WO2022028038A1 - 钙质砂混凝土新型路堤施工方法 - Google Patents

钙质砂混凝土新型路堤施工方法 Download PDF

Info

Publication number
WO2022028038A1
WO2022028038A1 PCT/CN2021/094559 CN2021094559W WO2022028038A1 WO 2022028038 A1 WO2022028038 A1 WO 2022028038A1 CN 2021094559 W CN2021094559 W CN 2021094559W WO 2022028038 A1 WO2022028038 A1 WO 2022028038A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcareous sand
sand concrete
concrete
mixing
construction method
Prior art date
Application number
PCT/CN2021/094559
Other languages
English (en)
French (fr)
Inventor
胡俊
周禹暄
陈璐
任军昊
Original Assignee
海南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南大学 filed Critical 海南大学
Publication of WO2022028038A1 publication Critical patent/WO2022028038A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C3/00Foundations for pavings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/04Producing shaped prefabricated articles from the material by tamping or ramming
    • B28B1/045Producing shaped prefabricated articles from the material by tamping or ramming combined with vibrating or jolting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/245Curing concrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/38Treating surfaces of moulds, cores, or mandrels to prevent sticking
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C3/00Foundations for pavings
    • E01C3/003Foundations for pavings characterised by material or composition used, e.g. waste or recycled material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]

