WO2024012390A1 - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
WO2024012390A1
WO2024012390A1 PCT/CN2023/106497 CN2023106497W WO2024012390A1 WO 2024012390 A1 WO2024012390 A1 WO 2024012390A1 CN 2023106497 W CN2023106497 W CN 2023106497W WO 2024012390 A1 WO2024012390 A1 WO 2024012390A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
resources
transmission
frequency
candidate
Prior art date
Application number
PCT/CN2023/106497
Other languages
English (en)
French (fr)
Inventor
赵毅男
罗超
刘仁茂
Original Assignee
夏普株式会社
赵毅男
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 赵毅男 filed Critical 夏普株式会社
Publication of WO2024012390A1 publication Critical patent/WO2024012390A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present invention relates to the field of wireless communication technology, and specifically to methods executed by user equipment and corresponding user equipment.
  • D2D communication (Device-to-Device communication, device-to-device direct communication) refers to a direct communication method between two user devices without forwarding by a base station or core network.
  • 3GPP 3rd Generation Partnership Project
  • the upper layer supports unicast (Unicast) and multicast (Groupcast) communication functions.
  • LTE Release 13 eD2D The main features introduced in LTE Release 13 eD2D include:
  • V2X Vehicle to Everything
  • the purpose is to reduce accidents, slow down traffic congestion, reduce environmental pollution and provide other information services.
  • V2X application scenarios mainly include four aspects:
  • V2P Vehicle to Pedestrian, that is, vehicles send warnings to pedestrians or non-motorized vehicles
  • V2N Vehicle to Network, that is, vehicles connected to mobile networks
  • V2I Vehicle to Infrastructure, that is, communication between vehicles and road infrastructure.
  • V2X Phase 1 introduces a new D2D communication interface called the PC5 interface.
  • the PC5 interface is mainly used to solve cellular vehicle networking communication problems in high-speed (up to 250 km/h) and high-node density environments. Vehicles can interact with information such as position, speed and direction through the PC5 interface, that is, vehicles can communicate directly through the PC5 interface.
  • the functions introduced by LTE Release 14 V2X mainly include:
  • the second phase of the V2X research topic falls under the LTE Release 15 research category (see Non-Patent Document 4).
  • the main features introduced include high-order 64QAM modulation, V2X carrier aggregation, short TTI transmission, and also includes feasibility studies on transmit diversity.
  • a resource allocation mode 2 (resource allocation mode 2) based on user equipment sensing (sensing) is supported, also known as transmission mode 2.
  • the physical layer of the user equipment senses the transmission resources in the resource pool, indicating that the user equipment determines whether to exclude (exclude) based on the received indication information in the SCI sent by other user equipment.
  • resources in the candidate resource set that overlap with the resources indicated by the above indication information, resources that are not excluded in the candidate resource set are reported to the higher layer, and the higher layer randomly selects resources for PSSCH/PSCCH transmission from the reported resource set.
  • NR sidelink enhancement NR sidelink enhancement
  • Non-Specialized Li Document 6 The enhancement of sideline communication includes the following three aspects:
  • power saving Standardize the resource allocation method to reduce the power consumption of side-link communication user equipment (power saving), including but not limited to: resource allocation method based on partial sensing (partial sensing), resource allocation method based on random resource selection;
  • SL DRX Standardized side-line communication discontinuous reception
  • PDCCH physical downlink control channel
  • DRX discontinuous reception
  • SCI sideline communication control information
  • NR sidelink evolution NR sidelink evolution, referred to as NR SL evo
  • the research goals of NR SL evo include the following aspects:
  • SL-U includes both resource allocation method 1 and resource allocation method 2 for NR sidelink communication.
  • the research project specifically includes:
  • SL-U the channel access technology and operations of the NR air interface in unlicensed spectrum communication (NR unlicensed, referred to as NR-U) are reused.
  • the channel access technology of NR-U refers to Listen Before Talk (LBT for short) technology, which means "listen before talking", which means that the user equipment needs to monitor the channel resources used for transmission before transmitting. If the channel If it is idle, the transmission will be carried out; otherwise, the transmission will be given up.
  • LBT Listen Before Talk
  • Non-patent document 1 RP-140518, Work item proposal on LTE Device to Device Proximity Services
  • Non-patent document 2 RP-142311, Work Item Proposal for Enhanced LTE Device to Device Proximity Services
  • Non-patent document 3 RP-152293, New WI proposal: Support for V2V services based on LTE sidelink
  • Non-patent document 4 RP-170798, New WID on 3GPP V2X Phase 2
  • Non-patent document 5 RP-181480, New SID Proposal: Study on NR V2X
  • Non-patent literature 6 RP-202846, WID revision: NR sidelink enhancement
  • Non-patent literature 7 RP-220300, WID revision: NR sidelink evolution
  • the present invention provides a method executed by user equipment and user equipment, so that side line communication user equipment does not need to monitor on multiple LBT bandwidths, effectively improving the transmission efficiency of side line communication. and transmission reliability.
  • a method performed by user equipment including the following steps: selecting and generating a selected side-link communication scheduling grant; and performing a transmission resource selection or reselection process.
  • the selected sidelink communication scheduling grant corresponds to the transmission of one or more media access control layer MAC protocol data units PDU.
  • the resource allocation method in the transmission resource selection or reselection process is at least one of a perception-based resource allocation method, a partially aware resource allocation method, and a random resource selection method.
  • the step of performing a transmission resource selection or reselection process includes the following steps: selecting sideline communication time-frequency resources for one transmission opportunity.
  • the step of selecting a side-link communication time-frequency resource for one transmission opportunity includes: selecting a time-frequency resource as a side-link communication time-frequency resource from a set of candidate resources reported by the physical layer, and the resource corresponding to the time-frequency resource is Block RB is located in a single set of resource blocks.
  • the step of selecting sideline communication time-frequency resources for one transmission opportunity further includes: If the candidate resource set reported by the physical layer does not include a candidate resource whose corresponding resource block RB is located in a single resource block set, select a time-frequency resource from the candidate resource set reported by the physical layer as a side-link communication time-frequency resource. .
  • the step of performing a transmission resource selection or reselection process includes the following steps: selecting sideline communication time-frequency resources for one or more transmission opportunities for hybrid automatic repeat request HARQ retransmission .
  • the step of selecting sidelink communication time-frequency resources for one or more transmission opportunities of HARQ retransmission includes: if there are enough corresponding resource blocks RB located in a single resource among the remaining available resources in the candidate resource set reported by the physical layer. candidate resources in the block set, then the corresponding resource block RB in the remaining available resources is located in the candidate resource in a single resource block set, and the sidelink communication time frequency is selected for the transmission opportunity of one or more HARQ retransmissions. resource.
  • the step of selecting side-link communication time-frequency resources for one or more transmission opportunities of HARQ retransmission also includes: if the corresponding resource block RB among the remaining available resources in the candidate resource set reported by the physical layer is located in a single resource block set When the candidate resources in have been maximized, the sidelink communication time-frequency resources are selected for the remaining transmission opportunities of other HARQ retransmissions from the remaining available resources in the candidate resource set reported by the physical layer.
  • a user equipment including: a processor; and a memory storing instructions, wherein the instructions execute the above method when executed by the processor.
  • the solution of the present invention includes a method for resource selection (or reselection) for sideline communication user equipment in SL-U.
  • the solution of the present invention ensures that side-link communication user equipment can preferentially select candidate resources whose resource block RB is mapped on the same LBT bandwidth (LBT sub-band). That is to say, when the user When the device performs LBT operation on the LBT bandwidth and detects that the channel is idle, it can perform sideline communication transmission.
  • LBT sub-band LBT bandwidth
  • Figure 1 is a schematic diagram showing LTE V2X UE side-link communication.
  • FIG. 2 is a schematic diagram showing the resource allocation method of LTE V2X.
  • FIG. 3 is a schematic diagram showing the basic process of the method executed by user equipment in Embodiment 1 of the present invention.
  • Figure 4 is a block diagram illustrating user equipment according to an embodiment of the present invention.
  • the following uses the 5G mobile communication system and its subsequent evolved versions as an example application environment to specifically describe multiple embodiments according to the present invention.
  • the present invention is not limited to the following embodiments, but can be applied to more other wireless communication systems, such as communication systems after 5G and 4G mobile communication systems before 5G.
  • 3GPP 3rd Generation Partnership Project, third generation partner program
  • LTE Long Term Evolution, long-term evolution technology
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • DCI Downlink Control Information, downlink control information
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • UE User Equipment, user equipment
  • eNB evolved NodeB, evolved base station
  • gNB NR base station
  • TTI Transmission Time Interval, transmission time interval
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing, orthogonal frequency division multiplexing with cyclic prefix
  • C-RNTI Cell Radio Network Temporary Identifier, residential wireless network temporary identifier
  • CSI Channel State Information, channel state information
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • CRS Cell Reference Signal, cell-specific reference signal
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • SCI Sidelink Control Information, side communication control information
  • PSCCH Physical Sidelink Control Channel, physical sidelink communication control channel
  • MCS Modulation and Coding Scheme, modulation coding scheme
  • RB Resource Block, resource block
  • CRB Common Resource Block, public resource block
  • CP Cyclic Prefix, cyclic prefix
  • PRB Physical Resource Block, physical resource block
  • PSSCH Physical Sidelink Shared Channel, physical sidelink communication shared channel
  • FDM Frequency Division Multiplexing, frequency division multiplexing
  • RRC Radio Resource Control, radio resource control
  • RSRP Reference Signal Receiving Power, reference signal receiving power
  • SRS Sounding Reference Signal, detection reference signal
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • PSDCH Physical Sidelink Discovery Channel, physical sidelink communication discovery channel
  • PSBCH Physical Sidelink Broadcast Channel, physical sidelink communication broadcast channel
  • TDD Time Division Duplexing, time division duplexing
  • FDD Frequency Division Duplexing, frequency division duplexing
  • SIB System Information Block, system information block
  • SIB1 System Information Block Type 1, system information block type 1
  • SLSS Sidelink synchronization Signal, side communication synchronization signal
