WO2021136373A1 - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
WO2021136373A1
WO2021136373A1 PCT/CN2020/141397 CN2020141397W WO2021136373A1 WO 2021136373 A1 WO2021136373 A1 WO 2021136373A1 CN 2020141397 W CN2020141397 W CN 2020141397W WO 2021136373 A1 WO2021136373 A1 WO 2021136373A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
resource pool
psfch
user equipment
configuration information
Prior art date
Application number
PCT/CN2020/141397
Other languages
English (en)
French (fr)
Inventor
赵毅男
刘仁茂
罗超
Original Assignee
夏普株式会社
赵毅男
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 赵毅男 filed Critical 夏普株式会社
Publication of WO2021136373A1 publication Critical patent/WO2021136373A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of wireless communication technology, and in particular to a method executed by a user equipment, a method executed by a base station, and corresponding user equipment.
  • D2D communication (Device-to-Device communication, device-to-device direct communication) refers to a direct communication method between two user devices without being forwarded by a base station or core network.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • the upper layer supports Unicast and Groupcast communication functions.
  • V2X stands for Vehicle to Everything, and hopes to realize the information interaction between vehicles and all entities that may affect vehicles. The purpose is to reduce accidents, alleviate traffic congestion, reduce environmental pollution, and provide other information services.
  • the application scenarios of V2X mainly include 4 aspects:
  • V2V Vehicle to Vehicle, that is, vehicle-to-vehicle communication
  • V2P Vehicle to Pedestrian, that is, the vehicle sends a warning to pedestrians or non-motorized vehicles
  • V2N Vehicle to Network, that is, the vehicle connects to the mobile network
  • V2I Vehicle to Infrastructure, that is, communication between vehicles and road infrastructure.
  • V2X stage 1 introduced a new D2D communication interface called PC5 interface.
  • the PC5 interface is mainly used to solve the problem of cellular car networking communication under high-speed (up to 250 km/h) and high-node density environments. Vehicles can interact with information such as position, speed and direction through the PC5 interface, that is, vehicles can communicate directly through the PC5 interface.
  • the functions introduced by LTE Release 14 V2X mainly include:
  • the second phase of the V2X research topic belongs to the LTE Release 15 research category (see Non-Patent Document 4).
  • the main features introduced include high-order 64QAM modulation, V2X carrier aggregation, and short TTI transmission, as well as the feasibility study of transmit diversity.
  • the research plan of this subject includes the research goals of supporting sidelink unicast, sidelink groupcast and sidelink broadcast.
  • the physical side-line communication feedback channel PSFCH was introduced to carry the HARQ feedback information in the side-line communication, such as HARQ ACK, or HARQ NACK, or Collectively referred to as HARQ-ACK.
  • the design of the HARQ feedback mechanism for NR V2X multicast includes the following conclusions: For groupcast communication, when HARQ feedback is enabled, Two HARQ feedback mechanisms are supported, namely:
  • the receiving UE only feeds back HARQ NACK; when the receiving UE decodes the PSCCH correctly and fails to decode the corresponding PSSCH correctly, the receiving UE feeds back NACK; in other cases, the receiving UE does not perform HARQ feedback;
  • All receiving UEs in the group share one PSFCH resource for HAPQ NACK feedback.
  • the receiving UE feeds back HARQ ACK and HARQ NACK; when the receiving UE decodes the PSCCH correctly and fails to correctly decode the corresponding PSSCH, the receiving UE feeds back NACK; when the receiving UE decodes the PSCCH correctly and decodes the corresponding PSSCH correctly, Receive UE feedback ACK.
  • Each UE in the group uses a separate PSFCH resource to feed back HARQ ACK and HARQ NACK.
  • the configuration of the PSFCH in the slots of the resource pool is periodic, and the period can be expressed as N, and the value of N can be 1, or 2, or 4.
  • the PSFCH occupies a PRB in the frequency domain.
  • the solution of this patent includes a method for the side-line communication UE to determine the associated or corresponding PSSCH time slot slot containing the PSFCH resource.
  • Non-Patent Document 1 RP-140518, Work item proposal on LTE Device to Device Proximity Services
  • Non-Patent Document 2 RP-142311, Work Item Proposal for Enhanced LTE Device to Device Proximity Services
  • Non-Patent Document 3 RP-152293, New WI proposal: Support for V2V services based on LTE sidelink
  • Non-Patent Document 4 RP-170798, New WID on 3GPP V2X Phase 2
  • Non-Patent Document 5 RP-181480, New SID Proposal: Study on NR V2X
  • Non-Patent Document 6 RAN1#94bis, Chairman notes, section 7.2.4.2
  • Non-Patent Document 7 RAN1#95, Chairman notes, section 7.2.4.2
  • Non-Patent Document 8 RAN1AH#1901, Chairman notes, section 7.2.4.1.4, section 7.2.4.3
  • Non-Patent Document 9 RAN1#96bis, Chairman notes, section 7.2.4.5
  • Non-Patent Document 10 RAN1#98bis, Minutes Report, [98b-NR-09]
  • the present invention provides a method executed by a user equipment and a user equipment, which can be effectively applied to V2X application scenarios based on 5G NR network technology.
  • a method executed by a user equipment which includes: determining configuration information of a resource pool of side-line communication as first configuration information; Two consecutive physical side-line communication shared channel PSSCH time slots, the It is the configuration information of the PSFCH resource period of the physical side-line communication feedback channel, that is, the second configuration information, and the user equipment is the side-line communication user equipment.
  • the first configuration information is configuration information sent by a base station through radio resource control RRC signaling; or the first configuration information is included in pre-configuration information of the user equipment.
  • the first configuration information includes the second configuration information Or/and the first configuration information includes the shortest time interval MinTimeGapPSFCH from the transmission of the physical side-line communication shared channel PSSCH to the transmission of the physical side-line communication feedback channel PSFCH.
  • the PSFCH time slot is marked as a time slot
  • the PSFCH time slot is marked as a time slot
  • the last time slot of the PSSCH received by the user equipment is among them In the case that the PSFCH corresponding to the received PSSCH is transmitted in the time slot in.
  • the last time slot of the PSSCH received by the user equipment is In the case of the PSFCH transmission corresponding to the received PSSCH, the time slot in which the PSFCH is transmitted is associated or corresponds to the PSSCH time slot Or time slot
  • a user equipment including: a processor; and a memory storing instructions, wherein the instructions execute the above-mentioned method when run by the processor.
  • Figure 1 is a schematic diagram showing the basic process of Rel-14/15 LTE V2X side-line communication.
  • Figure 2 schematically shows two resource allocation methods for Rel-14/15 LTE V2X.
  • FIG. 3 is a basic flowchart schematically showing a method executed by a user equipment in Embodiment 1 and Embodiment 2 of the present invention.
  • Fig. 4 is a block diagram schematically showing the user equipment involved in the present invention.
  • 3GPP 3rd Generation Partnership Project
  • the third generation partnership project the third generation partnership project
  • LTE Long Term Evolution, long-term evolution technology
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • DCI Downlink Control Information, downlink control information
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • UE User Equipment, user equipment
  • eNB evolved NodeB, evolved base station
  • gNB NR base station
  • TTI Transmission Time Interval, transmission time interval
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • C-RNTI Cell Radio Network Temporary Identifier, cell radio network temporary identifier
  • CSI-RS CSI-Reference Signal, channel state measurement reference signal
  • CRS Cell Reference Signal, cell specific reference signal
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • SCI Sidelink Control Information, side-line communication control information
  • PSCCH Physical Sidelink Control Channel, physical side link control channel
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • CRB Common Resource Block, common resource block
  • CP Cyclic Prefix, cyclic prefix
  • PRB Physical Resource Block, physical resource block
  • PSSCH Physical Sidelink Shared Channel, physical sidelink shared channel
  • FDM Frequency Division Multiplexing, Frequency Division Multiplexing
  • RRC Radio Resource Control, radio resource control
  • RSRP Reference Signal Receiving Power, reference signal received power
  • SRS Sound Reference Signal, sounding reference signal
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • PSDCH Physical Sidelink Discovery Channel, physical side link discovery channel
  • PSBCH Physical Sidelink Broadcast Channel, physical side-line communication broadcast channel
  • TDD Time Division Duplexing, Time Division Duplexing
  • FDD Frequency Division Duplexing, Frequency Division Duplexing
  • SIB1 System Information Block Type 1, System Information Block Type 1
  • SLSS Sidelink synchronization Signal, side-line communication synchronization signal
  • PSSS Primary Sidelink Synchronization Signal, the main synchronization signal of side-line communication
  • SSSS Secondary Sidelink Synchronization Signal, secondary synchronization signal for side-line communication
  • PCI Physical Cell ID, physical cell ID
  • PSS Primary Synchronization Signal, the primary synchronization signal
  • SSS Secondary Synchronization Signal, secondary synchronization signal
  • BWP BandWidth Part, BandWidth Part/Part
  • GNSS Global Navigation Satellite System, Global Navigation Satellite Positioning System
  • SFN System Frame Number, system (wireless) frame number
  • DFN Direct Frame Number, direct frame number
  • SSB Synchronization Signal Block, synchronization system information block
  • EN-DC EUTRA-NR Dual Connection, LTE-NR dual connection
  • MCG Master Cell Group, primary cell group
  • SCG Secondary Cell Group, secondary cell group
  • PCell Primary Cell, primary cell
  • SCell Secondary Cell, secondary cell
  • PSFCH Physical Sidelink Feedback Channel, the physical sidelink feedback channel
  • AGC Automatic Gain Control, automatic gain control
  • V2X and sidelink involved in the specification of the present invention have the same meaning.
  • V2X in the text can also mean sidelink; similarly, sidelink in the text can also mean V2X, and no specific distinction and limitation will be made in the following text.
  • the resource allocation mode of V2X (sidelink) communication and the transmission mode of V2X (sidelink) communication in the specification of the present invention can be replaced equally.
