WO2022028298A1 - 一种动力电池热管理系统用电泵 - Google Patents

一种动力电池热管理系统用电泵 Download PDF

Info

Publication number
WO2022028298A1
WO2022028298A1 PCT/CN2021/109107 CN2021109107W WO2022028298A1 WO 2022028298 A1 WO2022028298 A1 WO 2022028298A1 CN 2021109107 W CN2021109107 W CN 2021109107W WO 2022028298 A1 WO2022028298 A1 WO 2022028298A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
channel
flow channel
spiral
helical
Prior art date
Application number
PCT/CN2021/109107
Other languages
English (en)
French (fr)
Inventor
张大千
邹志
赵靖宇
梁运晓
欧耀辉
Original Assignee
广东汉宇汽车配件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东汉宇汽车配件有限公司 filed Critical 广东汉宇汽车配件有限公司
Priority to US18/020,128 priority Critical patent/US20230304499A1/en
Priority to EP21852122.7A priority patent/EP4195361A1/en
Publication of WO2022028298A1 publication Critical patent/WO2022028298A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/628Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/068Battery powered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/007Details, component parts, or accessories especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/588Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps cooling or heating the machine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to an electric pump for a power battery thermal management system, and the IPC classification can belong to F04D13/06, F04D29/58 or F04D29/40.
  • the purpose of the present invention is to provide an electric pump for a power battery thermal management system, which is used to improve the heating efficiency of liquid.
  • an electric pump for a power battery thermal management system of the present invention includes:
  • the liquid heating device installed in the pump body is used to heat the liquid sucked by the impeller from the suction port and discharged from the discharge port;
  • the liquid heating device includes: a motor heating component; and a heating component with heating and heat dissipation functions sleeved on the outer side of the motor heating component, for performing electrothermal conversion when the temperature is lower than the normal working temperature of the battery and receiving the generated electricity from the motor.
  • the heat energy generated by the electrothermal conversion and the heat energy generated by the motor are used to heat the flowing liquid; when the temperature is close to or reaches the normal working temperature of the battery, the flowing liquid is used to dissipate heat to the motor.
  • the liquid heating device of the present invention further comprises: a heat generating part adjacent to the control assembly of the heating device for heating the liquid by the heat energy generated by the high-power device of the control assembly.
  • the heating component of the motor is a cylindrical stator assembly of the motor; the heating assembly includes: an inner heating flow channel sleeve installed outside the cylindrical stator; and a tubular heating element installed outside the inner heating flow channel sleeve.
  • the inner heating flow channel jacket has an inner heating flow channel space for the liquid to flow through; the inner heating flow channel space has a plurality of partitions arranged in a spiral shape and arranged at intervals between the inner wall and the outer wall of the inner heating flow channel jacket , which is used to divide the inner heating channel space into several sections of spiral inner heating channels.
  • the heating assembly further comprises: an outer heating flow channel jacket with an outer heating flow channel space installed on the outside of the tubular heating element, and the outer heating flow channel space is used for liquid to pass through; wherein, the outer heating flow channel jacket is used as a pump body. A part is installed between the pump cover and the lower pump body.
  • the outer heating channel space has a plurality of partitions arranged in a spiral shape and arranged between the inner wall and the outer wall of the outer heating channel jacket, so as to divide the outer heating channel space into several sections of spiral outer heating channels , wherein the spiral direction of the helical outer heating channel is opposite to the spiral direction of the spiral inner heating channel.
  • the tubular heating element comprises: a tubular base; an electric heating film attached to the outer surface of the tubular base; a thermally conductive insulating glue covering the electric heating film, and the outer side of the thermally conductive insulating glue serves as the outer side of the tubular heating element.
  • the pump body includes a pump cover with a pump cover and a lower pump body installed at the bottom end of the pump cover.
  • the inner heating flow channel cover comprises: a tubular base body; a plurality of helical baffles arranged on the outer wall of the tubular base; wherein, the outer ends of the plurality of spiral baffles are used as the outer side of the inner heating flow channel sleeve to contact the
  • the inner wall of the tubular heating element forms an inner heating channel space for the liquid to flow through between the outer wall of the tubular base and the inner wall of the tubular heating element, and the inner heating channel space has several sections of spiral shape separated by several sections of spiral baffles Internally heated runner.
  • the heating assembly further includes: an outer heating flow channel jacket installed on the outer side of the tubular heating element, which includes: a tubular base; a plurality of helical baffles arranged on the outer wall of the tubular base; The end is used as the outer side of the outer heating channel sleeve; wherein, an outer heating channel space for liquid to flow through is formed between the outer wall of the tubular base and the inner surface of the pump cover, and the outer heating channel space is divided by several sections of spiral baffles. Several sections of spiral outer heating runner; the spiral direction of the spiral outer heating runner is opposite to the spiral direction of the spiral inner heating runner.
  • the tubular heating element comprises: a tubular base body, the inner wall of which is used as the inner side of the tubular heating element to contact the outer side of the inner heating channel jacket; an electric heating film attached to the outer surface of the tubular substrate, the outer heating flow channel jacket surrounding the electric heating film.
  • a communication device so as to connect each section of the spiral inner heating channel and each section of the spiral outer heating channel in series in a staggered manner. , to increase the heating time of the liquid through the flow channel.
  • the communication device includes: a first reversing communication member disposed in the pump cover, used for connecting the first end of the first section of the spiral inner heating flow channel with the pump suction port disposed on the pump cover, and connecting the tail section
  • the first end of the helical outer heating flow channel is communicated with the pump discharge port arranged on the pump cover, and the first ends of the other sections of the helical inner heating flow channel are alternately connected to the first ends of the other sections of the helical outer heating flow channel;
  • the second reversing communication part is arranged on the lower pump body, and is used for connecting the second end of each spiral inner heating channel with the second end of each spiral outer heating channel.
  • the several sections of the spiral inner heating channel include a first section of the spiral inner heating channel, a second section of the spiral inner heating channel and a third section of the spiral inner heating channel;
  • the plurality of sections of the spiral outer heating channel include The first spiral outer heating channel, the second spiral outer heating channel and the third spiral outer heating channel;
  • the first reversing communication part is arranged on the inner wall of the pump cover of the pump body, and includes: The first end of the first section of the helical inner heating flow channel is connected to the pump suction port; The first reversing groove connected with the first end; the second reversing groove used for connecting the first end of the third section of the helical inner heating flow channel with the second section of the helical outer heating flow channel;
  • the first end of the three-section helical outer heating channel is connected with the outlet of the pump, and the outlet groove of the heating channel.
  • the heating runner inlet slot and the heating runner outlet slot are located in the same annular area, the heating runner inlet slot is located inside the annular area, and the heating runner outlet slot is located outside the annular area.
  • the second reversing communication component is arranged on the end of the lower pump body of the pump body, and includes: a second end for connecting the second end of the first section of the helical inner heating flow channel with the first section of the helical outer heating flow channel A third reversing groove communicating with the second end; a fourth reversing groove for connecting the second end of the second helical inner heating channel with the second end of the second helical outer heating channel; for A fifth reversing groove connecting the second end of the third section of the helical inner heating flow channel with the second end of the third section of the helical outer heating flow channel.
  • the pump body includes a pump cover with a pump cover and a lower pump body installed at the bottom end of the pump cover.
  • the heating component of the motor is a tubular stator assembly of the motor; the heating assembly comprises: a heating flow channel ring installed outside the tubular stator; a tubular heating element installed outside the heating flow channel ring, in the heating flow channel A heating channel space is formed between the ring and the tubular heating element; wherein, the tubular heating element is located in the pump cover and the lower pump body.
  • the heating channel ring comprises: a tubular base body; a multi-channel annular partition plate with notches fixed on the outer wall of the tubular substrate, for dividing the heating channel space into a multi-layer annular heating plate with notches Flow channel; connect the longitudinal partitions at one end of each annular partition respectively, so as to make the gap of each annular partition become the liquid outlet, so that the multi-layer annular heating flow channels are connected end to end.
  • the annular heating channel of the first layer is communicated with the suction port provided on the pump cover; the annular heating channel of the tail layer is communicated with the discharge port provided on the lower pump body.
  • the electric pump for the power battery thermal management system of the present invention includes:
  • a motor including a cylindrical stator installed in the pump body;
  • a heating assembly installed in the pump body is used to heat the liquid sucked by the impeller from the suction port and discharged from the discharge port;
  • the heating assembly includes: an inner heating flow channel sleeve mounted on the outer side of the cylindrical stator; and a tubular heating element installed outside the inner heating flow channel sleeve.
  • the inner heating flow channel jacket has an inner heating flow channel space for the liquid to flow through; the inner heating flow channel space has a plurality of spirally arranged spaced between the inner wall and the outer wall of the inner heating flow channel jacket.
  • the partition plate is used to divide the inner heating channel space into several sections of the spiral inner heating channel.
  • the heating assembly further comprises: an outer heating flow channel jacket with an outer heating flow channel space installed on the outside of the tubular heating element, and the outer heating flow channel space is used for liquid to pass through; wherein, the outer heating flow channel jacket acts as a pump A part of the body is installed between the pump cover and the lower pump body.
  • the outer heating channel space has a plurality of partitions arranged in a spiral shape and arranged between the inner wall and the outer wall of the outer heating channel jacket, so as to divide the outer heating channel space into several sections of spiral outer heating channels , wherein the helical direction of the helical outer heating runner is opposite to the helical direction of the helical inner heating runner.
  • the tubular heating element includes: a tubular substrate; an electric heating film attached to the outer surface of the tubular substrate; a thermally conductive insulating glue covering the electrical heating film, and the outer side of the thermally conductive insulating adhesive serves as the outer side of the tubular heating element.
  • the pump body includes a pump cover with a pump cover and a lower pump body installed at the bottom end of the pump cover.
  • the inner heating flow channel cover comprises: a tubular base body; a plurality of helical baffles arranged on the outer wall of the tubular base; wherein, the outer ends of the plurality of spiral baffles are in contact with the outside of the inner heating flow channel sleeve
  • the inner wall of the tubular heating element forms an inner heating channel space for the liquid to flow through between the outer wall of the tubular base and the inner wall of the tubular heating element, and the inner heating channel space has several sections separated by several sections of spiral baffles Helical inner heating channel.
  • the heating assembly further includes: an outer heating flow channel jacket installed on the outer side of the tubular heating element, which includes: a tubular base; a plurality of helical baffles arranged on the outer wall of the tubular base; The end is used as the outer side of the outer heating channel sleeve; wherein, an outer heating channel space for liquid to flow through is formed between the outer wall of the tubular base and the inner surface of the pump cover, and the outer heating channel space is divided by several sections of spiral baffles.
  • an outer heating flow channel jacket installed on the outer side of the tubular heating element, which includes: a tubular base; a plurality of helical baffles arranged on the outer wall of the tubular base; The end is used as the outer side of the outer heating channel sleeve; wherein, an outer heating channel space for liquid to flow through is formed between the outer wall of the tubular base and the inner surface of the pump cover, and the outer heating channel space is divided by several sections of spiral baffles.
  • the tubular heating element comprises: a tubular base body, the inner wall of which is used as the inner side of the tubular heating element to contact the outer side of the inner heating channel jacket; an electric heating film attached to the outer surface of the tubular substrate, and the outer heating flow channel jacket surrounds the electric heating element membrane.
  • a communication device so as to connect each section of the spiral inner heating channel and each section of the spiral outer heating channel in series in a staggered manner. , to increase the heating time of the liquid through the flow channel.
  • the communication device includes: a first reversing communication member disposed in the pump cover, used for connecting the first end of the first section of the spiral inner heating flow channel with the pump suction port disposed on the pump cover, and connecting the tail section
  • the first end of the helical outer heating flow channel is communicated with the pump discharge port arranged on the pump cover, and the first ends of the other sections of the helical inner heating flow channel are alternately connected to the first ends of the other sections of the helical outer heating flow channel;
  • the second reversing communication part is arranged on the lower pump body, and is used for connecting the second end of each spiral inner heating channel with the second end of each spiral outer heating channel.
  • the several sections of helical inner heating flow channels include a first section of helical inner heating flow channels, a second section of helical inner heating flow channels and a third section of helical inner heating flow channels; the sections of helical outer heating flow channels
  • the channel includes a first section of helical outer heating flow channel, a second section of helical outer heating flow channel and a third section of helical outer heating flow channel;
  • the first reversing communication component is arranged on the inner wall of the pump cover of the pump body, and includes:
  • the heating channel inlet groove is used to connect the first end of the first section of the spiral inner heating channel with the pump suction port; it is used to connect the first end of the second section of the spiral inner heating channel with the first section of the spiral.
  • a first reversing groove connected with the first end of the outer heating runner; a second reversing groove for connecting the first end of the third section of the helical inner heating runner with the second section of the helical outer heating runner;
  • the outlet groove of the heating flow channel is used to connect the first end of the third section of the helical outer heating flow channel with the pump discharge port.
  • the heating runner inlet slot and the heating runner outlet slot are located in the same annular area, the heating runner inlet slot is located inside the annular area, and the heating runner outlet slot is located outside the annular area.
  • the second reversing communication component is arranged on the end of the lower pump body of the pump body, and includes: a second end for connecting the second end of the first section of the helical inner heating flow channel with the first section of the helical outer heating flow channel A third reversing groove communicating with the second end; a fourth reversing groove for connecting the second end of the second helical inner heating channel with the second end of the second helical outer heating channel; for A fifth reversing groove connecting the second end of the third section of the helical inner heating flow channel with the second end of the third section of the helical outer heating flow channel.
  • an electric pump for a power battery thermal management system includes:
  • a motor including a cylindrical stator installed in the pump body;
  • a heating assembly installed in the pump body is used to heat the liquid sucked by the impeller from the suction port and discharged from the discharge port;
  • the pump body includes a pump cover with a pump cover and a lower pump body installed at the bottom end of the pump cover.
  • the heating assembly comprises: a heating flow channel ring installed outside the tubular stator; a tubular heating element installed outside the heating flow channel ring, and a heating flow is formed between the heating flow channel ring and the tubular heating element channel space; wherein, the tubular heating element is located in the pump cover and the lower pump body.
  • the heating flow channel ring comprises: a tubular base body; a plurality of annular partitions with notches fixed on the outer wall of the tubular base, for dividing the heating flow channel space into multiple layers with notches Annular heating flow channel; the longitudinal partitions at one end of each annular partition are respectively connected to make the gap of each annular partition become the liquid outlet, so that the multi-layer annular heating flow channels are connected end to end.
  • the annular heating channel of the first layer is communicated with the suction port provided on the pump cover; the annular heating channel of the tail layer is communicated with the discharge port provided on the lower pump body.
  • the beneficial technical effects of the present invention are: 1) the lower end and the upper end of the spiral inner heating channel and the spiral outer heating channel are connected end to end in turn, which further increases the length of the heating channel and prolongs the heat exchange between the liquid flow and the tubular heating element. time, improve the heat transfer effect. 2)
  • the heating runner space is divided into multi-layer annular heating runners by multiple annular partitions. The length of the heating channel is increased, the heat exchange time between the liquid flow and the tubular heating element is prolonged, and the heat exchange effect is improved. 3) Make full use of the heat generated when the motor and control components work to heat the liquid, which improves the efficiency of heating the liquid.
  • FIG. 1 is a perspective view of a first embodiment of an electric pump for a power battery thermal management system of the present invention
  • Fig. 2 is an exploded view of the electric pump of Fig. 1;
  • Figure 3 is an exploded view of the heating assembly of the electric pump of Figure 1;
  • FIG. 4 is a perspective view of the heating assembly of the electric pump of FIG. 1 (viewed from the bottom);
  • Fig. 5 is the bottom view of the heating assembly of the electric pump of Fig. 1;
  • Fig. 6 is the E-E sectional view of Fig. 5;
  • Fig. 7 is a partial enlarged view I of Fig. 6;
  • Fig. 8 is the perspective view of the lower pump body of the electric pump of Fig. 1;
  • Fig. 9 is the top view of the lower pump body of the electric pump of Fig. 1;
  • Figure 10 is a schematic cross-sectional view of Figure 9;
  • Fig. 11 is a perspective view of the inner water barrier jacket of the electric pump of Fig. 1;
  • Fig. 12 is a schematic cross-sectional view of the inner water barrier jacket of the electric pump of Fig. 1;
  • Fig. 13 is the D-D sectional view of Fig. 15;
  • Fig. 14 is a perspective view of the pump cover of the electric pump of Fig. 1 (viewed from the bottom);
  • Figure 15 is a bottom view of the pump cover of the electric pump of Figure 1;
  • Fig. 18 is a partial enlarged view IV of Fig. 16;
  • Figure 19 is a top view of the electric pump of Figure 1;
  • Fig. 20 is a half-section front view of the electric pump of Fig. 1;
  • Fig. 21 is a partial enlarged view II of Fig. 20;
  • Figure 22 is a schematic diagram of the decomposition of the heating and reversing grooves in the Z direction of Figure 19 (the pump cover is viewed from the bottom, the heating assembly and the lower pump body are viewed from the top);
  • Fig. 23 is a cross-sectional perspective view of the BB and CC runners in the X, Y, Z directions of Fig. 19 (the outer walls of the inner and outer heating runner jackets are respectively cut away), and Fig. 23 is also the BB, Y, and Z directions of Fig. 46 .
  • the cross-sectional three-dimensional schematic diagram of the CC flow channel (the outer peripheral wall of the tubular heating element and the pump cover are respectively cut away);
  • Embodiment 2 is a perspective view of Embodiment 2 of the electric pump for the power battery thermal management system of the present invention.
  • Fig. 25 is another perspective view of the electric pump of Fig. 24;
  • Figure 26 is an exploded view of the electric pump in the orientation of Figure 24;
  • Figure 27 is an exploded view of the electric pump in the orientation of Figure 25;
  • Figure 28 is a front cross-sectional view of the electric pump of Figure 24;
  • Figure 29 is a top view of the electric pump of Figure 24;
  • Figure 30 is a bottom view of the electric pump of Figure 24;
  • Figure 31 is a schematic cross-sectional view of the electric pump of Figure 24 along the circumference of the annular flow channel;
  • Embodiment 3 is a schematic perspective view of Embodiment 3 of the electric pump for the power battery thermal management system of the present invention.
  • Figure 33 is an exploded schematic view of the electric pump of Figure 32;
  • Figure 34 is a schematic exploded view of the heating assembly of the electric pump of Figure 32;
  • FIG. 35 is a schematic perspective view of the heating assembly of the electric pump of FIG. 32 (viewing from the bottom);
  • Figure 36 is a schematic bottom view of the heating assembly of the electric pump of Figure 32;
  • Fig. 37 is the F-F sectional schematic diagram of Fig. 36;
  • Fig. 38 is a perspective view of the lower pump body of the electric pump of Fig. 32;
  • Figure 39 is a top view of the lower pump body of the electric pump of Figure 32;
  • Fig. 40 is the G-G sectional schematic diagram of Fig. 39;
  • Fig. 41 is a perspective view of the inner water barrier jacket of the electric pump of Fig. 32;
  • Fig. 42 is a schematic cross-sectional view of the inner water barrier jacket of the electric pump of Fig. 32;
  • Fig. 43 is a schematic perspective view of the pump cover of the electric pump of Fig. 32 (view from the bottom);
  • Figure 44 is a schematic bottom view of the pump cover of the electric pump of Figure 32;
  • Fig. 45 is the H-H cross-sectional schematic diagram of Fig. 44;
  • Figure 46 is a schematic top view of the electric pump of Figure 32;
  • Fig. 47 is the J-J sectional schematic diagram of Fig. 46;
  • Fig. 48 is the K-K sectional schematic diagram of Fig. 46;
  • Fig. 49 is an exploded schematic view of the heating and reversing groove in the Z direction of Fig. 46 (the bottom view of the pump cover, the top view of the heating assembly and the lower pump body).
  • the present invention provides two embodiments of the electric pump for the power battery thermal management system.
  • the electric pump for the power battery thermal management system includes:
  • the pump body including the pump cover 510 shown in FIG. 1 , the lower pump body 530 , the outer wall of the outer heating channel sleeve 130 located between the pump cover 510 and the lower pump body 530 , and the rear cover 540 located at the bottom of the lower pump body 530 ; or 24 and 25 include a pump cover with a pump cover 9510 (ie, a cover-like casing of an electric pump), a lower pump body 9530 located at the bottom end of the pump cover, and a rear cover 9540 located at the bottom end of the lower pump body 9530; Or include the pump cover with the pump cover 9510 shown in FIG. 32 (ie, the cover-like casing of the electric pump), the lower pump body 9530 located at the bottom end of the pump cover, and the rear cover 8540 located at the bottom of the lower pump body 6530;
  • a pump cover with a pump cover 9510 ie, a cover-like casing of an electric pump
  • the pump body 9530 located at the bottom end of the pump cover