Definitions

  • the invention relates to the field of embankment construction methods, in particular to a new embankment construction method of calcareous sand concrete.
  • the construction of islands and reefs is mainly based on ports, docks, airports and housing construction. These buildings inevitably use reinforced concrete.
  • the reinforced concrete materials required for construction include steel bars, cement, sand and gravel aggregates and even fresh water for mixing. From the mainland by sea long-distance transportation, the cost is extremely high. Therefore, how to save the construction cost and how to solve the construction of the islands and reefs has become an important issue in the construction of islands and reefs.
  • the main building material of modern buildings is concrete, and concrete mixing requires gravel, river sand and fresh water, but these resources are very scarce on the islands and reefs.
  • the purpose of the present invention is to overcome the deficiencies of the above-mentioned prior art, provide a new embankment construction method of calcareous sand concrete, effectively utilize the resources of the islands and reefs themselves, reduce the transportation cost of land-sourced materials, shorten the construction period of the project, and provide new materials for building new materials. It has important scientific significance and engineering value for its popularization and application and the construction and development of island reef engineering.
  • the present invention adopts the following technical solutions:
  • a calcareous sand concrete new embankment construction method comprising the following steps:
  • the calcareous sand concrete is composed of: calcareous sand, reef limestone crushed stone, water, cement, fly ash and water reducing agent, wherein the consumption of calcareous sand is 600kg/m3, and the consumption of reef limestone crushed stone is 750kg /m 3, the cement dosage is 700kg/m 3, the water dosage is 230kg/m 3, the fly ash dosage is 80kg/m 3, the water reducing agent dosage is 4kg/m 3, and the coarse aggregate is reef limestone crushed
  • the stone and fine aggregate are calcareous sand, and the main chemical components of both are calcium carbonate.
  • the calcareous sand concrete configured in this proportion has a faster early strength growth, and the seven-day compressive strength can basically reach 28. More than 85% of the compressive strength in 28 days, and the highest compressive strength in 28 days can reach 55.7MPa.
  • the preparation method of the test block is carried out according to the following steps:
  • the vibration frequency of the vibrating table is 50 Hz.
  • each construction unit is an operation area, including four sections, namely: filling section, leveling section, rolling section, and testing section; each construction unit is equipped with a leader 2 Name, 1 on-site technician, 1 on-site inspection personnel, 6-10 other mechanics and general workers; the required mechanical equipment is grader, road roller, loader, excavator, dump truck and sprinkler.
  • the longitudinal spacing of the square grid piles is less than 10m, and the horizontal grid piles are arranged on both sides of the roadbed and the center of the roadbed respectively, so as to facilitate the control of the amount of filler.
  • the stacking density is determined according to the thickness of the loose paving.
  • first leveling and shaping are carried out with a grader, and then a road roller is used to statically press it again and check the thickness of the filling layer to determine the moisture content. and loose dry bulk density, spread the mixture according to the unit area, spread the cement on the surface of the mixture, mix it with a road mixer, check the moisture content of the mixture, and control the moisture content to 1%.
  • the mixing depth of the road mixer should be 1 cm below the surface of the lower bearing layer, and a special person should follow the mixer to observe the mixing depth at any time during the mixing construction, and cooperate with the mixer operator to adjust the mixing depth.
  • step S6 when rolling, use a tire roller and a heavy-duty road roller to roll within the full width of the roadbed successively, and ensure that there is no obvious wheel trace on the surface; when rolling, the intersections of each section are overlapped and compacted, and the length of the longitudinal overlap is greater than 2.0m, the wheel track overlap between the longitudinal rows is greater than 40cm, the filling joints of the upper and lower layers should be staggered by more than 3.0m, and the longitudinal lap mixing length at the junction between the two adjacent operation sections is greater than 2.0m.
  • the surface should be kept moist, and a grader should be used to make the ground longitudinally comfortable before the end of rolling.
  • step S6 after the rolling operation is completed, if continuous construction is not possible, curing should be carried out to keep the concrete surface moist, and the curing period is 28 days.
  • the invention provides a construction method for laying new embankments on islands and reefs by using calcareous sand concrete.
  • the special rock and soil medium such as reef limestone crushed stone and calcareous sand in the islands and reefs and their surrounding areas, is used with external admixtures according to certain coordination. It can not only effectively utilize island and reef resources, reduce the material transportation cost of construction operations, but also effectively shorten the construction period, promote the application of new building materials and the construction and development of island reef projects. All have important scientific significance and engineering value.
  • Figure 1 is a block diagram of the construction process flow
  • Figure 2 is a flow chart of the test block fabrication process.
  • a new embankment construction method of calcareous sand concrete includes the following steps:
  • the calcareous sand concrete is composed of: calcareous sand, reef limestone crushed stone, water, cement, fly ash and water reducing agent, of which the amount of calcareous sand is 600kg /m3, the amount of reef limestone crushed stone is 750kg/m3, the amount of cement is 700kg/m3, the amount of water is 230kg/m3, the amount of fly ash is 80kg/m3, and the amount of water reducing agent is 4kg /m 3, the coarse aggregate is reef limestone crushed stone, and the fine aggregate is calcareous sand, the main chemical components of both are calcium carbonate.
  • the 7-day compressive strength can basically reach more than 85% of the 28-day compressive strength, and the 28-day compressive strength can reach up to 55.7MPa;
  • the rock blocks are broken, and two particle size groups of 5-10mm and 10-20mm are selected. At the same time, the fragments are rounded to make the surface smooth.
  • the fragments of the two particle size groups are mixed according to different mass ratios.
  • the mixture is coarse aggregate; 2) Material mixing, first mix dry coarse and fine aggregates and 1/2 mixing water for a short time, and then add cement , The remaining mixing water, fly ash and water reducer are mixed, and high-efficiency water reducer is added during stirring to control the slump of the calcareous sand concrete above 200mm, so that after stirring, the pores in the calcareous sand concrete are 3) Forming maintenance, clean the inside and outside of the mold and apply a layer of oil on the inside of the mold with a brush, pour the mixed calcareous sand concrete into the mold, and place the mold. Vibrate on a vibrating table (vibration frequency 50Hz), and control the vibrating time within 2 minutes.
  • test block After standing for one day in an indoor environment of 20 °C, remove the mold to obtain a test block. Put the test block into a standard curing box for testing. Maintenance, the maintenance conditions are that the temperature is controlled at 20 ⁇ 2 ° C, and the humidity is greater than 95%.
  • the specific production process is shown in Figure 2.
  • each construction unit is a complete operation area, including four sections: filling section, leveling section, rolling section and inspection section, each construction unit is equipped with a leader 2 Name, 1 on-site technician, 1 on-site inspector, 6-10 other mechanics and general workers, the main mechanical equipment of the construction unit of the embankment filling area includes road rollers, loaders, excavators, dump trucks and sprinklers.
  • the moisture content of the mixture is controlled at about 1%.
  • the mixing depth should be about 1cm below the surface of the lower bearing layer, and a special person should follow. Check the mixing depth at any time, and cooperate with the mixing operator to adjust the mixing depth. It is strictly forbidden to have interlayer at the bottom of the mixing layer.
  • the mixed mixture should be uniform. No longitudinal joints should appear during the construction process, and it should not be interrupted.
  • transverse construction joints should be set, and the transverse joints should be lapped construction; the shaping of the mixture should be carried out according to the specified slope and road arch, and special attention should be paid to the leveling of the joints. During the shaping process, vehicles are strictly prohibited. .
  • the construction unit will sample and inspect the compaction coefficient K6 points for each compaction layer every 100m along the longitudinal direction of the line, including 2 points at the left and right sides 1m away from the shoulder edge, 2 points in the middle of the roadbed, and one additional monitoring point every 100m in the section with back pressure protection road Every 100m and every filling height of about 90cm, 4 points of the foundation coefficient K30 are sampled and tested, including 1 point on the left and right at 2m from the side line of the subgrade, and 2 points in the middle of the subgrade.
  • the supervision unit shall test the compaction coefficient K or porosity n in parallel according to 10% of the sampling quantity of the construction unit; witness the test of all foundation coefficients K30.
  • the initial setting time of the cement should be greater than 3h and the final setting time should be greater than 6h, and attention should be paid to controlling the construction time of the calcareous sand concrete from mixing to rolling to ensure the entire process. No more than 4h; there will be a certain amount of water loss during the mixing process, especially in hot summer, the water loss will increase, so the water content of the mixed calcareous sand concrete should be slightly larger than the optimal water content.
  • the specific data is based on the construction The weather conditions at the time are determined and summarized during the construction process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Road Paving Structures (AREA)

