WO2021160034A1 - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
WO2021160034A1
WO2021160034A1 PCT/CN2021/075487 CN2021075487W WO2021160034A1 WO 2021160034 A1 WO2021160034 A1 WO 2021160034A1 CN 2021075487 W CN2021075487 W CN 2021075487W WO 2021160034 A1 WO2021160034 A1 WO 2021160034A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
csi reference
prb
reference resource
resource
Prior art date
Application number
PCT/CN2021/075487
Other languages
English (en)
French (fr)
Inventor
赵毅男
罗超
刘仁茂
Original Assignee
夏普株式会社
赵毅男
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 赵毅男 filed Critical 夏普株式会社
Publication of WO2021160034A1 publication Critical patent/WO2021160034A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • the present invention relates to the field of wireless communication technology, and in particular to methods executed by user equipment and corresponding user equipment.
  • CSI reporting In Rel-15NR, a channel information feedback mechanism is supported, called Channel State Indicator Reporting, or CSI reporting or CSI reporting for short.
  • the CSI report includes the channel quality indicator CQI, the rank RI of the channel, and the channel channel matrix PMI.
  • the solution of this patent is mainly aimed at reporting the channel quality CQI in the CSI report, and the RI and PMI are not described in detail.
  • Rel-15NR supports periodic, semi-persistant (SP) and aperiodic CSI reporting.
  • the reported content (referred to as CQI in this patent) can be fed back on the PUCCH channel or on the PUSCH Feedback on the channel.
  • CQI semi-persistant
  • the scheme of aperiodic CSI reporting is included but not limited to.
  • aperiodic CSI reporting adopts MAC CE combined with DCI for configuration and triggering, and reporting based on PUSCH.
  • the RRC configures multiple CSI trigger states, and each CSI trigger state can correspond to one or more report feedback settings, and a report feedback setting is triggered by the CSI request field (CSI request field) in the DCI.
  • the size of the CSI request field in the DCI format 0_1 can be configured as 0-6 bits by RRC signaling, so it can indicate up to 64 CSI trigger states.
  • the 64 CSI trigger statuses are mapped to the CSI request field by MAC CE signaling.
  • the solution of this patent includes a method for the user equipment UE to derive the CQI value (CQI index) according to certain assumptions.
  • D2D communication (Device-to-Device communication, device-to-device direct communication) refers to a direct communication method between two user devices without being forwarded by a base station or core network.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • 3GPP 3rd Generation Partnership Project
  • the upper layer supports Unicast and Groupcast communication functions.
  • V2X stands for Vehicle to Everything, and hopes to realize the information interaction between vehicles and all entities that may affect vehicles. The purpose is to reduce accidents, alleviate traffic congestion, reduce environmental pollution, and provide other information services.
  • the application scenarios of V2X mainly include 4 aspects:
  • V2V Vehicle to Vehicle, that is, vehicle-to-vehicle communication
  • V2P Vehicle to Pedestrian, that is, the vehicle sends a warning to pedestrians or non-motorized vehicles
  • V2N Vehicle to Network, that is, the vehicle connects to the mobile network
  • V2I Vehicle to Infrastructure, that is, communication between vehicles and road infrastructure.
  • V2X stage 1 introduced a new D2D communication interface called PC5 interface.
  • the PC5 interface is mainly used to solve the problem of cellular car networking communication under high-speed (up to 250 km/h) and high-node density environments. Vehicles can interact with information such as position, speed and direction through the PC5 interface, that is, vehicles can communicate directly through the PC5 interface.
  • the functions introduced by LTE Release 14 V2X mainly include:
  • the second phase of the V2X research topic belongs to the LTE Release 15 research category (see Non-Patent Document 4).
  • the main features introduced include high-order 64QAM modulation, V2X carrier aggregation, short TTI transmission, and the feasibility study of transmit diversity.
  • Non-Patent Document 1 RP-140518, Work item proposal on LTE Device to Device Proximity Services
  • Non-Patent Document 2 RP-142311, Work Item Proposal for Enhanced LTE Device to Device Proximity Services
  • Non-Patent Document 3 RP-152293, New WI proposal: Suppoa for V2V services based on LTE sidelink
  • Non-Patent Document 4 RP-170798, New WID on 3GPP V2X Phase 2
  • Non-Patent Document 5 RP-181480, New SID Proposal: Study on NR V2X
  • the present invention provides a method executed by a user equipment and a user equipment.
  • a method executed by a user equipment including: receiving configuration information sent by a base station gNB; and configuring the configuration information to configure the user equipment to report a CQI value.
  • it further includes: determining the number of REs N RE ′ allocated for PDSCH transmission in one PRB in the CSI reference resource.
  • it can be the number of subcarriers contained in a PRB And/or the number of symbols allocated by the user equipment for PDSCH and DMRS And/or the user equipment assumes the number of REs used for DMRS transmission in each PRB
  • each PRB includes but is not limited to the number of REs that control signaling overhead
  • the user equipment determines the
  • the method further includes: determining the number of transport block bits TBS in the CSI reference resource according to the number of REs N RE ′ allocated for PDSCH transmission in one PRB in the CSI reference resource.
  • the user equipment determines the number of transport block bits TBS in the CSI reference resource according to including but not limited to the N RE ′.
  • it further includes: deriving the CQI value according to the TBS in the CSI reference resource.
  • the user equipment derives the CQI value according to the TBS including but not limited to the CSI reference resource.
  • a user equipment including: a processor; and a memory storing instructions; wherein the instructions execute the above method when run by the processor.
  • Fig. 1 is a schematic diagram showing LTE V2X UE side-line communication.
  • Fig. 2 is a schematic diagram showing the resource allocation mode of LTE V2X.
  • FIG. 3 is a schematic diagram showing the basic process of the method executed by the user equipment in the first embodiment of the invention.
  • Fig. 4 is a block diagram showing a user equipment according to an embodiment of the present invention.
  • 3GPP 3rd Generation Partnership Project
  • the third generation partnership project the third generation partnership project
  • LTE Long Term Evolution, long-term evolution technology
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • DCI Downlink Control Information, downlink control information
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • UE User Equipment, user equipment
  • eNB evolved NodeB, evolved base station
  • gNB NR base station
  • TTI Transmission Time Interval, transmission time interval
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • C-RNTI Cell Radio Network Temporary Identifier, cell radio network temporary identifier
  • CSI-RS CSI-Reference Signal, channel state measurement reference signal
  • CRS Cell Reference Signal, cell specific reference signal
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • SCI Sidelink Control Information, side-line communication control information
  • PSCCH Physical Sidelink Control Channel, physical side link control channel
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • RB Resource Block, resource block
  • CRB Common Resource Block, common resource block
  • CP Cyclic Prefix, cyclic prefix
  • PRB Physical Resource Block, physical resource block
  • PSSCH Physical Sidelink Shared Channel, physical sidelink shared channel
  • FDM Frequency Division Multiplexing, Frequency Division Multiplexing
  • RRC Radio Resource Control, radio resource control
  • RSRP Reference Signal Receiving Power, reference signal received power
  • SRS Sounding Reference Signal, sounding reference signal
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • PSDCH Physical Sidelink Discovery Channel, physical side link discovery channel
  • PSBCH Physical Sidelink Broadcast Channel, physical side-line communication broadcast channel
  • TDD Time Division Duplexing, Time Division Duplexing
  • FDD Frequency Division Duplexing, Frequency Division Duplexing
  • SIB1 System Information Block Type 1, System Information Block Type 1
  • SLSS Sidelink synchronization Signal, side-line communication synchronization signal
  • PSSS Primary Sidelink Synchronization Signal, the main synchronization signal of side-line communication
  • SSSS Secondary Sidelink Synchronization Signal, secondary synchronization signal for side-line communication
  • PCI Physical Cell ID, physical cell ID
  • PSS Primary Synchronization Signal, the primary synchronization signal
  • SSS Secondary Synchronization Signal, secondary synchronization signal
  • BWP BandWidth Part, BandWidth Part/Part
  • GNSS Global Navigation Satellite System, Global Navigation Satellite Positioning System
  • SFN System Frame Number, system (wireless) frame number
  • DFN Direct Frame Number, direct frame number
  • SSB Synchronization Signal Block, synchronization system information block
  • EN-DC EUTRA-NR Dual Connection, LTE-NR dual connection
  • MCG Master Cell Group, primary cell group
  • SCG Secondary Cell Group, secondary cell group
  • PCell Primary Cell, primary cell
  • SCell Secondary Cell, secondary cell
  • PSFCH Physical Sidelink Feedback Channel, the physical sidelink feedback channel
  • SPS Semi-Persistant Scheduling, semi-static scheduling
  • RBG Resource Block Group, resource block group
  • MAC Medium Access Control, media access control (layer/protocol)
  • MAC CE MAC Control Element, MAC control unit
  • QAM Quadrature Amplitude Modulation, Quadrature Amplitude Modulation
  • QPSK Quadrature Phase Shift Keying, quadrature phase shift keying modulation
  • V2X and sidelink involved in the specification of the present invention have the same meaning.
  • V2X in the text can also mean sidelink; similarly, sidelink in the text can also mean V2X, and no specific distinction and limitation will be made in the following text.
  • the resource allocation mode of V2X (sidelink) communication and the transmission mode of V2X (sidelink) communication in the specification of the present invention can be replaced equally.
  • the resource allocation method involved in the specification may indicate a transmission mode, and the involved transmission mode may indicate a resource allocation method.
  • the resource block RB, the common resource block CRB, and the physical resource block PRB involved in the specification of the present invention all represent 12 consecutive subcarriers in the frequency domain. For example, for a sub-carrier spacing of 15 kHz, RB, CRB, and PRB occupy 180 kHz in the frequency domain.