  • the motor 2030 installed in the pump body includes the rotor 210 and the stator 300 shown in FIG. 2 and FIG. 33 , or the rotor 9210 and the stator 9300 shown in FIG. 26 ;
  • the liquid heating device installed in the pump body is used to heat the liquid sucked by the impeller 220 or 9220 from the suction port 511 and discharged from the discharge port 512;
  • the liquid heating device includes: a motor heating component (usually the stator 300 ) with a liquid flow channel; a heating component sleeved on the outside of the motor heating component, for performing electrothermal conversion and receiving when the temperature is lower than the normal working temperature of the battery
  • the heat energy generated by the motor is used to heat the flowing liquid by the heat energy converted from electrothermal and the heat energy generated by the motor; when the temperature is close to or reaches the normal working temperature of the battery, the flowing liquid is used to dissipate heat to the motor.
  • the present invention can control the heating component to perform the conversion of heating and heat dissipation through automatic and manual methods.
  • the automatic method can be to detect the ambient temperature outside the battery through a temperature sensor.
  • the power manager is used for heating.
  • the component is powered on, thereby heating the liquid flowing through the liquid flow channel, and using the heated high-temperature liquid to increase the temperature of the battery; when the external ambient temperature of the battery is close to or reaches the normal operating temperature of the battery, the power manager disconnects the power of the heating component to make
  • the low-temperature liquid flowing through the liquid channel takes away the heat of the motor and dissipates heat for the motor.
  • the manual mode the user manually turns on or off the power of the heating element.
  • the liquid heating device of the present invention further includes: a heat generating component of the control assembly 400 or 8400 adjacent to the heating assembly (ie, the power element 420 shown in FIG. 16 ) for heating the liquid with thermal energy generated by the high-power device of the control assembly.
  • the present invention utilizes three heat sources, that is, the heat source of the electric pump motor to generate heat, the heat source of the control component to generate heat, and the heat source of the liquid heating component to generate heat, to heat the liquid, not only can improve the liquid
  • the heating efficiency of the motor and the control components can also be cooled by controlling the heating components.
  • the motor heating component of the first embodiment of the present invention is a cylindrical stator assembly of the motor; the heating assembly includes:
  • the tubular heating element 120 or 8120 installed on the outside of the inner heating runner jacket 110 or 8110.
  • the inner heating channel jacket 110 or 8110 or 9110 has an inner heating channel space 610 for liquid to flow through; the inner heating channel space 610 has an interval A plurality of partitions 114 arranged in a spiral shape arranged between the inner wall 111 and the outer wall 112 of the inner heating flow channel jacket are used to divide the inner heating flow channel space 610 into several sections of the spiral inner heating flow channels 611 , 612 and 613.
  • the heating assembly according to the first embodiment of the present invention further includes: an outer heating runner jacket 130 with an outer heating runner space 630 installed on the outer side of the tubular heating element 120 . for the passage of liquids.
  • the outer heating channel space 630 has multiple spirally arranged spirally arranged between the inner wall 131 and the outer wall 132 of the outer heating channel jacket 120 or 8120 at intervals.
  • a partition plate 134 for dividing the outer heating channel space 630 into several sections of spiral outer heating channels 631, 632 or 633, wherein the spiral direction of the spiral outer heating channels 631, 632 or 633 is the same as the spiral inner heating channel
  • the helical directions of 611, 612 and 613 are opposite.
  • the tubular heating element 120 includes: a tubular base; an electric heating film 121 attached to the outer surface 1201 of the tubular base; a thermally conductive insulating film covering the electric heating film 121 Adhesive 1204, the outer side of the thermally conductive insulating adhesive 1204 serves as the outer side of the tubular heating element.
  • the inner heating flow channel cover 8110 includes: a tubular base body; a plurality of spiral baffles 8114 arranged on the outer wall 8111 of the tubular base body; The outer ends of the plurality of spiral baffles 8114 are used as the outer side of the inner heating flow channel sleeve 8110 to contact the inner wall 1202 of the tubular heating element 8120, thereby forming a supply liquid between the outer wall 8111 of the tubular base and the inner wall 1202 of the tubular heating element 8120.
  • the inner heating runner space 610 flowing through, the inner heating runner space 610 has several sections of helical inner heating runners 611 , 612 and 613 separated by several sections of helical partitions 8114 .
  • the heating assembly according to the first embodiment of the present invention further includes an outer heating channel cover 8130 installed outside the tubular heating element 8120 .
  • the outer heating flow channel cover 8130 includes: a tubular base body; a plurality of helical baffles 8134 arranged on the outer wall 8131 of the tubular base, and the outer ends of the multiple spiral baffles 8134 serve as the outer side of the outer heating flow channel sleeve 8130; wherein, An outer heating channel space 630 for the liquid to flow through is formed between the outer wall 8134 of the tubular base and the inner surface of the pump cover. , 632 and 633 ; the helical direction of the helical outer heating channels 631 , 632 and 633 is opposite to the spiral direction of the spiral inner heating channels 611 , 612 and 613 .
  • the tubular heating element 8120 includes: a tubular base body, the inner wall 1202 of which serves as the inner side of the tubular heating element 8120 and contacts the outer side of the inner heating flow channel sleeve 8110;
  • the electric heating film 121 on the surface 1201, the outer heating flow channel sleeve 8130 surrounds the electric heating film 121.
  • the sections of the helical inner heating channels 611 , 612 and 613 and the sections of the spiral outer heating channels 631 , 632 and 633 according to the first embodiment of the present invention pass through a communication device or a connection device. They are connected with each other, so as to connect each section of the spiral inner heating channel 611, 612 and 613 in series with each section of the spiral outer heating channel 631, 632 and 633 in series, and increase the heating path of the liquid through the channel, so that in the tubular heating Under the condition that the volume of the piece remains unchanged, the heating path for the liquid is increased by about 2N times.
  • the increase of the liquid heating path means that the heating time of the liquid can be increased, thereby improving the heating efficiency.
  • the communication device or the connecting device comprises: a first reversing communication part arranged in the pump cover, for Connect the first end of the spiral inner heating channel 611 in the first section with the pump suction port 511 provided on the pump cover, and connect the first end of the spiral outer heating channel 633 in the tail section with the pump discharge port provided on the pump cover.
  • the second reversing communication component is arranged on the lower pump body 530 , for connecting the second ends of each section of the spiral inner heating channels 611 , 612 and 613 to the second ends of each section of the spiral outer heating channels 631 , 632 and 633 .
  • first end of the spiral outer heating channel and the first end of the spiral inner heating channel in the first embodiment of the present invention are both located on the pump cover; the second end of the spiral outer heating channel and the spiral inner heating channel The second ends of the inner heating channels are all located in the lower pump body.
  • the several sections of the spiral inner heating channel include a first section of the spiral inner heating channel 611, a second section of the spiral inner heating channel 612 and a third section of the spiral inner heating channel 613;
  • the outer heating channel includes a first section of the helical outer heating channel 631, a second section of the spiral outer heating channel 632 and a third section of the spiral outer heating channel 633;
  • the first reversing communication part is arranged on the pump cover of the pump body 510 on the inner wall, and includes: a heating channel inlet groove 514 for connecting the first end of the first section of the helical inner heating channel 611 with the pump suction port 511; for connecting the second section of the spiral inner heating channel
  • the first reversing groove 691 connecting the first end of 612 with the first end of the first section of the helical outer heating channel 631; used to connect
  • the heating runner inlet groove 514 and the heating runner outlet groove 515 of the first embodiment of the present invention are located in the same annular area.
  • the heating runner inlet groove 514 is located inside the annular area, and the heating runner outlet groove 515 is located outside the annular area; or, the heating runner inlet groove 514 is located outside the annular area, and the heating runner outlet groove 515 is located in the annular area inside of the area.
  • the second reversing communication part of the first embodiment of the present invention is provided on the end of the lower pump body 530 of the pump body, and includes:
  • the third reversing groove 681 is used to connect the second end of the spiral inner heating channel 611 with the second end of the first section of the spiral outer heating channel 631;
  • a fourth reversing groove 682 whose end communicates with the second end of the second section of the helical outer heating channel 632; used to connect the second end of the third section of the spiral inner heating channel 613 with the third section of the spiral outer heating channel
  • the second end of 632 communicates with the fifth reversing groove 683 .
  • the heating component of the motor is a tubular stator assembly of the motor; the heating assembly includes: a heating channel ring 9110 installed on the outside of the tubular stator; The tubular heating element 9120 on the outer side of the channel ring 9110 forms a heating channel space between the heating channel ring 9110 and the tubular heating element 9120; the tubular heating element 9120 is located in the pump cover and the lower pump body.
  • the heating flow channel ring 9110 according to the first embodiment of the present invention comprises: a tubular base; It is used to separate the heating channel space into a multi-layer annular heating channel 9610 with a gap; respectively connect the longitudinal partitions 9113 at one end of each annular partition 9112 to make the gap of each annular partition 9112 a liquid outlet. , so that the multi-layer annular heating runners 9610 are connected end to end.
  • the first layer annular heating channel of the first embodiment of the present invention communicates with the suction port 9511 provided on the pump cover; the tail layer annular heating channel communicates with the discharge port 9536 provided on the lower pump body.
  • the electric pump for the power battery thermal management system includes:
  • the pump body including the pump cover 510 shown in FIG. 1 , the lower pump body 530 , the outer wall of the outer heating channel sleeve 130 located between the pump cover 510 and the lower pump body 530 , and the rear cover 540 located at the bottom end of the lower pump body 530 ; or 24 and 25 including a pump cover (ie, a cover-like object) with a pump cover 9510, a lower pump body 9530 at the bottom end of the pump cover, and a rear cover 9540 at the bottom end of the lower pump body 9530; 32 shows a pump cover with a pump cover 9510 (ie, a cover-like object), a lower pump body 9530 at the bottom end of the pump cover, and a rear cover 8540 at the bottom of the lower pump body 6530;
  • a pump cover ie, a cover-like object
  • the motor 2030 installed in the pump body includes the rotor 210 and the cylindrical stator 300 shown in FIG. 2 and FIG. 33 , or the rotor 9210 and the cylindrical stator 9300 shown in FIG. 26 ;
  • the impellers 220, 9220 installed in the pump body driven by the motor;
  • the liquid heating device installed in the pump body is used to heat the liquid sucked by the impellers 220 and 9220 from the suction port 511 and discharged from the discharge port 512.
  • the liquid heating device includes:
  • the inner heating runner sleeve 110 or 8110 installed on the outside of the cylindrical stator;
  • the tubular heating key 120 or 8120 installed on the outside of the inner heating runner jacket 110 or 8110.
  • the heating assembly includes: an inner heating flow channel sleeve 110 or 8110 installed on the outer side of the cylindrical stator; Tubular heating element 120 or 8120 on the outside of 8110.
  • the inner heating channel jacket 110 or 8110 or 9110 of the second embodiment of the present invention has an inner heating channel space 610 for liquid to flow through; the inner heating channel space 610 has an interval
  • a plurality of partitions 114 arranged in a spiral shape arranged between the inner wall 111 and the outer wall 112 of the inner heating flow channel jacket are used to divide the inner heating flow channel space 610 into several sections of the spiral inner heating flow channels 611 , 612 and 613.
  • the heating assembly according to the second embodiment of the present invention further includes: an outer heating runner jacket 130 with an outer heating runner space 630 installed on the outer side of the tubular heating element 120 . for the passage of liquids.
  • the outer heating channel space 630 has multiple spirally-arranged spirally arranged between the inner wall 131 and the outer wall 132 of the outer heating channel jacket 120 or 8120 at intervals.
  • a partition plate 134 for dividing the outer heating channel space 630 into several sections of spiral outer heating channels 631, 632 or 633, wherein the spiral direction of the spiral outer heating channels 631, 632 or 633 is the same as the spiral inner heating channel
  • the helical directions of 611, 612 and 613 are opposite.
  • the tubular heating element 120 includes: a tubular base; an electric heating film 121 attached to the outer surface 1201 of the tubular base; a thermally conductive insulating film covering the electric heating film 121 Adhesive 1204, the outer side of the thermally conductive insulating adhesive 1204 serves as the outer side of the tubular heating element.
  • the inner heating flow channel sleeve 8110 includes: a tubular base body; a plurality of spiral baffles 8114 arranged on the outer wall 8111 of the tubular base body; The outer ends of the plurality of spiral baffles 8114 are used as the outer side of the inner heating flow channel sleeve 8110 to contact the inner wall 1202 of the tubular heating element 8120, thereby forming a supply liquid between the outer wall 8111 of the tubular base and the inner wall 1202 of the tubular heating element 8120.
  • the inner heating runner space 610 flowing through, the inner heating runner space 610 has several sections of helical inner heating runners 611 , 612 and 613 separated by several sections of helical partitions 8114 .
  • the heating assembly according to the second embodiment of the present invention further includes an outer heating flow channel cover 8130 installed outside the tubular heating element 8120 .
  • the outer heating flow channel cover 8130 includes: a tubular base body; a plurality of helical baffles 8134 arranged on the outer wall 8131 of the tubular base, and the outer ends of the multiple spiral baffles 8134 serve as the outer side of the outer heating flow channel sleeve 8130; wherein, An outer heating channel space 630 for the liquid to flow through is formed between the outer wall 8134 of the tubular base and the inner surface of the pump cover. , 632 and 633 ; the helical direction of the helical outer heating channels 631 , 632 and 633 is opposite to the spiral direction of the spiral inner heating channels 611 , 612 and 613 .
  • the tubular heating element 8120 includes: a tubular base body, the inner wall 1202 of which serves as the inner side of the tubular heating element 8120 and contacts the outer side of the inner heating channel sleeve 8110;
  • the electric heating film 121 on the surface 1201, the outer heating flow channel sleeve 8130 surrounds the electric heating film 121.
  • the sections of the helical inner heating channels 611 , 612 and 613 and the sections of the spiral outer heating channels 631 , 632 and 633 according to the second embodiment of the present invention pass through a communication device or a connection device. They are connected to each other, so as to connect each section of the spiral inner heating channel 611, 612 and 613 in series with each section of the spiral outer heating channel 631, 632 and 633 in series in order to increase the heating time of the liquid passing through the channel, so that the heating in the tubular Under the condition of the same volume, the heating time of the liquid is increased by 2N times.
  • the communication device or the connecting device comprises: a first reversing communication part provided in the pump cover, for Connect the first end of the spiral inner heating channel 611 in the first section with the pump suction port 511 provided on the pump cover, and connect the first end of the spiral outer heating channel 633 in the tail section with the pump discharge port provided on the pump cover.
  • the second reversing communication component is arranged on the lower pump body 530 , for connecting the second ends of each section of the spiral inner heating channels 611 , 612 and 613 to the second ends of each section of the spiral outer heating channels 631 , 632 and 633 .
  • first end of the spiral outer heating channel and the first end of the spiral inner heating channel in the second embodiment of the present invention are both located at the pump cover; the second end of the spiral outer heating channel and the spiral inner heating channel The second ends of the inner heating channels are all located in the lower pump body.
  • the several sections of the spiral inner heating channel include a first section of the spiral inner heating channel 611, a second section of the spiral inner heating channel 612 and a third section of the spiral inner heating channel 613;
  • the outer heating channel includes a first section of the helical outer heating channel 631, a second section of the spiral outer heating channel 632 and a third section of the spiral outer heating channel 633;
  • the first reversing communication part is arranged on the pump cover of the pump body 510 on the inner wall, and includes: a heating channel inlet groove 514 for connecting the first end of the first section of the helical inner heating channel 611 with the pump suction port 511; for connecting the second section of the spiral inner heating channel
  • the first reversing groove 691 connecting the first end of 612 with the first end of the first section of the helical outer heating channel 631; used to connect the
  • the heating channel inlet slot 514 and the heating channel outlet slot 515 of the second embodiment of the present invention are located in the same annular area.
  • the heating runner inlet groove 514 is located inside the annular area, and the heating runner outlet groove 515 is located outside the annular area; or, the heating runner inlet groove 514 is located outside the annular area, and the heating runner outlet groove 515 is located in the annular area inside of the area.
  • the second reversing communication part of the second embodiment of the present invention is provided on the end of the lower pump body 530 of the pump body, and includes:
  • the third reversing groove 681 is used to connect the second end of the spiral inner heating channel 611 with the second end of the first section of the spiral outer heating channel 631;
  • a fourth reversing groove 682 whose end communicates with the second end of the second section of the helical outer heating channel 632; used to connect the second end of the third section of the spiral inner heating channel 613 with the third section of the spiral outer heating channel
  • the second end of 632 communicates with the fifth reversing groove 683 .
  • the heating assembly includes: a heating flow channel ring 9110 installed outside the tubular stator; a tubular heating element 9120 installed outside the heating flow channel ring 9110, A heating channel space is formed between the heating channel ring 9110 and the tubular heating element 9120; the tubular heating element 9120 is located inside the pump cover and the lower pump body.
  • the heating flow channel ring 9110 according to the second embodiment of the present invention comprises: a tubular base; It is used to separate the heating channel space into a multi-layer annular heating channel 9610 with a gap; respectively connect the longitudinal partitions 9113 at one end of each annular partition 9112 to make the gap of each annular partition 9112 a liquid outlet. , so that the multi-layer annular heating runners 9610 are connected end to end.
  • the annular heating channel of the first layer of the second embodiment of the present invention communicates with the suction port 9511 provided on the pump cover; the annular heating channel of the tail layer communicates with the discharge port 9536 provided on the lower pump body.
  • the electric pump of the first embodiment includes a heating assembly 100, an impeller rotor assembly 200, a stator assembly 300, a control assembly 400, a pump cover 510, an inner water barrier 520, a lower pump body 530, Back cover 540. As shown in FIG.
  • the inner heating channel space 610 and the outer heating channel space 630 are formed by the pump cover 510 , the heating assembly 100 and the lower pump body 530 in the liquid heat exchange part; the pump cover 510 covers the inner water barrier jacket 520
  • An impeller chamber 650 is formed, and the impeller chamber 650 includes a suction chamber 651 , a volute chamber 652 , and a sinking rotor chamber 653 ; the heating assembly 100 and the inner water barrier jacket 520 are enclosed to form a stator chamber 660 .
  • the impeller rotor assembly 200 includes an impeller 210 and a rotor 220, and the stator assembly 300 magnetically drives the rotor 220 to rotate to form a motor 2030, which drives the impeller to rotate to transport liquid.
  • the heating assembly 100 includes an annular inner heating flow channel jacket 110 , an annular outer heating flow channel jacket 130 and a tubular heating element 120 .
  • the annular inner heating runner sleeve 110 is formed with an inner wall 111 and an outer wall 112, the lower end of the inner wall 111 is provided with an outer stop 1111, and the lower end of the outer wall 112 extends horizontally outward as an end face 113, and the end face 113 protrudes downwardly with through holes 1131 evenly distributed around the circumference.
  • the three circular truncated 1132 is formed with an inner wall 111 and an outer wall 112, the lower end of the inner wall 111 is provided with an outer stop 1111, and the lower end of the outer wall 112 extends horizontally outward as an end face 113, and the end face 113 protrudes downwardly with through holes 1131 evenly distributed around the circumference.
  • the three circular truncated 1132 is formed with an inner wall 111 and an outer wall 112
  • the lower end of the inner wall 111 is provided with an outer stop 1111
  • the lower end of the outer wall 112 extends horizontally outward as an end face 113, and the end face
  • the annular outer heating channel sleeve 130 is formed with an inner wall 131 and an outer wall 132.
  • the upper end of the inner wall 131 horizontally extends inward as an end face 133, and the upper end of the outer wall 132 extends outward as a flange 135 with an annular sealing groove 1351.
  • the lower end of the outer wall 132 is provided with a flange 135. Outer stop 1321.
  • the base material of the tubular heating element 120 is a metal thin round tube such as stainless steel, aluminum or copper, and the outer surface 1201 is covered with an insulating thin-layer electric heating film 121 leading out the lead wire 122, and preferably, the inner hole surface 1202 is coated with thermally conductive silicone grease 1203 .
  • the inner hole surface 1202 is sleeved into the inner heating runner sleeve 110 against the outer wall 112, and the wire 122 is threaded downward from the through hole 1131; and then the outer heating runner sleeve 130 is coaxially sleeved outside the inner heating runner sleeve 110, at this time
  • the lower end of the inner wall 131 of the outer heating runner sleeve is fitted with the end face 113 of the inner heating runner casing, the end face 133 of the outer heating runner casing is fitted with the upper end of the outer wall 112 of the inner heating runner casing, and the fitting surface is coated with a plane sealant (not shown in the figure).
  • the inner wall 131 surrounds the tubular heating element 120 with a gap, and the combination forms the heating assembly 100 .
  • the outer wall 112 , the end surface 113 , the inner wall 131 , and the end surface 133 enclose an annular heating chamber 620 , which seals and accommodates the tubular heating pipe 120 .
  • the lower pump body 530 is formed with a substantially annular end surface 531 , an outer wall 532 , an inner wall 533 and a partition 534 , and the end surface 531 is evenly distributed around the circumference and protrudes upward with three circular susceptors 5312 with countersunk through holes 5311 . , which is assembled with the three circular platforms 1132 on the lower end surface 113 of the inner heating runner sleeve 110 .
  • FIG. 8-10 the lower pump body 530 is formed with a substantially annular end surface 531 , an outer wall 532 , an inner wall 533 and a partition 534 , and the end surface 531 is evenly distributed around the circumference and protrudes upward with three circular susceptors 5312 with countersunk through holes 5311 . , which is assembled with the three circular platforms 1132 on the lower end surface 113 of the inner heating runner sleeve 110 .
