WO2022206817A1 - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
WO2022206817A1
WO2022206817A1 PCT/CN2022/083987 CN2022083987W WO2022206817A1 WO 2022206817 A1 WO2022206817 A1 WO 2022206817A1 CN 2022083987 W CN2022083987 W CN 2022083987W WO 2022206817 A1 WO2022206817 A1 WO 2022206817A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
time
communication
time slot
pssch
Prior art date
Application number
PCT/CN2022/083987
Other languages
English (en)
French (fr)
Inventor
赵毅男
罗超
刘仁茂
Original Assignee
夏普株式会社
赵毅男
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 赵毅男 filed Critical 夏普株式会社
Priority to EP22778999.7A priority Critical patent/EP4319221A1/en
Priority to US18/284,865 priority patent/US20240196417A1/en
Publication of WO2022206817A1 publication Critical patent/WO2022206817A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to the technical field of wireless communication, and in particular, to a method performed by a user equipment and a corresponding user equipment.
  • D2D communication (Device-to-Device communication, direct device-to-device communication) refers to a direct communication method between two user equipments without being forwarded by a base station or a core network.
  • 3GPP 3rd Generation Partnership Project
  • the upper layer supports unicast (Unicast) and multicast (Groupcast) communication functions.
  • LTE Release 13 eD2D The main features introduced by LTE Release 13 eD2D include:
  • V2X stands for Vehicle to everything, hoping to realize the exchange of information between vehicles and all entities that may affect vehicles, with the purpose of reducing accidents, slowing traffic congestion, reducing environmental pollution and providing other information services.
  • the application scenarios of V2X mainly include four aspects:
  • V2V Vehicle to Vehicle, that is, vehicle-to-vehicle communication
  • V2P Vehicle to Pedestrian, that is, the vehicle sends a warning to pedestrians or non-motor vehicles
  • V2N Vehicle to Network, that is, the vehicle is connected to the mobile network
  • V2I Vehicle to Infrastructure, that is, communication between vehicles and road infrastructure.
  • V2X stage 1 introduces a new D2D communication interface called the PC5 interface.
  • the PC5 interface is mainly used to solve the communication problems of cellular vehicle networking in high-speed (up to 250 km/h) and high-node density environments. Vehicles can interact with information such as position, speed and direction through the PC5 interface, that is, vehicles can communicate directly through the PC5 interface.
  • the functions introduced by LTE Release 14 V2X mainly include:
  • the second phase of the V2X research topic belongs to the research scope of LTE Release 15 (see Non-Patent Document 4).
  • the main features introduced include high-order 64QAM modulation, V2X carrier aggregation, short TTI transmission, and a feasibility study of transmit diversity.
  • resource allocation mode 2 (resource allocation mode 2) based on user equipment sensing (sensing) is supported, or transmission mode 2.
  • resource allocation mode 2 the physical layer of the user equipment senses the transmission resources in the resource pool, and reports the set of available transmission resources to the upper layer. After obtaining the report of the physical layer, the upper layer selects the resources specifically used for the transmission of sideline communication.
  • Non-Patent Document 6 a standardization research topic (see Non-Patent Document 6) based on the already standardized NR sidelink enhancement was approved.
  • the enhancement of sideline communication includes the following two aspects:
  • Standardize the resource allocation method for reducing the power consumption of sideline communication user equipment including but not limited to: resource allocation method based on partial sensing, resource allocation method based on random resource selection;
  • the solution of the present patent includes, in the sideline communication enhancement, a method for the sideline communication user equipment to determine a candidate resource set in a resource allocation method based on partial sensing, and a method for the user equipment to determine the moment when the upper layer triggers the physical layer to perform partial sensing a method.
  • NR sideline communication enhancement also includes the standardization research work for sideline communication discontinuous reception (SL Discontinuous Reception, SL DRX for short).
  • SL DRX sideline communication discontinuous reception
  • user equipment supports receiving the physical downlink control channel PDCCH discontinuously in time, called DRX, which can effectively reduce the power consumption of communication equipment.
  • DRX physical downlink control channel
  • discontinuous reception refers to receiving the physical sideline communication control channel PSCCH for a part of the time in the time domain, which is called Active time; the time when PSCCH is not received is called In-active time.
  • the solution of this patent also includes a method for the sideline communication user equipment to determine the duration of the round-trip timer RTT timer.
  • Non-patent document 1 RP-140518, Work item proposal on LTE Device to Device Proximity Services
  • Non-patent document 2 RP-142311, Work Item Proposal for Enhanced LTE Device to Device Proximity Services
  • Non-patent literature 3 RP-152293, New WI proposal: Support for V2V services based on LTE sidelink
  • Non-Patent Document 4 RP-170798, New WID on 3GPP V2X Phase 2
  • Non-Patent Document 5 RP-181480, New SID Proposal: Study on NR V2X
  • Non-Patent Document 6 RP-202846, WID revision: NR sidelink enhancement
  • the purpose of the present invention is to provide a method performed by the user equipment and the user equipment that can ensure that the PSSCH transmitted by the sideline communication user equipment can be received by the opposite end user equipment during the active period, and enhance the reliability of the sideline communication.
  • Another object of the present invention is to provide a resource allocation method based on partial sensing, the solution of this patent can ensure that after partial sensing is triggered, the user equipment can continuously monitor the PSCCH to avoid resource conflict, thereby improving the transmission of sideline communication Reliable methods performed by user equipment and user equipment.
  • Another object of the present invention is to provide a method for user equipment to determine a round-trip timer in this patent, which ensures the consistency of the round-trip timer between the sending user equipment and the receiving user equipment, and can effectively reduce the power consumption of the sideline communication user equipment The method performed by the user equipment and the user equipment.
  • the present invention provides a method performed by a user equipment and a user equipment.
  • a request for determining transmission resources of PSSCH/PSCCH is received from a higher layer, the user equipment determines an active period of discontinuous reception of sideline communication, and the user equipment determines a set of listening time slots.
  • a request to determine transmission resources of PSSCH/PSCCH is received from a higher layer on time slot n.
  • the set of listening time slots at least includes time slots in all or part of the resource pool both within the time interval and within the active period, wherein the The time interval is [n, n + TB] or, [n + 1, n + TB], where TB is the 31st time slot in the resource pool starting from the time slot n, or , from which forward or subtract or time slots, or the TB is the 32nd time slot in the resource pool starting from the time slot n, or, on this basis, forward or subtract or time slot).
  • the time interval is within the active period, wherein the time interval is [n, n+T B ] or, [n+1, n+T B ], the T B is the 31st time slot in the resource pool starting from the time slot n, or, on this basis, forward or subtract or time slots, or the TB is the 32nd time slot in the resource pool starting from the time slot n, or, on this basis, forward or subtract or time slot).
  • the method includes: the first user equipment receives the time interval indication information sent by the second user equipment, and the first user equipment determines the duration of the round-trip timer for discontinuous reception of sideline communication.
  • the time interval indicated by the time interval indication information represents the time required for PSFCH reception processing and retransmission preparation determined by the second user equipment.
  • the first user equipment determines the duration of the round trip timer for the discontinuous reception of the sideline communication according to at least the time interval indication information.
  • the user equipment obtains the configuration information of the sideline communication resource pool, and the receiving user equipment determines the duration of the round-trip timer for the discontinuous reception of the sideline communication.
  • the configuration information of the sidelink communication resource pool at least includes the minimum time domain interval s1-MinTimeGapPSFCH between the PSSCH and the PSFCH, and the period of the PSFCH s1-PSFCH- Period.
  • a user equipment includes: a processor; and a memory storing instructions; wherein the instructions, when executed by the processor, perform the method of the above-mentioned first aspect.
  • the solution of this patent in the resource allocation method based on partial perception, it can be ensured that the PSSCH transmitted by the user equipment of the sideline communication can be received by the user equipment of the opposite end during the active period, which enhances the reliability of the sideline communication; , in the resource allocation method based on partial sensing, the solution of this patent can ensure that after partial sensing is triggered, the user equipment can continuously monitor the PSCCH to avoid resource conflict, and improve the transmission reliability of sideline communication; the user equipment in this patent determines The method of the round-trip timer RTT timer ensures the consistency of the round-trip timer RTT timer between the sending user equipment and the receiving user equipment, and can effectively reduce the power consumption of the sideline communication user equipment.
  • FIG. 1 is a schematic diagram illustrating sideline communication of an LTE V2X UE.
  • FIG. 2 is a schematic diagram illustrating a resource allocation manner of LTE V2X.
  • FIG. 3 is a schematic diagram illustrating a basic process of a method performed by a user equipment in Embodiment 1 of the invention.
  • FIG. 4 is a schematic diagram showing the basic process of the method executed by the user equipment in the second and third embodiments of the invention.
  • FIG. 5 is a schematic diagram illustrating a basic process of a method performed by a user equipment in Embodiment 4 of the invention.
  • FIG. 6 is a schematic diagram illustrating a basic process of a method executed by a user equipment in Embodiment 5 of the invention.
  • FIG. 7 is a schematic diagram showing the basic process of the method performed by the user equipment in the sixth and seventh embodiments of the invention.
  • FIG. 8 is a block diagram illustrating a user equipment according to an embodiment of the present invention.
  • the 5G mobile communication system and its subsequent evolved versions are used as an example application environment to specifically describe various embodiments according to the present invention.
  • the present invention is not limited to the following embodiments, but can be applied to more other wireless communication systems, such as communication systems after 5G and 4G mobile communication systems before 5G.
  • LTE Long Term Evolution, long term evolution technology
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • DCI Downlink Control Information, downlink control information
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • UE User Equipment, user equipment
  • eNB evolved NodeB, evolved base station
  • gNB NR base station
  • TTI Transmission Time Interval, transmission time interval
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing with Cyclic Prefix
  • C-RNTI Cell Radio Network Temporary Identifier, the temporary identifier of the cell wireless network
  • CSI Channel State Information, channel state information
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • CRS Cell Reference Signal, cell-specific reference signal
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • SCI Sidelink Control Information, side communication control information
  • PSCCH Physical Sidelink Control Channel
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • RB Resource Block, resource block
  • CRB Common Resource Block, common resource block
  • CP Cyclic Prefix, cyclic prefix
  • PRB Physical Resource Block, physical resource block
  • PSSCH Physical Sidelink Shared Channel
  • FDM Frequency Division Multiplexing, Frequency Division Multiplexing
  • RRC Radio Resource Control
  • RSRP Reference Signal Receiving Power, reference signal receiving power
  • SRS Sounding Reference Signal, sounding reference signal
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • PSDCH Physical Sidelink Discovery Channel, Physical Sidelink Communication Discovery Channel
  • PSBCH Physical Sidelink Broadcast Channel, Physical Sidelink Communication Broadcast Channel
  • TDD Time Division Duplexing
  • FDD Frequency Division Duplexing, frequency division duplexing
  • SIBl System Information Block Type 1, system information block type 1
  • SLSS Sidelink synchronization Signal, side communication synchronization signal
  • PSSS Primary Sidelink Synchronization Signal, side communication main synchronization signal
  • SSSS Secondary Sidelink Synchronization Signal, side communication auxiliary synchronization signal
  • PCI Physical Cell ID, physical cell identification
  • PSS Primary Synchronization Signal, the main synchronization signal
  • SSS Secondary Synchronization Signal, secondary synchronization signal
  • BWP BandWidth Part, Bandwidth Fragment/Part
  • GNSS Global Navigation Satellite System, global navigation satellite positioning system
  • SFN System Frame Number, system (wireless) frame number
  • DFN Direct Frame Number, direct frame number
  • SSB Synchronization Signal Block, synchronization system information block
  • EN-DC EUTRA-NR Dual Connection, LTE-NR dual connection
  • MCG Master Cell Group, the main cell group
  • SCG Secondary Cell Group, secondary cell group
  • PCell Primary Cell, the main cell
  • SCell Secondary Cell, secondary cell
  • PSFCH Physical Sidelink Feedback Channel, Physical Sidelink Communication Feedback Channel
  • SPS Semi-Persistant Scheduling, semi-static scheduling
  • PT-RS Phase-Tracking Reference Signals, phase tracking reference signal
  • Transport Block transport block
  • CB Code Block, coding block/code block
  • QPSK Quadrature Phase Shift Keying, quadrature phase shift keying
  • 16/64/256 QAM 16/64/256 Quadrature Amplitude Modulation, Quadrature Amplitude Modulation