  • PSSS Primary Sidelink Synchronization Signal, side communication main synchronization signal
  • SSSS Secondary Sidelink Synchronization Signal, side communication auxiliary synchronization signal
  • PCI Physical Cell ID, physical cell identification
  • PSS Primary Synchronization Signal, main synchronization signal
  • SSS Secondary Synchronization Signal, auxiliary synchronization signal
  • BWP BandWidth Part, bandwidth fragment/part
  • GNSS Global NaVigation Satellite System, Global Navigation Satellite Positioning System
  • SFN System Frame Number, system (wireless) frame number
  • DFN Direct Frame Number, direct frame number
  • SSB Synchronization Signal Block, synchronization system information block
  • EN-DC EUTRA-NR Dual Connection, LTE-NR dual connection
  • MCG Master Cell Group, main cell group
  • SCG Secondary Cell Group, secondary cell group
  • PCell Primary Cell, main cell
  • SCell Secondary Cell, auxiliary cell
  • PSFCH Physical Sidelink Feedback Channel, physical sidelink communication feedback channel
  • SPS Semi-Persistant Scheduling, semi-static scheduling
  • PT-RS Phase-Tracking Reference Signals, phase tracking reference signal
  • CB Code Block, coding block/code block
  • QPSK Quadrature Phase Shift Keying, quadrature phase shift keying
  • 16/64/256 QAM 16/64/256 Quadrature Amplitude Modulation, quadrature amplitude modulation
  • AGC Auto Gain Control, automatic gain control
  • TDRA Time Domain Resource Assignment, time domain resource allocation indication (domain)
  • FDRA Frequency Domain Resource Assignment, frequency domain resource allocation indication (domain)
  • ARFCN Absolute Radio Frequency Channel Number, absolute radio frequency channel number
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, single carrier-frequency division multiplexing multiple access
  • MAC Medium Access Control, media access control layer
  • PDU Protocol Data Unit, protocol data unit
  • SL-U Sidelink unlicensed, sidelink communication on unlicensed spectrum
  • NR-U NR unlicensed, NR communication on unlicensed spectrum
  • V2X and sidelink communication mentioned in the specification of the present invention have the same meaning.
  • V2X in this article can also represent side-line communication; similarly, side-line communication in this article can also represent V2X, and no specific distinction or limitation will be made in the following article.
  • the resource allocation method of V2X (sidelink) communication and the transmission mode of V2X (sidelink) communication in the specification of the present invention can be equivalently replaced.
  • the resource allocation method mentioned in the specification may represent a transmission mode, and the transmission mode involved may represent a resource allocation method.
  • transmission mode 1 represents the transmission mode (resource allocation method) based on base station scheduling
  • transmission mode 2 represents the transmission mode (resource allocation method) based on user equipment sensing and resource selection.
  • the PSCCH in the specification of the present invention is used to carry SCI.
  • the PSCCH corresponding, corresponding, related, or scheduled PSSCH mentioned in the description of the present invention all have the same meaning, and they all represent associated (associated) PSSCH or corresponding (corresponding) PSSCH.
  • the PSSCH corresponding, or corresponding, or related SCI (including first-level SCI and second-level SCI) mentioned in the specification all have the same meaning, and they all mean associated (associated) SCI or corresponding (corresponding) SCI.
  • the first level SCI is called 1st stage SCI or SCI format 1-A, which is transmitted in PSCCH;
  • the second level SCI is called 2nd stage SCI or SCI format 2-A (or, SCI format 2-B) , transmitted in the corresponding PSSCH resources.
  • NR side-link communication (SL-U for short) is performed on the unlicensed spectrum, which can also be called shared spectrum channel access, that is, on the unlicensed spectrum.
  • Wifi technology wireless LAN technology based on the IEEE 802.11 standard
  • NR side communication user equipment that accesses through the PC5 interface.
  • the parameter set (numerology) in NR (including NR sidelink) and the parameter set (numerology) in NR (including NR sidelink) time slot (slot)
  • the parameter set includes two aspects: subcarrier spacing and cyclic prefix CP length.
  • Table 4.2-1 shows the supported transmission parameter set, as follows shown.
  • each time slot contains 14 OFDM symbols; for Extended CP, each time slot contains 12 OFDM symbols.
  • NR and LTE have the same definition of subframe, which means 1ms.
  • subframe means 1ms.
  • the slot number within 1 subframe (1ms) can be expressed as The range is 0 to
  • the timeslot number within a system frame (frame, duration 10ms) can be expressed as The range is 0 to in, and
  • the definitions under different subcarrier spacing ⁇ are shown in the following table.
  • Table 4.3.2-1 The number of symbols contained in each time slot, the number of time slots contained in each system frame, and the number of time slots contained in each subframe during normal CP
  • Table 4.3.2-2 The number of symbols contained in each time slot, the number of time slots contained in each system frame, and the number of time slots contained in each subframe when extending CP (60kHz)
  • the number SFN of a system frame ranges from 0 to 1023.
  • the concept of direct system frame number DFN is introduced in sideline communication, and the number range is also 0 to 1023.
  • the above description of the relationship between system frames and parameter sets (numerology) can also be applied to direct system frames, for example, a direct
  • the duration of the system frame is also equal to 10ms.
  • a direct system frame includes 10 slots, etc.
  • DFN is applied to timing on sidelink communication carriers.
  • LTE only supports 15kHz subcarrier spacing.
  • LTE supports extended CP and normal CP.
  • the subframe has a duration of 1ms and contains two time slots, each of which has a duration of 0.5ms.
  • each subframe contains 14 OFDM symbols, and each time slot in the subframe contains 7 OFDM symbols; for extended CP, each subframe contains 12 OFDM symbols, and each time slot in the subframe contains 12 OFDM symbols.
  • the slot contains 6 OFDM symbols.
  • the resource block RB is defined in the frequency domain as A continuous subcarrier, for example, for a subcarrier spacing of 15kHz, RB is 180kHz in the frequency domain.
  • the resource unit RE represents one subcarrier in the frequency domain and one OFDM symbol in the time domain.
  • Both UEs performing side-link communication have network coverage (for example, the UE detects at least one cell that satisfies the "cell selection criterion" on the frequency where side-link communication is required. Cell, indicating that the UE has network coverage).
  • Partial-Coverage side-link communication One of the UEs performing side-link communication has no network coverage, and the other UE has network coverage.
  • the UE From the UE side, the UE has only two scenarios: no network coverage and one with network coverage. part Network coverage is described from the perspective of side-link communications.
  • FIG. 1 is a schematic diagram showing LTE V2X UE side-link communication.
  • UE1 sends sidelink communication control information (SCI format 1) to UE2, which is carried by the physical layer channel PSCCH.
  • SCI format 1 contains PSSCH scheduling information, such as PSSCH frequency domain resources, etc.
  • UE1 sends sidelink communication data to UE2, which is carried by the physical layer channel PSSCH.
  • the PSCCH and the corresponding PSSCH adopt frequency division multiplexing, that is, the PSCCH and the corresponding PSSCH are located in the same subframe in the time domain and located in different RBs in the frequency domain.
  • a transmission block TB may contain only one initial transmission, or one initial transmission and one blind retransmission (blind retransmission, indicating retransmission not based on HARQ feedback).
  • PSCCH occupies one subframe in the time domain and two consecutive RBs in the frequency domain.
  • the scrambling sequence is initialized with a predefined value of 510.
  • the PSCCH can carry SCI format 1, where SCI format 1 at least contains frequency domain resource information of the PSSCH. For example, for the frequency domain resource indication field, SCI format 1 indicates the starting sub-channel (sub-channel) number and the number of consecutive sub-channels of the PSSCH corresponding to the PSCCH.
  • PSSCH occupies one subframe in the time domain, and uses frequency division multiplexing (FDM) with the corresponding PSCCH.
  • PSSCH occupies one or more continuous sub-channels in the frequency domain.
  • the sub-channel represents n subCHsize continuous RBs in the frequency domain.
  • n subCHsize is configured by RRC parameters.
  • the number of starting sub-channels and continuous sub-channels is determined by SCI format 1 Frequency domain resource indication domain indication.
  • FIG. 2 shows two resource allocation modes of LTE V2X, which are respectively called resource allocation based on base station scheduling (Transmission Mode 3) and resource allocation based on UE sensing (Transmission Mode 4).
  • transmission mode 3 of LTE V2X corresponds to transmission mode 1 in NR V2X, which is a transmission mode based on base station scheduling;
  • LTE V2X The transmission mode 4 corresponds to the transmission mode 2 in NR V2X, which is a transmission mode based on UE perception.
  • the base station can configure the resource allocation method of the UE through UE-level dedicated RRC signaling (dedicated RRC signaling) SL-V2X-ConfigDedicated, or the transmission mode of the UE. ,Specifically:
  • Resource allocation method based on base station scheduling means that the frequency domain resources used in sidelink communication come from the scheduling of the base station.
  • Transmission mode 3 includes two scheduling methods, namely dynamic scheduling and semi-static scheduling (SPS).
  • DCI format 5A includes the frequency domain resources of PSSCH, and the CRC of the PDCCH or EPDCCH carrying DCI format 5A is scrambled by SL-V-RNTI.
  • SPS semi-static scheduling the base station configures one or more (up to 8) configured scheduling grants (configured grants) through IE: SPS-ConfigSL-r14.
  • Each configured scheduling grant contains a scheduling grant number (index) and scheduling Licensed resource period.
  • the UL scheduling grant (DCI format 5A) includes frequency domain resources of the PSSCH, as well as indication information (3 bits) of the scheduling grant number and indication information of SPS activation (activate) or release (release, or deactivation).
  • the CRC of PDCCH or EPDCCH carrying DCI format 5A is scrambled by SL-SPS-V-RNTI.
  • the RRC signaling SL-V2X-ConfigDedicated when the RRC signaling SL-V2X-ConfigDedicated is set to scheduled-r14, it means that the UE is configured in a transmission mode based on base station scheduling.
  • the base station configures SL-V-RNTI or SL-SPS-V-RNTI through RRC signaling, and uses PDCCH or EPDCCH (DCI format 5A, CRC is scrambled with SL-V-RNTI or scrambled with SL-SPS-V-RNTI ) sends an uplink scheduling grant (UL grant) to the UE.
  • the above-mentioned uplink scheduling grant at least includes scheduling information of PSSCH frequency domain resources in sidelink communication.
  • the UE When the UE successfully monitors the PDCCH or EPDCCH scrambled by SL-V-RNTI or SL-SPS-V-RNTI, it will use the PSSCH frequency domain resource indication field in the uplink scheduling grant (DCI format 5A) as the PSCCH (SCI Indication information of frequency domain resources of PSSCH in format 1), and send PSCCH (SCI format 1) and corresponding PSSCH.
  • DCI format 5A the PSSCH frequency domain resource indication field in the uplink scheduling grant
  • PSCCH SCI Indication information of frequency domain resources of PSSCH in format 1
  • the UE receives SL-SPS-V-RNTI scrambled DCI format 5A on downlink subframe n. If DCI format 5A contains SPS activation indication information, the UE determines the frequency domain resources of the PSSCH based on the indication information in DCI format 5A, and determines the time domain resources of the PSSCH (the transmission subframe of the PSSCH) based on information such as subframe n.
  • Resource allocation mode based on UE sensing means that the resources used for side-link communication are based on the UE's sensing (sensing) process of the candidate available resource set.
  • the RRC signaling SL-V2X-ConfigDedicated is set to ue-Selected-r14, it indicates that the UE is configured for a UE-aware transmission mode.