  • the upper end of the outer wall 532 is provided with an inner stop 5321 that matches the outer stop 1321 of the outer heating runner sleeve, and the upper end of the inner wall 533 is provided with an inner stop 1111 of the inner heating runner sleeve. Stop 5331.
  • the inner wall outer stop 1111 of the inner heating flow channel cover 110 and the outer wall outer stop 1321 of the outer heating flow channel cover 130 are coated with plane sealant, they are respectively fitted with the inner wall inner stop 5331 and the outer wall inner stop 5321 of the lower pump body 530 Merge is fastened by peripheral bolts.
  • the end face of the round table 1132 of the end face 113 of the inner heating runner sleeve is pasted with a flat sealant and then sleeved into the countersunk head through hole 5311 of the lower pump body 530, and the wire passes downward through the hole.
  • at least a pair of through holes 5311 and 1131 that do not pass through the wires are reserved as glue filling holes, and thermally conductive insulating glue is injected into them to fill all the gaps of the annular heating chamber 620 for heat conduction.
  • the inner water shield 520 is formed with a cylindrical rotor cavity 521 with a closed lower end and an open upper end to accommodate the rotor 210 , and the upper end opening expands outward into a roughly circular stepped surface, and the outer circumference of the stepped surface is turned downwards. It extends into an outer barrel 522 with a ring-shaped sealing groove 5221, as shown in Figures 16-18.
  • the inner water barrier jacket 520 is coaxially sleeved in the inner heating runner jacket 110, and the outer barrel 522 fits the inner heating runner jacket.
  • the inner wall 111 is sealed by the O-ring 5222 in the annular sealing groove 5221, and encloses the stator chamber 660 to accommodate the components of the stator assembly 300 and part of the control assembly 400. It is attached to the inner wall 110 of the inner heating runner sleeve, and the gap between the two is filled with epoxy resin to fix it.
  • the pump cover 510 is formed with a suction port 511 and a discharge port 512 of the pump, a baffle 513, an inlet 514 and an outlet 515 of the heating channel, and a flange 516 on the outer peripheral wall.
  • the baffle 513 is a special-shaped baffle, The positions of the partitions 114 and 134 and the end surface 133 suitable for the heating flow channel assembly 100 can be arranged to fit together.
  • the flange 516 covers the flange 135 of the outer heating flow channel and is fastened by peripheral bolts.
  • the inlet 514 of the heating channel located in the pump cover 510 communicates with the scroll chamber 652 , and the outlet 515 communicates with the discharge port 512 of the pump.
  • annular inner heating flow channel sleeve 110 Between the inner wall 111 and the outer wall 112 of the annular inner heating flow channel sleeve 110 are three right spiral baffles 114 approximately 120° apart along the circumference, and the head end 1141 of each baffle 114 starts from the inner wall 111 and the outer wall The upper end of 112 is fitted with the partition 513 of the pump cover 510, the tail end 1142 is terminated at the lower ends of the inner wall 111 and the outer wall 112, and is fitted with the partition 534 of the lower pump body 530. 120°, three partitions 114 divide the annular inner heating channel space 610 into three sections of right spiral inner heating channels 611, 612 and 613;
  • the annular outer heating flow channel sleeve 130 Between the inner wall 131 and the outer wall 132 of the annular outer heating flow channel sleeve 130 are three left helical baffles 134 with an interval of approximately 120° uniformly distributed along the circumference. It starts from the lower ends of the inner wall 131 and the outer wall 132, and fits with the partition 534 of the lower pump body 530.
  • the tail end 1342 ends at the upper ends of the inner wall 131 and the outer wall 132, and fits with the partition 513 of the pump cover 510.
  • the circumferences of 1341 and 1342 are approximately 120° apart, and the three partitions 134 divide the annular outer heating channel space 630 into three sections of left-spiral outer heating channels 631 , 632 and 633 .
  • the head end (or inlet) of the inner heating channel 611 is connected to the heating channel inlet 514 provided on the pump cover 510, and then communicates with the scroll chamber 652; the outlet of the inner heating channel 611 is connected to The reversing groove 681 provided on the lower pump body 530, the inlet of the external heating channel 631 is connected to the reversing groove 681 provided on the lower pump body 530, and the outlet thereof is connected to the reversing groove 691 provided on the pump cover 510, so that the inner heating flow
  • the outlet of the channel 611 is connected to the inlet of the external heating channel 631 via the reversing groove 681 .
  • the inlet of the inner heating channel 612 is connected to the reversing groove 691 provided on the pump cover 510, and the outlet thereof is connected to the reversing groove 682 provided on the lower pump body;
  • the outlet of the slot 682 is connected to the reversing slot 692 provided on the pump cover, so that the outlet of the outer heating channel 631 is connected to the inlet of the inner heating channel 612 via the reversing slot 691 arranged on the pump cover, and the outlet of the inner heating channel 612 is
  • the reversing groove 682 provided on the lower pump body 530 is connected to the inlet of the external heating channel 632 .
  • the inlet of the inner heating channel 613 is connected to the reversing groove 692 provided on the pump cover 510, and its outlet is connected to the reversing groove 683 provided on the lower pump body;
  • the outlet of the groove 683 is connected to the heating channel outlet 515 provided on the pump cover, and then communicates with the pump discharge port 512, so that the outlet of the outer heating channel 632 is connected to the inner heating channel via the reversing groove 692 provided on the pump cover.
  • the inlet of 613, the outlet of the inner heating channel 613 is connected to the inlet of the outer heating channel 633 through the reversing groove 683 provided on the lower pump body 530, and the outlet of the outer heating channel 633 is connected to the outlet 515 of the heating channel.
  • the inlets of the inner heating channels 611, 612 and 613 are referred to as the first ends of the inner heating channels 611, 612 and 613; the outlets of the inner heating channels 611, 612 and 613 are referred to as the inner heating channels 611 , 612 and 613 at the second end.
  • the outlets of the external heating channels 631, 632 and 633 are referred to as the first ends of the external heating channels 631, 632 and 633; the inlets of the external heating channels 631, 632 and 633 are referred to as the external heating channels 631, 632 and 633 the second end.
  • the overall flow path of the liquid or liquid is: the liquid is introduced into the volute chamber 652 from the suction port 511 of the pump cover through the rotating impeller, and the pressure rises - enters the inner heating flow channel 611 through the flow channel inlet 514 on the pump cover - passes through the reversing groove 681 enters the outer heating channel 631 - enters the inner heating channel 612 through the reversing slot 691 - enters the outer heating channel 632 through the reversing slot 682 - enters the inner heating channel 613 - passes through the reversing slot 683 enters the external heating flow channel 633 - and finally flows into the flow channel outlet 515 on the pump cover and is discharged through the discharge port 512 of the pump.
  • the liquid flows through the inner heating channel space 610 and the outer heating channel space 630 arranged around the annular heating chamber 620 and the tubular heating element 120 to achieve heat exchange, and the liquid is heated when necessary.
  • the inner heating runner space 610 and the outer heating runner space 630 are divided into three spiral runners 611, 612, 613 and 631, 632, 633, which are evenly distributed in the inner and outer circles. 682, 692, and 683 are connected in sequence, and the heating pipeline is increased to about 6 times, and the length of the spiral flow channel is 1.3 to 1.5 times longer than that of the axial straight channel.
  • the heat exchange time is extended by 7 to 9 times, which greatly improves the heat exchange efficiency.
  • the partitions 114 and 134 can be uniformly distributed around the circumference or not uniformly;
  • the flow channels 611 , 631 , 612 , 632 , 613 , and 633 can be communicated end-to-end by reversing the rotation direction of the baffle.
  • the circumferential interval between the ends 1141 and 1142, 1341 and 1342 of the head and tail of the spiral partition can be 120° or other angles. end start and end.
  • the inner and outer heating runner spaces can also be divided into other numbers of helical runners, such as two spiral runners with evenly distributed inner and outer circumferences, which are sequentially connected through the upper and lower end reversing grooves.
  • the number of heating pipelines is reduced, and the number of heating pipelines is only increased to about 4 times.
  • the flow resistance of water flow is reduced, which is beneficial to reduce the power of the motor.
  • the space of the inner and outer heating channels can also be divided into four spiral channels that are evenly distributed in the inner and outer circles.
  • the upper and lower end reversing grooves are connected in sequence, and the heating pipeline is further increased, which is increased to about 8 times.
  • the heat exchange time between the liquid flow and the tubular heating element 120 is further extended, and the heat exchange efficiency is further improved, but the flow resistance of the liquid flow is increased. Power needs to be improved a bit.
  • a cavity is formed around the outer cylindrical surface of the stator for the pump liquid to pass through.
  • the cavity has a built-in tubular electric heating element.
  • the heating assembly 100 is formed by wrapping the windings.
  • the heating assembly 100 wraps the stator 300 and the impeller 220 of the motor.
  • the stator 300 wraps the rotor 210.
  • the inlet of the inner heating channel space 610 is connected to the inlet 514 and then connected to the scroll chamber 652.
  • the orderly arrangement from outside to inside makes clever use of the electric heating function of the electric pump in the thermal management system of the power battery, which only starts in a cold environment and has perfect temperature control, thus breaking the convention that the motor should not be close to the thermal structure to avoid damage, allowing the built-in electric heating
  • the cavity of the element for the pump liquid to pass through surrounds the cylinder surface of the motor, so that the space on the two sides of the "T" shape of the electric pump can be used, thus reducing the use location and facilitating the implementation of high-efficiency flow channel design, and the temperature rise of the motor can still be used.
  • the requirements of the product standard are met, especially the axial space occupied by the existing electric pump heating elements is reduced.
  • the upstream of the heating channel is connected to the scroll chamber, the liquid flows through the scroll chamber to form high-pressure potential energy and then flows into the heating channel, which increases the lift at the rated flow rate.
  • the inner periphery and upper and lower ends of the heating chamber are surrounded by the heating flow channel and its reversing groove, which improves the efficiency of heat exchange, avoids the dissipation of part of the heat of the tubular heating element to the inside and outside of the pump, and is conducive to saving energy.
  • the inner water blocking jacket 520 and the lower pump body 530 can be integrally formed by injection molding, so that the stator chamber is completely isolated from the impeller chamber and the heating flow channel, and there is no need to provide the O-ring 5222 and the sealing structure of the stop 1111/5331.
  • the stator chamber enclosed by the inner wall 111 of the inner heating runner casing becomes correspondingly accommodating the rotor of the motor, and the stator is surrounded by the rotor and is located in the center of the motor.
  • FIG. 24-27 show the electric pump of the second embodiment of the present invention, including a heating assembly 9100 , an impeller rotor assembly 9200 , a stator assembly 9300 , a control assembly 9400 , a pump cover 9510 , a lower pump body 9530 , and a rear cover 9540 .
  • the impeller rotor assembly 9200 includes an impeller 9210, a rotor 9220, and the stator 9300 magnetically drives the rotor 9220 to rotate to form a motor 92030.
  • the heating assembly 9100 includes a heating channel ring 9110 , a tubular heating element 9120 and a rubber sealing ring 9101 .
  • the base material of the tubular heating element 9120 is a metal thin round tube such as stainless steel, aluminum or copper, and the outer surface is covered with an insulating thin-layer electric heating film.
  • the heating channel ring 9110 is injection-molded with a tubular inner ring 9111, and three notched annular partitions 9112 and a longitudinal partition 9113 radially extend from the outer surface to form four-layer annular heating channels 9610 with reciprocating flow.
  • the inner hole of the tubular heating element 9120 is sleeved with a heating channel ring 9110, and the upper and lower ends are covered and sleeved with a rubber sealing ring 9101 with an annular groove to form a heating assembly 9100.
  • the liquid flow is in direct contact with the surface of the inner hole of the tubular heating element 9120.
  • the heat exchange efficiency is extremely high.
  • the center of the lower pump body 9530 forms a cylindrical rotor cavity wall 9531 with the lower end closed and the upper end open, and the upper end opening of the rotor cavity wall 9531 expands outward into a roughly circular stepped surface.
  • the stator cavity wall 9532 that is folded and extended downwards forms a stator cavity 9660 that accommodates the stator assembly 9300.
  • the upper end of the outer wall of the stator cavity wall 9532 is provided with an annular step 9533, and the opening of the lower end extends outward into a substantially annular end surface 9534.
  • the outer circumference of the end surface 9534 There is an annular clamping groove 9535 for clamping the tubular heating element 9120, the discharge port 9536 of the pump is formed on the lower side of the end face 9534, and the upper and lower sides of the end face 9534 avoid the discharge port 9536 of the pump and extend to the casing 9537 of the pump, and the casing 9537
  • the upper end extends outward as a flange 9539 provided with an annular sealing groove 9538, and the lower side of the housing 9537 surrounds a control chamber 9670 to accommodate the control assembly 9400.
  • the heating assembly 9100 is sleeved into the lower pump body 9530, and the annular heating channel 9610 is closed from the lower end.
  • the hole is coaxially and tightly sleeved into the stator cavity wall 9532 of the pump body 9530 .
  • the pump cover 9510 is formed with the suction port 9511 of the pump, the flange 9516, the annular groove 9517, and the annular middle wall 9518.
  • the flange 9539 of the pump body 9530 is covered by the flange 9516 and fastened by the outer peripheral bolts.
  • an O-ring is set to seal the pump body and enclose the heating flow channel 9610.
  • the upper end of the tubular heating element 9120 covered with the rubber sealing ring 9101 is clamped through the annular groove 9517 and sealed, and the tubular heating element 9120 and the heating flow channel 9610 are enclosed together. combine.
  • the annular middle wall 9518 of the pump cover 9510 covers and closes the annular step 9533 of the outer wall of the stator cavity of the lower pump body 9530 to form an impeller chamber 9650.
  • the impeller chamber 9650 includes a suction chamber 9651, a volute chamber 9652, and a sinking rotor chamber 9653.
  • the impeller rotor assembly 9200 composed of the impeller 9220 and the rotor 9210 is accommodated, and the liquid flow of the scroll chamber 9652 passes through the annular middle wall 9518 and flows into the heating channel 9610 .
  • the lower part of the outer casing 9537 of the lower pump body 9530 is enclosed into a control chamber 9670, which is loaded into the control assembly 9400, and is covered and sealed by the back cover 9540.
  • the annular baffle 9112 and the longitudinal baffle 9113 of the heating channel ring 9110, the end face 9534 of the lower pump body 9530, the pump cover 9510 and its annular middle wall 9518, and the tubular heating element 9120 are jointly enclosed to form a four-layer annular heating channel with a reciprocating flow direction.
  • 9610 the liquid entering from the suction port 9511 at the upper end of the pump is pressurized by the impeller 9220 and then pumped into the annular heating channel 9610 by the volute chamber 9652.
  • the thermal resistance is greatly reduced, and the heat exchange efficiency is high.
  • the multi-layer heating flow channel is increased several times, which further improves the heat conduction efficiency, but the flow resistance is increased and the flow rate is slightly decreased.
  • a cavity is formed around the outer cylindrical surface of the stator for the pump liquid to pass through.
  • the cavity has a built-in tubular electric heating element.
  • the motor stator 9300 is wound around the stator 9300, and the rotor 9210 is surrounded by the stator 9300.
  • the components are arranged in sequence from the outside to the inside approximately coaxially.
  • the electric heating function of the electric pump in the thermal management system of the power battery is cleverly used. Therefore, it breaks the convention that the motor should not be close to the thermal structure to avoid damage.
  • the cavity of the built-in electric heating element for the pump liquid to pass through surrounds the cylinder of the motor, so that the space on the two sides of the "T" shape of the electric pump can be used, thus reducing the The use of location and easy implementation of high-efficiency flow channel design, while the temperature rise of the motor can still meet the requirements of product standards, especially reducing the axial space occupied by the existing electric pump heating element.
  • the upstream of the heating channel is connected to the scroll chamber, the liquid flows through the scroll chamber to form high-pressure potential energy and then flows into the heating channel, which increases the lift at the rated flow rate.
  • the heating channel 9610 is disposed inwardly by the heating channel ring 9110, and then wraps around the tubular heating element 9120, which wraps around the motor stator 9300.
  • This arrangement of the overall structure can also realize that the heating channel 9610 surrounds the driving motor and the impeller of the pump, saves the axial space, and achieves the beneficial effect of efficient heat conduction.
  • the electric pump of the third embodiment is a variant design of the first embodiment, and the main design differences lie in the installation and matching structure of the heating assembly, the pump cover, and the lower pump body.
  • the electric pump also includes a heating assembly 8100, an impeller rotor assembly 200, a stator assembly 300, a control assembly 8400, a pump cover 8510, an inner water barrier 8520, a lower pump body 8530, and a rear cover 8540.
  • the modified design includes an annular inner heating runner sleeve 8110, an annular outer heating runner sleeve 8130, a tubular heating element 8120 and a spacer ring 8140 added to the lower end of the heating assembly.
  • the annular inner heating runner sleeve 8110 is formed with an inner wall 8111, without an outer wall 112 and an end face 113, a gap is formed at the lower end of the inner wall, and three evenly distributed axial grooves are formed at the lower end of the inner circumference of the inner wall, which are uniformly distributed along the outer circumference of the inner wall.
  • the annular outer heating runner sleeve 8130 is formed with an inner wall 8131, without the outer wall 132, the upper end of the inner wall 8131 extends horizontally inward as an end face 8133, and the lower end is formed with a wire outlet notch 8136, along the outer circumference of the inner wall 8131 is uniformly formed with three channels spaced approximately 120 inches apart.
  • the left helical baffle plate 8134 of ° has the same isolation and guiding function as the left helical baffle plate 134 of the outer heating flow channel sleeve in the first embodiment.
  • the base material of the tubular heating element 8120 is also a metal thin round tube such as stainless steel, aluminum or copper, and the outer surface is covered with an insulating thin-layer electric heating film 121 leading out the lead wire 8122 .
  • the end surface 8133 of the outer heating flow channel sleeve 8130 is coated with flat sealant to meet the upper end surface of the sleeved tubular heating element 8120 to form a ring-shaped heating chamber 620 .
  • the glue 1204 fills the heating chamber 620 to conduct heat and seal the electric heating film 121 , and then cover the cavity with a spacer ring 8140 coated with a flat sealant on the end surface.
  • the inner heating flow channel sleeve 8110 is sleeved on the surface of the inner hole of the tubular heating element 8120 , so that the heating assembly 8100 is formed.
  • the partition plate 8140 is made of a metal material for enclosing the heating chamber 620, and a plastic material can also be used to reduce the cost.
  • the tubular shape of the tubular heating element can be round, oval or square.
  • the lower pump body 8530 is formed with a substantially annular end surface 8531, an outer wall 8532 extending downward and provided with an outer flange, an inner ring 8533 extending upward, and a convex ring 8535 protruding upward in the middle. There are threaded holes for fastening the heating assembly 8100.
  • the outer surface of the inner ring 8533 is formed with a protrusion and three evenly distributed axial ribs. The same isolation and diversion effect of the pump body baffle 534 in the first embodiment.
  • the pump cover 8510 is also formed with the suction port 511 and the discharge port 512 of the pump, the partition plate 8513, the inlet 514 and the outlet 515 of the heating channel, and the outer peripheral wall 8517 extends to replace the external addition of the first embodiment.
  • the outer wall 132 of the hot runner sleeve acts as a fence, and the outer peripheral wall 8517 is also provided with a flange, which is used to cover and fasten the lower pump body 8530, wherein the partition plate 8513 is straight and not shaped, and plays the role of the pump cover of the first embodiment.
  • the baffle 513 has the same isolation and diversion effect.
  • the heating assembly 8100 is fitted over the lower pump body 8530, the inner wall 8111 of the inner heating channel cover is fitted over the inner ring 8533 of the lower pump, and the gap at the lower end of the inner wall 8111 of the inner heating channel cover 8110 is connected to the lower pump body.
  • the protrusions on the outer surface of the inner ring 8533 of the body 8530 are engaged, the three grooves are engaged with the three protruding ribs, and the bolt through holes of the outer heating flow channel sleeve 8130 and the spacer ring 8140 are aligned with the threaded holes of the lower pump body 8530 and fastened with bolts. .
  • the stator assembly 300, the inner water blocking jacket 8520, the impeller rotor assembly 200 are installed in sequence, and then the pump cover 8510 is installed and fastened to the flange of the lower pump outer wall 8532 with bolts.
  • the outer peripheral wall 8517 and the inner wall 8131 of the outer heating runner sleeve enclose the outer heating runner space 630, and the inner hole surface 1201 of the tubular heating element 8120 fits the spiral baffle 8114 of the inner heating runner sleeve, and is enclosed with the inner wall 8111 to form an inner heating Runner space 610 .
  • the spatial position of the heating runner and the connection between the upstream and downstream of the diversion flow line are the same as in the first embodiment, the difference is that the parts of the fence structure enclosing the heating runner are different, that is, the manufacturing and installation structures are different :
  • the spiral baffles 114 and the outer wall 112 that enclose the inner heating channels 611 , 612 , and 613 are formed in the inner heating channel sleeve 110 , and enclose the spirals that form the outer heating channels 631 , 632 , and 633
  • Both the baffle 134 and the outer wall 132 are formed on the outer heating runner sleeve 130; in this embodiment, the spiral baffle 8114 enclosing the inner heating runners 611, 612 and 613 is formed in the inner heating runner sleeve 8110, and the outer wall 112 is used for The tubular heating element 8120 is replaced.
  • the helical baffle 8114 and the tubular heating element 8120 allow a gap, which is convenient for installation, and the tubular heating element 8120 directly conducts heat to the liquid, with high thermal conductivity.
  • the sleeve 8110 can be made of plastic instead of thermally conductive metal, which reduces the manufacturing cost.
  • the spiral baffles 8134 enclosing and forming the outer heating channels 631, 632, 633 are formed on the outer heating channel sleeve 8130, and the outer wall 132 is changed to be formed on the pump cover 8510 to become the outer peripheral wall 8517 of the pump cover 8510, so that the manufacturing process is good, A set of flange fastening structure is omitted;
  • the spiral baffles 8114, 8134 can also be changed to straight strips, as long as they can play the role of fence and guide for the heating channels 611, 612, 613, 631, 632, 633 of the first embodiment, and the baffles 8114 also It can be formed separately from the inner heating runner sleeve 8110, and then fixed by welding, riveting or clamping.
  • the partition plate 8134 can also be formed separately from the outer heating runner sleeve 8130, and then fixed by welding, riveting or clamping. .