  • Out-of-Coverage side-line communication Two UEs performing sidelink communication have no network coverage (for example, the UE cannot detect anything that meets the "cell selection criteria" on the frequency where sidelink communication is required. Cell, which means that the UE has no network coverage).
  • Both UEs performing sidelink communication have network coverage (for example, the UE detects at least one cell that meets the "cell selection criteria" on the frequency that needs sidelink communication Indicates that the UE has network coverage).
  • Partial-Coverage (Partial-Coverage) side-line communication One UE performing sidelink communication has no network coverage, and the other UE has network coverage.
  • the UE From the UE side, the UE has only two scenarios without network coverage and with network coverage. Part of the network coverage is described from the perspective of sidelink communication.
  • NR V2X Existing LTE V2X communication only supports broadcast communication at the physical layer. Broadcast communication is widely used in scenarios such as cellular communication where the base station sends system messages to UEs in the cell.
  • the design goals of NR V2X include supporting unicast communication and multicast communication at the physical layer.
  • Unicast communication refers to communication between a sending user equipment (UE) and a single receiving user equipment.
  • Multicast communication generally means that a group of UEs are assigned the same identity (Indentity, ID), the UE sends V2X data to other UEs in the group, and receives V2X data sent by other UEs in the group.
  • ID Identity
  • HARQ stands for hybrid automatic retransmission, which can provide error correction functions and achieve rapid retransmission, and is widely used in wireless data communications.
  • HARQ feedback includes HARQ ACK (feedback information indicates correct reception and decoding) and HARQ NACK (feedback information indicates incorrect reception and decoding).
  • HARQ ACK means that the receiving UE correctly receives and decodes the data of the sending UE, so the HARQ ACK is fed back;
  • HARQ NACK means that the receiving UE does not correctly receive and decode the data of the sending UE.
  • the sending UE may retransmit the corresponding data to ensure that the reliability of data communication is improved.
  • HARQ feedback In NR V2X, the physical layer HARQ feedback (HARQ feedback, or HARQ-ACK) and HARQ combining mechanism (HARQ combining) are supported. Among them, HARQ ACK and HARQ NACK are carried by the physical side communication feedback channel (PSFCH).
  • PSFCH physical side communication feedback channel
  • mechanism 1 the receiving UE only feeds back HARQ NACK; when the receiving UE correctly decodes the PSCCH and fails to correctly decode the corresponding PSSCH, the receiving UE feedbacks NACK; in other cases, the receiving UE does not perform HARQ feedback;
  • All receiving UEs in the group share one PSFCH resource for HARQ NACK feedback.
  • mechanism 2 (referred to as mechanism 2) receiving UE feedback HARQ ACK and HARQ NACK; when receiving UE correctly decodes PSCCH and fails to correctly decode the corresponding PSSCH, receiving UE feedback NACK; when receiving UE correctly decodes PSCCH and correctly decodes the PSCCH When the corresponding PSSCH is coded, the receiving UE feeds back ACK.
  • Each UE in the group uses a separate PSFCH resource to feed back HARQ ACK and HARQ NACK.
  • a PSFCH resource represents a PSFCH resource mapped in a specific time domain (time domain), frequency domain (frequency domain), and code domain (code domain).
  • the resources sent and received by the UE belong to the resource pool.
  • the base station schedules transmission resources for the sidelink UE in the resource pool, or for the transmission mode based on UE perception in sideline communication ( In transmission mode 2) in NR side-line communication, the UE determines the transmission resource in the resource pool.
  • the configuration of PSFCH in the slots of the resource pool is periodic, and its period can be expressed as N, and the possible values of N are 1, or 2, or 4. .
  • a time slot containing PSFCH resources can be referred to as a PSFCH slot (a PSFCH slot) for short.
  • the PSFCH is periodically configured in the time slots contained in the resource pool.
  • a PSFCH time slot is associated or corresponding to N (N represents the PSFCH configuration period) consecutive time slots containing PSSCH transmission.
  • N represents the PSFCH configuration period
  • a PSSCH transmission slot can be referred to as a PSSCH slot (a PSSCH slot) for short.
  • all time slots included in the resource pool are PSSCH time slots.
  • a PSFCH timeslot associated or corresponding N consecutive PSSCH timeslots means: the PSSCH transmission (transmission) in the N consecutive PSSCH timeslots corresponds to the feedback sidelink HARQ-
  • the PSFCHs of the ACK are all in the same PSFCH timeslot associated or corresponding.
  • Fig. 1 is a schematic diagram showing LTE V2X UE side-line communication.
  • UE1 sends sideline communication control information (SCI format 1) to UE2, which is carried by the physical layer channel PSCCH.
  • SCI format 1 includes PSSCH scheduling information, such as PSSCH frequency domain resources.
  • UE1 sends sideline communication data to UE2, which is carried by the physical layer channel PSSCH.
  • the PSCCH and the corresponding PSSCH adopt a frequency division multiplexing manner, that is, the PSCCH and the corresponding PSSCH are located on the same subframe in the time domain and are located on different PRBs in the frequency domain.
  • the specific design methods of PSCCH and PSSCH are as follows:
  • PSCCH occupies one subframe in the time domain and two consecutive PRBs in the frequency domain.
  • the initialization of the scrambling sequence uses a predefined value 510.
  • PSCCH can carry SCI format 1, where SCI format 1 contains at least frequency domain resource information of PSSCH. For example, for the frequency domain resource indicator field, SCI format 1 indicates the starting sub-channel number and the number of consecutive sub-channels of the PSSCH corresponding to the PSCCH.
  • PSSCH occupies a subframe in the time domain, and the corresponding PSCCH adopts frequency division multiplexing (FDM).
  • PSSCH occupies one or more consecutive sub-channels in the frequency domain.
  • the sub-channel represents n subCHsize consecutive PRBs in the frequency domain.
  • n subCHsize is configured by RRC parameters, and the number of starting sub-channels and consecutive sub-channels It is indicated by the frequency domain resource indicator field of SCI format 1.
  • Fig. 2 shows two resource allocation methods of LTE V2X, which are respectively called resource allocation based on base station scheduling (Transmission Mode 3) and resource allocation based on UE sensing (sensing) (Transmission Mode 4).
  • the base station can configure the UE's resource allocation mode through UE-level dedicated RRC signaling (dedicated RRC signaling) SL-V2X-ConfigDedicated, or called the UE's transmission mode ,
  • UE-level dedicated RRC signaling dedicated RRC signaling
  • SL-V2X-ConfigDedicated SL-V2X-ConfigDedicated
  • Resource allocation mode based on base station scheduling indicates that the frequency domain resources used for sidelink sideline communication come from the scheduling of the base station.
  • Transmission mode 3 includes two scheduling methods, namely dynamic scheduling and semi-persistent scheduling (SPS).
  • SPS semi-persistent scheduling
  • the UL grant (DCI format 5A) includes the frequency domain resources of the PSSCH, and the CRC of the PDCCH or EPDCCH carrying the DCI format 5A is scrambled by the SL-V-RNTI.
  • the base station configures one or more (up to 8) configured scheduling grants through IE: SPS-ConfigSL-r14, and each configured scheduling grant contains a scheduling grant number (index) and scheduling Licensed resource period.
  • the UL grant (DCI format 5A) includes the frequency domain resources of the PSSCH, as well as the indication information (3 bits) of the scheduling permission number and the indication information of SPS activation (activate) or release (release or deactivation).
  • the CRC of the PDCCH or EPDCCH carrying the DCI format 5A is scrambled by the SL-SPS-V-RNTI.
  • the RRC signaling SL-V2X-ConfigDedicated when the RRC signaling SL-V2X-ConfigDedicated is set to scheduled-r14, it means that the UE is configured in a transmission mode based on base station scheduling.
  • the base station configures SL-V-RNTI or SL-SPS-V-RNTI through RRC signaling, and through PDCCH or EPDCCH (DCI format 5A, CRC uses SL-V-RNTI scrambling or SL-SPS-V-RNTI scrambling) ) Send an uplink scheduling permission UL grant to the UE.
  • the uplink scheduling grant UL grant includes at least the scheduling information of the PSSCH frequency domain resources in the sidelink communication.
  • the PSSCH frequency domain resource indicator field in the uplink scheduling grant UL grant (DCI format 5A) is used as the PSCCH (SCI format 1) indicates the frequency domain resources of the PSSCH, and sends PSCCH (SCI format 1) and the corresponding PSSCH.
  • the UE receives the SL-SPS-V-RNTI scrambled DCI format 5A on the downlink subframe n. If the DCI format 5A contains the indication information of SPS activation, the UE determines the frequency domain resources of the PSSCH according to the indication information in the DCI format 5A, and determines the time domain resources of the PSSCH (PSSCH transmission subframe) according to information such as subframe n.
  • Resource allocation method based on UE sensing indicates that the resources used for sidelink communication are based on the UE's sensing process of the candidate available resource set.
  • RRC signaling SL-V2X-ConfigDedicated is set to ue-Selected-r14, it means that the UE is configured in the transmission mode based on UE sensing.
  • the base station configures the available transmission resource pool, and the UE determines the PSSCH sidelink transmission resource in the transmission resource pool (resource pool) according to certain rules (for a detailed description of the process, refer to the LTE V2X UE sensing process section) , And send PSCCH (SCI format 1) and the corresponding PSSCH.
  • TDD uplink and downlink configuration information also known as TDD configuration information
  • TDD configuration information also known as TDD configuration information
  • TDD UL/DL Configuration 0 to 6 TDD UL/DL Configuration 0 to 6
  • D represents a downlink subframe
  • U represents an uplink subframe
  • S represents a special subframe (Special Subframe).
  • the special subframe is composed of a downlink symbol (DwPTS), a guard interval (Gap), and an uplink symbol (UpPTS).
