WO2022143643A1 - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
WO2022143643A1
WO2022143643A1 PCT/CN2021/142005 CN2021142005W WO2022143643A1 WO 2022143643 A1 WO2022143643 A1 WO 2022143643A1 CN 2021142005 W CN2021142005 W CN 2021142005W WO 2022143643 A1 WO2022143643 A1 WO 2022143643A1
Authority
WO
WIPO (PCT)
Prior art keywords
cbr
user equipment
range
channel
communication
Prior art date
Application number
PCT/CN2021/142005
Other languages
English (en)
French (fr)
Inventor
赵毅男
罗超
刘仁茂
Original Assignee
夏普株式会社
赵毅男
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 赵毅男 filed Critical 夏普株式会社
Publication of WO2022143643A1 publication Critical patent/WO2022143643A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present invention relates to the technical field of wireless communication, and in particular, to a method performed by a user equipment and a corresponding user equipment.
  • D2D communication (Device-to-Device communication, direct device-to-device communication) refers to a direct communication method between two user equipments without being forwarded by a base station or a core network.
  • 3GPP 3rd Generation Partnership Project
  • the upper layer supports unicast (Unicast) and multicast (Groupcast) communication functions.
  • LTE Release 13 eD2D The main features introduced by LTE Release 13 eD2D include:
  • V2X stands for Vehicle to everything, hoping to realize the exchange of information between vehicles and all entities that may affect vehicles, with the purpose of reducing accidents, slowing traffic congestion, reducing environmental pollution and providing other information services.
  • the application scenarios of V2X mainly include four aspects:
  • V2V Vehicle to Vehicle, that is, vehicle-to-vehicle communication
  • V2P Vehicle to Pedestrian, that is, the vehicle sends a warning to pedestrians or non-motor vehicles
  • V2N Vehicle to Network, that is, the vehicle is connected to the mobile network
  • V2I Vehicle to Infrastructure, that is, communication between vehicles and road infrastructure.
  • V2X stage 1 introduces a new D2D communication interface called the PC5 interface.
  • the PC5 interface is mainly used to solve the communication problems of cellular vehicle networking in high-speed (up to 250 km/h) and high-node density environments. Vehicles can interact with information such as position, speed and direction through the PC5 interface, that is, vehicles can communicate directly through the PC5 interface.
  • the functions introduced by LTE Release 14 V2X mainly include:
  • the second phase of the V2X research topic belongs to the research scope of LTE Release 15 (see Non-Patent Document 4).
  • the main features introduced include high-order 64QAM modulation, V2X carrier aggregation, short TTI transmission, and a feasibility study of transmit diversity.
  • a resource allocation mode 2 (resource allocation mode 2) based on user equipment sensing (sensing) is supported, or transmission mode 2.
  • resource allocation mode 2 the physical layer of the user equipment senses the transmission resources in the resource pool, and reports the set of available transmission resources to the upper layer. After obtaining the report of the physical layer, the upper layer selects the resources specifically used for the transmission of sideline communication.
  • resource allocation mode 2 a congestion control mechanism is introduced to ensure the quality of service (Quality of Service, QoS for short) of sideline communication. The user equipment determines whether to drop the current sideline communication transmission by measuring the busyness of the sideline communication channel.
  • the solution of this patent mainly includes a method for the user equipment to determine the upper limit of the channel occupancy ratio (Channel Occupancy Ratio, CR for short) in the resource allocation method based on the perception of the user equipment.
  • Channel Occupancy Ratio Channel Occupancy Ratio
  • Non-patent document 1 RP-140518, Work item proposal on LTE Device to Device Proximity Services
  • Non-patent document 2 RP-142311, Work Item Proposal for Enhanced LTE Device to Device Proximity Services
  • Non-patent literature 3 RP-152293, New WI proposal: Support for V2V services based on LTE sidelink
  • Non-Patent Document 4 RP-170798, New WID on 3GPP V2X Phase 2
  • Non-Patent Document 5 RP-181480, New SID Proposal: Study on NR V2X
  • the present invention provides a method performed by a user equipment and a user equipment.
  • the method performed by the user equipment according to the first aspect of the present invention includes: acquiring sideline communication configuration information; measuring the channel busy rate CBR; and determining the upper limit of the channel occupancy rate CR limit.
  • the sideline communication configuration information at least includes a configuration information list SL-CBR-LevelsConfig of a channel busy rate range CBR range.
  • the CBR is measured on time slots n-N, wherein the physical sideline communication shared channel PSSCH is transmitted on time slot n; N represents the processing delay of congestion control.
  • the CR limit is associated with a priority value k and the CBR range comprising the measured CBR.
  • the measured CBR exceeds the range of the last CBR included in the SL-CBR-LevelsConfig, it is assumed or determined that the CBR included in the SL-CBR-LevelsConfig
  • the range of the last CBR includes the measured CBR.
  • the value of the last CBR range included in the SL-CBR-LevelsConfig is 100.
  • the channel occupancy upper limit CR limit is assumed or determined that the channel occupancy upper limit CR limit is equal to 0, Or 5000, or 10000, or any integer between 0 and 10000.
  • the sideline communication configuration information further includes indication information s1-DefaultTxConfigIndex-r16 of the default physical sideline communication shared channel PSSCH transmission configuration information number.
  • the measured CBR exceeds the range of the last CBR included in the SL-CBR-LevelsConfig, it is assumed or determined that the measured channel busy rate is unavailable Channel busy rate measurement.
  • User equipment comprising: a processor; and a memory storing instructions; wherein the instructions, when executed by the processor, perform any of the methods according to the first aspect above.
  • the solution of the present invention can ensure that when the channel busy ratio (Channel Busy Ratio) measured by the user equipment exceeds the configured channel
  • the user equipment can accurately determine the upper limit of the channel occupancy rate, so as to ensure the service quality of the sideline communication and improve the reliability and transmission efficiency of the sideline communication.
  • FIG. 1 is a schematic diagram illustrating sideline communication of an LTE V2X UE.
  • FIG. 2 is a schematic diagram illustrating a resource allocation manner of LTE V2X.
  • FIG. 3 is a schematic diagram showing the basic process of the method executed by the user equipment in Embodiment 1, Embodiment 2, Embodiment 3 and Embodiment 4 of the invention.
  • FIG. 4 is a block diagram illustrating a user equipment according to an embodiment of the present invention.
  • the 5G mobile communication system and its subsequent evolved versions are used as an example application environment to specifically describe various embodiments according to the present invention.
  • the present invention is not limited to the following embodiments, but can be applied to more other wireless communication systems, such as communication systems after 5G and 4G mobile communication systems before 5G.
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • DCI Downlink Control Information, downlink control information
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • UE User Equipment, user equipment
  • eNB evolved NodeB, evolved base station
  • gNB NR base station
  • TTI Transmission Time Interval, transmission time interval
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • C-RNTI Cell Radio Network Temporary Identifier, the temporary identifier of the cell wireless network
  • CSI Channel State Information, channel state information
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • CRS Cell Reference Signal, cell-specific reference signal
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • SCI Sidelink Control Information, side communication control information
  • PSCCH Physical Sidelink Control Channel, Physical Sidelink Communication Control Channel
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • RB Resource Block, resource block
  • CRB Common Resource Block, common resource block
  • CP Cyclic Prefix, cyclic prefix
  • PRB Physical Resource Block, physical resource block
  • PSSCH Physical Sidelink Shared Channel, Physical Sidelink Shared Channel
  • FDM Frequency Division Multiplexing, frequency division multiplexing
  • RRC Radio Resource Control
  • RSRP Reference Signal Receiving Power, reference signal receiving power
  • SRS Sounding Reference Signal, sounding reference signal
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • PSDCH Physical Sidelink Discovery Channel, Physical Sidelink Communication Discovery Channel
  • PSBCH Physical Sidelink Broadcast Channel, Physical Sidelink Communication Broadcast Channel
  • TDD Time Division Duplexing
  • FDD Frequency Division Duplexing, frequency division duplexing
  • SIB1 System Information Block Type 1, system information block type 1
  • SLSS Sidelink synchronization Signal, side communication synchronization signal
  • PSSS Primary Sidelink Synchronization Signal, side communication main synchronization signal
  • SSSS Secondary Sidelink Synchronization Signal, side communication auxiliary synchronization signal
  • PCI Physical Cell ID, physical cell identification
  • PSS Primary Synchronization Signal, the main synchronization signal
  • BWP BandWidth Part, Bandwidth Fragment/Part
  • GNSS Global NaVigation Satellite System, global navigation satellite positioning system
  • SFN System Frame Number, system (wireless) frame number
  • DFN Direct Frame Number, direct frame number
  • SSB Synchronization Signal Block, synchronization system information block
  • EN-DC EUTRA-NR Dual Connection, LTE-NR dual connection
  • MCG Master Cell Group, the main cell group
  • SCG Secondary Cell Group, secondary cell group
  • PCell Primary Cell, the main cell
  • SCell Secondary Cell, secondary cell
  • PSFCH Physical Sidelink Feedback Channel, Physical Sidelink Communication Feedback Channel
  • SPS Semi-Persistant Scheduling, semi-static scheduling
  • PT-RS Phase-Tracking Referenee Signals, phase tracking reference signal
  • Transport Block transport block
  • CB Code Block, coding block/code block
  • QPSK Quadrature Phase Shift Keying, quadrature phase shift keying
  • 16/64/256 QAM 16/64/256 Quadrature Amplitude Modulation, Quadrature Amplitude Modulation
  • AGC Auto Gain Control, automatic gain control
  • ARFCN Absolute Radio Frequency Channel Number, absolute radio frequency channel number
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, single carrier-frequency division multiplexing multiple access
  • MAC Medium Access Control, media access control layer
  • CBR Channel BusyRatio, channel busy rate
  • QoS Quality of Service, quality of service
  • RSSI Received Signal Strength Indicator, received signal strength indicator