Abstract

一种动力电池热管理系统用电泵,包括:泵体;安装在所述泵体内的电机(2030);安装在所述泵体内的由电机驱动的叶轮(220);安装在所述泵体内的液体加热装置,用于对叶轮(220)从吸入口(511)吸入且从吐出口(512)排出的液体进行加热;液体加热装置包括:对液体进行加热的电机发热部件,用于利用电机产生的热能加热液体;套设在所述电机发热部件外侧的具有加热和散热功能的加热组件(100),用于在温度低于电池正常工作温度时,进行电热转换并接收电机产生的热能,利用电热转换的热能和电机产生的热能加热流动的液体;在温度接近或达到电池正常工作温度时,利用所述流动的液体对电机散热。

Description

一种动力电池热管理系统用电泵 技术领域
本发明涉及一种动力电池热管理系统用电泵,IPC分类可属于F04D13/06、F04D29/58或F04D29/40。
背景技术
在寒冷环境,电动汽车等设施中的动力电池热管理系统常以电泵驱动电加热液体提高电池的温度,以确保其电性能。该泵传统设计泵体径向尺寸需稍大而共轴的电动机径向尺寸可稍小,因而整体沿轴向呈“T”字形;且对泵液体电加热的结构通常位于泵体内。可参见中国专利文献CN103089710B、CN101657137A和CN109154307B。现有技术该泵需较多的使用位置,且效率有必要提高。
有关术语和公知常识参见国家标准GB/T 33925.1-2017《液体泵及其装置通用术语、定义、量、字符和单位第1部分:液体泵》和GB/T 7021-2019《离心泵名词术语》、机械工业出版社1983年或1997年版的《机械工程手册》和《电机工程手册》、机械工业出版社2014年版《泵理论与技术》、中国宇航出版社2011年版《现代泵理论与技术》、中国电力出版社2008年版《泵与风机》和化学工业出版社2011年版《电动汽车动力电源系统》。
发明内容
本发明的目的是提供一种动力电池热管理系统用电泵,用于提高液体的加热效率。
根据本发明的第一实施方式,本发明的一种动力电池热管理系统用电泵包括:
泵体;
安装在所述泵体内的电机;
安装在所述泵体内的由电机驱动的叶轮;
安装在所述泵体内的液体加热装置,用于对叶轮从吸入口吸入且从吐出口排出的液体进行加热;
所述液体加热装置包括:电机发热部件;以及套设在所述电机发热部件外侧的具有加热和散热功能的加热组件,用于在温度低于电池正常工作温度时,进行电热转换并接收电机产生的热能,利用电热转换的热能和电机产生的热能加热流动的液体;在温度接近或达到电池正常工作温度时,利用所述流动的液体对电机散热。
本发明的液体加热装置还包括:邻近所述加热装置的控制组件的发热部件,用于利用控 制组件大功率器件产生的热能加热所述液体。
优选地,电机发热部件是电机的筒状定子组件;所述加热组件包括:安装在所述筒状定子外侧的内加热流道套;安装在内加热流道套外侧的管状加热件。
优选地,内加热流道套具有供液体流过的内加热流道空间;内加热流道空间具有间隔设置在内加热流道套的内壁与外壁之间的呈螺旋形布置的多个隔板,用于将所述内加热流道空间分隔为数段的螺旋形内加热流道。
优选地,加热组件还包括:安装在所述管状加热件外侧的具有外加热流道空间的外加热流道套,外加热流道空间用于供液体通过;其中,所述外加热流道套作为泵体的一部分安装在泵盖与下泵体之间。
优选地,外加热流道空间具有间隔设置在外加热流道套的内壁与外壁之间的呈螺旋形布置的多个隔板,用于将所述外加热流道空间分隔为数段的螺旋形外加热流道,其中,所述螺旋形外加热流道的螺旋方向与螺旋形内加热流道的螺旋方向相反。
优选地,管状加热件包括:管状基体;贴合所述管状基体外表面的电加热膜;覆盖所述电加热膜的导热绝缘胶,所述导热绝缘胶外侧作为所述管状加热件的外侧。
优选地,泵体包括带有泵盖的泵罩以及安装在所述泵罩底端的下泵体。
优选地,内加热流道套包括:管状基体;设置在管状基体外壁上的多个螺旋形隔板;其中,多个螺旋形隔板的外端作为所述内加热流道套外侧接触所述管状加热件内壁,从而在管状基体外壁与所述管状加热件内壁之间形成供液体流过的内加热流道空间,内加热流道空间具有被数段螺旋形隔板分隔的数段螺旋形内加热流道。
优选地,加热组件还包括:安装在所述管状加热件外侧的外加热流道套,其包括:管状基体;设置在管状基体外壁上的多个螺旋形隔板,多个螺旋形隔板的外端作为所述外加热流道套外侧;其中,在管状基体外壁与所述泵罩内表面之间形成供液体流过的外加热流道空间,外加热流道空间具有被数段螺旋形隔板分隔的数段螺旋形外加热流道;螺旋形外加热流道的螺旋方向与螺旋形内加热流道的螺旋方向相反。
优选地,管状加热件包括:管状基体,其内壁作为管状加热件内侧接触内加热流道套外侧;贴合所述管状基体外表面的电加热膜,外加热流道套包围所述电加热膜。
优选地,数段螺旋形内加热流道与所述数段螺旋形外加热流道通过连通装置相互连通,以便依次交错地将每段螺旋形内加热流道与每段螺旋形外加热流道串联连接,增加液体经过流道的加热时长。
优选地,连通装置包括:设置在泵盖内的第一换向连通部件,用于将首段螺旋形内加热流道的第一端与设置在泵盖上的泵吸入口连通,将尾段螺旋形外加热流道的第一端与设置在 泵盖上的泵吐出口连通,以及将其它段螺旋形内加热流道的第一端交错地连接其它段螺旋形外加热流道的第一端;设置在下泵体上第二换向连通部件,用于将每段螺旋形内加热流道的第二端连接每段螺旋形外加热流道的第二端。
优选地,数段螺旋形内加热流道包括第一段螺旋形内加热流道、第二段螺旋形内加热流道和第三段螺旋形内加热流道;数段螺旋形外加热流道包括第一段螺旋形外加热流道、第二段螺旋形外加热流道和第三段螺旋形外加热流道;第一换向连通部件设置在泵体的泵盖内壁上,并且包括:用于将第一段螺旋形内加热流道的第一端与泵吸入口连通的加热流道进口槽;用于将第二段螺旋形内加热流道的第一端与第一段螺旋形外加热流道的第一端相连接的第一换向槽;用于将第三段螺旋形内加热流道的第一端与第二段螺旋形外加热流道相连接的第二换向槽;用于将第三段螺旋形外加热流道的第一端与泵吐出口连通的加热流道出口槽。
优选地,加热流道进口槽和加热流道出口槽处于同一环形区域,加热流道进口槽位于该环形区域的内侧,加热流道出口槽位于该环形区域的外侧。
优选地,第二换向连通部件设置在泵体的下泵体端部上,并且包括:用于将第一段螺旋形内加热流道的第二端与第一段螺旋形外加热流道的第二端连通的第三换向槽;用于将第二段螺旋形内加热流道的第二端与第二段螺旋形外加热流道的第二端连通的第四换向槽;用于将第三段螺旋形内加热流道的第二端与第三段螺旋形外加热流道的第二端连通的第五换向槽。
优选地,泵体包括带有泵盖的泵罩以及安装在所述泵罩底端的下泵体。
优选地,电机发热部件是电机的管状定子组件;所述加热组件包括:安装在所述管状定子外侧的加热流道环;安装在所述加热流道环外侧的管状加热件,在加热流道环与管状加热件之间形成加热流道空间;其中,所述管状加热件位于所述泵罩和下泵体之内。
优选地,加热流道环包括:管状基体;固定在所述管状基体外壁上的带有缺口的多道环形隔板,用于将所述加热流道空间分隔成带有缺口的多层环形加热流道;分别连接每道环形隔板一端的纵隔板,用于使每道环形隔板的缺口成为液体出口,使多层环形加热流道首尾相连。
优选地,首层环形加热流道与设置在泵盖上的吸入口连通;尾层环形加热流道与设置在下泵体上的吐出口连通。
根据本发明第二实施方式,本发明的动力电池热管理系统用电泵包括:
泵体;
安装在所述泵体内的包括筒状定子的电机;
安装在所述泵体内的由电机驱动的叶轮;
安装在所述泵体内的加热组件,用于对叶轮从吸入口吸入且从吐出口排出的液体进行加热;
所述加热组件包括:安装在所述筒状定子外侧的内加热流道套;安装在内加热流道套外侧的管状加热件。
优选地,内加热流道套具有供液体流过的内加热流道空间;所述内加热流道空间具有间隔设置在内加热流道套的内壁与外壁之间的呈螺旋形布置的多个隔板,用于将所述内加热流道空间分隔为数段的螺旋形内加热流道。
优选地,加热组件还包括:安装在所述管状加热件外侧的具有外加热流道空间的外加热流道套,所述外加热流道空间用于供液体通过;其中,所述外加热流道套作为泵体的一部分安装在泵盖与下泵体之间。
优选地,外加热流道空间具有间隔设置在外加热流道套的内壁与外壁之间的呈螺旋形布置的多个隔板,用于将所述外加热流道空间分隔为数段的螺旋形外加热流道,其中,螺旋形外加热流道的螺旋方向与螺旋形内加热流道的螺旋方向相反。
优选地,管状加热件包括:管状基体;贴合所述管状基体外表面的电加热膜;覆盖所述电加热膜的导热绝缘胶,导热绝缘胶外侧作为所述管状加热件的外侧。
优选地,泵体包括带有泵盖的泵罩以及安装在所述泵罩底端的下泵体。
优选地,内加热流道套包括:管状基体;设置在管状基体外壁上的多个螺旋形隔板;其中,所述多个螺旋形隔板的外端作为所述内加热流道套外侧接触所述管状加热件内壁,从而在管状基体外壁与所述管状加热件内壁之间形成供液体流过的内加热流道空间,内加热流道空间具有被数段螺旋形隔板分隔的数段螺旋形内加热流道。
优选地,加热组件还包括:安装在所述管状加热件外侧的外加热流道套,其包括:管状基体;设置在管状基体外壁上的多个螺旋形隔板,多个螺旋形隔板的外端作为所述外加热流道套外侧;其中,在管状基体外壁与所述泵罩内表面之间形成供液体流过的外加热流道空间,外加热流道空间具有被数段螺旋形隔板分隔的数段螺旋形外加热流道;螺旋形外加热流道的螺旋方向与螺旋形内加热流道的螺旋方向相反。
优选地,管状加热件包括:管状基体,其内壁作为管状加热件内侧接触所述内加热流道套外侧;贴合所述管状基体外表面的电加热膜,外加热流道套包围所述电加热膜。
优选地,数段螺旋形内加热流道与所述数段螺旋形外加热流道通过连通装置相互连通,以便依次交错地将每段螺旋形内加热流道与每段螺旋形外加热流道串联连接,增加液体经过流道的加热时长。
优选地,连通装置包括:设置在泵盖内的第一换向连通部件,用于将首段螺旋形内加热 流道的第一端与设置在泵盖上的泵吸入口连通,将尾段螺旋形外加热流道的第一端与设置在泵盖上的泵吐出口连通,以及将其它段螺旋形内加热流道的第一端交错地连接其它段螺旋形外加热流道的第一端;
设置在下泵体上第二换向连通部件,用于将每段螺旋形内加热流道的第二端连接每段螺旋形外加热流道的第二端。
优选地,数段螺旋形内加热流道包括第一段螺旋形内加热流道、第二段螺旋形内加热流道和第三段螺旋形内加热流道;所述数段螺旋形外加热流道包括第一段螺旋形外加热流道、第二段螺旋形外加热流道和第三段螺旋形外加热流道;所述第一换向连通部件设置在泵体的泵盖内壁上,并且包括:用于将第一段螺旋形内加热流道的第一端与泵吸入口连通的加热流道进口槽;用于将第二段螺旋形内加热流道的第一端与第一段螺旋形外加热流道的第一端相连接的第一换向槽;用于将第三段螺旋形内加热流道的第一端与第二段螺旋形外加热流道相连接的第二换向槽;用于将第三段螺旋形外加热流道的第一端与泵吐出口连通的加热流道出口槽。
优选地,加热流道进口槽和加热流道出口槽处于同一环形区域,加热流道进口槽位于该环形区域的内侧,加热流道出口槽位于该环形区域的外侧。
优选地,第二换向连通部件设置在泵体的下泵体端部上,并且包括:用于将第一段螺旋形内加热流道的第二端与第一段螺旋形外加热流道的第二端连通的第三换向槽;用于将第二段螺旋形内加热流道的第二端与第二段螺旋形外加热流道的第二端连通的第四换向槽;用于将第三段螺旋形内加热流道的第二端与第三段螺旋形外加热流道的第二端连通的第五换向槽。
根据本发明第三实施方式,一种动力电池热管理系统用电泵,包括:
泵体;
安装在所述泵体内的包括筒状定子的电机;
安装在所述泵体内的由电机驱动的叶轮;
安装在所述泵体内的加热组件,用于对叶轮从吸入口吸入且从吐出口排出的液体进行加热;
所述泵体包括带有泵盖的泵罩以及安装在所述泵罩底端的下泵体。
优选地,所述加热组件包括:安装在所述管状定子外侧的加热流道环;安装在所述加热流道环外侧的管状加热件,在加热流道环与管状加热件之间形成加热流道空间;其中,所述管状加热件位于所述泵罩和下泵体之内。
优选地,所述加热流道环包括:管状基体;固定在所述管状基体外壁上的带有缺口的多 道环形隔板,用于将所述加热流道空间分隔成带有缺口的多层环形加热流道;分别连接每道环形隔板一端的纵隔板,用于使每道环形隔板的缺口成为液体出口,使多层环形加热流道首尾相连。
优选地,首层环形加热流道与设置在泵盖上的吸入口连通;尾层环形加热流道与设置在下泵体上的吐出口连通。
本发明的有益技术效果是,1)螺旋形的内加热流道和螺旋形的外加热流道下端和上端首尾依次连通,这样进一步增加了加热流道长度,延长了液流与管状加热件热交换时间,提高了换热效果。2)加热流道空间由多道环形隔板分隔成多层圆环形的加热流道。增加了加热流道长度,延长了液流与管状加热件热交换时间,提高了换热效果。3)充分利用电机和控制组件工作时产生的热量对液体进行加热,提高了对液体加热的效率。
附图说明
图1是本发明动力电池热管理系统用电泵第一实施例的立体图;
图2是图1电泵的分解图;
图3是图1电泵的加热组件分解图;
图4是图1电泵的加热组件立体图(仰视方向);
图5是图1电泵的加热组件仰视图;
图6是图5的E-E剖视图;
图7是图6的局部放大图Ⅰ;
图8是图1电泵的下泵体立体图;
图9是图1电泵的下泵体俯视图;
图10是图9的一个截面示意图;
图11是图1电泵的内隔水套立体图;
图12是图1电泵的内隔水套的一个截面示意图;
图13是图15的D-D剖面图;
图14是图1电泵的泵盖立体图(仰视方向);
图15是图1电泵的泵盖仰视图;
图16图19的A-A旋转剖视图;
图17图16的局部放大图Ⅲ;
图18图16的局部放大图Ⅳ;
图19是图1电泵的俯视图;
图20是图1电泵的半剖主视图;
图21是图20的局部放大图Ⅱ;
图22是图19的Z方向的加热及换向槽分解示意图(泵盖仰视方向,加热组件和下泵体俯视方向);
图23是图19的X、Y、Z方向的B-B、C-C流道剖视立体示意图(分别剖除内、外加热流道套外壁),图23也是图46的X、Y、Z方向的B-B、C-C流道剖视立体示意图(分别剖除管状加热件、泵盖的外周壁);
图24是本发明动力电池热管理系统用电泵实施例2的立体图;
图25是图24电泵的另一方位立体图;
图26是图24方位的电泵分解图;
图27是图25方位的电泵分解图;
图28是图24电泵的主剖视图;
图29是图24电泵的俯视图;
图30是图24电泵的仰视图;
图31是图24电泵沿环形流道圆周展开剖视示意图;
图32是本发明动力电池热管理系统用电泵实施例3的立体示意图;
图33是图32电泵的分解示意图;
图34是图32电泵的加热组件分解示意图;
图35是图32电泵的加热组件立体示意图(仰视方位);
图36是图32电泵的加热组件仰视示意图;
图37是图36的F-F剖视示意图;
图38是图32电泵的下泵体立体示意图;
图39是图32电泵的下泵体俯视图;
图40是图39的G-G剖视示意图;
图41是图32电泵的内隔水套立体示意图;
图42是图32电泵的内隔水套的一个截面示意图;
图43是图32电泵的泵盖立体示意图(仰视方位);
图44是图32电泵的泵盖仰视示意图;
图45是图44的H-H剖面示意图;
图46是图32电泵的俯视示意图;
图47是图46的J-J剖视示意图;
图48是图46的K-K剖视示意图;
图49是图46的Z方向的加热及换向槽分解示意图(泵盖仰视方位,加热组件和下泵体俯视方位)。
附图标记:100加热组件;110内加热流道套;111内壁;1111外止口;112外壁;113端面;1131通孔;1132圆台;114隔板;1141首端;1142尾端;120管状加热件;121电加热膜;122导线;1201外表面;1202内孔表面;1203导热硅脂;1204导热绝缘胶;1205平面密封胶;130外加热流道套;131内壁;132外壁;1321外止口;133端面;134隔板;1341首端;1342尾端;135法兰;1351密封槽;1352O形圈;200叶轮转子组件;210转子;220叶轮;2030电机;300定子组件;301导热填料;400控制组件;410PCB板组件;420功率元件;430电容;500泵壳组件;510泵盖;511吸入口;512吐出口;513隔板;514进口;515出口;516法兰;520内隔水套;521转子腔壁;522外圆桶;5221环形密封槽;5222密封圈;530下泵体;531端面;5311沉头通孔;5312圆台;532外壁;5321内止口;533内壁;5331内止口;534隔板;540后盖;600腔室流道系统;610内加热流道空间;611、612、613三段内加热流道;620加热腔室;630外加热流道空间;631、632、633三段外加热流道;650叶轮腔室;651吸入室;652蜗室;653转子腔室;660定子腔室;670控制腔室;681、682、683、691、692换向槽。8100加热组件;8110内加热流道套;8111内壁;8114隔板;8120管状加热件;8122导线;8130外加热流道套;8131内壁;8133端面;8134隔板;8136出线槽口;8140隔环;8400控制组件;8500泵壳组件;8510泵盖;8513隔板;8517外周壁;8520内隔水套;8530下泵体;8531端面;8532外壁;8533内环;8535凸环;8534隔板;8540后盖;9100加热组件;9110加热流道环;9111内环;9112环形隔板;9113纵隔板;9120管状加热件;9101橡胶密封环;9200叶轮转子组件;9210转子;9220叶轮;92030电机;9300定子组件;9400控制组件;9500泵壳组件;9510泵盖;9511吸入口;9516法兰;9517环形卡槽;9518环形中壁;9530下泵体;9531转子腔壁;9532定子腔壁;9533环形台阶;9534环形端面;9535环形卡槽;9536吐出口;9537外壳;9538环形密封槽;9539法兰;9540后盖;9600腔室、流道系统;9610环形加热流道;9650叶轮腔室;9651吸入室;9652蜗室;9653转子腔室;9660定子腔室;9670控制腔室。
具体实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
术语上游特指流道接近源头的部分,与源头和中游并无严格的分界;下游特指流道接近出口的部分,与中游及出口并无严格的分界,参见上海辞书出版社2000年版《辞海》。
本文所使用的术语只是为了描述具体实施例的目的,不是旨在限制本发明。
本发明提供了动力电池热管理系统用电泵的两种实施方式。
在本发明的第一实施方式中,动力电池热管理系统用电泵包括:
泵体,包括图1所示的泵盖510、下泵体530、位于泵盖510与下泵体530之间的外加热流道套130的外壁以及位于下泵体530底部的后盖540;或者包括图24和25所示的带有泵盖9510的泵罩(即,电泵的罩体状壳体)、位于泵罩底端的下泵体9530以及位于下泵体9530底端的后盖9540;或者包括图32所示的带有泵盖9510的泵罩(即,电泵的罩体状壳体)、位于泵罩底端的下泵体9530以及位于下泵体6530底部的后盖8540;
安装在所述泵体内的电机2030,包括图2和图33所示的转子210和定子300,或者包括图26所示的转子9210和定子9300;
安装在所述泵体内的由电机驱动的叶轮220或9220;
安装在所述泵体内的液体加热装置,用于对叶轮220或9220从吸入口511吸入且从吐出口512排出的液体进行加热;
液体加热装置包括:具有液体流道的电机发热部件(通常是定子300);套设在所述电机发热部件外侧的加热组件,用于在温度低于电池正常工作温度时,进行电热转换并接收电机产生的热能,利用电热转换的热能和电机产生的热能加热流动的液体;在温度接近或达到电池正常工作温度时,利用所述流动的液体对电机散热。
本发明可以通过自动和手动方式控制加热组件进行加热和散热的转换,自动方式可以是通过温度传感器检测电池外部的环境温度,当电池外部环境温度低于电池正常工作温度时,电源管理器为加热组件加电,从而加热流过液体流道中的液体,利用加热后的高温液体提升电池的温度;当电池外部环境温度接近或达到电池正常工作温度时,电源管理器断开加热组件的电源,使流过液体流道中的低温液体带走电机的热量,为电机散热。手动方式则是用户通过手动接通或断开加热组件的电源。
本发明的液体加热装置还包括:邻近加热组件的控制组件400或8400的发热部件(即,图16所示的功率元件420),用于利用控制组件大功率器件产生的热能加热所述液体。
在本发明第一实施方式中,本发明利用三个热源,即电泵电机产生热量的热源、控制组件产生热量的热源以及加液体热组件产生热量的热源,对液体进行加热,不仅可以提高液体的加热效率,还可以通过对加热组件的控制,对电机和控制组件进行散热降温。
如图3、图26和图34所示,本发明第一实施方式的电机发热部件是电机的筒状定子组 件;加热组件包括:
安装在所述筒状定子外侧的内加热流道套110或8110;
安装在内加热流道套110或8110外侧的管状加热件120或8120。
如图4、图5环绕图23所示,本发明第一实施方式的内加热流道套110或8110或9110具有供液体流过的内加热流道空间610;内加热流道空间610具有间隔设置在内加热流道套的内壁111与外壁112之间的呈螺旋形布置的多个隔板114,用于将所述内加热流道空间610分隔为数段的螺旋形内加热流道611、612和613。
如图3和图16所示,本发明第一实施方式的加热组件还包括:安装在所述管状加热件120外侧的具有外加热流道空间630的外加热流道套130,外加热流道空间630用于供液体通过。
如图4、图5和图23所示,本发明第一实施方式的外加热流道空间630具有间隔设置在外加热流道套120或8120的内壁131与外壁132之间的呈螺旋形布置的多个隔板134,用于将外加热流道空间630分隔为数段的螺旋形外加热流道631、632或633,其中,螺旋形外加热流道631、632或633的螺旋方向与螺旋形内加热流道611、612和613的螺旋方向相反。
如图3和图7所示,本发明第一实施方式的管状加热件120包括:管状基体;贴合所述管状基体外表面1201的电加热膜121;覆盖所述电加热膜121的导热绝缘胶1204,所述导热绝缘胶1204外侧作为所述管状加热件的外侧。
如图34、图47和图23所示,本发明第一实施方式的内加热流道套8110包括:管状基体;设置在管状基体外壁8111上的多个螺旋形隔板8114;其中,所述多个螺旋形隔板8114的外端作为所述内加热流道套8110外侧接触所述管状加热件8120内壁1202,从而在管状基体外壁8111与所述管状加热件8120内壁1202之间形成供液体流过的内加热流道空间610,内加热流道空间610具有被数段螺旋形隔板8114分隔的数段螺旋形内加热流道611、612和613。
如图34、图47和图23所示,本发明第一实施方式的加热组件还包括安装在所述管状加热件8120外侧的外加热流道套8130。外加热流道套8130包括:管状基体;设置在管状基体外壁8131上的多个螺旋形隔板8134,所述多个螺旋形隔板8134的外端作为所述外加热流道套8130外侧;其中,在管状基体外壁8134与所述泵罩内表面之间形成供液体流过的外加热流道空间630,外加热流道空间630具有被数段螺旋形隔板8134分隔的数段螺旋形外加热流道631、632和633;所述螺旋形外加热流道631、632和633的螺旋方向与螺旋形内加热流道611、612和613的螺旋方向相反。
如图34和图47所示,本发明第一实施方式的管状加热件8120包括:管状基体,其内壁 1202作为管状加热件8120内侧接触内加热流道套8110外侧;贴合所述管状基体外表面1201的电加热膜121,所述外加热流道套8130包围电加热膜121。
如图22和图49所示,本发明第一实施方式的数段螺旋形内加热流道611、612和613与所述数段螺旋形外加热流道631、632和633通过连通装置或连接装置相互连通,以便依次交错地将每段螺旋形内加热流道611、612和613与每段螺旋形外加热流道631、632和633串联连接,增加液体经过流道的加热路径,使得在管状加热件体积不变的情况下,对液体加热路径增加了约2N倍。
举例来说,在内加热流道和外加热流道数量为N的情况下,相对于液体直接通过加热组件的现有技术,本发明对液体的加热路径增加了约2×N=2N倍。液体加热路径的增加,意味着可以增加液体的加热时长,从而提高了加热效率。
如图14、图15、图8、图9、图22和图49所示,本发明第一实施方式的连通装置或连接装置包括:设置在泵盖内的第一换向连通部件,用于将首段螺旋形内加热流道611的第一端与设置在泵盖上的泵吸入口511连通,将尾段螺旋形外加热流道633的第一端与设置在泵盖上的泵吐出口512连通,以及将其它段螺旋形内加热流道612和613的第一端交错地连接其它段螺旋形外加热流道631和632的第一端;设置在下泵体530上第二换向连通部件,用于将每段螺旋形内加热流道611、612和613的第二端连接每段螺旋形外加热流道631、632和633的第二端。
需要指出的是,本发明第一实施方式的螺旋形外加热流道的第一端和螺旋形内加热流道的第一端均为位于泵盖;螺旋形外加热流道的第二端和螺旋形内加热流道的第二端均位于下泵体。
图23和图14、图15、图22和图49显示了本发明第一实施方式的内加热流道和外加热流道的数量为3的情况。在此情况下,数段螺旋形内加热流道包括第一段螺旋形内加热流道611、第二段螺旋形内加热流道612和第三段螺旋形内加热流道613;数段螺旋形外加热流道包括第一段螺旋形外加热流道631、第二段螺旋形外加热流道632和第三段螺旋形外加热流道633;所述第一换向连通部件设置在泵体的泵盖510内壁上,并且包括:用于将第一段螺旋形内加热流道611的第一端与泵吸入口511连通的加热流道进口槽514;用于将第二段螺旋形内加热流道612的第一端与第一段螺旋形外加热流道631的第一端相连接的第一换向槽691;用于将第三段螺旋形内加热流道613的第一端与第二段螺旋形外加热流道632相连接的第二换向槽692;用于将第三段螺旋形外加热流道633的第一端与泵吐出口512连通的加热流道出口槽515。
如图14、图15、图22和图49所示,本发明第一实施方式的加热流道进口槽514和加热 流道出口槽515处于同一环形区域。加热流道进口槽514位于该环形区域的内侧,加热流道出口槽515位于该环形区域的外侧;或者,加热流道进口槽514位于该环形区域的外侧,加热流道出口槽515位于该环形区域的内侧。
如图8、图9、图22和图49所示,本发明第一实施方式的第二换向连通部件设置在泵体的下泵体530端部上,并且包括:用于将第一段螺旋形内加热流道611的第二端与第一段螺旋形外加热流道631的第二端连通的第三换向槽681;用于将第二段螺旋形内加热流道612的第二端与第二段螺旋形外加热流道632的第二端连通的第四换向槽682;用于将第三段螺旋形内加热流道613的第二端与第三段螺旋形外加热流道632的第二端连通的第五换向槽683。
如图26和图27所示,本发明第一实施方式的电机发热部件是电机的管状定子组件;加热组件包括:安装在所述管状定子外侧的加热流道环9110;安装在所述加热流道环9110外侧的管状加热件9120,在加热流道环9110与管状加热件9120之间形成加热流道空间;管状加热件9120位于所述泵罩和下泵体之内。
如图26、图27和图31所示,本发明第一实施方式的加热流道环9110包括:管状基体;固定在所述管状基体外壁上的带有缺口的多道环形隔板9112,用于将所述加热流道空间分隔成带有缺口的多层环形加热流道9610;分别连接每道环形隔板9112一端的纵隔板9113,用于使每道环形隔板9112的缺口成为液体出口,使多层环形加热流道9610首尾相连。
如图31所示,本发明第一实施方式的首层环形加热流道与设置在泵盖上的吸入口9511连通;尾层环形加热流道与设置在下泵体上的吐出口9536连通。
在本发明的第二实施方式中,动力电池热管理系统用电泵包括:
泵体,包括图1所示的泵盖510、下泵体530、位于泵盖510与下泵体530之间的外加热流道套130的外壁以及位于下泵体530底端的后盖540;或者包括图24和25所示的带有泵盖9510的泵罩(即,罩体状的物体)、位于泵罩底端的下泵体9530以及位于下泵体9530底端的后盖9540;或者包括图32所示的带有泵盖9510的泵罩(即,罩体状的物体)、位于泵罩底端的下泵体9530以及位于下泵体6530底部的后盖8540;
安装在所述泵体内的电机2030,包括图2和图33所示的转子210和筒状定子300,或者包括图26所示的转子9210和筒状定子9300;
安装在所述泵体内的由电机驱动的叶轮220、9220;
安装在所述泵体内的液体加热装置,用于对叶轮220、9220从吸入口511吸入且从吐出口512排出的液体进行加热,液体加热装置包括:
安装在筒状定子外侧的内加热流道套110或8110;
安装在内加热流道套110或8110外侧的管状加热键120或8120。
如图3、图26和图34所示,本发明第二实施方式的加热组件包括:安装在所述筒状定子外侧的内加热流道套110或8110;安装在内加热流道套110或8110外侧的管状加热件120或8120。
如图4、图5环绕图23所示,本发明第二实施方式的内加热流道套110或8110或9110具有供液体流过的内加热流道空间610;内加热流道空间610具有间隔设置在内加热流道套的内壁111与外壁112之间的呈螺旋形布置的多个隔板114,用于将所述内加热流道空间610分隔为数段的螺旋形内加热流道611、612和613。
如图3和图16所示,本发明第二实施方式的加热组件还包括:安装在所述管状加热件120外侧的具有外加热流道空间630的外加热流道套130,外加热流道空间630用于供液体通过。
如图4、图5和图23所示,本发明第二实施方式的外加热流道空间630具有间隔设置在外加热流道套120或8120的内壁131与外壁132之间的呈螺旋形布置的多个隔板134,用于将外加热流道空间630分隔为数段的螺旋形外加热流道631、632或633,其中,螺旋形外加热流道631、632或633的螺旋方向与螺旋形内加热流道611、612和613的螺旋方向相反。
如图3和图7所示,本发明第二实施方式的管状加热件120包括:管状基体;贴合所述管状基体外表面1201的电加热膜121;覆盖所述电加热膜121的导热绝缘胶1204,所述导热绝缘胶1204外侧作为所述管状加热件的外侧。
如图34、图47和图23所示,本发明第二实施方式的内加热流道套8110包括:管状基体;设置在管状基体外壁8111上的多个螺旋形隔板8114;其中,所述多个螺旋形隔板8114的外端作为所述内加热流道套8110外侧接触所述管状加热件8120内壁1202,从而在管状基体外壁8111与所述管状加热件8120内壁1202之间形成供液体流过的内加热流道空间610,内加热流道空间610具有被数段螺旋形隔板8114分隔的数段螺旋形内加热流道611、612和613。
如图34、图47和图23所示,本发明第二实施方式的加热组件还包括安装在所述管状加热件8120外侧的外加热流道套8130。外加热流道套8130包括:管状基体;设置在管状基体外壁8131上的多个螺旋形隔板8134,所述多个螺旋形隔板8134的外端作为所述外加热流道套8130外侧;其中,在管状基体外壁8134与所述泵罩内表面之间形成供液体流过的外加热流道空间630,外加热流道空间630具有被数段螺旋形隔板8134分隔的数段螺旋形外加热流道631、632和633;所述螺旋形外加热流道631、632和633的螺旋方向与螺旋形内加热流道611、612和613的螺旋方向相反。
如图34和图47所示,本发明第二实施方式的管状加热件8120包括:管状基体,其内壁1202作为管状加热件8120内侧接触内加热流道套8110外侧;贴合所述管状基体外表面1201的电加热膜121,所述外加热流道套8130包围电加热膜121。
如图22和图49所示,本发明第二实施方式的数段螺旋形内加热流道611、612和613与所述数段螺旋形外加热流道631、632和633通过连通装置或连接装置相互连通,以便依次交错地将每段螺旋形内加热流道611、612和613与每段螺旋形外加热流道631、632和633串联连接,增加液体经过流道的加热时长,使得在管状加热件体积不变的情况下,对液体的加热时间增加了2N倍。
如图14、图15、图8、图9、图22和图49所示,本发明第二实施方式的连通装置或连接装置包括:设置在泵盖内的第一换向连通部件,用于将首段螺旋形内加热流道611的第一端与设置在泵盖上的泵吸入口511连通,将尾段螺旋形外加热流道633的第一端与设置在泵盖上的泵吐出口512连通,以及将其它段螺旋形内加热流道612和613的第一端交错地连接其它段螺旋形外加热流道631和632的第一端;设置在下泵体530上第二换向连通部件,用于将每段螺旋形内加热流道611、612和613的第二端连接每段螺旋形外加热流道631、632和633的第二端。
需要指出的是,本发明第二实施方式的螺旋形外加热流道的第一端和螺旋形内加热流道的第一端均为位于泵盖;螺旋形外加热流道的第二端和螺旋形内加热流道的第二端均位于下泵体。
图23和图14、图15、图22和图49显示了本发明第二实施方式的内加热流道和外加热流道的数量为3的情况。在此情况下,数段螺旋形内加热流道包括第一段螺旋形内加热流道611、第二段螺旋形内加热流道612和第三段螺旋形内加热流道613;数段螺旋形外加热流道包括第一段螺旋形外加热流道631、第二段螺旋形外加热流道632和第三段螺旋形外加热流道633;所述第一换向连通部件设置在泵体的泵盖510内壁上,并且包括:用于将第一段螺旋形内加热流道611的第一端与泵吸入口511连通的加热流道进口槽514;用于将第二段螺旋形内加热流道612的第一端与第一段螺旋形外加热流道631的第一端相连接的第一换向槽691;用于将第三段螺旋形内加热流道613的第一端与第二段螺旋形外加热流道632相连接的第二换向槽692;用于将第三段螺旋形外加热流道633的第一端与泵吐出口512连通的加热流道出口槽515。
如图14、图15、图22和图49所示,本发明第二实施方式的加热流道进口槽514和加热流道出口槽515处于同一环形区域。加热流道进口槽514位于该环形区域的内侧,加热流道出口槽515位于该环形区域的外侧;或者,加热流道进口槽514位于该环形区域的外侧,加 热流道出口槽515位于该环形区域的内侧。
如图8、图9、图22和图49所示,本发明第二实施方式的第二换向连通部件设置在泵体的下泵体530端部上,并且包括:用于将第一段螺旋形内加热流道611的第二端与第一段螺旋形外加热流道631的第二端连通的第三换向槽681;用于将第二段螺旋形内加热流道612的第二端与第二段螺旋形外加热流道632的第二端连通的第四换向槽682;用于将第三段螺旋形内加热流道613的第二端与第三段螺旋形外加热流道632的第二端连通的第五换向槽683。
如图26和图27所示,本发明第二实施方式的加热组件包括:安装在所述管状定子外侧的加热流道环9110;安装在所述加热流道环9110外侧的管状加热件9120,在加热流道环9110与管状加热件9120之间形成加热流道空间;管状加热件9120位于所述泵罩和下泵体之内。
如图26、图27和图31所示,本发明第二实施方式的加热流道环9110包括:管状基体;固定在所述管状基体外壁上的带有缺口的多道环形隔板9112,用于将所述加热流道空间分隔成带有缺口的多层环形加热流道9610;分别连接每道环形隔板9112一端的纵隔板9113,用于使每道环形隔板9112的缺口成为液体出口,使多层环形加热流道9610首尾相连。
如图31所示,本发明第二实施方式的首层环形加热流道与设置在泵盖上的吸入口9511连通;尾层环形加热流道与设置在下泵体上的吐出口9536连通。
下面通过三个具体实施例对本发明进行详细说明。需要说明的是,参考附图描述的具体实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
第一实施例
图1-图23显示了本发明第一实施例的电泵。如图1、2、16所示,第一实施例的电泵包括加热组件100、叶轮转子组件200、定子组件300、控制组件400、泵盖510、内隔水套520、下泵体530、后盖540。如图4所示,通过泵盖510、加热组件100、下泵体530围合封闭形成液体热交换部位内加热流道空间610、外加热流道空间630;泵盖510盖合内隔水套520形成叶轮腔室650,叶轮腔室650包括吸入室651、蜗室652、下沉的转子腔室653;加热组件100与内隔水套520围合形成定子腔室660。其中叶轮转子组件200包括叶轮210、转子220,定子组件300磁驱动转子220旋转组成电机2030,驱动叶轮旋转输送液体。
如图3-7所示,加热组件100包括环形的内加热流道套110、环形的外加热流道套130和管状加热件120。
环形的内加热流道套110成形有内壁111和外壁112,内壁111下端设有外止口1111,外壁112下端向外水平延伸为端面113,端面113圆周均布地向下突出开有通孔1131的三个圆台1132。
环形的外加热流道套130成形有内壁131和外壁132,内壁131上端向内水平延伸为端面133,外壁132上端向外延伸为开有环形的密封槽1351的法兰135,外壁132下端设有外止口1321。
作为选择,管状加热件120基材为不锈钢、铝或铜材等金属薄圆管,外表面1201覆盖绝缘的薄层电加热膜121引出导线122,优选在内孔表面1202涂覆导热硅脂1203。