  • AGC Auto Gain Control, automatic gain control
  • ARFCN Absolute Radio Frequency Channel Number, absolute radio frequency channel number
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, single carrier-frequency division multiplexing multiple access
  • MAC Medium Access Control, media access control layer
  • RTT Round Trip Time, round trip time
  • V2X in the text can also represent sidelink; similarly, sidelink in the text can also represent V2X, and no specific distinction or limitation will be made in the following text.
  • the resource allocation mode of V2X (sidelink) communication in the specification of the present invention and the transmission mode of V2X (sidelink) communication can be equivalently replaced.
  • the resource allocation method referred to in the specification may represent the transmission mode, and the transmission mode referred to may represent the resource allocation method.
  • transmission mode 1 represents a transmission mode (resource allocation method) based on base station scheduling
  • transmission mode 2 represents a transmission mode (resource allocation method) based on user equipment sensing and resource selection.
  • the PSCCH in the specification of the present invention is used to carry the SCI.
  • the PSCCH involved in the description of the present invention corresponds to, or corresponds to, or is related to, or, the scheduled PSSCH indicates the same meaning, and both indicate associated PSSCH or corresponding PSSCH.
  • the PSSCH involved in the description corresponds to, or corresponds to, or has the same meaning as the related SCI (including the first-level SCI and the second-level SCI), which means associated SCI or corresponding SCI.
  • the first-level SCI is called 1st stage SCI or SCI format 1-A and is transmitted in PSCCH;
  • the second-level SCI is called 2nd stage SCI or SCI format 2-A (or, SCI format 2-B) , transmitted in the corresponding PSSCH resources.
  • the peer user equipment refers to the user equipment on the receiving side in the unicast communication (unicast) of the sideline communication, that is, the receiving user equipment.
  • Unicast communication means that a connection is established between a sending user equipment and a receiving user equipment, which is called a PC5 RRC connection.
  • the sending user equipment can send the PC5 RRC configuration message to the receiving user equipment (the opposite end user equipment); the receiving user equipment can also send the PC5 RRC configuration message to the sending user equipment, and the present invention does not do this. limit.
  • the receiving user equipment sends a configuration message, or PSSCH, or PSFCH to the sending user equipment
  • the sending user equipment at this time may also be referred to as a peer user equipment.
  • the set of listening time slots determined by the user equipment may not include the time slot where the user equipment transmits (PSSCH/PSCCH), which is not limited in the present invention.
  • both UEs performing sidelink communication have network coverage (for example, the UE detects at least one cell that satisfies the "cell selection criterion" on the frequency where sidelink communication needs to be performed, Indicates that the UE has network coverage).
  • Partial-Coverage sidelink communication one of the UEs performing sidelink communication has no network coverage, and the other UE has network coverage.
  • the UE From the UE side, the UE has only two scenarios: no network coverage and network coverage. Part of the network coverage is described in terms of sidelink communication.
  • FIG. 1 is a schematic diagram illustrating sideline communication of an LTE V2X UE.
  • UE1 sends sideline communication control information (SCI format 1) to UE2, which is carried by the physical layer channel PSCCH.
  • SCI format 1 contains PSSCH scheduling information, such as PSSCH frequency domain resources.
  • UE1 sends sideline communication data to UE2, which is carried by the physical layer channel PSSCH.
  • the PSCCH and the corresponding PSSCH are in a frequency division multiplexing manner, that is, the PSCCH and the corresponding PSSCH are located in the same subframe in the time domain, and are located in different RBs in the frequency domain.
  • a transport block TB may contain only one initial transmission, or one initial transmission and one blind retransmission (blind retransmission, which means retransmission not based on HARQ feedback).
  • SCI format 1 can be carried in PSCCH, wherein SCI format 1 at least includes frequency domain resource information of PSSCH. For example, for the frequency domain resource indication field, SCI format 1 indicates the starting sub-channel number and the number of consecutive sub-channels of the PSSCH corresponding to the PSCCH.
  • PSSCH occupies one subframe in the time domain, and adopts frequency division multiplexing (FDM) with the corresponding PSCCH.
  • PSSCH occupies one or more consecutive sub-channels in the frequency domain, sub-channels represent n subCHsize consecutive RBs in the frequency domain, n subCHsize is configured by the RRC parameter, the number of starting sub-channels and consecutive sub-channels Indicated by the frequency domain resource indication field of SCI format 1.
  • FIG. 2 shows two resource allocation methods of LTE V2X, which are respectively called resource allocation based on base station scheduling (Transmission Mode 3) and resource allocation based on UE sensing (Transmission Mode 4).
  • transmission mode 3 of LTE V2X corresponds to transmission mode 1 in NR V2X, which is based on base station scheduling
  • transmission mode 4 of LTE V2X corresponds to transmission mode 2 in NR V2X, which is based on UE perception. transfer mode.
  • the base station can configure the resource allocation mode of the UE through UE-level dedicated RRC signaling (dedicated RRC signaling) SL-V2X-ConfigDedicated, or the transmission mode of the UE. ,Specifically:
  • Resource allocation method based on base station scheduling indicates that the frequency domain resources used for sidelink communication come from the scheduling of the base station.
  • Transmission mode 3 includes two scheduling methods, namely dynamic scheduling and semi-persistent scheduling (SPS).
  • SPS semi-persistent scheduling
  • the UL grant (DCI format 5A) includes the frequency domain resources of PSSCH, and the CRC of the PDCCH or EPDCCH carrying the DCI format 5A is scrambled by SL-V-RNTI.
  • the base station configures one or more (up to 8) configured scheduling grants (configured grants) through IE: SPS-ConfigSL-r14, each configured scheduling grant contains a scheduling grant number (index) and scheduling grants Licensed resource period.
  • the UL grant (DCI format 5A) includes the frequency domain resources of the PSSCH, and the indication information (3 bits) of the scheduling grant number and the indication information of the SPS activation (activate) or release (release, or deactivation).
  • the CRC of the PDCCH or EPDCCH carrying DCI format 5A is scrambled by SL-SPS-V-RNTI.
  • the RRC signaling SL-V2X-ConfigDedicated when the RRC signaling SL-V2X-ConfigDedicated is set to scheduled-r14, it indicates that the UE is configured as a transmission mode based on the base station scheduling.
  • the base station configures SL-V-RNTI or SL-SPS-V-RNTI through RRC signaling, and uses PDCCH or EPDCCH (DCI format 5A, the CRC is scrambled with SL-V-RNTI or scrambled with SL-SPS-V-RNTI) ) sends an uplink scheduling grant UL grant to the UE.
  • the above-mentioned uplink scheduling grant UL grant at least includes scheduling information of PSSCH frequency domain resources in sidelink communication.
  • the UE When the UE successfully monitors the PDCCH or EPDCCH scrambled by SL-V-RNTI or SL-SPS-V-RNTI, it uses the PSSCH frequency domain resource indication field in the uplink scheduling grant UL grant (DCI format 5A) as the PSCCH Indication information of the frequency domain resources of PSSCH in (SCI format 1), and send PSCCH (SCI format 1) and the corresponding PSSCH.
  • DCI format 5A the PSSCH frequency domain resource indication field in the uplink scheduling grant UL grant
  • the UE receives SL-SPS-V-RNTI scrambled DCI format 5A on downlink subframe n. If the indication information of SPS activation is included in the DCI format 5A, the UE determines the frequency domain resources of the PSSCH according to the indication information in the DCI format 5A, and determines the time domain resources of the PSSCH (the transmission subframe of the PSSCH) according to information such as subframe n.
  • Resource allocation method based on UE sensing indicates that the resources used for sidelink communication are based on the UE sensing process of the set of candidate available resources.
  • the RRC signaling SL-V2X-ConfigDedicated is set to ue-Selected-r14, it indicates that the UE is configured as the transmission mode based on UE sensing.
  • the base station configures the available transmission resource pool, and the UE determines the PSSCH sidelink transmission resources in the transmission resource pool (resource pool) according to certain rules (see the LTE V2X UE sensing process section for a detailed process description). , and send PSCCH (SCI format 1) and corresponding PSSCH.
  • the resources sent and received by the UE belong to the resource pool resource pool.
  • the base station schedules transmission resources for the sidelink UE in the resource pool, or, for the transmission mode based on UE perception in sidelink communication, the UE determines transmission resources in the resource pool.
  • the sidelink communication user equipment selects candidate resources within a time window, and determines and the reserved resources according to the reserved resources indicated by PSCCH sent by other user equipments in the monitoring time slot. There are overlapping candidate resources, and these overlapping candidate resources are excluded.
  • the physical layer reports the set of candidate resources that are not excluded to the MAC layer, and the MAC layer selects transmission resources for PSSCH/PSCCH.
  • PSFCH is used to carry HARQ feedback (HARQ-ACK) for sideline communication.
  • HARQ-ACK HARQ feedback
  • the transmitting user equipment sends PSSCH and PSCCH, and if the receiving user equipment correctly receives and decodes the PSCCH and PSSCH, it will feed back ACK on the PSFCH; otherwise, it will feed back NACK.
  • the parameter set numerology includes the subcarrier spacing and the cyclic prefix CP length.
  • Table 4.2-1 shows the set of supported transmission parameters, as follows shown.
  • ⁇ ⁇ f 2 ⁇ ⁇ 15[kHz] CP (Cyclic Prefix) 0 15 normal 1 30 normal 2 60 normal, extended 3 120 normal 4 240 normal
  • each slot (slot) contains 14 OFDM symbols; for extended CP, each slot contains 12 OFDM symbols.
  • NR and LTE have the same definition of subframe, which means 1ms.
  • subframe For the subcarrier spacing configuration ⁇ , the slot number in a subframe (1ms) can be expressed as The range is 0 to The slot number in a system frame (frame, duration 10ms) can be expressed as The range is 0 to in, and The definitions of the cases at different subcarrier spacing ⁇ are shown in the table below.
  • Table 4.3.2-1 The number of symbols contained in each slot in normal CP, the number of slots contained in each system frame, and the number of slots contained in each subframe
  • Table 4.3.2-2 The number of symbols contained in each slot when the CP is extended (60kHz), the number of slots contained in each system frame, and the number of slots contained in each subframe
  • the numbered SFN of a system frame ranges from 0 to 1023.
  • the concept of direct system frame number DFN is introduced in sideline communication, and the numbering range is also from 0 to 1023.
  • the above description of the relationship between system frames and numerology can also be applied to direct system frames.
  • the duration of a direct system frame Also equal to 10ms, for a subcarrier spacing of 15kHz, a direct system frame includes 10 slots, and so on.
  • DFN is used for timing on sidelink carriers.
  • LTE only supports subcarrier spacing of 15kHz.
  • Extended CP is supported in LTE, and normal CP is also supported.
  • the subframe subframe has a duration of 1ms and includes two slots, each of which has a duration of 0.5ms.
  • each subframe contains 14 OFDM symbols, and each slot in the subframe contains 7 OFDM symbols; for extended CP, each subframe contains 12 OFDM symbols, and each slot in the subframe contains 6 OFDM symbols.
  • Resource block RB Resource block RB, resource element RE and sub-channel sub-channel
  • the resource block RB is defined in the frequency domain as consecutive sub-carriers, eg for a sub-carrier spacing of 15 kHz, the RB is 180 kHz in the frequency domain.
  • the resource element RE represents 1 subcarrier in the frequency domain and 1 OFDM symbol in the time domain.
  • PSSCH resource allocation is based on a sub-channel sub-channel as a basic unit, that is, PSSCH transmission occupies one or more consecutive sub-channels in the frequency domain.
  • one subchannel represents multiple consecutive RBs in the frequency domain.
  • the number of RBs included in one subchannel is configured through the RRC configuration information of the resource pool.
  • the sideline communication user equipment monitors (monitors) the PSCCH during the active time of the active period; during the in-active time of the inactive period, the user equipment does not need to monitor the PSCCH.
  • the user equipment determines whether the current moment is an active period or an inactive period through some timers (running or timeout). For the round-trip timer RTT timer, it means that when the timer is running (running), the user equipment considers that the peer user equipment will not send PSCCH to schedule retransmissions, or other sideline communication transmissions, so before the RTT timer times out, the The user equipment is in an inactive period and will not monitor the PSCCH.
  • the RTT timer generally indicates the minimum duration that the user equipment assumes that the peer user equipment will not schedule retransmissions.
  • the timer expires means that the running time of the timer exceeds the duration of the timer, that is, the timer expires.
  • the upper layer requests or triggers the physical layer to determine resources for PSSCH/PSCCH transmission on time slot n.
  • the resource selection window is defined as [n+T1, n+T2], that is, the user equipment selects transmission resources in this window.
  • T1 satisfies the condition The selection of T1 depends on the implementation of the user equipment; the RRC configuration information includes a resource selection window configuration list s1-SelectionWindowList, where the elements in the list corresponding to a given priority prio TX (priority for transmitting PSSCH) represent is T 2min .
  • T2 satisfies the condition T 2min ⁇ T2 ⁇ remaining PDB, and the selection of T2 depends on the implementation of the user equipment; otherwise, T2 is set to remaining pdb.
  • ⁇ SL represents the subcarrier spacing parameter of sideline communication, that is, the subcarrier spacing is ):
  • FIG. 3 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 1 of the present invention.