  • V2X in the text can also represent sidelink; similarly, sidelink in the text can also represent V2X, and no specific distinction or limitation will be made in the following text.
  • the resource allocation mode of V2X (sidelink) communication in the specification of the present invention and the transmission mode of V2X (sidelink) communication can be equivalently replaced.
  • the resource allocation method referred to in the specification may represent the transmission mode, and the transmission mode referred to may represent the resource allocation method.
  • transmission mode 1 represents a transmission mode (resource allocation method) based on base station scheduling
  • transmission mode 2 represents a transmission mode (resource allocation method) based on user equipment sensing and resource selection.
  • the PSCCH in the specification of the present invention is used to carry the SCI.
  • the PSCCH involved in the description of the present invention corresponds to, or corresponds to, or is related to, or, the scheduled PSSCH indicates the same meaning, and both indicate associated PSSCH or corresponding PSSCH.
  • the PSSCH involved in the description corresponds to, or corresponds to, or has the same meaning as the related SCI (including the first-level SCI and the second-level SCI), which means associated SCI or corresponding SCI.
  • the first-level SCI is called 1st stage SCI or SCI format 0-1, and is transmitted in PSCCH;
  • the second-level SCI is called 2nd stage SCI or SCI format 0-2, and is transmitted in the corresponding PSSCH resources .
  • the channel occupancy rate and the channel busy rate in the specification of the present invention both refer to the channel occupancy rate (Sidelink CR) in sideline communication and the channel busy rate (Sidelink CBR) in sideline communication.
  • both UEs performing sidelink communication have network coverage (for example, the UE detects at least one cell that satisfies the "cell selection criterion" on the frequency where sidelink communication needs to be performed, Indicates that the UE has network coverage).
  • Partial-Coverage sidelink communication one of the UEs performing sidelink communication has no network coverage, and the other UE has network coverage.
  • the UE From the UE side, the UE has only two scenarios: no network coverage and network coverage. Part of the network coverage is described in terms of sidelink communication.
  • FIG. 1 is a schematic diagram illustrating sideline communication of an LTE V2X UE.
  • UE1 sends sideline communication control information (SCI format 1) to UE2, which is carried by the physical layer channel PSCCH.
  • SCI format 1 contains scheduling information of PSSCH, such as frequency domain resources of PSSCH.
  • UE1 sends sideline communication data to UE2, which is carried by the physical layer channel PSSCH.
  • the PSCCH and the corresponding PSSCH are in a frequency division multiplexing manner, that is, the PSCCH and the corresponding PSSCH are located in the same subframe in the time domain, and are located in different RBs in the frequency domain.
  • a transport block TB may contain only one initial transmission, or one initial transmission and one blind retransmission (blind retransmission, which means retransmission not based on HARQ feedback).
  • SCI format 1 can be carried in PSCCH, wherein SCI format 1 at least includes frequency domain resource information of PSSCH. For example, for the frequency domain resource indication field, SCI format 1 indicates the starting sub-channel number and the number of consecutive sub-channels of the PSSCH corresponding to the PSCCH.
  • PSSCH occupies one subframe in the time domain, and adopts frequency division multiplexing (FDM) with the corresponding PSCCH.
  • PSSCH occupies one or more consecutive sub-channels in the frequency domain, sub-channels represent n subCHsize consecutive RBs in the frequency domain, n subCHsize is configured by the RRC parameter, the number of starting sub-channels and consecutive sub-channels Indicated by the frequency domain resource indication field of SCI format 1.
  • FIG. 2 shows two resource allocation methods of LTE V2X, which are respectively called resource allocation based on base station scheduling (Transmission Mode 3) and resource allocation based on UE sensing (Transmission Mode 4).
  • transmission mode 3 of LTE V2X corresponds to transmission mode 1 in NR V2X, which is based on base station scheduling
  • transmission mode 4 of LTE V2X corresponds to transmission mode 2 in NR V2X, which is based on UE perception. transfer mode.
  • the base station can configure the resource allocation mode of the UE through UE-level dedicated RRC signaling (dedicated RRC signaling) SL-V2X-ConfigDedicated, or the transmission mode of the UE. ,Specifically:
  • Resource allocation method based on base station scheduling indicates that the frequency domain resources used for sidelink communication come from the scheduling of the base station.
  • Transmission mode 3 includes two scheduling methods, namely dynamic scheduling and semi-persistent scheduling (SPS).
  • SPS semi-persistent scheduling
  • the UL grant (DCI format 5A) includes the frequency domain resources of PSSCH, and the CRC of the PDCCH or EPDCCH carrying the DCI format 5A is scrambled by SL-V-RNTI.
  • the base station configures one or more (up to 8) configured scheduling grants (configured grants) through IE: SPS-ConfigSL-r14, each configured scheduling grant contains a scheduling grant number (index) and scheduling grants Licensed resource period.
  • the UL grant (DCI format 5A) includes the frequency domain resources of the PSSCH, and the indication information (3 bits) of the scheduling grant number and the indication information of the SPS activation (activate) or release (release, or deactivation).
  • the CRC of the PDCCH or EPDCCH carrying DCI format 5A is scrambled by SL-SPS-V-RNTI.
  • the RRC signaling SL-V2X-ConfigDedicated when the RRC signaling SL-V2X-ConfigDedicated is set to scheduled-r14, it indicates that the UE is configured as a transmission mode based on the base station scheduling.
  • the base station configures SL-V-RNTI or SL-SPS-V-RNTI through RRC signaling, and uses PDCCH or EPDCCH (DCI format 5A, the CRC is scrambled with SL-V-RNTI or scrambled with SL-SPS-V-RNTI) ) sends an uplink scheduling grant UL grant to the UE.
  • the above-mentioned uplink scheduling grant UL grant at least includes scheduling information of PSSCH frequency domain resources in sidelink communication.
  • the UE When the UE successfully monitors the PDCCH or EPDCCH scrambled by SL-V-RNTI or SL-SPS-V-RNTI, it uses the PSSCH frequency domain resource indication field in the uplink scheduling grant UL grant (DCI format 5A) as the PSCCH Indication information of the frequency domain resources of PSSCH in (SCI format 1), and send PSCCH (SCI format 1) and the corresponding PSSCH.
  • DCI format 5A the PSSCH frequency domain resource indication field in the uplink scheduling grant UL grant
  • the UE receives SL-SPS-V-RNTI scrambled DCI format 5A on downlink subframe n. If the indication information of SPS activation is included in the DCI format 5A, the UE determines the frequency domain resources of the PSSCH according to the indication information in the DCI format 5A, and determines the time domain resources of the PSSCH (the transmission subframe of the PSSCH) according to information such as subframe n.
  • Resource allocation method based on UE sensing indicates that the resources used for sidelink communication are based on the UE sensing process of the set of candidate available resources.
  • the RRC signaling SL-V2X-ConfigDedicated is set to ue-Selected-r14, it indicates that the UE is configured as the transmission mode based on UE sensing.
  • the base station configures the available transmission resource pool, and the UE determines the PSSCH sidelink transmission resources in the transmission resource pool (resource pool) according to certain rules (see the LTE V2X UE sensing process section for a detailed process description). , and send PSCCH (SCI format 1) and corresponding PSSCH.
  • the resources sent and received by the UE belong to the resource pool resource pool.
  • the base station schedules transmission resources for the sidelink UE in the resource pool, or, for the transmission mode based on UE perception in sidelink communication, the UE determines transmission resources in the resource pool.
  • the parameter set numerology includes the subcarrier spacing and the cyclic prefix CP length.
  • Table 4.2-1 shows the set of supported transmission parameters, as follows shown.
  • ⁇ ⁇ f 2 ⁇ ⁇ 15[kHz] CP (Cyclic Prefix) 0 15 normal 1 30 normal 2 60 normal, extended 3 120 normal 4 240 normal
  • each slot (slot) contains 14 OFDM symbols; for extended CP, each slot contains 12 OFDM symbols.
  • NR and LTE have the same definition of subframe, which means 1ms.
  • subframe For the subcarrier spacing configuration ⁇ , the slot number in a subframe (1ms) can be expressed as The range is 0 to The slot number in a system frame (frame, duration 10ms) can be expressed as The range is 0 to in, and The definitions of the cases at different subcarrier spacing ⁇ are shown in the table below.
  • Table 4.3.2-1 The number of symbols contained in each slot in normal CP, the number of slots contained in each system frame, and the number of slots contained in each subframe
  • Table 4.3.2-2 The number of symbols contained in each slot when the CP is extended (60kHz), the number of slots contained in each system frame, and the number of slots contained in each subframe
  • the numbered SFN of a system frame ranges from 0 to 1023.
  • the concept of the direct system frame number DFN is introduced in the sideline communication, and the number range is also 0 to 1023.
  • the above description of the relationship between the system frame and the numerology can also be applied to the direct system frame.
  • the duration of a direct system frame Also equal to 10ms, for a subcarrier spacing of 15kHz, a direct system frame includes 10 slots, and so on. DFN is used for timing on sidelink carriers.
  • LTE only supports subcarrier spacing of 15kHz.
  • Extended CP is supported in LTE, and normal CP is also supported.
  • the subframe subframe has a duration of 1ms and includes two slots, each of which has a duration of 0.5ms.
  • each subframe contains 14 OFDM symbols, and each slot in the subframe contains 7 OFDM symbols; for extended CP, each subframe contains 12 OFDM symbols, and each slot in the subframe contains 6 OFDM symbols.
  • the resource block RB is defined in the frequency domain as consecutive sub-carriers, eg for a sub-carrier spacing of 15 kHz, the RB is 180 kHz in the frequency domain.
  • the resource element RE represents 1 subcarrier in the frequency domain and 1 OFDM symbol in the time domain.
  • the OFDM symbols available for sideline communication transmission in a time slot are jointly determined by RRC parameters sl-StartSymbol and sl-LengthSymbols.
  • the value range of sl-StartSymbol is 0 to 7 OFDM symbols, and the value range of sl-LengthSymbols is 7 to 14 OFDM symbols. For example, if sl-StartSymbol is configured as 3, and sl-LengthSymbols is configured as 9, in one slot, OFDM symbol 3 to OFDM symbol 11 can be used for sideline communication transmission.
  • the channel occupancy rate CR is defined as: the channel occupancy rate measured (or evaluated) by the user equipment in the time slot slot n is equal to the occupancy rate of the sub-channel used for the transmission of the user equipment in the time slot range [n-a, n-1].