  • the present invention is not related to the specific configuration of the special subframe and will not be repeated here.
  • the LTE base station eNB configures the TDD uplink and downlink configuration information of the cell in SystemInformationBlockType1 (SIB1).
  • SIB1 SystemInformationBlockType1
  • the method for determining the subframe resource pool is based on all subframes in the range of SFN#0-SFN#1023, a total of 10240 subframes.
  • the set of subframes that may belong to the PSSCH subframe resource pool sent by the V2X UE is expressed as Satisfy:
  • the aforementioned subframe set includes all subframes (subframes included in a, b, and c) after the following subframes are removed:
  • N SLSS The number of subframes in which SLSS is configured is expressed as N SLSS ;
  • N dssf The number of downlink subframes and special subframes in the TDD cell is expressed as N dssf ;
  • m 0, 1, ..., N reserved -1
  • N reserved (10240-N SLSS- N dssf ) mod L bitmap .
  • L bitmap represents the length of the bitmap of the resource pool configuration, which is configured by the upper layer, and the bitmap can be expressed as The subframe numbered corresponding to the subframe l r belongs to the reserved subframe.
  • the subframes in the subframe set are arranged in ascending order of subframe numbers.
  • the time slots contained in the resource pool can be expressed as time slots Or, uniformly adopt To identify.
  • k represents the subscript of the time slot in the resource pool
  • k represents a continuous integer, or a non-continuous integer
  • k ⁇ 0 the time slots contained in the resource pool
  • the parameter set numerology includes two meanings of subcarrier spacing and cyclic prefix CP length.
  • ⁇ ⁇ f 2 ⁇ ⁇ 15[kHz] CP (cyclic prefix) 0 15 normal 1 30 normal 2 60 Normal, extended 3 120 normal 4 240 normal
  • each slot contains OFDM symbols; for extended CP, each slot contains OFDM symbols.
  • subframe which means 1ms.
  • subframe For the subcarrier spacing configuration ⁇ , the slot number in 1 subframe (1ms) can be expressed as Range from 0 to The slot number in a system frame (frame, 10ms) can be expressed as Range from 0 to among them, with The definition in the case of different subcarrier spacing ⁇ is shown in the following table.
  • Table 4.3.2-1 The number of symbols contained in each slot in normal CP, the number of slots contained in each system frame, and the number of slots contained in each subframe
  • Table 4.3.2-2 The number of symbols contained in each slot when CP is extended (60kHz), the number of slots contained in each system frame, and the number of slots contained in each subframe
  • the number SFN of the system frame ranges from 0 to 1023.
  • the concept of direct system frame number DFN is introduced in sideline communication.
  • the number range is also 0 to 1023.
  • the above description of the relationship between system frame and numerology can also be applied to direct system frame (Direct Frame), for example, a direct frame number.
  • the duration of the system frame is also equal to 10 ms.
  • a direct system frame includes 10 time slots, and so on.
  • DFN is used for timing timing on the sidelink carrier.
  • the method executed by the user equipment may include:
  • step S101 the side-line communication user equipment determines the configuration information of the resource pool of the sidelink of the side-line communication.
  • the configuration information of the side-line communication resource pool is configuration information sent by the base station through RRC signaling.
  • the configuration information of the side-line communication resource pool is included in pre-configuration (Pre-configuration) information of the user equipment.
  • the configuration information of the side-line communication resource pool includes configuration information of the PSFCH resource period
  • the configuration information of the side-line communication resource pool includes the shortest time gap (time gap) MinTimeGapPSFCH from PSSCH transmission to PSFCH transmission.
  • MinTimeGapPSFCH uses a time slot in the resource pool as a unit.
  • step S102 the user equipment determines that the PSFCH timeslot is associated (associate) or corresponding (corresponding) Consecutive PSSCH time slots.
  • the PSFCH time slot is marked as a time slot The PSFCH time slot Associate or correspond Time slots in a resource pool.
  • the subscript of the PSFCH time slot is marked as q.
  • the PSFCH time slot is marked as a time slot
  • Said The slot number in each resource pool is i, Wherein, optionally, the The time slots in each resource pool are expressed as
  • the subscript of the PSFCH time slot is marked as q.
  • the PSFCH time slot is associated or corresponding Time slots in a resource pool. Said The slot number in each resource pool is i, Wherein, optionally, the The subscript of the time slot in each resource pool is expressed as
  • the PSFCH corresponding to the received PSSCH is transmitted in the time slot in.
  • the method executed by the user equipment may include:
  • step S101 the side-line communication user equipment determines the configuration information of the resource pool of the sidelink of the side-line communication.
  • the configuration information of the side-line communication resource pool is configuration information sent by the base station through RRC signaling.
  • the configuration information of the side-line communication resource pool is included in pre-configuration (Pre-configuration) information of the user equipment.
  • the configuration information of the side-line communication resource pool includes configuration information of the PSFCH resource period
  • the configuration information of the side-line communication resource pool includes the shortest time gap (time gap) MinTimeGapPSFCH from PSSCH transmission to PSFCH transmission.
  • MinTimeGapPSFCH uses a time slot in the resource pool as a unit.
  • step S102 the user equipment determines that the PSFCH timeslot is associated (associate) or corresponding (corresponding) Consecutive PSSCH time slots.
  • the PSFCH time slot is marked as a time slot The PSFCH time slot Associate or correspond Time slots in a resource pool.
  • the subscript of the PSFCH time slot is marked as q.
  • the PSFCH time slot is marked as a time slot
  • Said The slot number in each resource pool is i, Wherein, optionally, the The time slots in each resource pool are expressed as
  • the subscript of the PSFCH time slot is marked as q.
  • the PSFCH time slot is associated or corresponding Time slots in a resource pool. Said The slot number in each resource pool is i, Wherein, optionally, the The subscript of the time slot in each resource pool is expressed as
  • the PSFCH corresponding to the received PSSCH is transmitted in the time slot in.
  • the time slot in which the PSFCH transmission corresponding to the received PSSCH is located is associated or corresponds to the PSSCH time slot (Or, time slot ),
  • the time slot in which the PSFCH transmission corresponding to the received PSSCH is located is associated or corresponds to the PSSCH time slot (Or, time slot ).
  • Fig. 4 is a block diagram showing a user equipment UE related to the present invention.
  • the user equipment UE80 includes a processor 801 and a memory 802.
  • the processor 801 may include, for example, a microprocessor, a microcontroller, an embedded processor, and the like.
  • the memory 802 may include, for example, volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memories.
  • the memory 802 stores program instructions. When the instruction is executed by the processor 801, it can execute the above-mentioned method executed by the user equipment described in detail in the present invention.
  • the method and related equipment of the present invention have been described above in conjunction with preferred embodiments. Those skilled in the art can understand that the methods shown above are only exemplary, and the various embodiments described above can be combined with each other without any contradiction.
  • the method of the present invention is not limited to the steps and sequence shown above.
  • the network nodes and user equipment shown above may include more modules, for example, may also include modules that can be developed or developed in the future and can be used for base stations, MMEs, or UEs, and so on.
  • the various identifiers shown above are only exemplary rather than restrictive, and the present invention is not limited to specific information elements as examples of these identifiers. Those skilled in the art can make many changes and modifications based on the teaching of the illustrated embodiment.
  • the foregoing embodiments of the present invention can be implemented by software, hardware, or a combination of both software and hardware.
  • the various components inside the base station and user equipment in the above embodiments can be implemented by a variety of devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing Device, application specific integrated circuit (ASIC), field programmable gate array (FPGA), programmable logic device (CPLD), etc.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD programmable logic device
  • base station may refer to a mobile communication data and control switching center with larger transmission power and wider coverage area, including functions such as resource allocation and scheduling, data reception and transmission.
  • User equipment may refer to a user's mobile terminal, for example, including mobile phones, notebooks, and other terminal devices that can communicate with base stations or micro base stations wirelessly.
  • the embodiments of the present invention disclosed herein can be implemented on a computer program product.
  • the computer program product is a product that has a computer-readable medium with computer program logic encoded on the computer-readable medium, and when executed on a computing device, the computer program logic provides related operations to implement The above technical solution of the present invention.
  • the computer program logic When executed on at least one processor of the computing system, the computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present invention.
  • This arrangement of the present invention is typically provided as software, code and/or other data structures arranged or encoded on a computer readable medium such as an optical medium (e.g., CD-ROM), floppy disk or hard disk, or such as one or more Firmware or microcode on a ROM or RAM or PROM chip, or downloadable software images, shared databases, etc. in one or more modules.
  • Software or firmware or such a configuration may be installed on a computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
  • each functional module or each feature of the base station equipment and terminal equipment used in each of the foregoing embodiments may be implemented or executed by a circuit, and the circuit is usually one or more integrated circuits.
  • Circuits designed to perform the functions described in this specification may include general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC) or general-purpose integrated circuits, field programmable gate arrays (FPGA), or other Programming logic devices, discrete gate or transistor logic, or discrete hardware components, or any combination of the above devices.
  • the general-purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
  • the general-purpose processor or each circuit described above may be configured by a digital circuit, or may be configured by a logic circuit.
