz)每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
Figure PCTCN2020117366-appb-000014
在NR载波上,系统帧(或者,简称为帧)的编号SFN范围为0至1023。在侧行通信中引入了直接系统帧号DFN的概念,编号范围同样为0至1023,上述对于系统帧和numerology之间关系的叙述同样可以应用于直接系统帧,例如,一个直接系统帧的时长同样等于10ms,对于15kHz的子载波间隔,一个直接系统帧包括10个时隙slot,等等。DFN应用于sidelink载波上的定时timing。
NR TDD配置信息的指示和确定方法
NR基站gNB通过SIB1中的TDD-UL-DL-ConfigCommon配置小区级的TDD配置信息,其中包括:
●参考的子载波间隔μ ref
●高层参数pattern1(该信息元素为必选,表示TDD配置样式1,下同),其中包括如下高层参数:
■配置周期P(ms);
■下行时隙数目d stots,下行时隙中仅含有下行OFDM符号(可称为DL-only时隙);
■下行OFDM符号数目d sym
■上行时隙数目u slots,上行时隙中仅含有上行OFDM符号(可称为UL-only时隙);
■上行OFDM符号数目u sym
上述配置信息的周期为P ms,对应连续的
Figure PCTCN2020117366-appb-000015
个时隙。在S个时隙中,首先是d slots个下行时隙,u slots个上行时隙位于S个时隙的最后。d sym个下行OFDM符号位于d slots个下行时隙后,u sym个上行OFDM符号位于u slots个上行时隙前,其余的
Figure PCTCN2020117366-appb-000016
Figure PCTCN2020117366-appb-000017
个OFDM符号为X符号(X表示flexible符号)。X符号在不同的应用场景中可能为下行符号,或者上行符号,或者作为下行上行之间的保护间隔符号。其中,对于正常CP(Normal CP),
Figure PCTCN2020117366-appb-000018
对于扩展CP(Extended CP),
Figure PCTCN2020117366-appb-000019
SIBl中的TDD-UL-DL-ConfigCommon可能包含高层参数pattern2(该信息元素为Optional可选,表示TDD配置样式2,下同)。pattern2和patternl的配置信息形式相同(pattern2的参数包括:周期P2,d slots,2,u slots,2,d sym,2,u sym,2),相应的参数含义与对应的pattern1参数相同。参考子载波间隔μ ref和pattern1相同,因此对于pattern2不会重复配置参考子载波间隔μ ref。上述配置信息的周期为P2 ms,对应连续的
Figure PCTCN2020117366-appb-000020
个时隙。在S2个时隙中,首先是d slots,2个下行时隙,u slots,2个上行时隙位于S2个时隙的最后。d svm,2个下行OFDM符号位于下行时隙后,u sym,2个上行OFDM符号位于上行时隙前,其余的
Figure PCTCN2020117366-appb-000021
Figure PCTCN2020117366-appb-000022
个OFDM符号为X符号(X表示flexible符号)。X符号在不同的应用场景中可能为下行符号,或者上行符号,或者作为下行上行之间的保护间隔符号。其中,对于正常CP(Normal CP),
Figure PCTCN2020117366-appb-000023
对于扩展CP(Extended CP),
Figure PCTCN2020117366-appb-000024
当TDD-UL-DL-ConfigCommon同时包含pattern1和pattern2时,该TDD配置信息的配置周期为(P+P2)ms,包含上述的S和S2个时隙(时域上首先为S,其次为S2)。
上述配置信息中的周期P和P2需满足如下条件:
1)P为20的约数,即P可被20整除,同时需满足每20/P个周期的首个时域符号是偶数帧的首个符号;
2)P+P2为20的约数,即P+P2可被20整除,同时需满足每20/(P+P2)个周期的首个时域符号是偶数帧的首个符号。
P和P2的可取值范围包括{0.5,0.625,1,1.25,2,2.5,5,10}ms。P和 P2的取值也包含3ms和4ms,由IE:dl-UL-TransmissionPeriodicity-v1530表示。当基站在pattern1/2中配置了dl-UL-TransmissionPeriodicity-v1530时,UE忽略对应pattern1/2的dl-UL-TransmissionPeriodicity。
LTE TDD上下行配置信息