  • the base station configures the available transmission resource pool, and the UE determines the sidelink communication of PSSCH in the transmission resource pool (resource pool) according to certain rules (see the LTE V2X UE awareness process section for detailed process description) Send resources, and send PSCCH (SCI format 1) and corresponding PSSCH.
  • the resources sent and received by the UE belong to the resource pool.
  • the base station schedules transmission resources for the side-link communication UE in the resource pool, or, for the transmission mode based on UE-awareness in side-link communication, the UE determines the transmission resources in the resource pool. .
  • resource allocation based on sub-channels is supported in the frequency domain with the smallest granularity. That is, for PSSCH transmission, the resources occupied in the frequency domain are an integer number of sub-channels.
  • a subchannel can represent several consecutive resource blocks RB in the frequency domain.
  • the sideline communication user equipment selects candidate resources within a time window (optionally, resource selection window [n+T1, n+T2]), and selects candidate resources according to the listening time.
  • the reserved resources indicated by the PSCCH sent by other user equipments in the slot are determined, candidate resources that overlap with the reserved resources are determined, and these overlapping candidate resources are excluded.
  • the physical layer reports the set of candidate resources that have not been excluded to the MAC layer.
  • MAC selects transmission resources for PSSCH/PSCCH.
  • the set of transmission resources selected by the MAC layer is called a selected sidelink communication scheduling grant (selected sidelink grant).
  • the sidelink communication resources contained in a selected sidelink communication scheduling grant can be used for the initial transmission and all retransmissions of one MAC PDU (corresponding to one transport block TB), or can be used for multiple MAC PDUs (corresponding to multiple transport blocks TB) Initial transmission and all retransmissions.
  • the present invention does not impose any limitations on this.
  • the higher layer requests or triggers the physical layer to determine the resources for PSSCH/PSCCH transmission (performing sensing or partial sensing) on time slot n.
  • the resource selection window is defined as [n+T1, n+T2], that is, the user equipment selects transmission resources within this window.
  • T1 satisfies the condition The selection of T1 depends on the implementation of the user equipment; the RRC configuration information contains a configuration list sl-SelectionWindowList of a resource selection window, where the element in the list corresponds to a given priority prio TX (the priority of transmitting PSSCH). is T 2min .
  • T2 If T 2min is less than the remaining packet delay budget (remaining PDB for short), then T2 satisfies the condition T 2min ⁇ T2 ⁇ remaining PDB, and the selection of T2 depends on the implementation of the user equipment; otherwise, T2 is set to remaining PDB.
  • T2 is set to remaining PDB.
  • ⁇ SL represents the subcarrier spacing parameter of sidelink communication, that is, the subcarrier spacing is ):
  • a channel access operation which represents a mechanism to determine channel availability by sensing the channel. Specifically, within a period of time before communication transmission, the user equipment will only transmit when it detects that the channel is idle; otherwise, the user equipment will not transmit.
  • the energy detected by the base station or user equipment on the channel is lower than the energy threshold value Alternatively, it is called LBT success).
  • the channel that the base station or user equipment detects energy and uses to determine whether it is idle represents a carrier that contains a set of continuous resource blocks RB, or a part of the carrier. This channel may also be called LBT bandwidth, or LBT sub-band, or RB set.
  • An LBT bandwidth or RB set can be equal to 20MHz in the frequency domain, that is, there can be an RB set on a 20MHz carrier.
  • a subcarrier spacing of 15kHz on a carrier (a carrier exceeding 20MHz, such as 40MHz, 60MHz, 80MHz), it contains multiple RB sets and the guard band (Guard Band, referred to as GB) between two consecutive RB sets.
  • the corresponding number of resource blocks RB can be as shown in the following table:
  • Table 1 All RB sets on a carrier and the number of RBs contained in GB under 15kHz and 30kHz subcarrier spacing
  • 105-6-105 means that the carrier contains two consecutive RB sets, each containing 105 RBs. Between these two RB sets, there is a guard band GB containing 6 consecutive RBs, containing a total of 216 consecutive RBs, and so on for other items in Table 1.
  • the LBT operations performed by (sideline communication) user equipment on different RB sets can be independent of each other (that is, the two are unrelated to each other). For example, the user equipment detects that the channel is idle on RB set 1, and detects that the channel is occupied (or busy) on RB set 2. If the resources selected by the sidelink communication user equipment for transmitting PSSCH/PSCCH include both (all or part of) the RBs corresponding to RB set 1 and RB set 2, if and only if the user equipment is in RB set 1 and RB set 2 When it is detected that the channel is idle at the same time, the user equipment can send the corresponding PSSCH/PSCCH.
  • FIG. 3 is a schematic diagram illustrating the basic process of a method performed by user equipment according to Embodiment 1 of the present invention.
  • the steps performed by the user equipment include:
  • step S101 the sideline communication user equipment selects to create a selection sidelink communication scheduling grant (selected sidelink grant), and, optionally, sidelink communication data is available on the logical channel.
  • the selected side-link communication scheduling permission corresponds to the transmission of one or more MAC protocol data units PDU.
  • step S102 the user equipment performs a transmission resource selection (reselection) process.
  • the user equipment performs a sending resource selection (or reselection) process.
  • the resource allocation method of the user equipment is a resource allocation method based on perception, or a resource allocation method based on partial perception, or random resource selection.
  • the user equipment selects a sidelink communication time-frequency resource for one transmission opportunity, wherein, optionally, the user equipment is in a set of candidate resources reported (or indicated) by the physical layer ( Randomly) select a time-frequency resource whose corresponding (or associated, or mapped) resource block RB is in a single (or, one) resource block set (RB set); optionally, if the physical The candidate resource set reported by the layer does not contain candidate resources corresponding to (or associated, or mapped) resource blocks RB in a single (or one) resource block set (RB set), then the user equipment in the Select a time-frequency resource (randomly) from the candidate resource set reported by the physical layer,
  • the user equipment selects from available sidelink communication resources for the one or more (HARQ retransmissions) transmission opportunities.
  • Sidelink communication time-frequency resources wherein, optionally, for the one or more (HARQ retransmission) transmission opportunities, if there are (sufficient) remaining available resources in the candidate resource set reported by the physical layer
  • the corresponding (or associated, or mapped) resource block RB is a candidate resource in a single (or one) resource block set (RB set)
  • Select time-frequency resources (randomly) for the one or more (HARQ retransmission) transmission opportunities among the candidate resources; optionally, for the one or more (HARQ retransmission) transmission opportunities, if
  • FIG. 4 is a block diagram showing user equipment UE according to the present invention.
  • the user equipment UE40 includes a processor 401 and a memory 402.
  • the processor 401 may include, for example, a microprocessor, a microcontroller, an embedded processor, or the like.
  • the memory 402 may include, for example, volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memory.
  • Memory 402 stores program instructions. When this instruction is executed by the processor 401, it can execute the above method executed by the user equipment as described in detail in the present invention.
  • the method and related equipment of the present invention have been described above in conjunction with preferred embodiments. Those skilled in the art can understand that the methods shown above are only exemplary, and the embodiments described above can be combined with each other without conflict.
  • the method of the present invention is not limited to the steps and sequence shown above.
  • the network nodes and user equipment shown above may include more modules, for example, may also include modules that may be developed or developed in the future and may be used for base stations, MMEs, or UEs, and so on.
  • the various identifications shown above are only illustrative and not restrictive, and the present invention is not limited to the specific information elements as examples of these identifications. Many changes and modifications may be made by those skilled in the art in light of the teachings of the illustrated embodiments.
  • various components inside the base station and user equipment in the above embodiments can be implemented by a variety of components, including but not limited to: analog circuit components, digital Word circuit devices, digital signal processing (DSP) circuits, programmable processors, application specific integrated circuits (ASIC), field programmable gate arrays (FPGA), programmable logic devices (CPLD), etc.
  • DSP digital signal processing
  • ASIC application specific integrated circuits
  • FPGA field programmable gate arrays
  • CPLD programmable logic devices
  • base station may refer to a mobile communication data and control switching center with larger transmission power and wider coverage area, including functions such as resource allocation and scheduling, data reception and transmission.
  • User equipment may refer to user mobile terminals, including, for example, mobile phones, laptops and other terminal equipment that can conduct wireless communication with base stations or micro base stations.
  • embodiments of the invention disclosed herein may be implemented on a computer program product.
  • the computer program product is a product that has a computer-readable medium with computer program logic encoded on the computer-readable medium, and when executed on a computing device, the computer program logic provides relevant operations to implement The above technical solution of the present invention.
  • the computer program logic When executed on at least one processor of a computing system, the computer program logic causes the processor to perform the operations (methods) described in embodiments of the invention.
  • Such arrangements of the invention are typically provided as software, code and/or other data structures disposed or encoded on a computer readable medium, such as an optical medium (eg, a CD-ROM), a floppy or hard disk, or the like, or as one or more Other media for firmware or microcode on a ROM or RAM or PROM chip, or downloadable software images, shared databases, etc. in one or more modules.
  • Software or firmware or such configuration may be installed on the computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
  • each functional module or each feature of the base station equipment and terminal equipment used in each of the above embodiments may be implemented or executed by a circuit, which is usually one or more integrated circuits.
  • Circuitry designed to perform the various functions described in this specification may include a general-purpose processor, digital signal processor (DSP), application-specific integrated circuit (ASIC) or general-purpose integrated circuit, field-programmable gate array (FPGA) or other Programmed logic devices, discrete gate or transistor logic, or discrete hardware components, or any combination of the above.
  • a general purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller or state machine.
  • the above-mentioned general processor or each circuit may be configured by a digital circuit, or may be configured by a logic circuit.
  • the present invention can also use an integrated circuit obtained by utilizing the advanced technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