  • the steps performed by the user equipment include:
  • step S101 a request (request, or trigger) for determining transmission resources of PSSCH/PSCCH is received from a higher layer (or upper layer).
  • the higher layer requests the user equipment to determine the transmission resource of PSSCH/PSCCH on time slot slot n.
  • the higher layer (being the physical layer) provides parameters for the PSSCH/PSCCH transmission.
  • the parameter used for the PSSCH/PSCCH transmission includes at least the number L subCH of sub-channels used for PSSCH/PSCCH transmission.
  • step S102 the sideline communication user equipment determines candidate resources (candidate resources).
  • a candidate single-slot resource is defined as a slot in the resource pool and, optionally, the user equipment assumes (or, assumes, assumes) the set of L subCH consecutive sub-channels on the During the active period of discontinuous communication reception (SL DRX active time), any set of the L subCH continuous sub-channels included in the resource pool (in any time slot) corresponds to a single-slot candidate resource.
  • T1 and T2 are determined by the specific implementation of the user equipment, or [n+T1, n+T2] represents a resource selection window. This embodiment does not impose any limitation on this.
  • FIG. 4 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 2 of the present invention.
  • the steps performed by the user equipment include:
  • step S201 a request (request, or trigger) for determining transmission resources of PSSCH/PSCCH is received from a higher layer (or upper layer).
  • the higher layer requests the user equipment to determine the transmission resource of PSSCH/PSCCH on time slot slot n.
  • the higher layer (being the physical layer) provides parameters for the PSSCH/PSCCH transmission.
  • step S202 the sideline communication user equipment determines the active period active time of the sideline communication discontinuously receiving SLDRX.
  • step S203 the sideline communication user equipment determines a set of listening time slots.
  • the set of listening time slots at least includes all or part of the time slots in the resource pool within [n, n + TB] (or, [n+1, n + TB]); and, optionally Ground, the time interval [n, n+T B ] (or, [n+1, n+T B ]) at least satisfies the condition: [n, n+T B ] (or, [n+1, n+ T B ]) within the active time of the active period of the SL DRX.
  • the TB is the 31st time slot in the resource pool starting from the time slot n (or, on this basis, forward or subtract or time slots), or, the TB is the 32nd time slot in the resource pool starting from the time slot n (or, on this basis, forward or subtract or time slots), n is a natural number.
  • FIG. 4 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 3 of the present invention.
  • the steps performed by the user equipment include:
  • step S201 a request (request, or trigger) for determining transmission resources of PSSCH/PSCCH is received from a higher layer (or upper layer).
  • the higher layer requests the user equipment to determine the transmission resource of PSSCH/PSCCH on time slot slot n.
  • the higher layer (being the physical layer) provides parameters for the PSSCH/PSCCH transmission.
  • step S202 optionally, the sideline communication user equipment determines the active period active time of the sideline communication discontinuously receiving SLDRX.
  • step S203 the sideline communication user equipment determines a set of listening time slots.
  • the set of listening time slots includes at least a time interval between [n, n + TB] (or, [n+1, n + TB]) and an active time during the active period of the SL DRX. All or part of the time slots in the resource pool.
  • the TB is the 31st time slot in the resource pool starting from the time slot n (or, on this basis, forward or subtract or time slots), or, the TB is the 32nd time slot in the resource pool starting from the time slot n (or, on this basis, forward or subtract or time slots), n is a natural number.
  • FIG. 5 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 4 of the present invention.
  • the steps performed by the user equipment include:
  • step S301 the first sideline communication user equipment receives the time interval indication information sent by the second sideline communication user equipment.
  • the second user equipment sends through PC5 RRC signaling, or sends the time interval indication information through SCI.
  • the time interval indicated by the time interval indication information represents the PSFCH reception processing and retransmission preparation (including channel multiplexing, transmission/reception switching, and reception/transmission switching) determined by the second user equipment. time.
  • the time interval is determined by the specific implementation of the second sideline communication user equipment (up to UE implementation).
  • the communication between the first user equipment and the second user equipment is unicast unicast communication.
  • step S302 the first user equipment determines the duration of the round-trip timer RTT timer of the discontinuous reception of SLDRX in sideline communication.
  • the duration of the round-trip timer RTT timer is at least determined by the time interval, and/or the configured (or pre-configured) minimum time interval s1-MinTimeGapPSFCH between PSSCH and PSFCH, and/or configured The period sl-PSFCH-Period of the (or pre-configured) PSFCH is determined.
  • FIG. 6 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 5 of the present invention.
  • the steps performed by the user equipment include:
  • step S401 the sideline communication user equipment acquires the configuration information of the sideline communication resource pool.
  • the configuration information of the sideline communication resource pool at least includes the minimum time interval s1-MinTimeGapPSFCH between the PSSCH and the PSFCH, and the period s1-PSFCH-Period of the PSFCH.
  • step S402 the receiving user equipment determines the duration of the round-trip timer RTT timer for discontinuous reception of SLDRX in sideline communication.
  • the duration of the round-trip timer RTT timer is equal to the minimum value of the time required by the user equipment for PSFCH reception processing and retransmission preparation (including channel multiplexing, sending/receiving switching, and receiving/sending switching), or,
  • the duration of the round-trip timer RTT timer is equal to the sum of the minimum value of the time required by the user equipment for PSFCH reception processing, retransmission preparation (including channel multiplexing, transmission/reception switching and reception/transmission switching) and a time interval time interval.
  • the time interval is determined by at least the minimum time interval s1-MinTimeGapPSFCH between the PSSCH and the PSFCH, and the period s1-PSFCH-Period of the PSFCH.
  • FIG. 7 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 6 of the present invention.
  • the steps performed by the user equipment include:
  • a higher layer (higher layer, or upper layer) requests (request, or triggers a trigger) a sideline communication user equipment (physical layer) to determine the transmission resources of PSSCH/PSCCH.
  • the higher layer requests the user equipment to determine the transmission resource of PSSCH/PSCCH on time slot slot n.
  • step S502 the sideline communication user equipment determines a set of candidate slots (candidate slots).
  • the manner in which the user equipment determines the set of candidate time slots depends on the implementation of the user equipment (up to UE implementation).
  • step S503 the sideline communication user equipment determines a set of time slots to monitor.
  • the monitoring time slot set monitored by the user equipment includes at least time slots or time slot or time slot All or part of the time slots in the resource pool that are coincident with the 31 or 32 previous resource pool time slots and/or the sideline discontinuous reception active period SL DRX active time; optionally, if in time slot or time slot or time slot The time of the previous 31 or 32 resource pool time slots is earlier than the time slot n, then, the monitoring time slot set of the user equipment (shall monitor, or monitor) at least includes time slots or time slot or time slot All or part of the time slots in the resource pool that coincide with the time slot n and/or the sideline discontinuous reception active period SL DRX active time. in, is any time slot in the candidate time slot set, for example, the first one, the last one, which is not limited in the present invention.
  • FIG. 7 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 7 of the present invention.
  • Embodiment 7 of the present invention will be described in detail with reference to the basic process diagram shown in FIG. 7 .
  • the steps performed by the user equipment include:
  • a higher layer (higher layer, or upper layer) requests (request, or triggers a trigger) a sideline communication user equipment (physical layer) to determine the transmission resources of PSSCH/PSCCH.
  • the higher layer requests the user equipment to determine the transmission resource of PSSCH/PSCCH on time slot slot n.
  • step S502 the sideline communication user equipment determines a set of candidate slots (candidate slots).
  • the manner in which the user equipment determines the set of candidate time slots depends on the implementation of the user equipment (up to UE implementation).
  • step S503 the sideline communication user equipment determines a set of time slots to monitor.
  • time slot or time slot or time slot The time of the previous 31 or 32 resource pool time slots is later than or equal to the time slot n, then the time slot or time slot or time slot All or part of the time slots in the resource pool between the previous 31 or the previous 32 resource pool time slots belong to the active period SL DRX active time of discontinuous reception of sideline communication; or time slot or time slot
  • the time of the previous 31 or 32 resource pool time slots is earlier than the time slot n, then the time slot or time slot or time slot All or part of the time slots in the resource pool between the time slot n and the time slot n belong to the active period SL DRX active time of discontinuous reception of sideline communication.
  • FIG. 8 is a block diagram showing a user equipment UE according to the present invention.
  • the user equipment UE80 includes a processor 801 and a memory 802 .
  • the processor 801 may include, for example, a microprocessor, a microcontroller, an embedded processor, or the like.
  • the memory 802 may include, for example, volatile memory (eg, random access memory RAM), a hard disk drive (HDD), non-volatile memory (eg, flash memory), or other memory, or the like.
  • the memory 802 has program instructions stored thereon. When the instructions are executed by the processor 801, the above method described in detail in the present invention and executed by the user equipment can be executed.
  • the method and related apparatus of the present invention have been described above with reference to the preferred embodiments. Those skilled in the art can understand that the methods shown above are only exemplary, and the various embodiments described above can be combined with each other under the condition that no contradiction occurs.
  • the method of the present invention is not limited to the steps and sequences shown above.
  • the network node and user equipment shown above may include more modules, for example, may also include modules that can be developed or developed in the future and can be used for base stations, MMEs, or UEs, and so on.
  • the various identifiers shown above are only exemplary and not restrictive, and the present invention is not limited to the specific information elements exemplified by these identifiers. Numerous changes and modifications may occur to those skilled in the art in light of the teachings of the illustrated embodiments.
  • the above-described embodiments of the present invention may be implemented by software, hardware, or a combination of both software and hardware.
  • the various components inside the base station and the user equipment in the above embodiments may be implemented by various devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing Controllers, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), Programmable Logic Devices (CPLDs), etc.
  • DSP digital signal processing
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • CPLDs Programmable Logic Devices
  • base station may refer to a mobile communication data and control switching center with larger transmission power and wider coverage area, including functions such as resource allocation and scheduling, data reception and transmission, and the like.
  • User equipment may refer to a user mobile terminal, for example, including a mobile phone, a notebook, and other terminal equipment that can wirelessly communicate with a base station or a micro base station.
  • embodiments of the invention disclosed herein may be implemented on a computer program product.
  • the computer program product is a product having a computer-readable medium on which computer program logic is encoded, and when executed on a computing device, the computer program logic provides relevant operations to achieve The above technical solutions of the present invention.
  • computer program logic When executed on at least one processor of a computing system, computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present invention.
  • Such arrangements of the present invention are typically provided as software, code and/or other data structures arranged or encoded on a computer readable medium such as an optical medium (eg CD-ROM), floppy or hard disk, or such as one or more Firmware or other medium of microcode on a ROM or RAM or PROM chip, or a downloadable software image in one or more modules, a shared database, etc.
  • Software or firmware or such a configuration may be installed on a computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
  • each functional module or each feature of the base station device and the terminal device used in each of the above embodiments may be implemented or executed by a circuit, which is usually one or more integrated circuits.
  • Circuits designed to perform the various functions described in this specification may include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs) or general purpose integrated circuits, field programmable gate arrays (FPGAs) or other Program logic devices, discrete gate or transistor logic, or discrete hardware components, or any combination of the above.
  • a general-purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
  • the general-purpose processor or each circuit described above may be configured by digital circuits, or may be configured by logic circuits.
  • the present invention can also use the integrated circuit obtained by using the advanced technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种由用户设备执行的方法以及用户设备,所述方法包括:从高层接收确定PSSCH/PSCCH的传输资源的请求,所述用户设备确定侧行通信不连续接收的活跃期,所述用户设备确定监听时隙的集合。

