WO2022025298A1 - 組換えワクシニアウイルス - Google Patents

組換えワクシニアウイルス Download PDF

Info

Publication number
WO2022025298A1
WO2022025298A1 PCT/JP2021/029240 JP2021029240W WO2022025298A1 WO 2022025298 A1 WO2022025298 A1 WO 2022025298A1 JP 2021029240 W JP2021029240 W JP 2021029240W WO 2022025298 A1 WO2022025298 A1 WO 2022025298A1
Authority
WO
WIPO (PCT)
Prior art keywords
cov
sars
vaccinia virus
dna
recombinant vaccinia
Prior art date
Application number
PCT/JP2021/029240
Other languages
English (en)
French (fr)
Inventor
道法 小原
文彦 安井
靖 伊藤
孝司 石井
Original Assignee
公益財団法人東京都医学総合研究所
国立大学法人滋賀医科大学
国立感染症研究所長が代表する日本国
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人東京都医学総合研究所, 国立大学法人滋賀医科大学, 国立感染症研究所長が代表する日本国 filed Critical 公益財団法人東京都医学総合研究所
Priority to JP2022539632A priority Critical patent/JPWO2022025298A1/ja
Priority to EP21848897.1A priority patent/EP4190902A4/en
Priority to CN202180058328.7A priority patent/CN116615214A/zh
Priority to US18/018,442 priority patent/US20230295655A1/en
Publication of WO2022025298A1 publication Critical patent/WO2022025298A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/165Coronaviridae, e.g. avian infectious bronchitis virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24111Orthopoxvirus, e.g. vaccinia virus, variola
    • C12N2710/24121Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24111Orthopoxvirus, e.g. vaccinia virus, variola
    • C12N2710/24141Use of virus, viral particle or viral elements as a vector
    • C12N2710/24143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention relates to a recombinant vaccinia virus or the like as a vaccine for SARS-CoV-2.
  • the immunity induced by cold coronavirus infection decreases or disappears in a relatively short period of one or two years after infection, and the infection is repeated periodically. Therefore, at present, many human beings do not have immunity to SARS-CoV-2, immunity declines in a short period of time even in patients who have been affected once, and it can continue to spread all over the world. Considering this, it is essential to develop a COVID-19 preventive vaccine (vaccine for SARS-CoV-2) that can strongly induce immunity and maintain immunity for a long period of time.
  • Non-patent Document 1 MedRxiv, 2020 (Fan Wu et al., Neutralizing antibody response to SARS-CoV-2 in a COVID-19 protected patient coordinate. https: // doi. org / 10.1101 / 2020.03.33.00047365. )
  • the present invention has been made in consideration of the above circumstances, and provides the following recombinant vaccinia virus, pharmaceutical composition, and the like.
  • the cDNA encoding the nonstructural protein is a cDNA encoding the ORF1b region (nonstructural protein gene region encoding a protein essential for viral replication) in the nonstructural protein derived from SARS-CoV-2.
  • A DNA consisting of the base sequence shown in SEQ ID NO: 1.
  • B DNA having 80% or more identity with DNA having a base sequence complementary to the base sequence shown in SEQ ID NO: 1 and encoding a nonstructural protein derived from SARS-CoV-2.
  • C DNA consisting of the base sequence shown in SEQ ID NO: 3
  • D DNA having 80% or more identity with DNA having a base sequence complementary to the base sequence shown in SEQ ID NO: 3 and encoding a nonstructural protein derived from SARS-CoV-2.
  • (5) The recombinant vaccinia virus according to (1) or (2) above, wherein the cDNA encoding the structural protein contains a cDNA encoding a spike protein in the structural protein derived from SARS-CoV-2.
  • a recombinant vaccinia virus as a COVID-19 preventive vaccine (vaccine for SARS-CoV-2) that can be used clinically, a pharmaceutical composition using the same, and the like.
  • the recombinant vaccinia virus of the present invention is extremely useful for the prevention or treatment of COVID-19 infection as a vaccine for SARS-CoV-2 that can strongly induce immunity and maintain immunity for a long period of time. be.
  • the recombinant vaccinia virus of the present invention can maintain stability as a vaccine for SARS-CoV-2 even at room temperature, and the temperature during storage and transportation thereof is room temperature even when refrigerated. It is also good and has excellent practicality.
  • SUMS2 isolated strain of Shiga Medical University
  • S protein spike protein
  • QHN001 UK
  • the type mutant strain is an amino acid substitution mutation of “N501Y, D614G” in the amino acid sequence (SEQ ID NO: 6) of the S protein of SARS-CoV-2
  • TY7-501 Brainzilian type mutant strain
  • the amino acid substitution mutation of "K414T, E484K, N501Y, D614G” was made in the amino acid sequence (SEQ ID NO: 6) of the S protein of SARS-CoV-2.
  • TY8-612 South African type mutant strain
  • TY8-612 South African mutant strain
  • RBD region K417N, E484K, N501Y
  • N-terminal region D80A, D215G
  • Subdomin 1 region in the amino acid sequence (SEQ ID NO: 6) of the S protein of SARS-CoV-2. : D614G
  • S2 region: A701V has been mutated and the amino acids 242 to 244 (Leu-Ala-Leu) have been deleted.