  • QPSK referred to in the specification of the present invention stands for quadrature shift keying modulation, which is a two-level modulation method, that is, a modulation symbol after modulation contains 2 bits; similarly, 16QAM, 64QAM, and 256QAM respectively represent modulation orders. It is 4, 6, 8 quadrature amplitude modulation, that is, one modulation symbol after modulation contains 4 bits, 6 bits and 8 bits respectively.
  • the code rate indicates the channel coding rate or channel coding efficiency.
  • a transport block TB (including the number of bits is denoted as a) and the number of bits after channel coding (LDPC, etc.) is b, then the code rate is equal to a/b.
  • the effective coding rate involved in the specification of the present invention is equal to (a+c)/b, or effective
  • the meaning of the code rate is the ratio of the number of downlink information bits (bits containing the CRC check code) to the number of physical bits transmitted on the PDSCH.
  • the CQI value involved in the specification of the present invention represents CQI index, or CQI value, and the meanings of the two can be equivalently replaced.
  • the parameter set numerology includes two meanings of subcarrier spacing and cyclic prefix CP length.
  • ⁇ ⁇ f 2 ⁇ ⁇ 15[kHz] CP (cyclic prefix) 0 15 normal 1 30 normal 2 60 Normal, extended 3 120 normal 4 240 normal
  • each slot contains 14 OFDM symbols; for extended CP, each slot contains 12 OFDM symbols.
  • subframe subframe
  • subframe subframe
  • the slot number in 1 subframe (1ms) can be expressed as Range from 0 to
  • the slot number in a system frame (frame, 10ms) can be expressed as Range from 0 to in, and
  • the definition in the case of different subcarrier spacing ⁇ is shown in the following table.
  • Table 4.3.2-1 The number of symbols contained in each slot in normal CP, the number of slots contained in each system frame, and the number of slots contained in each subframe
  • Table 4.3.2-2 The number of symbols contained in each slot when CP is extended (60kHz), the number of slots contained in each system frame, and the number of slots contained in each subframe
  • the number SFN of the system frame ranges from 0 to 1023.
  • the concept of direct system frame number DFN is introduced in sideline communication, and the number range is also 0 to 1023.
  • the above description of the relationship between system frames and numerology can also be applied to direct system frames, for example, the duration of a direct system frame It is also equal to 10ms.
  • a direct system frame For a subcarrier interval of 15kHz, a direct system frame includes 10 time slots, and so on. DFN is used for timing timing on the sidelink carrier.
  • BWP Bandwidth segment
  • Each BWP contains one or more consecutive CRBs. Assuming that the number of a BWP is i, its starting point (Or, use To indicate) and length (Or, use To indicate) must satisfy the following relationships at the same time:
  • the CRB contained in the BWP must be located in the resource grid of the corresponding numerology.
  • the CRB number is used to indicate the distance from the lowest numbered CRB of the BWP to point A, in RB.
  • the resource block in the BWP is called the physical resource block (PRB), and its number is Among them, physical resource block 0 corresponds to the CRB with the lowest number of the BWP, namely For a serving cell, gNB configures a BWP through the following high-level parameters:
  • the high-level parameter locationAndBandwidth indicates that the BWP is relative to the starting CRB of the resource grid
  • RIV Resource Indication Value, resource indication value
  • BWP public and BWP-specific parameter configuration such as the configuration of the PDCCH and PDSCH of the downlink BWP.
  • This chapter describes the time slot structure of the high-level configuration in the specification, that is, whether a certain time slot configured by the high-level contains downlink symbols, or flexible symbols.
  • the NR base station gNB configures cell-level TDD configuration information through TDD-UL-DL-ConfigCommon in SIB1, which includes:
  • High-level parameter pattern1 (this information element is required, which means TDD configuration style 1, the same below), which includes the following high-level parameters:
  • the number of downlink time slots d slots the downlink time slots only contain downlink OFDM symbols (may be called DL-only time slots);
  • the number of uplink time slots u slots the uplink time slots only contain uplink OFDM symbols (which can be called UL-only time slots);
  • the period of the above configuration information is P ms, corresponding to continuous Time slots.
  • S time slots there are d slots downlink time slots first, and u slots uplink time slots are located at the end of the S time slots.
  • d sym downlink OFDM symbols are located after d slots downlink time slots, u sym uplink OFDM symbols are located before u slots uplink time slots, and the rest
  • Each OFDM symbol is an X symbol (X represents a flexible symbol).
  • the X symbol may be a downlink symbol, an uplink symbol, or a guard interval symbol between downlink and uplink in different application scenarios. Among them, for normal CP (Normal CP), For extended CP (Extended CP),
  • the TDD-UL-DL-ConfigCommon in SIB1 may include high-level parameter pattern2 (this information element is Optional, which represents TDD configuration pattern 2, the same below).
  • the configuration information forms of pattern2 and pattern1 are the same (parameters of pattern2 include: period P2, d slots, 2 , u slots, 2 , d sym, 2 , u sym, 2 ), and the meaning of the corresponding parameters is the same as that of the corresponding pattern1 parameters.
  • the reference subcarrier interval ⁇ ref is the same as pattern1, so the reference subcarrier interval ⁇ ref will not be repeatedly configured for pattern2.
  • the period of the above configuration information is P2 ms, corresponding to continuous Time slots.
  • d slots first are d slots, 2 downlink time slots, u slots, and 2 uplink time slots are located at the end of S2 time slots.
  • d sym 2 downlink OFDM symbols are located after the downlink slot
  • u sym 2 uplink OFDM symbols are located before the uplink slot
  • Each OFDM symbol is an X symbol (X represents a flexible symbol).
  • the X symbol may be a downlink symbol, an uplink symbol, or a guard interval symbol between downlink and uplink in different application scenarios. Among them, for normal CP (Normal CP), For extended CP (Extended CP),
  • the configuration period of the TDD configuration information is (P+P2) ms, including the above-mentioned S and S2 time slots (S in the time domain first, followed by S2 ).
  • P is a divisor of 20, that is, P is divisible by 20, and the first time domain symbol of every 20/P cycles is the first symbol of an even frame;
  • P+P2 is a divisor of 20, that is, P+P2 can be divisible by 20, and it needs to satisfy that the first time domain symbol of every 20/(P+P2) period is the first symbol of an even-numbered frame.
  • the possible value ranges of P and P2 include ⁇ 0.5, 0.625, 1, 1.25, 2, 2.5, 5, 10 ⁇ ms.
  • the values of P and P2 also include 3ms and 4ms, which are represented by IE: dl-UL-TransmissionPeriodicity-v1530.
  • IE dl-UL-TransmissionPeriodicity-v1530.
  • each CQI value corresponds to a combination of modulation mode and code rate.
  • a set of modulation schemes and the number of transport block bits TBS correspond to a CQI value (0 to 15 in Table 5.2.2.1-3).
  • This group of modulation methods and the TBS determined according to the PDSCH TBS determination method can be indicated by the signaling in the DCI (MCS indicator field), and transmitted on the PDSCH occupying the CSI reference resource (CSI reference resource);
  • the modulation mode is indicated by the modulation mode indicated by the CQI value in Table 5.2.2.1-3;
  • the effective code rate of the PDSCH transmitted on the CSI reference resource is closest to the code rate indicated by the CQI value (see Table 5.2.2.1-3).
  • the definition of the CSI reference resource of a serving cell is as follows:
  • the CSI reference resource represents a set of derived CSI-related (relate) downlink PRBs
  • the time domain resource of the CSI reference resource is a downlink time slot, expressed as nn CSI_ref , where, ⁇ DL and ⁇ UL respectively indicate the configuration of the downlink and uplink subcarrier spacing.
  • n CSI_ref in Rel-15 NR is (take aperiodic CSI reporting as an example):
  • n CSI_ref makes the CSI reference resource and the corresponding CSI request the same Valid downlink slot (valid downlink slot). Otherwise, the value of n CSI_ref is not less than the minimum value of the time delay requirement (delay requirment, in units of time slots), and satisfies nn CSI_ref corresponding to a valid downlink time slot.
  • a time slot slot is a valid downlink time slot when it meets the following two conditions.
  • the time slot contains at least one downlink symbol configured by a higher layer, or a flexible symbol
  • the method for determining PDSCH and TBS includes 4 steps.
  • the solution of the present invention is mainly aimed at determining the assumptions of TBS in the CQI value derivation process, so only the first step related to it is described, steps 2 to 4 Do not repeat them here.
  • the first step of the TBS determination method can be summarized as determining the number of resource units RE used for PDSCH transmission in a time slot, N RE .
  • the UE first determines the number of REs allocated for PDSCH transmission in a PRB, N RE ′. in, Indicates the number of subcarriers included in a PRB; Represents the number of symbols allocated for PDSCH transmission in a time slot; Indicates the number of REs used for DMRS transmission in each PRB; Represents the value of the RRC cell xOverhead (when xOverhead is configured), if xOverhead is default (absent, or not present), then The value of is 0.
  • the UE determines the number of REs N RE used for PDSCH transmission in a time slot.
  • N RE min(156, N'RE ) ⁇ n PRB , where n PRB represents the number of PRBs allocated for PDSCH transmission.
  • the UE determines the TBS according to the modulation method and target code rate corresponding to the MCS index (MCS index), and then determines the effective code rate of the TB based on the CSI reference resource, and then determines the closest CQI index
  • MCS index MCS index
  • the indicated code rate can determine the CQI index.
  • the UE derives the CQI value (CQI value) reported in the uplink time slot n as the maximum CQI value (CQI index) that satisfies the following conditions.
  • the transmitted time-frequency resource is a CSI reference resource, which can be received by the UE, and the block error probability (transport block error probability) ) Does not exceed 0.1 or 0.00001. Corresponding to Table 5.2.2.1-3, the value is 0.1.