根据本发明,提出了一种由用户设备执行的方法,包括以下步骤:选择生成一个选择的侧行通信调度许可;以及执行发送资源选择或重选过程。

Description

由用户设备执行的方法以及用户设备 技术领域
本发明涉及无线通信技术领域,具体涉及由用户设备执行的方法以及相应的用户设备。
背景技术
在传统的蜂窝网络中,所有的通信都必须经过基站。不同的是,D2D通信(Device-to-Device communication,设备到设备间直接通信)是指两个用户设备之间不经过基站或者核心网的转发而直接进行的通信方式。在2014年3月第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的RAN#63次全会上,关于利用LTE设备实现临近D2D通信业务的研究课题获得批准(参见非专利文献1)。LTE Release 12 D2D引入的功能包括:
1)LTE网络覆盖场景下临近设备之间的发现功能(Discovery);
2)临近设备间的直接广播通信(Broadcast)功能;
3)高层支持单播(Unicast)和组播(Groupcast)通信功能。
在2014年12月的3GPP RAN#66全会上,增强的LTE eD2D(enhanced D2D)的研究项目获得批准(参见非专利文献2)。LTE Release 13 eD2D引入的主要功能包括:
1)无网络覆盖场景和部分网络覆盖场景的D2D发现;
2)D2D通信的优先级处理机制。
基于D2D通信机制的设计,在2015年6月3GPP的RAN#68次全会上,批准了基于D2D通信的V2X可行性研究课题。V2X表示Vehicle to Everything,希望实现车辆与一切可能影响车辆的实体信息交互,目的是减少事故发生,减缓交通拥堵,降低环境污染以及提供其他信息服务。V2X的应用场景主要包含4个方面:
1)V2V,Vehicle to Vehicle,即车-车通信;
2)V2P,Vehicle to Pedestrian,即车给行人或非机动车发送警告;
3)V2N,Vehicle to Network,即车辆连接移动网络;
4)V2I,Vehicle to Infrastructure,即车辆与道路基础设施等通信。
3GPP将V2X的研究与标准化工作分为3个阶段。第一阶段于2016年9月完成,主要聚焦于V2V,基于LTE Release 12和Release 13 D2D(也可称为sidelink侧行通信),即邻近通信技术制定(参见非专利文献3)。V2X阶段1引入了一种新的D2D通信接口,称为PC5接口。PC5接口主要用于解决高速(最高250公里/小时)及高节点密度环境下的蜂窝车联网通信问题。车辆可以通过PC5接口进行诸如位置、速度和方向等信息的交互,即车辆间可通过PC5接口进行直接通信。相较于D2D设备间的临近通信,LTE Release 14 V2X引入的功能主要包含:
1)更高密度的DMRS以支持高速场景;
2)引入子信道(sub-channel),增强资源分配方式;
3)引入具有半静态调度(semi-persistent)的用户设备感知(sensing)机制。
V2X研究课题的第二阶段归属于LTE Release 15研究范畴(参见非专利文献4),引入的主要特性包含高阶64QAM调制、V2X载波聚合、短TTI传输,同时包含发射分集的可行性研究。
在2018年6月3GPP RAN#80全会上,相应的第三阶段基于5G NR网络技术的V2X可行性研究课题(参见非专利文献5)获得批准。
在5G NR V2X课题中,支持一种基于用户设备感知(sensing)的资源分配方式2(resource allocation mode 2),或者称为传输模式2。对于用户设备感知的资源分配方式2,用户设备的物理层对资源池内的传输资源进行感知,表示该用户设备根据接收到的其他用户设备发送的SCI中的指示信息,用以确定是否排除(exclude)候选资源集合中与上述指示信息所指示的资源相重叠的资源,候选资源集合中未被排除的资源上报给高层,高层在上报的资源集合中随机选择用于PSSCH/PSCCH传输的资源。
在2020年12月3GPP RAN#90e全会上,基于已经标准化的NR侧行通信的增强(NR sidelink enhancement)的标准化研究课题(参见非专 利文献6)获得批准。侧行通信的增强中包含如下三个方面:
1)标准化降低侧行通信用户设备功率消耗(power saving)的资源分配方式,包括但不限于:基于部分感知的资源分配方式(partial sensing),基于随机资源选择的资源分配方式;
2)研究提升NR侧行通信中资源分配方式2的通信可靠性以及降低资源分配方式2的通信时延;
3)标准化侧行通信不连续接收(SL Discontinuous Reception,简称SL DRX)机制。在5G NR通信中,用户设备支持在时间上不连续地接收物理下行控制信道PDCCH,称为DRX,可以有效得降低通信设备的功率消耗。相似地,对应于SL DRX,不连续接收指代的是在时域上的部分时间内监听侧行通信控制信息SCI(包括1级SCI和2级SCI),该时间称为活跃期(Active time)。
在2022年3月3GPP RAN#95e全会上,基于已经标准化的NR侧行通信的演进(NR sidelink evolution,简称为NR SL evo)的标准化研究课题(参见非专利文献7)获得批准。NR SL evo的研究目标包含如下方面:
1)研究并且标准化在未授权频谱(unlicensed spectrum)上进行NR侧行通信,简称为SL-U。SL-U同时包含NR侧行通信的资源分配方式1和资源分配方式2。该研究项目具体包括:
a.在SL-U中,重用NR空口在未授权频谱通信(NR unlicensed,简称为NR-U)的信道接入(channel access)技术和操作。其中NR-U的信道接入技术指代Listen Before Talk(简称为LBT)技术,即“先听后说”,表示用户设备在进行传输前,需要对传输所使用的信道资源进行监听,如果信道空闲(idle),则进行传输;反之,则放弃传输。
b.研究侧行通信中物理信道的设计框架:即对现有NR侧行通信中物理信道的结构做出必要的修改,以使能SL-U。
现有技术文献
非专利文献
非专利文献1:RP-140518,Work item proposal on LTE Device to Device Proximity Services
非专利文献2:RP-142311,Work Item Proposal for Enhanced LTE Device to Device Proximity Services
非专利文献3:RP-152293,New WI proposal:Support for V2V services based on LTE sidelink
非专利文献4:RP-170798,New WID on 3GPP V2X Phase 2
非专利文献5:RP-181480,New SID Proposal:Study on NR V2X
非专利文献6:RP-202846,WID revision:NR sidelink enhancement
非专利文献7:RP-220300,WID revision:NR sidelink evolution
发明内容
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备,使得侧行通信用户设备无需在多个LBT带宽上进行监听,有效提升了侧行通信的传输效率和传输可靠性。
根据本发明,提出了一种由用户设备执行的方法,包括以下步骤:选择生成一个选择的侧行通信调度许可;以及执行发送资源选择或重选过程。
优选地,所述选择的侧行通信调度许可对应一个或者多个媒体接入控制层MAC协议数据单元PDU的传输。
优选地,所述发送资源选择或重选过程中的资源分配方式是基于感知的资源分配方式、部分感知的资源分配方式、以及随机资源选择方式中的至少一个。
优选地,对于共享频谱的信道接入,所述执行发送资源选择或重选过程的步骤包括以下步骤:针对一次传输机会选择侧行通信时频资源。
优选地,所述针对一次传输机会选择侧行通信时频资源的步骤包括:在物理层上报的候选资源集合中选择一个时频资源作为侧行通信时频资源,所述时频资源对应的资源块RB位于单一资源块集合中。
优选地,所述针对一次传输机会选择侧行通信时频资源的步骤还包括: 如果物理层上报的候选资源集合中不包含对应的资源块RB位于单一资源块集合中的候选资源,则在所述物理层上报的候选资源集合中选择一个时频资源作为侧行通信时频资源。
优选地,对于共享频谱的信道接入,所述执行发送资源选择或重选过程的步骤包括以下步骤:针对一次或者多次混合自动重传请求HARQ重传的传输机会选择侧行通信时频资源。
优选地,针对一次或者多次HARQ重传的传输机会选择侧行通信时频资源的步骤包括:如果物理层上报的候选资源集合中剩余的可用资源中存在足够的对应的资源块RB位于单一资源块集合中的候选资源,则从所述剩余的可用资源中的对应的资源块RB位于单一资源块集合中的候选资源中,针对一次或者多次HARQ重传的传输机会选择侧行通信时频资源。
优选地,针对一次或者多次HARQ重传的传输机会选择侧行通信时频资源的步骤还包括:如果物理层上报的候选资源集合中剩余的可用资源中对应的资源块RB位于单一资源块集合中的候选资源已经最大化选择的情况下,则从所述物理层上报的候选资源集合中剩余的可用资源中,针对剩余的其他的HARQ重传的传输机会选择侧行通信时频资源。
此外,根据本发明,提出了一种用户设备,包括:处理器;以及存储器,存储有指令,其中,所述指令在由所述处理器运行时执行上述的方法。
发明效果
本发明的方案包括在SL-U中,侧行通信用户设备进行资源选择(或者重选)的一种方法。在SL-U中,本发明的方案保证侧行通信用户设备可以优先选择资源块RB映射在同一个LBT带宽(LBT bandwidth,或者,LBT sub-band)上的候选资源,也就是说,当用户设备在该LBT带宽上进行LBT操作并监听到信道处于空闲(idle)时,即可进行侧行通信传输。在该方案中,侧行通信用户设备无需在多个LBT带宽上进行监听,有效提升了侧行通信的传输效率和传输可靠性。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1是示出了LTE V2X UE侧行通信的示意图。
图2是示出了LTE V2X的资源分配方式的示意图。
图3是示出了本发明的实施例一中由用户设备执行的方法的基本过程的示意图。
图4是示出了根据本发明的实施例的用户设备的框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
下文以5G移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G移动通信系统等。
下面描述本发明涉及的部分术语,如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的通信系统中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划
LTE:Long Term Evolution,长期演进技术
NR:New Radio,新无线、新空口
PDCCH:Physical Downlink Control Channel,物理下行控制信道
DCI:Downlink Control Information,下行控制信息
PDSCH:Physical Downlink Shared Channel,物理下行共享信道
UE:User Equipment,用户设备
eNB:evolved NodeB,演进型基站
gNB:NR基站
TTI:Transmission Time Interval,传输时间间隔
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
CP-OFDM:Cyclic Prefix Orthogonal Frequency Division Multiplexing,带有循环前缀的正交频分复用
C-RNTI:Cell Radio Network Temporary Identifier,小区无线网络临时标识
CSI:Channel State Information,信道状态信息
HARQ:Hybrid Automatic Repeat Request,混合自动重传请求
CSI-RS:Channel State Information Reference Signal,信道状态信息参考信号
CRS:Cell Reference Signal,小区特定参考信号
PUCCH:Physical Uplink Control Channel,物理上行控制信道
PUSCH:Physical Uplink Shared Channel,物理上行共享信道
UL-SCH:Uplink Shared Channel,上行共享信道
CG:Configured Grant,配置调度许可
Sidelink:侧行通信
SCI:Sidelink Control Information,侧行通信控制信息
PSCCH:Physical Sidelink Control Channel,物理侧行通信控制信道
MCS:Modulation and Coding Scheme,调制编码方案
RB:Resource Block,资源块
RE:Resource Element,资源单元
CRB:Common Resource Block,公共资源块
CP:Cyclic Prefix,循环前缀
PRB:Physical Resource Block,物理资源块
PSSCH:Physical Sidelink Shared Channel,物理侧行通信共享信道
FDM:Frequency Division Multiplexing,频分复用
RRC:Radio Resource Control,无线资源控制
RSRP:Reference Signal Receiving Power,参考信号接收功率
SRS:Sounding Reference Signal,探测参考信号
DMRS:Demodulation Reference Signal,解调参考信号
CRC:Cyclic Redundancy Check,循环冗余校验
PSDCH:Physical Sidelink Discovery Channel,物理侧行通信发现信道
PSBCH:Physical Sidelink Broadcast Channel,物理侧行通信广播信道
SFI:Slot Format Indication,时隙格式指示
TDD:Time Division Duplexing,时分双工
FDD:Frequency Division Duplexing,频分双工
SIB:System Information Block,系统信息块
SIB1:System Information Block Type 1,系统信息块类型1
SLSS:Sidelink synchronization Signal,侧行通信同步信号
PSSS:Primary Sidelink Synchronization Signal,侧行通信主同步信号
SSSS:Secondary Sidelink Synchronization Signal,侧行通信辅同步信号
PCI:Physical Cell ID,物理小区标识
PSS:Primary Synchronization Signal,主同步信号
SSS:Secondary Synchronization Signal,辅同步信号
