WO2022028072A1 - 一种壳体结构、其制备方法及电子设备 - Google Patents

一种壳体结构、其制备方法及电子设备 Download PDF

Info

Publication number
WO2022028072A1
WO2022028072A1 PCT/CN2021/097266 CN2021097266W WO2022028072A1 WO 2022028072 A1 WO2022028072 A1 WO 2022028072A1 CN 2021097266 W CN2021097266 W CN 2021097266W WO 2022028072 A1 WO2022028072 A1 WO 2022028072A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal layer
metallic
metal
connection
Prior art date
Application number
PCT/CN2021/097266
Other languages
English (en)
French (fr)
Inventor
曹志宇
蔡明�
钟惠婷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21852372.8A priority Critical patent/EP4186693A4/en
Publication of WO2022028072A1 publication Critical patent/WO2022028072A1/zh
Priority to US18/163,798 priority patent/US20230176616A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1656Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/406Bright, glossy, shiny surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles

Definitions

  • the present application relates to the technical field of structural materials, and in particular, to a casing structure, a preparation method thereof, and an electronic device.
  • the comprehensive requirements for the density, strength, surface treatment and other aspects of the shell materials of notebook products are bound to become higher and higher. Performance requirements are often conflicting.
  • the density of magnesium alloy and carbon fiber can achieve the goal of lightweight compared with aluminum alloy, but the surface treatment method is single, and it cannot achieve the metallic luster and high-value effect similar to the appearance and texture of aluminum alloy after anodizing treatment.
  • the present application provides a casing structure, a preparation method thereof, and an electronic device, so that the casing structure has the comprehensive advantages of a metal-layer casing and a non-metal-layer casing.
  • a casing structure comprising an appearance effect layer, a metal layer, a connecting layer and a non-metallic layer arranged in layers; the connecting layer is used to combine the metal layer and the non-metallic layer ;
  • the appearance effect layer is formed based on the surface treatment of the metal layer.
  • the shell structure includes both a metal layer and a non-metal layer, and the metal layer and the non-metal layer are combined through the connection layer, so that the shell structure has the comprehensive advantages of the metal layer shell and the non-metal layer shell.
  • the appearance effect layer formed by the surface treatment of the metal layer can ensure that the shell structure has a high-quality metallic appearance.
  • the non-metallic layer is mainly used to reduce the overall density of the casing structure and provide strength support for the casing structure. Therefore, the material of the non-metallic layer needs to have characteristics such as low density, high strength, and easy forming.
  • the material of the non-metallic layer may include at least one of carbon fiber composite materials, glass fiber composite materials, engineering plastics, inorganic fiber composite materials, and the like.
  • the non-metallic layer may be formed by a molding process or an in-mold injection molding process, and the thickness of the non-metallic layer may be set to account for 60% to 80% of the total thickness of the casing structure. Therefore, the shell structure can have the advantages of low density, high strength, high appearance and metallic texture at the same time, which greatly improves the competitiveness of products.
  • the glass fiber composite material may comprise a glass fiber resin composite material.
  • the electromagnetic shielding function of the shell structure can be improved.
  • engineering plastics can generally include: refers to polycarbonate (PC), refers to the composite of polycarbonate (PC) and glass fiber (GF), refers to polycarbonate (PC) + terpolymer (ABS) compound, polystyrene (PG) + polyphenylene sulfide (PPS) compound, etc.
  • PC polycarbonate
  • PC polycarbonate
  • ABS terpolymer
  • PG polystyrene
  • PPS polyphenylene sulfide
  • the appearance effect layer is formed based on the surface treatment of the metal layer, which is mainly used to improve the appearance of the shell structure.
  • the surface treatment method may be anodizing treatment, colored micro-arc oxidation treatment, physical vapor deposition (Physical Vapor Deposition, PVD) coating treatment, electrophoresis treatment, or nano-imprinting, etc., which are not limited herein.
  • the appearance effect layer formed by different surface treatment methods will also have some other properties, such as protection, insulation, improving the bonding force with organic or inorganic coatings, etc. The specific properties are related to the surface treatment method and will not be described in detail here. . Since the appearance effect layer is formed based on the surface treatment of the metal layer, the proportion of the thickness of the appearance effect layer to the total thickness of the shell structure is negligible.
  • the purpose of disposing the metal layer is mainly to form the appearance effect layer
  • the material may be any thin-walled metal material capable of surface treatment and metal texture.
  • the material of the metal layer may include at least one of magnesium alloy, aluminum alloy, titanium alloy, steel, and amorphous alloy.
  • the material of the metal layer is steel, stainless steel can be selected.
  • the thickness of the metal layer can be set to be able to be surface-treated to form an appearance effect layer.
  • the thickness of the metal layer generally accounts for the total thickness of the shell structure. 15% to 30%.
  • the connecting layer is used to combine the metal layer and the non-metallic layer, and the total thickness of the connecting layer generally accounts for 2% to 20% of the total thickness of the shell structure.
  • connection layer includes a first connection layer and a second connection layer; the first connection layer is located on the side close to the metal layer, and the second connection layer is located close to the non-metallic layer layer side. That is, the metal layer and the non-metal layer are combined through two connecting layers.
  • the bonding force between the material of the first connection layer and the metal layer is greater than the bonding force between the material of the second connection layer and the metal layer, and the material of the second connection layer
  • the bonding force with the non-metallic layer is greater than the bonding force between the material of the first connection layer and the non-metallic layer. That is, the first connecting layer selects a material with better bonding force to the metal layer, and the second connecting layer selects a material with better bonding force for the non-metallic layer, so that the thermal expansion coefficient gradient between the metal layer and the non-metallic layer is Reduce and enhance the bonding force between the metal layer and the non-metal layer.
  • the material of the first connection layer In order to avoid a large number of air bubbles generated when the metal layer and the non-metal layer are combined through the first connection layer and the second connection layer, thereby affecting the bonding force of the metal layer and the non-metal layer, the material of the first connection layer also needs to have a higher level of the metal layer. Good wettability, therefore, the material of the first connection layer needs to be selected so that the ratio of the contact area between the first connection layer and the metal layer is greater than or equal to 90%. Similarly, the material of the second connection layer also needs to have good wettability to the non-metallic layer. Therefore, the material of the second connection layer needs to be selected so that the ratio of the contact area between the second connection layer and the non-metallic layer is greater than or equal to 90%. %.
  • the first connection layer may include a first glue layer
  • the second connection layer may include a second glue layer.
  • the bonding force between the metal layer and the non-metal layer is increased by using two glue layers.
  • the materials of the first glue layer and the second glue layer may be the same or different.
  • the materials of the first glue layer and the second glue layer are different, and the material of the first glue layer is selected from glue with strong affinity and binding force to metals, such as ring Oxygen resin glue, the material of the second glue layer is selected from glue with strong affinity and binding force to non-metals, such as polyurethane glue.
  • the bonding force between the metal layer and the non-metallic layer is greatly improved, and the gradient of the coefficient of thermal expansion (CTE) is reduced.
  • the first connection layer may include a solder layer
  • the second connection layer may include an electroplating layer
  • the electroplating layer is formed by electroplating metal on the non-metal layer . That is, the brazing material layer and the electroplating layer are used as the intermediate connecting layer between the metal layer and the non-metallic layer, so as to be combined by brazing.
  • the CTE gradient of the shell structure is greatly reduced, and the shell material structure with complex structure can be formed, and the deformation degree of the shell structure can be well controlled.
  • the welding technology can make the bonding force between the metal layer and the non-metal layer quite stable, and the long-term stability is greatly improved, which can meet the stamping and forming treatment of the post-process, and can realize the separation of raw material manufacturers and processing manufacturers, and the intermediate storage timeliness is greatly improved. improve.
  • the material of the electroplating layer may include at least one of tin, chromium, nickel, silver and copper.
  • the material of the solder layer may be low-temperature solder, such as tin-based solder. For environmental protection, it can be lead-free tin-based solder.
  • the first connection layer may include a micro-nanoporous layer, and the micro-nanoporous layer is formed based on the metal layer subjected to a micro-nano etching process;
  • the second The tie layer may include an adhesive layer.
  • the metal layer and the non-metal layer are combined through the micro-nano porous layer and the adhesive layer.
  • the micro-nano porous layer can greatly improve the adhesion between the metal and the non-metal. Binding force.
  • the material of the adhesive layer may be uniformly mixed by two kinds of resin glues in a certain proportion, such as AB resin glue.
  • the first connection layer may include a micro-nanoporous layer, and the micro-nanoporous layer is formed based on the metal layer subjected to a micro-nano etching process;
  • the second The connection layer may include a surface hole filling layer, and the material of the surface hole filling layer is the same as that of the non-metallic layer.
  • the surface hole filling layer can be formed by an injection molding process or a hot pressing damascene process, so that the surface hole filling layer and the non-metallic layer can be formed at the same time.
  • the non-metallic layer and the metal layer are directly compounded together through the micro-nano porous layer and the injection molding process or the hot pressing inlay process, which can reduce the intermediate process and have a high economic effect. From the process, the shell structure can be used.
  • the product has shell mass production and commerciality.
  • the first connection layer may include a micro-nanoporous layer, and the micro-nanoporous layer is formed based on the metal layer subjected to a micro-nano etching process;
  • the second The connection layer may include a surface hole filling layer, and the material of the surface hole filling layer is the same as that of the non-metallic layer.
  • the connection layer further includes a third connection layer; the third connection layer is located between the surface hole filling layer and the non-metallic layer, and the material of the third connection layer is glue. That is, the metal layer and the non-metal layer are combined through the micro-nano porous layer, the surface hole filling layer and the glue layer.
  • the present application provides an electronic device, comprising a circuit board and a casing structure in any of the foregoing technical solutions of the present application, wherein the casing structure is located outside the circuit board. Since the casing structure has the technical effects in the first aspect, the electronic device including the casing structure also has the comprehensive advantages of the metal-layer casing and the non-metal-layer casing, and has a high-quality metallic appearance.
  • the present application provides a method for preparing a casing structure, the preparation method comprising the steps of: combining a metal layer and a non-metallic layer through a connecting layer to form a laminated structure with a target casing shape, and The surface of the metal layer facing away from the non-metallic layer is subjected to surface treatment to form an appearance effect layer of the shell structure.
  • the shell structure formed by the preparation method has the comprehensive advantages of the metal layer shell and the non-metal layer shell.
  • the appearance effect layer formed by the surface treatment of the metal layer can ensure that the shell structure has a high-quality metallic appearance.
  • the material of the metal layer includes at least one of magnesium alloy, aluminum alloy, titanium alloy, steel and amorphous alloy;
  • the surface treatment includes: anodizing treatment, physical vapor deposition coating treatment, coloring micro-arc oxidation treatment, electrophoresis treatment or nano-imprinting treatment.
  • the material of the non-metallic layer includes at least one of carbon fiber composite materials, glass fiber composite materials, engineering plastics and inorganic fiber composite materials; the non-metallic layer is produced by a molding process or in-mold injection. Process formed.
  • non-metallic materials that are thermoplastic materials, such as carbon fiber composite materials molding can be used to make the non-metallic layer have the shape of a shell, and the subsequent metal layer only needs to be stamped and profiled.
  • a good stampable material, such as 5052-T6 aluminum alloy is formed by placing the formed non-metallic and metal layers on a stamping die, and then allowing the metal layer to be profiled.
  • the sheet can be formed by in-film injection molding, and finally formed into a shell shape by stamping.
  • the step of combining the metal layer and the non-metal layer through the connection layer to form a laminated structure with a target shell shape and the step of performing the step on the surface of the metal layer away from the non-metal layer side are performed.
  • the sequence of surface treatment to form the appearance effect layer of the shell structure is not limited, and the step of performing surface treatment on the surface of the metal layer away from the non-metal layer side to form the appearance effect layer of the shell structure can be performed in the step of After the metal layer and the non-metal layer are combined through the connection layer to form a laminated structure with a target shell shape, the step is to perform surface treatment on the surface of the metal layer on the side away from the non-metal layer to form the shell
  • the appearance effect layer of the structure can also be performed before the step of combining the metal layer and the non-metal layer through the connecting layer to form a laminated structure with the target shell shape, which can be determined according to the material of the non-metal layer in the shell structure and the specific structure.
  • the step of determining the surface treatment method is to combine the metal layer with the non-metal layer through a connection layer to form a laminated structure having a target shell shape, and the step of surface-treating the surface of the metal layer on the side away from the non-metal layer to form a surface treatment method. Describe the sequence of appearance effect layers of the shell structure.
  • a general step is to perform surface treatment on the surface of the metal layer on the side away from the non-metallic layer to form the appearance effect layer of the shell structure.
  • the step is performed after combining the metal layer and the non-metal layer through the connection layer and forming a laminated structure having a target shell shape.
  • the step is to perform surface treatment on the surface of the metal layer on the side away from the non-metallic layer to form the appearance effect of the shell structure
  • the layer needs to be carried out before the step of combining the metal layer and the non-metal layer through the connection layer and forming a laminated structure with the target shell shape.
  • the surface treatment process is a PVD coating process
  • the temperature is relatively high
  • the non-metal layer is just It is a material that is not resistant to high temperatures, such as carbon fiber composite materials.
  • the combination of the metal layer and the non-metal layer through a connection layer to form a laminated structure with a target shell shape specifically includes: using a first connection layer and a second connection layer to make the The metal layer is combined with the non-metal layer to form a laminated structure having a target shell shape. That is, the metal layer and the non-metal layer are combined through two connecting layers.
  • the metal layer and the non-metal layer are combined through the first connection layer and the second connection layer to form a laminated structure with a target shell shape, which specifically includes: A first glue layer is applied on the side of the metal layer facing the non-metal layer, and a second glue layer is applied on the side of the non-metal layer facing the metal layer; The metal layer of the layer and the non-metal layer formed with the second glue layer are punched to form a laminated structure having a target shell shape.
  • the bonding force between the metal layer and the non-metallic layer is greatly improved, and the gradient of the coefficient of thermal expansion (CTE) is reduced.
  • CTE coefficient of thermal expansion
  • the metal layer and the non-metal layer are compounded by gluing, and the good elongation of the metal layer and the glue layer is used for stamping and forming, and then combined with the surface of the non-agricultural metal layer, so that the shell structure has the capacity to be used in the product from the process. production and commercial.
  • the general step is to perform surface treatment on the surface of the metal layer on the side away from the non-metallic layer to form the appearance effect layer of the shell structure.
  • the step is performed after punching the metal layer formed with the first glue layer and the non-metal layer formed with the second glue layer to form a laminated structure with a target shell shape.
  • the step of surface treatment on the surface of the metal layer away from the non-metallic layer to form the appearance effect layer of the shell structure needs to be performed in the step to form the appearance effect layer.
  • the metal layer with the first glue layer and the non-metal layer with the second glue layer are punched and processed before forming the laminated structure having the target shell shape.
  • the surface treatment process is PVD coating process
  • the temperature is relatively high
  • the non-metallic layer is just a material that is not resistant to high temperature, such as carbon fiber composite materials.
  • the metal layer formed with the first glue layer and the non-metal layer formed with the second glue layer are formed in the step.
  • the metal layer is away from the non-metal
  • the method further includes: punching the metal layer so that the metal layer has the original shape of the target shell. That is, an appearance effect layer is formed on the surface of the metal layer after the metal layer has the initial shape of the target shell.
  • the metal layer and the non-metal layer are combined through the first connection layer and the second connection layer to form a laminated structure having a target shell shape, which specifically includes: The side of the metal layer facing the non-metal layer is subjected to a micro-nano etching process to form a micro-nano hole layer, and an adhesive layer is attached to the side of the metal layer facing the non-metal layer; The metal layer of the micro-nano porous layer and the non-metallic layer attached with the adhesive layer are punched to form a laminated structure with a target shell shape. The metal layer and the non-metal layer are combined through the micro-nano porous layer and the adhesive layer. Compared with the conventional adhesive process, the micro-nano porous layer can greatly improve the adhesion between the metal and the non-metal. Binding force.
  • the metal layer is separated from the non-metallic layer by a distance.
  • the surface of the side is subjected to surface treatment to form the appearance effect layer.
  • the metal layer and the non-metal layer are combined through the connection layer to form a laminated structure with a target shell shape, which specifically includes: using an electroplating process to face the non-metal layer on the non-metal layer.
  • An electroplating layer is formed on one side of the metal layer; a brazing material layer is formed between the metal layer and the electroplating layer and brazing treatment is performed, so that the metal layer and the non-metallic layer pass through the brazing material layer and the The electroplating layer is combined; the combined metal layer and the non-metal layer are punched to form a laminated structure with a target shell shape.
  • the brazing material layer and the electroplating layer are used as the intermediate connecting layer between the metal layer and the non-metallic layer, so as to be combined by brazing.
  • the CTE gradient of the formed shell structure is greatly reduced, and the shell material structure with complex structure can be formed, and its deformation degree can be well controlled.
  • the welding technology can make the bonding force between the metal layer and the non-metal layer quite stable, and the long-term stability is greatly improved, which can meet the stamping and forming treatment of the post-process, and can realize the separation of raw material manufacturers and processing manufacturers, and the intermediate storage timeliness is greatly improved. improve.
  • the metal layer is separated from the non-metallic layer by a distance.
  • the surface of the side is subjected to surface treatment to form the appearance effect layer.
  • the connecting the metal layer and the non-metallic layer to form a laminated structure with a target shell shape specifically includes: forming a metal layer with an initial shape of the target shell; The side of the metal layer facing the non-metallic layer is subjected to a micro-nano etching process to form a micro-nano porous layer; the non-metallic material is injected into the micro-nano porous layer by an injection molding process to form a surface hole filling layer, and A non-metallic layer is formed on the side of the surface hole filling layer away from the metal layer to obtain a laminated structure having the target shell shape; A surface hole filling layer is formed, and a non-metallic layer is formed on the side of the surface hole filling layer away from the metal layer to obtain a laminated structure with a target shell shape.
  • the non-metallic layer and the metal layer are directly compounded together through the micro-nano porous layer and the injection molding process or the hot pressing inlay process, which can reduce the intermediate process and have a high economic effect. From the process, the shell structure can be used.
  • the product has shell mass production and commerciality.
  • the metal layer is separated from the non-metallic layer by a distance.
  • the surface of the side is subjected to surface treatment to form the appearance effect layer.
  • the present application provides a casing structure, and the casing structure is prepared and formed by the preparation method in any of the above technical solutions of the present application.
  • the shell structure has the comprehensive advantages of the metal layer shell and the non-metal layer shell. Moreover, the appearance effect layer formed by the surface treatment of the metal layer can ensure that the shell structure has a high-quality metallic appearance.
  • the present application provides an electronic device, including a circuit board and a casing structure in any of the above technical solutions of the present application, wherein the casing structure is located outside the circuit board. Since the casing structure has the technical effects in the fourth aspect, the electronic device including the casing structure also has the comprehensive advantages of the metal-layer casing and the non-metal-layer casing, and has a high-quality metallic appearance.
  • FIG. 1 shows a schematic structural diagram of a housing structure provided by an embodiment of the present application
  • FIG. 2 shows a schematic flowchart of a method for preparing a casing structure provided by an embodiment of the present application
  • FIG. 3 shows a schematic structural diagram of another casing structure provided by an embodiment of the present application.
  • FIG. 4 shows a schematic structural diagram of another casing structure provided by an embodiment of the present application.
  • FIG. 5 shows a schematic flowchart of another method for preparing a casing structure provided by an embodiment of the present application
  • FIG. 6 shows a schematic diagram of a process route corresponding to a shell structure provided by an embodiment of the present application