  • the present invention can also use integrated circuits obtained by using this advanced technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种由用户设备执行的方法以及用户设备,所述方法包括:确定侧行通信的资源池的配置信息作为第一配置信息(S101);确定物理侧行通信反馈信道PSFCH时隙关联的或者对应的 aa个连续的物理侧行通信共享信道PSSCH时隙(S102),所述 aa是物理侧行通信反馈信道PSFCH资源周期的配置信息即第二配置信息,所述用户设备为侧行通信用户设备。

Description

由用户设备执行的方法以及用户设备 技术领域
本发明涉及无线通信技术领域,具体涉及由用户设备执行的方法、由基站执行的方法以及相应的用户设备。
背景技术
在传统的蜂窝网络中,所有的通信都必须经过基站。不同的是,D2D通信(Device-to-Device communication,设备到设备间直接通信)是指两个用户设备之间不经过基站或者核心网的转发而直接进行的通信方式。在2014年3月第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的RAN#63次全会上,关于利用LTE设备实现临近D2D通信业务的研究课题获得批准(参见非专利文献1)。LTE Release 12 D2D引入的功能包括:
1)LTE网络覆盖场景下临近设备之间的发现功能(Discovery);
2)临近设备间的直接广播通信(Broadcast)功能;
3)高层支持单播(Unicast)和组播(Groupcast)通信功能。
在2014年12月的3GPP RAN#66全会上,增强的LTE eD2D(enhanced D2D)的研究项目获得批准(参见非专利文献2)。LTE Release 13 eD2D引入的主要功能包括:
1)无网络覆盖场景和部分网络覆盖场景的D2D发现;
2)D2D通信的优先级处理机制。
基于D2D通信机制的设计,在2015年6月3GPP的RAN#68次全会上,批准了基于D2D通信的V2X可行性研究课题。V2X表示Vehicle to everything,希望实现车辆与一切可能影响车辆的实体信息交互,目的是减少事故发生,减缓交通拥堵,降低环境污染以及提供其他信息服务。V2X的应用场景主要包含4个方面:
1)V2V,Vehicle to Vehicle,即车-车通信;
2)V2P,Vehicle to Pedestrian,即车给行人或非机动车发送警告;
3)V2N,Vehicle to Network,即车辆连接移动网络;
4)V2I,Vehicle to Infrastructure,即车辆与道路基础设施等通信。
3GPP将V2X的研究与标准化工作分为3个阶段。第一阶段于2016年9月完成,主要聚焦于V2V,基于LTE Release 12和Release 13 D2D(也可称为sidelink侧行通信),即邻近通信技术制定(参见非专利文献3)。V2X stage 1引入了一种新的D2D通信接口,称为PC5接口。PC5接口主要用于解决高速(最高250公里/小时)及高节点密度环境下的蜂窝车联网通信问题。车辆可以通过PC5接口进行诸如位置、速度和方向等信息的交互,即车辆间可通过PC5接口进行直接通信。相较于D2D设备间的临近通信,LTE Release 14 V2X引入的功能主要包含:
1)更高密度的DMRS以支持高速场景;
2)引入子信道(sub-channel),增强资源分配方式;
3)引入具有半静态调度(semi-persistent)的用户设备感知(sensing)机制。
V2X研究课题的第二阶段归属于LTE Release 15研究范畴(参见非专利文献4),引入的主要特性包含高阶64QAM调制、V2X载波聚合、短TTI传输,同时包含发射分集的可行性研究。
在2018年6月3GPP RAN#80全会上,相应的第三阶段基于5G NR网络技术的V2X可行性研究课题(参见非专利文献5)获得批准。该课题的研究计划中包括支持侧行通信单播(sidelink unicast),侧行通信组播(sidelink groupcast)和侧行通信广播(sidelink broadcast)的研究目标。
在2018年10月3GPP RAN1#94bis的会议(参见非专利文献6)结论中,对于侧行通信的单播和组播,在物理层确定支持HARQ反馈(HARQ feedback)和HARQ合并(HARQ combining)。
在2018年11月3GPP RAN1#95的会议(参见非专利文献7)结论中,引入物理侧行通信反馈信道PSFCH用于携带侧行通信中的HARQ反馈信息,如HARQ ACK,或者HARQ NACK,或者统称为HARQ-ACK。
在2019年1月3GPP RAN1的AH#1901会议中(参见非专利文献8),关于NR V2X组播(groupcast)的HARQ反馈机制的设计包含如下结论: 对于groupcast通信,当使能HARQ反馈时,支持两种HARQ反馈机制,分别为:
1)接收UE只反馈HARQ NACK;当接收UE正确译码PSCCH且未能正确译码相应的PSSCH时,接收UE反馈NACK;其他情况接收UE不进行HARQ反馈;
a)组内的所有接收UE共享(share)一个PSFCH资源用于反馈HAPQ NACK。
2)接收UE反馈HARQ ACK和HARQ NACK;当接收UE正确译码PSCCH且未能正确译码相应的PSSCH时,接收UE反馈NACK;当接收UE正确译码PSCCH且正确译码相应的PSSCH时,接收UE反馈ACK。
a)组内的每个UE使用单独的PSFCH资源用于反馈HARQ ACK和HARQ NACK。
在2019年4月3GPP RAN1#96bis的会议(参见非专利文献9)结论中,关于PSFCH的资源配置有如下结论:
在一个资源池中,PSFCH在资源池的时隙(slots)中的配置是周期性的,其周期可以表示为N,N的可取值为1,或者,2,或者,4。
在2019年10月3GPP RAN1#98bis会议的邮件讨论中(参见非专利文献10)结论中,关于PSFCH有如下结论:
NR侧行通信中PSFCH在频域上占据一个PRB。
本专利的方案中包括侧行通信UE确定包含PSFCH资源的时隙slot关联(associated)或者对应(corresponding)的PSSCH时隙slot的方法。
现有技术文献
非专利文献
非专利文献1:RP-140518,Work item proposal on LTE Device to Device Proximity Services
非专利文献2:RP-142311,Work Item Proposal for Enhanced LTE Device to Device Proximity Services
非专利文献3:RP-152293,New WI proposal:Support for V2V services based on LTE sidelink
非专利文献4:RP-170798,New WID on 3GPP V2X Phase 2
非专利文献5:RP-181480,New SID Proposal:Study on NR V2X
非专利文献6:RAN1#94bis,Chairman notes,section 7.2.4.2
非专利文献7:RAN1#95,Chairman notes,section 7.2.4.2
非专利文献8:RAN1AH#1901,Chairman notes,section 7.2.4.1.4,section 7.2.4.3
非专利文献9:RAN1#96bis,Chairman notes,section 7.2.4.5
非专利文献10:RAN1#98bis,Minutes Report,[98b-NR-09]
发明内容
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备,能够有效地适用于基于5G NR网络技术的V2X的应用场景。
根据本发明的一个方面,提供一种由用户设备执行的方法,包括:确定侧行通信的资源池的配置信息作为第一配置信息;确定物理侧行通信反馈信道PSFCH时隙关联的或者对应的
Figure PCTCN2020141397-appb-000001
个连续的物理侧行通信共享信道PSSCH时隙,所述
Figure PCTCN2020141397-appb-000002
是物理侧行通信反馈信道PSFCH资源周期的配置信息即第二配置信息,所述用户设备为侧行通信用户设备。
根据本发明的一个方面的方法,所述第一配置信息是基站通过无线资源控制RRC信令发送的配置信息;或所述第一配置信息包含在所述用户设备的预配置信息中。
根据本发明的一个方面的方法,所述第一配置信息中包含作为所述第二配置信息的所述
Figure PCTCN2020141397-appb-000003
或/和所述第一配置信息中包含物理侧行通信共享信道PSSCH传输到物理侧行通信反馈信道PSFCH传输的最短时间间隔MinTimeGapPSFCH。
根据本发明的一个方面的方法,在所述PSFCH时隙标记为时隙
Figure PCTCN2020141397-appb-000004
所述PSFCH时隙
Figure PCTCN2020141397-appb-000005
关联或者对应
Figure PCTCN2020141397-appb-000006
个资源池中的时隙,所述
Figure PCTCN2020141397-appb-000007
个资源池中的时隙编号为i,其中
Figure PCTCN2020141397-appb-000008
的情况下,所述
Figure PCTCN2020141397-appb-000009
个资源池中的时隙的起始时隙即i=0的时隙为
Figure PCTCN2020141397-appb-000010
或者所述
Figure PCTCN2020141397-appb-000011
个资源池中的时隙从时隙
Figure PCTCN2020141397-appb-000012
即i=0的时隙开始;或者所述
Figure PCTCN2020141397-appb-000013
个资源池中的时隙表示为
Figure PCTCN2020141397-appb-000014
根据本发明的一个方面的方法,在所述PSFCH时隙的下标标记为q,所述PSFCH时隙关联或者对应
Figure PCTCN2020141397-appb-000015
个资源池中的时隙,所述
Figure PCTCN2020141397-appb-000016
个资源池中的时隙编号为i,其中,
Figure PCTCN2020141397-appb-000017
的情况下,所述
Figure PCTCN2020141397-appb-000018
个资源池中的时隙的起始时隙即i=0的时隙的下标为
Figure PCTCN2020141397-appb-000019
或者所述
Figure PCTCN2020141397-appb-000020
个资源池中的时隙的下标从
Figure PCTCN2020141397-appb-000021
即i=0的时隙开始;或者所述
Figure PCTCN2020141397-appb-000022
个资源池中的时隙的下标表示为
Figure PCTCN2020141397-appb-000023
Figure PCTCN2020141397-appb-000024
根据本发明的一个方面的方法,在所述PSFCH时隙标记为时隙
Figure PCTCN2020141397-appb-000025
所述PSFCH时隙
Figure PCTCN2020141397-appb-000026
关联或者对应
Figure PCTCN2020141397-appb-000027
个资源池中的时隙,所述
Figure PCTCN2020141397-appb-000028
个资源池中的时隙编号为i,其中
Figure PCTCN2020141397-appb-000029
的情况下,所述
Figure PCTCN2020141397-appb-000030
个资源池中的时隙的起始时隙即i=0的时隙为
Figure PCTCN2020141397-appb-000031
或者所述
Figure PCTCN2020141397-appb-000032
个资源池中的时隙从时隙
Figure PCTCN2020141397-appb-000033
即i=0的时隙开始;或者所述
Figure PCTCN2020141397-appb-000034
个资源池中的时隙表示为
Figure PCTCN2020141397-appb-000035
根据本发明的一个方面的方法,在所述PSFCH时隙的下标标记为q,所述PSFCH时隙关联或者对应
Figure PCTCN2020141397-appb-000036
个资源池中的时隙,所述
Figure PCTCN2020141397-appb-000037
个资源池中的时隙编号为i,其中,
Figure PCTCN2020141397-appb-000038
的情况下,所述