  • the granted sub-channel indicates that the sub-channel belongs to the sidelink communication scheduling grant (selected sidelink grant) selected by the user equipment.
  • the sideline communication scheduling grant selected by the user equipment represents a general term for the resource set selected by the MAC layer of the user equipment for transmission in resource allocation mode 2.
  • the channel busy rate CBR is defined as: the channel busy rate CBR measured by the user equipment on the slot n is equal to the received signal strength indication of the sideline communication perceived by the user equipment in the resource pool of the time slot range [n-a, n-1] (Sidelink RSSI) The proportion of sub-channels that exceed the configured threshold.
  • Sidelink RSSI is defined as starting from the second OFDM symbol (sl-StartSymbol+1), all symbols configured for PSSCH and PSCCH transmission in one time slot, within one subchannel The linear average of all received powers. Specifically, if the total received power in a subchannel in a time slot is R(W), then the Sidelink RSSI is equal to R/(sl-LengthSymbols-1).
  • CBR limit Channel occupancy upper limit
  • CBR range channel busy rate range
  • the channel busy rate range is configured or pre-configured through the RRC parameter SL-CBR-LevelsConfig.
  • the parameter SL-CBR-LevelsConfig represents a list of channel busy rate CBR ranges, and the list contains at most maxCBR-Level-r16 (16) (pre)configured CBR ranges.
  • the value of each CBR range is [0, 100], and the above-mentioned at most 16 CBR ranges are arranged in ascending order, and each CBR range represents an upper limit of a CBR.
  • a CBR range information in the list also represents the lower limit of the next CBR range.
  • the list contains the configuration information of four CBR ranges, which are 5, 10, 20, and 30, respectively.
  • the CBR range is referred to as including the measurement CBR.
  • the measured CBR is 15% (corresponding to a value of 15 in 0-100)
  • the CBR range [10, 20] includes the measured CBR, that is, the third CBR range in the list SL-CBR-LevelsConfig includes the measurement CBR.
  • any priority value k is associated with a SL-CBR-LevelsConfig list (including at most maxCBR-Level-r16 CBR ranges) and at most maxCBR-Level-r16 (16) Channel occupancy upper limit (CR limit), that is, each CR limit is associated with a priority value k and a CBR range including CBR measurements.
  • CR limit Channel occupancy upper limit
  • the third CBR range in the list SL-CBR-LevelsConfig includes the measured CBR, then, correspondingly, the third CR limit is associated with the priority value k and the third range including the CBR measurement.
  • the CBR range 0-100 corresponds to 0, 0.01, 0.02, ..., 1 in the CBR measurement, respectively.
  • the value 0-10000 of the upper limit of the channel occupancy rate CR limit corresponds to 0, 0.0001, 0.0002, ..., 1, respectively.
  • corresponds to the subcarrier spacing of sideline communication
  • the processing delay is represented by N in the specification of the present invention.
  • FIG. 3 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 1 of the present invention.
  • the steps performed by the user equipment include:
  • step S101 the sideline communication user equipment acquires sideline communication configuration information.
  • the sidelink communication configuration information is sent by the base station gNB through RRC signaling, or the sidelink communication configuration information is included in the preconfiguration information SL-PreconfigurationNR.
  • the sideline communication configuration information includes at least a configuration information list SL-CBR-LevelsConfig of the channel busy rate range CBR range.
  • SL-CBR-LevelsConfig includes configuration information of at most maxCBR-Level-r16 CBR ranges.
  • step S102 the sideline communication user equipment measures the channel busy rate CBR.
  • the user equipment measures the CBR on time slots n-N.
  • the user equipment sends the physical sideline communication shared channel PSSCH on time slot n; N represents the processing delay of congestion control.
  • step S103 the sideline communication user equipment determines the upper limit of the channel occupancy rate CR limit.
  • the user equipment assumes (or determines/consides) that in the SL-CBR-LevelsConfig the last CBR range contained includes the measured channel busy rate CBR, and,
  • the CR limit is associated with a priority value k and a CBR range including the measured CBR.
  • FIG. 3 is a schematic diagram illustrating a basic process of a method executed by a user equipment according to Embodiment 2 of the present invention.
  • the steps performed by the user equipment include:
  • step S101 the sideline communication user equipment acquires sideline communication configuration information.
  • the sidelink communication configuration information is sent by the base station gNB through RRC signaling, or the sidelink communication configuration information is included in the preconfiguration information SL-PreconfigurationNR.
  • the sideline communication configuration information includes at least a configuration information list SL-CBR-LevelsConfig of the channel busy rate range CBR range.
  • SL-CBR-LevelsConfig includes configuration information of at most maxCBR-Level-r16 CBR ranges.
  • the value of the last CBR range included in the SL-CBR-LevelsConfig is 100.
  • step S102 the sideline communication user equipment measures the channel busy rate CBR.
  • the user equipment measures the CBR on time slots n-N.
  • the user is not ready to send the physical sideline communication shared channel PSSCH on time slot n;
  • N represents the processing delay of congestion control.
  • step S103 the sideline communication user equipment determines the upper limit of the channel occupancy rate CR limit.
  • the CR limit is associated with a priority value k and a CBR range including the measured CBR.
  • FIG. 3 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 3 of the present invention.
  • Embodiment 3 of the present invention will be described in detail with reference to the basic process diagram shown in FIG. 3 .
  • the steps performed by the user equipment include:
  • step S101 the sideline communication user equipment acquires sideline communication configuration information.
  • the sidelink communication configuration information is sent by the base station gNB through RRC signaling, or the sidelink communication configuration information is included in the preconfiguration information SL-PreconfigurationNR.
  • the sideline communication configuration information includes at least a configuration information list SL-CBR-LevelsConfig of the channel busy rate range CBR range.
  • SL-CBR-LevelsConfig includes configuration information of at most maxCBR-Level-r16 CBR ranges.
  • step S102 the sideline communication user equipment measures the channel busy rate CBR.
  • the user equipment measures the CBR on time slots n-N.
  • the user equipment sends the physical sideline communication shared channel PSSCH on time slot n; N represents the processing delay of congestion control.
  • step S103 the sideline communication user equipment determines the upper limit of the channel occupancy rate CR limit.
  • Embodiment 4 of the present invention will be described in detail with reference to the basic process diagram shown in FIG. 3 .
  • step S101 the sideline communication user equipment acquires sideline communication configuration information.
  • the sidelink communication configuration information is sent by the base station gNB through RRC signaling, or the sidelink communication configuration information is included in the preconfiguration information SL-PreconfigurationNR.
  • the sideline communication configuration information includes at least a configuration information list SL-CBR-LevelsConfig of the channel busy rate range CBR range.
  • SL-CBR-LevelsConfig includes configuration information of at most maxCBR-Level-r16 CBR ranges.
  • the sideline communication configuration information further includes indication information s1-DefaultTxConfigIndex-r16 of a default (default) PSSCH transmission configuration information number.
  • step S102 the sideline communication user equipment measures the channel busy rate CBR.
  • the user equipment measures the CBR on time slots n-N.
  • the user equipment sends the physical sideline communication shared channel PSSCH on time slot n; N represents the processing delay of congestion control.
  • step S103 the sideline communication user equipment determines the upper limit of the channel occupancy rate CR limit.
  • the CR limit is associated with the priority value k and the PSSCH transmission configuration information SL-CBR-PSSCH-TxConfig-r16 corresponding to the sl-DefaultTxConfigIndex-r16.
  • a “base station” may refer to a mobile communication data and control switching center with larger transmit power and wider coverage area, including functions such as resource allocation and scheduling, data reception and transmission, and the like.
  • “User equipment” may refer to a user mobile terminal, for example, including a mobile phone, a notebook, and other terminal equipment that can wirelessly communicate with a base station or a micro base station.
  • embodiments of the invention disclosed herein may be implemented on a computer program product.
  • the computer program product is a product having a computer-readable medium on which computer program logic is encoded that, when executed on a computing device, provides relevant operations to achieve The above technical solutions of the present invention.
  • computer program logic When executed on at least one processor of a computing system, computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present invention.
  • Such arrangements of the present invention are typically provided as software, code and/or other data structures arranged or encoded on a computer readable medium such as an optical medium (eg CD-ROM), floppy or hard disk, or such as one or more Firmware or other medium of microcode on a ROM or RAM or PROM chip, or a downloadable software image in one or more modules, a shared database, etc.
  • Software or firmware or such a configuration may be installed on a computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
  • each functional module or each feature of the base station device and the terminal device used in each of the above embodiments may be implemented or executed by a circuit, which is usually one or more integrated circuits.
  • Circuits designed to perform the various functions described in this specification may include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs) or general purpose integrated circuits, field programmable gate arrays (FPGAs) or other Program logic devices, discrete gate or transistor logic, or discrete hardware components, or any combination of the above.
  • a general-purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
  • the general-purpose processor or each circuit described above may be configured by digital circuits, or may be configured by logic circuits.
  • the present invention can also use the integrated circuit obtained by using the advanced technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种由用户设备执行的方法以及用户设备,所述方法包括:获取侧行通信配置信息;测量信道繁忙率CBR;确定信道占用率上限CR limit。