  • FIG. 7 shows a schematic flowchart of another method for preparing a casing structure provided by an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of a process route corresponding to another shell structure provided in an embodiment of the present application.
  • FIG. 9 shows a schematic flowchart of another method for preparing a casing structure provided by an embodiment of the present application.
  • FIG. 10 shows another structural schematic diagram of the casing structure in the embodiment of the present application.
  • FIG. 11 shows another schematic flow chart of the method for preparing the casing structure in the embodiment of the present application.
  • FIG. 12 shows a schematic diagram of a process route corresponding to another shell structure provided by an embodiment of the present application.
  • FIG. 13 shows a schematic flow diagram of a method for preparing a casing structure in an embodiment of the present application
  • FIG. 14 shows another structural schematic diagram of the housing structure in the embodiment of the present application.
  • FIG. 15 shows another schematic flow chart of the method for preparing the casing structure in the embodiment of the present application.
  • FIG. 16 shows a schematic diagram of a process route corresponding to another shell structure provided by an embodiment of the present application.
  • FIG. 17 shows a schematic flow diagram of a method for preparing a casing structure in an embodiment of the present application
  • FIG. 18 shows another structural schematic diagram of the casing structure in the embodiment of the present application.
  • FIG. 19 shows another schematic flow chart of the method for preparing the casing structure in the embodiment of the present application.
  • FIG. 20 shows a schematic diagram of a process route corresponding to yet another shell structure provided by an embodiment of the present application
  • FIG. 21 shows a schematic flow diagram of a method for preparing a casing structure in an embodiment of the present application
  • FIG. 22 shows another structural schematic diagram of the housing structure in the embodiment of the present application.
  • FIG. 23 shows another schematic flow chart of the manufacturing method of the casing structure in the embodiment of the present application.
  • the casing structure proposed in the embodiments of the present application can be applied to electronic equipment, for example, can be applied to any external casing of a notebook computer, mobile phone or tablet computer, etc.
  • Shell C shell
  • D shell lower shell of the main unit
  • battery back cover shell etc.
  • the housing structures proposed in the embodiments of the present application are intended to include, but not be limited to, application in these and any other suitable types of electronic devices.
  • the embodiments of the present application aim to provide a casing structure that has both the comprehensive advantages of non-metal and metal, and has a high-value appearance at the same time.
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • FIG. 1 exemplarily shows a structural schematic diagram of the casing structure in the embodiment of the present application.
  • the casing structure includes an appearance effect layer 01 , a metal layer 02 , a connection layer 03 and a non-metallic layer 04 arranged in layers; the connection layer 03 is used to connect the metal layer 02 to the non-metallic layer 04 The layer 04 is combined; the appearance effect layer 01 is formed based on the surface treatment of the metal layer 02 .
  • the shell structure includes both the metal layer 02 and the non-metal layer 04.
  • the metal layer 02 and the non-metal layer 04 are combined through the connection layer 03, so that the shell structure has both a metal layer shell and a non-metal layer shell. comprehensive advantages.
  • the appearance effect layer 01 formed by the surface treatment of the metal layer 02 can ensure that the shell structure has a high-quality metallic appearance.
  • the non-metallic layer is mainly used to reduce the overall density of the casing structure and provide strength support for the casing structure. Therefore, the material of the non-metallic layer needs to have characteristics such as low density, high strength, and easy forming.
  • the material of the non-metallic layer may include at least one of carbon fiber composite materials, glass fiber composite materials, engineering plastics and inorganic fiber composite materials, and the non-metallic layer is formed by a molding process or an in-mold injection molding process.
  • the thickness of the non-metallic layer can be set to account for 60% to 80% of the total thickness of the shell structure. Therefore, the shell structure can have the advantages of low density, high strength, high appearance and metallic texture at the same time, which greatly improves the competitiveness of products.
  • the glass fiber composite material may include a glass fiber resin composite material. Further, when the glass fiber composite material is composed of 30% glass fiber (GF) and 70% polyphenylene sulfide (PPS), the electromagnetic shielding function of the shell structure can be improved.
  • GF glass fiber
  • PPS polyphenylene sulfide
  • Engineering plastics can generally include: refers to polycarbonate (PC), refers to the composite of polycarbonate (PC) and glass fiber (GF), refers to the composite of polycarbonate (PC) + terpolymer (ABS),
  • PC polycarbonate
  • PC polycarbonate
  • ABS glass fiber
  • PG polystyrene
  • PPS polyphenylene sulfide
  • the appearance effect layer is formed based on the surface treatment of the metal layer, which is mainly used to improve the appearance of the shell structure.
  • the surface treatment method may be anodizing treatment, colored micro-arc oxidation treatment, physical vapor deposition (Physical Vapor Deposition, PVD) coating treatment, electrophoresis treatment, or nano-imprinting, etc., which are not limited herein.
  • the appearance effect layer formed by different surface treatment methods will also have some other properties, such as protection, insulation, improving the bonding force with organic or inorganic coatings, etc. The specific properties are related to the surface treatment method and will not be described in detail here. . Since the appearance effect layer is formed based on the surface treatment of the metal layer, the proportion of the thickness of the appearance effect layer to the total thickness of the shell structure is negligible.
  • the purpose of disposing the metal layer is mainly to form the appearance effect layer
  • the material may be any thin-walled metal material that can be surface-treated and has the characteristics of metallic texture.
  • the material of the metal layer may include at least one of magnesium alloy, aluminum alloy, titanium alloy, steel, and amorphous alloy.
  • the thickness of the metal layer can be set to be able to be surface-treated to form an appearance effect layer. In the specific implementation, the thickness of the metal layer generally accounts for 15% of the total thickness of the shell structure. 30%.
  • the connecting layer is used to combine the metal layer and the non-metallic layer, and the total thickness of the connecting layer generally accounts for 2% to 20% of the total thickness of the shell structure.
  • FIG. 2 exemplarily shows a schematic flowchart of a method for preparing a casing structure provided by an embodiment of the present application. As shown in Figure 2, the method mainly includes the following steps:
  • Step S202 can be performed after step S201, and step S202 can also be performed before step S201. Specifically, it can be determined according to the material of the non-gold layer in the casing structure. And the specific surface treatment method determines the sequence of step S201 and step S202.
  • FIG. 2 is merely an example in which step S202 follows step S201 for illustration.
  • step S202 is performed after step S201.
  • step S202 if the surface treatment process will affect the performance of the non-metallic layer, then step S202 needs to be performed before step S201.
  • the surface treatment process is a PVD coating process
  • the temperature is relatively high, and the non-metallic layer is just right It is also a material that is not resistant to high temperature, such as carbon fiber composite materials.
  • connection layer may be a layer of glue.
  • a layer of glue can be coated on the surface of the non-metallic layer, and then the metal layer is pressed onto the non-metallic layer by a pressure-holding fixture, heated to the curing temperature of the glue, and kept for a period of time to completely cure the glue . After the bonding is cured, the temperature is lowered to 50°C to 60°C, and the pressure-holding jig is removed to obtain the combined metal layer and non-metal layer.
  • FIG. 3 exemplarily shows another structural schematic diagram of the casing structure in the embodiment of the present application.
  • the connection layer includes a first connection layer 031 and a second connection layer 032; the metal layer 02 and the non-metallic layer 04 are combined through the first connection layer 031 and the second connection layer 033,
  • the first connection layer 031 is located on the side close to the metal layer 02
  • the second connection layer 032 is located on the side close to the non-metal layer 04 . That is, the shell structure realizes the combination of the metal layer and the non-metal layer through two connecting layers.
  • the bonding force between the material of the first connection layer 03 and the metal layer 02 is greater than the bonding force between the material of the second connection layer 03 and the metal layer 02, and the material of the second connection layer 03 and the non-metallic layer
  • the bonding force of 04 is greater than the bonding force of the material of the first connecting layer 02 and the non-metallic layer 04, that is, the first connecting layer 031 is selected to have a better bonding force to the metal layer 02, and the second connecting layer 032 is selected to be non-metallic.
  • the layer 04 has a material with good bonding force, so that the gradient of the thermal expansion coefficient between the metal layer 02 and the non-metal layer 04 is reduced, and the bonding force between the metal layer 02 and the non-metal layer 04 is enhanced.
  • the material of the first connection layer In order to avoid a large number of air bubbles generated when the metal layer and the non-metal layer are combined through the first connection layer and the second connection layer, thereby affecting the bonding force of the metal layer and the non-metal layer, the material of the first connection layer also needs to have a higher level of the metal layer. Good wettability, therefore, the material of the first connection layer needs to be selected so that the ratio of the contact area between the first connection layer and the metal layer is greater than or equal to 90%. Similarly, the material of the second connection layer also needs to have good wettability to the non-metallic layer. Therefore, the material of the second connection layer needs to be selected so that the ratio of the contact area between the second connection layer and the non-metallic layer is greater than or equal to 90%. It should be noted that the contact area ratio refers to the ratio of the area of the area where the two surfaces contact each other to the area of the area where the two surfaces overlap each other.
  • the first connection layer and the second connection layer may have various implementations.
  • the shell structure of the present application will be further exemplified for different implementations of the first connection layer and the second connection layer. .
  • FIG. 4 exemplarily shows another structural schematic diagram of the casing structure in the embodiment of the present application.
  • the first connection layer may include a first glue layer 0311
  • the second connection layer may include a second glue layer 0321 .
  • the materials of the first glue layer 0311 and the second glue layer 0321 may be the same or different.
  • the shell structure includes an appearance effect layer 01 , a metal layer 02 , a first glue layer 0311 , a second glue layer 0321 and a non-metallic layer 04 which are arranged in layers.
  • the material of the first glue layer 0311 can be glue with strong affinity and binding force to metals, such as epoxy resin glue
  • the material of the second glue layer 0321 can be glue with strong affinity and binding force to non-metals , such as polyurethane glue
  • the material of the metal layer 02 can be any one of magnesium alloy, aluminum alloy, titanium alloy, steel and amorphous alloy
  • the material of the non-metal layer 04 can be carbon fiber composite material, glass fiber composite material, engineering plastic and inorganic fiber composite material any of the materials.
  • the appearance effect layer 01 can be formed by any one of the surface treatment methods of anodizing treatment, coloring micro-arc oxidation treatment, PVD coating treatment, electrophoresis treatment and nano-imprinting treatment based on the metal layer 02 .
  • FIG. 5 exemplarily shows a schematic flow chart of the manufacturing method of the casing structure provided by the above embodiments of the present application.
  • the preparation method mainly includes the following steps:
  • the sequence of coating the first glue layer and coating the second glue layer is not specifically limited.
  • the first glue layer may be applied on the side of the metal layer facing the non-metal layer first, and then the second glue layer may be applied on the side of the non-metal layer facing the metal layer.
  • the second glue layer may be firstly coated on the side of the non-metallic layer facing the metal layer, and then the first glue layer may be coated on the side of the metal layer facing the non-metallic layer.
  • the first glue layer is applied on the side of the metal layer facing the non-metal layer
  • the second glue layer can be applied on the side of the non-metal layer facing the metal layer.
  • step S503 can be performed after step S502, step S503 can also be performed before step S502, or step S503 can also be performed before step S501.
  • the material and the specific surface treatment method determine the best execution time of step S503.
  • FIG. 5 is only an example in which step S503 is followed by step S502 for illustration.
  • step S503 is performed after step S502.
  • step S503 needs to be performed before step S502.
  • the surface treatment process is PVD coating process
  • the temperature is relatively high
  • the non-metallic layer is just a material that is not resistant to high temperature, such as carbon fiber composite materials.
  • step S503 when step S503 is performed before step S502, in order to avoid damage to the appearance effect layer during the molding of the metal layer and thus affect the yield of the product, the surface of the metal layer away from the non-metallic layer is subjected to surface treatment to form an appearance.
  • the method further includes: stamping the metal layer, so that the metal layer has the initial shape of the target shell. That is, an appearance effect layer is formed on the surface of the metal layer after the metal layer has the initial shape of the target shell.
  • Example 1 Taking the case where the case structure is applied to the A case of a notebook computer, and the total thickness of the case structure is required to be 0.8 mm as an example, Example 1 will be further exemplified.
  • the metal layer is formed by a thin-walled aluminum alloy material, such as a 5XXX aluminum alloy thin-walled material or a 6XXX aluminum alloy thin-walled material.
  • the thickness of the metal layer is 0.1mm, the yield strength is ⁇ 150Mpa, the tensile strength is ⁇ 240Mpa, and the elongation is ⁇ 15%.
  • the material of the first glue layer is epoxy resin glue, the material of the second glue layer is polyurethane glue, and the total thickness of the first glue layer and the second glue layer is 0.1 mm.
  • the non-metallic layer can be formed by a carbon fiber composite material through a molding process, the thickness of the non-metallic layer is 0.6mm, and its tensile strength is ⁇ 600MPa.
  • the appearance effect layer may be formed by anodizing the aluminum alloy metal layer.
  • the carbon fiber composite material is firstly formed by a molding method to form a non-metallic layer with the initial shape of the A shell, and then a second glue layer is coated on the surface of the non-metallic layer, and a first glue layer is coated on the surface of the metal layer,
  • the non-metal layer and the metal layer are placed in the stamping die, and the metal layer is copied according to the surface morphology of the non-metal layer.
  • a shell structure with an A-shell shape is finally obtained.
  • the process route corresponding to the shell structure is shown in FIG. 6 . Its specific preparation method is shown in Figure 7, including the following steps:
  • the long fibers of carbon fibers of T600 or T800 and above are woven in the length direction of the A shell, and composited with the resin material, and molded into the non-metallic layer of the carbon fiber resin matrix composite material with the initial shape of the A shell through the molding process.
  • the used molding die is designed in advance according to the shape of the A shell, and the height between the male die surface and the female die surface is 0.6mm, so that the film layer of 0.6mm can be formed.
  • the molding pressure is controlled at about 0.5MPa
  • the molding temperature is controlled at 50°C ⁇ 200°C
  • the pressure holding time is controlled at 15min ⁇ 60min.
  • a layer of polyurethane glue is applied on the side of the non-metallic layer with the initial shape of the A shell that faces the metal layer by brushing glue, and the thickness of the polyurethane glue layer is 0.045mm-0.055mm.
  • the width of the glue brushing and the structural form of the glue brushing fixture are designed according to the shape of the non-metallic layer to ensure that the coating can be completed at most twice.
  • the glue brushing speed is 10mm/s ⁇ 15mm/s, which can ensure that the thickness of the polyurethane glue layer is uniform.
  • the 0.1 mm thick aluminum alloy sheet is cut into corresponding sizes by laser cutting according to the product requirements to obtain a 0.1 mm thick metal layer with a size corresponding to the shape of the A shell.
  • the laser power is 20W ⁇ 30W
  • the traveling speed is 100mm/s ⁇ 200mm/s
  • the aluminum alloy sheet can be a 5052-H32 aluminum alloy sheet.
  • the metal layer can be placed in the corresponding fixture for fixing, and a layer of epoxy resin glue layer is applied on the side of the metal layer facing the non-metal layer by brushing glue, and the thickness of the epoxy resin glue layer is 0.045 mm ⁇ 0.055mm.
  • the width of the glue is consistent with the width of the A shell.
  • the glue is applied at one time, and the speed of the glue is 10mm/s ⁇ 15mm/s, which can ensure the uniform thickness of the epoxy resin glue layer.
  • the non-metallic layer coated with the second glue layer is placed in the female die of the stamping die and fixed, and the metal layer coated with the first glue layer is placed on the male die at the same time.
  • the layer is opposite to the second glue layer, and the stamping die is pressed down to make the metal layer imitate the surface shape of the non-metallic layer.
  • the stamping die is released and trimmed to obtain a formed laminated structure with the shape of A shell.
  • the holding pressure is 30T ⁇ 50T, and the holding time is 10min ⁇ 30min.
  • the formed laminated structure with the shape of the A shell needs to be subjected to acid-base cleaning, pure water cleaning, grinding and polishing and other treatments.
  • processes such as ultrasonic cleaning and drying are also required, and finally a shell structure that can be applied to the A shell of a notebook computer is obtained.
  • the shell structure has anodized appearance effect, and its tensile strength can reach more than 600MPa, and its density is 1.70g/cm3 ⁇ 1.80g/cm3, which can meet the requirements of product weight, appearance metal texture, appearance reliability and mechanical strength at the same time. Require.
  • the coloring treatment can be carried out after the anodic oxidation treatment.
  • the above-mentioned shell structure provided by the present application can reduce the shell density to 1.70g/cm3 to 1.80g/cm3 and increase the tensile strength to more than 600MPa under the premise of realizing the appearance and metallic texture of aluminum alloy anodization, which is higher than that of aluminum alloy.
  • the alloy density is reduced by more than 34%, and the strength is increased by more than 120%, which can meet the requirements of product weight, appearance metal texture, appearance reliability and mechanical strength at the same time.
  • the metal layer is formed by a thin-walled steel material through a stamping process, for example, a stainless steel thin-walled material, the stainless steel can be 304, 316 or 316L stainless steel, and the thickness of the metal layer is 0.1mm, its yield strength ⁇ 250Mpa, tensile strength ⁇ 600Mpa, elongation ⁇ 30%; the appearance effect layer is formed by PVD coating on the steel metal layer.
  • the carbon fiber composite material is firstly formed into a non-metallic layer with the initial shape of the A shell by molding, and then a second glue layer is coated on the surface of the non-metallic layer, and the steel sheet is punched into the initial shape of the A shell.
  • a first glue layer is coated on the surface of the metal layer, the non-metallic layer and the metal layer are placed in a stamping die for pressing, and the edges are trimmed to form a combined structure with the shape of an A shell.
  • the process route corresponding to the shell structure is shown in FIG. 8 . Its specific preparation method is shown in Figure 9, including the following steps:
  • the long fibers of carbon fibers of T600 or T800 and above are woven in the length direction of the A shell, and composited with the resin material, and molded into the non-metallic layer of the carbon fiber resin matrix composite material with the initial shape of the A shell through the molding process.
  • the used molding die is designed according to the shape of the A shell, and the height between the male die surface and the female die surface is 0.6mm, so that the film layer of 0.6mm can be formed.
  • the molding pressure is controlled at about 0.5MPa
  • the molding temperature is controlled at 50°C ⁇ 200°C
  • the pressure holding time is controlled at 15min ⁇ 60min.
  • the specific implementation is to apply a layer of polyurethane glue on the side of the non-metallic layer with the initial shape of the A shell that faces the metal layer by brushing glue.
  • the structure of the fixture is designed according to the shape of the non-metallic layer to ensure that the coating can be completed at most twice, and the speed of brushing glue is 10mm/s ⁇ 15mm/s, which can ensure that the thickness of the polyurethane glue layer is uniform.
  • a 0.1 mm thick stainless steel sheet is cut into corresponding sizes by laser cutting according to product requirements to obtain a 0.1 mm thick metal layer with a size corresponding to the shape of the A shell.
  • the laser power is 20W ⁇ 30W
  • the traveling speed is 100mm/s ⁇ 200mm/s
  • the stainless steel sheet can be SUS316 stainless steel sheet.
  • a metal layer with a thickness of 0.1 mm with a set size is placed in a corresponding stamping die for stamping forming, so that it has the initial shape of the A shell.
  • the stamping pressure is at least 20T to 30T, the pressure holding time is at least 3min, and the stamping temperature is room temperature.
  • the side of the metal layer away from the non-metallic layer is cleaned, and then PVD coating treatment is performed on it.
  • PVD coating treatment a suitable sputtering target can be selected according to the product color requirements, and the furnace temperature is kept at 80°C ⁇ 120°C.
  • the metal layer can be placed in the corresponding fixture for fixing, and a layer of epoxy resin glue layer is applied on the side of the metal layer facing the non-metal layer by brushing glue, and the thickness of the epoxy resin glue layer is 0.045 mm ⁇ 0.055mm.
  • the width of the glue is consistent with the width of the A shell.
  • the glue is applied at one time, and the speed of the glue is 10mm/s ⁇ 15mm/s, which can ensure the uniform thickness of the epoxy resin glue layer.
  • the non-metallic layer coated with the second glue layer is placed in the female die of the stamping die and fixed, and the metal layer coated with the first glue layer is placed on the male die at the same time.
  • the layer is opposite to the second glue layer, and the stamping die is pressed down to combine the two. After holding for a period of time, the stamping die is released and trimmed to obtain a formed shell structure with the shape of an A shell.
  • the holding pressure is 30 ⁇ 50T, and the holding time is 10min ⁇ 30min.
  • the shell structure has the appearance of PVD coating, and its tensile strength can reach more than 700MPa, and the density is 2.40g/cm3 ⁇ 2.50g/cm3, which can meet the requirements of product weight, appearance metal texture, appearance reliability and mechanical strength at the same time. .
  • the above-mentioned shell structure provided by the present application can reduce the density of the shell material to 2.40g/cm3 to 2.50g/cm3 and increase the tensile strength to more than 700MPa under the premise of realizing the appearance and metallic texture of the stainless steel PVD coating, which is higher than that of stainless steel.
  • the density is reduced by more than 65%, which can meet the requirements of product weight, appearance metal texture, appearance reliability and mechanical strength at the same time.
  • the shell structure has the comprehensive advantages of non-metal and metal at the same time;