Description

由用户设备执行的方法以及用户设备 技术领域
本发明涉及无线通信技术领域,具体涉及由用户设备执行的方法以及相应的用户设备。
背景技术
在传统的蜂窝网络中,所有的通信都必须经过基站。不同的是,D2D通信(Device-to-Device communication,设备到设备间直接通信)是指两个用户设备之间不经过基站或者核心网的转发而直接进行的通信方式。在2014年3月第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的RAN#63次全会上,关于利用LTE设备实现临近D2D通信业务的研究课题获得批准(参见非专利文献1)。LTE Release 12D2D引入的功能包括:
1)LTE网络覆盖场景下临近设备之间的发现功能(Discovery);
2)临近设备间的直接广播通信(Broadcast)功能;
3)高层支持单播(Unicast)和组播(Groupcast)通信功能。
在2014年12月的3GPP RAN#66全会上,增强的LTE eD2D(enhanced D2D)的研究项目获得批准(参见非专利文献2)。LTE Release 13 eD2D引入的主要功能包括:
1)无网络覆盖场景和部分网络覆盖场景的D2D发现;
2)D2D通信的优先级处理机制。
基于D2D通信机制的设计,在2015年6月3GPP的RAN#68次全会上,批准了基于D2D通信的V2X可行性研究课题。V2X表示Vehicle to everything,希望实现车辆与一切可能影响车辆的实体信息交互,目的是减少事故发生,减缓交通拥堵,降低环境污染以及提供其他信息服务。V2X的应用场景主要包含4个方面:
1)V2V,Vehicle to Vehicle,即车-车通信;
2)V2P,Vehicle to Pedestrian,即车给行人或非机动车发送警告;
3)V2N,Vehicle to Network,即车辆连接移动网络;
4)V2I,Vehicle to Infrastructure,即车辆与道路基础设施等通信。
3GPP将V2X的研究与标准化工作分为3个阶段。第一阶段于2016年9月完成,主要聚焦于V2V,基于LTE Release 12和Release 13 D2D(也可称为sidelink侧行通信),即邻近通信技术制定(参见非专利文献3)。V2X stage 1引入了一种新的D2D通信接口,称为PC5接口。PC5接口主要用于解决高速(最高250公里/小时)及高节点密度环境下的蜂窝车联网通信问题。车辆可以通过PC5接口进行诸如位置、速度和方向等信息的交互,即车辆间可通过PC5接口进行直接通信。相较于D2D设备间的临近通信,LTE Release 14 V2X引入的功能主要包含:
1)更高密度的DMRS以支持高速场景;
2)引入子信道(sub-channel),增强资源分配方式;
3)引入具有半静态调度(semi-persistent)的用户设备感知(sensing)机制。
V2X研究课题的第二阶段归属于LTE Release 15研究范畴(参见非专利文献4),引入的主要特性包含高阶64QAM调制、V2X载波聚合、短TTI传输,同时包含发射分集的可行性研究。
在2018年6月3GPP RAN#80全会上,相应的第三阶段基于5G NR网络技术的V2X可行性研究课题(参见非专利文献5)获得批准。
在5G NR V2X课题中,支持一种基于用户设备感知(sensing)的资源分配方式2(resource allocation mode 2),或者称为传输模式2。在资源分配方式2中,用户设备的物理层对资源池内的传输资源进行感知,并向上层报告可用的传输资源的集合。上层在获得物理层的报告后,选择具体用于侧行通信传输的资源。
在2020年12月3GPP RAN#90e全会上,基于已经标准化的NR侧行通信的增强(NR sidelink enhancement)的标准化研究课题(参见非专利文献6)获得批准。侧行通信的增强中包含如下两个方面:
1)标准化降低侧行通信用户设备功率消耗(power saving)的资源分配方式,包括但不限于:基于部分感知的资源分配方式(partial sensing),基于随机资源选择的资源分配方式;
2)研究提升NR侧行通信中资源分配方式2的通信可靠性以及降低资源分配方式2的通信时延。
本专利的方案包括在侧行通信增强中,侧行通信用户设备确定基于部分感知的资源分配方式中候选资源集合的一种方法,以及,用户设备确定上层触发物理层进行部分感知的时刻的一种方法。
NR侧行通信增强的研究课题中也包含了对于侧行通信不连续接收(SL Discontinuous Reception,简称SL DRX)的标准化研究工作。在5G NR通信中,用户设备支持在时间上不连续地接收物理下行控制信道PDCCH,称为DRX,可以有效得降低通信设备的功率消耗。相似地,对应于SL DRX,不连续接收指代的是在时域上的部分时间内接收物理侧行通信控制信道PSCCH,该时间称为活跃期(Active time);不接收PSCCH的时间称为非活跃期(In-active time)。
本专利的方案同样包括侧行通信用户设备确定往返定时器RTT timer时长的一种方法。
现有技术文献
非专利文献
非专利文献1:RP-140518,Work item proposal on LTE Device to Device Proximity Services
非专利文献2:RP-142311,Work Item Proposal for Enhanced LTE Device to Device Proximity Services
非专利文献3:RP-152293,New WI proposal:Support for V2V services based on LTE sidelink
非专利文献4:RP-170798,New WID on 3GPP V2X Phase 2
非专利文献5:RP-181480,New SID Proposal:Study on NR V2X
非专利文献6:RP-202846,WID revision:NR sidelink enhancement
发明内容
本发明的目的在于提供一种可以保证侧行通信用户设备传输的PSSCH能被对端用户设备在活跃期所接收,增强了侧行通信的可靠性的由用户设备执行的方法以及用户设备。
本发明的另一目的在于提供一种在基于部分感知的资源分配方式中,本专利的方案可以保证在触发部分感知后,用户设备能够连续监听PSCCH以避免资源冲突,提升了侧行通信的传输可靠性的由用户设备执行的方法以及用户设备。
本发明的又一目的在于提供一种本专利中用户设备确定往返定时器的方法保证了发送用户设备和接收用户设备之间往返定时器的一致性,能够有效降低侧行通信用户设备的功率消耗的由用户设备执行的方法以及用户设备。
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备。
根据本发明的第一方面,从高层接收确定PSSCH/PSCCH的传输资源的请求,所述用户设备确定侧行通信不连续接收的活跃期,所述用户设备确定监听时隙的集合。
根据本发明的第一方面的由用户设备执行的方法,在时隙n上从高层接收确定PSSCH/PSCCH的传输资源的请求。
根据本发明的第一方面的由用户设备执行的方法,所述监听时隙集合至少包含同时在时间间隔和在所述活跃期之内的全部或者部分资源池中的时隙,其中,所述时间间隔是[n,n+T B]或者,[n+1,n+T B],所述T B为从所述时隙n开始的第31个所述资源池中的时隙,或者,在此基础上向前或减去
Figure PCTCN2022083987-appb-000001
Figure PCTCN2022083987-appb-000002
个时隙,或者,所述T B为从所述时隙n开始的第32个所述资源池中的时隙,或者,在此基础上向前或减去
Figure PCTCN2022083987-appb-000003
Figure PCTCN2022083987-appb-000004
个时隙)。
根据本发明的第一方面的由用户设备执行的方法,时间间隔在所述活跃期之内,其中,所述时间间隔是[n,n+T B]或者,[n+1,n+T B],所述T B为从所述时隙n开始的第31个所述资源池中的时隙,或者,在此基础上向前或减去
Figure PCTCN2022083987-appb-000005
Figure PCTCN2022083987-appb-000006
个时隙,或者,所述T B为从所述时隙n开始的第32个所述资源池中的时隙,或者,在此基础上向前或减去
Figure PCTCN2022083987-appb-000007
Figure PCTCN2022083987-appb-000008
个时隙)。
根据本发明的第二方面,包括:第一用户设备接收第二用户设备发送的时间间隔指示信息,所述第一用户设备确定侧行通信不连续接收的往返定时器的时长。
根据本发明的第二方面的由用户设备执行的方法,所述时间间隔指示信息所指示的时间间隔表示所述第二用户设备确定的PSFCH接收处理、重传准备所需的时间。
根据本发明的第二方面的由用户设备执行的方法,所述第一用户设备至少根据所述时间间隔指示信息确定所述侧行通信不连续接收的往返定时器的时长。
根据本发明的第三方面,包括:用户设备获取侧行通信资源池的配置信息,所述接收用户设备确定侧行通信不连续接收的往返定时器的时长。
根据本发明的第三方面的由用户设备执行的方法,所述侧行通信资源池的配置信息至少包括PSSCH和PSFCH之间的最小时域间隔sl-MinTimeGapPSFCH,以及,PSFCH的周期sl-PSFCH-Period。
根据本发明的第四方面的用户设备,包括:处理器;以及存储器,存储有指令;其中,所述指令在由所述处理器运行时执行上述第一方面的所述方法。
发明效果
根据本专利的方案,在基于部分感知的资源分配方式中,可以保证侧行通信用户设备传输的PSSCH能被对端用户设备在活跃期active time所接收,增强了侧行通信的可靠性;同时,在基于部分感知的资源分配方式 中,本专利的方案可以保证在触发部分感知后,用户设备能够连续监听PSCCH以避免资源冲突,提升了侧行通信的传输可靠性;本专利中用户设备确定往返定时器RTT timer的方法保证了发送用户设备和接收用户设备之间往返定时器RTT timer的一致性,能够有效降低侧行通信用户设备的功率消耗。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1是示出了LTE V2X UE侧行通信的示意图。
图2是示出了LTE V2X的资源分配方式的示意图。
图3是示出了发明的实施例一中由用户设备执行的方法的基本过程的示意图。
图4是示出了发明的实施例二、三中由用户设备执行的方法的基本过程的示意图。
图5是示出了发明的实施例四中由用户设备执行的方法的基本过程的示意图。
图6是示出了发明的实施例五中由用户设备执行的方法的基本过程的示意图。
图7是示出了发明的实施例六、七中由用户设备执行的方法的基本过程的示意图。
图8是示出了根据本发明的实施例的用户设备的框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
下文以5G移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G移动通信系统等。
下面描述本发明涉及的部分术语,如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的通信系统中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划
LTE:Long Term Evolution,长期演进技术
NR:New Radio,新无线、新空口
PDCCH:Physical Downlink Control Channel,物理下行控制信道
DCI:Downlink Control Information,下行控制信息
PDSCH:Physical Downlink Shared Channel,物理下行共享信道
UE:User Equipment,用户设备
eNB:evolved NodeB,演进型基站
gNB:NR基站
TTI:Transmission Time Interval,传输时间间隔
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
CP-OFDM:Cyclic Prefix Orthogonal Frequency Division Multiplexing,带有循环前缀的正交频分复用
C-RNTI:Cell Radio Network Temporary Identifier,小区无线网络临时标识
CSI:Channel State Information,信道状态信息
HARQ:Hybrid Automatic Repeat Request,混合自动重传请求
CSI-RS:Channel State Information Reference Signal,信道状态信息参考信号
CRS:Cell Reference Signal,小区特定参考信号
PUCCH:Physical Uplink Control Channel,物理上行控制信道
PUSCH:Physical Uplink Shared Channel,物理上行共享信道
UL-SCH:Uplink Shared Channel,上行共享信道
CG:Configured Grant,配置调度许可
Sidelink:侧行通信
SCI:Sidelink Control Information,侧行通信控制信息
PSCCH:Physical Sidelink Control Channel,物理侧行通信控制信道MCS:Modulation and Coding Scheme,调制编码方案
RB:Resource Block,资源块
RE:Resource Element,资源单元
CRB:Common Resource Block,公共资源块
CP:Cyclic Prefix,循环前缀
PRB:Physical Resource Block,物理资源块
PSSCH:Physical Sidelink Shared Channel,物理侧行通信共享信道FDM:Frequency Division Multi plexing,频分复用
RRC:Radio Resource Control,无线资源控制
RSRP:Reference Signal Receiving Power,参考信号接收功率
SRS:Sounding Reference Signal,探测参考信号
DMRS:Demodulation Reference Signal,解调参考信号
CRC:Cyclic Redundancy Check,循环冗余校验
PSDCH:Physical Sidelink Discovery Channel,物理侧行通信发现信道
PSBCH:Physical Sidelink Broadcast Channel,物理侧行通信广播信道
SFI:Slot Format Indication,时隙格式指示
TDD:Time Division Duplexing,时分双工
FDD:Frequency Division Duplexing,频分双工
SIBl:System Information Block Type 1,系统信息块类型1
SLSS:Sidelink synchronization Signal,侧行通信同步信号
PSSS:Primary Sidelink Synchronization Signal,侧行通信主同步信号
SSSS:Secondary Sidelink Synchronization Signal,侧行通信辅同步信 号
PCI:Physical Cell ID,物理小区标识
PSS:Primary Synchronization Signal,主同步信号
SSS:Secondary Synchronization Signal,辅同步信号
BWP:BandWidth Part,带宽片段/部分
GNSS:Global Navigation Satellite System,全球导航卫星定位系统
SFN:System Frame Number,系统(无线)帧号
DFN:Direct Frame Number,直接帧号
IE:Information Element,信息元素