Abstract

一种钙质砂混凝土新型路堤施工方法,其包括如下步骤:S1.按比例配置钙质砂混凝土并制作试块;S2.划分施工单元并配备作业人员和机械设备;S3.在施工区域设置警示标示并安排专人调度;S4.在路基上设置方格网桩;S5.铺设钙质砂混凝土并拌和;S6.对路面碾压并进行养生;其中钙质砂混凝土的各组分配比为:钙质砂600kg/m3、礁灰岩碎石750kg/m3、水泥700kg/m3、水230kg/m3、粉煤灰80kg/m3、减水剂4kg/m3,施工前制作试块对混凝土的质量进行控制。该方法利用岛礁上的礁灰岩碎石和钙质砂,有效利用了岛礁的资源并节省了运输成本。

Description

钙质砂混凝土新型路堤施工方法 技术领域
本发明涉及路堤施工方法领域,具体涉及一种钙质砂混凝土新型路堤施工方法。
背景技术
岛礁工程建设主要是以港口、码头、机场和房屋建筑为主,这些建筑都不可避免要使用钢筋混凝土,建设所需的钢筋混凝土材料包括钢筋、水泥、砂石骨料甚至拌合用淡水都是从大陆经海上长途运输而来,成本极高。因此如何节约建设成本以及如何解决岛礁建设中建筑材料就近取材成为岛礁建设的重要问题。现代建筑物的主要建筑材料是混凝土,而拌制混凝土需要碎石、河砂和淡水,但这些资源在岛礁上都很缺乏。因此,在不破坏岛礁环境的前提下,利用岛礁上的礁灰岩碎石、钙质砂作为骨料,并用海水代替淡水进行混凝土的拌制,这对于珊瑚岛礁的民用工程和国防工程建设都具有极其重要的意义。这不仅可以很大程度的降低工程造价,还可以大量缩短开发和建设工期。因此急需一种使用钙质砂混凝土搭建路堤的新型施工方法,达到节约建造成本的同时缩短施工工期。
发明内容
本发明的目的是为克服上述现有技术的不足,提供一种钙质砂混凝土新型路堤施工方法,有效利用岛礁自身的资源,降低陆源材料的运输成本,缩短工程建设周期,对于建筑新材料的推广应用和岛礁工程建设开发均具有重要的科学意义和工程价值。
为实现上述目的,本发明采用下述技术方案:
一种钙质砂混凝土新型路堤施工方法,包括如下步骤:
S1.按比例配置钙质砂混凝土并制作试块;
S2.划分施工单元并配备作业人员和机械设备;
S3.在施工区域设置警示标示并安排专人调度;
S4.在路基上设置方格网桩;
S5.铺设钙质砂混凝土并拌和;
S6.对路面碾压并进行养生。
所述钙质砂混凝土组成为:钙质砂、礁灰岩碎石、水、水泥、粉煤灰和减水剂,其中钙质砂用量为600kg/m 3、礁灰岩碎石用量为750kg/m 3、水泥用量为700kg/m 3、水用量为230kg/m 3、粉煤灰掺量为80kg/m 3,减水剂掺量为4kg/m 3,粗骨料为礁灰岩碎石、细骨料为钙质砂,二者的主要化学成分都是碳酸钙,依此比例配置的钙质砂混凝土相比普通混凝土,其前期强度增长较快,七天抗压强度基本能达到28天抗压强度的85%以上,28天抗压强度最高可达55.7MPa。
所述试块的制作方法按照如下步骤进行:
1)材料处理
将礁灰岩石块破碎,选取5-10mm和10-20mm两种粒径组,同时将碎块进行磨圆处理,使其表面光滑,将两种粒径组的碎块按不同质量比进行混合,质量比为5-10mm:10-20mm=1:2,混合物即为粗骨料;
2)材料拌合
先将干燥的粗、细骨料和1/2拌合用水进行短时间搅拌,然后加入水泥、剩余拌合用水、粉煤灰和减水剂并继续搅拌;
3)成型养护
将模具内外清理干净并用刷子在模具内侧涂抹一层机油,将搅拌好的钙质砂混凝土浇筑进模具中,将模具放在振动台上进行振捣,振捣时间控制在2min 以内,在20℃的室内环境静置一天后进行拆模,即得试块,将试块放入标准养护箱内进行养护,养护条件为温度控制在20±2℃,湿度大于95%。
所述试块制作方法中,振动台的振动频率为50Hz。
所述步骤S2中,每个施工单元为一个作业区,包括四个区段,即:填土区段、平整区段、碾压区段、检测区段;每个施工单元配备领工员2名、现场技术员1名、现场检测人员1名、其他机械工及普工6-10名;所需机械设备为平地机、压路机、装载机、挖机、自卸汽车和洒水车。