  • the UE determines the CSI reference resource
  • the UE determines the TBS of the PDSCH on the CSI reference resource according to one or more assumptions, and determines whether the block error rate exceeds 0.1 or 0.00001;
  • the UE determines the effective code rate of the aforementioned PDSCH TB transmission, and determines the corresponding CQI value;
  • the UE continuously increases the MCS index, and determines that the block error rate does not exceed the maximum CQI value corresponding to 0.1 or 0.00001, which is used as the derived CQI value.
  • the solution of the present invention is mainly aimed at the method for determining the assumption condition when the UE determines the TBS of the PDSCH on the CSI reference resource.
  • Out-of-Coverage side-line communication Two UEs performing sidelink communication have no network coverage (for example, the UE cannot detect anything that meets the "cell selection criteria" on the frequency where sidelink communication is required. Cell, which means that the UE has no network coverage).
  • Both UEs performing sidelink communication have network coverage (for example, the UE detects at least one cell that meets the "cell selection criteria" on the frequency that needs sidelink communication, Indicates that the UE has network coverage).
  • Partial-Coverage (Partial-Coverage) side-line communication One of the UEs performing sidelink communication has no network coverage, and the other UE has network coverage.
  • the UE From the UE side, the UE has only two scenarios without network coverage and with network coverage. Part of the network coverage is described from the perspective of sidelink communication.
  • Fig. 1 is a schematic diagram showing LTE V2X UE side-line communication.
  • UE1 sends sideline communication control information (SCI format 1) to UE2, which is carried by the physical layer channel PSCCH.
  • SCI format 1 includes PSSCH scheduling information, such as PSSCH frequency domain resources.
  • UE1 sends sideline communication data to UE2, which is carried by the physical layer channel PSSCH.
  • the PSCCH and the corresponding PSSCH adopt a frequency division multiplexing manner, that is, the PSCCH and the corresponding PSSCH are located on the same subframe in the time domain and are located on different PRBs in the frequency domain.
  • the specific design methods of PSCCH and PSSCH are as follows:
  • PSCCH occupies one subframe in the time domain and two consecutive PRBs in the frequency domain.
  • the initialization of the scrambling sequence uses a predefined value 510.
  • PSCCH can carry SCI format 1, where SCI format 1 contains at least frequency domain resource information of PSSCH. For example, for the frequency domain resource indicator field, SCI format 1 indicates the starting sub-channel number and the number of consecutive sub-channels of the PSSCH corresponding to the PSCCH.
  • PSSCH occupies a subframe in the time domain, and the corresponding PSCCH adopts frequency division multiplexing (FDM).
  • PSSCH occupies one or more consecutive sub-channels in the frequency domain.
  • the sub-channel represents n subCHsize consecutive PRBs in the frequency domain.
  • n subCHsize is configured by RRC parameters, and the number of starting sub-channels and consecutive sub-channels It is indicated by the frequency domain resource indicator field of SCI format 1.
  • Fig. 2 shows two resource allocation methods of LTE V2X, which are respectively called resource allocation based on base station scheduling (Transmission Mode 3) and resource allocation based on UE sensing (sensing) (Transmission Mode 4).
  • the base station can configure the UE's resource allocation mode through UE-level dedicated RRC signaling (dedicated RRC signaling) SL-V2X-ConfigDedicated, or called the UE's transmission mode ,
  • UE-level dedicated RRC signaling dedicated RRC signaling
  • SL-V2X-ConfigDedicated SL-V2X-ConfigDedicated
  • Resource allocation mode based on base station scheduling indicates that the frequency domain resources used for sidelink sideline communication come from the scheduling of the base station.
  • Transmission mode 3 includes two scheduling methods, namely dynamic scheduling and semi-persistent scheduling (SPS).
  • SPS semi-persistent scheduling
  • the UL grant (DCI format 5A) includes the frequency domain resources of the PSSCH, and the CRC of the PDCCH or EPDCCH carrying the DCI format 5A is scrambled by the SL-V-RNTI.
  • the base station configures one or more (up to 8) configured scheduling grants through IE: SPS-ConfigSL-r14, and each configured scheduling grant contains a scheduling grant number (index) and scheduling Licensed resource period.
  • the UL grant (DCI format 5A) includes the frequency domain resources of the PSSCH, as well as the indication information (3 bits) of the scheduling permission number and the indication information of SPS activation (activate) or release (release or deactivation).
  • the CRC of the PDCCH or EPDCCH carrying the DCI format 5A is scrambled by the SL-SPS-V-RNTI.
  • the RRC signaling SL-V2X-ConfigDedicated when the RRC signaling SL-V2X-ConfigDedicated is set to scheduled-r14, it means that the UE is configured in a transmission mode based on base station scheduling.
  • the base station configures SL-V-RNTI or SL-SPS-V-RNTI through RRC signaling, and through PDCCH or EPDCCH (DCI format 5A, CRC uses SL-V-RNTI scrambling or SL-SPS-V-RNTI scrambling) ) Send an uplink scheduling permission UL grant to the UE.
  • the uplink scheduling grant UL grant includes at least the scheduling information of the PSSCH frequency domain resources in the sidelink communication.
  • the PSSCH frequency domain resource indicator field in the uplink scheduling grant UL grant (DCI format 5A) is used as the PSCCH (SCI format 1) indicates the frequency domain resources of the PSSCH, and sends PSCCH (SCI format 1) and the corresponding PSSCH.
  • the UE receives the SL-SPS-V-RNTI scrambled DCI format 5A on the downlink subframe n. If the DCI format 5A contains the indication information of SPS activation, the UE determines the frequency domain resources of the PSSCH according to the indication information in the DCI format 5A, and determines the time domain resources of the PSSCH (PSSCH transmission subframe) according to information such as subframe n.
  • Resource allocation method based on UE sensing indicates that the resources used for sidelink communication are based on the UE's sensing process of the candidate available resource set.
  • RRC signaling SL-V2X-ConfigDedicated is set to ue-Selected-r14, it means that the UE is configured in the transmission mode based on UE sensing.
  • the base station configures the available transmission resource pool, and the UE determines the PSSCH sidelink transmission resource in the transmission resource pool (resource pool) according to certain rules (for a detailed description of the process, refer to the LTE V2X UE sensing process section) , And send PSCCH (SCI format 1) and the corresponding PSSCH.
  • FIG. 3 is a schematic diagram showing the basic process of the method executed by the user equipment in the first embodiment of the present invention.
  • the steps performed by the user equipment include:
  • step S101 the user equipment receives the configuration information sent by the base station gNB.
  • the configuration information configures the CQI value (CQI index) reported by the user equipment, or the configuration information includes configuration information for configuring the CQI index reported by the user equipment.
  • step S102 the user equipment determines the number of REs N RE ′ allocated for PDSCH transmission in a PRB in the CSI reference resource.
  • the user equipment assumes (or assume) the number of symbols allocated for PDSCH and DMRS
  • the user equipment assumes (assume, or assume) that the symbols used for PDSCH transmission (PDSCH symbols) do not include DMRS,
  • the user equipment assumes (or assumes) the number of REs used for DMRS transmission in each PRB
  • the user equipment assumption (or assumption) (within each PRB) includes but is not limited to the number of REs that control signaling overhead
  • the user equipment determines the
  • step S103 the user equipment determines the number of transport block bits TBS in the CSI reference resource according to the number of REs N RE ′ allocated for PDSCH transmission in one PRB in the CSI reference resource.
  • the user equipment determines the number of transport block bits TBS in the CSI reference resource according to including but not limited to the N RE ′.
  • step S104 optionally, the user equipment derives a CQI value (CQI index) according to the TBS in the CSI reference resource.
  • the user equipment derives a CQI value (CQI index) according to the TBS including but not limited to the CSI reference resource.
  • CQI index CQI index
  • FIG. 3 is a schematic diagram showing the basic process of the method executed by the user equipment in the second embodiment of the present invention.
  • the steps performed by the user equipment include:
  • step S101 the user equipment receives the configuration information sent by the base station gNB.
  • the configuration information configures the CQI value (CQI index) reported by the user equipment, or the configuration information includes configuration information for configuring the CQI index reported by the user equipment.
  • step S102 the user equipment determines the number of REs N RE ′ allocated for PDSCH transmission in a PRB in the CSI reference resource.
  • the user equipment assumes (or assume) the number of symbols allocated for PDSCH and DMRS
  • the user equipment assumes (assume, or assume) that the symbols used for PDSCH transmission (PDSCH symbols) do not include DMRS,
  • the user equipment assumes (or assumes) the number of REs used for DMRS transmission in each PRB
  • the user equipment assumption (or assumption) (within each PRB) includes but is not limited to control signaling overhead Number of RE
  • the user equipment determines the
  • step S103 the user equipment determines the number of transport block bits TBS in the CSI reference resource according to the number of REs N RE ′ allocated for PDSCH transmission in one PRB in the CSI reference resource.
  • the user equipment determines the number of transport block bits TBS in the CSI reference resource according to including but not limited to the N RE ′.
  • step S104 optionally, the user equipment derives a CQI value (CQI index) according to the TBS in the CSI reference resource.
  • the user equipment derives a CQI value (CQI index) according to the TBS including but not limited to the CSI reference resource.
  • CQI index CQI index
  • FIG. 3 is a schematic diagram showing the basic process of the method executed by the user equipment in the third embodiment of the present invention.
  • the steps performed by the user equipment include:
  • step S101 the user equipment receives the configuration information sent by the base station gNB.
  • the configuration information configures the CQI value (CQI index) reported by the user equipment, or the configuration information includes configuration information for configuring the CQI index reported by the user equipment.