  • the connection layer is divided into two layers, the first connection layer and the second connection layer are glues with strong affinity and binding force for metals and non-metals respectively Compared with the prior art, the bonding force between the metal layer and the non-metal layer is greatly improved, and the coefficient of thermal expansion (CTE) gradient is reduced, and the shell structure with complex structure can be formed, and its deformation degree can be well controlled;
  • the non-metallic layer is formed into the initial shape of the target shell through a molding process, the metal layer and the non-metallic layer are compounded by bonding, and the good elongation of the metal layer and the glue layer is used for stamping molding, and then combined with the non-agricultural metal layer.
  • the surface, from the process, makes the shell structure have mass production and commercial use in the use of products.
  • FIG. 10 exemplarily shows another structural schematic diagram of the casing structure in the embodiment of the present application.
  • the first connection layer may include a solder layer 0312
  • the second connection layer may include a plating layer 0322.
  • the shell structure includes an appearance effect layer 01 , a metal layer 02 , a brazing material layer 0312 , an electroplating layer 0322 and a non-metallic layer 04 which are arranged in layers.
  • the material of the solder layer 0312 may be low-temperature solder, such as tin-based solder, and further, for environmental protection, it may be lead-free tin-based solder.
  • the electroplating layer 0322 is formed by electroplating metal on the non-metallic layer 04, and the material of the electroplating layer 0322 can be any one of tin, chromium, nickel, silver or copper.
  • the material of the solder layer 0312 is tin-based solder, in order to enhance the bonding force, the material of the electroplating layer 0322 may be tin.
  • the material of the metal layer 02 can be any one of magnesium alloy, aluminum alloy, titanium alloy, steel and amorphous alloy
  • the material of the non-metal layer 04 can be carbon fiber composite material, glass fiber composite material, engineering plastic and inorganic fiber composite material any of the materials.
  • the appearance effect layer 01 can be formed by any one of the surface treatment methods of anodizing treatment, coloring micro-arc oxidation treatment, PVD coating treatment, electrophoresis treatment and nano-imprinting treatment based on the metal layer 02 .
  • FIG. 11 exemplarily shows a schematic flow chart of the method for preparing the casing structure provided by the above-mentioned embodiment of the present application. As shown in FIG. 11 , the method mainly includes the following steps:
  • a layer of brazing filler metal is sandwiched between the metal layer and the electroplating layer; alternatively, a layer of paste brazing filler metal is applied on the surface of the electroplating layer or on the side of the metal layer facing the non-metallic layer; The three are completely pressed together for brazing.
  • the case structure is applied to the D case of a notebook computer, and the total thickness of the case structure is required to be 0.7 mm as an example.
  • the metal layer is formed of stainless steel thin-walled material or titanium alloy thin-walled material, such as 304, 316 or 316L stainless steel thin-walled material or TC4 titanium alloy thin-walled material, the thickness of the metal layer is 0.1mm, and its yield strength ⁇ 250Mpa, tensile strength ⁇ 600Mpa, elongation ⁇ 30%.
  • the non-metallic layer is formed of glass fiber composite material, such as glass fiber resin composite material, the thickness of the non-metallic layer is 0.5mm, and its tensile strength is ⁇ 500MPa.
  • the electroplating layer is formed by electroplating metal on the non-metallic layer, such as tin or chrome, the thickness of the electroplating layer is 15 ⁇ m, and the conventional adhesion between it and the non-metallic layer is ⁇ 4B.
  • the solder layer includes a tin-based solder layer, for example, a tin-based paste solder is used to uniformly coat the non-metallic layer on the side facing the metal layer, or, it is coated on the electroplating layer; or a tin-based sheet solder is used to sandwich it. Between the metal layer and the electroplating layer; the thickness of the solder layer is 85 ⁇ m.
  • the appearance effect layer can be formed by PVD coating the metal layer, and can be gray, silver, green, pink and other colors.
  • the glass fiber composite material is firstly formed into a flat plate by in-mold injection molding, and an electroplating layer is electroplated on its surface, and then a brazing material layer is formed between the electroplating layer and the metal layer, and then brazing treatment is performed to make the gold.
  • the thin layer and the non-metallic layer are welded together to form a whole sheet, and finally a laminated structure with a D-shell shape is formed by a stamping process.
  • the surface of the metal layer is subjected to PVD coating treatment, and finally a shell structure with a D-shell shape is obtained. .
  • the process route corresponding to the shell structure is shown in FIG. 12 . Its specific preparation method, as shown in Figure 13, includes the following steps:
  • the glass fiber resin composite material is heated to the injection molding temperature to form a non-metallic layer of the glass fiber resin composite material with a thickness of 0.5 mm in the injection mold through the in-mold injection process, and then it is cleaned.
  • the in-mold injection temperature is 120°C ⁇ 250°C
  • the injection pressure is 20T ⁇ 50T
  • the injection time is 10min ⁇ 30min
  • the size of the injection mold is designed according to the size of the D shell.
  • an electroplating layer is electroplated on the cleaned non-metallic layer, and the material of the electroplating layer may be chromium or tin. Since the solder layer is made of tin-based solder, when the material of the electroplating layer is tin, the bonding force between the metal layer and the non-metal layer can be enhanced.
  • a 0.1 mm thick stainless steel sheet or a titanium alloy sheet is cut into corresponding sizes by laser cutting according to product requirements to obtain a 0.1 mm thick metal layer with a size corresponding to the D shell shape.
  • the laser power is 20W ⁇ 30W
  • the traveling speed is 100mm/s ⁇ 200mm/s.
  • the stainless steel sheet can be SUS316 stainless steel sheet
  • the titanium alloy sheet can be TC4 titanium alloy sheet.
  • a 0.085mm thick sheet brazing material layer is sandwiched between the metal layer and the electroplating layer, or a layer of 0.085mm thick paste brazing material is applied on the surface of the electroplating layer or the metal layer facing the non-metallic layer.
  • the material layer is then completely pressed together by a jig and sent to a continuous tunnel furnace in an inert atmosphere for brazing treatment.
  • the brazing temperature is 180°C ⁇ 300°C
  • the brazing time is 20min ⁇ 45min
  • the pressure holding pressure is 20N ⁇ 40N.
  • the material of the solder layer can be environmentally friendly lead-free tin-based solder, such as Sn80Bi20 sheet solder.
  • the well-welded non-metal layer and metal layer are placed in a stamping die designed according to the product structure for stamping processing to form, and precision machining is performed to remove excess edges to form a laminated structure with a D-shell shape.
  • the stamping pressure is at least 50T
  • the pressure holding time is at least 3min
  • the stamping temperature is room temperature.
  • a suitable coating can be selected according to the requirements of the product, and the thickness of the coating can be controlled within the range of 15 ⁇ m to 25 ⁇ m, so as to obtain the final shell structure with the appearance of PVD decorative coating.
  • the tensile strength is increased to more than 600MPa, which can be reduced by more than 60% compared with the density of stainless steel.
  • the shell structure has the comprehensive advantages of non-metal and metal at the same time; there is a brazing material layer and an electroplating layer between the metal layer and the non-metal layer as the intermediate connecting layer, and the metal layer and the non-metal layer are soldered. Combined, the CTE gradient of the shell structure is greatly reduced, and the shell material structure with complex structure can be formed, and its deformation degree can be well controlled. Compared with example 1, the welding technology can make the bonding force between the metal layer and the non-metal layer quite stable, and the long-term stability is greatly improved, which can meet the stamping and forming treatment of the post-process, and can realize the separation of raw material manufacturers and processing manufacturers, and intermediate storage. Timeliness is greatly improved.
  • FIG. 14 exemplarily shows another structural schematic diagram of the casing structure in the embodiment of the present application.
  • the first connection layer may include a micro-nanoporous layer 0313
  • the second connection layer may include an adhesive layer 0323.
  • the shell structure includes a layered appearance effect layer 01 , a metal layer 02 , a micro-nano porous layer 0313 , a glue layer 0323 and a non-metallic layer 04 .
  • the material of the adhesive layer 0323 may be formed by mixing two kinds of resin glues in a certain proportion, such as AB resin glue.
  • the micro-nano hole layer 0313 is formed based on the metal layer 02 being processed by the micro-nano hole etching process, which can increase the bonding force of the adhesive layer 0323 to the metal layer 02 .
  • the material of the metal layer 02 can be any one of magnesium alloy, aluminum alloy, titanium alloy, steel and amorphous alloy
  • the material of the non-metal layer 04 can be carbon fiber composite material, glass fiber composite material, engineering plastic and inorganic fiber composite material any of the materials.
  • the appearance effect layer 01 can be formed by any one of the surface treatment methods of anodizing treatment, coloring micro-arc oxidation treatment, PVD coating treatment, electrophoresis treatment and nano-imprinting treatment based on the metal layer 02 .
  • FIG. 15 exemplarily shows a schematic flow chart of the method for preparing the shell structure provided by the above-mentioned embodiment of the present application. As shown in FIG. 15 , the method mainly includes the following steps:
  • the sequence of forming the micro-nano porous layer and attaching the adhesive layer is not specifically limited.
  • the side of the metal layer facing the non-metal layer may be subjected to a micro-nano etching process to form a micro-nano hole layer, and then an adhesive layer may be attached to the side of the metal layer facing the non-metal layer.
  • the adhesive layer can also be attached to the side of the metal layer facing the non-metal layer first, and then the side of the metal layer facing the non-metal layer is subjected to a micro-nano etching process to form a micro-nano porous layer.
  • the adhesive layer may also be attached to the side of the metal layer facing the non-metal layer when the micro-nano hole layer is formed by performing the micro-nano etching process on the side of the metal layer facing the non-metal layer.
  • the case structure is applied to the A case of a notebook computer, and the total thickness of the case structure is required to be 0.8 mm as an example.
  • the metal layer is formed of titanium alloy thin-walled material, such as TA7 or TC4 titanium alloy thin-walled material, the thickness of the metal layer is 0.1mm, its yield strength ⁇ 280Mpa, tensile strength ⁇ 600Mpa, elongation ⁇ 30 %.
  • the non-metallic layer is formed of engineering plastics, such as PC+ABS, the thickness of the non-metallic layer is 0.55mm, and its tensile strength is ⁇ 400MPa.
  • the material of the adhesive layer is AB resin glue, and the thickness of the adhesive layer is 0.1mm.
  • the micro-nano porous layer is formed based on the metal layer being processed by the micro-nano etching process, and the appearance effect layer can be formed by performing nano-imprinting on the metal layer.
  • the engineering plastic is firstly molded into a non-metallic layer with the initial shape of the A shell, and a 0.1mm thick adhesive layer is attached to the surface, and then the nano-micrometer layer is formed by stamping molding.
  • the metal layer of the hole layer is pressed with the metal layer attached with the adhesive layer to make it have the shape of an A shell; then the surface of the metal layer is subjected to nano-imprinting treatment to finally obtain a shell structure with the shape of a D shell.
  • the process route corresponding to the shell structure is shown in FIG. 16 . Its specific preparation method is shown in Figure 17, including the following steps:
  • the non-metallic layer of engineering plastics having the shape of A shell is formed by a molding process.
  • the used molding die is designed according to the shape of the A shell, and the height between the male die surface and the female die surface is 0.55mm, so that the film layer of 0.55mm can be formed.
  • the molding pressure is controlled at 0.5MPa ⁇ 1.0MPa
  • the molding temperature is controlled at 150°C ⁇ 300°C
  • the pressure holding time is controlled at 25min ⁇ 60min.
  • the material of the adhesive layer is AB resin glue, and the thickness of the adhesive layer is 0.1 mm.
  • a 0.15mm thick TC4 titanium alloy sheet is cut into corresponding sizes by laser cutting according to product requirements, and a 0.15mm thick metal layer with a size corresponding to the shape of the A shell is obtained.
  • the laser power is 20W ⁇ 30W
  • the traveling speed is 100mm/s ⁇ 200mm/s.
  • the metal layer is placed in a corresponding fixture for fixing, and a micro-nano porous layer is formed on the surface of the metal layer through a nano-etching process, so as to increase the adhesion of the adhesive layer.
  • the nano-etching process can adopt a chemical treatment method, and in order to speed up the treatment speed, an electrochemical treatment method can also be adopted, but the cost will increase accordingly.
  • an electrochemical treatment method can also be adopted, but the cost will increase accordingly.
  • 25% ammonia water (NH40H), 30% hydrogen peroxide (H2O2) and deionized water (DI water) can be used to configure the corrosion solution in a molar ratio of 1:1:5; then the corrosion solution is heated to 70 °C, And keep the temperature for 1min to 2min; put the metal layer into the etching solution, and corrode for 25min to 30min, to form a layer of TiO2 micro-nanopore structure on the surface of the metal layer.
  • the nano-imprinted graphics can be various appearance effects such as concentric circles, CD patterns, and imitation anodes.
  • the formed laminated structure with the shape of the A shell needs to be subjected to acid-base cleaning, pure water cleaning, grinding and polishing and other treatments.
  • processes such as ultrasonic cleaning and drying are also required to finally obtain the shell structure which can be applied to the A shell of the notebook computer.
  • the shell structure has anodized appearance, and its tensile strength can reach more than 600MPa, and the density is 2.20g/cm3 ⁇ 2.50g/cm3, which can meet the requirements of application product weight, appearance metal texture, appearance reliability and mechanical strength. .
  • the coloring treatment can be carried out after the nano-imprinting treatment.
  • the above shell structure provided by the present application can reduce the density of the shell structure to 2.20g/cm3 to 2.50g/cm3 and increase the tensile strength to more than 600MPa under the premise of realizing the appearance effect of titanium alloy nano-imprinting. Compared with titanium alloy, the density is reduced by about 45%, which can meet the requirements of product weight, appearance metal texture, appearance reliability and mechanical strength at the same time.
  • the shell structure has the comprehensive advantages of non-metal and metal at the same time; the metal layer and the non-metal layer are combined by the micro-nano porous layer and the adhesive layer.
  • the micro-nano porous layer can greatly Improve the bonding force between metal and non-metal; engineering plastics are molded into products with shell shape, only one layer of adhesive layer, which makes the shell structure mass-produced and commercial in use products. .
  • FIG. 18 exemplarily shows another structural schematic diagram of the casing structure in the embodiment of the present application.
  • the first connection layer may include a micro-nanopore layer 0314
  • the second connection layer may include a surface hole filling layer 0324 .
  • the shell structure includes an appearance effect layer 01, a metal layer 02, a micro-nano porous layer 0314, a surface hole filling layer 0324 and a non-metallic layer 04, which are arranged in layers.
  • the material of the surface hole filling layer 0324 is the same as the material of the non-metallic layer 04, and can be formed by an injection molding process or a hot pressing damascene process.
  • the micro-nano hole layer 0313 is formed based on the metal layer 02 being processed by the micro-nano hole etching process, which can increase the bonding force of the adhesive layer 0323 to the metal layer 02 .
  • the material of the metal layer 02 can be any one of magnesium alloy, aluminum alloy, titanium alloy, steel and amorphous alloy
  • the material of the non-metal layer 04 can be carbon fiber composite material, glass fiber composite material, engineering plastic and inorganic fiber composite material any of the materials.
  • the appearance effect layer 01 can be formed by any one of the surface treatment methods of anodizing treatment, coloring micro-arc oxidation treatment, PVD coating treatment, electrophoresis treatment and nano-imprinting treatment based on the metal layer 02 .
  • FIG. 19 exemplarily shows a schematic flow chart of the method for preparing the casing structure provided by the above-mentioned embodiment of the present application. As shown in FIG. 19 , the method mainly includes the following steps:
  • an injection molding process can be used to inject a non-metallic material into the micro-nano porous layer to form a surface hole filling layer, and a non-metallic layer is formed on the side of the surface hole filling layer away from the metal layer to obtain a laminate with a target shell shape
  • a non-metallic material is embedded into the micro-nano porous layer by a hot pressing damascene process to form a surface hole filling layer, and a non-metallic layer is formed on the side of the surface hole filling layer away from the metal layer to obtain a laminate with the target shell shape. layer structure.
  • the case structure is applied to the C case of a notebook computer, and the total thickness of the case structure is required to be 0.8 mm as an example.
  • the metal layer is formed of aluminum alloy thin-walled material, such as 5XXX aluminum alloy thin-walled material or 6XXX aluminum alloy thin-walled material, the thickness of the metal layer is 0.15mm, its yield strength is ⁇ 150Mpa, and its tensile strength is ⁇ 240Mpa , elongation ⁇ 15%.
  • the non-metallic layer is formed of glass fiber composite material, for example, the glass fiber composite material is composed of 30% glass fiber (GF) and 70% polyphenylene sulfide (PPS), the thickness of the non-metallic layer is 0.55mm, and its tensile strength ⁇ 400MPa.
  • the micro-nano porous layer is formed based on the metal layer processed by the micro-nano etching process.
  • the appearance effect layer can be formed by anodizing the metal layer.
  • the material of the surface hole filling layer is the same as the material of the non-metallic layer, and the non-metal can be injection-molded or embedded into the micro-nano porous layer by the injection molding process or the hot pressing embedding process.
  • the metal layer with a thickness of 0.15mm is punched to make it have the initial shape of a C shell, and a micro-nano porous layer is formed on the surface of the metal layer by the micro-nano etching process, and then the non-metallic layer is formed by the injection molding process or the hot pressing inlay process.
  • the metal material is injected or embedded into the micro-nano porous layer to form a surface hole filling layer and a non-metal layer at the same time, and finally the side of the metal layer away from the non-metal layer is anodized to obtain a shell structure with a C shell shape.
  • the process route corresponding to the shell structure is shown in Figure 20. Its specific preparation method is shown in Figure 21, including the following steps:
  • the 0.15mm thick aluminum alloy sheet is cut into the corresponding size by laser cutting, and placed in a stamping die for stamping processing to form the initial shape of the C shell.
  • the molding die is designed according to the product structure, the height between the male die surface and the female die surface is 0.15mm, the molding pressure is about 0.5MPa, and the pressure holding time is 5min to 10min.
  • the aluminum alloy sheet can be 6063-T6 aluminum alloy sheet.
  • the metal layer is cleaned to remove oily impurities, and the surface of the metal layer is etched and etched to form small-sized honeycomb nano-pores through the nano-etching process, and finally a nano-scale coral reef structure is formed on the surface of the metal layer.
  • Micro- and nano-porous layer; the nano-etching process can adopt chemical treatment method, in order to speed up the treatment speed, electrochemical treatment method can also be used, but the cost will increase accordingly.
  • the chemical treatment method is adopted, the treatment time is 3min to 10min.
  • the metal layer after the nano-etching process is cleaned and dried, and placed in a nano-injection mold, and PPS+30% GF is injected to form a surface hole filling layer and a non-metal layer at the same time.
  • the injection pressure is about 0.5MPa ⁇ 1.0MPa
  • the forming temperature is about 150°C ⁇ 300°C
  • the pressure holding time is 15min ⁇ 40min.
  • the metal layer treated by the nano-etching process is cleaned and dried, and the surface of the non-metal layer is inlaid into the micro-nano porous layer by a hot pressing inlay process to form a surface hole filling layer. Therefore, the non-metallic layer can be reliably connected with the metal layer through the nano-microporous layer.
  • the shell structure has the effect of anodized appearance, and its tensile strength can reach more than 600MPa, and the density is 1.70g/cm3 to 1.80g/cm3, that is, the density is reduced by more than 34%, and the strength is increased by more than 120%. Weight, appearance metal texture, appearance reliability and mechanical strength, etc.
  • the shell structure has the comprehensive advantages of non-metal and metal at the same time; the non-metal layer and the metal layer are directly compounded together through the micro-nano porous layer and the injection molding process or the hot pressing inlay process, which reduces the intermediate process and has the advantages of The high economic effect makes the shell structure have mass production and commerciality in the use of products from the process.
  • FIG. 22 exemplarily shows another structural schematic diagram of the casing structure in the embodiment of the present application.
  • the connection layer further includes a third connection layer
  • the first connection layer may include a micro-nanopore layer 0314
  • the second connection layer may include a surface hole filling layer 0324 .
  • the third connection layer may include a glue layer 033 .
  • the shell structure includes a layered appearance effect layer 01 , a metal layer 02 , a micro-nano porous layer 0314 , a surface hole filling layer 0324 , a glue layer 033 and a non-metallic layer 04 .
  • the difference from Example 4 is that, in Example 4, a non-metallic layer is formed at the same time as the surface hole filling layer is formed.
  • Example 5 a non-metallic material is injection-molded or embedded into the micro-nano porous layer through an injection molding process or a hot pressing damascene process to form the surface.
  • the hole filling layer is then combined with the surface hole filling layer and the non-metallic layer through the glue layer.
  • FIG. 23 exemplarily shows a schematic flow chart of the method for preparing the housing structure provided by the above-mentioned embodiment of the present application. As shown in FIG. 23 , the method mainly includes the following steps:
  • the non-metallic layer can have a shell shape by molding, and the subsequent metal layer only needs to be stamped and profiled. Therefore, The metal layer needs to use a stampable material with good elongation, such as 5052-T6 aluminum alloy, by placing the formed non-metallic layer and metal layer on the stamping die, and then allowing the metal layer to be profiled stamped.
  • a stampable material with good elongation such as 5052-T6 aluminum alloy
  • the sheet can be formed by in-film injection molding, and finally formed into a shell shape by stamping.
  • the density and strength can be optimized by adjusting the thickness ratio of the metal layer, the connection layer and the non-metallic layer.
  • the casing structure proposed in the embodiments of the present application can be applied to electronic devices.
  • the electronic device provided by the present application includes the casing structure and the circuit board in any of the above-mentioned technical solutions of the present application; the casing structure is located outside the circuit board. Since the principle of solving the problem of the electronic device is similar to that of the aforementioned casing structure, the implementation of the electronic device can refer to the implementation of the aforementioned casing structure, and the repetition will not be repeated. Since the casing structure proposed in the present application has the advantages of both the metal layer casing and the non-metallic layer casing, it has a high-value metallic appearance. Therefore, the electronic device of the present application also has the advantages of both the metal layer casing and the non-metallic layer casing, and has a high-value metallic appearance.