LTE支持共7种TDD上下行配置信息(也可称作TDD配置信息),编号为TDD UL/DL Configuration 0~6,如下表格4.2-2所示。其中,“D”表示下行子帧(subframe),“U”表示上行子帧,“S”表示特殊子帧(Special Subframe)。特殊子帧由下行符号(DwPTS),保护间隔(Gap),上行符号(UpPTS)组成,本发明与特殊子帧的具体配置无关联,此处不加赘述。LTE基站eNB在SystemInformationBlockType1(SIB1)中配置本小区的TDD上下行配置信息。
表格4.2-2:Uplink-downlink configurations
Figure PCTCN2020117366-appb-000025
上行定时提前量Timing Advance(TA)
在蜂窝网络通信中,上行传输的一个重要特征是不同UE在时频上正交多址接入,即来自同一小区的不同UE的上行传输之间互不干扰。为此引入了上行定时提前量TA的概念。例如,当UE进行初始接入时,基站向该UE指示TA command(TA命令),UE根据该TA指示确定发送上行的时刻。对于初始接入的过程,在LTE中,TA command含有11bits,TA指示(T A)的取值范围为0-1282,N TA=T A×16;在NR中,TA command含有12bits,TA指示(T A)的取值范围为0-3846,N TA=T A×16×64/2 μ,其中μ对应子载波间隔2 μ×15kHz。对于除初始接入的其他情况,在LTE中, TA command含有6bits,TA指示(T A)的取值范围为0-63,N TA=N TA,old+(T A-31)×16,其中,N TA,old表示TA调整前的N TA的数值;在NR中,TA command含有6bits,TA指示(T A)的取值范围为0-63,N TA=N TA,old+(T A-31)×16×64/2 μ,其中μ对应子载波间隔2 μ×15kHz,N TA,old表示TA调整前的N TA的数值。本发明说明书实施例中涉及的N TA包括但不限于上述N TA的确定方式。
在LTE中,最小时间粒度(time granularity)采用Ts表示,其中Ts=1/(15*2048)=1/30720(ms);在NR中,最小时间粒度(time granularity)采用Tc表示,其中Tc=1/(480*4096)(ms),满足Ts=64*Tc。
以下,对本发明所涉及的具体的示例以及实施例等进行详细说明。另外,如上所述,本公开中记载的示例以及实施例等是为了容易理解本发明而进行的示例性说明,并不是对本发明的限定。
[实施例一]
图3足示出了本发明的实施例一、实施例二的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例一的由用户设备执行的方法。
如图3所示,在本发明的实施例一中,用户设备执行的步骤包括:
在步骤S101,侧行通信用户设备接收基站gNB发送的DCI。
可选地,所述sidelink UE的资源分配方式是侧行通信资源分配方式1。
可选地,所述DCI包含所述UE传输PSCCH和/或传输PSSCH的调度信息。
可选地,所述UE确定接收所述DCI的接收时刻T DL-SL,或者,所述UE确定所述DCI所在时隙的起始时刻T DL-SL(start of the slot carrying the DCI),或者,所述UE确定所述DCI所在时隙的终止时刻T DL-SL(end of the slot carrying the DCI)。
可选地,所述UE根据所述DCI包含的指示信息确定调度时间间隔K 2。可选地,所述K 2的单位为时隙slot,或者,OFDM符号,对应的子载波间 隔等于PSCCH传输或者PSSCH传输的子载波间隔或者侧行通信载波上的子载波间隔
Figure PCTCN2020117366-appb-000026
或者,承载所述DCI的PDCCH的子载波间隔
Figure PCTCN2020117366-appb-000027
在步骤S102,侧行通信用户设备根据基站gNB的指示信息确定时间长度T。
可选地,所述指示信息是包含上行定时提前量TA信息的指示信息。
可选地,所述指示信息是TA命令(TA command)。
可选地,所述UE根据所述指示信息的数值确定N TA
可选地,所述时间长度T=N TA×T c,或者,所述时间长度T=N TA×T c/2。
在步骤S103,侧行通信用户设备确定PSCCH传输和/或PSSCH传输的时域资源。
可选地,所述PSCCH传输和/或PSSCH传输的时域资源表示PSCCH传输和/或PSSCH传输的时隙slot资源,或者,表示PSCCH传输和/或PSSCH传输的起始时隙slot资源。
可选地,所述UE确定所述PSCCH传输和/或PSSCH传输的时域资源为所述UE资源池中不早于(not earlier than)时刻
Figure PCTCN2020117366-appb-000028