  • step S102 the user equipment determines the number of REs N RE ′ allocated for PDSCH transmission in a PRB in the CSI reference resource.
  • the user equipment assumes (or assume) the number of symbols allocated for PDSCH and DMRS
  • the user equipment assumes (assume, or assume) that the symbols used for PDSCH transmission (PDSCH symbols) do not include DMRS,
  • the user equipment assumes (or assumes) the number of REs used for DMRS transmission in each PRB
  • the user equipment assumption (or assumption) (within each PRB) includes but is not limited to control signaling overhead Number of RE Or, it is assumed to be equal to the value configured by the upper layer.
  • the user equipment assumption (or assumption) (within each PRB) includes but is not limited to control signaling overhead Number of RE Equal to the value configured by the upper layer, or, assuming
  • the user equipment determines the
  • step S103 the user equipment determines the number of transport block bits TBS in the CSI reference resource according to the number of REs N RE ′ allocated for PDSCH transmission in one PRB in the CSI reference resource.
  • the user equipment determines the number of transport block bits TBS in the CSI reference resource according to including but not limited to the N RE ′.
  • step S104 optionally, the user equipment derives a CQI value (CQI index) according to the TBS in the CSI reference resource.
  • the user equipment derives a CQI value (CQI index) according to the TBS including but not limited to the CSI reference resource.
  • CQI index CQI index
  • Fig. 4 is a block diagram showing a user equipment UE related to the present invention.
  • the user equipment UE80 includes a processor 801 and a memory 802.
  • the processor 801 may include, for example, a microprocessor, a microcontroller, an embedded processor, and the like.
  • the memory 802 may include, for example, a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a non-volatile memory (such as a flash memory), or other memories.
  • the memory 802 stores program instructions. When the instruction is run by the processor 801, it can execute the above-mentioned method executed by the user equipment described in detail in the present invention.
  • the method and related equipment of the present invention have been described above in conjunction with preferred embodiments. Those skilled in the art can understand that the methods shown above are only exemplary, and the various embodiments described above can be combined with each other without any contradiction.
  • the method of the present invention is not limited to the steps and sequence shown above.
  • the network nodes and user equipment shown above may include more modules, for example, may also include modules that can be developed or developed in the future and can be used for base stations, MMEs, or UEs, and so on.
  • the various identifiers shown above are only exemplary rather than restrictive, and the present invention is not limited to specific information elements as examples of these identifiers. Those skilled in the art can make many changes and modifications based on the teaching of the illustrated embodiment.
  • the foregoing embodiments of the present invention can be implemented by software, hardware, or a combination of both software and hardware.
  • the various components inside the base station and user equipment in the above embodiments can be implemented by a variety of devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing Device, application specific integrated circuit (ASIC), field programmable gate array (FPGA), programmable logic device (CPLD), etc.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD programmable logic device
  • base station may refer to a mobile communication data and control switching center with larger transmission power and wider coverage area, including functions such as resource allocation and scheduling, data reception and transmission.
  • User equipment may refer to a user's mobile terminal, for example, including mobile phones, notebooks, and other terminal devices that can communicate with base stations or micro base stations wirelessly.
  • the embodiments of the present invention disclosed herein can be implemented on a computer program product.
  • the computer program product is a product that has a computer-readable medium with computer program logic encoded on the computer-readable medium, and when executed on a computing device, the computer program logic provides related operations to implement The above technical solution of the present invention.
  • the computer program logic When executed on at least one processor of the computing system, the computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present invention.
  • This arrangement of the present invention is typically provided as software, code and/or other data structures arranged or encoded on a computer readable medium such as an optical medium (e.g., CD-ROM), floppy disk or hard disk, or as software, code and/or other data structures such as one or more Firmware or microcode on a ROM or RAM or PROM chip, or downloadable software images, shared databases, etc. in one or more modules.
  • Software or firmware or such a configuration may be installed on a computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
  • each functional module or each feature of the base station equipment and terminal equipment used in each of the foregoing embodiments may be implemented or executed by a circuit, and the circuit is usually one or more integrated circuits.
  • Circuits designed to perform the various functions described in this specification can include general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC) or general-purpose integrated circuits, field programmable gate arrays (FPGA), or other Programming logic devices, discrete gate or transistor logic, or discrete hardware components, or any combination of the above devices.
  • the general-purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