  • the present inventor As a candidate for the COVID-19 preventive vaccine (Valve for SARS-CoV-2), the present inventor 1) exposed to the surface of virus particles based on the results of the SARS vaccine (Figs. 1 and 3) and into cells.
  • Recombinant vaccines antibody-induced and T-cell-induced types
  • S protein spike protein
  • Fig. 2 Recombinant vaccines (antibody-induced and T-cell-induced types) that express the spike protein (S protein), which is important for adsorption and infection, and 2) the region with the highest gene sequence homology on the coronavirus genome (Zhou et. al., Nature. 2020 Mar; 579 (7798): 270-273)) (Fig. 2), a gene recombination expressing a non-structural protein gene region (ORF1b) encoding a protein essential for viral replication.
  • ORF1b non-structural protein gene region
  • SARS-CoV-specific immunity could be induced in rabbits vaccinated with smallpox vaccine in the same manner as inoculation in unsensitized rabbits (Masahiro Kitabatake et al., Vaccine, 25: 630-637 (Masahiro Kitabatake et al., Vaccine, 25: 630-637).
  • the recombinant vaccinia virus is also effective for the elderly people who are in the COVID-19 aggravation risk group and have a history of vaccination with smallpox vaccine.
  • the present inventors have developed a non-normal mammalian cell acclimatized with chicken fibroblasts (CEF) by Dr. Isamu Tagaya of the National Institute of Preventive Health for the purpose of ensuring higher safety.
  • CEF chicken fibroblasts
  • the SARS-S vaccine using the DIs strain was also able to protect against SARS-CoV infection (Koji Ishii et al., Virology, 351 (2): 368-380, 2006).
  • the present inventors are also proceeding with the development of recombinant avian influenza vaccines (rDIs-H5 HA and rDIs-H7 HA) expressing the H5 subtype and H7 type hemagglutinin (HA) protein genes of the DIs mother, and after vaccination. It was demonstrated that the onset protective effect is exhibited in a short period of one week, and that the immunity once given shows a long-term immunity-sustaining effect that can be said to be lifelong immunity in a mouse model. Based on these findings, recombinant vaccinia virus (vaccinia vaccine) capable of expressing SARS-CoV-2 viral structural protein gene and nonstructural protein gene was prepared (FIGS. 4 and 5).
  • the gene contained in the recombinant vaccinia virus of the present invention can be obtained by a conventional genetic engineering method.
  • a nucleic acid synthesis method using a DNA synthesizer which is generally used as a genetic engineering method, can be used.
  • a PCR method in which a primer specific to each gene is designed after isolating or synthesizing a gene sequence as a template and the gene sequence is amplified using a PCR device, or a gene amplification method using a cloning vector. Can be used. Any person skilled in the art can perform the above method according to "Molecular cloning 4th Edt. Cold Spring Spring Harbor Laboratory Press (2012)" or the like. A known method can be used to purify the obtained PCR product.
  • the gene DNA encoding the nonstructural protein region or the structural protein region in the entire gene region of SARS-CoV-2 is used for the production of recombinant vaccinia virus.
  • the nonstructural protein region is a region composed of ORF1a, ORF1b, ORF3a, ORF6, ORF7a, ORF7b, ORF8, and ORF10 region, and in the present invention, for example, it is preferable to select and use the ORF1b region.
  • the structural protein region is a region composed of spike (S), envelope (E), integral membrane (M), and nucleoprotein (N) regions. In the present invention, for example, the spike (S) protein region is used. It is preferable to select and use it.
  • the nucleotide sequence DNA encoding the ORF1b region in the nonstructural protein region derived from SARS-CoV-2 is shown in SEQ ID NO: 1, and the S protein in the structural protein region derived from SARS-CoV-2 is shown.
  • the base sequence DNA encoding the region is shown in SEQ ID NO: 5.
  • the mutant DNA of the base sequence DNA encoding the ORF1b region in order to increase the gene expression efficiency in the recombinant vaccinia virus, 6 bases in the base sequence DNA encoding the ORF1b region are replaced with other bases.
  • the substituted one is shown in SEQ ID NO: 3, and the nucleotide sequence encoding the S protein region is represented by a mutant DNA of the DNA (the nucleotide sequence encoding the S protein region in order to increase the gene expression efficiency in the recombinant vaccinia virus).
  • the DNA in which 8 bases are replaced with other bases is shown in SEQ ID NO: 7.
  • the following DNAs can also be used in the present invention.
  • DNA that hybridizes with DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 under stringent conditions and encodes a nonstructural protein derived from SARS-CoV-2 (mutant DNA in the ORF1b region).
  • DNA (described above in the ORF1b region, which hybridizes with DNA having a base sequence complementary to the base sequence shown in SEQ ID NO: 3 under stringent conditions and encodes a nonstructural protein derived from SARS-CoV-2). Mutant DNA in the region to which a base substitution mutation has been added).
  • encoding a nonstructural protein derived from SARS-CoV-2 means encoding a protein produced in a cell when a virus proliferates.
  • the gene encoding the nonstructural protein includes not only the full-length sequence but also a part of the sequence.