Figure PCTCN2020117366-appb-000029
的首个(first)时隙,或者,为所述UE资源池中不早于(not earlier than)时刻
Figure PCTCN2020117366-appb-000030
的首个(first)时隙。
[实施例二]
下面,结合图3所示的基本过程图来详细说明本发明的实施例二的由用户设备执行的方法。
如图3所示,在本发明的实施例二中,用户设备执行的步骤包括:
在步骤S101,侧行通信用户设备接收基站gNB发送的DCI。
可选地,所述sidelink UE的资源分配方式是侧行通信资源分配方式1。
可选地,所述DCI包含所述UE传输PSCCH和/或传输PSSCH的调度信息。
可选地,所述UE确定时刻T DL-SL,可选地,所述T DL-SL表示在NR载波上(或者,在侧行通信载波上)子载波间隔等于
Figure PCTCN2020117366-appb-000031
对应的时隙编号
Figure PCTCN2020117366-appb-000032
的时隙slot的起始start(或者,终止end)时刻。其中,所述UE在时隙n上接收所述DCI,
Figure PCTCN2020117366-appb-000033
等于侧行通信载波上的子载波间隔,
Figure PCTCN2020117366-appb-000034
等于NR载波上承载所述DCI的PDCCH的子载波间隔。
可选地,所述UE根据所述DCI包含的指示信息确定调度时间间隔K 2。可选地,所述K 2的单位为时隙slot,或者,OFDM符号,对应的子载波间隔等于PSCCH传输或者PSSCH传输(或者,在侧行通信载波上)的子载波间隔
Figure PCTCN2020117366-appb-000035
或者,承载所述DCI的PDCCH的子载波间隔
Figure PCTCN2020117366-appb-000036
在步骤S102,侧行通信用户设备根据基站gNB的指示信息确定时间长度T。
可选地,所述指示信息是包含上行定时提前量TA信息的指示信息。
可选地,所述指示信息是TA命令(TA command)。
可选地,所述UE根据所述指示信息的数值确定N TA
可选地,所述时间长度T=N TA×T c,或者,所述时间长度T=N TA×T c/2。
在步骤S103,侧行通信用户设备确定PSCCH传输和/或PSSCH传输的时域资源。
可选地,所述PSCCH传输和/或PSSCH传输的时域资源表示PSCCH传输和/或PSSCH传输的时隙slot资源,或者,表示PSCCH传输和/或PSSCH传输的起始时隙slot资源。
可选地,所述UE确定所述PSCCH传输和/或PSSCH传输的时域资源为所述UE资源池中不早于(not earlier than)时刻
Figure PCTCN2020117366-appb-000037
Figure PCTCN2020117366-appb-000038
的首个(first)时隙,或者,为所述UE资源池中不早于(not earlier than)时刻
Figure PCTCN2020117366-appb-000039
的首个(first)时隙。
[实施例三]
图4是示出了本发明的实施例三、实施例四的由用户设备执行的方法的基本过程的示意图。
下面,结合图4所示的基本过程图来详细说明本发明的实施例三的由用户设备执行的方法。
如图4所示,在本发明的实施例三中,用户设备执行的步骤包括:
在步骤S201,侧行通信用户设备接收基站gNB发送的DCI。
可选地,所述sidelink UE的资源分配方式是侧行通信资源分配方式1。
可选地,所述DCI包含PUCCH传输(PUCCH transmission)时域资源的指示信息k。可选地,所述PUCCH用于传输侧行通信HARQ反馈的信息。
可选地,所述k以时隙slot为单位。
在步骤S202,侧行通信用户设备接收PSFCH。
可选地,所述UE为发送用户设备(transmitter UE)。
可选地,所述UE接收接收用户设备(receiver UE)发送的所述PSFCH。
可选地,所述UE在编号为n的时隙上接收所述PSFCH。
在步骤S203,侧行通信用户设备确定所述PUCCH传输的时域资源。
可选地,所述UE确定所述PUCCH传输在编号为(n′+k)的时隙slot内(within slot n′+k)或者在编号为(n′+k)的时隙slot上(within slot n′+k),或者在不早于编号为(n′+k)的时隙slot对应的时刻的首个含有PUCCH资源的时隙上(或者,内),或者在不早于编号为(n′+k)的时隙slot对应的时刻的首个时隙上(或者,内)。其中,所述n′表示在NR载波上与侧行通信载波上的所述slot n重叠的一个或者多个时隙中的一个特定时隙。可选地,所述一个特定时隙表示所述多个时隙中的第一个时隙,或者,最后一个时隙,或者,所述多个时隙中含有PUCCH资源的时隙,或者,所述多个时隙中的任一个时隙,或者,