  • the general-purpose processor or each circuit described above may be configured by a digital circuit, or may be configured by a logic circuit.
  • the present invention can also use integrated circuits obtained by using this advanced technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种由用户设备执行的方法以及用户设备,所述方法包括:接收基站gNB发送的配置信息;确定CSI参考资源内的一个PRB中分配用于PDSCH传输的RE数目N RE';根据所述N RE'确定所述CSI参考资源内的传输块比特数目TBS;根据所述CSI参考资源内的TBS推导CQI数值。

Description

由用户设备执行的方法以及用户设备 技术领域
本发明涉及无线通信技术领域,具体涉及由用户设备执行的方法以及相应的用户设备。
背景技术
在Rel-15NR中,支持信道信息反馈机制,称为Channel State Indicator Reporting,简称为CSI上报或者CSI报告。CSI上报包含信道质量指示CQI、信道的秩RI,以及信道信道矩阵PMI。本专利的方案主要针对CSI上报中信道质量CQI的上报,对于RI以及PMI不加赘述。
Rel-15NR中支持周期(periodic)、半持续(semi-persistant,简称为SP)和非周期(aperiodic)CSI上报,上报内容(本专利中指代CQI)既可以在PUCCH信道上反馈也可以在PUSCH信道上反馈。在本专利的说明书中,包含但不限于非周期CSI上报的方案。在Rel-15NR中,非周期CSI上报采用MAC CE结合DCI的方式进行配置和触发,并基于PUSCH上报。RRC配置多个CSI触发状态,每个CSI触发状态可以对应一个或者多个上报反馈设置,由DCI中的CSI请求域(CSI request field)触发一个上报反馈设置。DCI格式0_1中的CSI请求域的大小可由RRC信令配置为0-6比特,因此最多可以指示64个CSI触发状态。当RRC配置的CSI触发状态超过64时,由MAC CE信令将其中的64个CSI触发状态映射至CSI请求域。
本专利的方案中包含用户设备UE根据一定的假设推导(derive)CQI数值(CQI index)的方法。
在传统的蜂窝网络中,所有的通信都必须经过基站。不同的是,D2D通信(Device-to-Device communication,设备到设备间直接通信)是指两个用户设备之间不经过基站或者核心网的转发而直接进行的通信方式。在 2014年3月第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的RAN#63次全会上,关于利用LTE设备实现临近D2D通信业务的研究课题获得批准(参见非专利文献1)。LTE Release 12D2D引入的功能包括:
1)LTE网络覆盖场景下临近设备之间的发现功能(Discovery);
2)临近设备间的直接广播通信(Broadcast)功能;
3)高层支持单播(Unicast)和组播(Groupcast)通信功能。
在2014年12月的3GPP RAN#66全会上,增强的LTE eD2D(enhanced D2D)的研究项目获得批准(参见非专利文献2)。LTE Release 13 eD2D引入的主要功能包括:
1)无网络覆盖场景和部分网络覆盖场景的D2D发现;
2)D2D通信的优先级处理机制。
基于D2D通信机制的设计,在2015年6月3GPP的RAN#68次全会上,批准了基于D2D通信的V2X可行性研究课题。V2X表示Vehicle to everything,希望实现车辆与一切可能影响车辆的实体信息交互,目的是减少事故发生,减缓交通拥堵,降低环境污染以及提供其他信息服务。V2X的应用场景主要包含4个方面:
1)V2V,Vehicle to Vehicle,即车-车通信;
2)V2P,Vehicle to Pedestrian,即车给行人或非机动车发送警告;
3)V2N,Vehicle to Network,即车辆连接移动网络;
4)V2I,Vehicle to Infrastructure,即车辆与道路基础设施等通信。
3GPP将V2X的研究与标准化工作分为3个阶段。第一阶段于2016年9月完成,主要聚焦于V2V,基于LTE Release 12和Release 13 D2D(也可称为sidelink侧行通信),即邻近通信技术制定(参见非专利文献3)。V2X stage 1引入了一种新的D2D通信接口,称为PC5接口。PC5接口主要用于解决高速(最高250公里/小时)及高节点密度环境下的蜂窝车联网通信问题。车辆可以通过PC5接口进行诸如位置、速度和方向等信息的交互,即车辆间可通过PC5接口进行直接通信。相较于D2D设备间的临近通信,LTE Release 14 V2X引入的功能主要包含:
1)更高密度的DMRS以支持高速场景;
2)引入子信道(sub-channel),增强资源分配方式;
3)引入具有半静态调度(semi-persistent)的用户设备感知(sensing)机制。
V2X研究课题的第二阶段归属于LTE Release 15研究范畴(参见非专利文献4),引入的主要特性包含高阶64QAM调制、V2X载波聚合、短TTI传输,同时包含发射分集的可行性研究。
在2018年6月3GPP RAN#80全会上,相应的第三阶段基于5G NR网络技术的V2X可行性研究课题(参见非专利文献5)获得批准。
现有技术文献
非专利文献
非专利文献1:RP-140518,Work item proposal on LTE Device to Device Proximity Services
非专利文献2:RP-142311,Work Item Proposal for Enhanced LTE Device to Device Proximity Services
非专利文献3:RP-152293,New WI proposal:Suppoa for V2V services based on LTE sidelink
非专利文献4:RP-170798,New WID on 3GPP V2X Phase 2
非专利文献5:RP-181480,New SID Proposal:Study on NR V2X
发明内容
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备。
根据本发明的第一方面,根据本发明的第一方面,提供了一种由用户设备执行的方法,包括:接收基站gNB发送的配置信息;所述配置信息配置所述用户设备上报CQI数值。
在上述方法中,还包括:确定CSI参考资源内的一个PRB中分配用于PDSCH传输的RE数目N RE′。
在上述方法中,可以是,一个PRB中包含的子载波数目
Figure PCTCN2021075487-appb-000001
和/或所述用户设备假设分配用于PDSCH和DMRS的符号数目
Figure PCTCN2021075487-appb-000002
和/或所述用户设备假设每个PRB内用于DMRS传输的RE数目
Figure PCTCN2021075487-appb-000003
在上述方法中,可以是,所述用户设备假设每个PRB内包括但不限于控制信令开销的RE数目
Figure PCTCN2021075487-appb-000004
在上述方法中,可以是,所述用户设备确定所述
Figure PCTCN2021075487-appb-000005
Figure PCTCN2021075487-appb-000006
在上述方法中,还包括:根据所述CSI参考资源内的一个PRB中分配用于PDSCH传输的RE数目N RE′确定所述CSI参考资源内的传输块比特数目TBS。
在上述方法中,可以是,所述用户设备根据包括但不限于所述N RE′确定所述CSI参考资源内的传输块比特数目TBS。
在上述方法中,还包括:根据所述CSI参考资源内的TBS推导CQI数值。
在上述方法中,可以是,所述用户设备根据包括但不限于所述CSI参考资源内的TBS推导CQI数值。
根据本发明的第二方面,提供了一种用户设备,包括:处理器;以及存储器,存储有指令;其中,所述指令在由所述处理器运行时执行上述方法。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1是示出了LTE V2X UE侧行通信的示意图。
图2是示出了LTE V2X的资源分配方式的示意图。
图3是示出了发明的实施例一中由用户设备执行的方法的基本过程的示意图。
图4是示出了根据本发明的实施例的用户设备的框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
下文以5G移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G移动通信系统等。
下面描述本发明涉及的部分术语,如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的通信系统中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划
LTE:Long Term Evolution,长期演进技术
NR:New Radio,新无线、新空口
PDCCH:Physical Downlink Control Channel,物理下行控制信道
DCI:Downlink Control Information,下行控制信息
PDSCH:Physical Downlink Shared Channel,物理下行共享信道
UE:User Equipment,用户设备
eNB:evolved NodeB,演进型基站
gNB:NR基站
TTI:Transmission Time Interval,传输时间间隔
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
C-RNTI:Cell Radio Network Temporary Identifier,小区无线网络临时标识
CSI:Channel State Indicator,信道状态指示
HARQ:Hybrid Automatic Repeat Request,混合自动重传请求
CSI-RS:CSI-Reference Signal,信道状态测量参考信号
CRS:Cell Reference Signal,小区特定参考信号
PUCCH:Physical Uplink Control Channel,物理上行控制信道
PUSCH:Physical Uplink Shared Channel,物理上行共享信道
UL-SCH:Uplink Shared Channel,上行共享信道
CG:Configured Grant,配置调度许可
Sidelink:侧行通信
SCI:Sidelink Control Information,侧行通信控制信息
PSCCH:Physical Sidelink Control Channel,物理侧行通信控制信道
MCS:Modulation and Coding Scheme,调制编码方案
RB:Resource Block,资源块
CRB:Common Resource Block,公共资源块
CP:Cyclic Prefix,循环前缀
PRB:Physical Resource Block,物理资源块
PSSCH:Physical Sidelink Shared Channel,物理侧行通信共享信道
FDM:Frequency Division Multiplexing,频分复用
RRC:Radio Resource Control,无线资源控制
RSRP:Reference Signal Receiving Power,参考信号接收功率
SRS:Sounding Reference Signal,探测参考信号
DMRS:Demodulation Reference Signal,解调参考信号
CRC:Cyclic Redundancy Check,循环冗余校验
PSDCH:Physical Sidelink Discovery Channel,物理侧行通信发现信道
PSBCH:Physical Sidelink Broadcast Channel,物理侧行通信广播信道
SFI:Slot Format Indication,时隙格式指示
TDD:Time Division Duplexing,时分双工
FDD:Frequency Division Duplexing,频分双工
SIB1:System Information Block Type 1,系统信息块类型1
SLSS:Sidelink synchronization Signal,侧行通信同步信号
PSSS:Primary Sidelink Synchronization Signal,侧行通信主同步信号
SSSS:Secondary Sidelink Synchronization Signal,侧行通信辅同步信号
PCI:Physical Cell ID,物理小区标识
PSS:Primary Synchronization Signal,主同步信号
SSS:Secondary Synchronization Signal,辅同步信号
BWP:BandWidth Part,带宽片段/部分
GNSS:Global Navigation Satellite System,全球导航卫星定位系统
SFN:System Frame Number,系统(无线)帧号
DFN:Direct Frame Number,直接帧号
IE:Information Element,信息元素
SSB:Synchronization Signal Block,同步系统信息块