所述步骤S4中,方格网桩纵向间距小于10m,横向分别在路基两侧及路基中心设置,便于对填料量进行控制。
所述步骤S5中,根据松铺厚度确定堆放密度,将拌合物摊铺完成后,先用平地机进行初平和整形,再用压路机静压一遍并检查其填筑层的厚度,测定含水率及松散干容重,按单位面积摊铺拌合物,将水泥摊铺在拌合物表面上,用路拌机拌和一遍后,检查混合料含水率,使含水率控制在1%。
所述步骤S5中,路拌机拌和深度应深入下承层的表面以下1cm,并在拌和施工时设专人跟随拌和机随时观察拌和深度,并配合拌和机操作员调整拌和深度。
所述步骤S6中,碾压时先后使用轮胎压路机和重型压路机在路基全宽内碾压,并确保表面无明显轮迹;碾压时,各区段交接处相互重叠压实,纵向搭接长度大于2.0m,纵向行与行之间的轮迹重叠大于40cm,上下两层填筑接头应错开大于3.0m,相邻两作业区段之间的衔接处纵向搭接拌和长度大于2.0m,碾压过程中,表面应保持湿润,碾压结束前使用平地机终平使地面纵向顺适。
所述步骤S6中,碾压作业完成后,如不能连续施工应进行养生,使混凝土表面保持湿润,养生周期为28天。
本发明提供一种岛礁上使用钙质砂混凝土铺设新型路堤的施工方法,利用岛礁及其周边的礁灰岩碎石和钙质砂这种特殊岩土介质,与外掺料按照一定配合比拌和制成钙质砂混凝土,就地取材,不仅能有效利用岛礁资源、降低施工 作业的材料运输成本,还能有效缩短施工建设周期,对建筑新材料的推广应用和岛礁工程建设开发均具有重要的科学意义和工程价值。
附图说明
图1是施工工艺流程框图;
图2是试块制作工艺流程图。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
如图1所示,一种钙质砂混凝土新型路堤施工方法,包括如下步骤:
S1.按比例配置钙质砂混凝土并制作试块,钙质砂混凝土组成为:钙质砂、礁灰岩碎石、水、水泥、粉煤灰和减水剂,其中钙质砂用量为600kg/m 3、礁灰岩碎石用量为750kg/m 3、水泥用量为700kg/m 3、水用量为230kg/m 3、粉煤灰掺量为80kg/m 3,减水剂掺量为4kg/m 3,粗骨料为礁灰岩碎石、细骨料为钙质砂,二者的主要化学成分都是碳酸钙,依此比例配置的钙质砂混凝土相比普通混凝土,其前期强度增长较快,七天抗压强度基本能达到28天抗压强度的85%以上,28天抗压强度最高可达55.7MPa;试块的制作方法按如下步骤进行:1)材料处理,将礁灰岩石块破碎,选取5-10mm和10-20mm两种粒径组, 同时将碎块进行磨圆处理,使其表面光滑,将两种粒径组的碎块按不同质量比进行混合,质量比为5-10mm:10-20mm=1:2,混合物即为粗骨料;2)材料拌合,先将干燥的粗、细骨料和1/2拌合用水进行短时间搅拌,然后加入水泥、剩余拌合用水、粉煤灰和减水剂并搅拌,搅拌时添加高效减水剂,使钙质砂混凝土的坍落度控制在200mm以上,这样在搅拌后,钙质砂混凝土中的孔隙将大量减少,经短时间的振捣就能密实;3)成型养护,将模具内外清理干净并用刷子在模具内侧涂抹一层机油,将搅拌好的钙质砂混凝土浇筑进模具中,将模具放在振动台上进行振捣(振动频率50Hz),振捣时间控制在2min以内,在20℃的室内环境静置一天后进行拆模,即得试块,将试块放入标准养护箱内进行养护,养护条件为温度控制在20±2℃,湿度大于95%,具体制作流程如图2所示。
S2.划分施工单元,每个施工单元为一个完整的作业区,包括四个区段:填土区段、平整区段、碾压区段和检测区段,每个施工单元配置领工员2名、现场技术员1名、现场检测人员1名、其他机械工及普工6-10名,路堤填筑区施工单元的主要机械设备有压路机、装载机、挖机、自卸汽车和洒水车。
S3.在施工区域设置警示标志,严禁非工作人员出入,并安排专人调度,确定合适的机械车辆行进路线,并设立明显标识,防止相互干扰或发生碰撞,施工过程中对机械设备进行定期检查、养护和维修。
S4.在路基两侧及路基中心设方格网桩,方格网桩纵向桩距不宜大于10m,以方格网控制填料量。