将内孔表面1202紧贴外壁112套入内加热流道套110,导线122从通孔1131向下穿出;再将外加热流道套130同轴套设在内加热流道套110外侧,此时外加热流道套的内壁131下端与内加热流道套端面113贴合,外加热流道套的端面133与内加热流道套外壁112上端贴合,贴合面涂有平面密封胶(图中未示出),内壁131具有间隙地包绕管状加热件120,这样组合形成加热组件100。其中,外壁112、端面113、内壁131、端面133围合成环形的加热腔室620,密封容纳管状加热管件120。
如图8-10所示,下泵体530成形有大致呈环形的端面531、外壁532、内壁533、隔板534,端面531圆周均布地向上突出设有沉头通孔5311的三个圆台5312,其与内加热流道套110下端面113上三个圆台1132配装。优选地,见图6所示,在外壁532上端设有与外加热流道套外止口1321相配的内止口5321,在内壁533上端设有与内加热流道套外止口1111相配的内止口5331。内加热流道套110的内壁外止口1111和外加热流道套130外壁外止口1321粘涂平面密封胶后,再分别与下泵体530的内壁内止口5331和外壁内止口5321套合并通过外周螺栓紧固。同时见图7、10、20、21所示,内加热流道套端面113的圆台1132端面粘涂平面密封胶后套入下泵体530的沉头通孔5311,该孔向下穿出导线122并灌入导热绝缘胶1204密封绝缘。优选保留至少一对未穿出导线的通孔5311和1131作为灌胶孔,向其注入导热绝缘胶填充环形的加热腔室620的所有空隙以供导热。
参见图11、图12,内隔水套520成形有下端封闭上端开口的圆筒状转子腔521容纳转子210,上端开口向外扩大延伸为大致的圆形台阶面,该台阶面外周向下折返延伸为开有环形密封槽5221的外圆桶522,见图16-18,将内隔水套520同轴套设于内加热流道套110内,外圆桶522贴合内加热流道套110内壁111,通过环形密封槽5221中的O形圈5222密封,围合形成定子腔室660容纳定子组件300和部分控制组件400的元器件,套入定子腔室660的定子组件300外周表面紧贴内加热流道套内壁110,二者之间的间隙灌入环氧树脂固定。
参见图13-15,泵盖510成形有泵的吸入口511和吐出口512、隔板513、加热流道的进口514和出口515及外周壁的法兰516,隔板513是异形隔板,适配于加热流道组件100的隔板114、134和端面133的位置贴合布置即可,法兰516盖合外加热流道的法兰135并通过外周螺栓紧固。
参见图22和图23,位于泵盖510的加热流道的进口514连通蜗室652,出口515连通泵的吐出口512。
环形的内加热流道套110的内壁111和外壁112之间沿圆周均布成形有三道间隔大致120°的右螺旋形隔板114,每一隔板114首端1141起始于内壁111和外壁112的上端,与泵盖510的隔板513贴合,尾端1142终止于内壁111和外壁112的下端,与下泵体530的隔板534贴合,首尾两端1141、1142各自圆周间隔大致120°,三道隔板114将环形的内加热流道空间610分隔为三段右螺旋形内加热流道611、612和613;
环形的外加热流道套130的内壁131和外壁132之间沿圆周均布成形有三道间隔大致120°的左螺旋形隔板134,旋向和隔板114相反,每一隔板134首端1341起始于内壁131和外壁132的下端,与下泵体530的隔板534贴合,尾端1342终止于内壁131和外壁132的上端,与泵盖510的隔板513贴合,首尾两端1341、1342各自圆周间隔大致120°,三道隔板134将环形的外加热流道空间630分隔为三段左螺旋形外加热流道631、632、633。
如图22和图23所示,内加热流道611的首端(或入口)连接设置在泵盖510上的加热流道进口514,再与蜗室652连通;内加热流道611的出口连接设置在下泵体530上的换向槽681,外加热流道631的入口连接设置在下泵体530上换向槽681,其出口连接设置在泵盖510上的换向槽691,从而使得内加热流道611出口经由换向槽681连接外加热流道631入口。
内加热流道612的入口连接设置在泵盖510上的换向槽691,其出口连接设置在下泵体上的换向槽682;外加热流道632的入口连接设置在下泵体530上的换向槽682,其出口连接设置在泵盖上的换向槽692,从而使外加热流道631出口经由设置在泵盖上的换向槽691连接内加热流道612入口,内加热流道612出口经由设置在下泵体530上的换向槽682连接外加热流道632入口。
内加热流道613的入口连接设置在泵盖510上的换向槽692,其出口连接设置在下泵体上的换向槽683;外加热流道633的入口连接设置在下泵体530上的换向槽683,其出口连接设置在泵盖上的加热流道出口515,再与泵的吐出口512连通,从而使外加热流道632出口经由设置在泵盖上的换向槽692连接内加热流道613入口,内加热流道613出口经由设置在下泵体530上的换向槽683连接外加热流道633入口,外加热流道633出口连接加热流道出口515。
本发明将内加热流道611、612和613的入口称之为内加热流道611、612和613的第一端;内加热流道611、612和613的出口称之为内加热流道611、612和613的第二端。
本发明将外加热流道631、632和633的出口称之为外加热流道631、632和633的第一端;外加热流道631、632和633的入口称之为外加热流道631、632和633的第二端。
总体的液体或液体的流动路径为:液体由泵盖吸入口511经旋转的叶轮导入蜗室652升压——通过泵盖上的流道进口514进入内加热流道611——通过换向槽681进入外加热流道631——通过换向槽691进入内加热流道612——通过换向槽682进入外加热流道632——通过换向槽692进入内加热流道613——通过换向槽683进入外加热流道633——最后流入泵盖上的流道出口515通过泵的吐出口512排出。
液体流经围绕环形的加热腔室620和管状加热件120布置的内加热流道空间610及外加热流道空间630,实现热交换,在需要时液体得到升温。而且内加热流道空间610及外加热流道空间630被分隔为内外各三道圆周均布的螺旋形流道611、612、613和631、632、633,经上下端换向槽681、691、682、692、683顺序连通,增加到约6倍加热管路,而且螺旋流道比轴向直流道管路长度增加1.3~1.5倍,在流速基本不变的情况下,液流与管状加热件120热交换时间延长7~9倍,极大地提高了热交换效率。
在上述实施例的设计上,隔板114和134可以圆周均布,也可以不均布;右螺旋隔板114也可以是左螺旋,左螺旋隔板134也可以是右螺旋,只要114、134隔板旋向相反即可实现流道611、631、612、632、613、633首尾连通。螺旋隔板首尾两端1141和1142、1341和1342圆周间隔可以是120°,也可以是其它角度,首尾端可以是螺旋端部,也可以是隔板在螺旋端部再过渡为直线、弧线的端部起始和终止。
在其它变形设计中,内、外加热流道空间也可以分隔为其它数量的螺旋形流道,如内外各两道圆周均布的螺旋形流道,经上下端换向槽顺序连通,所增加的加热管路减少,仅增加到约4倍加热管路,水流流阻减少,有利于降低电机功率;再如内、外加热流道空间还可以分隔为内外各四道圆周均布的螺旋形流道,经上下端换向槽顺序连通,进一步增加加热管路,增加到约8倍,液流与管状加热件120热交换时间进一步延长,热交换效率进一步提高,但增大了液流流阻,电机功率需要提高一些。
本实施例通过上述布置,环绕定子外周柱面围合形成腔体,供泵液体穿越,腔体内置有管状电加热件,外加热流道空间630、管状加热件120、内加热流道空间610依次包绕组合成加热组件100,加热组件100包绕电机的定子300和叶轮220,定子300包绕转子210,内加热流道空间610入口连接进口514再连通蜗室652,各组件大致同轴地从外而内顺序布置,巧妙利用了动力电池热管理系统中电泵的电加热功能仅于寒冷环境启动且有完善的温度控制,因而打破电动机不宜靠近热结构以免受损的常规,让内置电加热元件供泵液体穿越的腔体环绕于电动机柱面,使该电泵“T”字形的二侧空间得以利用,因而减少使用位置并便于实施高效率的流道设计,而电动机的温升仍可满足产品标准的要求,特别是减少了现有电泵加热元件占用的轴向空间。另外由于加热流道上游连通蜗室,液流经蜗室形成高压势能后再流 入加热流道,提高了额定流量下的扬程。
加热腔室内外周和上下端都被加热流道及其换向槽包围,提高了热交换的效率,避免了管状加热件的部分热量向泵体内外的耗散,有利于节省能源。
进一步地,内隔水套520和下泵体530可以一体注塑成形,这样定子腔室与叶轮腔室、加热流道完全隔离,无需设置O形圈5222和止口1111/5331密封结构。
在其它实施例中,如采用外转子电机,内加热流道套的内壁111围合形成的定子腔室相应变为容纳电机的转子,定子被转子包绕,位于电机中心。
第二实施例
图24-27显示了本发明第二实施例的电泵,包括加热组件9100、叶轮转子组件9200、定子组件9300、控制组件9400、泵盖9510、下泵体9530、后盖9540。其中叶轮转子组件9200包括叶轮9210、转子9220,定子9300磁驱动转子9220旋转组成电机92030。
如图26、27所示,加热组件9100包括加热流道环9110、管状加热件9120和橡胶密封环9101。管状加热件9120基材为不锈钢、铝或铜材等金属薄圆管,外表面覆盖绝缘的薄层电加热膜。加热流道环9110注塑成形有管状的内环9111,外表面径向延伸三条带缺口的环形隔板9112和一条纵隔板9113,分隔形成流向往复的四层环形加热流道9610。管状加热件9120内孔套设加热流道环9110,上下两端包覆套入设有环形槽的橡胶密封环9101,组合成加热组件9100,液流与管状加热件9120内孔表面直接接触,热交换效率极高。
如图26-28所示,下泵体9530中心形成下端封闭上端开口的圆筒状转子腔壁9531,转子腔壁9531上端开口向外扩大延伸为大致的圆形台阶面,该台阶面外周向下折返延伸为开口朝下的定子腔壁9532形成定子腔室9660容纳定子组件9300,定子腔壁9532外壁上端设有环形台阶9533,下端开口向外延伸为大致呈环形的端面9534,端面9534外周设有环形卡槽9535用于卡入管状加热件9120,端面9534下侧成形有泵的排出端口9536朝下,端面9534上下两侧避开泵的排出端口9536延伸为泵的外壳9537,外壳9537上端向外延伸为设有环形密封槽9538的法兰9539,外壳9537下侧包围成控制腔室9670容纳控制组件9400。
加热组件9100套入下泵体9530,从下端封闭环形加热流道9610,套有橡胶密封环9101的管状加件9120下端卡入下泵体9530的卡槽9535密封,加热流道环9110的内孔同轴紧贴套入泵体9530的定子腔壁9532。
泵盖9510成形有泵的吸入口9511、法兰9516、环形卡槽9517、环形中壁9518,通过法兰9516盖合下泵体9530的法兰9539并通过外周螺栓紧固,通过环形密封槽9538中设置O形圈密封泵体并围合加热流道9610,通过环形卡槽9517卡入套有橡胶密封环9101的管状加热件9120上端密封,管状加热件9120和加热流道9610一同被围合。同时,泵盖9510的环 形中壁9518盖合下泵体9530的定子腔外壁环形台阶9533形成叶轮腔室9650,叶轮腔室9650包括吸入室9651、蜗室9652、下沉的转子腔室9653,容纳由叶轮9220和转子9210组合成的叶轮转子组件9200,蜗室9652液流穿出环形中壁9518流入加热流道9610。
下泵体9530的外壳9537的下侧部分围合成控制腔室9670装入控制组件9400,通过后盖9540盖合密封。
加热流道环9110的环形隔板9112、纵隔板9113与下泵体9530的端面9534、泵盖9510及其环形中壁9518、管状加热件9120共同围合形成流向往复的四层环形加热流道9610,从泵上端吸入口9511进入的液流经叶轮9220加压后由蜗室9652泵入环形加热流道9610,经管状加热件9120加热后,朝下往泵的吐出口9536排出,液流与管状加热件9120的管壁直接接触,热阻大大减少,热交换效率高。而且,与一条纵向流道相比,多层加热流道增长数倍,进一步提高了导热效率,但流阻有所增加,流量略有下降。
本实施例通过上述布置,环绕定子外周柱面围合形成腔体,供泵液体穿越,腔体内置有管状电加热件,管状加热件9120包绕环形加热流道9610,环形加热流道9610包绕电机定子9300,定子9300包绕转子9210,各组件大致同轴地从外而内顺序布置,巧妙利用了动力电池热管理系统中电泵的电加热功能仅于寒冷环境启动且有完善的温度控制,因而打破电动机不宜靠近热结构以免受损的常规,让内置电加热元件供泵液体穿越的腔体环绕于电动机柱面,使该电泵“T”字形的二侧空间得以利用,因而减少使用位置并便于实施高效率的流道设计,而电动机的温升仍可满足产品标准的要求,特别是减少了现有电泵加热元件占用的轴向空间。另外由于加热流道上游连通蜗室,液流经蜗室形成高压势能后再流入加热流道,提高了额定流量下的扬程。
在其它变形设计例中,加热流道9610由加热流道环9110朝内侧设置,再包绕管状加热件9120,管状加热件9120包绕电机定子9300。这样布置整体结构,也可实现了加热流道9610包绕泵的驱动电机和叶轮,节省了轴向空间,达到了高效导热的有益效果。
第三实施例
第三实施例的电泵是第一实施例的变形设计,主要设计的差异在于加热组件、泵盖、下泵体的安装、配合结构等。如图32、33、47所示,电泵同样包括加热组件8100、叶轮转子组件200、定子组件300、控制组件8400、泵盖8510、内隔水套8520、下泵体8530、后盖8540。
如图34-37所示,变形设计包括环形的内加热流道套8110、环形的外加热流道套8130、管状加热件8120和增设于加热组件下端的隔环8140。
环形的内加热流道套8110成形有内壁8111,不设外壁112和端面113,内壁下端成形有 缺口,内壁内圆周下端成形有3道均布的轴向凹槽,沿内壁外圆周均布成形有三道间隔大致120°的右螺旋形隔板8114,起到第一实施例内加热流道套的右螺旋形隔板114同样的隔离导流作用。
环形的外加热流道套8130成形有内壁8131,不设外壁132,内壁8131上端向内水平延伸为端面8133,下端成形有出线槽口8136,沿内壁8131的外圆周均布成形有三道间隔大致120°的左螺旋形隔板8134,起到第一实施例外加热流道套的左螺旋形隔板134同样的隔离导流作用。
管状加热件8120基材同样为不锈钢、铝或铜材等金属薄圆管,外表面覆盖绝缘的薄层电加热膜121引出导线8122。
在外加热流道套8130的端面8133涂覆平面密封胶后迎合套入的管状加热件8120上端面,构成环形的加热腔室620,导线8122对准出线槽口8136向下穿出,注入导热绝缘胶1204填充加热腔室620以供导热和密封电加热膜121,再用端面涂覆有平面密封胶的隔环8140盖合该空腔,导线8122贯穿隔环8140的出线孔。最后将内加热流道套8110套设在管状加热件8120内孔表面,这样,组成为加热组件8100。
隔板8140采用金属材料,用于封闭加热腔室620,也可以采用塑料材料以降低成本。管状加热件的管形可以采用圆形,也可以采用椭圆形、方形。
如图38-40所示,下泵体8530成形有大致呈环形的端面8531、向下延伸并设有外法兰的外壁8532、向上延伸的内环8533及中部向上凸起的凸环8535设有螺纹孔用于紧固加热组件8100,内环8533外表面成形有1个凸起和3个均布的轴向凸筋,内环8533和凸环8535之间设有连接隔板8534,起到第一实施例下泵体隔板534同样的隔离导流作用。
如图41、42所示,其安装、配合功能结构与第一实施例的内隔水套520大致相同。
参见图43-45所示,泵盖8510同样成形有泵的吸入口511和吐出口512、隔板8513、加热流道的进口514和出口515,外周壁8517延伸取代了第一实施例的外加热流道套的外壁132的围栏作用,外周壁8517同样设有法兰,用于盖合并紧固下泵体8530,其中,隔板8513是直的不是异形的,起到第一实施例泵盖隔板513同样的隔离导流作用。
如图33、47、48、49所示,加热组件8100套装下泵体8530,内加热流道套内壁8111套合下泵体内环8533,内加热流道套8110内壁8111下端的缺口与下泵体8530内环8533外表面的凸起卡合,3个凹槽与3个凸筋卡合,外加热流道套8130与隔环8140的螺栓通孔对齐下泵体8530的螺纹孔并用螺栓紧固。然后依次装入定子组件300、内隔水套8520、叶轮转子组件200,再套装入泵盖8510并用螺栓紧固于下泵体外壁8532的法兰。这样,外周壁8517和外加热流道套的内壁8131围合成外加热流道空间630,管状加热件8120内孔表面1201贴 合内加热流道套的螺旋形隔板8114,与内壁8111围合成内加热流道空间610。
如图49、23所示,加热流道所在空间位置、导流流线上下游连通方式与第一实施例相同,区别在于围合加热流道的围栏结构所属零件不同,即制造、安装结构不同:第一实施例中围合形成内加热流道611、612、613的螺旋形隔板114和外壁112都成形于内加热流道套110,围合形成外加热流道631、632、633的螺旋形隔板134和外壁132都成形于外加热流道套130;本实施例中围合形成内加热流道611、612、613的螺旋形隔板8114成形于内加热流道套8110,外壁112用管状加热件8120代替,这样,螺旋形隔板8114和管状加热件8120允许存在间隙,方便安装,而且管状加热件8120直接导热给液体,导热效率高,无需经外壁112间接导热,内加热流道套8110可以采用塑料不用导热金属,降低制造成本。围合形成外加热流道631、632、633的螺旋形隔板8134成形于外加热流道套8130,外壁132改为成形于泵盖8510上成为泵盖8510的外周壁8517,这样制造工艺性好,省却了一套法兰紧固结构;
螺旋形隔板8114、8134也可以改为直条形,只要能起到第一实施例加热流道611、612、613、631、632、633的围栏和导流作用即可,隔板8114也可以和内加热流道套8110分开成形,再通过焊接或铆接或卡接加以固接即可,隔板8134也可以和外加热流道套8130分开成形,再通过焊接或铆接或卡接加以固接。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图描述的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (38)