Figure PCTCN2020141397-appb-000039
个资源池中的时隙的起始时隙即i=0的时隙的下标为
Figure PCTCN2020141397-appb-000040
或者所述
Figure PCTCN2020141397-appb-000041
个资源池中的时隙的下标从
Figure PCTCN2020141397-appb-000042
即i=0的时隙开始; 或者所述
Figure PCTCN2020141397-appb-000043
个资源池中的时隙的下标表示为
Figure PCTCN2020141397-appb-000044
根据本发明的一个方面的方法,在所述用户设备接收的PSSCH的最后一个时隙是
Figure PCTCN2020141397-appb-000045
其中
Figure PCTCN2020141397-appb-000046
的情况下,所述接收的PSSCH对应的PSFCH传输在时隙
Figure PCTCN2020141397-appb-000047
中。
根据本发明的一个方面的方法,在所述用户设备接收的PSSCH的最后一个时隙是
Figure PCTCN2020141397-appb-000048
的情况下,所述接收的PSSCH对应的PSFCH传输所在的时隙关联或者对应PSSCH时隙
Figure PCTCN2020141397-appb-000049
或者时隙
Figure PCTCN2020141397-appb-000050
另外,根据本发明的另一个方面,还提供一种用户设备,包括:处理器;以及存储器,存储有指令,其中,所述指令在由所述处理器运行时执行上述的方法。
发明效果
根据本发明,能够提供了一种能够有效地适用于基于5G NR网络技术的V2X的应用场景的由用户设备执行的方法及用户设备。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1是示意性表示Rel-14/15 LTE V2X侧行通信的基本过程图。
图2是示意性表示Rel-14/15 LTE V2X的两种资源分配方式。
图3是示意性表示本发明实施例一和实施例二的由用户设备执行的方法的基本流程图。
图4是示意性表示本发明所涉及的用户设备的框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
下文以5G移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G移动通信系统等。
下面描述本发明涉及的部分术语,如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的通信系统中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划
LTE:Long Term Evolution,长期演进技术
NR:New Radio,新无线、新空口
PDCCH:Physical Downlink Control Channel,物理下行控制信道
DCI:Downlink Control Information,下行控制信息
PDSCH:Physical Downlink Shared Channel,物理下行共享信道
UE:User Equipment,用户设备
eNB:evolved NodeB,演进型基站
gNB:NR基站
TTI:Transmission Time Interval,传输时间间隔
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
C-RNTI:Cell Radio Network Temporary Identifier,小区无线网络临时标识
CSI:Channel State Indicator,信道状态指示
HARQ:Hybrid Automatic Repeat Request,混合自动重传请求
CSI-RS:CSI-Reference Signal,信道状态测量参考信号
CRS:Cell Reference Signal,小区特定参考信号
PUCCH:Physical Uplink Control Channel,物理上行控制信道
PUSCH:Physical Uplink Shared Channel,物理上行共享信道
UL-SCH:Uplink Shared Channel,上行共享信道
CG:Configured Grant,配置调度许可
Sidelink:侧行通信
SCI:Sidelink Control Information,侧行通信控制信息
PSCCH:Physical Sidelink Control Channel,物理侧行通信控制信道
MCS:Modulation and Coding Scheme,调制编码方案
CRB:Common Resource Block,公共资源块
CP:Cyclic Prefix,循环前缀
PRB:Physical Resource Block,物理资源块
PSSCH:Physical Sidelink Shared Channel,物理侧行通信共享信道
FDM:Frequency Division Multiplexing,频分复用
RRC:Radio Resource Control,无线资源控制
RSRP:Reference Signal Receiving Power,参考信号接收功率
SRS:Soundjng Reference Signal,探测参考信号
DMRS:Demodulation Reference Signal,解调参考信号
CRC:Cyclic Redundancy Check,循环冗余校验
PSDCH:Physical Sidelink Discovery Channel,物理侧行通信发现信道
PSBCH:Physical Sidelink Broadcast Channel,物理侧行通信广播信道
SFI:Slot Format Indication,时隙格式指示
TDD:Time Division Duplexing,时分双工
FDD:Frequency Division Duplexing,频分双工
SIB1:System Information Block Type 1,系统信息块类型1
SLSS:Sidelink synchronization Signal,侧行通信同步信号
PSSS:Primary Sidelink Synchronization Signal,侧行通信主同步信号
SSSS:Secondary Sidelink Synchronization Signal,侧行通信辅同步信号
PCI:Physical Cell ID,物理小区标识
PSS:Primary Synchronization Signal,主同步信号
SSS:Secondary Synchronization Signal,辅同步信号
BWP:BandWidth Part,带宽片段/部分
GNSS:Global Navigation Satellite System,全球导航卫星定位系统
SFN:System Frame Number,系统(无线)帧号
DFN:Direct Frame Number,直接帧号
IE:Information Element,信息元素
SSB:Synchronization Signal Block,同步系统信息块
EN-DC:EUTRA-NR Dual Connection,LTE-NR双连接
MCG:Master Cell Group,主小区组
SCG:Secondary Cell Group,辅小区组
PCell:Primary Cell,主小区
SCell:Secondary Cell,辅小区
PSFCH:Physical Sidelink Feedback Channel,物理侧行通信反馈信道
AGC:Automatic Gain Control,自动增益控制
下文是与本发明方案相关联现有技术的描述。如无特别说明,具体实施例中与现有技术中相同术语的含义相同。
值得指出的是,本发明说明书中涉及的V2X与sidelink含义相同。文中的V2X也可以表示sidelink;相似地,文中的sidelink也可以表示V2X,后文中不做具体区分和限定。
本发明的说明书中的V2X(sidelink)通信的资源分配方式与V2X(sidelink)通信的传输模式可以等同替换。
Sidelink通信的场景
1)无网络覆盖(Out-of-Coverage)侧行通信:进行sidelink通信的两个UE都没有网络覆盖(例如,UE在需要进行sidelink通信的频率上检测不到任何满足“小区选择准则”的小区,表示该UE无网络覆盖)。
2)有网络覆盖(In-Coverage)侧行通信:进行sidelink通信的两个UE都有网络覆盖(例如,UE在需要进行sidelink通信的频率上至少检测到一个满足“小区选择准则”的小区,表示该UE有网络覆盖)。
3)部分网络覆盖(Partial-Coverage)侧行通信:进行sidelink通信的其中一个UE无网络覆盖,另一个UE有网络覆盖。
从UE侧来讲,该UE仅有无网络覆盖和有网络覆盖两种场景。部分网络覆盖是从sidelink通信的角度来描述的。
NR V2X单播(unicast),组播(groupcast)和广播(broadcast)
现有LTE V2X通信中仅支持物理层的广播通信。广播通信广泛应用于蜂窝通信中基站向小区内UE发送系统消息等场景。NR V2X的设计目标中包括支持物理层的单播通信以及组播通信。单播通信表示一个发送用户设备(UE)和单个接收用户设备之间的通信。组播通信一般表示一组UE分配了相同的标识(Indentity,ID),UE向组内的其他UE发送V2X数据,以及,接收组内的其他UE发送的V2X数据。
HARQ和侧行通信sidelink HARQ
为了更好地提高传输的可靠性以及提升频谱效率,在单播通信和组播通信中通常包含HARQ重传机制。HARQ表示混合自动重传,可以提供纠错功能并且实现快速重传,在无线数据通信中广泛应用。HARQ反馈包括HARQ ACK(反馈信息表示正确接收并译码)和HARQ NACK(反馈信息表示未正确接收译码)。其中,HARQ ACK表示接收UE正确接收并且译码发送UE的数据,因此反馈HARQ ACK;HARQ NACK表示接收UE未正确接收并译码发送UE的数据。当接收UE反馈HARQ NACK时,发送UE可能会重传相应的数据,以保证提升数据通信的可靠性。
在NR V2X中,支持物理层的HARQ反馈(HARQ feedback,或者称作HARQ-ACK)和HARQ合并机制(HARQ combining)。其中,HARQ ACK和HARQ NACK由物理侧行通信反馈信道(PSFCH)承载。
侧行通信组播(groupcast)HARQ
对于groupcast侧行通信,当使能(enable)HARQ反馈时,支持两种HARQ反馈机制,分别为:
1)(称为机制1)接收UE只反馈HARQ NACK;当接收UE正确译码PSCCH且未能正确译码相应的PSSCH时,接收UE反馈NACK;其他情况接收UE不进行HARQ反馈;
a)组内的所有接收UE共享(share)一个PSFCH资源用于反馈HARQ NACK。
2)(称为机制2)接收UE反馈HARQ ACK和HARQ NACK;当接收UE正确译码PSCCH且未能正确译码相应的PSSCH时,接收UE反馈NACK;当接收UE正确译码PSCCH且正确译码相应的PSSCH时,接收UE反馈ACK。
a)组内的每个UE使用单独的PSFCH资源用于反馈HARQ ACK和HARQ NACK。
一个PSFCH资源表示映射在一个特定的时域(time domain)、频域(frequency domain)、码域(code domain)的PSFCH资源。
侧行通信资源池(sidelink resource pool)
在侧行通信中,UE的发送和接收的资源均属于资源池resource pool。例如,对于侧行通信中基于基站调度的传输模式(NR侧行通信中传输模式1),基站在资源池中为sidelink UE调度传输资源,或者,对于侧行通信中基于UE感知的传输模式(NR侧行通信中传输模式2),UE在资源池中确定传输资源。
PSFCH资源配置
在一个资源池(resource pool)中,PSFCH在资源池的时隙(slots)中的配置是周期性的,其周期可以表示为N,N的可取值为1,或者,2,或者,4。例如,N=1表示在资源池配置的所有slots中均含有PSFCH资源;N=2表示在资源池配置的所有slots中,每连续2个slots中存在一个slot,该slot内含有PSFCH资源。N=4表示在资源池配置的所有slots中, 每连续4个slots中存在一个slot,该slot内含有PSFCH资源。
在本发明的说明书中,在资源池包含的时隙中,一个含有PSFCH资源的时隙slot可以简称为一个PSFCH时隙(a PSFCH slot)。PSFCH在资源池包含的时隙中是周期性配置的,一个PSFCH时隙关联(associate)或者对应(correspond)N(N表示PSFCH的配置周期)个连续的含有PSSCH传输的时隙,在本发明的说明书中,一个PSSCH传输的时隙可以简称为一个PSSCH时隙(a PSSCH slot)。在NR侧行通信中,可选地,资源池包含的所有时隙都是PSSCH时隙。一个PSFCH时隙关联(associate)或者对应(correspond)的N个连续的(consecutive)PSSCH时隙表示的含义是:该N个连续的PSSCH时隙中的PSSCH传输(transmission)对应的反馈sidelink HARQ-ACK的PSFCH都在关联或者对应的同一个PSFCH时隙中。