Description

由用户设备执行的方法以及用户设备 技术领域
本发明涉及无线通信技术领域,具体涉及由用户设备执行的方法以及相应的用户设备。
背景技术
在传统的蜂窝网络中,所有的通信都必须经过基站。不同的是,D2D通信(Device-to-Device communication,设备到设备间直接通信)是指两个用户设备之间不经过基站或者核心网的转发而直接进行的通信方式。在2014年3月第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的RAN#63次全会上,关于利用LTE设备实现临近D2D通信业务的研究课题获得批准(参见非专利文献1)。LTE Release 12 D2D引入的功能包括:
1)LTE网络覆盖场景下临近设备之间的发现功能(Discovery);
2)临近设备间的直接广播通信(Broadcast)功能;
3)高层支持单播(Unicast)和组播(Groupcast)通信功能。
在2014年12月的3GPP RAN#66全会上,增强的LTE eD2D(enhanced D2D)的研究项目获得批准(参见非专利文献2)。LTE Release 13 eD2D引入的主要功能包括:
1)无网络覆盖场景和部分网络覆盖场景的D2D发现;
2)D2D通信的优先级处理机制。
基于D2D通信机制的设计,在2015年6月3GPP的RAN#68次全会上,批准了基于D2D通信的V2X可行性研究课题。V2X表示Vehicle to everything,希望实现车辆与一切可能影响车辆的实体信息交互,目的是减少事故发生,减缓交通拥堵,降低环境污染以及提供其他信息服务。V2X的应用场景主要包含4个方面:
1)V2V,Vehicle to Vehicle,即车-车通信;
2)V2P,Vehicle to Pedestrian,即车给行人或非机动车发送警告;
3)V2N,Vehicle to Network,即车辆连接移动网络;
4)V2I,Vehicle to Infrastructure,即车辆与道路基础设施等通信。
3GPP将V2X的研究与标准化工作分为3个阶段。第一阶段于2016年9月完成,主要聚焦于V2V,基于LTE Release 12和Release 13 D2D(也可称为sidelink侧行通信),即邻近通信技术制定(参见非专利文献3)。V2X stage 1引入了一种新的D2D通信接口,称为PC5接口。PC5接口主要用于解决高速(最高250公里/小时)及高节点密度环境下的蜂窝车联网通信问题。车辆可以通过PC5接口进行诸如位置、速度和方向等信息的交互,即车辆间可通过PC5接口进行直接通信。相较于D2D设备间的临近通信,LTE Release 14 V2X引入的功能主要包含:
1)更高密度的DMRS以支持高速场景;
2)引入子信道(sub-channel),增强资源分配方式;
3)引入具有半静态调度(semi-persistent)的用户设备感知(sensing)机制。
V2X研究课题的第二阶段归属于LTE Release 15研究范畴(参见非专利文献4),引入的主要特性包含高阶64QAM调制、V2X载波聚合、短TTI传输,同时包含发射分集的可行性研究。
在2018年6月3GPP RAN#80全会上,相应的第三阶段基于5G NR网络技术的V2X可行性研究课题(参见非专利文献5)获得批准。
在5G NR V2X课题中,支持一种基于用户设备感知(sensing)的资源分配方式2(resource allocation mode 2),或者称为传输模式2。在资源分配方式2中,用户设备的物理层对资源池内的传输资源进行感知,并向上层报告可用的传输资源的集合。上层在获得物理层的报告后,选择具体用于侧行通信传输的资源。在资源分配方式2中,引入了拥塞控制(congestion control)的机制,用以保证侧行通信的服务质量(Quality of Service,简称为QoS)。用户设备通过测量侧行通信信道的繁忙程度,以确定是否放弃(drop)当前的侧行通信传输。
本专利的方案主要包括在基于用户设备感知的资源分配方式中,用户设备确定信道占用率(Channel Occupancy Ratio,简称为CR)上限(limit) 的一种方法。
现有技术文献
非专利文献
非专利文献1:RP-140518,Work item proposal on LTE Device to Device Proximity Services
非专利文献2:RP-142311,Work Item Proposal for Enhanced LTE Device to Device Proximity Services
非专利文献3:RP-152293,New WI proposal:Support for V2V services based on LTE sidelink
非专利文献4:RP-170798,New WID on 3GPP V2X Phase 2
非专利文献5:RP-181480,New SID Proposal:Study on NR V2X
发明内容
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备。
根据本发明的第一方面的由用户设备执行的方法,包括:获取侧行通信配置信息;测量信道繁忙率CBR;确定信道占用率上限CR limit。
根据本发明的第一方面的方法,所述侧行通信配置信息至少包括信道繁忙率范围CBR range的配置信息列表SL-CBR-LevelsConfig。
根据本发明的第一方面的方法,在时隙n-N上测量所述CBR,其中,在时隙n上发送物理侧行通信共享信道PSSCH;N表示拥塞控制的处理时延。
根据本发明的第一方面的方法,所述CR limit与优先级数值k和包括所测量的所述CBR的所述CBR range相关联。
根据本发明的第一方面的方法,若所测量的所述CBR超过了所述SL-CBR-LevelsConfig中包含的最后一个CBR的范围,则假设或认定所述SL-CBR-LevelsConfig中包含的所述最后一个CBR的范围包括所测量 的所述CBR。
根据本发明的第一方面的方法,所述SL-CBR-LevelsConfig中包括的最后一个CBR range的数值为100。
根据本发明的第一方面的方法,若所测量的所述CBR超过了所述SL-CBR-LevelsConfig中包含的最后一个CBR的范围,则假设或者认定所述信道占用率上限CR limit等于0,或者5000,或者10000,或者0至10000之间的任一整数。
根据本发明的第一方面的方法,所述侧行通信配置信息还包括默认的物理侧行通信共享信道PSSCH发送配置信息编号的指示信息sl-DefaultTxConfigIndex-r16。
根据本发明的第一方面的方法,若所测量的所述CBR超过了所述SL-CBR-LevelsConfig中包含的最后一个CBR的范围,则假设或认定所述测量的信道繁忙率是不可用的信道繁忙率测量。
根据本发明的第二方面的用户设备,包括:处理器;以及存储器,存储有指令;其中,所述指令在由所述处理器运行时执行根据上述第一方面的任一所述方法。
本发明的有益效果
根据本专利的方案,在NR V2X侧行通信中,对于基于用户设备感知的资源分配方式2,本发明的方案可以保证,当用户设备测量得到的信道繁忙率(Channel Busy Ratio)超过配置的信道占用率上限时,该用户设备可以准确地确定信道占用率的上限,以保证侧行通信的服务质量,提升侧行通信的可靠性和传输效率。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1是示出了LTE V2X UE侧行通信的示意图。
图2是示出了LTE V2X的资源分配方式的示意图。
图3是示出了发明的实施例一、实施例二、实施例三和实施例四中由用户设备执行的方法的基本过程的示意图。
图4是示出了根据本发明的实施例的用户设备的框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
下文以5G移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G移动通信系统等。
下面描述本发明涉及的部分术语,如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的通信系统中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划
LTE:Long Term Evolution,长期演进技术
NR:New Radio,新无线、新空口
PDCCH:Physical Downlink Control Channel,物理下行控制信道
DCI:Downlink Control Information,下行控制信息
PDSCH:Physical Downlink Shared Channel,物理下行共享信道
UE:User Equipment,用户设备
eNB:evolved NodeB,演进型基站
gNB:NR基站
TTI:Transmission Time Interval,传输时间间隔
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
CP-OFDM:Cyclic Prefix Orthogonal Frequency Division Multiplexing,带有循环前缀的正交频分复用
C-RNTI:Cell Radio Network Temporary Identifier,小区无线网络临时标识
CSI:Channel State Information,信道状态信息
HARQ:Hybrid Automatic Repeat Request,混合自动重传请求
CSI-RS:Channel State Information Reference Signal,信道状态信息参考信号
CRS:Cell Reference Signal,小区特定参考信号
PUCCH:Physical Uplink Control Channel,物理上行控制信道
PUSCH:Physical Uplink Shared Channel,物理上行共享信道
UL-SCH:Uplink Shared Channel,上行共享信道
CG:Configured Grant,配置调度许可
Sidelink:侧行通信
SCI:Sidelink Control Information,侧行通信控制信息
PSCCH:Physical Sidelink Control Channel,物理侧行通信控制信道
MCS:Modulation and Coding Scheme,调制编码方案
RB:Resource Block,资源块
RE:Resource Element,资源单元
CRB:Common Resource Block,公共资源块
CP:Cyclic Prefix,循环前缀
PRB:Physical Resource Block,物理资源块
PSSCH:Physical Sidelink Shared Channel,物理侧行通信共享信道
FDM:Frequency Division Multiplexing,频分复用
RRC:Radio Resource Control,无线资源控制
RSRP:Reference Signal Receiving Power,参考信号接收功率
SRS:Sounding Reference Signal,探测参考信号
DMRS:Demodulation Reference Signal,解调参考信号
CRC:Cyclic Redundancy Check,循环冗余校验
PSDCH:Physical Sidelink Discovery Channel,物理侧行通信发现信道
PSBCH:Physical Sidelink Broadcast Channel,物理侧行通信广播信道
SFI:Slot Format Indication,时隙格式指示
TDD:Time Division Duplexing,时分双工
FDD:Frequency Division Duplexing,频分双工
SIB1:System Information Block Type 1,系统信息块类型1
SLSS:Sidelink synchronization Signal,侧行通信同步信号
PSSS:Primary Sidelink Synchronization Signal,侧行通信主同步信号
SSSS:Secondary Sidelink Synchronization Signal,侧行通信辅同步信号
PCI:Physical Cell ID,物理小区标识
PSS:Primary Synchronization Signal,主同步信号
SSS:Secondary Synchronization Signal,辅同步信号
BWP:BandWidth Part,带宽片段/部分
GNSS:Global NaVigation Satellite System,全球导航卫星定位系统
SFN:System Frame Number,系统(无线)帧号