  • encoding the structural protein derived from SARS-CoV-2 means encoding the protein constituting the outer shell of the virus.
  • the gene encoding the structural protein includes not only the full-length sequence but also a part of the sequence.
  • the above-mentioned mutant DNA can be obtained by chemical synthesis, or colony hybridization, plaque hybridization, using DNA having the base sequence represented by SEQ ID NO: 1, 3, 5 or 7 or a fragment thereof as a probe. It can be obtained from a DNA library and a genomic library by a known hybridization method such as Southern blot. Further, as stringent conditions in the above hybridization, for example, conditions of 0.1 ⁇ SSC to 10 ⁇ SSC, 0.1% to 1.0% SDS and 20 ° C. to 80 ° C. can be mentioned in more detail. The condition is that after prehybridization at 37 ° C. to 56 ° C.
  • the recombinant vaccinia virus of the present invention is not particularly limited, and any known method can be adopted.
  • the nonstructural protein region (ORF1b region, etc.) of SARS-CoV-2 or the like is inserted into a desired expression vector (plasmid) (for example, DIs strain homologous recombinant vector (plasmid) (Koji Ishii et al. Virology 2006)).
  • plasmid for example, DIs strain homologous recombinant vector (plasmid) (Koji Ishii et al. Virology 2006)
  • vaccinia virus strain for example, attenuated vaccinia virus DIs strain
  • homologous recombination is induced in the genome of vaccinia virus, and the nonstructural protein of SARS-CoV-2 is generated.
  • a recombinant vaccinia virus that expresses the desired region of the structural protein can be prepared.
  • the expression vector is not particularly limited, but for example, a pSMART® vector having a DIs strain homologous gene sequence region can be used, and the expression promoter contained in the recombinant vaccinia virus of the present invention can be used.
  • Various expression promoters for example, mH5 promoter, etc.
  • mH5 promoter, etc. that have been used for expression of the vaccinia virus gene can be used.
  • the above-mentioned attenuated vaccinia virus DIs strain is highly attenuated with a host region gene defect established by the 1-day egg passage method from the Dalian strain (DIE), which was a vaccine for smallpox, and is highly attenuated. It can only be propagated in Virusblast (CEF) cells and was developed by Dr. Isamu Tagaya of the National Institute of Infectious Diseases (currently National Institute of Infectious Diseases) (Tagaya et al. Nature, 192: 381-382, 1961). Large-scale gene deletion prevents proliferation in most mammalian cells such as mice, guinea pigs, rabbits, and humans. Therefore, even if an immunocompromised / immunosuppressed patient is inoculated, the safety is guaranteed.
  • the prepared recombinant vaccinia virus was subjected to PCR using the viral genome as a template with a primer specific to the nonstructural protein region gene or structural protein region gene of SARS-CoV-2, and the desired nonstructural protein region or structural protein region was obtained. Gene transfer can be confirmed.
  • the expression of the desired nonstructural protein or structural protein can be confirmed by Western blotting using animal cells after infection with the prepared recombinant vaccinia virus as a sample.
  • the antibody in Western blotting is, for example, a commercially available antibody that specifically recognizes a desired non-structural protein region or structural protein region, or protein G from antiserum prepared by immunizing the SARS-CoV-2 polypeptide. Purified IgG can be used.
  • the recombinant vaccinia virus of the present invention has high temperature stability, and is, for example, SARS-CoV even at room temperature (including, but not limited to, a range of 10 to 40 ° C, usually preferably 10 to 20 ° C).
  • -It can maintain the stability as a vaccine for -2. Therefore, the vaccinia virus, the pharmaceutical composition described later, and the like may be stored and transported at a temperature of refrigeration or room temperature, and are excellent in practicality and convenience.
  • the present invention is a pharmaceutical composition containing the recombinant vaccinia virus, more specifically, new coronavirus (SARS-CoV-2).
  • new coronavirus SARS-CoV-2
  • pharmaceutical compositions as a prophylactic and therapeutic agent for infectious diseases (COVID-19).
  • the pharmaceutical composition of the present invention can be introduced into a living body by any known method, for example, injection by intramuscular, intraperitoneal, intradermal or subcutaneous injection, inhalation through the nasal cavity, oral cavity or lung, or oral administration.
  • an existing antiviral drug for example, interferon.
  • the mode of concomitant use is not particularly limited, and the recombinant vaccinia virus of the present invention and an existing antiviral drug can be administered at the same time, or by a method in which one is administered and the other is administered after a certain period of time. It can also be introduced into a living body.
  • the pharmaceutical composition of the present invention comprises known pharmaceutically acceptable carriers such as excipients, bulking agents, binders and lubricants, buffers, tonicity agents, chelating agents, coloring agents and preservatives. , Fragrances, flavors, sweeteners and the like.
  • the pharmaceutical composition of the present invention is a parenteral preparation such as tablets, capsules, powders, granules, pills, liquids, syrups and other oral administrations, injections, external preparations, suppositories, eye drops, nasal drops and the like. Oral administration or parenteral administration can be performed depending on the form of the administration agent and the like. Preferably, local injection into the skin, muscle, abdominal cavity, etc. is exemplified.