LTE V2X(sidelink)通信的基本过程
图1是示出了LTE V2X UE侧行通信的示意图。首先,UE1向UE2发送侧行通信控制信息(SCI format 1),由物理层信道PSCCH携带。SCI format 1包含PSSCH的调度信息,例如PSSCH的频域资源等。其次,UE1向UE2发送侧行通信数据,由物理层信道PSSCH携带。PSCCH和相应的PSSCH采用频分复用的方式,即PSCCH和相应的PSSCH在时域上位于相同的子帧上,在频域上位于不同的PRB上。PSCCH和PSSCH的具体设计方式如下:
1)PSCCH在时域上占据一个子帧,频域上占据两个连续的PRB。加扰序列的初始化采用预定义数值510。PSCCH中可携带SCI format 1,其中SCI format 1至少包含PSSCH的频域资源信息。例如,对于频域资源指示域,SCI format 1指示该PSCCH对应的PSSCH的起始sub-channel编号和连续sub-channel的数目。
2)PSSCH在时域上占据一个子帧,和对应的PSCCH采用频分复用(FDM)。PSSCH在频域上占据一个或者多个连续的sub-channel,sub-channel在频域上表示n subCHsize个连续的PRB,n subCHsize由RRC参数配置,起始sub-channel和连续sub-channel的数目由SCI  format 1的频域资源指示域指示。
LTE V2X的资源分配方式Transmission Mode 3/4
图2是示出了LTE V2X的两种资源分配方式,分别称为基于基站调度的资源分配(Transmission Mode 3)和基于UE感知(sensing)的资源分配(Transmission Mode 4)。LTE V2X中,当存在eNB网络覆盖的情况下,基站可通过UE级的专有RRC信令(dedicated RRC signaling)SL-V2X-ConfigDedicated配置该UE的资源分配方式,或称为该UE的传输模式,具体为:
1)基于基站调度的资源分配方式(Transmission Mode 3):基于基站调度的资源分配方式表示sidelink侧行通信所使用的频域资源来自于基站的调度。传输模式3包含两种调度方式,分别为动态调度和半静态调度(SPS)。对于动态调度,UL grant(DCI format 5A)中包括PSSCH的频域资源,承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-V-RNTI加扰。对于SPS半静态调度,基站通过IE:SPS-ConfigSL-r14配置一个或者多个(至多8个)配置的调度许可(configured grant),每个配置的调度许可含有一个调度许可编号(index)和调度许可的资源周期。UL grant(DCI format 5A)中包括PSSCH的频域资源,以及,调度许可编号的指示信息(3bits)和SPS激活(activate)或者释放(release,或者,去激活)的指示信息。承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-SPS-V-RNTI加扰。
具体地,当RRC信令SL-V2X-ConfigDedicated置为scheduled-r14时,表示该UE被配置为基于基站调度的传输模式。基站通过RRC信令配置SL-V-RNTI或者SL-SPS-V-RNTI,并通过PDCCH或者EPDCCH(DCI format 5A,CRC采用SL-V-RNTI加扰或者采用SL-SPS-V-RNTI加扰)向UE发送上行调度许可UL grant。上述上行调度许可UL grant中至少包含sidelink通信中PSSCH频域资源的调度信息。当UE成功监听到由SL-V-RNTI加扰或者SL-SPS-V-RNTI加扰的PDCCH或者EPDCCH后,将上行调度许 可UL grant(DCI format 5A)中的PSSCH频域资源指示域作为PSCCH(SCI format 1)中PSSCH的频域资源的指示信息,并发送PSCCH(SCI format 1)和相应的PSSCH。
对于传输模式3中的半静态调度SPS,UE在下行子帧n上接收SL-SPS-V-RNTI加扰的DCI format 5A。如果DCI format 5A中包含SPS激活的指示信息,该UE根据DCI format 5A中的指示信息确定PSSCH的频域资源,根据子帧n等信息确定PSSCH的时域资源(PSSCH的发送子帧)。
2)基于UE感知(sensing)的资源分配方式(Transmission Mode 4):基于UE sensing的资源分配方式表示用于sidelink通信的资源基于UE对候选可用资源集合的感知(sensing)过程。RRC信令SL-V2X-ConfigDedicated置为ue-Selected-r14时表示该UE被配置为基于UE sensing的传输模式。在基于UE sensing的传输模式中,基站配置可用的传输资源池,UE根据一定的规则(详细过程的描述参见LTE V2X UE sensing过程部分)在传输资源池(resource pool)中确定PSSCH的sidelink发送资源,并发送PSCCH(SCI format 1)和相应的PSSCH。
LTE TDD上下行配置信息
LTE支持共7种TDD上下行配置信息(也可称作TDD配置信息),编号为TDD UL/DL Configuration 0~6,如下表格4.2-2所示。其中,“D”表示下行子帧(subframe),“U”表示上行子帧,“S”表示特殊子帧(Special Subframe)。特殊子帧由下行符号(DwPTS),保护间隔(Gap),上行符号(UpPTS)组成,本发明与特殊子帧的具体配置无关联,此处不加赘述。LTE基站eNB在SystemInformationBlockType1(SIB1)中配置本小区的TDD上下行配置信息。
表格4.2-2:Uplink-downlink configurations
Figure PCTCN2020141397-appb-000051
LTE V2X UE确定PSSCH子帧资源池(subframe resource pool)的方法
LTE V2X中,子帧资源池的确定方法基于SFN#0-SFN#1023范围内的全部子帧,共计10240个子帧。此处将可能属于V2X UE发送PSSCH子帧资源池的子帧集合表示为
Figure PCTCN2020141397-appb-000052
满足:
1)
Figure PCTCN2020141397-appb-000053
2)上述子帧集合中的子帧相对于SFN#0或者DFN#0的子帧#0进行编号,即
Figure PCTCN2020141397-appb-000054
的子帧对应SFN#0或者DFN#0的子帧#0,
3)上述子帧集合包括除去如下子帧后(a,b,c包含的子帧)的全部子帧:
a)配置了SLSS的子帧,数目表示为N SLSS
b)TDD小区中的下行子帧和特殊子帧,数目表示为N dssf
c)预留(reserved)子帧,其中预留子帧的确定方法为:
子帧编号为0-10239的全部子帧除去N SLSS和N dssf个子帧后,剩余的(10240-N SLSS-N dssf)个子帧按照子帧编号的升序进行排列,此处可以表示为
Figure PCTCN2020141397-appb-000055
r=floor(m·(10240-N SLSS-N dssf)/N reserved)。其中 m=0,1,...,N reserved-1,并且N reserved=(10240-N SLSS-N dssf)mod L bitmap。L bitmap表示资源池配置的比特位图长度,由上层配置,比特位图可以表示为
Figure PCTCN2020141397-appb-000056
子帧l r对应编号的子帧属于预留子帧。
4)子帧集合中的子帧按照子帧编号的升序进行排列。
UE确定PSSCH子帧资源池的方法为:对于子帧集合
Figure PCTCN2020141397-appb-000057
中的子帧
Figure PCTCN2020141397-appb-000058
如果满足b k,=1,其中k′=k mod L bitmap,则子帧
Figure PCTCN2020141397-appb-000059
属于PSSCH子帧资源池。
在本发明的说明书中,类似地,对于NR侧行通信,资源池包含的时隙可以表示为时隙
Figure PCTCN2020141397-appb-000060
或者,统一采用
Figure PCTCN2020141397-appb-000061
来标识。其中,k表示资源池中时隙的下标(subscript),k表示连续的整数,或者,不连续的整数,并且k≥0。
NR中(包含NR sidelink)的参数集合(numerology)和NR中(包含NR  sidelink)的时隙slot
参数集合numerology包含子载波间隔和循环前缀CP长度两方面含义。其中,NR支持5种子载波间隔,分别为15k,30k,60k,120k,240kHz(对应μ=0,1,2,3,4),表格4.2-1示出了支持的传输参数集合,具体如下所示。
表4.2-1 NR支持的子载波间隔
μ Δf=2 μ·15[kHz] CP(循环前缀)
0 15 正常
1 30 正常
2 60 正常,扩展
3 120 正常
4 240 正常
仅当μ=2时,即60kHz子载波间隔的情况下支持扩展(Extended) CP,其他子载波间隔的情况仅支持正常CP。对于正常(Normal)CP,每个时隙(slot)含有
Figure PCTCN2020141397-appb-000062
个OFDM符号;对于扩展CP,每个时隙含有
Figure PCTCN2020141397-appb-000063
个OFDM符号。对于μ=0,即15kHz子载波间隔,1个时隙=1ms;μ=1,即30kHz子载波间隔,1个时隙=0.5ms;μ=2,即60kHz子载波间隔,1个时隙=0.25ms,以此类推。
NR和LTE对于子帧(subframe)的定义相同,表示1ms。对于子载波间隔配置μ,1个子帧内(1ms)的slot编号可以表示为
Figure PCTCN2020141397-appb-000064
范围为0到
Figure PCTCN2020141397-appb-000065
1个系统帧(frame,时长10ms)内的slot编号可以表示为
Figure PCTCN2020141397-appb-000066
范围为0到
Figure PCTCN2020141397-appb-000067
其中,
Figure PCTCN2020141397-appb-000068
Figure PCTCN2020141397-appb-000069
在不同子载波间隔μ的情况的定义如下表格所示。
表格4.3.2-1:正常CP时每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
Figure PCTCN2020141397-appb-000070
表格4.3.2-2:扩展CP时(60kHz)每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
Figure PCTCN2020141397-appb-000071
在NR载波上,系统帧(或者,简称为帧)的编号SFN范围为0至1023。在侧行通信中引入了直接系统帧号DFN的概念,编号范围同样为0至1023,上述对于系统帧和numerology之间关系的叙述同样可以应用于直接系统帧(Direct Frame),例如,一个直接系统帧的时长同样等于10ms,对于15kHz的子载波间隔,一个直接系统帧包括10个时隙slot,等等。DFN应用于sidelink载波上的定时timing。
[实施例一]
如图3所示,在本发明的实施例一中,用户设备执行的方法可以包括:
在步骤S101,侧行通信用户设备确定侧行通信sidelink的资源池resource pool的配置信息。
可选地,所述侧行通信资源池的配置信息是基站通过RRC信令发送的配置信息。或者,
可选地,所述侧行通信资源池的配置信息包含在所述用户设备的预配置(Pre-configuration)信息中。
可选地,所述侧行通信资源池的配置信息中包含PSFCH资源周期的配置信息
Figure PCTCN2020141397-appb-000072
可选地,所述侧行通信资源池的配置信息中包含PSSCH传输到PSFCH传输的最短时间间隔(time gap)MinTimeGapPSFCH。其中,可选地,MinTimeGapPSFCH以资源池中的时隙为单位。
在步骤S102,所述用户设备确定PSFCH时隙关联(associate)或者对应(corresponding)的