SSB:Synchronization Signal Block,同步系统信息块
EN-DC:EUTRA-NR Dual Connection,LTE-NR双连接
MCG:Master Cell Group,主小区组
SCG:Secondary Cell Group,辅小区组
PCell:Primary Cell,主小区
SCell:Secondary Cell,辅小区
PSFCH:Physical Sidelink Feedback Channel,物理侧行通信反馈信道
SPS:Semi-Persistant Scheduling,半静态调度
TA:Timing Advance,上行定时提前量
PT-RS:Phase-Tracking Reference Signals,相位跟踪参考信号
TB:Transport Block,传输块
CB:Code Block,编码块/码块
QPSK:Quadrature Phase Shift Keying,正交相移键控
16/64/256 QAM:16/64/256 Quadrature Amplitude Modulation,正交幅度调制
AGC:Auto Gain Control,自动增益控制
TDRA(field):Time Domain Resource Assignment,时域资源分配指示(域)
FDRA(field):Frequency Domain Resource Assignment,频域资源分配指示(域)
ARFCN:Absolute Radio Frequency Channel Number,绝对无线频率信道编号
SC-FDMA:Single Carrier-Frequency Division Multiple Access,单载波-频分复用多址
MAC:Medium Access Control,媒体接入控制层
DRX:Discontinuous Reception,不连续接收
RTT:Round Trip Time,往返时间
下文是与本发明方案相关联现有技术的描述。如无特别说明,具体实施例中与现有技术中相同术语的含义相同。
值得指出的是,本发明说明书中涉及的V2X与sidelink含义相同。文中的V2X也可以表示sidelink;相似地,文中的sidelink也可以表示V2X,后文中不做具体区分和限定。
本发明的说明书中的V2X(sidelink)通信的资源分配方式与V2X(sidelink)通信的传输模式可以等同替换。说明书中涉及的资源分配方式可以表示传输模式,以及,涉及的传输模式可以表示资源分配方式。在NR侧行通信中,传输模式1表示基于基站调度的传输模式(资源分配方式);传输模式2表示基于用户设备感知(sensing)和资源选择的传输模式(资源分配方式)。
本发明的说明书中的PSCCH用于携带SCI。本发明的说明书中涉及到的PSCCH对应的,或者,相应的,或者,相关的,或者,调度的PSSCH表示的含义均相同,都表示associated PSSCH或者corresponding PSSCH。类似地,说明书中涉及到的PSSCH对应的,或者,相应的,或者,相关的SCI(包括第一级SCI和第二级SCI)表示的含义均相同,都表示associated SCI或者corresponding SCI。值得指出的是,第一级SCI称为1st stage SCI或者SCI format 1-A,在PSCCH中传输;第二级SCI称为2nd stage SCI或者SCI format 2-A(或者,SCI format 2-B),在对应的PSSCH的资源中传输。
本发明的说明书中,对端用户设备表示在侧行通信的单播通信(unicast)中接收侧的用户设备,即接收用户设备。单播通信表示一个发送用户设备和一个接收用户设备之间建立了连接,该连接称为PC5 RRC连接。建立了PC5 RRC连接后,发送用户设备可以向接收用户设备(对端用户设备)发送PC5 RRC的配置消息;接收用户设备也可以向发送用户设备发送PC5 RRC的配置消息,本发明对此不做限制。当接收用户设备向发送用户设备发送配置消息,或者PSSCH,或者PSFCH时,此时发送用户设备也可以称作对端用户设备。
本发明说明书的实施例中,用户设备确定的监听时隙集合可以不包括该用户设备发送(PSSCH/PSCCH)所在的时隙,本发明对此不做限制。
Sidelink通信的场景
1)无网络覆盖(Out-of-Coverage)侧行通信:进行sidelink通信的两个UE都没有网络覆盖(例如,UE在需要进行sidelink通信的频率上检测不到任何满足“小区选择准则”的小区,表示该UE无网络覆盖)。
2)有网络覆盖(In-Coverage)侧行通信:进行sidelink通信的两个UE都有网络覆盖(例如,UE在需要进行sidelink通信的频率上至少检测到一个满足“小区选择准则”的小区,表示该UE有网络覆盖)。
3)部分网络覆盖(Partial-Coverage)侧行通信:进行sidelink通信的其中一个UE无网络覆盖,另一个UE有网络覆盖。
从UE侧来讲,该UE仅有无网络覆盖和有网络覆盖两种场景。部分网络覆盖是从sidelink通信的角度来描述的。
LTE V2X(sidelink)通信的基本过程
图1是示出了LTE V2X UE侧行通信的示意图。首先,UE1向UE2 发送侧行通信控制信息(SCI format 1),由物理层信道PSCCH携带。SCI format 1包含PSSCH的调度信息,例如PSSCH的频域资源等。其次,UE1向UE2发送侧行通信数据,由物理层信道PSSCH携带。PSCCH和相应的PSSCH采用频分复用的方式,即PSCCH和相应的PSSCH在时域上位于相同的子帧上,在频域上位于不同的RB上。在LTE V2X中,一个传输块TB可能仅包含一次初始传输,或者包含一次初始传输和一次盲重传(blind retransmission,表示不基于HARQ反馈的重传)。
PSCCH和PSSCH的具体设计方式如下:
1)PSCCH在时域上占据一个子帧,频域上占据两个连续的RB。加扰序列的初始化采用预定义数值510。PSCCH中可携带SCI format 1,其中SCI format 1至少包含PSSCH的频域资源信息。例如,对于频域资源指示域,SCI format 1指示该PSCCH对应的PSSCH的起始sub-channel编号和连续sub-channel的数目。
2)PSSCH在时域上占据一个子帧,和对应的PSCCH采用频分复用(FDM)。PSSCH在频域上占据一个或者多个连续的sub-channel,sub-channel在频域上表示n subCHsize个连续的RB,n subCHsize由RRC参数配置,起始sub-channel和连续sub-channel的数目由SCI format 1的频域资源指示域指示。
LTE V2X的资源分配方式Transmission Mode 3/4
图2是示出了LTE V2X的两种资源分配方式,分别称为基于基站调度的资源分配(Transmission Mode 3)和基于UE感知(sensing)的资源分配(Transmission Mode 4)。在NR侧行通信中,LTE V2X的传输模式3对应NR V2X中的传输模式1,为基于基站调度的传输模式;LTE V2X的传输模式4对应NR V2X中的传输模式2,为基于UE感知的传输模式。LTE V2X中,当存在eNB网络覆盖的情况下,基站可通过UE级的专有RRC信令(dedicated RRC signaling)SL-V2X-ConfigDedicated配置该UE的资源分配方式,或称为该UE的传输模式,具体为:
1)基于基站调度的资源分配方式(Transmission Mode 3):基于基站调度的资源分配方式表示sidelink侧行通信所使用的频域资源来自于基站的调度。传输模式3包含两种调度方式,分别为动态调度和半静态调度(SPS)。对于动态调度,UL grant(DCI format 5A)中包括PSSCH的频域资源,承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-V-RNTI加扰。对于SPS半静态调度,基站通过IE:SPS-ConfigSL-r14配置一个或者多个(至多8个)配置的调度许可(configured grant),每个配置的调度许可含有一个调度许可编号(index)和调度许可的资源周期。UL grant(DCI format 5A)中包括PSSCH的频域资源,以及,调度许可编号的指示信息(3bits)和SPS激活(activate)或者释放(release,或者,去激活)的指示信息。承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-SPS-V-RNTI加扰。
具体地,当RRC信令SL-V2X-ConfigDedicated置为scheduled-r14时,表示该UE被配置为基于基站调度的传输模式。基站通过RRC信令配置SL-V-RNTI或者SL-SPS-V-RNTI,并通过PDCCH或者EPDCCH(DCI format 5A,CRC采用SL-V-RNTI加扰或者采用SL-SPS-V-RNTI加扰)向UE发送上行调度许可UL grant。上述上行调度许可UL grant中至少包含sidelink通信中PSSCH频域资源的调度信息。当UE成功监听到由SL-V-RNTI加扰或者SL-SPS-V-RNTI加扰的PDCCH或者EPDCCH后,将上行调度许可UL grant(DCI format 5A)中的PSSCH频域资源指示域作为PSCCH(SCI format 1)中PSSCH的频域资源的指示信息,并发送PSCCH(SCI format 1)和相应的PSSCH。
对于传输模式3中的半静态调度SPS,UE在下行子帧n上接收SL-SPS-V-RNTI加扰的DCI format 5A。如果DCI format 5A中包含SPS激活的指示信息,该UE根据DCI format 5A中的指示信息确定PSSCH的频域资源,根据子帧n等信息确定PSSCH的时域资源(PSSCH的发送子帧)。
2)基于UE感知(sensing)的资源分配方式(Transmission Mode 4):基于UE sensing的资源分配方式表示用于sidelink通信的资源基于UE对候选可用资源集合的感知(sensing)过程。RRC信令SL-V2X-ConfigDedicated置为ue-Selected-r14时表示该UE被配置为基于UE sensing的传输模式。在基于UE sensing的传输模式中,基站配置可用的传输资源池,UE根据一定的规则(详细过程的描述参见LTE V2X UE sensing过程部分)在传输资源池(resource pool)中确定PSSCH的sidelink发送资源,并发送PSCCH(SCI format 1)和相应的PSSCH。
侧行通信资源池(sidelink resource pool)
在侧行通信中,UE的发送和接收的资源均属于资源池resource pool。例如,对于侧行通信中基于基站调度的传输模式,基站在资源池中为sidelink UE调度传输资源,或者,对于侧行通信中基于UE感知的传输模式,UE在资源池中确定传输资源。
基于(部分)感知的资源分配方式
对于基于(部分)感知的资源分配方式,侧行通信用户设备在一个时间窗口内选择候选资源,并根据监听时隙中其他用户设备发送的PSCCH所指示的预留资源,确定和该预留资源有重叠的候选资源,并将这些有重叠的候选资源排除(exclude)。物理层将未被排除的候选资源集合上报至MAC层,MAC层为PSSCH/PSCCH选择传输资源。
物理侧行通信反馈信道PSFCH
在侧行通信中,PSFCH用于携带侧行通信的HARQ反馈(HARQ-ACK)。例如,发送用户设备发送PSSCH和PSCCH,接收用 户设备如果正确接收并译码该PSCCH和PSSCH,则在PSFCH上反馈ACK;否则,反馈NACK。
NR中(包含NR sidelink)的参数集合(numerology)和NR中(包含NR  sidelink)的时隙slot
参数集合numerology包含子载波间隔和循环前缀CP长度两方面含义。其中,NR支持5种子载波间隔,分别为15k,30k,60k,120k,240kHz(对应μ=0,1,2,3,4),表格4.2-1示出了支持的传输参数集合,具体如下所示。
表4.2-1 NR支持的子载波间隔
μ Δf=2 μ·15[kHz] CP(循环前缀)
0 15 正常
1 30 正常
2 60 正常,扩展
3 120 正常
4 240 正常
仅当μ=2时,即60kHz子载波间隔的情况下支持扩展(Extended)CP,其他子载波间隔的情况仅支持正常CP。对于正常(Normal)CP,每个时隙(slot)含有14个OFDM符号;对于扩展CP,每个时隙含有12个OFDM符号。对于μ=0,即15kHz子载波间隔,1个时隙=1ms;μ=1,即30kHz子载波间隔,1个时隙=0.5ms;μ=2,即60kHz子载波间隔,1个时隙=0.25ms,以此类推。
NR和LTE对于子帧(subframe)的定义相同,表示1ms。对于子载波间隔配置μ,1个子帧内(1ms)的slot编号可以表示为
Figure PCTCN2022083987-appb-000009
范围为0到
Figure PCTCN2022083987-appb-000010
1个系统帧(frame,时长10ms)内的slot编号可以表示为
Figure PCTCN2022083987-appb-000011
范围为0到
Figure PCTCN2022083987-appb-000012
其中,
Figure PCTCN2022083987-appb-000013
Figure PCTCN2022083987-appb-000014
在不同子载波间隔μ的情况的定义如下表格所示。
表格4.3.2-1:正常CP时每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
Figure PCTCN2022083987-appb-000015
表格4.3.2-2:扩展CP时(60kHz)每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
Figure PCTCN2022083987-appb-000016
在NR载波上,系统帧(或者,简称为帧)的编号SFN范围为0至1023。在侧行通信中引入了直接系统帧号DFN的概念,编号范围同样为0至1023,上述对于系统帧和numerology之间关系的叙述同样可以应用于直接系统帧,例如,一个直接系统帧的时长同样等于10ms,对于15kHz的子载波间隔,一个直接系统帧包括10个时隙slot,等等。DFN应用于sidelink载波上的定时timing。
LTE中(包含LTE V2X)参数集和LTE中(包含LTE V2X)的时隙slot 和子帧subframe
LTE仅支持15kHz的子载波间隔。LTE中支持扩展(Extended)CP,也支持正常CP。子帧subframe时长为1ms,包含两个时隙slot,每个slot时长为0.5ms。
对于正常(Normal)CP,每个子帧含有14个OFDM符号,子帧中的每个slot包含7个OFDM符号;对于扩展CP,每个子帧含有12个OFDM符号,子帧中的每个slot包含6个OFDM符号。
资源块RB、资源单元RE和子信道sub-channel
资源块RB在频域上定义为
Figure PCTCN2022083987-appb-000017
个连续的子载波,例如对于15kHz的子载波间隔,RB在频域上为180kHz。对于子载波间隔 15kHz×2 μ,资源单元RE在频域上表示1个子载波,在时域上表示1个OFDM符号。
在侧行通信中,PSSCH的资源分配以子信道sub-channel为基本单位,即PSSCH传输在频域上占据一个或者多个连续的子信道。其中,一个子信道表示频域上多个连续的RB。一个子信道内包括的RB数目通过资源池的RRC配置信息进行配置。
侧行通信不连续接收SL DRX和往返定时器RTT timer
对于SL DRX,侧行通信用户设备在活跃期active time内监听(monitor)PSCCH;在非活跃期in-active time,用户设备无需监听PSCCH。