S5.铺设钙质砂混凝土并拌和,根据松铺厚度确定堆放密度,在填筑场地按照每车土方的数量及摊铺厚度,用白灰点控制自卸车倒土密度,同时埋桩挂线,标示松铺厚度;拌和料摊铺完成后,先用平地机初平和整形,再用压路机静压一遍,检查填筑层的厚度并测定其含水率及松散干容重,再按单位面积摊铺数量,将水泥摊铺在已经初平的拌和料表面上,然后用路拌机拌和一遍,检查拌合物的含水率,含水率过大时晾晒,含水率过小时用洒水车洒水,洒水车不应再进行拌和及当天计划拌和的路段上掉头和停留,拌合物的含水率控制在1%左 右,路拌机进行拌和时,拌和深度应深入下承层表面以下1cm左右,且设专人跟随,随时检查拌和深度,并配合拌和操作员调整拌和深度,严禁在拌和层底部有夹层,拌和完成的拌合物应均匀,施工过程中不得出现纵向接缝,不宜中断,若因故中断超过2h时,应设置横向施工缝,横向接缝应采用搭接施工;对拌合物的整形应按规定的坡度和路拱进行,并特别注意接缝处的整平,在整形过程中,严禁车辆通行。
S6.对路面碾压并进行养生,当拌合物接近最佳含水率时,依次用轮胎压路机、重型压路机在路基全宽内碾压至要求的压实密度,且表面无明显的轮迹,碾压时,各区段交接处应相互重叠压实,纵向搭接长度大于2.0m,纵向行与行之间的轮迹重叠大于40cm,上下两层填筑接头应错开大于3.0m,两作业区段之间的衔接处纵向搭接拌和长度大于2.0m,碾压过程中,拌合物表面应始终保持湿润,严禁有“弹簧”、松散、起皮等现象产生,碾压结束之前,用平地机终平一次,使地面纵向顺适,符合设计要求;钙质砂混凝土碾压完成后,如不能连续施工应进行养生作业,使钙质砂混凝土的表面保持湿润状态,养生周期为28天,养生期间勿使钙质砂混凝土过湿,更不能忽干忽湿,且施工场地应封闭交通,只允许洒水车通行,当钙质砂混凝土分层施工时,上下两层每层分层厚度不得小于20cm且不大于50cm,下层检验压实度、平整度等指标合格后,上层填土能连续施工时可不进行专门的养生作业。
在开始施工前,按设计提供的配比进行室内试验,确定施工配合比,施工前应做好场地的临时排水和防雨措施,严禁雨天作业,并避免低温施工和人为停工。路基填筑采用水平分层、纵向分段,以机械作业方式进行施工,路堤填筑按照“三阶段”、“四区段”的工艺流程最值施工。钙质砂混凝土填筑按试验段总结的施工工艺流程组织施工,同时在施工中,根据实际情况不断完善施工质量控制措施,确保路基压实质量。
在施工过程中,检查每批水泥(同一厂家、品种、批号的,每200t为一批,不足200t时也按一批计)的生产检验报告和产品合格证,并在料场的5个不同 部位等量取样,总计取样不少于12kg,按有关规定实验方法进行检验。检验数量:施工单位沿线路纵向每100m每压实层抽样检验压实系数K6点,其中左右距路肩边线1m处各2点,路基中部2点,有反压护道地段每100m增加1个监测点;每100m每填高约90cm抽样检验地基系数K30 4点,其中路基边线2m处左、右各1点,路基中部2点。监理单位按施工单位抽样数量的10%平行检验压实系数K或孔隙率n;见证全部地基系数K30检测。
填筑压实的质量应符合表1中的规定:
表1
Figure PCTCN2021094559-appb-000001
施工过程中,当钙质砂混凝土掺入水泥时,水泥的初凝时间应大于3h,终凝时间大于6h,并且要注意控制钙质砂混凝土从拌和到碾压完成的施工时间,保证整个过程不大于4h;在拌和过程中会有一定的水分损失,尤其是在夏天炎热时水分损失会加剧,因此拌和好的钙质砂混凝土含水量应比最佳含水量稍大些,具体数据根据施工时的天气情况确定,并在施工过程中进行总结。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 一种钙质砂混凝土新型路堤施工方法,其特征是,包括如下步骤:
    S1.按比例配置钙质砂混凝土并制作试块;
    S2.划分施工单元并配备作业人员和机械设备;
    S3.在施工区域设置警示标示并安排专人调度;
    S4.在路基上设置方格网桩;
    S5.铺设钙质砂混凝土并拌和;
    S6.对路面碾压并进行养生;