可选地,所述UE确定所述PUCCH传输在编号为K的时隙slot内(within slot K)或者在编号为K的时隙slot上,或者在不早于编号为K的 时隙slot对应的时刻的首个含有PUCCH资源的时隙上(或者,内),或者在不早于编号为K的时隙slot对应的时刻的首个时隙上(或者,内)。其中,所述时隙K表示在NR载波上与侧行通信载波上的slot n+k重叠的一个或者多个时隙中的一个特定时隙。可选地,所述一个特定时隙表示所述多个时隙中的第一个时隙,或者,最后一个时隙,或者,所述多个时隙中含有PUCCH资源的时隙,或者,所述多个时隙中的任一个时隙。
[实施例四]
下面,结合图4所示的基本过程图来详细说明本发明的实施例四的由用户设备执行的方法。
如图4所示,在本发明的实施例四中,用户设备执行的步骤包括:
在步骤S201,侧行通信用户设备接收基站gNB发送的DCI。
可选地,所述sidelink UE的资源分配方式是侧行通信资源分配方式1。
可选地,所述DCI包含PUCCH传输(PUCCH transmission)时域资源的指示信息k。可选地,所述PUCCH用于传输侧行通信HARQ反馈的信息。
可选地,所述k以毫秒ms为单位,或者,以秒s为单位。
在步骤S202,侧行通信用户设备接收PSFCH。
可选地,所述UE为发送用户设备(transmitter UE)。
可选地,所述UE接收接收用户设备(receiver UE)发送的所述PSFCH。
可选地,所述UE在编号为n的时隙上接收所述PSFCH。
在步骤S203,侧行通信用户设备确定所述PUCCH传输的时域资源。
可选地,所述UE确定所述PUCCH传输在不早于(not earlier than)T PSFCH+k时刻的首个时隙slot内或者在不早于(not earlier than)T PSFCH+k时刻的首个时隙slot上。其中,所述T PSFCH表示所述编号为n的时隙的起始时刻(start),或者,终止时刻(end)。
[实施例五]
图5是示出了本发明的实施例五、实施例六的由用户设备执行的方法的基本过程的示意图。
下面,结合图5所示的基本过程图来详细说明本发明的实施例五的由用户设备执行的方法。
如图5所示,在本发明的实施例五中,用户设备执行的步骤包括:
在步骤S501,侧行通信用户设备接收基站gNB发送的侧行通信配置信息。
可选地,所述基站gNB通过RRC信令发送所述sidelink配置信息。
可选地,所述sidelink配置信息包括资源分配方式的配置信息。可选地,所述资源分配的配置信息指示所述UE的资源分配方式是传输模式1(mode 1,或者,基于基站调度的资源分配方式)。
在步骤S502,侧行通信用户设备向基站gNB发送侧行通信用户设备信息sidelinkUEInformation。
可选地,所述侧行通信用户设备信息是NR sidelink载波上的侧行通信用户设备信息。
可选地,所述侧行通信用户设备信息包含时序timing(或者,定时关系)的信息。
可选地,所述时序的信息是一种帧之间的偏移值(offset)。可选地,所述帧之间的偏移值是SFN编号n和DFN编号n之间的时间差值。可选地,所述编号n是零,或者,除0之外的1至1023之间的任一数值。可选地,所述偏移值的单位是毫秒,或者,时隙,或者,OFDM符号。可选地,所述偏移值的取值是正数,或者,是零,或者,是负数,
或者,
可选地,所述时序的信息是一种时隙之间的偏移值(offset)。可选地,所述偏移值的单位是毫秒,或者,时隙,或者,OFDM符号。可选地,所述偏移值的取值是正数,或者,是零,或者,是负数,
或者,
可选地,所述时序的信息是DFN的编号和/或在DFN内的时隙编号。可选地,所述DFN的编号和/或在DFN内的时隙编号表示所述侧行通信 用户设备信息传输所在的DFN编号和/或DFN内的时隙编号。
可选地,所述侧行通信用户设备信息包含TDD配置的信息。
可选地,所述TDD配置的信息是所述NR sidelink载波上的TDD配置的信息。
[实施例六]
下面,结合图5所示的基本过程图来详细说明本发明的实施例六的由用户设备执行的方法。
如图5所示,在本发明的实施例六中,用户设备执行的步骤包括:
在步骤S501,侧行通信用户设备接收基站gNB发送的侧行通信配置信息。
可选地,所述基站gNB通过RRC信令发送所述sidelink配置信息。
可选地,所述sidelink配置信息包括资源分配方式的配置信息。可选地,所述资源分配的配置信息指示所述UE的资源分配方式是传输模式1(mode 1,或者,基于基站调度的资源分配方式)。
在步骤S502,侧行通信用户设备向基站gNB发送侧行通信用户设备信息sidelinkUEInformation。
可选地,所述侧行通信用户设备信息是LTE sidelink载波上的侧行通信用户设备信息。
可选地,所述侧行通信用户设备信息包含时序timing(或者,定时关系)的信息。