在SL DRX中,用户设备通过一些定时器timer(运行或者超时)来判断当前时刻是活跃期,或者是非活跃期。对于往返定时器RTT timer,表示用户设备在该定时器运行时(running),认为对端用户设备不会发送PSCCH以调度重传,或者,其他侧行通信传输,因此在RTT timer超时前,该用户设备处于非活跃期,不会监听PSCCH。RTT timer一般表示用户设备假设的对端用户设备不会调度重传的最小时长。
在本发明的说明书中,定时器超时表示定时器运行的时间超过了该定时器的时长,即称为该定时器超时(timer expires)。
资源选择窗口[n+T1,n+T2]
在基于感知(或者,部分感知)的资源分配方式中,高层在时隙n上请求或者触发物理层确定用于PSSCH/PSCCH传输的资源。资源选择窗口定义为[n+T1,n+T2],即用户设备在该窗口内选择传输资源。其中,T1满足条件
Figure PCTCN2022083987-appb-000018
T1的选择取决于用户设备的实现;RRC配置信息中包含一个资源选择窗口的配置列表sl-SelectionWindowList,其中,该列表中对应一个给定的优先级prio TX(传输PSSCH的优先级)的元素表示为T 2min。如果该T 2min小于剩余数据包延迟预算(remaining packet  delay budget,简称为remaining PDB),那么,T2满足条件T 2min≤T2≤remaining PDB,T2的选择取决于用户设备的实现;否则T2设置为remaining PDB。
Figure PCTCN2022083987-appb-000019
的定义如下(μ SL表示侧行通信的子载波间隔参数,即子载波间隔为
Figure PCTCN2022083987-appb-000020
):
Table 8.1.4-2:
Figure PCTCN2022083987-appb-000021
的取值
Figure PCTCN2022083987-appb-000022
Table 8.1.4-1:
Figure PCTCN2022083987-appb-000023
的取值
Figure PCTCN2022083987-appb-000024
以下,对本发明所涉及的具体的示例以及实施例等进行详细说明。另外,如上所述,本公开中记载的示例以及实施例等是为了容易理解本发明而进行的示例性说明,并不是对本发明的限定。
[实施例一]
图3是示出了本发明的实施例一的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例一的由用户设备执行的方法。
如图3所示,在本发明的实施例一中,用户设备执行的步骤包括:
在步骤S101,从高层(higher layer,或者上层)接收确定PSSCH/PSCCH的传输资源的请求(request,或者,触发trigger)。
可选地,所述高层在时隙slot n上请求所述用户设备确定PSSCH/PSCCH的传输资源。
可选地,所述高层(为物理层)提供用于所述PSSCH/PSCCH传输的参数。
可选地,所述用于所述PSSCH/PSCCH传输的参数至少包括用于PSSCH/PSCCH传输的子信道的数目L subCH
在步骤S102,所述侧行通信用户设备确定候选资源(candidate resources)。
可选地,一个单时隙候选资源(candidate single-slot resource)定义为在资源池中的一个时隙
Figure PCTCN2022083987-appb-000025
上的所述L subCH个连续的子信道的集合;以及,可选地,所述用户设备认为(或者,假设,assume)在时间间隔[n+T1,n+T2],和/或侧行通信不连续接收的活跃期(SL DRX active time)内,包含在资源池内的(任一个时隙中)任意所述L subCH个连续子信道的集合均对应一个单时隙候选资源。其中,T1和T2均由所述用户设备的具体实现所确定,或者,[n+T1,n+T2]表示资源选择窗口。本实施例对此不做任何限制。
[实施例二]
图4是示出了本发明的实施例二的由用户设备执行的方法的基本过程的示意图。
下面,结合图4所示的基本过程图来详细说明本发明的实施例二的由用户设备执行的方法。
如图4所示,在本发明的实施例二中,用户设备执行的步骤包括:
在步骤S201,从高层(higher layer,或者上层)接收确定PSSCH/PSCCH的传输资源的请求(request,或者,触发trigger)。
可选地,所述高层在时隙slot n上请求所述用户设备确定 PSSCH/PSCCH的传输资源。
可选地,所述高层(为物理层)提供用于所述PSSCH/PSCCH传输的参数。
在步骤S202,所述侧行通信用户设备确定侧行通信不连续接收SL DRX的活跃期active time。
在步骤S203,所述侧行通信用户设备确定监听时隙集合。
可选地,所述监听时隙集合至少包含[n,n+T B](或者,[n+1,n+T B])内的全部或者部分资源池中的时隙;以及,可选地,所述时间间隔[n,n+T B](或者,[n+1,n+T B])至少满足条件:[n,n+T B](或者,[n+1,n+T B])在所述SL DRX的活跃期active time之内。其中,可选地,所述T B为从所述时隙n开始的第31个所述资源池中的时隙(或者,在此基础上向前或减去
Figure PCTCN2022083987-appb-000026
Figure PCTCN2022083987-appb-000027
个时隙),或者,所述T B为从所述时隙n开始的第32个所述资源池中的时隙(或者,在此基础上向前或减去
Figure PCTCN2022083987-appb-000028
Figure PCTCN2022083987-appb-000029
个时隙),n为自然数。
[实施例三]
图4是示出了本发明的实施例三的由用户设备执行的方法的基本过程的示意图。
下面,结合图4所示的基本过程图来详细说明本发明的实施例三的由用户设备执行的方法。
如图4所示,在本发明的实施例三中,用户设备执行的步骤包括:
在步骤S201,从高层(higher layer,或者上层)接收确定PSSCH/PSCCH的传输资源的请求(request,或者,触发trigger)。
可选地,所述高层在时隙slot n上请求所述用户设备确定PSSCH/PSCCH的传输资源。
可选地,所述高层(为物理层)提供用于所述PSSCH/PSCCH传输的参数。
在步骤S202,可选地,所述侧行通信用户设备确定侧行通信不连续接 收SL DRX的活跃期active time。
在步骤S203,所述侧行通信用户设备确定监听时隙集合。
可选地,所述监听时隙集合至少包含同时在时间间隔[n,n+T B](或者,[n+1,n+T B])和在所述SL DRX的活跃期active time之内的全部或者部分资源池中的时隙。其中,可选地,所述T B为从所述时隙n开始的第31个所述资源池中的时隙(或者,在此基础上向前或减去
Figure PCTCN2022083987-appb-000030
Figure PCTCN2022083987-appb-000031
个时隙),或者,所述T B为从所述时隙n开始的第32个所述资源池中的时隙(或者,在此基础上向前或减去
Figure PCTCN2022083987-appb-000032
Figure PCTCN2022083987-appb-000033
个时隙),n为自然数。
[实施例四]
图5是示出了本发明的实施例四的由用户设备执行的方法的基本过程的示意图。
下面,结合图5所示的基本过程图来详细说明本发明的实施例四的由用户设备执行的方法。
如图5所示,在本发明的实施例四中,用户设备执行的步骤包括:
在步骤S301,第一侧行通信用户设备接收第二侧行通信用户设备发送的时间间隔指示信息。
其中,可选地,所述第二用户设备通过PC5 RRC信令发送,或者,通过SCI发送所述时间间隔指示信息。
可选地,所述时间间隔指示信息所指示的时间间隔表示所述第二用户设备确定的PSFCH接收处理、重传准备(包括信道复用、发送/接收切换和接收/发送切换)所需的时间。
可选地,所述时间间隔由所述第二侧行通信用户设备的具体实现确定(up to UE implementation)。
可选地,所述第一用户设备和所述第二用户设备之间的通信是单播unicast通信。
在步骤S302,所述第一用户设备确定侧行通信不连续接收SL DRX的 往返定时器RTT timer的时长。
可选地,所述往返定时器RTT timer的时长至少由所述时间间隔,和/或配置的(或者,预配置的)PSSCH和PSFCH之间的最小时域间隔sl-MinTimeGapPSFCH,和/或配置的(或者,预配置的)PSFCH的周期sl-PSFCH-Period所确定。
[实施例五]
图6是示出了本发明的实施例五的由用户设备执行的方法的基本过程的示意图。
下面,结合图6所示的基本过程图来详细说明本发明的实施例五的由用户设备执行的方法。
如图6所示,在本发明的实施例五中,用户设备执行的步骤包括:
在步骤S401,侧行通信用户设备获取侧行通信资源池的配置信息。
可选地,所述侧行通信资源池的配置信息至少包括PSSCH和PSFCH之间的最小时域间隔sl-MinTimeGapPSFCH,以及,PSFCH的周期sl-PSFCH-Period。
在步骤S402,所述接收用户设备确定侧行通信不连续接收SL DRX的往返定时器RTT timer的时长。
可选地,所述往返定时器RTT timer的时长等于用户设备对于PSFCH接收处理、重传准备(包括信道复用、发送/接收切换和接收/发送切换)所需时间的最小值,或者,所述往返定时器RTT timer的时长等于用户设备对于PSFCH接收处理、重传准备(包括信道复用、发送/接收切换和接收/发送切换)所需时间的最小值与一个时间间隔time interval的总和。所述时间间隔time interval至少由所述PSSCH和PSFCH之间的最小时域间隔sl-MinTimeGapPSFCH,以及,PSFCH的周期sl-PSFCH-Period所确定。
[实施例六]
图7是示出了本发明的实施例六的由用户设备执行的方法的基本过程的示意图。
下面,结合图7所示的基本过程图来详细说明本发明的实施例六的由用户设备执行的方法。
如图7所示,在本发明的实施例六中,用户设备执行的步骤包括:
在步骤S501,高层(higher layer,或者上层)请求(request,或者,触发trigger)侧行通信用户设备(物理层)确定PSSCH/PSCCH的传输资源。
可选地,所述高层在时隙slot n上请求所述用户设备确定PSSCH/PSCCH的传输资源。
在步骤S502,所述侧行通信用户设备确定候选时隙(candidate slots)集合。
可选地,所述用户设备确定所述候选时隙集合的方式为取决于用户设备的实现(up to UE implementation)。
在步骤S503,所述侧行通信用户设备确定监听的时隙集合。
可选地,如果在时隙
Figure PCTCN2022083987-appb-000034
或者时隙
Figure PCTCN2022083987-appb-000035
或者时隙
Figure PCTCN2022083987-appb-000036
Figure PCTCN2022083987-appb-000037
之前31或32个资源池时隙的时刻晚于或者等于所述时隙n,那么,所述用户设备监听(shall monitor,或者monitor)的所述监听时隙集合至少包含时隙
Figure PCTCN2022083987-appb-000038
或者时隙
Figure PCTCN2022083987-appb-000039
或者时隙
Figure PCTCN2022083987-appb-000040
Figure PCTCN2022083987-appb-000041
和向前31个或向前32个资源池时隙之间的、和/或侧行通信不连续接收活跃期SL DRX active time相重合的全部或者部分资源池中的时隙;可选地,如果在时隙
Figure PCTCN2022083987-appb-000042
或者时隙
Figure PCTCN2022083987-appb-000043
或者时隙
Figure PCTCN2022083987-appb-000044
之前31或32个资源池时隙的时刻早于所述时隙n,那么,所述用户设备监听(shall monitor,或者monitor)的所述监听时隙集合至少包含时隙
Figure PCTCN2022083987-appb-000045
或者时隙
Figure PCTCN2022083987-appb-000046
或者时隙
Figure PCTCN2022083987-appb-000047
Figure PCTCN2022083987-appb-000048
和所述时隙n之间的、和/或侧行通信不连续接收活跃期SL DRX active time相重合的全部或者部分资源池中的时隙。其中,
Figure PCTCN2022083987-appb-000049
是所述候选时隙集合中的任一个时隙,例如,第一个,最后一个,本发明对此不做任何限制。
[实施例七]
图7是示出了本发明的实施例七的由用户设备执行的方法的基本过程的示意图。
下面,结合图7所示的基本过程图来详细说明本发明的实施例七的由用户设备执行的方法。
如图7所示,在本发明的实施例七中,用户设备执行的步骤包括:
在步骤S501,高层(higher layer,或者上层)请求(request,或者,触发trigger)侧行通信用户设备(物理层)确定PSSCH/PSCCH的传输资源。
可选地,所述高层在时隙slot n上请求所述用户设备确定PSSCH/PSCCH的传输资源。
在步骤S502,所述侧行通信用户设备确定候选时隙(candidate slots)集合。
可选地,所述用户设备确定所述候选时隙集合的方式为取决于用户设备的实现(up to UE implementation)。
在步骤S503,所述侧行通信用户设备确定监听的时隙集合。
可选地,如果在时隙
Figure PCTCN2022083987-appb-000050
或者时隙
Figure PCTCN2022083987-appb-000051
或者时隙
Figure PCTCN2022083987-appb-000052
Figure PCTCN2022083987-appb-000053
之前31或32个资源池时隙的时刻晚于或者等于所述时隙n,那么,时隙
Figure PCTCN2022083987-appb-000054
或者时隙
Figure PCTCN2022083987-appb-000055
或者时隙
Figure PCTCN2022083987-appb-000056
Figure PCTCN2022083987-appb-000057
到向前31个或向前32个资源池时隙之间的全部或者部分资源池中的时隙属于侧行通信不连续接收的活跃期SL DRX active time;可选地,如果在时隙
Figure PCTCN2022083987-appb-000058
或者时隙
Figure PCTCN2022083987-appb-000059
或者时隙
Figure PCTCN2022083987-appb-000060
之前31或32个资源池时隙的时刻早于所述时隙n,那么,时隙
Figure PCTCN2022083987-appb-000061
或者时隙
Figure PCTCN2022083987-appb-000062
或者时隙
Figure PCTCN2022083987-appb-000063
和所述时隙n之间的全部或者部分资源池中的时隙属于侧行通信不连续接收的活跃期SL DRX active time。其中,
Figure PCTCN2022083987-appb-000064
是所述候选时隙集合中的任一个时隙,例如,第一个,最后一个,本发明对此不做任何限制。
图8是表示本发明所涉及的用户设备UE的框图。如图8所示,该用户设备UE80包括处理器801和存储器802。处理器801例如可以包括微处理器、微控制器、嵌入式处理器等。存储器802例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器802上存储有程序指令。该指令在由处理器801运行时,可以执行本发明详细描述的由用户设备执行的上述方法。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质, 计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (10)