  1. 一种动力电池热管理系统用电泵,包括:
    泵体;
    安装在所述泵体内的电机;
    安装在所述泵体内的由电机驱动的叶轮(220;9220);
    安装在所述泵体内的液体加热装置,用于对叶轮(220;9220)从吸入口(511)吸入且从吐出口(512)排出的液体进行加热;
    其特征在于,所述液体加热装置包括:
    电机发热部件;
    套设在所述电机发热部件外侧的加热组件,用于在温度低于电池正常工作温度时,进行电热转换并接收电机产生的热能,利用电热转换的热能和电机产生的热能加热流动的液体;在温度达到电池正常工作温度时,利用所述流动的液体对电机散热。
  2. 根据权利要求1所述电泵,其特征在于,所述液体加热装置还包括:邻近所述加热组件的控制组件的发热部件,用于利用控制组件大功率器件产生的热能加热所述流体。
  3. 根据权利要求1或2所述电泵,其特征在于,电机发热部件是电机的定子组件;
    所述加热组件包括:
    套设在所述定子外侧的内加热流道套(110;8110);
    安装在内加热流道套(110;8110)外侧的管状加热件(120;8120)。
  4. 根据权利要求3所述电泵,其特征在于:所述内加热流道套(110;8110;9110)具有供液体流过的内加热流道空间(610);
    所述内加热流道空间(610)具有间隔设置在内加热流道套的内壁(111)与外壁(112)之间的呈螺旋形布置的多个内螺旋形隔板(114),用于将所述内加热流道空间(610)分隔为数段的螺旋形内加热流道(611;612;613)。
  5. 根据权利要求3所述电泵,其特征在于,所述加热组件还包括:安装在所述管状加热件(120)外侧的具有外加热流道空间(630)的外加热流道套(130),所述外加热流道空间(630)用于供液体通过;
    其中,所述外加热流道套(130)作为泵体的一部分安装在泵盖(510)与下泵体(530)之间。
  6. 根据权利要求5所述电泵,其特征在于,所述外加热流道空间(630)具有间隔设置在外加热流道套(120;8120)的内壁(131)与外壁(132)之间的呈螺旋形布置的多个外螺旋形隔板(134),用于将所述外加热流道空间(630)分隔为数段的螺旋形外加热流道(631;632;633),其中,所述螺旋形外加热流道(631;632;633)的螺旋方向与螺旋形内加热流道(611;612;613)的螺旋方向相反。
  7. 根据权利要求3所述电泵,其特征在于:所述管状加热件(120)包括:
    管状基体;
    贴合所述管状基体外表面(1201)的电加热膜(121);
    覆盖所述电加热膜(121)的导热绝缘胶(1204),所述导热绝缘胶(1204)外侧作为所述管状加热件的外侧。
  8. 根据权利要求3所述电泵,其特征在于,所述泵体包括带有泵盖(8510)的泵罩以及安装在所述泵罩底端的下泵体(8530)。
  9. 根据权利要求8所述电泵,其特征在于,所述内加热流道套(8110)包括:
    管状基体;
    设置在管状基体外壁(8111)上的多个内螺旋形隔板(8114);
    其中,所述多个螺旋形隔板(8114)的外端作为所述内加热流道套(8110)外侧接触所述管状加热件(8120)内壁(1202),从而在管状基体外壁(8111)与所述管状加热件(8120)内壁(1202)之间形成供液体流过的内加热流道空间(610),内加热流道空间(610)具有被数段内螺旋形隔板(8114)分隔的数段螺旋形内加热流道(611;612;613)。
  10. 根据权利要求9所述电泵,其特征在于,所述加热组件还包括:安装在所述管状加热件(8120)外侧的外加热流道套(8130),其包括:
    管状基体;
    设置在管状基体外壁(8131)上的多个外螺旋形隔板(8134),所述多个外螺旋形隔板(8134)的外端作为所述外加热流道套(8130)外侧;
    其中,在管状基体外壁(8134)与所述泵罩内表面之间形成供液体流过的外加热流道空间(630),外加热流道空间(630)具有被数段外螺旋形隔板(8134)分隔的数段螺旋形外加热流道(631;632;633);
    所述螺旋形外加热流道(631;632;633)的螺旋方向与螺旋形内加热流道(611;612;613)的螺旋方向相反。
  11. 根据权利要求8所述电泵,其特征在于:所述管状加热件(8120)包括:
    管状基体,其内壁(1202)作为管状加热件(8120)内侧接触所述内加热流道套(8110)外侧;
    贴合所述管状基体外表面(1201)的电加热膜(121),所述外加热流道套(8130)包围所述电加热膜(121)。
  12. 根据权利要求4-11任一项所述电泵,其特征在于,所述数段螺旋形内加热流道(611;612;613)与所述数段螺旋形外加热流道(631;632;633)通过连通装置相互连通,以便依次交错地将每段螺旋形内加热流道(611;612;613)与每段螺旋形外加热流道(631;632;633)串联连接,增加液体经过流道的加热时长。
  13. 根据权利要求12所述电泵,其特征在于,所述连通装置包括:
    设置在泵盖内的第一换向连通部件,用于将首段螺旋形内加热流道(611)的第一端与设置在泵盖上的泵吸入口(511)连通,将尾段螺旋形外加热流道(633)的第一端与设置在泵盖上的泵吐出口(512)连通,以及将其它段螺旋形内加热流道(612;613)的第一端交错地连接其它段螺旋形外加热流道(631;632)的第一端;
    设置在下泵体(530)上第二换向连通部件,用于将每段螺旋形内加热流道(611;612;613)的第二端连接每段螺旋形外加热流道(631;632;633)的第二端。
  14. 根据权利要求13所述电泵,其特征在于,所述数段螺旋形内加热流道包括第一段螺旋形内加热流道(611)、第二段螺旋形内加热流道(612)和第三段螺旋形内加热流道(613);所述数段螺旋形外加热流道包括第一段螺旋形外加热流道(631)、第二段螺旋形外加热流道(632)和第三段螺旋形外加热流道(633);
    所述第一换向连通部件设置在泵体的泵盖(510)内壁上,并且包括:
    用于将第一段螺旋形内加热流道(611)的第一端与泵吸入口(511)连通的加热流道进口槽(514);
    用于将第二段螺旋形内加热流道(612)的第一端与第一段螺旋形外加热流道(631)的第一端相连接的第一换向槽(691);
    用于将第三段螺旋形内加热流道(613)的第一端与第二段螺旋形外加热流道(632)第一端相连接的第二换向槽(692);
    用于将第三段螺旋形外加热流道(633)的第一端与泵吐出口(512)连通的加热流道出口槽(515)。
  15. 根据权利要求14所述电泵,其特征在于,所述加热流道进口槽(514)和所述加热流道出口槽(515)处于同一环形区域,所述加热流道进口槽(514)位于该环形区域的内侧,所述加热流道出口槽(515)位于该环形区域的外侧。
  16. 根据权利要求14所述电泵,其特征在于,所述第二换向连通部件设置在泵体的下泵体(530)端部上,并且包括:
    用于将第一段螺旋形内加热流道(611)的第二端与第一段螺旋形外加热流道(631)的第二端连通的第三换向槽(681);
    用于将第二段螺旋形内加热流道(612)的第二端与第二段螺旋形外加热流道(632)的第二端连通的第四换向槽(682);
    用于将第三段螺旋形内加热流道(613)的第二端与第三段螺旋形外加热流道(632)的第二端连通的第五换向槽(683)。
  17. 根据权利要求2所述电泵,其特征在于,所述泵体包括带有泵盖(9510)的泵罩以及安装在所述泵罩底端的下泵体(9530)。
  18. 根据权利要求17所述电泵,其特征在于,所述电机发热部件是电机的定子组件;
    所述加热组件包括:
    安装在所述定子外侧的加热流道环(9110);
    安装在所述加热流道环(9110)外侧的管状加热件(9120),在加热流道环(9110)与管状加热件(9120)之间形成加热流道空间;
    其中,所述管状加热件(9120)位于所述泵罩和下泵体之内。
  19. 根据权利要求18所述电泵,其特征在于,所述加热流道环(9110)包 括:
    管状基体;
    固定在所述管状基体外壁上的带有缺口的多道环形隔板(9112),用于将所述加热流道空间分隔成带有缺口的多层环形加热流道(9610);
    分别连接每道环形隔板(9112)一端的纵隔板(9113),用于使每道环形隔板(9112)的缺口成为液体出口,使多层环形加热流道(9610)首尾相连。
  20. 根据权利要求19所述电泵,其特征在于:首层环形加热流道与设置在泵盖上的吸入口(9511)连通;尾层环形加热流道与设置在下泵体上的吐出口(9536)连通。
  21. 一种动力电池热管理系统用电泵,包括:
    泵体;
    安装在所述泵体内的电机;
    安装在所述泵体内的由电机驱动的叶轮(220;9220);
    安装在所述泵体内的加热组件,用于对叶轮(220;9220)从吸入口(511)吸入且从吐出口(512)排出的液体进行加热;
    其特征在于,所述加热组件包括:
    安装在所述筒状定子外侧的内加热流道套(110;8110);
    安装在内加热流道套(110;8110)外侧的管状加热件(120;8120)。
  22. 根据权利要求21所述电泵,其特征在于:所述内加热流道套(110;8110;9110)具有供液体流过的内加热流道空间(610);
    所述内加热流道空间(610)具有间隔设置在内加热流道套的内壁(111)与外壁(112)之间的呈螺旋形布置的多个内螺旋形隔板(114),用于将所述内加热流道空间(610)分隔为数段的螺旋形内加热流道(611;612;613)。
  23. 根据权利要求21所述电泵,其特征在于,所述加热组件还包括:安装在所述管状加热件(120)外侧的具有外加热流道空间(630)的外加热流道套(130),所述外加热流道空间(630)用于供液体通过;
    其中,所述外加热流道套(130)作为泵体的一部分安装在泵盖(510)与下泵体(530)之间。
  24. 根据权利要求23所述电泵,其特征在于,所述外加热流道空间(630) 具有间隔设置在外加热流道套(120;8120)的内壁(131)与外壁(132)之间的呈螺旋形布置的多个外螺旋形隔板(134),用于将所述外加热流道空间(630)分隔为数段的螺旋形外加热流道(631;632;633),其中,所述螺旋形外加热流道(631;632;633)的螺旋方向与螺旋形内加热流道(611;612;613)的螺旋方向相反。
  25. 根据权利要求21所述电泵,其特征在于:所述管状加热件(120)包括:
    管状基体;
    贴合所述管状基体外表面(1201)的电加热膜(121);
    覆盖所述电加热膜(121)的导热绝缘胶(1204),所述导热绝缘胶(1204)外侧作为所述管状加热件的外侧。
  26. 根据权利要求21所述电泵,其特征在于,所述泵体包括带有泵盖(8510)的泵罩以及安装在所述泵罩底端的下泵体(8530)。
  27. 根据权利要求26所述电泵,其特征在于,所述内加热流道套(8110)包括:
    管状基体;
    设置在管状基体外壁(8111)上的多个内螺旋形隔板(8114);
    其中,所述多个内螺旋形隔板(8114)的外端作为所述内加热流道套(8110)外侧接触所述管状加热件(8120)内壁(1202),从而在管状基体外壁(8111)与所述管状加热件(8120)内壁(1202)之间形成供液体流过的内加热流道空间(610),内加热流道空间(610)具有被数段内螺旋形隔板(8114)分隔的数段螺旋形内加热流道(611;612;613)。
  28. 根据权利要求27所述电泵,其特征在于,所述加热组件还包括:安装在所述管状加热件(8120)外侧的外加热流道套(8130),其包括:
    管状基体;
    设置在管状基体外壁(8131)上的多个外螺旋形隔板(8134),所述多个外螺旋形隔板(8134)的外端作为所述外加热流道套(8130)外侧;
    其中,在管状基体外壁(8134)与所述泵罩内表面之间形成供液体流过的外加热流道空间(630),外加热流道空间(630)具有被数段外螺旋形隔板(8134)分隔的数段螺旋形外加热流道(631;632;633);
    所述螺旋形外加热流道(631;632;633)的螺旋方向与螺旋形内加热流道(611;612;613)的螺旋方向相反。
  29. 根据权利要求26所述电泵,其特征在于:所述管状加热件(8120)包括:
    管状基体,其内壁(1202)作为管状加热件(8120)内侧接触所述内加热流道套(8110)外侧;
    贴合所述管状基体外表面(1201)的电加热膜(121),所述外加热流道套(8130)包围所述电加热膜(121)。
  30. 根据权利要求22-29任一项所述电泵,其特征在于,所述数段螺旋形内加热流道(611;612;613)与所述数段螺旋形外加热流道(631;632;633)通过连通装置相互连通,以便依次交错地将每段螺旋形内加热流道(611;612;613)与每段螺旋形外加热流道(631;632;633)串联连接,增加液体经过流道的加热时长。
  31. 根据权利要求30所述电泵,其特征在于,所述连通装置包括:
    设置在泵盖内的第一换向连通部件,用于将首段螺旋形内加热流道(611)的第一端与设置在泵盖上的泵吸入口(511)连通,将尾段螺旋形外加热流道(633)的第一端与设置在泵盖上的泵吐出口(512)连通,以及将其它段螺旋形内加热流道(612;613)的第一端交错地连接其它段螺旋形外加热流道(631;632)的第一端;
    设置在下泵体(530)上第二换向连通部件,用于将每段螺旋形内加热流道(611;612;613)的第二端连接每段螺旋形外加热流道(631;632;633)的第二端。
  32. 根据权利要求31所述电泵,其特征在于,所述数段螺旋形内加热流道包括第一段螺旋形内加热流道(611)、第二段螺旋形内加热流道(612)和第三段螺旋形内加热流道(613);所述数段螺旋形外加热流道包括第一段螺旋形外加热流道(631)、第二段螺旋形外加热流道(632)和第三段螺旋形外加热流道(633);
    所述第一换向连通部件设置在泵体的泵盖(510)内壁上,并且包括:
    用于将第一段螺旋形内加热流道(611)的第一端与泵吸入口(511)连通的加热流道进口槽(514);
    用于将第二段螺旋形内加热流道(612)的第一端与第一段螺旋形外加热流道(631)第一端相连接的第一换向槽(691);
    用于将第三段螺旋形内加热流道(613)的第一端与第二段螺旋形外加热流道(632)第一端相连接的第二换向槽(692);
    用于将第三段螺旋形外加热流道(633)第一端与泵吐出口(512)连通的加热流道出口槽(515)。
  33. 根据权利要求32所述电泵,其特征在于,所述加热流道进口槽(514)和所述加热流道出口槽(515)处于同一环形区域,所述加热流道进口槽(514)位于该环形区域的内侧,所述加热流道出口槽(515)位于该环形区域的外侧。
  34. 根据权利要求33所述电泵,其特征在于,所述第二换向连通部件设置在泵体的下泵体(530)端部上,并且包括:
    用于将第一段螺旋形内加热流道(611)的第二端与第一段螺旋形外加热流道(631)的第二端连通的第三换向槽(681);
    用于将第二段螺旋形内加热流道(612)的第二端与第二段螺旋形外加热流道(632)的第二端连通的第四换向槽(682);
    用于将第三段螺旋形内加热流道(613)的第二端与第三段螺旋形外加热流道(632)的第二端连通的第五换向槽(683)。
  35. 一种动力电池热管理系统用电泵,包括:
    泵体;
    安装在所述泵体内的电机;
    安装在所述泵体内的由电机驱动的叶轮(220;9220);
    安装在所述泵体内的加热组件,用于对叶轮(220;9220)从吸入口(511)吸入且从吐出口(512)排出的液体进行加热;
    所述泵体包括带有泵盖(9510)的泵罩以及安装在所述泵罩底端的下泵体(9530)。
  36. 根据权利要求35所述电泵,其特征在于,所述加热组件包括:
    安装在所述定子外侧的加热流道环(9110);
    安装在所述加热流道环(9110)外侧的管状加热件(9120),在加热流道环(9110)与管状加热件(9120)之间形成加热流道空间;
    其中,所述管状加热件(9120)位于所述泵罩和下泵体(9530)之内。
  37. 根据权利要求36所述电泵,其特征在于,所述加热流道环(9110)包括:
    管状基体;
    固定在所述管状基体外壁上的带有缺口的多道环形隔板(9112),用于将所述加热流道空间分隔成带有缺口的多层环形加热流道(9610);
    分别连接每道环形隔板(9112)一端的纵隔板(9113),用于使每道环形隔板(9112)的缺口成为液体出口,使多层环形加热流道(9610)首尾相连。
  38. 根据权利要求37所述电泵,其特征在于:首层环形加热流道与设置在泵盖上的吸入口(9511)连通;尾层环形加热流道与设置在下泵体上的吐出口(9536)连通。
PCT/CN2021/109107 2020-08-07 2021-07-29 一种动力电池热管理系统用电泵 WO2022028298A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/020,128 US20230304499A1 (en) 2020-08-07 2021-07-29 Electric pump for power battery thermal management system
EP21852122.7A EP4195361A1 (en) 2020-08-07 2021-07-29 Electric pump for power battery thermal management system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010790659 2020-08-07
CN202010790659.7 2020-08-07
CN202010833914.1 2020-08-18
CN202010833914 2020-08-18
CN202011503338 2020-12-18
CN202011503338.0 2020-12-18