可选地,所述时序的信息是一种帧之间的偏移值(offset)。可选地,所述帧之间的偏移值是SFN编号n和DFN编号n之间的时间差值。可选地,所述编号n是零,或者,除0之外的1至1023之间的任一数值。可选地,所述偏移值的单位是毫秒,或者,时隙,或者,OFDM符号。可选地,所述偏移值的取值是正数,或者,是零,或者,是负数,
或者,
可选地,所述时序的信息是一种时隙之间的偏移值(offset)。可选地, 所述偏移值的单位是毫秒,或者,时隙,或者,OFDM符号。可选地,所述偏移值的取值是正数,或者,是零,或者,是负数,
或者,
可选地,所述时序的信息是DFN的编号和/或在DFN内的时隙编号。可选地,所述DFN的编号和/或在DFN内的时隙编号表示所述侧行通信用户设备信息传输所在的DFN编号和/或DFN内的时隙编号。
可选地,所述侧行通信用户设备信息包含TDD配置的信息。
可选地,所述TDD配置的信息是所述LTE sidelink载波上的TDD配置的信息。可选地,所述TDD配置的信息包含3比特。可选地,所述TDD配置的信息的数值等于7,或者,等于0时表示LTE sidelink载波上是频分双工FDD。
图6是表示本发明所涉及的用户设备UE的框图。如图6所示,该用户设备UE80包括处理器801和存储器802。处理器801例如可以包括微处理器、微控制器、嵌入式处理器等。存储器802例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器802上存储有程序指令。该指令在由处理器801运行时,可以执行本发明详细描述的由用户设备执行的上述方法。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组 件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的 技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (10)

  1. 一种由用户设备执行的方法,包括:
    接收新无线基站gNB发送的下行控制信息DCI;
    根据所述新无线基站gNB的指示信息来确定时间长度T;
    确定物理侧行通信控制信道PSCCH传输的时域资源和/或物理侧行通信共享信道PSSCH传输的时域资源,
    所述用户设备为侧行通信用户设备。
  2. 根据权利要求1所述的方法,其特征在于,
    在所述接收新无线基站gNB发送的下行控制信息DCI的步骤中,
    所述用户设备的资源分配方式为侧行通信资源分配方式1;和/或
    所述DCI包含所述用户设备传输所述PSCCH和/或传输所述PSSCH的调度信息;和/或
    所述用户设备确定时刻T DL-SL;和/或
    所述用户设备根据所述DCI包含的指示信息来确定调度时间间隔K 2
    在所述根据所述新无线基站gNB的指示信息来确定时间长度T的步骤中,
    所述指示信息包含上行定时提前量TA信息的指示信息;和/或
    所述指示信息是TA命令;和/或
    所述用户设备根据所述指示信息的数值来确定N TA,所述时间长度T=N TA×T c,或者,所述时间长度T=N TA×T c/2,其中,Tc表示最小时间粒度,
    在所述确定物理侧行通信控制信道PSCCH传输的时域资源和/或物理侧行通信共享信道PSSCH传输的时域资源的步骤中,
    所述PSCCH传输和/或PSSCH传输的时域资源表示所述PSCCH传输和/或所述PSSCH传输的时隙slot资源,或者,表示所述PSCCH传输和/或所述PSSCH传输的起始时隙slot资源;和/或
    所述用户设备确定所述PSCCH传输和/或PSSCH传输的时域资源为所述用户设备的资源池中不早于时刻
    Figure PCTCN2020117366-appb-100001
    的首个时隙,或者,为所述用户设备的资源池中不早于时刻
    Figure PCTCN2020117366-appb-100002
    Figure PCTCN2020117366-appb-100003
    的首个时隙,
    其中,
    Figure PCTCN2020117366-appb-100004
    等于侧行通信载波上的子载波间隔,
    Figure PCTCN2020117366-appb-100005
    等于新无线载波上承载所述DCI的物理下行控制信道PDCCH的子载波间隔。
  3. 根据权利要求2所述的方法,其特征在于,
    所述时刻T DL-SL表示接收所述DCI的接收时刻,或者,表示所述DCI所在时隙的起始时刻,或者,表示所述DCI所在时隙的终止时刻。
  4. 根据权利要求2所述的方法,其特征在于,
    所述T DL-SL表示在新无线载波上或者在侧行通信载波上子载波间隔等于
    Figure PCTCN2020117366-appb-100006
    对应的时隙编号
    Figure PCTCN2020117366-appb-100007