  1. 一种由用户设备UE执行的方法,包括:
    从高层接收确定PSSCH/PSCCH的传输资源的请求,
    所述用户设备确定侧行通信不连续接收的活跃期,
    所述用户设备确定监听时隙的集合。
  2. 根据权利要求1所述的由用户设备执行的方法,还包括,
    在时隙n上从高层接收确定PSSCH/PSCCH的传输资源的请求。
  3. 根据权利要求1所述的由用户设备执行的方法,其特征在于,
    所述监听时隙集合至少包含同时在时间间隔和在所述活跃期之内的全部或者部分资源池中的时隙,
    其中,所述时间间隔是[n,n+T B]或者,[n+1,n+T B],
    所述T B为从所述时隙n开始的第31个所述资源池中的时隙,或者,在此基础上向前或减去
    Figure PCTCN2022083987-appb-100001
    Figure PCTCN2022083987-appb-100002
    个时隙,或者,所述T B为从所述时隙n开始的第32个所述资源池中的时隙,或者,在此基础上向前或减去
    Figure PCTCN2022083987-appb-100003
    Figure PCTCN2022083987-appb-100004
    个时隙)。
  4. 根据权利要求1所述的由用户设备执行的方法,其特征在于,
    时间间隔在所述活跃期之内,其中,所述时间间隔是[n,n+T B]或者,[n+1,n+T B],
    所述T B为从所述时隙n开始的第31个所述资源池中的时隙,或者,在此基础上向前或减去
    Figure PCTCN2022083987-appb-100005
    Figure PCTCN2022083987-appb-100006
    个时隙,或者,所述T B为从所述时隙n开始的第32个所述资源池中的时隙,或者,在此基础上向前或减去
    Figure PCTCN2022083987-appb-100007
    Figure PCTCN2022083987-appb-100008
    个时隙)。
  5. 一种由用户设备UE执行的方法,包括:
    第一用户设备接收第二用户设备发送的时间间隔指示信息,
    所述第一用户设备确定侧行通信不连续接收的往返定时器的时长。
  6. 根据权利要求5所述的由用户设备执行的方法,其特征在于,
    所述时间间隔指示信息所指示的时间间隔表示所述第二用户设备确定的PSFCH接收处理、重传准备所需的时间。
  7. 根据权利要求5所述的由用户设备执行的方法,其特征在于,
    所述第一用户设备至少根据所述时间间隔指示信息确定所述侧行通信不连续接收的往返定时器的时长。
  8. 一种由用户设备UE执行的方法,包括:
    用户设备获取侧行通信资源池的配置信息,
    所述接收用户设备确定侧行通信不连续接收的往返定时器的时长。
  9. 根据权利要求8所述的由用户设备执行的方法,其特征在于,
    所述侧行通信资源池的配置信息至少包括PSSCH和PSFCH之间的最小时域间隔sl-MinTimeGapPSFCH,以及,PSFCH的周期sl-PSFCH-Period。
  10. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令;
    其中,所述指令在由所述处理器运行时执行根据权利要求1至9中的任一项所述的方法。
PCT/CN2022/083987 2021-04-01 2022-03-30 由用户设备执行的方法以及用户设备 WO2022206817A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22778999.7A EP4319221A1 (en) 2021-04-01 2022-03-30 Method implemented by user equipment, and user equipment
US18/284,865 US20240196417A1 (en) 2021-04-01 2022-03-30 Method performed by user equipment, and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110359016.1A CN115190459A (zh) 2021-04-01 2021-04-01 由用户设备执行的方法以及用户设备
CN202110359016.1 2021-04-01