BWP:BandWidth Part,带宽片段/部分
GNSS:Global NaVigation Satellite System,全球导航卫星定位系统
SFN:System Frame Number,系统(无线)帧号
DFN:Direct Frame Number,直接帧号
IE:Information Element,信息元素
SSB:Synchronization Signal Block,同步系统信息块
EN-DC:EUTRA-NR Dual Connection,LTE-NR双连接
MCG:Master Cell Group,主小区组
SCG:Secondary Cell Group,辅小区组
PCell:Primary Cell,主小区
SCell:Secondary Cell,辅小区
PSFCH:Physical Sidelink Feedback Channel,物理侧行通信反馈信道
SPS:Semi-Persistant Scheduling,半静态调度
TA:Timing Advance,上行定时提前量
PT-RS:Phase-Tracking Reference Signals,相位跟踪参考信号
TB:Transport Block,传输块
CB:Code Block,编码块/码块
QPSK:Quadrature Phase Shift Keying,正交相移键控
16/64/256 QAM:16/64/256 Quadrature Amplitude Modulation,正交幅度调制
AGC:Auto Gain Control,自动增益控制
TDRA(field):Time Domain Resource Assignment,时域资源分配指示(域)
FDRA(field):Frequency Domain Resource Assignment,频域资源分配指示(域)
ARFCN:Absolute Radio Frequency Channel Number,绝对无线频率信道编号
SC-FDMA:Single Carrier-Frequency Division Multiple Access,单载波-频分复用多址
MAC:Medium Access Control,媒体接入控制层
PDU:Protocol Data Unit,协议数据单元
DRX:Discontinuous Reception,不连续接收
SL-U:Sidelink unlicensed,非授权频谱上的侧行通信
NR-U:NR unlicensed,非授权频谱上的NR通信
LBT:Listen Before Talk,先听后说
下文是与本发明方案相关联现有技术的描述。如无特别说明,具体实施例中与现有技术中相同术语的含义相同。
值得指出的是,本发明说明书中涉及的V2X与侧行通信(sidelink)含义相同。文中的V2X也可以表示侧行通信;相似地,文中的侧行通信也可以表示V2X,后文中不做具体区分和限定。
本发明的说明书中的V2X(sidelink)通信的资源分配方式与V2X(sidelink)通信的传输模式可以等同替换。说明书中涉及的资源分配方式可以表示传输模式,以及,涉及的传输模式可以表示资源分配方式。在NR侧行通信中,传输模式1表示基于基站调度的传输模式(资源分配方式);传输模式2表示基于用户设备感知(sensing)和资源选择的传输模式(资源分配方式)。
本发明的说明书中的PSCCH用于携带SCI。本发明的说明书中涉及到的PSCCH对应的,或者,相应的,或者,相关的,或者,调度的PSSCH表示的含义均相同,都表示关联的(associated)PSSCH或者对应的(corresponding)PSSCH。类似地,说明书中涉及到的PSSCH对应的,或者,相应的,或者,相关的SCI(包括第一级SCI和第二级SCI)表示的含义均相同,都表示关联的(associated)SCI或者对应的(corresponding)SCI。值得指出的是,第一级SCI称为1st stage SCI或者SCI格式1-A,在PSCCH中传输;第二级SCI称为2nd stage SCI或者SCI格式2-A(或者,SCI格式2-B),在对应的PSSCH的资源中传输。
本发明的说明书中的在未授权频谱(unlicensed spectrum)上进行NR侧行通信(简称为SL-U),也可以称作共享频谱的信道接入(shared spectrum channel access),即在未授权频谱上,可能存在通过Wifi技术(基于IEEE 802.11标准的无线局域网技术)接入信道的用户设备,也存在通过PC5接口接入的NR侧行通信用户设备。
NR中(包含NR sidelink)的参数集合(numerology)和NR中(包含NR  sidelink)的时隙(slot)
参数集合(numerology)包含子载波间隔和循环前缀CP长度两方面含义。其中,NR支持5种子载波间隔,分别为15k,30k,60k,120k,240kHz(对应μ=0,1,2,3,4),表格4.2-1示出了支持的传输参数集合,具体如下所示。
表4.2-1 NR支持的子载波间隔
仅当μ=2时,即60kHz子载波间隔的情况下支持扩展(Extended)CP,其他子载波间隔的情况仅支持正常CP。对于正常(Normal)CP,每个时隙(slot)含有14个OFDM符号;对于扩展CP,每个时隙含有12个OFDM符号。对于μ=0,即15kHz子载波间隔,1个时隙=1ms;μ=1,即30kHz子载波间隔,1个时隙=0.5ms;μ=2,即60kHz子载波间隔,1个时隙=0.25ms,以此类推。
NR和LTE对于子帧(subframe)的定义相同,表示1ms。对于子载波间隔配置μ,1个子帧内(1ms)的时隙编号可以表示为范围为0到1个系统帧(frame,时长10ms)内的时隙编号可以表示为范围为0到其中,在不同子载波间隔μ的情况的定义如下表格所示。
表格4.3.2-1:正常CP时每个时隙包含的符号数,每个系统帧包含的时隙数,每个子帧包含的时隙数
表格4.3.2-2:扩展CP时(60kHz)每个时隙包含的符号数,每个系统帧包含的时隙数,每个子帧包含的时隙数
在NR载波上,系统帧(或者,简称为帧)的编号SFN范围为0至1023。在侧行通信中引入了直接系统帧号DFN的概念,编号范围同样为0至1023,上述对于系统帧和参数集合(numerology)之间关系的叙述同样可以应用于直接系统帧,例如,一个直接系统帧的时长同样等于10ms,对于15kHz的子载波间隔,一个直接系统帧包括10个时隙(slot),等等。DFN应用于侧行通信载波上的定时(timing)。
LTE中(包含LTE V2X)参数集和LTE中(包含LTE V2X)的时隙和子
LTE仅支持15kHz的子载波间隔。LTE中支持扩展(Extended)CP,也支持正常CP。子帧(subframe)时长为1ms,包含两个时隙,每个时隙时长为0.5ms。
对于正常(Normal)CP,每个子帧含有14个OFDM符号,子帧中的每个时隙包含7个OFDM符号;对于扩展CP,每个子帧含有12个OFDM符号,子帧中的每个时隙包含6个OFDM符号。
资源块RB和资源单元RE
资源块RB在频域上定义为个连续的子载波,例如对于15kHz的子载波间隔,RB在频域上为180kHz。对于子载波间隔15kHz×2μ,资源单元RE在频域上表示1个子载波,在时域上表示1个OFDM符号。
侧行通信的场景
1)无网络覆盖(Out-of-Coverage)侧行通信:进行侧行通信的两个UE都没有网络覆盖(例如,UE在需要进行侧行通信的频率上检测不到任何满足“小区选择准则”的小区,表示该UE无网络覆盖)。
2)有网络覆盖(In-Coverage)侧行通信:进行侧行通信的两个UE都有网络覆盖(例如,UE在需要进行侧行通信的频率上至少检测到一个满足“小区选择准则”的小区,表示该UE有网络覆盖)。
3)部分网络覆盖(Partial-Coverage)侧行通信:进行侧行通信的其中一个UE无网络覆盖,另一个UE有网络覆盖。
从UE侧来讲,该UE仅有无网络覆盖和有网络覆盖两种场景。部分 网络覆盖是从侧行通信的角度来描述的。
LTE V2X(sidelink)通信的基本过程
图1是示出了LTE V2X UE侧行通信的示意图。首先,UE1向UE2发送侧行通信控制信息(SCI格式1),由物理层信道PSCCH携带。SCI格式1包含PSSCH的调度信息,例如PSSCH的频域资源等。其次,UE1向UE2发送侧行通信数据,由物理层信道PSSCH携带。PSCCH和相应的PSSCH采用频分复用的方式,即PSCCH和相应的PSSCH在时域上位于相同的子帧上,在频域上位于不同的RB上。在LTE V2X中,一个传输块TB可能仅包含一次初始传输,或者包含一次初始传输和一次盲重传(blind retransmission,表示不基于HARQ反馈的重传)。
PSCCH和PSSCH的具体设计方式如下:
1)PSCCH在时域上占据一个子帧,频域上占据两个连续的RB。加扰序列的初始化采用预定义数值510。PSCCH中可携带SCI格式1,其中SCI格式1至少包含PSSCH的频域资源信息。例如,对于频域资源指示域,SCI格式1指示该PSCCH对应的PSSCH的起始子信道(sub-channel)编号和连续子信道的数目。
2)PSSCH在时域上占据一个子帧,和对应的PSCCH采用频分复用(FDM)。PSSCH在频域上占据一个或者多个连续的子信道,子信道在频域上表示nsubCHsize个连续的RB,nsubCHsize由RRC参数配置,起始子信道和连续子信道的数目由SCI格式1的频域资源指示域指示。
LTE V2X的资源分配方式Transmission Mode 3/4
图2是示出了LTE V2X的两种资源分配方式,分别称为基于基站调度的资源分配(Transmission Mode 3)和基于UE感知(sensing)的资源分配(Transmission Mode 4)。在NR侧行通信中,LTE V2X的传输模式3对应NR V2X中的传输模式1,为基于基站调度的传输模式;LTE V2X 的传输模式4对应NR V2X中的传输模式2,为基于UE感知的传输模式。LTE V2X中,当存在eNB网络覆盖的情况下,基站可通过UE级的专有RRC信令(dedicated RRC signaling)SL-V2X-ConfigDedicated配置该UE的资源分配方式,或称为该UE的传输模式,具体为:
1)基于基站调度的资源分配方式(Transmission Mode 3):基于基站调度的资源分配方式表示侧行通信所使用的频域资源来自于基站的调度。传输模式3包含两种调度方式,分别为动态调度和半静态调度(SPS)。对于动态调度,UL调度许可(DCI格式5A)中包括PSSCH的频域资源,承载DCI格式5A的PDCCH或者EPDCCH的CRC由SL-V-RNTI加扰。对于SPS半静态调度,基站通过IE:SPS-ConfigSL-r14配置一个或者多个(至多8个)配置的调度许可(configured grant),每个配置的调度许可含有一个调度许可编号(index)和调度许可的资源周期。UL调度许可(DCI格式5A)中包括PSSCH的频域资源,以及,调度许可编号的指示信息(3比特)和SPS激活(activate)或者释放(release,或者,去激活)的指示信息。承载DCI格式5A的PDCCH或者EPDCCH的CRC由SL-SPS-V-RNTI加扰。
具体地,当RRC信令SL-V2X-ConfigDedicated置为scheduled-r14时,表示该UE被配置为基于基站调度的传输模式。基站通过RRC信令配置SL-V-RNTI或者SL-SPS-V-RNTI,并通过PDCCH或者EPDCCH(DCI格式5A,CRC采用SL-V-RNTI加扰或者采用SL-SPS-V-RNTI加扰)向UE发送上行调度许可(UL grant)。上述上行调度许可中至少包含侧行通信中PSSCH频域资源的调度信息。当UE成功监听到由SL-V-RNTI加扰或者SL-SPS-V-RNTI加扰的PDCCH或者EPDCCH后,将上行调度许可(DCI格式5A)中的PSSCH频域资源指示域作为PSCCH(SCI格式1)中PSSCH的频域资源的指示信息,并发送PSCCH(SCI格式1)和相应的PSSCH。
对于传输模式3中的半静态调度SPS,UE在下行子帧n上接收SL-SPS-V-RNTI加扰的DCI格式5A。如果DCI格式5A中包含 SPS激活的指示信息,该UE根据DCI格式5A中的指示信息确定PSSCH的频域资源,根据子帧n等信息确定PSSCH的时域资源(PSSCH的发送子帧)。
2)基于UE感知(sensing)的资源分配方式(Transmission Mode 4):基于UE感知的资源分配方式表示用于侧行通信的资源基于UE对候选可用资源集合的感知(sensing)过程。RRC信令SL-V2X-ConfigDedicated置为ue-Selected-r14时表示该UE被配置为基于UE感知的传输模式。在基于UE感知的传输模式中,基站配置可用的传输资源池,UE根据一定的规则(详细过程的描述参见LTE V2X UE感知过程部分)在传输资源池(resource pool)中确定PSSCH的侧行通信发送资源,并发送PSCCH(SCI格式1)和相应的PSSCH。
侧行通信资源池(sidelink resource pool)
在侧行通信中,UE的发送和接收的资源均属于资源池(resource pool)。例如,对于侧行通信中基于基站调度的传输模式,基站在资源池中为侧行通信UE调度传输资源,或者,对于侧行通信中基于UE感知的传输模式,UE在资源池中确定传输资源。
对于NR侧行通信,在频域上支持基于子信道(sub-channel)为最小粒度的资源分配,即对于PSSCH传输,频域上占据的资源是整数个子信道。一个子信道可以表示频域上连续的若干个资源块RB。
基于感知的资源分配方式
对于基于感知的资源分配方式(资源分配方式2),侧行通信用户设备在一个时间窗口内(可选地,资源选择窗口[n+T1,n+T2])选择候选资源,并根据监听时隙中其他用户设备发送的PSCCH所指示的预留资源,确定和该预留资源有重叠的候选资源,并将这些有重叠的候选资源排除(exclude)。物理层将未被排除的候选资源集合上报至MAC层,MAC 层为PSSCH/PSCCH选择传输资源。MAC层选择的传输资源的集合称为选择的侧行通信调度许可(selected sidelink grant)。一个选择的侧行通信调度许可包含的侧行通信资源可用于一个MAC PDU(对应一个传输块TB)的初传和所有重传,或者,可用于多个MAC PDU(对应多个传输块TB)的初传和所有重传。本发明对此不做任何限制。
资源选择窗口[n+T1,n+T2]
在基于感知(或者,部分感知)的资源分配方式中,高层在时隙n上请求或者触发物理层确定用于PSSCH/PSCCH传输的资源(进行感知或者部分感知)。资源选择窗口定义为[n+T1,n+T2],即用户设备在该窗口内选择传输资源。其中,T1满足条件T1的选择取决于用户设备的实现;RRC配置信息中包含一个资源选择窗口的配置列表sl-SelectionWindowList,其中,该列表中对应一个给定的优先级prioTX(传输PSSCH的优先级)的元素表示为T2min。如果该T2min小于剩余数据包延迟预算(remaining packet delay budget,简称为remaining PDB),那么,T2满足条件T2min≤T2≤remaining PDB,T2的选择取决于用户设备的实现;否则T2设置为remaining PDB。的定义如下(μSL表示侧行通信的子载波间隔参数,即子载波间隔为):
表8.1.4-2:的取值
表8.1.4-1:的取值