    的时隙slot的起始或终止时刻,
    其中,
    所述用户设备在时隙n上接收所述DCI。
  5. 一种由用户设备执行的方法,包括:
    接收新无线基站gNB发送的下行控制信息DCI;
    接收物理侧行通信反馈信道PSFCH;
    确定物理上行控制信道PUCCH传输的时域资源,
    所述用户设备为侧行通信用户设备。
  6. 根据权利要求5所述的方法,包括:
    在所述接收新无线基站gNB发送的下行控制信息DCI的步骤中,
    所述用户设备的资源分配方式是侧行通信资源分配方式1;和/或
    所述DCI包含所述PUCCH传输所述时域资源的指示信息k,
    在所述接收物理侧行通信反馈信道PSFCH的步骤中,
    所述用户设备为发送用户设备;和/或
    所述用户设备接收接收用户设备发送的所述PSFCH;和/或
    所述用户设备在编号为n的时隙上接收所述PSFCH。
  7. 根据权利要求6所述的方法,其特征在于,
    所述k以时隙slot为单位,
    在所述确定物理上行控制信道PUCCH传输的时域资源的步骤中,
    所述用户设备确定所述PUCCH传输在编号为(n′+k)的时隙slot内(within slot n′+k)或者,在编号为(n′+k)的时隙slot上(within slot n′+k),或者在不早于编号为(n′+k)的时隙slot对应的时刻的首个含有PUCCH资源的时隙上,或者在不早于编号为(n′+k)的时隙slot对应的时刻的首个时隙上,其中,所述n′表示在新无线载波上与侧行通信载波上的所述slot n重叠的一个或者多个时隙中的一个特定时隙;或者
    所述用户设备确定所述PUCCH传输在编号为K的时隙slot内或者,在编号为K的时隙slot上,或者在不早于编号为K的时隙slot对应的时刻的首个含有PUCCH资源的时隙上,或者在不早于编号为K的时隙slot对应的时刻的首个时隙上,其中,所述时隙K表示在新无线载波上与侧行通信载波上的slot n+k重叠的一个或者多个时隙中的一个特定时隙。
  8. 根据权利要求7所述的方法,其特征在于,
    所述一个特定时隙表示所述多个时隙中的第一个时隙,或者最后一个时隙,或者所述多个时隙中含有物理上行控制信道PUCCH资源的时隙,或者所述多个时隙中的任一个时隙。
  9. 根据权利要求6所述的方法,其特征在于,
    在所述确定物理上行控制信道PUCCH传输的时域资源的步骤中,
    所述用户设备确定所述PUCCH传输在不早于T PSFCH+k时刻的首个时隙slot内或者,在不早于T PSFCH+k时刻的首个时隙slot上,其中,所述T PSFCH表示所述编号为n的时隙的起始时刻,或者终止时刻。
  10. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令;
    其中,所述指令在由所述处理器运行时执行根据权利要求1至9中任一项所述的方法。
PCT/CN2020/117366 2019-09-27 2020-09-24 由用户设备执行的方法以及用户设备 WO2021057838A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910931947.7 2019-09-27
CN201910931947.7A CN112584499A (zh) 2019-09-27 2019-09-27 由用户设备执行的方法以及用户设备

Publications (1)

Publication Number Publication Date
WO2021057838A1 true WO2021057838A1 (zh) 2021-04-01

Family

ID=75111023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117366 WO2021057838A1 (zh) 2019-09-27 2020-09-24 由用户设备执行的方法以及用户设备

Country Status (2)

Country Link
CN (1) CN112584499A (zh)
WO (1) WO2021057838A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105451211A (zh) * 2014-09-25 2016-03-30 中兴通讯股份有限公司 用于设备到设备通信的方法及装置
CN107736061A (zh) * 2015-01-16 2018-02-23 夏普株式会社 为侧链路通信选择同步信号源的方法及装置
CN108616840A (zh) * 2017-01-20 2018-10-02 北京三星通信技术研究有限公司 一种车对外界v2x通信的方法及装置