Publications (1)

Publication Number Publication Date
WO2022206817A1 true WO2022206817A1 (zh) 2022-10-06

Family

ID=83457983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083987 WO2022206817A1 (zh) 2021-04-01 2022-03-30 由用户设备执行的方法以及用户设备

Country Status (4)

Country Link
US (1) US20240196417A1 (zh)
EP (1) EP4319221A1 (zh)
CN (1) CN115190459A (zh)
WO (1) WO2022206817A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730206A (zh) * 2008-11-03 2010-06-09 中国移动通信集团公司 移动通信终端接收下行数据的控制方法和移动通信终端
CN111670601A (zh) * 2020-04-17 2020-09-15 北京小米移动软件有限公司 直连通信中的资源选择方法、装置、电子设备及存储介质
CN112312526A (zh) * 2019-08-01 2021-02-02 华硕电脑股份有限公司 无线通信系统装置到装置通信监测功率节省的方法和设备
US20210051584A1 (en) * 2019-08-14 2021-02-18 FG Innovation Company Limited Method of monitoring physical downlink control channel for power saving signal and related device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730206A (zh) * 2008-11-03 2010-06-09 中国移动通信集团公司 移动通信终端接收下行数据的控制方法和移动通信终端
CN112312526A (zh) * 2019-08-01 2021-02-02 华硕电脑股份有限公司 无线通信系统装置到装置通信监测功率节省的方法和设备
US20210051584A1 (en) * 2019-08-14 2021-02-18 FG Innovation Company Limited Method of monitoring physical downlink control channel for power saving signal and related device
CN111670601A (zh) * 2020-04-17 2020-09-15 北京小米移动软件有限公司 直连通信中的资源选择方法、装置、电子设备及存储介质

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"New SID Proposal: Study on NR V2X", RP-181480
"New WI proposal: Support for V2V services based on LTE sidelink", RP-152293
"New WID on 3GPP V2X Phase 2", RP-170798
"WID revision: NR sidelink enhancement", RP-202846
"Work Item Proposal for Enhanced LTE Device to Device Proximity Services", RP-142311
"Work item proposal on LTE Device to Device Proximity Services", RP-140518
CATT: "Sidelink DRX Timer Maintenance and Active Time Definition", 3GPP DRAFT; R2-2100236, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051973439 *
MEDIATEK INC.: "Discussion on NR V2X RRM test case", 3GPP DRAFT; R4-2010038, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051913038 *
MODERATOR (INTEL CORPORATION): "FL summary#2 of critical issues for 7.2.4.2.2 – V2X Mode 2", 3GPP DRAFT; R1-2004715, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200525 - 20200605, 25 May 2020 (2020-05-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051890581 *

Also Published As

Publication number Publication date
CN115190459A (zh) 2022-10-14
EP4319221A1 (en) 2024-02-07
US20240196417A1 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
WO2022028413A1 (zh) 由用户设备执行的方法以及用户设备
WO2022143641A1 (zh) 由用户设备执行的方法以及用户设备
WO2022111630A1 (zh) 由用户设备执行的方法以及用户设备
WO2023040961A1 (zh) 由用户设备执行的方法以及用户设备
WO2020088513A1 (zh) 由用户设备执行的方法以及用户设备
WO2022017037A1 (zh) 由用户设备执行的方法以及用户设备
WO2021136373A1 (zh) 由用户设备执行的方法以及用户设备
WO2023131074A1 (zh) 由用户设备执行的方法以及用户设备
WO2022267943A1 (zh) 由用户设备执行的方法以及用户设备
WO2022194243A1 (zh) 由用户设备执行的方法以及用户设备
WO2022152163A1 (zh) 由用户设备执行的方法以及用户设备
WO2022028330A1 (zh) 由用户设备执行的方法以及用户设备
WO2021228138A1 (zh) 由用户设备执行的方法以及用户设备
WO2022206817A1 (zh) 由用户设备执行的方法以及用户设备
WO2023001070A1 (zh) 由用户设备执行的方法以及用户设备
WO2023078389A1 (zh) 由用户设备执行的方法以及用户设备
WO2023078345A1 (zh) 由用户设备执行的方法以及用户设备
WO2022007664A1 (zh) 由用户设备执行的方法以及用户设备
WO2023098812A1 (zh) 由用户设备执行的方法以及用户设备
WO2024012390A1 (zh) 由用户设备执行的方法以及用户设备
WO2023185688A1 (zh) 由用户设备执行的方法以及用户设备
WO2022063070A1 (zh) 由用户设备执行的方法以及用户设备
WO2024094061A1 (zh) 由用户设备执行的方法以及用户设备
WO2023051452A1 (zh) 由用户设备执行的方法以及用户设备
WO2024001957A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778999

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18284865

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022778999

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022778999

Country of ref document: EP

Effective date: 20231102

NENP Non-entry into the national phase

Ref country code: DE