  • the dose is appropriately selected depending on the type of active ingredient, route of administration, administration target, age, body weight, sex, symptoms and other conditions of the patient, but the daily dose of recombinant vaccinia virus is oral. It is about 1000 to 1000000000 PFU (plaque forming units), preferably about 100,000 to 100,000,000 PFU, and in the case of parenteral, it is about 100 to 1000,000,000 PFU (plaque forming units), preferably about 1000 to 100,000,000 PFU.
  • the virus can be administered once a day or in several divided doses.
  • the recombinant vaccinia virus of the present invention can be used as a prophylactic or therapeutic vaccine for COVID-19, but it is preferable to measure the antibody titer or cell-mediated immune activity as a vaccine in advance.
  • the antibody titer against the recombinant vaccinia virus of the present invention or the parent strain DIS is obtained by inoculating these virus strains into mice, rabbits, etc., and then collecting serum over time to obtain the SARS-CoV-2 protein in the serum. It can be obtained by measuring an ELISA value, a LIPS (lucifase immunoprescription system) value, or the like.
  • the recombinant vaccinia virus of the present invention or the parent strain DIs strain is inoculated into mice, and then spleen cells are isolated from the immunized mice to obtain a non-structural protein of SARS-CoV-2.
  • a non-structural protein of SARS-CoV-2 Whether or not CD4 positive and CD8 positive cells specific to structural proteins are induced and activated can be measured by FACS or ELISPOT assay.
  • CD4 and CD8 antigen-specifically activated by co-culturing BALB / c mouse-derived spleen cells immunized with the recombinant vaccinia virus of the present invention with a target cell expressing a nonstructural protein or a structural protein. Positive T cells can be detected.
  • the recombinant vaccinia virus according to the present invention can induce cell-mediated immunity against SARS-CoV-2, and in particular, a recombinant vaccinia virus capable of expressing a SARS-CoV-2-derived nonstructural protein (preferably ORF1b). The effect is remarkable in.
  • the recombinant vaccinia virus according to the present invention can induce a neutralizing antibody against SARS-CoV-2, and in particular, a recombinant capable of expressing a structural protein derived from SARS-CoV-2 (preferably S protein). Its effect is remarkable in the vaccinia virus.
  • the recombinant vaccinia virus (vaccine for SARS-CoV-2) according to the present invention accompanies mutations in SARS-CoV-2 as well as SARS-CoV-2, which is the direct target of the vaccinia virus. It can be a vaccine with a wide range of cross-reactivity that can respond to antigenic changes. That is, in the pharmaceutical composition which is a therapeutic agent and a preventive agent for SARS-CoV-2 infectious disease and the vaccine for SARS-CoV-2 according to the present invention, SARS-CoV-2 has a base sequence and an amino acid sequence thereof. Also included are so-called mutant strains having arbitrary mutations such as substitutions, deletions, and additions.
  • SARS-CoV-2 mutant strain examples include SUMS2 (Shiga University of Medical Science isolate), QHN001 (UK type mutant strain), TY7-501 (Brazilian type mutant strain), TY8-612 (South African type mutant strain) and the like. Can be mentioned.
  • the recombinant vaccinia virus according to the present invention can also be used as a pan-CoV infectious disease preventive vaccine showing a protective effect against an unknown new coronavirus (CoV) that may appear in the future. ..
  • Nonstructural protein 1b (ORF1b) gene region nCoV-Japan-1b (8198bp) (SEQ ID NO: 1)
  • Nonstructural protein 1b (ORF1b) gene region mnCoV-Japan-1b GND (8198bp) (SEQ ID NO: 3)
  • Peplomer protein gene region nCoV-Japan-S (3926bp) (SEQ ID NO: 5)
  • mnCoV-Japan-S (3926bp) (SEQ ID NO: 7)
  • the gene represented by SEQ ID NO: 1 is a wild-type ORF1b gene
  • the gene represented by SEQ ID NO: 5 is a wild-type spike protein gene.
  • the genes represented by SEQ ID NOs: 3 and 7 are mutant genes optimized for improving gene expression efficiency in vaccinia virus based on the genes represented by SEQ ID NOs: 1 and 5, respectively.
  • the mutant gene represented by SEQ ID NO: 3 is the T (thymine) at positions 2445, 2448, 4998, 5001 and 6000 of the base sequence shown in SEQ ID NO: 1. Is substituted with C (cytosine), and the 2539th G (guanine) is substituted with A (alanine) (a total of 6 base substitutions have been made).
  • the mutant gene shown in SEQ ID NO: 7 is the 99th, 102nd, 2364th, 2376th, 3213th, 3216th, 3417th, and 3417th base sequences shown in SEQ ID NO: 5.
  • the 3420th T (thymine) is substituted with C (cytosine) (a total of 8 base substitutions).
  • the genes represented by SEQ ID NOs: 3 and 7 were used for the establishment of recombinant vaccinia virus.
  • RIs-1b-GND is a recombinant vaccinia virus obtained by using a vector (pSMART-DIs-L3-mnCoV-Japan-1b GND-GPTF) into which the gene represented by SEQ ID NO: 3 is inserted. It may also be referred to as "rDIs-mnCoV-1b-GND”.