WO2019062151A1 (zh) * 2017-09-30 2019-04-04 华为技术有限公司 一种资源指示方法、通信装置及网络设备
US20190230633A1 (en) * 2016-05-12 2019-07-25 Lg Electronics Inc. Sidelink signal transmission/reception method of ue in wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105451211A (zh) * 2014-09-25 2016-03-30 中兴通讯股份有限公司 用于设备到设备通信的方法及装置
CN107736061A (zh) * 2015-01-16 2018-02-23 夏普株式会社 为侧链路通信选择同步信号源的方法及装置
US20190230633A1 (en) * 2016-05-12 2019-07-25 Lg Electronics Inc. Sidelink signal transmission/reception method of ue in wireless communication system
CN108616840A (zh) * 2017-01-20 2018-10-02 北京三星通信技术研究有限公司 一种车对外界v2x通信的方法及装置
WO2019062151A1 (zh) * 2017-09-30 2019-04-04 华为技术有限公司 一种资源指示方法、通信装置及网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Sidelink physical layer procedures for NR V2X", 3GPP TSG RAN WG1 MEETING #97, R1-1906008, 3 May 2019 (2019-05-03), XP051708050 *
OPPO: "Enhancement of LTE Uu and NR Uu to control NR sidelink", 3GPP TSG RAN WG1 MEETING #94, R1-1808878, 24 August 2018 (2018-08-24), XP051516249 *

Also Published As

Publication number Publication date
CN112584499A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2020125679A1 (zh) 由用户设备执行的方法以及用户设备
WO2022028413A1 (zh) 由用户设备执行的方法以及用户设备
WO2020253770A1 (zh) 由用户设备执行的方法以及用户设备
WO2020169067A1 (zh) 由用户设备执行的方法以及用户设备
WO2020135320A1 (zh) 由用户设备执行的方法以及用户设备
WO2022143641A1 (zh) 由用户设备执行的方法以及用户设备
WO2021057960A1 (zh) 由用户设备执行的方法以及用户设备
WO2022111630A1 (zh) 由用户设备执行的方法以及用户设备
WO2020088513A1 (zh) 由用户设备执行的方法以及用户设备
WO2022017037A1 (zh) 由用户设备执行的方法以及用户设备
WO2021136373A1 (zh) 由用户设备执行的方法以及用户设备
WO2021204191A1 (zh) 由用户设备执行的方法以及用户设备
WO2021190521A1 (zh) 由用户设备执行的方法以及用户设备
WO2023131074A1 (zh) 由用户设备执行的方法以及用户设备
WO2022194243A1 (zh) 由用户设备执行的方法以及用户设备
WO2022267943A1 (zh) 由用户设备执行的方法以及用户设备
WO2022152163A1 (zh) 由用户设备执行的方法以及用户设备
WO2022028330A1 (zh) 由用户设备执行的方法以及用户设备
WO2021228138A1 (zh) 由用户设备执行的方法以及用户设备
WO2021197379A1 (zh) 由用户设备执行的方法以及用户设备
WO2021013213A1 (zh) 由用户设备执行的方法以及用户设备
WO2020248729A1 (zh) 由用户设备执行的方法以及用户设备
WO2021057838A1 (zh) 由用户设备执行的方法以及用户设备
WO2021088918A1 (zh) 由用户设备执行的方法以及用户设备
WO2022063070A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869307

Country of ref document: EP

Kind code of ref document: A1