Abstract

本申请提供了一种壳体结构、其制备方法及电子设备,该壳体结构包括叠层设置的外观效果层、金属层、连接层和非金属层;所述连接层用于使所述金属层与所述非金属层进行结合;所述外观效果层是基于所述金属层经过表面处理后形成的。该壳体结构中既包括金属层,又包括非金属层,金属层和非金属层通过连接层进行结合,从而使该壳体结构兼备金属层壳体和非金属层壳体的优点。并且,基于金属层经过表面处理后形成外观效果层可以保证该壳体结构具有高颜值的金属质感外观。

Description

一种壳体结构、其制备方法及电子设备
相关申请的交叉引用
本申请要求在2020年08月05日提交中国专利局、申请号为202010780225.9、申请名称为“一种壳体结构、其备制备方法及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到结构材料的技术领域,尤其涉及到一种壳体结构、其制备方法及电子设备。
背景技术
随着市场对笔记本产品低重量、低厚度、高颜值等诉求,势必对笔记本产品的壳体材料的密度、强度、表面处理方式等多方面的综合要求越来越高,而这些规格指标和性能要求往往是相互矛盾的。例如镁合金和碳纤维的密度相对铝合金可以实现轻量化目标,但其表面处理方式单一,无法实现类似铝合金阳极氧化处理后那种外观质感的金属光泽高颜值效果。
发明内容
本申请提供了一种壳体结构、其制备方法及电子设备,用以使壳体结构兼备金属层壳体和非金属层壳体的综合优势。
第一方面,提供了一种壳体结构,包括叠层设置的外观效果层、金属层、连接层和非金属层;所述连接层用于使所述金属层与所述非金属层进行结合;所述外观效果层是基于所述金属层经过表面处理后形成的。该壳体结构中既包括金属层,又包括非金属层,金属层和非金属层通过连接层进行结合,从而使该壳体结构兼备金属层壳体和非金属层壳体的综合优势。并且,由金属层经过表面处理后形成的外观效果层可以保证该壳体结构具有高颜值的金属质感外观。
本申请中,非金属层主要用于降低壳体结构的整体密度、并为壳体结构提供强度支撑。因此,非金属层的材料需要具备低密度、高强度、易成型等特性。可选地,所述非金属层的材料可以包括碳纤维复合材料、玻纤复合材料、工程塑料和无机纤维复合材料等中的至少一种。
进一步地,所述非金属层可以通过模压工艺或者模内注塑工艺形成,且所述非金属层的厚度可以设置为占该壳体结构总厚度的60%~80%。从而使该壳体结构可以同时具备低密度、高强度、高颜值及金属质感的优势,大幅提高产品竞争力。
可选地,玻纤复合材料可以包括玻纤树脂复合材料。
进一步地,当玻纤复合材料由30%的玻纤(GF)和70%的聚苯硫醚(PPS)组成时,可以提高壳体结构的电磁屏蔽功能。
可选地,工程塑料一般可以包括:指聚碳酸酯(PC)、指聚碳酸酯(PC)和玻纤(GF) 的复合物、指聚碳酸酯(PC)+三元共聚物(ABS)的复合物、聚苯乙烯(PG)+聚苯硫醚(PPS)的复合物等。
本申请中,外观效果层是基于金属层经过表面处理后形成的,其主要用于提高壳体结构外观颜值的效果。可选地,表面处理方式可以是阳极氧化处理、着色微弧氧化处理、物理气相沉积(Physical Vapor Deposition,PVD)镀膜处理、电泳处理或者纳米压印等,在此不作限定。不同表面处理方式形成的外观效果层,还会具备一些其它性能,例如防护性、绝缘性、提高与有机或无机涂层的结合力等作用,具体性能与表面处理方式有关,在此不作详述。由于外观效果层是基于金属层经过表面处理后形成的,因此外观效果层的厚度占该壳体结构总厚度的比例可忽略不计。
本申请中,设置金属层的目的主要是为了形成外观效果层,其材料可以是具备可表面处理及具有金属质感特性的任意金属薄壁材料。例如,金属层的材料可以包括镁合金、铝合金、钛合金、钢和非晶合金中的至少一种。当金属层的材料为钢时,可以选择不锈钢。
可选地,为了使壳体结构的重量尽可能的轻,金属层的厚度可以设置为能够进行表面处理形成外观效果层即可,具体实施时,金属层的厚度一般占该壳体结构总厚度的15%~30%。
在本申请中,连接层是为了使金属层和非金属层进行结合,连接层的总厚度一般占所述壳体结构总厚度的2%~20%。
可选地,本申请中,所述连接层包括第一连接层和第二连接层;所述第一连接层位于靠近所述金属层一侧,所述第二连接层位于靠近所述非金属层一侧。即通过两层连接层使金属层和非金属层进行结合。
可选地,本申请中,所述第一连接层的材料与所述金属层的结合力大于所述第二连接层的材料与所述金属层的结合力,所述第二连接层的材料与所述非金属层的结合力大于所述第一连接层的材料与所述非金属层的结合力。即第一连接层选择对金属层有较好的结合力的材料,第二连接层选择对非金属层有较好的结合力的材料,以使金属层至非金属层之间的热膨胀系数梯度减小,增强金属层和非金属层的结合力。
为了避免金属层和非金属层通过第一连接层和第二连接层进行结合时产生大量气泡,从而影响金属层和非金属层的结合力,第一连接层的材料还需要对金属层有较好的润湿性,因此,第一连接层的材料需要选择能够使第一连接层与金属层的接触面积比例大于或等于90%。同理第二连接层的材料还需要对非金属层具有较好的润湿性,因此,第二连接层的材料需要选择能够使第二连接层与非金属层的接触面积比例大于或等于90%。
可选地,本申请中,所述第一连接层可以包括第一胶水层,所述第二连接层可以包括第二胶水层。从而利用两层胶水层增大金属层与非金属层的结合力。进一步地,第一胶水层和第二胶水层的材料可以相同,也可以不相同。
在一个具体的可实施方案中,所述第一胶水层和所述第二胶水层的材料不相同,所述第一胶水层的材料选择对金属有较强亲和力和结合力的胶水,例如环氧树脂胶水,所述第二胶水层的材料选择对非金属有较强亲和力和结合力的胶水,例如聚氨酯胶水。从而使金属层与非金属层的结合力大幅提升,且热膨胀系数(CTE)梯度减小,可成型结构形式复杂的壳体结构,且其变形度可良好控制。
在一个具体的可实施方案中,所述第一连接层可以包括钎料层,所述第二连接层可以包括电镀层,且所述电镀层是通过在所述非金属层上电镀金属形成的。即利用钎料层和电 镀层作为所述金属层与所述非金属层的中间连接层,从而通过钎焊的方式进行结合。该壳体结构的CTE梯度大幅减小,可成形结构形式复杂的壳体材结构,且其变形度可良好控制。并且,焊接技术可使得金属层与非金属层的结合力相当稳定,且长期稳定性大幅提升,可满足后制程的冲压成形处理,即可实现原材料厂商与加工厂商的分开,中间存储时效性大幅提高。
具体实施时,所述电镀层的材料可以包括锡、铬、镍、银和铜中的至少一种。所述钎料层的材料可以为低温钎料,例如锡基钎料。出于环保考虑,可以是无铅锡基钎料。
在一个具体的可实施方案中,所述第一连接层可以包括微纳米孔层,且所述微纳米孔层是基于所述金属层经过微纳米蚀孔工艺处理后形成的;所述第二连接层可以包括粘胶层。使所述金属层和所述非金属层通过所述微纳米孔层和所述粘胶层进行结合,相比常规胶粘工艺,所述微纳米孔层可大幅提高金属与非金属之间的结合力。
可选地,所述粘胶层的材料可以是由两种树脂胶水按一定比例混合均匀而成,例如AB树脂胶水。
在一个具体的可实施方案中,所述第一连接层可以包括微纳米孔层,且所述微纳米孔层是基于所述金属层经过微纳米蚀孔工艺处理后形成的;所述第二连接层可以包括表面孔洞填充层,所述表面孔洞填充层的材料与所述非金属层的材料相同。所述表面孔洞填充层可以采用注塑工艺或者热压镶嵌工艺形成,从而可以使所述表面孔洞填充层和所述非金属层可以同时形成。最终通过所述微纳米孔层以及采用注塑工艺或热压镶嵌工艺直接将非金属层与金属层复合在一块,可以减少中间工序,具有较高经济效果,从工艺上使得该壳体结构在使用产品上具备壳量产性和商用性。
在一个具体的可实施方案中,所述第一连接层可以包括微纳米孔层,且所述微纳米孔层是基于所述金属层经过微纳米蚀孔工艺处理后形成的;所述第二连接层可以包括表面孔洞填充层,所述表面孔洞填充层的材料与所述非金属层的材料相同。所述连接层还包括第三连接层;所述第三连接层位于所述表面孔洞填充层与所述非金属层之间,所述第三连接层的材料为胶水。即所述金属层和所述非金属层通过所述微纳米孔层、所述表面孔洞填充层以及所述胶水层再进行结合。
第二方面,本申请提供了一种电子设备,包括电路板和本申请上述任意技术方案中的壳体结构,所述壳体结构位于所述电路板外侧。由于壳体结构具有上述第一方面中的技术效果,因此包含壳体结构的电子设备同样兼备金属层壳体和非金属层壳体的综合优势,以及具有高颜值的金属质感外观。
第三方面,本申请提供了一种壳体结构的制备方法,该制备方法包括以下步骤:通过连接层使金属层与非金属层进行结合并形成具有目标壳体形状的叠层结构,以及对所述金属层背离所述非金属层一侧的表面进行表面处理形成所述壳体结构的外观效果层。该制备方法形成的壳体结构兼备金属层壳体和非金属层壳体的综合优势。并且,由金属层经过表面处理后形成的外观效果层可以保证该壳体结构具有高颜值的金属质感外观。
可选地,本申请中,所述金属层的材料包括镁合金、铝合金、钛合金、钢和非晶合金中的至少一种;对所述金属层背离所述非金属层一侧的表面进行表面处理包括:阳极氧化处理、物理气相沉积镀膜处理、着色微弧氧化处理、电泳处理或者纳米压印处理。
可选地,本申请中,所述非金属层的材料包括碳纤维复合材料、玻纤复合材料、工程塑料和无机纤维复合材料中的至少一种;所述非金属层通过模压工艺或者模内注塑工艺形 成。对于非金属的材料为热塑型材料,例如碳纤维复合材料,可以采用模压成形的方式使非金属层具备壳体形状,后续金属层仅需冲压仿形即可,因此金属层需要使用延伸率较好的可冲压成形的材料,例如5052-T6铝合金,通过将已成形的非金属层和金属层放置在冲压模具上,然后让金属层进行仿形冲压。对于非金属的材料为热固型材料,例如玻纤复合材料,可以采用膜内注塑的成形方式形成板材,最终通过冲压成形的方式使其成形为壳体形状。
需要说明的是,本申请对步骤通过连接层使金属层与非金属层进行结合并形成具有目标壳体形状的叠层结构和步骤对所述金属层背离所述非金属层一侧的表面进行表面处理形成所述壳体结构的外观效果层的先后顺序不作限定,步骤对所述金属层背离所述非金属层一侧的表面进行表面处理形成所述壳体结构的外观效果层可以在步骤通过连接层使金属层与非金属层进行结合并形成具有目标壳体形状的叠层结构之后进行,步骤对所述金属层背离所述非金属层一侧的表面进行表面处理形成所述壳体结构的外观效果层也可以在步骤通过连接层使金属层与非金属层进行结合并形成具有目标壳体形状的叠层结构之前进行,具体可以根据壳体结构中非金层的材料以及具体的表面处理方式决定步骤通过连接层使金属层与非金属层进行结合并形成具有目标壳体形状的叠层结构和步骤对所述金属层背离所述非金属层一侧的表面进行表面处理形成所述壳体结构的外观效果层的先后顺序。
为了避免壳体结构在形成目标壳体形状时对外观效果层造成损伤,一般步骤对所述金属层背离所述非金属层一侧的表面进行表面处理形成所述壳体结构的外观效果层在步骤通过连接层使金属层与非金属层进行结合并形成具有目标壳体形状的叠层结构之后进行。但是,在形成外观效果层时,如果表面处理工艺会影响非金属层的性能,则步骤对所述金属层背离所述非金属层一侧的表面进行表面处理形成所述壳体结构的外观效果层需要在步骤通过连接层使金属层与非金属层进行结合并形成具有目标壳体形状的叠层结构之前进行,例如表面处理工艺为PVD镀膜工艺时,温度比较高,而非金属层正好又是不耐高温的材料,例如碳纤维复合材料。
可选地,本申请中,所述通过连接层使金属层与非金属层进行结合并形成具有目标壳体形状的叠层结构,具体包括:通过第一连接层和第二连接层使所述金属层与所述非金属层进行结合并形成具有目标壳体形状的叠层结构。即通过两层连接层使金属层和非金属层进行结合。
在一个具体的可实施方案中,所述通过第一连接层和第二连接层使所述金属层与所述非金属层进行结合并形成具有目标壳体形状的叠层结构,具体包括:在所述金属层面向所述非金属层的一侧涂覆第一胶水层,并在所述非金属层面向所述金属层的一侧涂覆第二胶水层;对形成有所述第一胶水层的所述金属层和形成有所述第二胶水层的所述非金属层进行冲压处理,形成具有目标壳体形状的叠层结构。从而使金属层与非金属层的结合力大幅提升,且热膨胀系数(CTE)梯度减小,可成型结构形式复杂的壳体结构,且其变形度可良好控制。金属层和非金属层通过胶接的方式进行复合,利用金属层和胶水层良好的延伸率进行冲压成型,进而结合非农金属层表面,从工艺上使得该壳体结构在使用产品上具备量产性和商用性。
在上述实施方案中,为了避免壳体结构在形成目标壳体形状时对外观效果层造成损伤,一般步骤对金属层背离非金属层一侧的表面进行表面处理形成壳体结构的外观效果层在 步骤对形成有第一胶水层的金属层和形成有第二胶水层的非金属层进行冲压处理,形成具有目标壳体形状的叠层结构之后进行。但是,在形成外观效果层时,如果表面处理工艺会影响非金属层的性能,则步骤对金属层背离非金属层一侧的表面进行表面处理形成壳体结构的外观效果层需要在步骤对形成有第一胶水层的金属层和形成有第二胶水层的非金属层进行冲压处理,形成具有目标壳体形状的叠层结构之前进行。例如表面处理工艺为PVD镀膜工艺时,温度比较高,而非金属层正好又是不耐高温的材料,例如碳纤维复合材料。
进一步地,当步骤对金属层背离非金属层一侧的表面进行表面处理形成壳体结构的外观效果层在步骤对形成有第一胶水层的金属层和形成有第二胶水层的非金属层进行冲压处理,形成具有目标壳体形状的叠层结构之前进行时,为了避免在金属层成型时对外观效果层造成损伤从而影响产品的良率,在本申请中,在对金属层背离非金属层一侧的表面进行表面处理形成外观效果层之前,还包括:对金属层进行冲压处理,使金属层具有目标壳体初始形状。即在金属层具有目标壳体初始形状后在金属层表面形成外观效果层。
在一个具体的可实施方案中,所述通过第一连接层和第二连接层使所述金属层与所述非金属层进行结合并形成具有目标壳体形状的叠层结构,具体包括:对所述金属层面向所述非金属层的一侧进行微纳米蚀孔工艺处理形成微纳米孔层,并在所述金属层面向所述非金属层的一侧贴附粘胶层;对形成有所述微纳米孔层的所述金属层和贴附有所述粘胶层的所述非金属层进行冲压处理,形成具有目标壳体形状的叠层结构。使所述金属层和所述非金属层通过所述微纳米孔层和所述粘胶层进行结合,相比常规胶粘工艺,所述微纳米孔层可大幅提高金属与非金属之间的结合力。
可选地,在上述实施方案中,为了避免壳体结构在形成目标壳体形状时对外观效果层造成损伤,在形成所述叠层结构后,对所述金属层背离所述非金属层一侧的表面进行表面处理形成所述外观效果层。
在一个具体的可实施方案中,所述通过连接层使金属层与非金属层进行结合并形成具有目标壳体形状的叠层结构,具体包括:采用电镀工艺在所述非金属层面向所述金属层的一侧形成电镀层;在所述金属层和所述电镀层之间形成钎料层并进行钎焊处理,使所述金属层和所述非金属层通过所述钎料层和所述电镀层进行结合;对结合后的所述金属层和所述非金属层进行冲压处理形成具有目标壳体形状的叠层结构。即利用钎料层和电镀层作为所述金属层与所述非金属层的中间连接层,从而通过钎焊的方式进行结合。形成的壳体结构的CTE梯度大幅减小,可成形结构形式复杂的壳体材结构,且其变形度可良好控制。并且,焊接技术可使得金属层与非金属层的结合力相当稳定,且长期稳定性大幅提升,可满足后制程的冲压成形处理,即可实现原材料厂商与加工厂商的分开,中间存储时效性大幅提高。
可选地,在上述实施方案中,为了避免壳体结构在形成目标壳体形状时对外观效果层造成损伤,在形成所述叠层结构后,对所述金属层背离所述非金属层一侧的表面进行表面处理形成所述外观效果层。
在一个具体的可实施方案中,所述通过连接层使金属层与非金属层进行结合并形成具有目标壳体形状的叠层结构,具体包括:形成具有目标壳体初始形状的金属层;对所述金属层的面向所述非金属层的一侧进行微纳米蚀孔工艺处理形成微纳米孔层;采用注塑工艺将非金属材料注塑到所述微纳米孔层中形成表面孔洞填充层,并在所述表面孔洞填充层背离所述金属层一侧形成非金属层,得到具有目标壳体形状的叠层结构;或者采用热压镶嵌 工艺将非金属材料镶嵌到所述微纳米孔层中形成表面孔洞填充层,并在所述表面孔洞填充层背离所述金属层一侧形成非金属层,得到具有目标壳体形状的叠层结构。最终通过所述微纳米孔层以及采用注塑工艺或热压镶嵌工艺直接将非金属层与金属层复合在一块,可以减少中间工序,具有较高经济效果,从工艺上使得该壳体结构在使用产品上具备壳量产性和商用性。
可选地,在上述实施方案中,为了避免壳体结构在形成目标壳体形状时对外观效果层造成损伤,在形成所述叠层结构后,对所述金属层背离所述非金属层一侧的表面进行表面处理形成所述外观效果层。
第四方面,本申请提供了一种壳体结构,所述壳体结构采用本申请上述任意技术方案中的制备方法制备形成。该壳体结构兼备金属层壳体和非金属层壳体的综合优势。并且,由金属层经过表面处理后形成的外观效果层可以保证该壳体结构具有高颜值的金属质感外观。
第五方面,本申请提供了一种电子设备,包括电路板和本申请上述任意技术方案中的壳体结构,所述壳体结构位于所述电路板外侧。由于壳体结构具有上述第四方面中的技术效果,因此包含壳体结构的电子设备同样兼备金属层壳体和非金属层壳体的综合优势,以及具有高颜值的金属质感外观。
附图说明
图1示出了本申请实施例提供的一种壳体结构的结构示意图;
图2示出了本申请实施例提供的一种壳体结构的制备方法的流程示意图;
图3示出了本申请实施例提供的另一种壳体结构的结构示意图;
图4示出了本申请实施例提供的另一种壳体结构的结构示意图;
图5示出了本申请实施例提供的另一种壳体结构的制备方法的流程示意图;
图6示出了本申请实施例提供的一种壳体结构对应的工艺路线示意图;
图7示出了本申请实施例提供的又一种壳体结构的制备方法的流程示意图;
图8示出了本申请实施例提供的另一种壳体结构对应的工艺路线示意图;
图9示出了本申请实施例提供的又一种壳体结构的制备方法的流程示意图;
图10示出了本申请实施例中壳体结构的又一种结构示意图;
图11示出了本申请实施例中的壳体结构的制备方法的与另一种流程示意图;
图12示出了本申请实施例提供的又一种壳体结构对应的工艺路线示意图;
图13示出了本申请实施例中的壳体结构的制备方法的与又一种流程示意图;
图14示出了本申请实施例中壳体结构的又一种结构示意图;
图15示出了本申请实施例中的壳体结构的制备方法的与另一种流程示意图;
图16示出了本申请实施例提供的又一种壳体结构对应的工艺路线示意图;
图17示出了本申请实施例中的壳体结构的制备方法的与又一种流程示意图;
图18示出了本申请实施例中壳体结构的又一种结构示意图;
图19示出了本申请实施例中的壳体结构的制备方法的与另一种流程示意图;
图20示出了本申请实施例提供的又一种壳体结构对应的工艺路线示意图;
图21示出了本申请实施例中的壳体结构的制备方法的与又一种流程示意图;
图22示出了本申请实施例中壳体结构的又一种结构示意图;
图23示出了本申请实施例中的壳体结构的制备方法的与另一种流程示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
本申请实施例提出的壳体结构可以应用于电子设备中,例如可以应用于笔记本电脑、手机或平板电脑等的任何外观壳体中,例如,笔记本电脑屏幕后的壳(A壳)、主机上壳(C壳)、主机下壳(D壳)或者电池后盖壳等。应注意,本申请实施例提出的壳体结构旨在包括但不限于应用在这些和任意其它适合类型的电子设备中。如背景技术所述,目前笔记本电脑的壳体不能同时兼顾金属和非金属的优点。有鉴于此,本申请实施例旨在提供一种兼备非金属和金属的综合优势,同时又具有高颜值外观的壳体结构。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