DFN:Direct Frame Number,直接帧号
IE:Information Element,信息元素
SSB:Synchronization Signal Block,同步系统信息块
EN-DC:EUTRA-NR Dual Connection,LTE-NR双连接
MCG:Master Cell Group,主小区组
SCG:Secondary Cell Group,辅小区组
PCell:Primary Cell,主小区
SCell:Secondary Cell,辅小区
PSFCH:Physical Sidelink Feedback Channel,物理侧行通信反馈信道
SPS:Semi-Persistant Scheduling,半静态调度
TA:Timing Advance,上行定时提前量
PT-RS:Phase-Tracking Referenee Signals,相位跟踪参考信号
TB:Transport Block,传输块
CB:Code Block,编码块/码块
QPSK:Quadrature Phase Shift Keying,正交相移键控
16/64/256 QAM:16/64/256 Quadrature Amplitude Modulation,正交幅度调制
AGC:Auto Gain Control,自动增益控制
TDRA(field):Time Domain Resource Assignment,时域资源分配指示(域)
FDRA(field):Frequency Domain Resource Assignment,频域资源分配指示(域)
ARFCN:Absolute Radio Frequency Channel Number,绝对无线频率信道编号
SC-FDMA:Single Carrier-Frequency Division Multiple Access,单载波-频分复用多址
MAC:Medium Access Control,媒体接入控制层
CR:Channel Occupancy Ratio,信道占用率
CBR:Channel BusyRatio,信道繁忙率
QoS:Quality of Service,服务质量
RSSI:Received Signal Strength Indicator,接收信号强度指示
下文是与本发明方案相关联现有技术的描述。如无特别说明,具体实施例中与现有技术中相同术语的含义相同。
值得指出的是,本发明说明书中涉及的V2X与sidelink含义相同。文中的V2X也可以表示sidelink;相似地,文中的sidelink也可以表示V2X,后文中不做具体区分和限定。
本发明的说明书中的V2X(sidelink)通信的资源分配方式与V2X(sidelink)通信的传输模式可以等同替换。说明书中涉及的资源分配方式可以表示传输模式,以及,涉及的传输模式可以表示资源分配方式。在NR侧行通信中,传输模式1表示基于基站调度的传输模式(资源分配方式);传输模式2表示基于用户设备感知(sensing)和资源选择的传输模式(资源分配方式)。
本发明的说明书中的PSCCH用于携带SCI。本发明的说明书中涉及到的PSCCH对应的,或者,相应的,或者,相关的,或者,调度的PSSCH表示的含义均相同,都表示associated PSSCH或者corresponding PSSCH。类似地,说明书中涉及到的PSSCH对应的,或者,相应的,或者,相关的SCI(包括第一级SCI和第二级SCI)表示的含义均相同,都表示associated SCI或者corresponding SCI。值得指出的是,第一级SCI称为1st stage SCI或者SCI format 0-1,在PSCCH中传输;第二级SCI称为2nd stage SCI或者SCI format 0-2,在对应的PSSCH的资源中传输。
本发明的说明书中的信道占用率和信道繁忙率均指代侧行通信中的信道占用率(Sidelink CR)和侧行通信中的信道繁忙率(Sidelink CBR)。
Sidelink通信的场景
1)无网络覆盖(Out-of-Coverage)侧行通信:进行sidelink通信的两个UE都没有网络覆盖(例如,UE在需要进行sidelink通信的频率上检测不到任何满足“小区选择准则”的小区,表示该UE无网络覆盖)。
2)有网络覆盖(In-Coverage)侧行通信:进行sidelink通信的两个UE都有网络覆盖(例如,UE在需要进行sidelink通信的频率上至少检测到一个满足“小区选择准则”的小区,表示该UE有网络覆盖)。
3)部分网络覆盖(Partial-Coverage)侧行通信:进行sidelink通信的其中一个UE无网络覆盖,另一个UE有网络覆盖。
从UE侧来讲,该UE仅有无网络覆盖和有网络覆盖两种场景。部分网络覆盖是从sidelink通信的角度来描述的。
LTE V2X(sidelink)通信的基本过程
图1是示出了LTE V2X UE侧行通信的示意图。首先,UE1向UE2发送侧行通信控制信息(SCI format 1),由物理层信道PSCCH携带。SCI  format 1包含PSSCH的调度信息,例如PSSCH的频域资源等。其次,UE1向UE2发送侧行通信数据,由物理层信道PSSCH携带。PSCCH和相应的PSSCH采用频分复用的方式,即PSCCH和相应的PSSCH在时域上位于相同的子帧上,在频域上位于不同的RB上。在LTE V2X中,一个传输块TB可能仅包含一次初始传输,或者包含一次初始传输和一次盲重传(blind retransmission,表示不基于HARQ反馈的重传)。
PSCCH和PSSCH的具体设计方式如下:
1)PSCCH在时域上占据一个子帧,频域上占据两个连续的RB。加扰序列的初始化采用预定义数值510。PSCCH中可携带SCI format 1,其中SCI format 1至少包含PSSCH的频域资源信息。例如,对于频域资源指示域,SCI format 1指示该PSCCH对应的PSSCH的起始sub-channel编号和连续sub-channel的数目。
2)PSSCH在时域上占据一个子帧,和对应的PSCCH采用频分复用(FDM)。PSSCH在频域上占据一个或者多个连续的sub-channel,sub-channel在频域上表示n subCHsize个连续的RB,n subCHsize由RRC参数配置,起始sub-channel和连续sub-channel的数目由SCI format 1的频域资源指示域指示。
LTE V2X的资源分配方式Transmission Mode 3/4
图2是示出了LTE V2X的两种资源分配方式,分别称为基于基站调度的资源分配(Transmission Mode 3)和基于UE感知(sensing)的资源分配(Transmission Mode 4)。在NR侧行通信中,LTE V2X的传输模式3对应NR V2X中的传输模式1,为基于基站调度的传输模式;LTE V2X的传输模式4对应NR V2X中的传输模式2,为基于UE感知的传输模式。LTE V2X中,当存在eNB网络覆盖的情况下,基站可通过UE级的专有RRC信令(dedicated RRC signaling)SL-V2X-ConfigDedicated配置该UE的资源分配方式,或称为该UE的传输模式,具体为:
1)基于基站调度的资源分配方式(Transmission Mode 3):基于基站调度的资源分配方式表示sidelink侧行通信所使用的频域资源来自 于基站的调度。传输模式3包含两种调度方式,分别为动态调度和半静态调度(SPS)。对于动态调度,UL grant(DCI format 5A)中包括PSSCH的频域资源,承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-V-RNTI加扰。对于SPS半静态调度,基站通过IE:SPS-ConfigSL-r14配置一个或者多个(至多8个)配置的调度许可(configured grant),每个配置的调度许可含有一个调度许可编号(index)和调度许可的资源周期。UL grant(DCI format 5A)中包括PSSCH的频域资源,以及,调度许可编号的指示信息(3bits)和SPS激活(activate)或者释放(release,或者,去激活)的指示信息。承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-SPS-V-RNTI加扰。
具体地,当RRC信令SL-V2X-ConfigDedicated置为scheduled-r14时,表示该UE被配置为基于基站调度的传输模式。基站通过RRC信令配置SL-V-RNTI或者SL-SPS-V-RNTI,并通过PDCCH或者EPDCCH(DCI format 5A,CRC采用SL-V-RNTI加扰或者采用SL-SPS-V-RNTI加扰)向UE发送上行调度许可UL grant。上述上行调度许可UL grant中至少包含sidelink通信中PSSCH频域资源的调度信息。当UE成功监听到由SL-V-RNTI加扰或者SL-SPS-V-RNTI加扰的PDCCH或者EPDCCH后,将上行调度许可UL grant(DCI format 5A)中的PSSCH频域资源指示域作为PSCCH(SCI format 1)中PSSCH的频域资源的指示信息,并发送PSCCH(SCI format 1)和相应的PSSCH。
对于传输模式3中的半静态调度SPS,UE在下行子帧n上接收SL-SPS-V-RNTI加扰的DCI format 5A。如果DCI format 5A中包含SPS激活的指示信息,该UE根据DCI format 5A中的指示信息确定PSSCH的频域资源,根据子帧n等信息确定PSSCH的时域资源(PSSCH的发送子帧)。
2)基于UE感知(sensing)的资源分配方式(Transmission Mode 4):基于UE sensing的资源分配方式表示用于sidelink通信的资源基于UE对候选可用资源集合的感知(sensing)过程。RRC信令 SL-V2X-ConfigDedicated置为ue-Selected-r14时表示该UE被配置为基于UE sensing的传输模式。在基于UE sensing的传输模式中,基站配置可用的传输资源池,UE根据一定的规则(详细过程的描述参见LTE V2X UE sensing过程部分)在传输资源池(resource pool)中确定PSSCH的sidelink发送资源,并发送PSCCH(SCI format 1)和相应的PSSCH。
侧行通信资源池(sidelink resource pool)
在侧行通信中,UE的发送和接收的资源均属于资源池resource pool。例如,对于侧行通信中基于基站调度的传输模式,基站在资源池中为sidelink UE调度传输资源,或者,对于侧行通信中基于UE感知的传输模式,UE在资源池中确定传输资源。
NR中(包含NR sidelink)的参数集合(numerology)和NR中(包含NR  sidelink)的时隙slot
参数集合numerology包含子载波间隔和循环前缀CP长度两方面含义。其中,NR支持5种子载波间隔,分别为15k,30k,60k,120k,240kHz(对应μ=0,1,2,3,4),表格4.2-1示出了支持的传输参数集合,具体如下所示。
表4.2-1 NR支持的子载波间隔
μ Δf=2 μ·15[kHz] CP(循环前缀)
0 15 正常
1 30 正常
2 60 正常,扩展
3 120 正常
4 240 正常
仅当μ=2时,即60kHz子载波间隔的情况下支持扩展(Extended)CP,其他子载波间隔的情况仅支持正常CP。对于正常(Normal)CP,每个时隙(slot)含有14个OFDM符号;对于扩展CP,每个时隙含有12 个OFDM符号。对于μ=0,即15kHz子载波间隔,1个时隙=1ms;μ=1,即30kHz子载波间隔,1个时隙=0.5ms;μ=2,即60kHz子载波间隔,1个时隙=0.25ms,以此类推。
NR和LTE对于子帧(subframe)的定义相同,表示1ms。对于子载波间隔配置μ,1个子帧内(1ms)的slot编号可以表示为
Figure PCTCN2021142005-appb-000001
范围为0到
Figure PCTCN2021142005-appb-000002
1个系统帧(frame,时长10ms)内的slot编号可以表示为
Figure PCTCN2021142005-appb-000003
范围为0到
Figure PCTCN2021142005-appb-000004
其中,
Figure PCTCN2021142005-appb-000005
Figure PCTCN2021142005-appb-000006
在不同子载波间隔μ的情况的定义如下表格所示。
表格4.3.2-1:正常CP时每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
Figure PCTCN2021142005-appb-000007
表格4.3.2-2:扩展CP时(60kHz)每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