Figure PCTCN2020141397-appb-000073
个连续的PSSCH时隙。
可选地,所述PSFCH时隙标记为时隙
Figure PCTCN2020141397-appb-000074
所述PSFCH时隙
Figure PCTCN2020141397-appb-000075
关联或者对应
Figure PCTCN2020141397-appb-000076
个资源池中的时隙。所述
Figure PCTCN2020141397-appb-000077
个资源池中的时隙编号为i,
Figure PCTCN2020141397-appb-000078
其中,可选地,所述
Figure PCTCN2020141397-appb-000079
个资源池中的时隙的起始时隙(对应i=0的时隙)为
Figure PCTCN2020141397-appb-000080
或者,所述
Figure PCTCN2020141397-appb-000081
个资源池中的时隙从时隙
Figure PCTCN2020141397-appb-000082
(对应i=0的时隙)开始,
或者,
可选地,所述PSFCH时隙的下标标记为q。所述PSFCH时隙关联或者对应
Figure PCTCN2020141397-appb-000083
个资源池中的时隙。所述
Figure PCTCN2020141397-appb-000084
个资源池中的时隙编号为i,
Figure PCTCN2020141397-appb-000085
其中,可选地,所述
Figure PCTCN2020141397-appb-000086
个资源池中的时隙的起始 时隙(对应i=0的时隙)的下标为
Figure PCTCN2020141397-appb-000087
或者,所述
Figure PCTCN2020141397-appb-000088
个资源池中的时隙的下标从
Figure PCTCN2020141397-appb-000089
(对应i=0的时隙)开始,
或者,
可选地,所述PSFCH时隙标记为时隙
Figure PCTCN2020141397-appb-000090
所述PSFCH时隙
Figure PCTCN2020141397-appb-000091
关联或者对应
Figure PCTCN2020141397-appb-000092
个资源池中的时隙。所述
Figure PCTCN2020141397-appb-000093
个资源池中的时隙编号为i,
Figure PCTCN2020141397-appb-000094
其中,可选地,所述
Figure PCTCN2020141397-appb-000095
个资源池中的时隙表示为
Figure PCTCN2020141397-appb-000096
或者,
可选地,所述PSFCH时隙的下标标记为q。所述PSFCH时隙关联或者对应
Figure PCTCN2020141397-appb-000097
个资源池中的时隙。所述
Figure PCTCN2020141397-appb-000098
个资源池中的时隙编号为i,
Figure PCTCN2020141397-appb-000099
其中,可选地,所述
Figure PCTCN2020141397-appb-000100
个资源池中的时隙的下标表示为
Figure PCTCN2020141397-appb-000101
可选地,如果所述用户设备接收的PSSCH(PSSCH reception)的最后一个时隙是
Figure PCTCN2020141397-appb-000102
那么,所述接收的PSSCH对应的PSFCH传输在时隙
Figure PCTCN2020141397-appb-000103
中。
[实施例二]
如图3所示,在本发明的实施例二中,用户设备执行的方法可以包括:
在步骤S101,侧行通信用户设备确定侧行通信sidelink的资源池resource pool的配置信息。
可选地,所述侧行通信资源池的配置信息是基站通过RRC信令发送的配置信息。或者,
可选地,所述侧行通信资源池的配置信息包含在所述用户设备的预配 置(Pre-configuration)信息中。
可选地,所述侧行通信资源池的配置信息中包含PSFCH资源周期的配置信息
Figure PCTCN2020141397-appb-000104
可选地,所述侧行通信资源池的配置信息中包含PSSCH传输到PSFCH传输的最短时间间隔(time gap)MinTimeGapPSFCH。其中,可选地,MinTimeGapPSFCH以资源池中的时隙为单位。
在步骤S102,所述用户设备确定PSFCH时隙关联(associate)或者对应(corresponding)的
Figure PCTCN2020141397-appb-000105
个连续的PSSCH时隙。
可选地,所述PSFCH时隙标记为时隙
Figure PCTCN2020141397-appb-000106
所述PSFCH时隙
Figure PCTCN2020141397-appb-000107
关联或者对应
Figure PCTCN2020141397-appb-000108
个资源池中的时隙。所述
Figure PCTCN2020141397-appb-000109
个资源池中的时隙编号为i,
Figure PCTCN2020141397-appb-000110
其中,可选地,所述
Figure PCTCN2020141397-appb-000111
个资源池中的时隙的起始时隙(对应i=0的时隙)为
Figure PCTCN2020141397-appb-000112
或者,所述
Figure PCTCN2020141397-appb-000113
个资源池中的时隙从时隙
Figure PCTCN2020141397-appb-000114
(对应i=0的时隙)开始,
或者,
可选地,所述PSFCH时隙的下标标记为q。所述PSFCH时隙关联或者对应
Figure PCTCN2020141397-appb-000115
个资源池中的时隙。所述
Figure PCTCN2020141397-appb-000116
个资源池中的时隙编号为i,
Figure PCTCN2020141397-appb-000117
其中,可选地,所述
Figure PCTCN2020141397-appb-000118
个资源池中的时隙的起始时隙(对应i=0的时隙)的下标为
Figure PCTCN2020141397-appb-000119
或者,所述
Figure PCTCN2020141397-appb-000120
个资源池中的时隙的下标从
Figure PCTCN2020141397-appb-000121
(对应i=0的时隙)开始,
或者,
可选地,所述PSFCH时隙标记为时隙
Figure PCTCN2020141397-appb-000122
所述PSFCH时隙
Figure PCTCN2020141397-appb-000123
关联或者对应
Figure PCTCN2020141397-appb-000124
个资源池中的时隙。所述
Figure PCTCN2020141397-appb-000125
个资源池中的时隙编号为i,
Figure PCTCN2020141397-appb-000126
其中,可选地,所述
Figure PCTCN2020141397-appb-000127
个资源池中的时隙表示为
Figure PCTCN2020141397-appb-000128
或者,
可选地,所述PSFCH时隙的下标标记为q。所述PSFCH时隙关联或者对应
Figure PCTCN2020141397-appb-000129
个资源池中的时隙。所述
Figure PCTCN2020141397-appb-000130
个资源池中的时隙编号为i,
Figure PCTCN2020141397-appb-000131
其中,可选地,所述
Figure PCTCN2020141397-appb-000132
个资源池中的时隙的下标表示为
Figure PCTCN2020141397-appb-000133
可选地,如果所述用户设备接收的PSSCH(PSSCH reception)对应的最后一个时隙是
Figure PCTCN2020141397-appb-000134
那么,所述接收的PSSCH对应的PSFCH传输在时隙
Figure PCTCN2020141397-appb-000135
中。
可选地,如果所述用户设备接收的PSSCH(PSSCH reception)的最后一个时隙是
Figure PCTCN2020141397-appb-000136
那么,所述接收的PSSCH对应的PSFCH传输所在的时隙关联(associated)或者对应(corresponding)PSSCH时隙
Figure PCTCN2020141397-appb-000137
(或者,时隙
Figure PCTCN2020141397-appb-000138
),
或者,
可选地,如果所述用户设备接收的PSSCH(PSSCH reception)的最后一个时隙是
Figure PCTCN2020141397-appb-000139
那么,所述接收的PSSCH对应的PSFCH传输所在的时隙关联(associated)或者对应(corresponding)PSSCH时隙
Figure PCTCN2020141397-appb-000140
(或者,时隙
Figure PCTCN2020141397-appb-000141
)。
图4是表示本发明所涉及的用户设备UE的框图。如图4所示,该用户设备UE80包括处理器801和存储器802。处理器801例如可以包括微处理器、微控制器、嵌入式处理器等。存储器802例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器802上存储有程序指令。该指令在由处理器801运行时,可以执行本发明详细描述的由用户设备执 行的上述方法。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (10)

  1. 一种由用户设备执行的方法,包括:
    确定侧行通信的资源池的配置信息作为第一配置信息;
    确定物理侧行通信反馈信道PSFCH时隙关联的或者对应的
    Figure PCTCN2020141397-appb-100001
    个连续的物理侧行通信共享信道PSSCH时隙,所述
    Figure PCTCN2020141397-appb-100002
    是物理侧行通信反馈信道PSFCH资源周期的配置信息即第二配置信息,
    所述用户设备为侧行通信用户设备。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一配置信息是基站通过无线资源控制RRC信令发送的配置信息;或
    所述第一配置信息包含在所述用户设备的预配置信息中。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一配置信息中包含作为所述第二配置信息的所述
    Figure PCTCN2020141397-appb-100003
    或/和
    所述第一配置信息中包含物理侧行通信共享信道PSSCH传输到物理侧行通信反馈信道PSFCH传输的最短时间间隔MinTimeGapPSFCH。
  4. 根据权利要求3所述的方法,其特征在于,
    在所述PSFCH时隙标记为时隙
    Figure PCTCN2020141397-appb-100004
    所述PSFCH时隙
    Figure PCTCN2020141397-appb-100005
    关联或者对应
    Figure PCTCN2020141397-appb-100006
    个资源池中的时隙,所述
    Figure PCTCN2020141397-appb-100007
    个资源池中的时隙编号为i,其中
    Figure PCTCN2020141397-appb-100008
    的情况下,
    所述
    Figure PCTCN2020141397-appb-100009
    个资源池中的时隙的起始时隙即i=0的时隙为
    Figure PCTCN2020141397-appb-100010
    或者
    所述
    Figure PCTCN2020141397-appb-100011
    个资源池中的时隙从时隙
    Figure PCTCN2020141397-appb-100012
    即i=0的时隙开始;或者
    所述
    Figure PCTCN2020141397-appb-100013
    个资源池中的时隙表示为
    Figure PCTCN2020141397-appb-100014
  5. 根据权利要求3所述的方法,其特征在于,
    在所述PSFCH时隙的下标标记为q,所述PSFCH时隙关联或者对应
    Figure PCTCN2020141397-appb-100015