    其中,钙质砂混凝土组成为:钙质砂、礁灰岩碎石、水、水泥、粉煤灰和减水剂,钙质砂用量为600kg/m3、礁灰岩碎石用量为750kg/m3、水泥用量为700kg/m3、水用量为230kg/m3、粉煤灰掺量为80kg/m3,减水剂掺量为4kg/m3,粗骨料为礁灰岩碎石、细骨料为钙质砂,二者的主要化学成分都是碳酸钙,依此比例配置的钙质砂混凝土相比普通混凝土,其前期强度增长快,七天抗压强度能达到28天抗压强度的85%以上,28天抗压强度最高达55.7MPa。
  2. 如权利要求1所述的钙质砂混凝土新型路堤施工方法,其特征是,所述步骤S1中,试块的制作方法按照如下步骤进行:
    1)材料处理
    将礁灰岩石块破碎,选取5-10mm和10-20mm两种粒径组,同时将碎块进行磨圆处理,使其表面光滑,将两种粒径组的碎块按不同质量比进行混合,质量比为5-10mm:10-20mm=1:2,混合物即为粗骨料;
    2)材料拌合
    先将干燥的粗、细骨料和1/2拌合用水进行短时间搅拌,然后加入剩余水泥、剩余拌合用水、粉煤灰和减水剂并搅拌;
    3)成型养护
    将模具内外清理干净并用刷子在模具内侧涂抹一层机油,将搅拌好的钙质砂混凝土浇筑进模具中,将模具放在振动台上进行振捣,振捣时间控制在2min以内,在20℃的室内环境静置一天后进行拆模,即得试块,将试块放入标准养护箱内进行养护。
  3. 如权利要求2所述的钙质砂混凝土新型路堤施工方法,其特征是,所述试块制作方法中,养护条件为温度控制在20±2℃,湿度大于95%。
  4. 如权利要求2所述的钙质砂混凝土新型路堤施工方法,其特征是,所述试块制作方法中,振动台的振动频率为50Hz。
  5. 如权利要求1所述的钙质砂混凝土新型路堤施工方法,其特征是,步骤S2中,每个施工单元为一个作业区,包括四个区段,即:填土区段、平整区段、碾压区段、检测区段;每个施工单元配备领工员2名、现场技术员1名、现场检测人员1名、其他机械工及普工6-10名;所需机械设备为平地机、压路机、装载机、挖机、自卸汽车和洒水车。
  6. 如权利要求1所述的钙质砂混凝土新型路堤施工方法,其特征是,步骤S4中,方格网桩纵向间距小于10m,横向分别在路基两侧及路基中心设置,便于对填料量进行控制。
  7. 如权利要求1所述的钙质砂混凝土新型路堤施工方法,其特征是,步骤S5中,根据松铺厚度确定堆放密度,将拌合料摊铺完成后,先用平地机进行初平和整形,再用压路机静压一遍并检查其填筑层的厚度,测定含水率及松散干容重,按单位面积摊铺拌合料,将水泥摊铺在拌和料表面上,用路拌机拌和一遍后,检查拌合物含水率,使含水率控制在1%。
  8. 如权利要求7所述的钙质砂混凝土新型路堤施工方法,其特征是,步骤S5中,所述路拌机拌和深度应深入下承层的表面以下1cm,并在拌和施工时设专人跟随拌和机随时观察拌和深度,并配合拌和机操作员调整拌和深度。
  9. 如权利要求1所述的钙质砂混凝土新型路堤施工方法,其特征是,步骤S6中,碾压时先后使用轮胎压路机和重型压路机在路基全宽内碾压,并确保表面无明显轮迹;碾压时,各区段交接处相互重叠压实,纵向搭接长度大于2.0m,纵向行与行之间的轮迹重叠大于40cm,上下两层填筑接头应错开大于3.0m,相邻两作业区段之间的衔接处纵向搭接拌和长度大于2.0m,碾压过程中,表面应保持湿润,碾压结束前使用平地机终平使地面纵向顺适。
  10. 如权利要求1所述的钙质砂混凝土新型路堤施工方法,其特征是,步骤S6中,碾压作业完成后,如不能连续施工应进行养生,使混凝土表面保持湿润,养生周期为28天。
PCT/CN2021/094559 2020-08-04 2021-05-19 钙质砂混凝土新型路堤施工方法 WO2022028038A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010769870.0A CN111893825A (zh) 2020-08-04 2020-08-04 钙质砂混凝土新型路堤施工方法
CN202010769870.0 2020-08-04