  • RIs-S is a recombinant vaccinia virus obtained by using a vector (pSMART-DIs-L3-mnCoV-Japan-S-GPTF) in which the gene represented by SEQ ID NO: 7 is inserted, and is "rDIs-”.
  • mnCoV-S sometimes referred to as "mnCoV-S”.
  • ⁇ Reaction solution composition > Water (RNase free) 8.5 ⁇ L 4x Reaction mix 5 ⁇ L Forward Primer (10 ⁇ M) 1 ⁇ L Reverse Primer (10 ⁇ M) 1 ⁇ L Probe (10 ⁇ M) 0.5 ⁇ L RNA sample 4 ⁇ L Final reaction volume 20 ⁇ L
  • a vaccine against the ORF1b nonstructural protein derived from SARS-CoV-2 can be an effective prophylactic vaccine that induces cell-mediated immunity.
  • a vaccine against SARS-CoV-2-derived peplomers can be an effective prophylactic vaccine for inducing neutralizing antibodies (FIG. 10).
  • Human ACE2-expressing transgenic mice (hACE2-expressing Tg mice) were inoculated with rDIs-1b-GND, and the SARS-CoV-2 specific T cell response in the mice was analyzed. Specifically, as shown in FIG. 12, rDIs-1b-GEND or DIS (control) was inoculated twice at 3-week intervals, and one week later, attack infection with SARS-CoV-2 was performed, and 6 days after the infection. Antigen-specific T cell activation against SARS-CoV-2 was analyzed by interferon gamma ELISpot assay.
  • rDIs-S The efficacy and safety of rDIs-S were evaluated using cynomolgus monkeys. Specifically, as shown in FIG. 13, rDIs-S or DIS (control) was intradermally inoculated into cynomolgus monkeys twice at 3-week intervals, and one week later, attack infection with SARS-CoV-2 was performed, and infection 7 was performed. Autopsy was performed a day later.
  • each evaluation content and its result will be described in (1) to (5).
  • Viral load in nasal swab Infectious virus was detected up to 7 days after infection in the DIS inoculated group. In the rDIs-S inoculated group, it was detected only 1 day after infection and then rapidly eliminated. In 1 of 4 animals in the rDIs-S inoculated group, it was below the detection limit even 1 day after infection (Fig. 15A). Viral load in airway wipes: In the DIS-inoculated group, infectious virus was detected in 1 of 4 animals up to 7 days after infection. In the rDIs-S inoculated group, 2 out of 4 animals were below the detection limit even 1 day after infection, and even 2 animals detected were significantly lower (FIG. 15B).
  • the antibody-inducing ability of rDIs-S was evaluated using C57BL / 6J mice. The contents of each evaluation and the results thereof will be described below in (1) and (2).
  • the neutralizing antibody titer against SARS-CoV-2 (TY / WK-521: early epidemic strain) was evaluated by the plaque reduction neutralization test method. Specifically, the serum was diluted 10-fold with a medium and then further diluted 4-fold. 50 ⁇ L of 10-fold, 40-fold, 160-fold, 640-fold, 256-fold, and 10240-fold diluted serum and 50 PFU / 50 ⁇ L virus solutions were mixed and reacted at 37 ° C. for 1 hour, respectively.
  • a stepwise diluted serum / virus mixed solution (100 ⁇ L) was inoculated into VeroE6 / TMPRSS2 cells susceptible to infection with SARS-CoV-2 and adsorbed for 1 hour. After removing the solution and washing the cells with the medium, a medium containing 0.6% agarose was added and cultured for 48 hours. When the number of plaques formed in the serum-free sample after 48 hours was set to 100%, the reciprocal of the serum dilution rate at which the number of plaques was halved by the addition of serum was calculated as "50% neutralization titer". As shown in FIG.
  • Example 3 Using plasma samples of crab monkeys inoculated with rDIs-S (intradermally inoculated twice at 3-week intervals) in Example 3, the early epidemic strain (TY / WK-521) and mutant strain (SUMS2) of SARS-CoV-2. : Neutralizing antibody titer against Shiga University of Medical Science isolate, QHN001: UK type mutant strain, TY7-501: Brazilian type mutant strain) was measured by the TCID50 method. In this example, at the time of booster immunization 3 weeks after the initial rDIs-S inoculation (day-7 in the graph of FIG. 23), at the time of SARS-CoV-2 attack infection (day0 in the graph of FIG. 23), and at autopsy. Plasma collected in (day 7 in the graph of FIG. 23) was used. As shown in FIG. 23, it was found that the neutralizing antibody was induced for the early epidemic strain and any mutant strain by inoculating the vaccine twice.
  • hACE2-expressing Tg mice were inoculated twice at 3-week intervals with rDIs-S or DIS (control), and 100 PFU SARS-CoV-2 South African mutant (TY8-612) was trans-airway infected 1 week after booster immunization. rice field. Survival rates were observed daily and autopsy was performed 7 days after infection. As shown in FIG. 24, in the DIs inoculation (control) group, 2 out of 4 animals died, but in the rDIs-S inoculation group, all 5 animals survived. The onset protective effect of rDIs-S inoculation was also confirmed for the mutant strain (TY8-612).