图1示例性示出了本申请实施例中壳体结构的一种结构示意图。参考图1,该壳体结构,包括叠层设置的外观效果层01、金属层02、连接层03和非金属层04;所述连接层03用于使所述金属层02与所述非金属层04进行结合;所述外观效果层01是基于所述金属层02经过表面处理后形成的。该壳体结构中既包括金属层02,又包括非金属层04,金属层02和非金属层04通过连接层03进行结合,从而使该壳体结构兼备金属层壳体和非金属层壳体的综合优势。并且,由金属层02经过表面处理后形成的外观效果层01可以保证该壳体结构具有高颜值的金属质感外观。
在本申请中,非金属层主要用于降低壳体结构的整体密度、并为壳体结构提供强度支撑。因此,非金属层的材料需要具备低密度、高强度、易成型等特性。可选地,所述非金属层的材料可以包括碳纤维复合材料、玻纤复合材料、工程塑料和无机纤维复合材料等中的至少一种,所述非金属层通过模压工艺或者模内注塑工艺形成,所述非金属层的厚度可以设置为占该壳体结构总厚度的60%~80%。从而使该壳体结构可以同时具备低密度、高强度、高颜值及金属质感的优势,大幅提高产品竞争力。
具体实施时,玻纤复合材料可以包括玻纤树脂复合材料。进一步地,当玻纤复合材料由30%的玻纤(GF)和70%的聚苯硫醚(PPS)组成时,可以提高壳体结构的电磁屏蔽功能。
工程塑料一般可以包括:指聚碳酸酯(PC)、指聚碳酸酯(PC)和玻纤(GF)的复合物、指聚碳酸酯(PC)+三元共聚物(ABS)的复合物、聚苯乙烯(PG)+聚苯硫醚(PPS)的复合物等,在此不作限定。
在本申请中,外观效果层是基于金属层经过表面处理后形成的,其主要用于提高壳体结构外观颜值的效果。具体实施时,表面处理方式可以是阳极氧化处理、着色微弧氧化处理、物理气相沉积(Physical Vapor Deposition,PVD)镀膜处理、电泳处理或者纳米压印等,在此不作限定。不同表面处理方式形成的外观效果层,还会具备一些其它性能,例如防护性、绝缘性、提高与有机或无机涂层的结合力等作用,具体性能与表面处理方式有关,在此不作详述。由于外观效果层是基于金属层经过表面处理后形成的,因此外观效果层的厚度占该壳体结构总厚度的比例可忽略不计。
在本申请中,设置金属层的目的主要是为了形成外观效果层,其材料可以是具备可表面处理及具有金属质感特性的任意金属薄壁材料。例如,金属层的材料可以包括镁合金、铝合金、钛合金、钢和非晶合金中的至少一种。为了使壳体结构的重量尽可能的轻,金属层的厚度可以设置为能够进行表面处理形成外观效果层即可,具体实施时,金属层的厚度一般占该壳体结构总厚度的15%~30%。
在本申请中,连接层是为了使金属层和非金属层进行结合,连接层的总厚度一般占所述壳体结构总厚度的2%~20%。
图2示例性示出了本申请实施例所提供的一种壳体结构的制备方法的流程示意图。如图2所示,该方法主要包括以下步骤:
S201、通过连接层使金属层与非金属层进行结合形成具有目标壳体形状的叠层结构。
S202、对金属层背离非金属层一侧的表面进行表面处理形成壳体结构的外观效果层。
需要说明的是,本申请对步骤S201和步骤S202的先后顺序不作限定,步骤S202可以在步骤S201之后进行,步骤S202也可以在步骤S201之前进行,具体可以根据壳体结构中非金层的材料以及具体的表面处理方式决定步骤S201和步骤S202的先后顺序。图2仅是以步骤S202在步骤S201之后为例进行示意。
为了避免壳体结构在形成目标壳体形状时对外观效果层造成损伤,一般步骤S202在步骤S201之后进行。但是,在形成外观效果层时,如果表面处理工艺会影响非金属层的性能,则步骤S202需要在步骤S201之前进行,例如表面处理工艺为PVD镀膜工艺时,温度比较高,而非金属层正好又是不耐高温的材料,例如碳纤维复合材料。
可选地,本申请的壳体结构中,连接层可以为一层胶水层。具体实施过程中,可以在非金属层表面涂覆一层胶水,然后将金属层通过保压治具压合在非金属层上,并升温至胶水的固化温度,且保温一段时间使胶水完全固化。胶接固化完成后降低温度至50℃~60℃,移除保压治具,即可得到结合在一起的金属层和非金属层。
由于一般金属件在造型加工过程中会产生残余应力且很难消除,加之与非金属材料在胶接过程中的热膨胀系数(CTE)不一样,导致在高温固化后会产生较大的残余应力和残余变形,使得最终成型的结构件变形严重。
有鉴于此,图3示例性示出了本申请实施例中壳体结构的另一种结构示意图。如图3所示,该壳体结构中,连接层包括第一连接层031和第二连接层032;金属层02和非金属层04通过第一连接层031和第二连接层033进行结合,第一连接层031位于靠近金属层02一侧,第二连接层032位于靠近非金属层04一侧。即该壳体结构通过两层连接层实现金属层和非金属层的结合。
可选地,在本申请中,第一连接层03的材料与金属层02的结合力大于第二连接层03的材料与金属层02的结合力,第二连接层03的材料与非金属层04的结合力大于第一连 接层02的材料与非金属层04的结合力,即第一连接层031选择对金属层02有较好的结合力的材料,第二连接层032选择对非金属层04有较好的结合力的材料,以使金属层02至非金属层04之间的热膨胀系数梯度减小,增强金属层02和非金属层04的结合力。
为了避免金属层和非金属层通过第一连接层和第二连接层进行结合时产生大量气泡,从而影响金属层和非金属层的结合力,第一连接层的材料还需要对金属层有较好的润湿性,因此,第一连接层的材料需要选择能够使第一连接层与金属层的接触面积比例大于或等于90%。同理第二连接层的材料还需要对非金属层具有较好的润湿性。因此,第二连接层的材料需要选择能够使第二连接层与非金属层的接触面积比例大于或等于90%。需要说明的是,接触面积比例是指两个面相互接触区域的面积占这两个面相互重叠区域的面积的比例。
在本申请中,第一连接层和第二连接层可以有多种实现方式,接下来,针对第一连接层和第二连接层的不同实现方式对本申请的壳体结构作进一步的示例性说明。
示例一
图4示例性示出了本申请实施例中壳体结构的又一种结构示意图。参见图4,第一连接层可以包括第一胶水层0311,第二连接层可以包括第二胶水层0321。第一胶水层0311和第二胶水层0321的材料可以相同,也可以不相同。该壳体结构包括层叠设置的外观效果层01、金属层02、第一胶水层0311、第二胶水层0321和非金属层04。其中,第一胶水层0311的材料可以是对金属有较强亲和力和结合力的胶水,例如环氧树脂胶水,第二胶水层0321的材料可以是对非金属有较强亲和力和结合力的胶水,例如聚氨酯胶水。金属层02的材料可以是镁合金、铝合金、钛合金、钢和非晶合金中的任意一种,非金属层04的材料可以是碳纤维复合材料、玻纤复合材料、工程塑料和无机纤维复合材料中的任意一种。外观效果层01可以是基于金属层02进行阳极氧化处理、着色微弧氧化处理、PVD镀膜处理、电泳处理和纳米压印处理中的任意一种表面处理方式形成的。
图5示例性示出了本申请上述实施例所提供的壳体结构的制备方法的流程示意图。如图5所示,该制备方法主要包括以下步骤:
S501、在金属层面向非金属层的一侧涂覆第一胶水层,并在非金属层面向金属层的一侧涂覆第二胶水层。
具体实施时,对涂覆第一胶水层和涂覆第二胶水层的先后顺序不作具体限定。可以先在金属层面向非金属层的一侧涂覆第一胶水层,后在非金属层面向金属层的一侧涂覆第二胶水层。也可以先在非金属层面向金属层的一侧涂覆第二胶水层,再在金属层面向非金属层的一侧涂覆第一胶水层。还可以在金属层面向非金属层的一侧涂覆第一胶水层时,在非金属层面向金属层的一侧涂覆第二胶水层。
S502、对形成有第一胶水层的金属层和形成有第二胶水层的非金属层进行冲压处理,形成具有目标壳体形状的叠层结构。
S503、对金属层背离非金属层一侧的表面进行表面处理形成壳体结构的外观效果层。
需要说明的是,本申请中,步骤S503可以在步骤S502之后进行,步骤S503也可以在步骤S502之前进行,或者,步骤S503还可以在步骤S501之前进行,具体可以根据壳体结构中非金层的材料以及具体的表面处理方式决定步骤S503的最佳执行时机。图5仅是以步骤S503在步骤S502之后为例进行示意。
为了避免壳体结构在形成目标壳体形状时对外观效果层造成损伤,一般步骤S503在步骤S502之后进行。但是,在形成外观效果层时,如果表面处理工艺会影响非金属层的 性能,则步骤S503需要在步骤S502之前进行。例如表面处理工艺为PVD镀膜工艺时,温度比较高,而非金属层正好又是不耐高温的材料,例如碳纤维复合材料。
进一步地,当步骤S503在步骤S502之前进行时,为了避免在金属层成型时对外观效果层造成损伤从而影响产品的良率,在对金属层背离非金属层一侧的表面进行表面处理形成外观效果层之前,还包括:对金属层进行冲压处理,使金属层具有目标壳体初始形状。即在金属层具有目标壳体初始形状后在金属层表面形成外观效果层。
以该壳体结构应用于笔记本电脑的A壳,且要求壳体结构的总厚度为0.8mm为例,对示例一作进一步的示例性说明。
第一种情况
该壳体结构中,金属层采用铝合金薄壁材料通过冲压工艺成型,例如5XXX铝合金薄壁材料或者6XXX铝合金薄壁材料。金属层的厚度为0.1mm,其屈服强度≥150Mpa,抗拉强度≥240Mpa,延伸率≥15%。第一胶水层的材料为环氧树脂胶水,第二胶水层的材料为聚氨酯胶水,第一胶水层和第二胶水层的总厚度为0.1mm。非金属层可以采用碳纤维复合材料通过模压工艺成型,非金属层的厚度为0.6mm,其抗拉强度≥600MPa。外观效果层可以是对铝合金金属层进行阳极氧化处理后形成。成型过程中将碳纤维复合材料先采用模压成型的方法形成具有A壳初始形状的非金属层,然后在该非金属层表面涂覆第二胶水层,并在金属层表面涂覆第一胶水层,将非金属层和金属层放置于冲压模具中,使金属层其按非金属层表面形貌进行仿形,切边后成形为具有A壳形状的叠层结构,最后对金属层表面进行阳极氧化处理,最终得到具有A壳形状的壳体结构。该壳体结构对应的工艺路线如图6所示。其具体制备方法如图7所示,包括以下步骤:
S701、通过模压工艺形成具有A壳初始形状的非金属层。
具体实施时,将T600或T800及以上的碳纤维的长纤按A壳长度方向进行编织,并与树脂材料进行复合,通过模压工艺成型成具有A壳初始形状的碳纤维树脂基复合材料的非金属层。其中,采用的模压模具预先按照A壳的形状设计,其公模面与母模面之间的高度为0.6mm,使其可成型0.6mm的膜层。模压压力控制在0.5MPa左右,成型温度控制在50℃~200℃,保压时间控制在15min~60min。
S702、在非金属层面向金属层的一侧涂覆一层第二胶水层。
具体实施,用刷胶的方式在具有A壳初始形状的非金属层面向金属层的一侧涂覆一层聚氨酯胶水层,聚氨酯胶水层的厚度为0.045mm~0.055mm。刷胶宽度及刷胶治具的结构形式根据非金属层的外形进行设计,保证最多两次完成涂覆,刷胶行进速度为10mm/s~15mm/s,这样可以保证聚氨酯胶水层厚度均匀。
S703、形成设定尺寸大小的金属层。
具体实施时,将0.1mm厚的铝合金薄板根据产品要求通过激光切割的方式裁剪为相应的尺寸大小,得到具有与A壳形状对应尺寸大小的0.1mm厚的金属层。其中激光功率为20W~30W,行进速度为100mm/s~200mm/s,铝合金薄板可以是5052-H32铝合金薄板。
S704、在金属层面向非金属层一侧涂覆一层第一胶水层。
具体实施时,可以将金属层放置在相应治具中进行固定,用刷胶的方式在金属层面向非金属层一侧涂覆一层环氧树脂胶水层,环氧树脂胶水层的厚度为0.045mm~0.055mm。刷胶宽度与A壳的宽度保持一致,一次完成刷胶,刷胶行进速度为10mm/s~15mm/s,这样可以保证环氧树脂胶水层厚度均匀。
S705、对涂覆有第一胶水层的金属层和涂覆有第二胶水层的非金属层进行冲压工艺处理,形成具有A壳形状的叠层结构。
具体实施时,将涂覆有第二胶水层的非金属层放置在冲压模具的母模中,并进行固定,同时将涂覆有第一胶水层的金属层放置在公模上,第一胶水层与第二胶水层相对,并下压冲压模具使金属层仿制非金属层表面形状,保持一段时间后松开冲压模具进行切边即可得到成型好的具有A壳形状的叠层结构。其中保压压力为30T~50T,保压时间为10min~30min。
S706、对金属层背离非金属层一侧的表面进行阳极氧化处理形成壳体结构的外观效果层。
具体实施时,在对金属层背离非金属层一侧的表面进行阳极氧化处理之前,需要对成型好的具有A壳形状的叠层结构进行酸碱洗、纯水清洗、打磨抛光等处理。在对金属层背离非金属层一侧的表面进行阳极氧化处理之后,还需要进行超声波清洗和烘干等工艺,最终得到可以应用于笔记本电脑的A壳的壳体结构。该壳体结构具备阳极氧化外观效果,同时其抗拉强度可达600MPa以上,密度为1.70g/cm3~1.80g/cm3,可同时满足使用产品重量、外观金属质感、外观信赖性及机械强度等要求。进一步地,如果产品对外观效果层的颜色有要求,可以在进行阳极氧化处理之后,再进行着色处理。
本申请提供的上述壳体结构,在实现铝合金阳极氧化外观金属质感的前提下,可将壳体密度降低至1.70g/cm3~1.80g/cm3,抗拉强度提高至600MPa以上,相比铝合金密度降低了34%以上,强度提升了120%以上,可同时满足使用产品重量、外观金属质感、外观信赖性及机械强度等要求。
第二种情况
与第一种情况的区别是:该壳体结构中,金属层采用钢薄壁材料通过冲压工艺成型,例如,不锈钢薄壁材料,不锈钢具体可以为304、316或316L不锈钢,金属层的厚度为0.1mm,其屈服强度≥250Mpa,抗拉强度≥600Mpa,延伸率≥30%;外观效果层是通过对钢金属层进行PVD镀膜处理形成的。成型过程中将碳纤维复合材料先采用模压成型的方法形成具有A壳初始形状的非金属层,然后在该非金属层表面涂覆第二胶水层,同时将钢薄板冲压成具有A壳初始形状的金属层,在金属层表面涂覆第一胶水层,将非金属层和金属层放置于冲压模具进行压合,切边后成形为具有A壳形状的合体结构。该壳体结构对应的工艺路线如图8所示。其具体制备方法如图9所示,包括以下步骤:
S901、通过模压工艺形成具有A壳初始形状的非金属层。
具体实施时,将T600或T800及以上的碳纤维的长纤按A壳长度方向进行编织,并与树脂材料进行复合,通过模压工艺成型成具有A壳初始形状的碳纤维树脂基复合材料的非金属层。其中,采用的模压模具按照A壳的形状设计,其公模面与母模面之间的高度为0.6mm,使其可成型0.6mm的膜层。模压压力控制在0.5MPa左右,成型温度控制在50℃~200℃,保压时间控制在15min~60min。
S902、在非金属层面向金属层的一侧涂覆一层第二胶水层。
具体实施,用刷胶的方式在具有A壳初始形状的非金属层面向金属层的一侧涂覆一层聚氨酯胶水层,聚氨酯胶水层的厚度为0.045mm~0.055mm,刷胶宽度及刷胶治具的结构形式根据非金属层的外形进行设计,保证最多两次完成涂覆,刷胶行进速度为10mm/s~15mm/s,这样可以保证聚氨酯胶水层厚度均匀。
S903、形成设定尺寸大小的金属层。
具体实施时,将0.1mm厚的不锈钢薄板根据产品要求通过激光切割的方式裁剪为相应的尺寸大小,得到具有与A壳形状对应尺寸大小的0.1mm厚的金属层。其中激光功率为20W~30W,行进速度为100mm/s~200mm/s,不锈钢薄板可以是SUS316不锈钢薄板。
S904、形成具有A壳初始形状的金属层。
具体实施时,将设定尺寸大小的0.1mm厚的金属层放置在相应冲压模具中进行冲压成型,使其具备A壳初始形状。其中冲压压力至少为20T~30T,保压时间至少为3min,冲压温度为室温。
S905、对金属层背离非金属层一侧进行PVD镀膜处理,形成外观效果层。
具体实施时,对金属层背离非金属层一侧进行清洗,然后对其进行PVD镀膜处理。PVD镀膜处理可以根据产品颜色需求选择合适的溅射靶,炉温保持在80℃~120℃。
S906、在金属层面向非金属层一侧涂覆一层第一胶水层。
具体实施时,可以将金属层放置在相应治具中进行固定,用刷胶的方式在金属层面向非金属层一侧涂覆一层环氧树脂胶水层,环氧树脂胶水层的厚度为0.045mm~0.055mm。刷胶宽度与A壳的宽度保持一致,一次完成刷胶,刷胶行进速度为10mm/s~15mm/s,这样可以保证环氧树脂胶水层厚度均匀。
S907、对涂覆有第一胶水层的金属层和涂覆有第二胶水层的非金属层进行冲压工艺处理,形成具有A壳形状的壳体结构。
具体实施时,将涂覆有第二胶水层的非金属层放置在冲压模具的母模中,并进行固定,同时将涂覆有第一胶水层的金属层放置在公模上,第一胶水层与第二胶水层相对,并下压冲压模具使二者进行结合,保持一段时间后松开冲压模具进行切边后即可得到成型好的具有A壳形状的壳体结构。其中保压压力为30~50T,保压时间为10min~30min。
进一步地,可以对成型好的具有A壳形状的壳体结构进行酸碱洗、纯水清洗、打磨抛光、超声波清洗和烘干等工艺,最终得到可以应用于笔记本电脑的A壳的该壳体结构。该壳体结构具备PVD镀膜外观同时其抗拉强度可达700MPa以上,密度为2.40g/cm3~2.50g/cm3,可同时满足使用产品的重量、外观金属质感、外观信赖性及机械强度等要求。
本申请提供的上述壳体结构,在实现不锈钢PVD镀膜外观金属质感的前提下,可将壳体材料密度降低至2.40g/cm3~2.50g/cm3,抗拉强度提高至700MPa以上,相比不锈钢密度降低了65%以上,可同时满足使用产品重量、外观金属质感、外观信赖性及机械强度等要求。
在上述示例一中,壳体结构同时具备非金属和金属的综合优势;连接层分为两层,第一连接层和第二连接层分别对金属和非金属有较强亲和力和结合力的胶水层,相比现有技术而言,金属层与非金属层的结合力大幅提升,且热膨胀系数(CTE)梯度减小,可成型结构形式复杂的壳体结构,且其变形度可良好控制;非金属层通过模压工艺成型成具备目标壳体的初始形状,金属层和非金属层通过胶接的方式进行复合,利用金属层和胶水层良好的延伸率进行冲压成型,进而结合非农金属层表面,从工艺上使得该壳体结构在使用产品上具备量产性和商用性。
示例二
图10示例性示出了本申请实施例中壳体结构的又一种结构示意图。参见图10,第一 连接可以包括钎料层0312,第二连接层可以包括电镀层0322。该壳体结构包括层叠设置的外观效果层01、金属层02、钎料层0312、电镀层0322和非金属层04。其中,钎料层0312的材料可以为低温钎料,例如锡基钎料,进一步地,出于环保考虑,可以是无铅锡基钎料。电镀层0322是通过在非金属层04上电镀金属形成的,电镀层0322的材料可以为锡、铬、镍、银或铜中的任意一种。当钎料层0312的材料为锡基钎料时,为了增强结合力,电镀层0322的材料可以为锡。金属层02的材料可以是镁合金、铝合金、钛合金、钢和非晶合金中的任意一种,非金属层04的材料可以是碳纤维复合材料、玻纤复合材料、工程塑料和无机纤维复合材料中的任意一种。外观效果层01可以是基于金属层02进行阳极氧化处理、着色微弧氧化处理、PVD镀膜处理、电泳处理和纳米压印处理中的任意一种表面处理方式形成的。
图11示例性示出了本申请上述实施例所提供的壳体结构的制备方法的流程示意图,如图11所示,该方法主要包括以下步骤:
S1101、采用电镀工艺在非金属层面向金属层的一侧形成电镀层。
S1102、在金属层和电镀层之间形成钎料层并进行钎焊处理,使金属层和非金属层通过钎料层和电镀层进行结合。
具体实施时,在金属层和电镀层中间夹一层片状钎料层;或者,在电镀层表面或者金属层面向非金属层一侧涂覆一层膏状钎料层;然后通过夹治具将3者完全压合在一起进行钎焊处理。
S1103、对结合后的金属层和非金属层进行冲压处理形成具有目标壳体形状的叠层结构。
S1104、对金属层背离非金属层一侧的表面进行表面处理形成壳体结构的外观效果层。
以该壳体结构应用于笔记本电脑的D壳,且要求壳体结构的总厚度为0.7mm为例。
该壳体结构中,金属层采用不锈钢薄壁材料或钛合金薄壁材料形成,例如304、316或316L不锈钢薄壁材料或TC4钛合金薄壁材料,金属层的厚度为0.1mm,其屈服强度≥250Mpa,抗拉强度≥600Mpa,延伸率≥30%。非金属层采用玻纤复合材料形成,例如玻纤树脂复合材料,非金属层的厚度为0.5mm,其抗拉强度≥500MPa。电镀层是通过在非金属层上电镀金属形成的,例如镀锡或铬,电镀层的厚度为15μm,其与非金属层之间常规摆个附着力≥4B。钎料层包括锡基钎料层,例如采用锡基膏状钎料均匀涂覆在非金属层面向金属层一侧,或者,涂覆在电镀层上;或采用锡基片状钎料夹在金属层和电镀层之间;钎料层的厚度为85μm。外观效果层可以是对金属层进行PVD镀膜处理形成,可以为灰色、银色、绿色、粉色等各种颜色。成型过程中将玻纤复合材料先采用模内注塑的方式成形为平板,并在其表面电镀一层电镀层,然后在电镀层和金属层之间形成钎料层,然后进行钎焊处理使金薄层和非金属层焊接在一块成形为一整张薄板,最终通过冲压工艺形成具有D壳形状的叠层结构,最后对金属层表面进行PVD镀膜处理,最终得到具有D壳形状的壳体结构。该壳体结构对应的工艺路线如图12所示。其具体制备方法,如图13所示,包括以下步骤:
S1301、通过模内注塑工艺形成非金属层。
具体实施时,将玻纤树脂复合材料加热到注塑成型温度通过模内注塑工艺在注塑模具内成型为一层0.5mm厚的玻纤树脂复合材料的非金属层,然后对其进行清洗。模内注塑温度为120℃~250℃,注塑压力为20T~50T,注塑时间为10min~30min;注塑模具的尺寸 根据D壳的尺寸进行设计。
S1302、采用电镀工艺在非金属层面向金属层的一侧形成电镀层。
具体实施时,在清洗好的非金属层上电镀一层电镀层,电镀层的材料可以为铬或者锡。由于钎料层采用的是锡基钎料,因此电镀层的材料为锡时可以增强金属层和非金属层的结合力。
S1303、形成设定尺寸大小的金属层。
具体实施时,将0.1mm厚的不锈钢薄板或者钛合金薄板根据产品要求通过激光切割的方式裁剪为相应的尺寸大小,得到具有与D壳形状对应尺寸大小的0.1mm厚的金属层。其中激光功率为20W~30W,行进速度为100mm/s~200mm/s。不锈钢薄板可以是SUS316不锈钢薄板,钛合金薄板可以是TC4钛合金薄板。
S1304、在金属层和电镀层之间形成钎料层并进行钎焊处理,使金属层和非金属层通过钎料层和电镀层进行结合。
具体实施时,在金属层和电镀层中间夹一层0.085mm厚的片状钎料层,或者,在电镀层表面或者金属层面向非金属层一侧涂覆一层0.085mm厚的膏状钎料层,然后通过夹治具将3者完全压合在一起并送至惰性氛围连续隧道炉进行钎焊处理。钎焊温度为180℃~300℃,钎焊时间为20min~45min,保压压合为20N~40N。钎料层的材料可以采用环保的无铅锡基钎料,例如Sn80Bi20片状钎料。
S1305、对结合后的金属层、钎料层、电镀层和非金属层进行冲压工艺处理形成具有D壳形状的叠层结构。
具体实施时,将焊接良好的非金属层和金属层放置在根据产品结构设计的冲压模具中进行冲压处理使其成型,并进行精密机械加工去除多余的边形成具有D壳形状的叠层结构。其中,冲压压力至少为50T,保压时间至少为3min,冲压温度为室温。
进一步地,还需要对具有D壳形状的叠层结构进行酸碱清洗、纯水清洗、超声波清洗、烘干,使其具备干净的表面。
S1306、对金属层背离非金属层一侧的表面进行PVD镀膜处理形成该壳体结构的外观效果层。
具体实施时,可以根据产品的要求选择合适的镀层,镀层厚度控制在15μm~25μm范围内,从而获得最终具备PVD装饰镀层外观的壳体结构件。
本申请提供的上述壳体结构,在实现不锈钢或钛合金PVD镀膜外观金属质感的前提下,抗拉强度提高至600MPa以上,相比不锈钢密度可降低60%以上,强度满足产品需求,可同时满足使用产品重量、外观金属质感、外观信赖性及机械强度等要求。
在上述示例二中,壳体结构同时具备非金属和金属的综合优势;金属层与非金属层中间有钎料层和电镀层作为中间连接层,金属层和非金属层通过钎焊的方式进行结合,壳体结构的CTE梯度大幅减小,可成形结构形式复杂的壳体材结构,且其变形度可良好控制。相比示例一,焊接技术可使得金属层与非金属层的结合力相当稳定,且长期稳定性大幅提升,可满足后制程的冲压成形处理,即可实现原材料厂商与加工厂商的分开,中间存储时效性大幅提高。
示例三
图14示例性示出了本申请实施例中壳体结构的又一种结构示意图。参见图14,第一 连接层可以包括微纳米孔层0313,第二连接层可以包括粘胶层0323。该壳体结构包括层叠设置的外观效果层01、金属层02、微纳米孔层0313、胶水层0323和非金属层04。其中,粘胶层0323的材料可以是由两种树脂胶水按一定比例混合均匀而成,例如AB树脂胶水。微纳米孔层0313是基于金属层02经过微纳米蚀孔工艺处理后形成的,可以增加粘胶层0323对金属层02的结合力。金属层02的材料可以是镁合金、铝合金、钛合金、钢和非晶合金中的任意一种,非金属层04的材料可以是碳纤维复合材料、玻纤复合材料、工程塑料和无机纤维复合材料中的任意一种。外观效果层01可以是基于金属层02进行阳极氧化处理、着色微弧氧化处理、PVD镀膜处理、电泳处理和纳米压印处理中的任意一种表面处理方式形成的。
图15示例性示出了本申请上述实施例所提供的壳体结构的制备方法的流程示意图,如图15所示,该方法主要包括以下步骤:
S1501、对金属层面向非金属层的一侧进行微纳米蚀孔工艺处理形成微纳米孔层,并在金属层面向非金属层的一侧贴附粘胶层。
在实施时,对形成微纳米孔层和贴附粘胶层的先后顺序不作具体限定。可以先对金属层面向非金属层的一侧进行微纳米蚀孔工艺处理形成微纳米孔层,然后在金属层面向非金属层的一侧贴附粘胶层。也可以先在金属层面向非金属层的一侧贴附粘胶层,再对金属层面向非金属层的一侧进行微纳米蚀孔工艺处理形成微纳米孔层。还可以在对金属层面向非金属层的一侧进行微纳米蚀孔工艺处理形成微纳米孔层时,在金属层面向非金属层的一侧贴附粘胶层。
S1502、对形成有微纳米孔层的金属层和贴附有粘胶层的非金属层进行冲压处理,形成具有目标壳体形状的叠层结构。
S1503、对金属层背离非金属层一侧的表面进行表面处理形成壳体结构的外观效果层。
以该壳体结构应用于笔记本电脑的A壳,且要求壳体结构的总厚度为0.8mm为例。
该壳体结构中,金属层采用钛合金薄壁材料形成,例如TA7或TC4钛合金薄壁材料,金属层的厚度为0.1mm,其屈服强度≥280Mpa,抗拉强度≥600Mpa,延伸率≥30%。非金属层采用工程塑料形成,例如PC+ABS,非金属层的厚度为0.55mm,其抗拉强度≥400MPa。粘胶层的材料为AB树脂胶水,粘胶层的厚度为0.1mm。微纳米孔层是基于金属层经过微纳米蚀孔工艺处理后形成的,外观效果层可以是对金属层进行纳米压印处理形成。成型过程中将工程塑料先采用注塑的方式成型为具备A壳初始形状的非金属层,并在其表面贴附一层0.1mm厚的粘胶层,再通过冲压成型的方式使形成有纳米微孔层的金属层与贴附有粘胶层的金属层进行压合,使其具有A壳形状;然后对金属层表面进行纳米压印处理,最终得到具有D壳形状的壳体结构。该壳体结构对应的工艺路线如图16所示。其具体制备方法如图17所示,包括以下步骤:
S1701、通过模压工艺形成具有A壳初始形状的非金属层。
具体实施时,通过模压工艺形成具有A壳形状的工程塑料非金属层。其中,采用的模压模具按照A壳的形状设计,其公模面与母模面之间的高度为0.55mm,使其可成型0.55mm的膜层。模压压力控制在0.5MPa~1.0MPa,成型温度控制在150℃~300℃,保压时间控制在25min~60min。
S1702、在非金属层面向金属层的一侧贴附一层粘胶层。
具体实施时,粘胶层的材料为AB树脂胶水,粘胶层的厚度为0.1mm。
S1703、形成设定尺寸大小的金属层。
具体实施时,将0.15mm厚的TC4钛合金薄板根据产品要求通过激光切割的方式裁剪为相应的尺寸大小,得到具有与A壳形状对应尺寸大小的0.15mm厚的金属层。其中,激光功率为20W~30W,行进速度为100mm/s~200mm/s。
S1704、对金属层的面向非金属层的一侧进行微纳米蚀孔工艺处理形成微纳米孔层。
具体实施时,将金属层放置在相应治具中进行固定,通过纳米蚀孔工艺在金属层表面形成一层微纳米孔层,以增加粘胶层的附着力。
纳米蚀孔工艺可以采用化学处理方法,为了加快处理速度,也可以采用电化学处理方法,但是成本也会相应增加。采用化学处理方法时可以采用25%氨水(NH40H)、30%双氧水(H2O2)及去离子水(DI水)按1:1:5的摩尔比配置腐蚀液;然后将腐蚀液加热到70℃,并保温1min~至2min;将金属层放入腐蚀液内,腐蚀25min~30min,在金属层表面形成一层TiO2微纳米孔结构。
S1705、对贴附有粘胶层的非金属层和形成有微纳米孔层的金属层进行冲压工艺处理,形成具有A壳形状的叠层结构。
将贴附有粘胶层的非金属层放置在冲压模具的母模中,并进行固定,同时将形成有微纳米孔层的金属层放置在公模上,并下压冲压模具使金属层仿制非金属层表面形状,保持一段时间后松开冲压模具进行切边即可得到成型好的具有A壳形状的叠层结构。其中保压压力为30T~50T,保压时间为10min~30min。
S1706、对金属层背离非金属层一侧的表面进行纳米压印处理形成壳体结构的外观效果层。
具体实施时,纳米压印的图形可以是同心圆、CD纹、仿阳极等各种外观效果。在对金属层背离非金属层一侧的表面进行纳米压印处理之前,需要对成型好的具有A壳形状的叠层结构进行酸碱洗、纯水清洗、打磨抛光等处理。在对金属层背离非金属层一侧的表面进行纳米压印处理之后,还需要进行超声波清洗和烘干等工艺,最终得到可以应用于笔记本电脑的A壳的该壳体结构。该壳体结构具备阳极氧化外观同时其抗拉强度可达600MPa以上,密度为2.20g/cm3~2.50g/cm3,可同时满足应用产品的重量、外观金属质感、外观信赖性及机械强度等要求。
具体实施时,如果产品对外观效果层的颜色有要求,可以在进行纳米压印处理之后,再进行着色处理。
本申请提供的上述壳体结构,在实现钛合金纳米压印外观效果的前提下,可将壳体结构的密度降低至2.20g/cm3~2.50g/cm3,抗拉强度提高至600MPa以上,相比钛合金密度降低了45%左右,可同时满足使用产品重量、外观金属质感、外观信赖性及机械强度等要求。
在上述示例三中,壳体结构同时具备非金属和金属的综合优势;金属层和非金属层通过微纳米孔层和粘胶层进行结合,相比常规胶粘工艺,微纳米孔层可大幅提高金属与非金属之间的结合力;工程塑料通过模压成型成具备壳体形状的产品,仅一层粘胶层,从工艺上使得该壳体结构在使用产品上具备量产性和商用性。
示例四
图18示例性示出了本申请实施例中壳体结构的又一种结构示意图。参见图18,第一连接层可以包括微纳米孔层0314,第二连接层可以包括表面孔洞填充层0324。该壳体结 构包括层叠设置的外观效果层01、金属层02、微纳米孔层0314、表面孔洞填充层0324和非金属层04。其中,表面孔洞填充层0324的材料与非金属层04的材料相同,可以采用注塑工艺或者热压镶嵌工艺形成。微纳米孔层0313是基于金属层02经过微纳米蚀孔工艺处理后形成的,可以增加粘胶层0323对金属层02的结合力。金属层02的材料可以是镁合金、铝合金、钛合金、钢和非晶合金中的任意一种,非金属层04的材料可以是碳纤维复合材料、玻纤复合材料、工程塑料和无机纤维复合材料中的任意一种。外观效果层01可以是基于金属层02进行阳极氧化处理、着色微弧氧化处理、PVD镀膜处理、电泳处理和纳米压印处理中的任意一种表面处理方式形成的。
图19示例性示出了本申请上述实施例所提供的壳体结构的制备方法的流程示意图,如图19所示,该方法主要包括以下步骤:
S1901、形成具有目标壳体初始形状的金属层。
S1902、对金属层的面向非金属层的一侧进行微纳米蚀孔工艺处理形成微纳米孔层。
S1903、形成表面孔洞填充层,并在表面孔洞填充层背离金属层一侧形成非金属层,得到具有目标壳体形状的叠层结构。
具体实施时,可以采用注塑工艺将非金属材料注塑到微纳米孔层中形成表面孔洞填充层,并在表面孔洞填充层背离金属层一侧形成非金属层,得到具有目标壳体形状的叠层结构;或者,采用热压镶嵌工艺将非金属材料镶嵌到微纳米孔层中形成表面孔洞填充层,并在表面孔洞填充层背离金属层一侧形成非金属层,得到具有目标壳体形状的叠层结构。
S1904、对金属层背离非金属层一侧的表面进行表面处理形成壳体结构的外观效果层。
以该壳体结构应用于笔记本电脑的C壳,且要求壳体结构的总厚度为0.8mm为例。
该壳体结构中,金属层采用铝合金薄壁材料形成,例如5XXX铝合金薄壁材料或者6XXX铝合金薄壁材料,金属层的厚度为0.15mm,其屈服强度≥150Mpa,抗拉强度≥240Mpa,延伸率≥15%。非金属层采用玻纤复合材料形成,例如玻纤复合材料由30%的玻纤(GF)和70%的聚苯硫醚(PPS)组成,非金属层的厚度为0.55mm,其抗拉强度≥400MPa。微纳米孔层是基于金属层经过微纳米蚀孔工艺处理后形成的。外观效果层可以是对金属层进行阳极氧化处理形成。表面孔洞填充层的材料与非金属层的材料相同,可以采用注塑工艺或者热压镶嵌工艺将非金属注塑或镶嵌到微纳米孔层中形成。成型过程中对0.15mm厚的金属层进行冲压处理使其具有C壳初始形状,通过微纳米蚀孔工艺在金属层表面形成一层微纳米孔层,然后通过注塑工艺或热压镶嵌工艺将非金属材料注塑或镶嵌到微纳米孔层中形成表面孔洞填充层并同时形成非金属层,最后对金属层背离非金属层一侧进行阳极氧化处理,得到具有C壳形状的壳体结构。该壳体结构对应的工艺路线如图20所示。其具体制备方法如图21所示,包括以下步骤:
S2101、形成具有C壳初始形状的金属层。
具体实施时,将0.15mm厚的铝合金薄板采用激光切割的方式切割成相应大小的尺寸,并放置在冲压模具中进行冲压处理成型成C壳初始形状。其中,模压模具根据产品结构进行设计,其公模面与母模面之间的高度为0.15mm,模压压力为0.5MPa左右,保压时间为5min~10min。铝合金薄板可以采用6063-T6铝合金薄板。
S2102、对金属层的面向非金属层的一侧进行微纳米蚀孔工艺处理形成微纳米孔层。
具体实施时,将金属层清洗干净,去除油污杂质,通过纳米蚀孔工艺对金属层表面进行刻蚀刻蚀出尺寸较小的蜂窝状纳米孔,最终在金属层表面形成纳米级别的珊瑚礁结构即 形成微纳米孔层;纳米蚀孔工艺可以采用化学处理方法,为了加快处理速度,也可以采用电化学处理方法,但是成本也会相应增加。采用化学处理方法时,处理时间为3min~10min。
S2103、通过注塑工艺或热压镶嵌工艺将非金属材料注塑或镶嵌到微纳米孔层中形成表面孔洞填充层并同时形成非金属层,得到具有目标壳体形状的叠层结构。
在具体实施时,对经过纳米蚀孔工艺处理后的金属层进行清洗烘干,并放置在纳米注塑模中,注塑PPS+30%GF形成表面孔洞填充层并同时形成非金属层。其中注塑压力为0.5MPa~1.0MPa左右,成形温度为150℃~300℃左右,保压时间为15min~40min。或者,对经过纳米蚀孔工艺处理后的金属层进行清洗烘干,并采用热压镶嵌工艺将非金属层表面镶嵌到微纳米孔层中形成表面孔洞填充层。从而使非金属层通过纳米微孔层与金属层进行可靠连接。
S2104、对金属层背离非金属层一侧的表面进行阳极氧化处理形成壳体结构的外观效果层。
具体实施时,具体实施时,在对金属层背离非金属层一侧的表面进行阳极氧化处理之前,需要对成型好的具有C壳形状的叠层结构进行酸碱洗、纯水清洗、打磨抛光等处理。在对金属层背离非金属层一侧的表面进行阳极氧化处理之后,还需要进行超声波清洗和烘干等工艺,最终得到可以应用于笔记本电脑的C壳的壳体结构。该壳体结构具备阳极氧化外观效果,同时其抗拉强度可达600MPa以上,密度为1.70g/cm3~1.80g/cm3,即密度降低34%以上,强度提升120%以上,可同时满足使用产品重量、外观金属质感、外观信赖性及机械强度等。
在上述示例四中,壳体结构同时具备非金属和金属的综合优势;通过微纳米孔层以及采用注塑工艺或热压镶嵌工艺直接将非金属层与金属层复合在一块,减少中间工序,具有较高经济效果,从工艺上使得该壳体结构在使用产品上具备壳量产性和商用性。
示例五
图22示例性示出了本申请实施例中壳体结构的又一种结构示意图。参见图22,连接层还包括第三连接层,第一连接层可以包括微纳米孔层0314,第二连接层可以包括表面孔洞填充层0324。第三连接层可以包括胶水层033。该壳体结构包括层叠设置的外观效果层01、金属层02、微纳米孔层0314、表面孔洞填充层0324、胶水层033和非金属层04。与示例四的区别在于,示例四在形成表面孔洞填充层的同时形成非金属层,在示例五中,通过注塑工艺或热压镶嵌工艺将非金属材料注塑或镶嵌到微纳米孔层中形成表面孔洞填充层,之后表面孔洞填充层与非金属层通过胶水层再进行结合。
图23示例性示出了本申请上述实施例所提供的壳体结构的制备方法的流程示意图,如图23所示,该方法主要包括以下步骤:
S2301、形成具有目标壳体初始形状的金属层。
S2302、对金属层的面向非金属层的一侧进行微纳米蚀孔工艺处理形成微纳米孔层。
S2303、通过注塑工艺或热压镶嵌工艺将非金属材料注塑或镶嵌到微纳米孔层中形成表面孔洞填充层。
S2304、通过胶水层使表面孔洞填充层与非金属层进行结合,得到具有目标壳体形状的叠层结构。
S2305、对金属层背离非金属层一侧的表面进行表面处理形成壳体结构的外观效果层。
综上,本申请中,对于非金属的材料为热塑型材料,例如碳纤维复合材料,可以采用模压成形的方式使非金属层具备壳体形状,后续金属层仅需冲压仿形即可,因此金属层需要使用延伸率较好的可冲压成形的材料,例如5052-T6铝合金,通过将已成形的非金属层和金属层放置在冲压模具上,然后让金属层进行仿形冲压。对于非金属的材料为热固型材料,例如玻纤复合材料,可以采用膜内注塑的成形方式形成板材,最终通过冲压成形的方式使其成形为壳体形状。
需要说明的是,本申请可以通过调整金属层、连接层及非金属层的厚度比,从而实现密度、强度之间的最优化。
本申请实施例提出的壳体结构可以应用于电子设备中。本申请提供的电子设备,包括本申请上述任意技术方案中的壳体结构以及电路板;该壳体结构位于该电路板的外侧。由于该电子设备解决问题的原理与前述一种壳体结构相似,因此该电子设备的实施可以参见前述壳体结构的实施,重复之处不再赘述。由于本申请提出的壳体结构兼备金属层壳体和非金属层壳体的优点,具有高颜值的金属质感外观。因此,本申请的电子设备同样兼备金属层壳体和非金属层壳体的优点,具有高颜值的金属质感外观。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (34)