Figure PCTCN2021142005-appb-000008
在NR载波上,系统帧(或者,简称为帧)的编号SFN范围为0至1023。在侧行通信中引入了直接系统帧号DFN的概念,编号范围同样为0至1023,上述对于系统帧和numerology之间关系的叙述同样可以应用于直接系统帧,例如,一个直接系统帧的时长同样等于10ms,对于15kHz的子载波间隔,一个直接系统帧包括10个时隙slot,等等。DFN应用于sidelink载波上的定时timing。
LTE中(包含LTE V2X)参数集和LTE中(包含LTE V2X)的时隙slot 和子帧subffame
LTE仅支持15kHz的子载波间隔。LTE中支持扩展(Extended)CP,也支持正常CP。子帧subframe时长为1ms,包含两个时隙slot,每个slot时长为0.5ms。
对于正常(Normal)CP,每个子帧含有14个OFDM符号,子帧中的每个slot包含7个OFDM符号;对于扩展CP,每个子帧含有12个OFDM符号,子帧中的每个slot包含6个OFDM符号。
资源块RB和资源单元RE
资源块RB在频域上定义为
Figure PCTCN2021142005-appb-000009
个连续的子载波,例如对于15kHz的子载波间隔,RB在频域上为180kHz。对于子载波间隔15kHz×2 μ,资源单元RE在频域上表示1个子载波,在时域上表示1个OFDM符号。
可用于侧行通信传输的OFDM符号
在NR侧行通信中,一个时隙slot内可用于侧行通信传输的OFDM符号由RRC参数sl-StartSymbol和sl-LengthSymbols共同确定。其中,sl-StartSymbol的取值范围为OFDM符号0至7,sl-LengthSymbols的取值范围为7至14个OFDM符号。例如,sl-StartSymbol配置为3,sl-LengthSymbols配置为9,那么,在一个slot内,OFDM符号3至OFDM符号11可用于侧行通信传输。
信道占用率(CR)和信道繁忙率(CBR)
信道占用率CR的定义为:用户设备在时隙slot n上测量(或者,评估evaluate)的信道占用率等于在时隙范围[n-a,n-1]内用于该用户设备传输的子信道的数目与在时隙范围[n,n+b]内许可(granted)的子信道的数目之和,与在时隙范围[n-a,n+b]内配置的传输资源池内的全部子信道数目的比值。其中,许可的子信道表示该子信道属于该用户设备选择的侧行通信调度许可(selected sidelink grant)。用户设备选择的侧行通信调度许可表示该用户设备MAC层选择的用于资源分配方式2传输的资源集合的统称。
信道繁忙率CBR的定义为:用户设备在时隙slot n上测量的信道繁忙率CBR等于在时隙范围[n-a,n-1]的资源池内该用户设备感知得到的侧行通信接收信号强度指示(Sidelink RSSI)超过配置的门限值的子信道的比例(portion)。其中,侧行通信接收信号强度指示Sidelink RSSI的定义为从第二个OFDM符号开始(sl-StartSymbol+1),在一个时隙内配置用于PSSCH和PSCCH传输的所有符号上,一个子信道内的全部接收功率的线性平均值。具体来说,假如在一个时隙中一个子信道内的全部接收功率为R(W),那么,Sidelink RSSI等于R/(sl-LengthSymbols-1)。
信道占用率上限(CR limit)、信道繁忙率范围(CBR range)和优先级数 值(priority value)的关联
在NR侧行通信中,信道繁忙率范围是通过RRC参数SL-CBR-LevelsConfig配置或者预配置的。该参数SL-CBR-LevelsConfig表示一个信道繁忙率CBR范围的列表,该列表中至多包含maxCBR-Level-r16(16)个(预)配置的CBR范围。其中,每个CBR范围的取值为[0,100],并且,上述至多16个CBR范围按照升序排列,每个CBR范围表示一个CBR的上限。该列表中的一个CBR范围信息同样表示下一个CBR范围的下限,例如该列表中包含4个CBR范围的配置信息,分别为5,10,20,30,那么这四个CBR范围分别对应[0,5],[5,10],[10,20],[20,30]。值得指出的是,该列表中的首个(最小)CBR范围对应的下限数值为0。当侧行通信用户设备在时隙n上测量得到信道繁忙率CBR时,该用户设备进而可以确定相应的包含该测量的CBR的CBR范围,在本发明的说明书中,称为CBR范围包括该测量的CBR。例如,测量的CBR为15%(对应0-100中的数值15),那么CBR范围[10,20]包括该测量的CBR,即列表SL-CBR-LevelsConfig中的第三个CBR范围包括该测量的CBR。
在NR侧行通信的(预)配置信息中,任一个优先级数值k关联一个SL-CBR-LevelsConfig列表(包含至多maxCBR-Level-r16个CBR范围)以及至多maxCBR-Level-r16(16)个信道占用率上限(CR limit),即每 个CR limit关联一个优先级数值k和一个包括CBR测量的CBR范围。例如,在上述事例中,列表SL-CBR-LevelsConfig中的第三个CBR范围包括该测量的CBR,那么,相应地,第三个CR limit即关联该优先级数值k和包括该CBR测量的第三个CBR范围。
值得指出的是,CBR范围0-100分别对应CBR测量中0,0.01,0.02,...,1。信道占用率上限CR limit的取值0-10000分别对应0,0.0001,0.0002,...,1。
拥塞控制处理时延N
在NR侧行通信中,共包括两类拥塞控制的处理时延,分别对应用户设备能力1和能力2。其中,μ对应侧行通信的子载波间隔,处理时延在本发明的说明书中用N来表示。
表1:能力1的拥塞控制处理时延
μ 处理时延N[slots]
0 2
1 2
2 4
3 8
表2:能力2的拥塞控制处理时延
μ 处理时延N[slots]
0 2
1 4
2 8
3 16
以下,对本发明所涉及的具体的示例以及实施例等进行详细说明。另外,如上所述,本公开中记载的示例以及实施例等是为了容易理解本发明而进行的示例性说明,并不是对本发明的限定。
[实施例一]
图3是示出了本发明的实施例一的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例一的由用户设备执行的方法。
如图3所示,在本发明的实施例一中,用户设备执行的步骤包括:
在步骤S101,侧行通信用户设备获取侧行通信配置信息。
可选地,所述侧行通信配置信息由基站gNB通过RRC信令发送,或者,所述侧行通信配置信息包括在预配置信息SL-PreconfigurationNR中。
可选地,所述侧行通信配置信息至少包括信道繁忙率范围CBR range的配置信息列表SL-CBR-LevelsConfig。其中,可选地,SL-CBR-LevelsConfig包括至多maxCBR-Level-r16个CBR range的配置信息。
在步骤S102,所述侧行通信用户设备测量信道繁忙率CBR。
可选地,所述用户设备在时隙n-N上测量所述CBR。其中,所述用户设备在时隙n上发送物理侧行通信共享信道PSSCH;N表示拥塞控制的处理时延。
在步骤S103,所述侧行通信用户设备确定信道占用率上限CR limit。
可选地,如果所述测量的信道繁忙率CBR超过了所述SL-CBR-LevelsConfig中包含的最后一个CBR范围,所述用户设备假设(或者,确定/认为)所述SL-CBR-LevelsConfig中包含的所述最后一个CBR范围包括所述测量的信道繁忙率CBR,以及,
可选地,所述CR limit与优先级数值k和包括所述测量的CBR的CBR range相关联。
[实施例二]
图3是示出了本发明的实施例二的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例二的由用户设备执行的方法。
如图3所示,在本发明的实施例二中,用户设备执行的步骤包括:
在步骤S101,侧行通信用户设备获取侧行通信配置信息。
可选地,所述侧行通信配置信息由基站gNB通过RRC信令发送,或者,所述侧行通信配置信息包括在预配置信息SL-PreconfigurationNR中。
可选地,所述侧行通信配置信息至少包括信道繁忙率范围CBR range的配置信息列表SL-CBR-LevelsConfig。其中,可选地,SL-CBR-LevelsConfig包括至多maxCBR-Level-r16个CBR range的配置信息。
可选地,所述SL-CBR-LevelsConfig中包括的最后一个CBR range的数值为100。
在步骤S102,所述侧行通信用户设备测量信道繁忙率CBR。
可选地,所述用户设备在时隙n-N上测量所述CBR。其中,所述用户没备在时隙n上发送物理侧行通信共享信道PSSCH;N表示拥塞控制的处理时延。
在步骤S103,所述侧行通信用户设备确定信道占用率上限CR limit。
可选地,所述CR limit与优先级数值k和包括所述测量的CBR的CBR range相关联。
[实施例三]
图3是示出了本发明的实施例三的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例三的由用户设备执行的方法。
如图3所示,在本发明的实施例三中,用户设备执行的步骤包括:
在步骤S101,侧行通信用户设备获取侧行通信配置信息。
可选地,所述侧行通信配置信息由基站gNB通过RRC信令发送,或者,所述侧行通信配置信息包括在预配置信息SL-PreconfigurationNR中。
可选地,所述侧行通信配置信息至少包括信道繁忙率范围CBR range的配置信息列表SL-CBR-LevelsConfig。其中,可选地,SL-CBR-LevelsConfig包括至多maxCBR-Level-r16个CBR range的配置信息。
在步骤S102,所述侧行通信用户设备测量信道繁忙率CBR。
可选地,所述用户设备在时隙n-N上测量所述CBR。其中,所述用户设备在时隙n上发送物理侧行通信共享信道PSSCH;N表示拥塞控制的处理时延。
在步骤S103,所述侧行通信用户设备确定信道占用率上限CR limit。
可选地,如果所述测量的信道繁忙率CBR超过了所述SL-CBR-LevelsConfig中包含的最后一个CBR范围,所述用户设备假设(或者,确定/认为)所述信道占用率上限CR limit等于0,或者,5000,或者,10000,或者,0至10000之间的任一整数。可选地,所述0至10000之间的任一整数为预定义的,或者,(预)配置的。
[实施例四]
图3是示出了本发明的实施例四的由用户设备执行的方法的基本过程的示意图。
下面,结合图3所示的基本过程图来详细说明本发明的实施例四的由用户设备执行的方法。
如图3所示,在本发明的实施例四中,用户设备执行的步骤包括:
在步骤S101,侧行通信用户设备获取侧行通信配置信息。
可选地,所述侧行通信配置信息由基站gNB通过RRC信令发送,或者,所述侧行通信配置信息包括在预配置信息SL-PreconfigurationNR中。
可选地,所述侧行通信配置信息至少包括信道繁忙率范围CBR range的配置信息列表SL-CBR-LevelsConfig。其中,可选地,SL-CBR-LevelsConfig包括至多maxCBR-Level-r16个CBR range的配置信息。
可选地,所述侧行通信配置信息还包括默认的(default)PSSCH发送 配置信息编号的指示信息sl-DefaultTxConfigIndex-r16。
在步骤S102,所述侧行通信用户设备测量信道繁忙率CBR。
可选地,所述用户设备在时隙n-N上测量所述CBR。其中,所述用户设备在时隙n上发送物理侧行通信共享信道PSSCH;N表示拥塞控制的处理时延。
在步骤S103,所述侧行通信用户设备确定信道占用率上限CR limit。
可选地,如果所述测量的信道繁忙率CBR超过了所述SL-CBR-LevelsConfig中包含的最后一个CBR范围,所述用户设备假设(或者,确定/认为)所述测量的信道繁忙率是不可用的(not available)信道繁忙率测量,以及,
可选地,所述CR limit与优先级数值k和所述sl-DefaultTxConfigIndex-r16对应的PSSCH发送配置信息SL-CBR-PSSCH-TxConfig-r16相关联。
图4是表示本发明所涉及的用户设备UE的框图。如图4所示,该用户设备UE80包括处理器801和存储器802。处理器801例如可以包括微处理器、微控制器、嵌入式处理器等。存储器802例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器802上存储有程序指令。该指令在由处理器801运行时,可以执行本发明详细描述的由用户设备执行的上述方法。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电 路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (10)