    个资源池中的时隙,所述
    Figure PCTCN2020141397-appb-100016
    个资源池中的时隙编号为i,其中,
    Figure PCTCN2020141397-appb-100017
    的情况下,
    所述
    Figure PCTCN2020141397-appb-100018
    个资源池中的时隙的起始时隙即i=0的时隙的下标为
    Figure PCTCN2020141397-appb-100019
    或者
    所述
    Figure PCTCN2020141397-appb-100020
    个资源池中的时隙的下标从
    Figure PCTCN2020141397-appb-100021
    Figure PCTCN2020141397-appb-100022
    即i=0的时隙开始;或者
    所述
    Figure PCTCN2020141397-appb-100023
    个资源池中的时隙的下标表示为
    Figure PCTCN2020141397-appb-100024
  6. 根据权利要求3所述的方法,其特征在于,
    在所述PSFCH时隙标记为时隙
    Figure PCTCN2020141397-appb-100025
    所述PSFCH时隙
    Figure PCTCN2020141397-appb-100026
    关联或者对应
    Figure PCTCN2020141397-appb-100027
    个资源池中的时隙,所述
    Figure PCTCN2020141397-appb-100028
    个资源池中的时隙编号为i,其中
    Figure PCTCN2020141397-appb-100029
    的情况下,
    所述
    Figure PCTCN2020141397-appb-100030
    个资源池中的时隙的起始时隙即i=0的时隙为
    Figure PCTCN2020141397-appb-100031
    或者
    所述
    Figure PCTCN2020141397-appb-100032
    个资源池中的时隙从时隙
    Figure PCTCN2020141397-appb-100033
    即i=0的时隙开始;或者
    所述
    Figure PCTCN2020141397-appb-100034
    个资源池中的时隙表示为
    Figure PCTCN2020141397-appb-100035
  7. 根据权利要求3所述的方法,其特征在于,
    在所述PSFCH时隙的下标标记为q,所述PSFCH时隙关联或者对应
    Figure PCTCN2020141397-appb-100036
    个资源池中的时隙,所述
    Figure PCTCN2020141397-appb-100037
    个资源池中的时隙编号为i,其中,
    Figure PCTCN2020141397-appb-100038
    的情况下,
    所述
    Figure PCTCN2020141397-appb-100039
    个资源池中的时隙的起始时隙即i=0的时隙的下标为
    Figure PCTCN2020141397-appb-100040
    或者
    所述
    Figure PCTCN2020141397-appb-100041
    个资源池中的时隙的下标从
    Figure PCTCN2020141397-appb-100042
    即i=0的时隙开始;或者
    所述
    Figure PCTCN2020141397-appb-100043
    个资源池中的时隙的下标表示为
    Figure PCTCN2020141397-appb-100044
  8. 根据权利要求4至7中任一项所述的方法,其特征在于,
    在所述用户设备接收的PSSCH的最后一个时隙是
    Figure PCTCN2020141397-appb-100045
    其中
    Figure PCTCN2020141397-appb-100046
    的情况下,
    所述接收的PSSCH对应的PSFCH传输在时隙
    Figure PCTCN2020141397-appb-100047
    中。
  9. 根据权利要求6或7所述的方法,其特征在于,
    在所述用户设备接收的PSSCH的最后一个时隙是
    Figure PCTCN2020141397-appb-100048
    的情况下,
    所述接收的PSSCH对应的PSFCH传输所在的时隙关联或者对应PSSCH时隙
    Figure PCTCN2020141397-appb-100049
    或者时隙
    Figure PCTCN2020141397-appb-100050
  10. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令;
    其中,所述指令在由所述处理器运行时执行根据权利要求1至9中任一项所述的方法。
PCT/CN2020/141397 2020-01-03 2020-12-30 由用户设备执行的方法以及用户设备 WO2021136373A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010009070.9 2020-01-03
CN202010009070.9A CN113079571A (zh) 2020-01-03 2020-01-03 由用户设备执行的方法以及用户设备

Publications (1)

Publication Number Publication Date
WO2021136373A1 true WO2021136373A1 (zh) 2021-07-08

Family

ID=76608745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141397 WO2021136373A1 (zh) 2020-01-03 2020-12-30 由用户设备执行的方法以及用户设备

Country Status (2)

Country Link
CN (1) CN113079571A (zh)
WO (1) WO2021136373A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024093895A1 (zh) * 2022-11-04 2024-05-10 维沃移动通信有限公司 传输方法、装置、终端及可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116234015A (zh) * 2021-12-02 2023-06-06 夏普株式会社 由用户设备执行的方法以及用户设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031808A1 (en) * 2017-08-07 2019-02-14 Lg Electronics Inc. METHOD FOR TRANSMITTING AND RECEIVING SIGNALS IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREOF
CN110445586A (zh) * 2019-08-14 2019-11-12 展讯通信(上海)有限公司 反馈资源确定方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031808A1 (en) * 2017-08-07 2019-02-14 Lg Electronics Inc. METHOD FOR TRANSMITTING AND RECEIVING SIGNALS IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREOF
CN110445586A (zh) * 2019-08-14 2019-11-12 展讯通信(上海)有限公司 反馈资源确定方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OPPO: "Physical layer structure for NR-V2X", 3GPP DRAFT; R1-1910372 PHY LAYER STRUCTURE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 8 October 2019 (2019-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051789177 *
ZTE, SANECHIPS: "NR sidelink physical layer structure", 3GPP DRAFT; R1-1906457 NR SIDELINK PHYSICAL LAYER STRUCUTRE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 3 May 2019 (2019-05-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 12, XP051708492 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024093895A1 (zh) * 2022-11-04 2024-05-10 维沃移动通信有限公司 传输方法、装置、终端及可读存储介质

Also Published As

Publication number Publication date
CN113079571A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
US20220217679A1 (en) Method performed by user equipment, and user equipment
WO2020253770A1 (zh) 由用户设备执行的方法以及用户设备
WO2022028413A1 (zh) 由用户设备执行的方法以及用户设备
WO2021057960A1 (zh) 由用户设备执行的方法以及用户设备
WO2020169067A1 (zh) 由用户设备执行的方法以及用户设备
WO2022143641A1 (zh) 由用户设备执行的方法以及用户设备
WO2021136373A1 (zh) 由用户设备执行的方法以及用户设备
WO2020088513A1 (zh) 由用户设备执行的方法以及用户设备
US20230276473A1 (en) Method performed by user equipment, and user equipment
WO2021204191A1 (zh) 由用户设备执行的方法以及用户设备
US20230049106A1 (en) Method performed by user equipment, and user equipment
WO2022194243A1 (zh) 由用户设备执行的方法以及用户设备
WO2022152163A1 (zh) 由用户设备执行的方法以及用户设备
WO2021228138A1 (zh) 由用户设备执行的方法以及用户设备
US20230156745A1 (en) Method performed by user equipment, and user equipment
WO2022028330A1 (zh) 由用户设备执行的方法以及用户设备
US20220417959A1 (en) Method performed by user equipment, and user equipment
WO2021013213A1 (zh) 由用户设备执行的方法以及用户设备
CN116456467A (zh) 由用户设备执行的方法以及用户设备
WO2021139619A1 (zh) 由用户设备执行的方法以及用户设备
US20230107902A1 (en) Method performed by user equipment, and user equipment
WO2021057838A1 (zh) 由用户设备执行的方法以及用户设备
US20230379121A1 (en) Method performed by user equipment, and user equipment
WO2022063070A1 (zh) 由用户设备执行的方法以及用户设备
WO2021160034A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911093

Country of ref document: EP

Kind code of ref document: A1