EN-DC:EUTRA-NR Dual Connection,LTE-NR双连接
MCG:Master Cell Group,主小区组
SCG:Secondary Cell Group,辅小区组
PCell:Primary Cell,主小区
SCell:Secondary Cell,辅小区
PSFCH:Physical Sidelink Feedback Channel,物理侧行通信反馈信道
SPS:Semi-Persistant Scheduling,半静态调度
TA:Timing Advance,上行定时提前量
RBG:Resource Block Group,资源块组
MSB:Most Significant Bit,最高比特位
LSB:Least Significant Bit,最低比特位
MAC:Medium Access Control,媒体接入控制(层/协议)
MAC CE:MAC Control Element,MAC控制单元
QAM:Quadrature Amplitude Modulation,正交幅度调制
QPSK:Quadrature Phase Shift Keying,正交相移键控调制
下文是与本发明方案相关联现有技术的描述。如无特别说明,具体实施例中与现有技术中相同术语的含义相同。
值得指出的是,本发明说明书中涉及的V2X与sidelink含义相同。文中的V2X也可以表示sidelink;相似地,文中的sidelink也可以表示V2X,后文中不做具体区分和限定。
本发明的说明书中的V2X(sidelink)通信的资源分配方式与V2X(sidelink)通信的传输模式可以等同替换。说明书中涉及的资源分配方式可以表示传输模式,以及,涉及的传输模式可以表示资源分配方式。
本发明的说明书中涉及的资源块RB,公共资源块CRB,物理资源块PRB均表示频域上12个连续的子载波。例如,对于子载波间隔15kHz,RB、CRB、PRB在频域上占据180kHz。
本发明的说明书中涉及的QPSK表示正交移位键控调制,是一种2阶调制方式,即调制后的一个调制符号包含2个比特;类似地,16QAM,64QAM,256QAM分别表示调制阶数为4,6,8的正交幅度调制,即调制后的一个调制符号分别包含4个比特,6个比特以及8个比特。码率表示信道编码速率或者信道编码效率。一个传输块TB(包含比特数记为a)经过信道编码(LDPC等)后的比特数为b,那么,码率等于a/b。考虑信道编码前增加的CRC校验码(CRC attachment,包含的比特数记为c),本发明的说明书中涉及的有效码率(effective coding rate)等于(a+c)/b,或者,有效码率的含义是下行信息比特的比特数(包含CRC校验码的比特)与PDSCH上传输的物理比特数目的比值。频谱效率(spectral efficiency,或者,efficiency)等于码率与调制阶数的乘积。例如,以64QAM为例,码率为0.93,那么,频谱效率等于0.93*6=5.58(bps/Hz)。
本发明的说明书中涉及的CQI数值表示CQI index,或者,CQI value,二者的含义可以等同替换。
NR中(包含NR sidelink)的参数集合(numerology)和NR中(包含NR  sidelink)的时隙slot
参数集合numerology包含子载波间隔和循环前缀CP长度两方面含义。其中,NR支持5种子载波间隔,分别为15k,30k,60k,120k,240kHz(对应μ=0,1,2,3,4),表格4.2-1示出了支持的传输参数集合,具体如下所示。
表4.2-1 NR支持的子载波间隔
μ Δf=2 μ·15[kHz] CP(循环前缀)
0 15 正常
1 30 正常
2 60 正常,扩展
3 120 正常
4 240 正常
仅当μ=2时,即60kHz子载波间隔的情况下支持扩展(Extended)CP,其他子载波间隔的情况仅支持正常CP。对于正常(Normal)CP,每个时隙(slot)含有14个OFDM符号;对于扩展CP,每个时隙含有12个OFDM符号。对于μ=0,即15kHz子载波间隔,1个时隙=1ms;μ=1,即30kHz子载波间隔,1个时隙=0.5ms;μ=2,即60kHz子载波间隔,1个时隙=0.25ms,以此类推。
NR和LTE对于子帧(subframe)的定义相同,表示1ms。对于子载波间隔配置μ,1个子帧内(1ms)的slot编号可以表示为
Figure PCTCN2021075487-appb-000007
范围为0到
Figure PCTCN2021075487-appb-000008
1个系统帧(frame,时长10ms)内的slot编号可以表示为
Figure PCTCN2021075487-appb-000009
范围为0到
Figure PCTCN2021075487-appb-000010
其中,
Figure PCTCN2021075487-appb-000011
Figure PCTCN2021075487-appb-000012
在不同子载波间隔μ的情况的定义如下表格所示。
表格4.3.2-1:正常CP时每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
Figure PCTCN2021075487-appb-000013
表格4.3.2-2:扩展CP时(60kHz)每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
Figure PCTCN2021075487-appb-000014
在NR载波上,系统帧(或者,简称为帧)的编号SFN范围为0至1023。在侧行通信中引入了直接系统帧号DFN的概念,编号范围同样为0至1023,上述对于系统帧和numerology之间关系的叙述同样可以应用于直接系统帧,例如,一个直接系统帧的时长同样等于10ms,对于15kHz的子载波间隔,一个直接系统帧包括10个时隙slot,等等。DFN应用于sidelink载波上的定时timing。
带宽片段(BWP)
在NR中,对每一个参数集numerology,可以定义一个或者多个带宽片段。每个BWP包含一个或者多个连续的CRB。假设某个BWP的编号为i,则其起点
Figure PCTCN2021075487-appb-000015
(或者,用
Figure PCTCN2021075487-appb-000016
来表示)和长度
Figure PCTCN2021075487-appb-000017
(或者,用
Figure PCTCN2021075487-appb-000018
来表示)必须同时满足以下关系:
Figure PCTCN2021075487-appb-000019
Figure PCTCN2021075487-appb-000020
即该BWP所包含的CRB必须位于所对应numerology的资源栅格内。
Figure PCTCN2021075487-appb-000021
使用CRB编号,表示BWP的最低编号的CRB到point A的距离,以RB为单位。
BWP内的资源块称为物理资源块(physical resource block,PRB),其编号为
Figure PCTCN2021075487-appb-000022
其中物理资源块0对应该BWP的最低编号的CRB,即
Figure PCTCN2021075487-appb-000023
对于某个serving cell,gNB通过如下高层参数配置某个BWP:
1)子载波间隔;
2)CP长度;
3)高层参数locationAndBandwidth指示该BWP相对于资源栅格起始CRB
Figure PCTCN2021075487-appb-000024
的偏移值offset(RB start)和该BWP频域上连续CRB的个数L RB,满足
Figure PCTCN2021075487-appb-000025
其中O carrier表示offsetToCarrier;其中,参数locationAndBandwidth指示一个RIV(Resource Indication Value,资源指示值)。RIV关于L RB和RB start的计算关系为:如果
Figure PCTCN2021075487-appb-000026
那么
Figure PCTCN2021075487-appb-000027
Figure PCTCN2021075487-appb-000028
否则,
Figure PCTCN2021075487-appb-000029
Figure PCTCN2021075487-appb-000030
其中,
Figure PCTCN2021075487-appb-000031
并且,
Figure PCTCN2021075487-appb-000032
4)该BWP的编号;
5)BWP公共和BWP专有的参数配置,例如下行BWP的PDCCH和PDSCH的配置等。
NR TDD配置信息的指示和确定方法
该章节叙述说明书中的高层配置的时隙结构,即高层配置的某个时隙中是否含有下行符号,或者,flexible符号。
NR基站gNB通过SIB1中的TDD-UL-DL-ConfigCommon配置小区级的TDD配置信息,其中包括:
·参考的子载波间隔μ ref
·高层参数pattern1(该信息元素为必选,表示TDD配置样式1,下同),其中包括如下高层参数:
■配置周期P(ms);
■下行时隙数目d slots,下行时隙中仅含有下行OFDM符号(可 称为DL-only时隙);
■下行OFDM符号数目d sym
■上行时隙数目u slots,上行时隙中仅含有上行OFDM符号(可称为UL-only时隙);
■上行OFDM符号数目u sym
上述配置信息的周期为P ms,对应连续的
Figure PCTCN2021075487-appb-000033
个时隙。在S个时隙中,首先是d slots个下行时隙,u slots个上行时隙位于S个时隙的最后。d sym个下行OFDM符号位于d slots个下行时隙后,u sym个上行OFDM符号位于u slots个上行时隙前,其余的
Figure PCTCN2021075487-appb-000034
Figure PCTCN2021075487-appb-000035
个OFDM符号为X符号(X表示flexible符号)。X符号在不同的应用场景中可能为下行符号,或者上行符号,或者作为下行上行之间的保护间隔符号。其中,对于正常CP(Normal CP),
Figure PCTCN2021075487-appb-000036
对于扩展CP(Extended CP),
Figure PCTCN2021075487-appb-000037
SIB1中的TDD-UL-DL-ConfigCommon可能包含高层参数pattern2(该信息元素为Optional可选,表示TDD配置样式2,下同)。pattern2和pattern1的配置信息形式相同(pattern2的参数包括:周期P2,d slots,2,u slots,2,d sym,2,u sym,2),相应的参数含义与对应的pattern1参数相同。参考子载波间隔μ ref和pattern1相同,因此对于pattern2不会重复配置参考子载波间隔μ ref。上述配置信息的周期为P2 ms,对应连续的
Figure PCTCN2021075487-appb-000038
个时隙。在S2个时隙中,首先是d slots,2个下行时隙,u slots,2个上行时隙位于S2个时隙的最后。d sym,2个下行OFDM符号位于下行时隙后,u sym,2个上行OFDM符号位于上行时隙前,其余的
Figure PCTCN2021075487-appb-000039
Figure PCTCN2021075487-appb-000040
个OFDM符号为X符号(X表示flexible符号)。X符号在不同的应用场景中可能为下行符号,或者上行符号,或者作为下行上行之间的保护间隔符号。其中,对于正常CP(Normal CP),
Figure PCTCN2021075487-appb-000041
对于扩展CP(Extended CP),
Figure PCTCN2021075487-appb-000042
当TDD-UL-DL-ConfigCommon同时包含pattern1和pattern2时,该TDD配置信息的配置周期为(P+P2)ms,包含上述的S和S2个时隙(时域上首先为S,其次为S2)。
上述配置信息中的周期P和P2需满足如下条件:
1)P为20的约数,即P可被20整除,同时需满足每20/P个周期的首个时域符号是偶数帧的首个符号;
2)P+P2为20的约数,即P+P2可被20整除,同时需满足每20/(P+P2)个周期的首个时域符号是偶数帧的首个符号。
P和P2的可取值范围包括{0.5,0.625,1,1.25,2,2.5,5,10}ms。P和P2的取值也包含3ms和4ms,由IE:dl-UL-TransmissionPeriodicity-v1530表示。当基站在pattern1/2中配置了dl-UL-TransmissionPeriodicity-v1530时,UE忽略对应pattern1/2的dl-UL-TransmissionPeriodicity。
CQI数值(CQI index)
在Rel-15 NR中,以包含256QAM的情况为例,CQI数值和对应的含义如表格5.2.2.1-3所示。
表5.2.2.1-3:包含256QAM的CQI数值表格
Figure PCTCN2021075487-appb-000043
一个CQI数值(CQI index)对应的调制方式和传输块比特数TBS
如表格5.2.2.1-3所示,每个CQI数值对应(correspond to)一组(a combination of)调制方式和码率。在Rel-15NR中,当同时满足下述三个条件时,一组调制方式(modulation scheme)和传输块比特数TBS对应 一个CQI数值(表格5.2.2.1-3中的0至15)。
1)该组调制方式和根据PDSCH TBS确定方法确定的TBS可通过DCI中的信令指示(MCS指示域),并且在占据CSI参考资源(CSI reference resource)的PDSCH传输;