  1. 一种由用户设备执行的方法,包括:
    获取侧行通信配置信息;
    测量信道繁忙率CBR;
    确定信道占用率上限CR limit。
  2. 根据权利要求1所述的方法,其特征在于,
    所述侧行通信配置信息至少包括信道繁忙率范围CBR range的配置信息列表SL-CBR-LevelsConfig。
  3. 根据权利要求1所述的方法,其特征在于,
    在时隙n-N上测量所述CBR,
    其中,
    在时隙n上发送物理侧行通信共享信道PSSCH;
    N表示拥塞控制的处理时延。
  4. 根据权利要求2所述的方法,其特征在于,
    所述CR limit与优先级数值k和包括所测量的所述CBR的所述CBR range相关联。
  5. 根据权利要求4所述的方法,其特征在于,
    若所测量的所述CBR超过了所述SL-CBR-LevelsConfig中包含的最后一个CBR的范围,则假设或认定所述SL-CBR-LevelsConfig中包含的所述最后一个CBR的范围包括所测量的所述CBR。
  6. 根据权利要求4所述的方法,其特征在于,
    所述SL-CBR-LevelsConfig中包括的最后一个CBR range的数值为100。
  7. 根据权利要求2所述的方法,其特征在于,
    若所测量的所述CBR超过了所述SL-CBR-LevelsConfig中包含的最后一个CBR的范围,则假设或者认定所述信道占用率上限CR limit等于0,或者5000,或者10000,或者0至10000之间的任一整数。
  8. 根据权利要求2所述的方法,其特征在于,
    所述侧行通信配置信息还包括默认的物理侧行通信共享信道PSSCH 发送配置信息编号的指示信息sl-DefaultTxConfigIndex-r16。
  9. 根据权利要求8所述的方法,其特征在于,
    若所测量的所述CBR超过了所述SL-CBR-LevelsConfig中包含的最后一个CBR的范围,则假设或认定所述测量的信道繁忙率是不可用的信道繁忙率测量。
  10. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令;
    其中,所述指令在由所述处理器运行时执行根据权利要求1至9中任一项所述的方法。
PCT/CN2021/142005 2020-12-31 2021-12-28 由用户设备执行的方法以及用户设备 WO2022143643A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011643337.6 2020-12-31
CN202011643337.6A CN114697906A (zh) 2020-12-31 2020-12-31 由用户设备执行的方法以及用户设备