  1. 一种壳体结构,其特征在于,包括叠层设置的外观效果层、金属层、连接层和非金属层;
    所述连接层用于使所述金属层与所述非金属层进行结合;
    所述外观效果层是基于所述金属层经过表面处理后形成的。
  2. 如权利要求1所述的壳体结构,其特征在于,所述连接层包括第一连接层和第二连接层;所述第一连接层位于靠近所述金属层一侧,所述第二连接层位于靠近所述非金属层一侧。
  3. 如权利要求2所述的壳体结构,其特征在于,所述第一连接层的材料与所述金属层的结合力大于所述第二连接层的材料与所述金属层的结合力,所述第二连接层的材料与所述非金属层的结合力大于所述第一连接层的材料与所述非金属层的结合力。
  4. 如权利要求2所述的壳体结构,其特征在于,所述第一连接层与所述金属层的接触面积比例大于或等于90%;
    所述第二连接层与所述非金属层的接触面积比例大于或等于90%。
  5. 如权利要求2-4任一项所述的壳体结构,其特征在于,所述第一连接层包括第一胶水层,所述第二连接层包括第二胶水层。
  6. 如权利要求5所述的壳体结构,其特征在于,所述第一胶水层和所述第二胶水层的材料相同。
  7. 如权利要求6所述的壳体结构,其特征在于,所述第一胶水层的材料包括环氧树脂胶水,所述第二胶水层的材料包括聚氨酯胶水。
  8. 如权利要求2-4任一项所述的壳体结构,其特征在于,所述第一连接层包括钎料层,所述第二连接层包括电镀层,且所述电镀层是通过在所述非金属层上电镀金属形成的。
  9. 如权利要求8所述的壳体结构,其特征在于,所述电镀层的材料包括锡、铬、镍、银和铜中的至少一种。
  10. 如权利要求8所述的壳体结构,其特征在于,所述钎料层的材料包括锡基钎料。
  11. 如权利要求2-4任一项所述的壳体结构,其特征在于,所述第一连接层包括微纳米孔层,且所述微纳米孔层是基于所述金属层经过微纳米蚀孔工艺处理后形成的;
    所述第二连接层包括粘胶层。
  12. 如权利要求11所述的壳体结构,其特征在于,所述粘胶层的材料由两种树脂胶水混合而成。
  13. 如权利要求2-4任一项所述的壳体结构,其特征在于,所述第一连接层包括微纳米孔层,且所述微纳米孔层是基于所述金属层经过微纳米蚀孔工艺处理后形成的;
    所述第二连接层包括表面孔洞填充层,所述表面孔洞填充层的材料与所述非金属层的材料相同。
  14. 如权利要求13所述的壳体结构,其特征在于,所述连接层还包括第三连接层;
    所述第三连接层位于所述表面孔洞填充层与所述非金属层之间,所述第三连接层的材料为胶水。
  15. 如权利要求1-14任一项所述的壳体结构,其特征在于,所述金属层的厚度占所述壳体结构总厚度的15%~30%;
    所述非金属层的厚度占所述壳体结构总厚度的60%~80%。
  16. 如权利要求1-14任一项所述的壳体结构,其特征在于,所述连接层的厚度占所述壳体结构总厚度的2%~20%。
  17. 如权利要求1-14任一项所述的壳体结构,其特征在于,所述金属层的材料包括镁合金、铝合金、钛合金、钢和非晶合金中的至少一种。
  18. 如权利要求1-14任一项所述的壳体结构,其特征在于,所述非金属层的材料包括碳纤维复合材料、玻纤复合材料、工程塑料和无机纤维复合材料中的至少一种。
  19. 如权利要求18所述的壳体结构,其特征在于,所述玻纤复合材料包括玻纤树脂复合材料。
  20. 如权利要求18所述的壳体结构,其特征在于,所述玻纤复合材料包括30%的玻纤和70%的聚苯硫醚。
  21. 一种壳体结构的制备方法,其特征在于,包括:通过连接层使金属层与非金属层进行结合并形成具有目标壳体形状的叠层结构,以及对所述金属层背离所述非金属层一侧的表面进行表面处理形成所述壳体结构的外观效果层。
  22. 如权利要求21所述的制备方法,其特征在于,所述通过连接层使金属层与非金属层进行结合并形成具有目标壳体形状的叠层结构,具体包括:
    通过第一连接层和第二连接层使所述金属层与所述非金属层进行结合并形成具有目标壳体形状的叠层结构。
  23. 如权利要求22所述的制备方法,其特征在于,所述通过第一连接层和第二连接层使所述金属层与所述非金属层进行结合并形成具有目标壳体形状的叠层结构,具体包括:
    在所述金属层面向所述非金属层的一侧涂覆第一胶水层,并在所述非金属层面向所述金属层的一侧涂覆第二胶水层;
    对形成有所述第一胶水层的所述金属层和形成有所述第二胶水层的所述非金属层进行冲压处理,形成具有目标壳体形状的叠层结构。
  24. 如权利要求22所述的制备方法,其特征在于,所述通过第一连接层和第二连接层使所述金属层与所述非金属层进行结合并形成具有目标壳体形状的叠层结构,具体包括:
    对所述金属层面向所述非金属层的一侧进行微纳米蚀孔工艺处理形成微纳米孔层,并在所述金属层面向所述非金属层的一侧贴附粘胶层;
    对形成有所述微纳米孔层的所述金属层和贴附有所述粘胶层的所述非金属层进行冲压处理,形成具有目标壳体形状的叠层结构。
  25. 如权利要求22所述的制备方法,其特征在于,所述通过连接层使金属层与非金属层进行结合并形成具有目标壳体形状的叠层结构,具体包括:
    采用电镀工艺在所述非金属层面向所述金属层的一侧形成电镀层;
    在所述金属层和所述电镀层之间形成钎料层并进行钎焊处理,使所述金属层和所述非金属层通过所述钎料层和所述电镀层进行结合;
    对结合后的所述金属层和所述非金属层进行冲压处理形成具有目标壳体形状的叠层结构。
  26. 如权利要求22所述的制备方法,其特征在于,所述通过连接层使金属层与非金属层进行结合并形成具有目标壳体形状的叠层结构,具体包括:
    形成具有目标壳体初始形状的金属层;
    对所述金属层的面向所述非金属层的一侧进行微纳米蚀孔工艺处理形成微纳米孔层;
    采用注塑工艺将非金属材料注塑到所述微纳米孔层中形成表面孔洞填充层,并在所述表面孔洞填充层背离所述金属层一侧形成非金属层,得到具有目标壳体形状的叠层结构;
    或者采用热压镶嵌工艺将非金属材料镶嵌到所述微纳米孔层中形成表面孔洞填充层,并在所述表面孔洞填充层背离所述金属层一侧形成非金属层,得到具有目标壳体形状的叠层结构。
  27. 如权利要求23所述的制备方法,其特征在于,在所述金属层面向所述非金属层的一侧形成第一连接层前,对所述金属层背离所述非金属层一侧的表面进行表面处理形成所述外观效果层。
  28. 如权利要求27所述的制备方法,其特征在于,在对所述金属层背离所述非金属层一侧的表面进行表面处理形成所述外观效果层之前,还包括:
    对所述金属层进行冲压处理,使所述金属层具有目标壳体初始形状。
  29. 如权利要求21-26任一项所述的制备方法,其特征在于,在形成所述叠层结构后,对所述金属层背离所述非金属层一侧的表面进行表面处理形成所述外观效果层。
  30. 如权利要求21-28任一项所述的制备方法,其特征在于,所述金属层的材料包括镁合金、铝合金、钛合金、钢和非晶合金中的至少一种;
    对所述金属层背离所述非金属层一侧的表面进行表面处理包括:阳极氧化处理、物理气相沉积镀膜处理、着色微弧氧化处理、电泳处理或者纳米压印处理。
  31. 如权利要求21-28任一项所述的制备方法,其特征在于,所述非金属层的材料包括碳纤维复合材料、玻纤复合材料、工程塑料和无机纤维复合材料中的至少一种;
    所述非金属层通过模压工艺或者模内注塑工艺形成。
  32. 一种壳体结构,其特征在于,所述壳体结构采用如权利要求21-31任一项所述的制备方法制备形成。
  33. 一种电子设备,其特征在于,包括电路板和如权利要求32所述的壳体结构,所述壳体结构位于所述电路板外侧。
  34. 一种电子设备,其特征在于,包括电路板和如权利要求1-20任一项所述的壳体结构,所述壳体结构位于所述电路板外侧。
PCT/CN2021/097266 2020-08-05 2021-05-31 一种壳体结构、其制备方法及电子设备 WO2022028072A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21852372.8A EP4186693A4 (en) 2020-08-05 2021-05-31 HOUSING STRUCTURE, PREPARATION METHOD THEREFOR, AND ELECTRONIC DEVICE
US18/163,798 US20230176616A1 (en) 2020-08-05 2023-02-02 Housing structure, production method thereof, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010780225.9A CN114074462A (zh) 2020-08-05 2020-08-05 一种壳体结构、其备制备方法及电子设备
CN202010780225.9 2020-08-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/163,798 Continuation US20230176616A1 (en) 2020-08-05 2023-02-02 Housing structure, production method thereof, and electronic device