2)调制方式由表格5.2.2.1-3中CQI数值指示的调制方式指示;
3)上述条件1)中在CSI参考资源上传输的PDSCH的有效码率最接近于(closest to)CQI数值指示的码率(参见表格5.2.2.1-3)。
CSI参考资源(CSI reference resource)
一个服务小区(serving cell)的CSI参考资源的定义如下:
1)对于频域资源,CSI参考资源表示推导的(derived)CSI相关的(relate)下行PRB的集合;
2)对于时域资源,假设在上行时隙n’进行CSI上报,那么CSI参考资源的时域资源为一个下行时隙,表示为n-n CSI_ref,其中,
Figure PCTCN2021075487-appb-000044
μ DL和μ UL分别表示下行和上行子载波间隔的配置。
在Rel-15 NR中对于n CSI_ref的定义为(以非周期CSI上报为例):
■对于非周期CSI上报,如果DCI中的CSI请求域(CSI request field)指示CSI上报和CSI请求在同一个时隙,那么,n CSI_ref的取值使得CSI参考资源和相应的CSI请求是同一个有效的下行时隙(valid downlink slot)。否则,n CSI_ref的取值为不小于时延要求(delay requirment,以时隙为单位)的最小值,并且满足n-n CSI_ref对应一个有效的下行时隙。
有效的下行时隙(valid downlink slot)
在一个服务小区中,一个时隙slot满足下述两个条件时,即为一个有效的下行时隙。
1)该时隙至少包含一个高层配置的下行符号,或者,flexible符号;
2)对于UE来说,该时隙不会落入测量间隔(measurement gap)范围内。
PDSCH TBS的确定方法
在Rel-15NR中,PDSCH TBS的确定方法共包含4个步骤,本发明的方案主要针对CQI数值推导过程中确定TBS的假设条件,因此仅叙述与之相关的第一个步骤,步骤2至4此处不加赘述。
TBS确定方法的首个步骤可以概述为确定一个时隙slot中用于PDSCH传输的资源单元RE数目N RE
■UE首先确定一个PRB中分配用于PDSCH传输的RE数目N RE′。
Figure PCTCN2021075487-appb-000045
其中,
Figure PCTCN2021075487-appb-000046
表示一个PRB中包含的子载波数目;
Figure PCTCN2021075487-appb-000047
表示一个时隙中分配的PDSCH传输的符号数;
Figure PCTCN2021075487-appb-000048
表示每个PRB内用于DMRS传输的RE数目;
Figure PCTCN2021075487-appb-000049
表示RRC信元xOverhead的数值(在配置了xOverhead的情况下),如果xOverhead缺省(absent,或者,not present),那么
Figure PCTCN2021075487-appb-000050
的取值是0。
■然后,UE确定一个时隙内用于PDSCH传输的RE数目N RE。其中,N RE=min(156,N′ RE)×n PRB,其中n PRB表示分配用于PDSCH传输的PRB数目。
CQI数值推导(derive)方法的框架(framework)
值得指出的是,UE根据MCS索引(MCS index)对应的调制方式和目标码率(target code rate)确定TBS,结合CSI参考资源进而确定该TB的有效码率,然后可确定最接近的CQI index指示的码率,即可以确定该 CQI index。
UE推导在上行时隙n上报的CQI数值(CQI value)为满足下述条件的最大CQI数值(CQI index)。
■对应一个CQI index的一组调制方式和传输块比特数TBS所指代的一个PDSCH传输块TB,传输的时频资源为CSI参考资源,可以被UE接收,并且误块率(transport block error probability)不超过0.1或者0.00001。对应表格5.2.2.1-3,该取值为0.1。
综上所述,在Rel-15NR中,UE推导上报的CQI数值方法的框架为:
1)UE确定CSI参考资源;
2)UE根据一个或者多个假设条件确定CSI参考资源上的PDSCH的TBS,并且判定误块率是否超过0.1或者0.00001;
3)如果误块率未超过0.1或者0.00001,那么,UE确定上述PDSCH TB传输的有效码率,并且确定对应的CQI数值;
4)UE不断增加MCS索引,并且确定误块率不超过0.1或者0.00001对应的最大CQI数值,即作为推导的CQI数值。
本发明的方案主要针对UE确定CSI参考资源上的PDSCH的TBS时,假设条件的确定方法。
Sidelink通信的场景
1)无网络覆盖(Out-of-Coverage)侧行通信:进行sidelink通信的两个UE都没有网络覆盖(例如,UE在需要进行sidelink通信的频率上检测不到任何满足“小区选择准则”的小区,表示该UE无网络覆盖)。
2)有网络覆盖(In-Coverage)侧行通信:进行sidelink通信的两个UE都有网络覆盖(例如,UE在需要进行sidelink通信的频率上至少检测到一个满足“小区选择准则”的小区,表示该UE有网络覆盖)。
3)部分网络覆盖(Partial-Coverage)侧行通信:进行sidelink通信的 其中一个UE无网络覆盖,另一个UE有网络覆盖。
从UE侧来讲,该UE仅有无网络覆盖和有网络覆盖两种场景。部分网络覆盖是从sidelink通信的角度来描述的。
LTE V2X(sidelink)通信的基本过程
图1是示出了LTE V2X UE侧行通信的示意图。首先,UE1向UE2发送侧行通信控制信息(SCI format 1),由物理层信道PSCCH携带。SCI format 1包含PSSCH的调度信息,例如PSSCH的频域资源等。其次,UE1向UE2发送侧行通信数据,由物理层信道PSSCH携带。PSCCH和相应的PSSCH采用频分复用的方式,即PSCCH和相应的PSSCH在时域上位于相同的子帧上,在频域上位于不同的PRB上。PSCCH和PSSCH的具体设计方式如下:
1)PSCCH在时域上占据一个子帧,频域上占据两个连续的PRB。加扰序列的初始化采用预定义数值510。PSCCH中可携带SCIformat 1,其中SCI format 1至少包含PSSCH的频域资源信息。例如,对于频域资源指示域,SCI format 1指示该PSCCH对应的PSSCH的起始sub-channel编号和连续sub-channel的数目。
2)PSSCH在时域上占据一个子帧,和对应的PSCCH采用频分复用(FDM)。PSSCH在频域上占据一个或者多个连续的sub-channel,sub-channel在频域上表示n subCHsize个连续的PRB,n subCHsize由RRC参数配置,起始sub-channel和连续sub-channel的数目由SCI format 1的频域资源指示域指示。
LTE V2X的资源分配方式Transmission Mode 3/4
图2是示出了LTE V2X的两种资源分配方式,分别称为基于基站调度的资源分配(Transmission Mode 3)和基于UE感知(sensing)的资源分配(Transmission Mode 4)。LTE V2X中,当存在eNB网络覆盖的情况下,基站可通过UE级的专有RRC信令(dedicated RRC signaling) SL-V2X-ConfigDedicated配置该UE的资源分配方式,或称为该UE的传输模式,具体为:
1)基于基站调度的资源分配方式(Transmission Mode 3):基于基站调度的资源分配方式表示sidelink侧行通信所使用的频域资源来自于基站的调度。传输模式3包含两种调度方式,分别为动态调度和半静态调度(SPS)。对于动态调度,UL grant(DCI format 5A)中包括PSSCH的频域资源,承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-V-RNTI加扰。对于SPS半静态调度,基站通过IE:SPS-ConfigSL-r14配置一个或者多个(至多8个)配置的调度许可(configured grant),每个配置的调度许可含有一个调度许可编号(index)和调度许可的资源周期。UL grant(DCI format 5A)中包括PSSCH的频域资源,以及,调度许可编号的指示信息(3bits)和SPS激活(activate)或者释放(release,或者,去激活)的指示信息。承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-SPS-V-RNTI加扰。
具体地,当RRC信令SL-V2X-ConfigDedicated置为scheduled-r14时,表示该UE被配置为基于基站调度的传输模式。基站通过RRC信令配置SL-V-RNTI或者SL-SPS-V-RNTI,并通过PDCCH或者EPDCCH(DCI format 5A,CRC采用SL-V-RNTI加扰或者采用SL-SPS-V-RNTI加扰)向UE发送上行调度许可UL grant。上述上行调度许可UL grant中至少包含sidelink通信中PSSCH频域资源的调度信息。当UE成功监听到由SL-V-RNTI加扰或者SL-SPS-V-RNTI加扰的PDCCH或者EPDCCH后,将上行调度许可UL grant(DCI format 5A)中的PSSCH频域资源指示域作为PSCCH(SCI format 1)中PSSCH的频域资源的指示信息,并发送PSCCH(SCI format 1)和相应的PSSCH。
对于传输模式3中的半静态调度SPS,UE在下行子帧n上接收SL-SPS-V-RNTI加扰的DCI format 5A。如果DCI format 5A中包含SPS激活的指示信息,该UE根据DCI format 5A中的指示信息 确定PSSCH的频域资源,根据子帧n等信息确定PSSCH的时域资源(PSSCH的发送子帧)。
2)基于UE感知(sensing)的资源分配方式(Transmission Mode 4):基于UE sensing的资源分配方式表示用于sidelink通信的资源基于UE对候选可用资源集合的感知(sensing)过程。RRC信令SL-V2X-ConfigDedicated置为ue-Selected-r14时表示该UE被配置为基于UE sensing的传输模式。在基于UE sensing的传输模式中,基站配置可用的传输资源池,UE根据一定的规则(详细过程的描述参见LTE V2X UE sensing过程部分)在传输资源池(resource pool)中确定PSSCH的sidelink发送资源,并发送PSCCH(SCI format 1)和相应的PSSCH。
以下,对本发明所涉及的具体的示例以及实施例等进行详细说明。另外,如上所述,本公开中记载的示例以及实施例等是为了容易理解本发明而进行的示例性说明,并不是对本发明的限定。
[实施例一]
图3是示出了本发明的实施例一的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例一的由用户设备执行的方法。
如图3所示,在本发明的实施例一中,用户设备执行的步骤包括:
在步骤S101,用户设备接收基站gNB发送的配置信息。
可选地,所述配置信息配置所述用户设备上报CQI数值(CQI index),或者,所述配置信息包含配置所述用户设备上报CQI index的配置信息。
在步骤S102,所述用户设备确定CSI参考资源内(in the CSI reference resource)的一个PRB中分配用于PDSCH传输的RE数目N RE′。
可选地,一个PRB中包含的子载波数目
Figure PCTCN2021075487-appb-000051
可选地,所述用户设备假设(assume,或者,假定)分配用于PDSCH和DMRS的符号数目
Figure PCTCN2021075487-appb-000052
可选地,所述用户设备假设(assume,或者,假定)所述用于PDSCH传输的符号(PDSCH symbols)中不包括DMRS,
或者,
可选地,所述用户设备假设(assume,或者,假定)每个PRB内用于DMRS传输的RE数目
Figure PCTCN2021075487-appb-000053
可选地,所述用户设备假设(assume,或者,假定)(每个PRB内)包括但不限于控制信令开销的RE数目
Figure PCTCN2021075487-appb-000054
可选地,所述用户设备确定所述
Figure PCTCN2021075487-appb-000055
在步骤S103,所述用户设备根据所述CSI参考资源内的一个PRB中分配用于PDSCH传输的RE数目N RE′确定所述CSI参考资源内的传输块比特数目TBS。
可选地,所述用户设备根据包括但不限于所述N RE′确定所述CSI参考资源内的传输块比特数目TBS。
在步骤S104,可选地,所述用户设备根据所述CSI参考资源内的TBS推导CQI数值(CQI index)。
可选地,所述用户设备根据包括但不限于所述CSI参考资源内的TBS推导CQI数值(CQI index)。
[实施例二]
图3是示出了本发明的实施例二的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例二的由用户设备执行的方法。
如图3所示,在本发明的实施例二中,用户设备执行的步骤包括:
在步骤S101,用户设备接收基站gNB发送的配置信息。
可选地,所述配置信息配置所述用户设备上报CQI数值(CQI index), 或者,所述配置信息包含配置所述用户设备上报CQI index的配置信息。
在步骤S102,所述用户设备确定CSI参考资源内(in the CSI reference resource)的一个PRB中分配用于PDSCH传输的RE数目N RE′。
可选地,一个PRB中包含的子载波数目