LBT(Listen Before Talk)机制
对于在非授权频谱(unlicensed spectrum)上的无线通信,一些国家或地区(例如,欧洲地区)规定用户设备在进行无线通信的传输前,需要进行LBT操作,即“先听后说”机制,也可以称作信道接入(channel access)操作,表示通过感知(sensing)信道来判断信道可用性的一种机制。具体来说,在通信传输前的一段时间内,用户设备只有在监听到信道处于空闲时(idle)才会进行传输;否则,用户设备不会进行传输。
具体来说,对于非授权频谱上的NR通信(NR-U)(或者,对于SL-U),感知信道的基本时间单位可以是Tsl=9μs。在该时间单位内,如果基站或者用户设备在信道上检测到的能量低于能量门限值XThresh的时长等于或者超过4μs时,则基站或用户设备认为信道在该时间单位内是空闲的(或者,称为LBT成功)。值得指出的是,基站或者用户设备检测能量并用于确定是否空闲的信道(channel)表示包含一个连续资源块RB集合的一个载波,或者该载波的一部分。该信道也可以称作LBT带宽(LBT bandwidth),或者,LBT子带(LBT sub-band),或者RB集合(RB set)。一个LBT带宽或者RB集合在频域上可以等于20MHz,即在20MHz的载波上可以存在一个RB集合。对于15kHz的子载波间隔,在一个载波上(超过20MHz的载波,例如40MHz,60MHz,80MHz),包含的多个RB集合以及两个连续RB集合之间的保护带(Guard Band,简称为GB)所对应的资源块RB的数目可以是如下表格中所示的:
表1:15kHz和30kHz子载波间隔下,一个载波上的所有RB集合和GB包含的RB数目
上表中,以15kHz的子载波间隔和40MHz的载波带宽为例,105-6-105表示该载波包含两个连续的RB集合,分别包含105个RB。在这两个RB集合之间,存在一个包含6个连续RB的保护带GB,共计包含216个连续的RB,以此类推表1中的其他项。
值得指出的是,(侧行通信)用户设备在不同的RB集合上进行的LBT操作,可以是互相独立的(即二者互不相干)。例如,用户设备在RB集合1上检测信道是空闲的,在RB集合2上检测信道可以是占用的(或者,忙碌的)。如果侧行通信用户设备选择用于传输PSSCH/PSCCH的资源同时包含RB集合1和RB集合2所对应的(全部或者部分)RB时,当且仅当该用户设备在RB集合1和RB集合2上同时检测到信道是空闲的情况下,该用户设备可以发送相应的PSSCH/PSCCH。
以下,对本发明所涉及的具体的示例以及实施例等进行详细说明。另外,如上所述,本公开中记载的示例以及实施例等是为了容易理解本发明而进行的示例性说明,并不是对本发明的限定。
[实施例一]
图3是示出了本发明的实施例一的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例一的由用户设备执行的方法。
如图3所示,在本发明的实施例一中,用户设备执行的步骤包括:
在步骤S101,侧行通信用户设备选择生成(select to create)一个选择 的侧行通信调度许可(selected sidelink grant),并且,可选地,在逻辑信道上,侧行通信数据是可用的。
其中,可选地,所述一个选择的侧行通信调度许可对应(correspond to)一个或者多个MAC协议数据单元PDU的传输。
在步骤S102,所述用户设备执行(perform)发送资源选择(重选)过程。
其中,可选地,如果资源选择(或者,重选)检查的结果是触发资源选择(或者,重选),那么,所述用户设备执行发送资源选择(或者,重选)过程。
可选地,所述用户设备的资源分配方式是基于感知的资源分配方式,或者,基于部分感知的资源分配方式,或者,随机资源选择。
其中,可选地,对于共享频谱的信道接入(shared spectrum channel access),或者,对于在非授权频谱上的所述侧行通信,
所述用户设备为一次传输机会(one transmission opportunity)(随机地)选择侧行通信时频资源,其中,可选地,所述用户设备在物理层上报(或者,指示)的候选资源集合中(随机地)选择一个时频资源,所述时频资源对应(或者,关联,或者,映射)的资源块RB在单一(或者,一个)资源块集合(RB set)中;可选地,如果物理层上报的候选资源集合中不包含对应(或者,关联,或者,映射)的资源块RB在单一(或者,一个)资源块集合(RB set)的候选资源,那么,所述用户设备在所述物理层上报的候选资源集合中(随机)选择一个时频资源,
和/或,
如果所述用户设备选择了一个或者多个HARQ重传,所述用户设备为所述一次或者多次(HARQ重传的)传输机会从可用的(available)侧行通信资源中(随机地)选择侧行通信时频资源,其中,可选地,对于所述一次或者多次(HARQ重传的)传输机会,如果所述物理层上报的候选资源集合中剩余的可用资源中存在(足够的)对应(或者,关联,或者,映射)的资源块RB在单一(或者,一个)资源块集合(RB set)中的候选资源,那么,所述用户在所述剩余的可用资源中的对应(或者,关联,或者,映射)的资源块RB在单一(或者,一个)资源块集合(RB set) 中的候选资源中(随机地)为所述一次或者多次(HARQ重传的)传输机会选择时频资源;可选地,对于所述一次或者多次(HARQ重传的)传输机会,如果所述用户设备在所述物理层上报的候选资源集合中剩余的可用资源中对应(或者,关联,或者,映射)的资源块RB在单一(或者,一个)资源块集合(RB set)中的候选资源中已经最大化选择的情况下(maximally selected),所选择的时频资源的数目少于所述选择的HARQ重传的次数,那么,所述用户设备在所述物理层上报的候选资源集合中剩余的可用资源中(随机地)为剩余其他的(remaining,表示还未选择时频资源的传输机会,即除去(except for)已经选择的对应资源块RB在单一RB集合的侧行通信资源)(HARQ重传)的传输机会选择时频资源。
图4是表示本发明所涉及的用户设备UE的框图。如图4所示,该用户设备UE40包括处理器401和存储器402。处理器401例如可以包括微处理器、微控制器、嵌入式处理器等。存储器402例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器402上存储有程序指令。该指令在由处理器401运行时,可以执行本发明详细描述的由用户设备执行的上述方法。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数 字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发 明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (10)