Publications (1)

Publication Number Publication Date
WO2022028298A1 true WO2022028298A1 (zh) 2022-02-10

Family

ID=80119911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109107 WO2022028298A1 (zh) 2020-08-07 2021-07-29 一种动力电池热管理系统用电泵

Country Status (4)

Country Link
US (1) US20230304499A1 (zh)
EP (1) EP4195361A1 (zh)
CN (5) CN114060288B (zh)
WO (1) WO2022028298A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI809381B (zh) * 2021-04-23 2023-07-21 美商海盜船記憶體股份有限公司 具有泵浦的水冷頭裝置
CN117189618A (zh) * 2022-05-31 2023-12-08 广东汉宇汽车配件有限公司 电动汽车电源热管理系统用电泵

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1964611A (zh) * 2005-11-08 2007-05-16 富准精密工业(深圳)有限公司 整合式液冷散热装置
CN101657137A (zh) 2007-04-12 2010-02-24 Bsh博世和西门子家用器具有限公司 具有加热装置的泵
CN101734133A (zh) * 2008-11-05 2010-06-16 新奥科技发展有限公司 一种动力电池加热温控系统
CN103089710A (zh) 2011-10-28 2013-05-08 德昌电机(深圳)有限公司 加热泵
CN106469841A (zh) * 2016-06-27 2017-03-01 洛阳市极诺电动车有限公司 一种电动车动力电池加热装置的操作方法
CN106985657A (zh) * 2017-03-26 2017-07-28 安徽安凯汽车股份有限公司 新能源纯电动客车电池电机联合热管理系统及热管理方法
CN107740773A (zh) * 2017-09-29 2018-02-27 广东威灵电机制造有限公司 电子水泵
CN108511848A (zh) * 2018-04-16 2018-09-07 安徽江淮汽车集团股份有限公司 一种电动汽车电池热管理系统
CN109154307A (zh) 2016-05-10 2019-01-04 Bsh家用电器有限公司 用于输送和加热导水的家用电器中的流体的流体热泵
US20200238818A1 (en) * 2019-01-28 2020-07-30 Honda Motor Co.,Ltd. Heat distribution device for hybrid vehicle

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU774947B2 (en) * 2000-06-08 2004-07-15 Gecko Alliance Group Inc. Heat exchanging means for a pump motor using a bypass tube within a recirculating water system
DE10064717A1 (de) * 2000-12-22 2002-07-11 Grundfos As Verfahren zum Betreiben eines Pumpenaggregats
DE102004019721A1 (de) * 2004-03-18 2005-10-06 Medos Medizintechnik Ag Pumpe
CN102748329B (zh) * 2011-04-15 2017-02-22 德昌电机(深圳)有限公司 加热泵
CN102689586A (zh) * 2012-05-31 2012-09-26 北京汽车新能源汽车有限公司 一种用于电动汽车的一体化温度控制系统
KR20140109313A (ko) * 2013-03-04 2014-09-15 레미 테크놀러지스 엘엘씨 양방향 유동을 갖는 냉각 재킷을 구비한 액냉식 회전 전기기계
DE102013211556A1 (de) * 2013-06-19 2014-12-24 E.G.O. Elektro-Gerätebau GmbH Heizeinrichtung für eine Pumpe und Pumpe
EP2852036A1 (en) * 2013-09-16 2015-03-25 ALSTOM Renewable Technologies Electric machine with closed circuit air cooling
DE102014204414A1 (de) * 2014-03-11 2015-09-17 Siemens Aktiengesellschaft Modul mit Fluidenergiemaschine
CN105090127B (zh) * 2014-05-20 2019-10-11 德昌电机(深圳)有限公司 加热泵
CN105570147A (zh) * 2014-10-13 2016-05-11 上海熊猫机械集团环保科技有限公司 一种热能泵
DE102016208020A1 (de) * 2016-05-10 2017-11-16 BSH Hausgeräte GmbH Flüssigkeitsheizpumpe zum Fördern und Aufheizen von Flüssigkeit in einem wasserführenden Haushaltsgerät
CN106025428B (zh) * 2016-05-26 2018-07-17 武汉理工大学 一种电动汽车电池热管理系统的循环装置及控制方法
JP7113177B2 (ja) * 2016-12-21 2022-08-05 パナソニックIpマネジメント株式会社 温度調和ユニット、温度調和システム及び車両
CN107313948B (zh) * 2017-07-31 2023-07-18 广东威灵电机制造有限公司 电机泵和洗碗机
WO2019046878A1 (en) * 2017-09-06 2019-03-14 Breville Pty Limited VACUUM DEVICE
CN108397424A (zh) * 2018-05-07 2018-08-14 王连春 一种水泵
CN108666704A (zh) * 2018-06-29 2018-10-16 威马智慧出行科技(上海)有限公司 一种换热装置
DE102019120798A1 (de) * 2018-08-07 2020-02-13 Hanon Systems Flüssigkeitspumpe
CN209101545U (zh) * 2018-09-03 2019-07-12 佛山市海德精工电子科技有限公司 一种液体加热装置
CN109114006B (zh) * 2018-10-22 2023-12-12 汉宇集团股份有限公司 一种具有加热功能的水泵
CN109687056B (zh) * 2018-12-21 2020-10-02 杭州热威电热科技股份有限公司 一种高效节能的新能源汽车电池包加热器
CN111120336A (zh) * 2019-12-06 2020-05-08 广东沃顿科技有限公司 加热泵及洗涤设备
CN111102735A (zh) * 2019-12-26 2020-05-05 佛山市海德精工电子科技有限公司 用于液体加热装置的内管及液体加热装置、制造方法
CN111482603B (zh) * 2020-04-30 2022-04-29 汕头大学 基于金属3d打印成形的涡流随形冷却水路的制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1964611A (zh) * 2005-11-08 2007-05-16 富准精密工业(深圳)有限公司 整合式液冷散热装置
CN101657137A (zh) 2007-04-12 2010-02-24 Bsh博世和西门子家用器具有限公司 具有加热装置的泵
CN101734133A (zh) * 2008-11-05 2010-06-16 新奥科技发展有限公司 一种动力电池加热温控系统
CN103089710A (zh) 2011-10-28 2013-05-08 德昌电机(深圳)有限公司 加热泵
CN109154307A (zh) 2016-05-10 2019-01-04 Bsh家用电器有限公司 用于输送和加热导水的家用电器中的流体的流体热泵
CN106469841A (zh) * 2016-06-27 2017-03-01 洛阳市极诺电动车有限公司 一种电动车动力电池加热装置的操作方法
CN106985657A (zh) * 2017-03-26 2017-07-28 安徽安凯汽车股份有限公司 新能源纯电动客车电池电机联合热管理系统及热管理方法
CN107740773A (zh) * 2017-09-29 2018-02-27 广东威灵电机制造有限公司 电子水泵
CN108511848A (zh) * 2018-04-16 2018-09-07 安徽江淮汽车集团股份有限公司 一种电动汽车电池热管理系统
US20200238818A1 (en) * 2019-01-28 2020-07-30 Honda Motor Co.,Ltd. Heat distribution device for hybrid vehicle

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Chinese Word Dictionary", 2000, SHANGHAI LEXICOGRAPHICAL PUBLISHING HOUSE
"Mechanical Engineering Manual and Electrical Engineering Manual", 1983, MECHANICAL INDUSTRY PRESS
"Power Supply System for Electric Vehicle", 2011, CHEMICAL INDUSTRY PRESS
"Pump and Fan", 2008, CHINA ELECTRIC POWER PRESS
"Pump Theory and Technology", 2014, MECHANICAL INDUSTRY PRESS

Also Published As

Publication number Publication date
CN114060288B (zh) 2023-09-08
CN114151385A (zh) 2022-03-08
CN114060288A (zh) 2022-02-18
US20230304499A1 (en) 2023-09-28
EP4195361A1 (en) 2023-06-14
CN114069104A (zh) 2022-02-18
CN117212184A (zh) 2023-12-12
CN114060287A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2022028298A1 (zh) 一种动力电池热管理系统用电泵
US9472995B2 (en) Water-cooled electrical motor
CN114233640B (zh) 一种高效散热的双流道水泵
CN107228074B (zh) 电子水泵
WO1999045273A1 (fr) Dispositif de regulation de performances pour machine hydraulique
WO2017054310A1 (zh) 离心泵
CN100587275C (zh) 用于温泉浴缸及浴池的泵
CN111425409B (zh) 一种内部液冷隔离式盘式无刷电子水泵
CN208203592U (zh)
CN111262392B (zh) 一种便于装配的水冷电机
CN114483598B (zh) 一种具有冷却液内循环的离心式屏蔽电机型屏蔽电泵
TWI714437B (zh) 液冷式散熱系統及其泵浦
CN217129824U (zh) 电动汽车电源热管理系统用电泵
CN109114006B (zh) 一种具有加热功能的水泵
CN208203593U (zh)
US10849255B2 (en) Cooling apparatus
CN220566300U (zh) 电子水泵和车辆
CN217652922U (zh) 电动汽车电源热管理系统用电泵
CN110529391A (zh)
WO2023082758A1 (zh) 毛发护理器
CN215582394U (zh) 一种散热装置、涡轮组件及呼吸机
CN218991974U (zh) 一种耐低温离心泵
CN219317250U (zh) 风叶结构及具有其的电机结构
CN208203598U (zh) 组合式泵体
WO2023232027A1 (zh) 电动泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021852122

Country of ref document: EP

Effective date: 20230307