Publications (1)

Publication Number Publication Date
WO2022143643A1 true WO2022143643A1 (zh) 2022-07-07

Family

ID=82135873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142005 WO2022143643A1 (zh) 2020-12-31 2021-12-28 由用户设备执行的方法以及用户设备

Country Status (2)

Country Link
CN (1) CN114697906A (zh)
WO (1) WO2022143643A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190037430A1 (en) * 2016-03-17 2019-01-31 Lg Electronics Inc. Method and device for reporting sidelink resource occupancy level in wireless communication system
CN109565704A (zh) * 2016-08-09 2019-04-02 高通股份有限公司 利用基于解码的信道忙碌率确定的针对lte-v2v的拥塞控制
CN110944350A (zh) * 2018-09-21 2020-03-31 展讯通信(上海)有限公司 拥塞控制系数获取方法及用户终端、计算机可读存储介质
WO2020091251A1 (ko) * 2018-11-02 2020-05-07 엘지전자 주식회사 무선 통신 시스템에서 채널 점유율을 측정하는 방법 및 단말

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190037430A1 (en) * 2016-03-17 2019-01-31 Lg Electronics Inc. Method and device for reporting sidelink resource occupancy level in wireless communication system
CN109565704A (zh) * 2016-08-09 2019-04-02 高通股份有限公司 利用基于解码的信道忙碌率确定的针对lte-v2v的拥塞控制
CN110944350A (zh) * 2018-09-21 2020-03-31 展讯通信(上海)有限公司 拥塞控制系数获取方法及用户终端、计算机可读存储介质
WO2020091251A1 (ko) * 2018-11-02 2020-05-07 엘지전자 주식회사 무선 통신 시스템에서 채널 점유율을 측정하는 방법 및 단말

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Addition of field description for single TX resource pool sidelink mode 1 to 38.331 for V2X", 3GPP DRAFT; R2-2007193, vol. RAN WG2, 7 August 2020 (2020-08-07), pages 1 - 50, XP051912001 *

Also Published As

Publication number Publication date
CN114697906A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2022028413A1 (zh) 由用户设备执行的方法以及用户设备
WO2022143641A1 (zh) 由用户设备执行的方法以及用户设备
WO2022111630A1 (zh) 由用户设备执行的方法以及用户设备
WO2022017037A1 (zh) 由用户设备执行的方法以及用户设备
CN115811717A (zh) 由用户设备执行的方法以及用户设备
WO2023131074A1 (zh) 由用户设备执行的方法以及用户设备
WO2022194243A1 (zh) 由用户设备执行的方法以及用户设备
WO2022267943A1 (zh) 由用户设备执行的方法以及用户设备
WO2022152163A1 (zh) 由用户设备执行的方法以及用户设备
WO2022028330A1 (zh) 由用户设备执行的方法以及用户设备
WO2021228138A1 (zh) 由用户设备执行的方法以及用户设备
WO2021197379A1 (zh) 由用户设备执行的方法以及用户设备
WO2022143643A1 (zh) 由用户设备执行的方法以及用户设备
CN112291846A (zh) 由用户设备执行的方法以及用户设备
WO2023098812A1 (zh) 由用户设备执行的方法以及用户设备
WO2022078292A1 (zh) 由用户设备执行的方法以及用户设备
WO2022063070A1 (zh) 由用户设备执行的方法以及用户设备
WO2024001958A1 (zh) 由用户设备执行的方法以及用户设备
WO2024001957A1 (zh) 由用户设备执行的方法以及用户设备
WO2022007664A1 (zh) 由用户设备执行的方法以及用户设备
WO2023185688A1 (zh) 由用户设备执行的方法以及用户设备
WO2024012390A1 (zh) 由用户设备执行的方法以及用户设备
WO2023078345A1 (zh) 由用户设备执行的方法以及用户设备
WO2024032504A1 (zh) 由用户设备执行的方法以及用户设备
WO2024067625A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914377

Country of ref document: EP

Kind code of ref document: A1