  1. 一种由用户设备执行的方法,包括以下步骤:
    选择生成一个选择的侧行通信调度许可;以及
    执行发送资源选择或重选过程。
  2. 根据权利要求1所述的方法,其中,
    所述选择的侧行通信调度许可对应一个或者多个媒体接入控制层MAC协议数据单元PDU的传输。
  3. 根据权利要求1所述的方法,其中,
    所述发送资源选择或重选过程中的资源分配方式是基于感知的资源分配方式、部分感知的资源分配方式、以及随机资源选择方式中的至少一个。
  4. 根据权利要求1所述的方法,其中,
    对于共享频谱的信道接入,所述执行发送资源选择或重选过程的步骤包括以下步骤:
    针对一次传输机会选择侧行通信时频资源。
  5. 根据权利要求4所述的方法,其中,
    所述针对一次传输机会选择侧行通信时频资源的步骤包括:
    在物理层上报的候选资源集合中选择一个时频资源作为侧行通信时频资源,所述时频资源对应的资源块RB位于单一资源块集合中。
  6. 根据权利要求5所述的方法,其中,
    所述针对一次传输机会选择侧行通信时频资源的步骤还包括:
    如果物理层上报的候选资源集合中不包含对应的资源块RB位于单一资源块集合中的候选资源,则在所述物理层上报的候选资源集合中选择一个时频资源作为侧行通信时频资源。
  7. 根据权利要求1所述的方法,其中,
    对于共享频谱的信道接入,所述执行发送资源选择或重选过程的步骤包括以下步骤:
    针对一次或者多次混合自动重传请求HARQ重传的传输机会选择侧 行通信时频资源。
  8. 根据权利要求7所述的方法,其中,
    针对一次或者多次HARQ重传的传输机会选择侧行通信时频资源的步骤包括:
    如果物理层上报的候选资源集合中剩余的可用资源中存在足够的对应的资源块RB位于单一资源块集合中的候选资源,则从所述剩余的可用资源中的对应的资源块RB位于单一资源块集合中的候选资源中,针对一次或者多次HARQ重传的传输机会选择侧行通信时频资源。
  9. 根据权利要求8所述的方法,其中,
    针对一次或者多次HARQ重传的传输机会选择侧行通信时频资源的步骤还包括:
    如果物理层上报的候选资源集合中剩余的可用资源中对应的资源块RB位于单一资源块集合中的候选资源已经最大化选择的情况下,则从所述物理层上报的候选资源集合中剩余的可用资源中,针对剩余的其他的HARQ重传的传输机会选择侧行通信时频资源。
  10. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令,
    其中,所述指令在由所述处理器运行时执行根据权利要求1-9中的任一项所述的方法。
PCT/CN2023/106497 2022-07-11 2023-07-10 由用户设备执行的方法以及用户设备 WO2024012390A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210798637.4 2022-07-11
CN202210798637.4A CN117440348A (zh) 2022-07-11 2022-07-11 由用户设备执行的方法以及用户设备