Figure PCTCN2021075487-appb-000056
可选地,所述用户设备假设(assume,或者,假定)分配用于PDSCH和DMRS的符号数目
Figure PCTCN2021075487-appb-000057
可选地,所述用户设备假设(assume,或者,假定)所述用于PDSCH传输的符号(PDSCH symbols)中不包括DMRS,
或者,
可选地,所述用户设备假设(assume,或者,假定)每个PRB内用于DMRS传输的RE数目
Figure PCTCN2021075487-appb-000058
可选地,如果PDSCH接收(PDSCH reception)的CP长度配置为扩展CP(ECP),那么,所述用户设备假设(assume,或者,假定)(每个PRB内)包括但不限于控制信令开销的RE数目
Figure PCTCN2021075487-appb-000059
可选地,所述用户设备确定所述
Figure PCTCN2021075487-appb-000060
在步骤S103,所述用户设备根据所述CSI参考资源内的一个PRB中分配用于PDSCH传输的RE数目N RE′确定所述CSI参考资源内的传输块比特数目TBS。
可选地,所述用户设备根据包括但不限于所述N RE′确定所述CSI参考资源内的传输块比特数目TBS。
在步骤S104,可选地,所述用户设备根据所述CSI参考资源内的TBS推导CQI数值(CQI index)。
可选地,所述用户设备根据包括但不限于所述CSI参考资源内的TBS推导CQI数值(CQI index)。
[实施例三]
图3是示出了本发明的实施例三的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例三的由用户设备执行的方法。
如图3所示,在本发明的实施例三中,用户设备执行的步骤包括:
在步骤S101,用户设备接收基站gNB发送的配置信息。
可选地,所述配置信息配置所述用户设备上报CQI数值(CQI index),或者,所述配置信息包含配置所述用户设备上报CQI index的配置信息。
在步骤S102,所述用户设备确定CSI参考资源内(in the CSI reference resource)的一个PRB中分配用于PDSCH传输的RE数目N RE′。
可选地,一个PRB中包含的子载波数目
Figure PCTCN2021075487-appb-000061
可选地,所述用户设备假设(assume,或者,假定)分配用于PDSCH和DMRS的符号数目
Figure PCTCN2021075487-appb-000062
可选地,所述用户设备假设(assume,或者,假定)所述用于PDSCH传输的符号(PDSCH symbols)中不包括DMRS,
或者,
可选地,所述用户设备假设(assume,或者,假定)每个PRB内用于DMRS传输的RE数目
Figure PCTCN2021075487-appb-000063
可选地,如果PDSCH接收(PDSCH reception)的CP长度配置为扩展CP(ECP),那么,所述用户设备假设(assume,或者,假定)(每个PRB内)包括但不限于控制信令开销的RE数目
Figure PCTCN2021075487-appb-000064
或者,假设等于高层配置的数值。
可选地,如果PDSCH接收(PDSCH reception)的CP长度配置为正常CP(NCP),那么,所述用户设备假设(assume,或者,假定)(每个PRB内)包括但不限于控制信令开销的RE数目
Figure PCTCN2021075487-appb-000065
等于高层配置的数值,或者,假设
Figure PCTCN2021075487-appb-000066
可选地,所述用户设备确定所述
Figure PCTCN2021075487-appb-000067
在步骤S103,所述用户设备根据所述CSI参考资源内的一个PRB中分配用于PDSCH传输的RE数目N RE′确定所述CSI参考资源内的传输块比特数目TBS。
可选地,所述用户设备根据包括但不限于所述N RE′确定所述CSI参考 资源内的传输块比特数目TBS。
在步骤S104,可选地,所述用户设备根据所述CSI参考资源内的TBS推导CQI数值(CQI index)。
可选地,所述用户设备根据包括但不限于所述CSI参考资源内的TBS推导CQI数值(CQI index)。
图4是表示本发明所涉及的用户设备UE的框图。如图4所示,该用户设备UE80包括处理器801和存储器802。处理器801例如可以包括微处理器、微控制器、嵌入式处理器等。存储器802例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器802上存储有程序指令。该指令在由处理器801运行时,可以执行本发明详细描述的由用户设备执行的上述方法。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移 动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (10)

  1. 一种由用户设备执行的方法,包括:
    接收基站gNB发送的配置信息;
    所述配置信息配置所述用户设备上报CQI数值。
  2. 根据权利要求1所述的方法,还包括:
    确定CSI参考资源内的一个PRB中分配用于PDSCH传输的RE数目N RE′。
  3. 根据权利要求2所述的方法,其特征在于,
    一个PRB中包含的子载波数目
    Figure PCTCN2021075487-appb-100001
    和/或
    所述用户设备假设分配用于PDSCH和DMRS的符号数目
    Figure PCTCN2021075487-appb-100002
    和/或
    所述用户设备假设每个PRB内用于DMRS传输的RE数目
    Figure PCTCN2021075487-appb-100003
  4. 根据权利要求2所述的方法,其特征在于,
    所述用户设备假设每个PRB内包括但不限于控制信令开销的RE数目
    Figure PCTCN2021075487-appb-100004
  5. 根据权利要求2所述的方法,其特征在于,
    所述用户设备确定所述
    Figure PCTCN2021075487-appb-100005
  6. 根据权利要求2所述的方法,还包括:
    根据所述CSI参考资源内的一个PRB中分配用于PDSCH传输的RE数目N RE′确定所述CSI参考资源内的传输块比特数目TBS。
  7. 根据权利要求6所述的方法,其特征在于,
    所述用户设备根据包括但不限于所述N RE′确定所述CSI参考资源内的传输块比特数目TBS。
  8. 根据权利要求6所述的方法,还包括:
    根据所述CSI参考资源内的TBS推导CQI数值。
  9. 根据权利要求8所述的方法,其特征在于,
    所述用户设备根据包括但不限于所述CSI参考资源内的TBS推导CQI数值。
  10. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令;
    其中,所述指令在由所述处理器运行时执行根据权利要求1至9中任一项所述的方法。
PCT/CN2021/075487 2020-02-12 2021-02-05 由用户设备执行的方法以及用户设备 WO2021160034A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010089658.X 2020-02-12
CN202010089658.XA CN113259052A (zh) 2020-02-12 2020-02-12 由用户设备执行的方法以及用户设备

Publications (1)

Publication Number Publication Date
WO2021160034A1 true WO2021160034A1 (zh) 2021-08-19

Family

ID=77219727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075487 WO2021160034A1 (zh) 2020-02-12 2021-02-05 由用户设备执行的方法以及用户设备

Country Status (2)

Country Link
CN (1) CN113259052A (zh)
WO (1) WO2021160034A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215195A1 (ja) * 2020-04-22 2021-10-28 株式会社Nttドコモ 端末及び通信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150016386A1 (en) * 2012-03-19 2015-01-15 China Academy Of Telecommunications Technology Method and device for determining epdcch resources
CN104735691A (zh) * 2013-12-20 2015-06-24 北京三星通信技术研究有限公司 信道状态信息汇报的方法及装置
CN110166168A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 确定传输块大小的方法、装置以及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150016386A1 (en) * 2012-03-19 2015-01-15 China Academy Of Telecommunications Technology Method and device for determining epdcch resources
CN104735691A (zh) * 2013-12-20 2015-06-24 北京三星通信技术研究有限公司 信道状态信息汇报的方法及装置
CN110166168A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 确定传输块大小的方法、装置以及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP: "3GPP TS 38.214 V15.6.0", 3RD GENERATION PARTNERSHIP PROJECT; TECHNICAL SPECIFICATION GROUP RADIO ACCESS NETWORK; NR; PHYSICAL LAYER PROCEDURES FOR DATA (RELEASE 15), 30 June 2019 (2019-06-30), pages 1 - 105, XP051754328 *
HUAWEI ET AL.: "3GPP TSG RAN Meeting #75 RP-170798", NEW WID ON 3GPP V2X PHASE 2, 9 March 2017 (2017-03-09), XP051508155 *

Also Published As

Publication number Publication date
CN113259052A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
WO2020253770A1 (zh) 由用户设备执行的方法以及用户设备
WO2021057960A1 (zh) 由用户设备执行的方法以及用户设备
WO2022028413A1 (zh) 由用户设备执行的方法以及用户设备
WO2020169067A1 (zh) 由用户设备执行的方法以及用户设备
WO2020135320A1 (zh) 由用户设备执行的方法以及用户设备
WO2022143641A1 (zh) 由用户设备执行的方法以及用户设备
WO2022111630A1 (zh) 由用户设备执行的方法以及用户设备
WO2020088513A1 (zh) 由用户设备执行的方法以及用户设备
WO2021204191A1 (zh) 由用户设备执行的方法以及用户设备
US20230276473A1 (en) Method performed by user equipment, and user equipment
WO2021190521A1 (zh) 由用户设备执行的方法以及用户设备
WO2021136373A1 (zh) 由用户设备执行的方法以及用户设备
WO2021160034A1 (zh) 由用户设备执行的方法以及用户设备
WO2023131074A1 (zh) 由用户设备执行的方法以及用户设备
WO2022194243A1 (zh) 由用户设备执行的方法以及用户设备
WO2022267943A1 (zh) 由用户设备执行的方法以及用户设备
WO2022152163A1 (zh) 由用户设备执行的方法以及用户设备
WO2021228138A1 (zh) 由用户设备执行的方法以及用户设备
WO2022028330A1 (zh) 由用户设备执行的方法以及用户设备
WO2021197379A1 (zh) 由用户设备执行的方法以及用户设备
WO2021057838A1 (zh) 由用户设备执行的方法以及用户设备
WO2021013213A1 (zh) 由用户设备执行的方法以及用户设备
WO2020248729A1 (zh) 由用户设备执行的方法以及用户设备
WO2020192696A1 (zh) 由用户设备执行的方法以及用户设备
WO2021088918A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21754313

Country of ref document: EP

Kind code of ref document: A1