  • the recombinant vaccinia virus as a COVID-19 preventive vaccine (vaccine for SARS-CoV-2) according to the present invention, a pharmaceutical composition using the same, etc. strongly induce immunity and maintain immunity for a long period of time.
  • vaccine for SARS-CoV-2 it is extremely useful for the prevention or treatment of COVID-19 infection.
  • the recombinant vaccinia virus of the present invention can maintain stability as a vaccine for SARS-CoV-2 even at room temperature, and the temperature during storage and transportation thereof is room temperature even when refrigerated. It is also good and has excellent practicality.
  • SEQ ID NO: 3 Synthetic DNA SEQ ID NO: 4: Synthetic construct SEQ ID NO: 7: Synthetic DNA SEQ ID NO: 8: Synthetic construct SEQ ID NO: 10: Synthetic DNA SEQ ID NO: 11: Synthetic DNA SEQ ID NO: 12: Synthetic DNA SEQ ID NO: 13: Synthetic DNA

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Communicable Diseases (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

臨床において使用可能なCOVID−19予防ワクチン(SARS−CoV−2用ワクチン)としての組換えワクシニアウイルス等を提供する。本発明に係る組換えワクシニアウイルスは、SARS−CoV−2由来の非構造タンパク質又は構造タンパク質をコードするcDNAの全部又は一部と、発現プロモーターとを含むことを特徴とする。

Description

組換えワクシニアウイルス
 本発明は、SARS−CoV−2用ワクチンとしての組換えワクシニアウイルス等に関する。
 2019年に中国・武漢で初めに確認されたとされる、高病原性の新型コロナウイルス(SARS−CoV−2)による感染症(COVID−19)は、その後2020年にかけて、世界中の各国で猛威を振るっている。感染者数は、2020年7月時点において確認されているだけで、全世界で1600万人を超え、日本でも3万人を超える状況であり、そのうち死者数は、全世界で65万人を超え、日本では約1000人にも達している。
 ところで、COVID−19の快復者の約30%ではウイルス排除後においても免疫誘導が不十分であるため(非特許文献1)、SARS−CoV−2の再感染リスクが懸念される。一方で、風邪コロナウイルス感染で誘導される免疫は、感染後1、2年という比較的短期間で低下・消失し、周期的に感染が繰り返される。よって、現状では人類の多くはSARS−CoV−2に対する免疫を有していないこと、一度罹患した患者においても短期間のうちに免疫が低下してしまうこと、今後も世界中で蔓延し続け得ることを考えると、強力に免疫を誘導し、かつ長期間免疫を維持できる、COVID−19予防ワクチン(SARS−CoV−2用ワクチン)の開発が必須である。
 また、継続的に蔓延することによって、SARS−CoV−2に遺伝子変異が起こり得るため、変異に伴う抗原性変化にも対応し得る幅広い交差反応性を持つワクチンが求められる。更に、2002年のSARSコロナウイルス(CoV)の出現以降、MERS−CoVや今回のSARS−CoV−2など、ヒトに感染する新型CoVが短期間に出現しており、今後も未知のCoVが出現する可能性がある。よって、複数種のCoVに対して防御効果を示す汎CoV感染症予防ワクチンの開発も重要な課題である。
 先行技術文献
 非特許文献1:MedRxiv,2020(Fan Wu et al.,Neutralizing antibody responses to SARS−CoV−2 in a COVID−19 recovered patient cohort and their implications.,medRxiv preprint doi:
https://doi.org/10.1101/2020.03.30.20047365.)
 このような状況下において、臨床において使用可能なCOVID−19予防ワクチン(SARS−CoV−2用ワクチン)等の開発が望まれていた。
 本発明は、上記状況を考慮してなされたもので、以下に示す、組換えワクシニアウイルスや医薬組成物等を提供するものである。
(1)SARS−CoV−2由来の非構造タンパク質又は構造タンパク質をコードするcDNAの全部又は一部と、発現プロモーターとを含む、組換えワクシニアウイルス。
(2)ワクシニアウイルスがDIs株である、上記(1)に記載の組換えワクシニアウイルス。