Publications (1)

Publication Number Publication Date
WO2022028072A1 true WO2022028072A1 (zh) 2022-02-10

Family

ID=80119881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097266 WO2022028072A1 (zh) 2020-08-05 2021-05-31 一种壳体结构、其制备方法及电子设备

Country Status (4)

Country Link
US (1) US20230176616A1 (zh)
EP (1) EP4186693A4 (zh)
CN (1) CN114074462A (zh)
WO (1) WO2022028072A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115003080A (zh) * 2022-06-14 2022-09-02 华勤技术股份有限公司 壳体加工方法及壳体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098890A1 (en) * 2008-10-17 2010-04-22 Shenzhen Futaihong Precision Industry Co., Ltd. Device housing and method for making the same
US20100098920A1 (en) * 2008-10-17 2010-04-22 Shenzhen Futaihong Precision Industry Co., Ltd. Device housing and method for making the same
CN208841989U (zh) * 2018-08-28 2019-05-10 深圳市天合兴五金塑胶有限公司 可减轻材料重量的复合手机外壳
CN213108528U (zh) * 2020-08-05 2021-05-04 华为技术有限公司 一种壳体结构及电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647714A (en) * 1984-12-28 1987-03-03 Sohwa Laminate Printing Co., Ltd. Composite sheet material for magnetic and electronic shielding and product obtained therefrom
WO2011123968A1 (zh) * 2010-04-06 2011-10-13 铂邑科技股份有限公司 具有塑质结合件的金属薄壳件及其制法
KR20170142625A (ko) * 2016-06-20 2017-12-28 주식회사 비티엘첨단소재 이차전지용 알루미늄 파우치 필름 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098890A1 (en) * 2008-10-17 2010-04-22 Shenzhen Futaihong Precision Industry Co., Ltd. Device housing and method for making the same
US20100098920A1 (en) * 2008-10-17 2010-04-22 Shenzhen Futaihong Precision Industry Co., Ltd. Device housing and method for making the same
CN208841989U (zh) * 2018-08-28 2019-05-10 深圳市天合兴五金塑胶有限公司 可减轻材料重量的复合手机外壳
CN213108528U (zh) * 2020-08-05 2021-05-04 华为技术有限公司 一种壳体结构及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4186693A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115003080A (zh) * 2022-06-14 2022-09-02 华勤技术股份有限公司 壳体加工方法及壳体
CN115003080B (zh) * 2022-06-14 2024-01-30 华勤技术股份有限公司 壳体加工方法及壳体

Also Published As

Publication number Publication date
EP4186693A4 (en) 2024-01-10
EP4186693A1 (en) 2023-05-31
CN114074462A (zh) 2022-02-22
US20230176616A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
CN101578019A (zh) 电子装置壳体及其制造方法
JP2012157901A (ja) 複数の金属層を含むカバーを製造する方法及び装置
CN102215653B (zh) 具有塑质结合件的金属薄壳件及其制法
CN213108528U (zh) 一种壳体结构及电子设备
CN102802860A (zh) 具有装饰表面的铸造金属部件以及制造其的方法
KR102148308B1 (ko) 이종 접합형 수지 금속 복합재의 제조방법
CN101683757A (zh) 一种成型方法及其产品
WO2022028072A1 (zh) 一种壳体结构、其制备方法及电子设备
KR101343539B1 (ko) 다중 재료층을 포함하는 커버를 제조하는 방법 및 장치
CN103029306A (zh) 碳纤外壳制作方法
CN110587915A (zh) 一种磁钢嵌件注塑装置及注塑方法
TW200920512A (en) Method for manufacturing metallic panel having ripple luster
CN103029305A (zh) 碳纤外壳制作方法
JP3423908B2 (ja) プラスチック成形用成形型及びその製造方法
TW201129277A (en) Housing for electronic device and method for making the same
CN210415249U (zh) 一种高气密性金属树脂复合体
KR20100060791A (ko) 접합된 사출성형부를 갖는 금속 몰딩물의 제조방법 및 그 제조방법에 의한 금속 몰딩물
JPH02197592A (ja) 平板状の所定の構造体をリプロダクシヨンするための方法
CN117532963A (zh) 碳纤维复合材料与铝合金的复合成型方法
CN218848463U (zh) 复合结构和ar眼镜
JPS58204603A (ja) 導波管の製造方法
CN103660133A (zh) 一种模内镶件注塑结构和注塑方法
CN102815066B (zh) 工件的制备方法与电子设备
CN203708659U (zh) 壳体部件及应用此的便携式终端
CN114683657B (zh) 壳体组件及其制备方法、电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021852372

Country of ref document: EP

Effective date: 20230222

NENP Non-entry into the national phase

Ref country code: DE