Publications (1)

Publication Number Publication Date
WO2022028038A1 true WO2022028038A1 (zh) 2022-02-10

Family

ID=73183383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094559 WO2022028038A1 (zh) 2020-08-04 2021-05-19 钙质砂混凝土新型路堤施工方法

Country Status (2)

Country Link
CN (1) CN111893825A (zh)
WO (1) WO2022028038A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929379A (zh) * 2021-09-17 2022-01-14 中建五局土木工程有限公司 竹材混凝土及其制备方法和竹材混凝土的路面铺筑施工方法
CN114657831A (zh) * 2022-04-22 2022-06-24 交通运输部公路科学研究所 一种滨海细砂路基碾压方法
CN115030110A (zh) * 2022-07-15 2022-09-09 中电建十一局工程有限公司 高海拔复杂环境条件下碾压混凝土vc值动态控制施工方法
CN115125785A (zh) * 2022-06-24 2022-09-30 保利长大工程有限公司 一种隧道路面铺设方法
CN115976914A (zh) * 2023-01-03 2023-04-18 安徽建工集团股份有限公司 一种灰土路基铺设施工装置及其施工工艺
CN116515701A (zh) * 2023-05-12 2023-08-01 龙建路桥股份有限公司 一种寒区路基基土原位微生物培养液及其扩培方法与应用
CN117026714A (zh) * 2023-10-09 2023-11-10 中交第一航务工程局有限公司 一种高路堤施工方法
CN117418422A (zh) * 2023-12-19 2024-01-19 中交建筑集团东南建设有限公司 一种砂土混合翻拌的再生路基填筑施工工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111893825A (zh) * 2020-08-04 2020-11-06 海南大学 钙质砂混凝土新型路堤施工方法
CN114134855A (zh) * 2021-10-29 2022-03-04 海南大学 一种3d打印南海岛礁防波堤及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228904A (ja) * 1993-06-07 1994-08-16 Ono Sangyo:Goushi 路盤材およびその製造方法
KR100571288B1 (ko) * 2005-10-11 2006-04-13 충남대학교산학협력단 건설폐기물 및 폐목재 목탄을 이용한 해양생태 복원용포러스콘크리트 어초·어소블록의 제조방법
CN104609806A (zh) * 2015-01-27 2015-05-13 中国人民解放军总后勤部建筑工程研究所 一种海水拌养珊瑚砂人造集料混凝土砌块及其制备方法
CN105369721A (zh) * 2015-11-10 2016-03-02 中交一航局第四工程有限公司 水泥稳定珊瑚礁砂施工工艺
CN106759291A (zh) * 2016-11-30 2017-05-31 国家海洋局第二海洋研究所 人工生态岛礁建设的施工方法
CN111893825A (zh) * 2020-08-04 2020-11-06 海南大学 钙质砂混凝土新型路堤施工方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107419630B (zh) * 2017-06-13 2023-06-20 华中科技大学 一种有效控制工后沉降的软土地基高填方路堤及施工方法
CN110590274A (zh) * 2019-07-24 2019-12-20 合肥工业大学 一种使用钙质砂制作混凝土的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228904A (ja) * 1993-06-07 1994-08-16 Ono Sangyo:Goushi 路盤材およびその製造方法
KR100571288B1 (ko) * 2005-10-11 2006-04-13 충남대학교산학협력단 건설폐기물 및 폐목재 목탄을 이용한 해양생태 복원용포러스콘크리트 어초·어소블록의 제조방법
CN104609806A (zh) * 2015-01-27 2015-05-13 中国人民解放军总后勤部建筑工程研究所 一种海水拌养珊瑚砂人造集料混凝土砌块及其制备方法
CN105369721A (zh) * 2015-11-10 2016-03-02 中交一航局第四工程有限公司 水泥稳定珊瑚礁砂施工工艺
CN106759291A (zh) * 2016-11-30 2017-05-31 国家海洋局第二海洋研究所 人工生态岛礁建设的施工方法
CN111893825A (zh) * 2020-08-04 2020-11-06 海南大学 钙质砂混凝土新型路堤施工方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN FEIXIANG, ZHANG GUO-ZHI;DING SHA;QIN MING-QIANG;LIU KUANG-YI: "Experimental Study on Performance of Coral Aggregate Concrete", CHINA CONCRETE AND CEMENT PRODUCTS, no. 4, 30 April 2017 (2017-04-30), XP055893139, ISSN: 1000-4637, DOI: 10.19761/j.1000-4637.2017.04.004 *
HUANG MEILIN, SHUTONG YANG;ZHENLIN WANG;ZHINING LIU: "EXPERIMENTAL STUDY ON ANTI-PERMEABILITY PERFORMENCE AND DRYING SHRINKAGE OF CORAL CONCRETE", PROCEEDINGS OF THE 27TH NATIONAL CONFERENCE ON STRUCTURAL ENGINEERING, VOL. I, 30 September 2018 (2018-09-30), pages 311 - 317, XP055893128 *
SHANG TAO: "Study on Material Composition Design and Pavement Performance of Cement Stabilized Coral Sand Subbase", CHINA MASTER’S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE & TECHNOLOGY II, 15 January 2020 (2020-01-15), XP055893129 *
WANG JIANPING, LI XIN-PING;GUO DONG;SUN TAO;CHEN SHU-KAI;YAN GE: "Durability of Concrete Prepared with Coral Reef Sand and Sea-Water", THE WORLD OF BUILDING MATERIALS, vol. 40, no. 2, 30 April 2019 (2019-04-30), pages 11 - 15, XP055893138, ISSN: 1674-6066, DOI: 10.3963/j.issn.1674-6066.2019.02.003 *
YU YIMING, LIU SONG;WU KE;XU WENBING;GAO FAN: "Preparation and Application Research of Coral Sand Mass Concrete", NEW BUILDING MATERIALS, no. 3, 31 March 2018 (2018-03-31), pages 27 - 29, XP055893131, ISSN: 1001-702X *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929379A (zh) * 2021-09-17 2022-01-14 中建五局土木工程有限公司 竹材混凝土及其制备方法和竹材混凝土的路面铺筑施工方法
CN114657831A (zh) * 2022-04-22 2022-06-24 交通运输部公路科学研究所 一种滨海细砂路基碾压方法
CN115125785A (zh) * 2022-06-24 2022-09-30 保利长大工程有限公司 一种隧道路面铺设方法
CN115030110A (zh) * 2022-07-15 2022-09-09 中电建十一局工程有限公司 高海拔复杂环境条件下碾压混凝土vc值动态控制施工方法
CN115030110B (zh) * 2022-07-15 2024-02-13 中电建十一局工程有限公司 高海拔复杂环境条件下碾压混凝土vc值动态控制施工方法
CN115976914A (zh) * 2023-01-03 2023-04-18 安徽建工集团股份有限公司 一种灰土路基铺设施工装置及其施工工艺
CN115976914B (zh) * 2023-01-03 2024-05-31 安徽建工集团股份有限公司 一种灰土路基铺设施工装置及其施工工艺
CN116515701A (zh) * 2023-05-12 2023-08-01 龙建路桥股份有限公司 一种寒区路基基土原位微生物培养液及其扩培方法与应用
CN117026714A (zh) * 2023-10-09 2023-11-10 中交第一航务工程局有限公司 一种高路堤施工方法
CN117026714B (zh) * 2023-10-09 2024-02-13 中交第一航务工程局有限公司 一种高路堤施工方法
CN117418422A (zh) * 2023-12-19 2024-01-19 中交建筑集团东南建设有限公司 一种砂土混合翻拌的再生路基填筑施工工艺
CN117418422B (zh) * 2023-12-19 2024-03-08 中交建筑集团东南建设有限公司 一种砂土混合翻拌的再生路基填筑施工工艺