(3)前記非構造タンパク質をコードするcDNAが、SARS−CoV−2由来の非構造タンパク質中のORF1b領域(ウイルス複製に必須なタンパク質をコードしている非構造タンパク質遺伝子領域)をコードするcDNAを含むものである、上記(1)又は(2)に記載の組換えワクシニアウイルス。
(4)前記非構造タンパク質をコードするcDNAが、以下の(a)~(d)のいずれかのDNAである、上記(1)~(3)のいずれか1つに記載の組換えワクシニアウイルス。
 (a)配列番号1に示す塩基配列からなるDNA
 (b)配列番号1に示す塩基配列と相補的な塩基配列からなるDNAと80%以上の同一性を有し、かつ、SARS−CoV−2由来の非構造タンパク質をコードするDNA
 (c)配列番号3に示す塩基配列からなるDNA
 (d)配列番号3に示す塩基配列と相補的な塩基配列からなるDNAと80%以上の同一性を有し、かつ、SARS−CoV−2由来の非構造タンパク質をコードするDNA
(5)前記構造タンパク質をコードするcDNAが、SARS−CoV−2由来の構造タンパク質中のスパイクタンパク質をコードするcDNAを含むものである、上記(1)又は(2)に記載の組換えワクシニアウイルス。
(6)前記構造タンパク質をコードするcDNAが、以下の(a)~(d)のいずれかのDNAである、上記(1)、(2)又は(5)に記載の組換えワクシニアウイルス。
 (a)配列番号5に示す塩基配列からなるDNA
 (b)配列番号5に示す塩基配列と相補的な塩基配列からなるDNAと80%以上の同一性を有し、かつ、SARS−CoV−2由来の構造タンパク質をコードするDNA
 (c)配列番号7に示す塩基配列からなるDNA
 (d)配列番号7に示す塩基配列と相補的な塩基配列からなるDNAと80%以上の同一性を有し、かつ、SARS−CoV−2由来の構造タンパク質をコードするDNA
(7)室温下においても安定性を保持し得るものである、上記(1)~(6)のいずれか1つに記載の組換えワクシニアウイルス。
(8)上記(1)~(7)のいずれか1つに記載の組換えワクシニアウイルスを含む、医薬組成物。
(9)SARS−CoV−2感染症の予防薬である、上記(8)に記載の医薬組成物。
(10)SARS−CoV−2感染症の治療薬である、上記(8)に記載の医薬組成物。
(11)上記(1)~(7)のいずれか1つに記載の組換えワクシニアウイルスを含む、SARS−CoV−2用ワクチン。
 発明の効果
 本発明によれば、臨床において使用可能なCOVID−19予防ワクチン(SARS−CoV−2用ワクチン)としての組換えワクシニアウイルス、及びそれを用いた医薬組成物等を提供することができる。本発明の組換えワクシニアウイルスは、強力に免疫を誘導し、かつ長期間免疫を維持し得る、SARS−CoV−2用ワクチンとして、COVID−19感染症の予防又は治療に、極めて有用なものである。また、本発明の組換えワクシニアウイルスは、室温下でもSARS−CoV−2用ワクチンとしての安定性を保持し得るものであり、その保存及び輸送時の温度が冷蔵であっても室温であってもよく、実用性に優れたものである。
SARS−CoV−S遺伝子組換えワクチン(組換えワクシニアウイルス)の発症防御効果(SARSワクチンでの実績)を示す図である。 コロナウイルスゲノムでの遺伝子配列相同性を示す図である。 SARS−CoV−S遺伝子組換えワクチン(rVV−S)のウサギ(ワクシニアウイルスLC16m8前免疫群と未接種群)への接種試験の結果を示す図である。
SARS−CoV−2遺伝子組換えワクシニアウイルスの遺伝子構成を示す図である。 SARS−CoV−2遺伝子組換えワクチンの概略を示す図である。 pSMART−DIs−L3−mnCoV−Japan−1b GND−GPTFベクターの構成を示す図である。
pSMART−DIs−L3−mnCoV−Japan−S−GPTFベクターの構成を示す図である。 Real−Time Detection polymerase chain reactionによる、SARS−CoV−2遺伝子組換えワクシニアウイルス(rDIs−1b−GND)感染細胞中のSARS−CoV−2 mRNA発現の同定結果を示す図である。 ウエスタンブロッティングによる、SARS−CoV−2遺伝子組換えワクシニアウイルス(rDIs−S)感染細胞中のSARS−CoV−2スパイクタンパク質発現の同定結果を示す図である。
新型コロナウイルス(SARS−CoV−2)予防ワクチン(SARS−CoV−2遺伝子組換えワクシニアウイルス)の防御の仕組みを示す図である。 作製した組換えワクチン(rDIs−S及びrDIs−1b−GND)における導入抗原の発現をウエスタンブロット法により確認した結果を示す図である。 A(左図):SARS−CoV−2スパイクタンパク質(Sタンパク質)の特異的抗体を用いた該Sタンパク質の検出結果。 B(右図):SARS−CoV−2 ORF1b構成タンパク質(ORF1b領域によりコードされる非構造タンパク質)の特異的抗体を用いた1bタンパク質の検出結果。 rDIs−1b−GND接種ヒトACE2発現トランスジェニックマウス(hACE2発現Tgマウス)でのSARS−CoV−2特異的T細胞応答の解析の結果を示す図である。
カニクイザルを用いた組換えワクチン(rDIs−S)の有効性・安全性の評価方法を示す図である。 rDIs−S接種カニクイザルにおける、SARS−CoV−2感染後の体温変化の測定結果を示す図である。 rDIs−S接種カニクイザルにおける、鼻腔拭い液及び気道拭い液中の感染性ウイルス量の経時変化の結果を示す図である。 A(左図):鼻腔拭い液中のウイルス量;B(右図):気道拭い液中のウイルス量