Publications (1)

Publication Number Publication Date
WO2024012390A1 true WO2024012390A1 (zh) 2024-01-18

Family

ID=89535575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106497 WO2024012390A1 (zh) 2022-07-11 2023-07-10 由用户设备执行的方法以及用户设备

Country Status (2)

Country Link
CN (1) CN117440348A (zh)
WO (1) WO2024012390A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113225845A (zh) * 2020-01-21 2021-08-06 华硕电脑股份有限公司 处理关于周期性传送的侧链路不连续接收的方法和设备
US20210306828A1 (en) * 2018-08-01 2021-09-30 Intel Corporation Unified channel access for broadcast, groupcast, and unicast communication in nr v2x sidelink communication
CN114071426A (zh) * 2020-08-06 2022-02-18 夏普株式会社 由用户设备执行的方法以及用户设备
CN115811717A (zh) * 2021-09-16 2023-03-17 夏普株式会社 由用户设备执行的方法以及用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210306828A1 (en) * 2018-08-01 2021-09-30 Intel Corporation Unified channel access for broadcast, groupcast, and unicast communication in nr v2x sidelink communication
CN113225845A (zh) * 2020-01-21 2021-08-06 华硕电脑股份有限公司 处理关于周期性传送的侧链路不连续接收的方法和设备
CN114071426A (zh) * 2020-08-06 2022-02-18 夏普株式会社 由用户设备执行的方法以及用户设备
CN115811717A (zh) * 2021-09-16 2023-03-17 夏普株式会社 由用户设备执行的方法以及用户设备

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CATT: "Correction of Resource Pool Selection for Discovery Message.", 3GPP DRAFT; R2-2204768, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20220509 - 20220520, 25 April 2022 (2022-04-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052142694 *
CATT: "Discussion on Resource Pool Selection for Discovery Message", 3GPP DRAFT; R2-2204767, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20220509 - 20220520, 25 April 2022 (2022-04-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052142693 *
HUAWEI, HISILICON: "Remaining issues on inter-UE coordination MAC CE", 3GPP DRAFT; R2-2204923, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20220509 - 20220520, 25 April 2022 (2022-04-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052138538 *
LG ELECTRONICS: "Correction on user plane aspects for SL enhancement", 3GPP DRAFT; R2-2206319, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20220509 - 20220520, 27 May 2022 (2022-05-27), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052156376 *
NOKIA, NOKIA SHANGHAI BELL: "Enabling unsolicited transmission of IUC", 3GPP DRAFT; R2-2205881, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20220509 - 20220520, 25 April 2022 (2022-04-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052139274 *

Also Published As

Publication number Publication date
CN117440348A (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
WO2022028413A1 (zh) 由用户设备执行的方法以及用户设备
WO2022143641A1 (zh) 由用户设备执行的方法以及用户设备
WO2022111630A1 (zh) 由用户设备执行的方法以及用户设备
WO2023040961A1 (zh) 由用户设备执行的方法以及用户设备
WO2020088513A1 (zh) 由用户设备执行的方法以及用户设备
WO2022017037A1 (zh) 由用户设备执行的方法以及用户设备
WO2021190521A1 (zh) 由用户设备执行的方法以及用户设备
WO2021136373A1 (zh) 由用户设备执行的方法以及用户设备
WO2023131074A1 (zh) 由用户设备执行的方法以及用户设备
WO2022267943A1 (zh) 由用户设备执行的方法以及用户设备
WO2022194243A1 (zh) 由用户设备执行的方法以及用户设备
WO2022152163A1 (zh) 由用户设备执行的方法以及用户设备
WO2021228138A1 (zh) 由用户设备执行的方法以及用户设备
WO2022028330A1 (zh) 由用户设备执行的方法以及用户设备
WO2021197379A1 (zh) 由用户设备执行的方法以及用户设备
WO2021013213A1 (zh) 由用户设备执行的方法以及用户设备
WO2024012390A1 (zh) 由用户设备执行的方法以及用户设备
WO2024094061A1 (zh) 由用户设备执行的方法以及用户设备
WO2023185688A1 (zh) 由用户设备执行的方法以及用户设备
WO2024001958A1 (zh) 由用户设备执行的方法以及用户设备
WO2023202482A1 (zh) 由用户设备执行的方法以及用户设备
WO2023098812A1 (zh) 由用户设备执行的方法以及用户设备
WO2024001957A1 (zh) 由用户设备执行的方法以及用户设备
WO2024140669A1 (zh) 由用户设备执行的方法以及用户设备
WO2024032504A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838882

Country of ref document: EP

Kind code of ref document: A1