Also Published As

Publication number Publication date
CN111893825A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2022028038A1 (zh) 钙质砂混凝土新型路堤施工方法
CN108101456B (zh) 一种大吸水率粗集料高性能海工混凝土及其施工工法
CN109853310A (zh) 一种疏浚淤泥工业废渣复合固化轻质土及路基分层填筑施工方法
CN106192907B (zh) 增设胶凝砂砾石结构层的150m~300m级高混凝土面板堆石坝的施工方法
CN110130278A (zh) 一种胶结堆石坝及其施工方法
CN103073240A (zh) 一种有利于控制温度和收缩裂缝的大体积混凝土及其施工工艺
CN107867815A (zh) 一种混凝土及其施工工艺
CN107338686A (zh) 一种高速铁路路基填料施工方法
CN105256689A (zh) 保水降温沥青路面施工方法
CN111778796A (zh) 一种路基施工工艺
CN112028591A (zh) 一种赤泥基现浇轻质土直立式路基的施工方法
CN108951337B (zh) 一种赤泥基轻质填料道路扩建拼接结构及方法
CN111892345A (zh) 一种基于花岗岩渣土的流动化固化土及其制备方法
CN111021174A (zh) 一种城市道路的施工方法
CN111517734A (zh) 一种低裂水泥稳定级配碎石基层材料及制备和施工方法
CN113123197A (zh) 水泥稳定碎石基层方面的方法与工艺
CN111485468A (zh) 预混式泡沫沥青基层及底基层就地冷再生施工方法
CN108570897A (zh) 一种道路路面基层的铺筑方法
CN103422407A (zh) 采用水泥硅藻土稳定沙漠沙混合料修筑尼日尔沙漠公路施工工艺
CN113755176A (zh) 一种原位硬化土道路和土壤固化材料及其制备和施工方法
CN113929378A (zh) 一种油页岩半焦及其改性材料的应用
Adaska Roller-compacted concrete (RCC)
CN116655305A (zh) 再生骨料复合稳定土及其配比设计方法、制作方法
CN213115347U (zh) 一种防潮地面
CN110904757A (zh) 一种石灰土路基施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21852183

Country of ref document: EP

Kind code of ref document: A1