rDIs−S接種カニクイザルにおける、SARS−CoV−2感染7日後の肺中ウイルスRNA量の測定結果を示す図である。 rDIs−S接種カニクイザルにおける、SARS−CoV−2感染7日後の肺病理所見(図17の左図)と病理スコア(図17の右図)を示す図である。 rDIs−S接種カニクイザルにおける、中和抗体誘導効果を示す図である。 rDIs−S接種hACE2発現Tgマウスにおける、SARS−CoV−2感染防御試験の結果を示す図である。 rDIs−S接種C57BL/6マウスにおける、抗原特異的細胞障害性T細胞のin vivo活性評価の結果を示す図である。 rDIs−S接種C57BL/6Jマウスにおける、Sタンパク質特異的結合抗体誘導の効果を示す図である。 rDIs−S接種C57BL/6Jマウスにおける、中和抗体誘導効果を示す図である。 rDIs−S接種カニクイザル血漿を用いた、SARS−CoV−2の流行初期株(TY/WK−521)及び変異株(SUMS2:滋賀医科大学分離株、QHN001:UK型変異株、TY7−501:ブラジル型変異株)に対する中和抗体価測定の結果を示す図である。図中、#1~#4は、rDIs−S接種カニクイザルの各個体由来の4種の血漿検体を示す。SUMS2(滋賀医科大学分離株)は、SARS−CoV−2のスパイクタンパク質(Sタンパク質)のアミノ酸配列(配列番号6)において「D614G、Q675H」のアミノ酸置換変異がされたものであり、QHN001(UK型変異株)は、SARS−CoV−2のSタンパク質のアミノ酸配列(配列番号6)において「N501Y、D614G」のアミノ酸置換変異がされたものであり、TY7−501(ブラジル型変異株)は、SARS−CoV−2のSタンパク質のアミノ酸配列(配列番号6)において「K414T、E484K、N501Y、D614G」のアミノ酸置換変異がされたものである。 rDIs−S接種hACE2 Tgマウスを用いた、SARS−CoV−2の変異株(TY8−612:南アフリカ型変異株)に対する防御効果の結果を示す図である。TY8−612(南アフリカ型変異株)は、SARS−CoV−2のSタンパク質のアミノ酸配列(配列番号6)において、「RBD領域:K417N、E484K、N501Y;N端領域:D80A、D215G;Subdomain 1領域:D614G;S2領域:A701V」のアミノ酸置換変異がされ、かつ、第242~244番目のアミノ酸(Leu−Ala−Leu)が欠失したものである。
 以下、本発明を詳細に説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。なお、本明細書は、本願優先権主張の基礎となる、特願2020−130717号明細書(令和2年(2020年)7月31日出願)、特願2020−215454号明細書(令和2年(2020年)12月24日出願)、及び特願2021−078781号明細書(令和3年(2021年)5月6日出願)の全体を包含する。本明細書において引用された全ての刊行物、例えば先行技術文献、及び公開公報、特許公報その他の特許文献は、参照として本明細書に組み込まれる。
1.本発明の概要
 新型コロナウイルス感染症(COVID−19)に対する予防ワクチンとして、天然痘ワクチンであるワクシニアウイルスを馴化し高度弱毒化したDIs株に、SARS−CoV−2由来の遺伝子を導入した遺伝子組換え生ワクチンの開発と早期実用化を目的とする。ワクシニアウイルスを母体に用いることによって、ワクチン接種後、短期間でSARS−CoV−2に対する免疫を強力に誘導でき、付与された免疫が長期に渡って持続し、かつ抗原変異にも対応可能な幅広い交差反応性を持つ免疫の誘導が期待できる。
 本発明者は、COVID−19予防ワクチン(SARS−CoV−2用ワクチン)の候補として、1)SARSワクチンでの実績(図1、図3)を踏まえて、ウイルス粒子表面に表出し、細胞への吸着・感染に重要であるスパイクタンパク質(Sタンパク質)を発現する遺伝子組換えワクチン(抗体誘導及びT細胞誘導型)と、2)コロナウイルスゲノム上で遺伝子配列相同性が最も高い領域(Zhou et al.,Nature.2020 Mar;579(7798):270−273))(図2)であり、ウイルス複製に必須なタンパク質をコードしている非構造タンパク質遺伝子領域(ORF1b)を発現する遺伝子組換えワクチン(T細胞誘導型)を樹立した。
 これまでに確立し評価したSARS−CoVのSタンパク質を発現する組換えワクチンは、接種後1週間で中和抗体を誘導でき、SARS−CoVによるマウスへの攻撃感染を防御した(Fumihiko Yasui et al.,J Immunol,181:6337−6348(2008))(図1)。また、天然痘ワクチンを接種済みのウサギに対しても、未感作ウサギへの接種と同等にSARS−CoV特異的免疫を誘導できた(Masahiro Kitabatake et al.,Vaccine,25:630−637(2007))(図3)。よって、COVID−19の重症化リスク・グループであり、天然痘ワクチンの接種歴を持つ高齢者層に対しても、組換えワクシニアウイルスは有効であると考えられる。更に、本発明者らは、より高い安全性を担保する目的で、国立予防衛生研究所・多賀谷勇博士らがニワトリ線維芽細胞(CEF)で馴化し開発した、多くの正常哺乳動物細胞では非増殖性である高度弱毒化ワクシニアウイルスDIs株(Isamu Tagaya et al.,Nature,192:381−382,1961)を母体に用いた組換えワクチンも開発してきた。DIs株を用いたSARS−SワクチンもSARS−CoV感染を防御できた(Koji Ishii et al.,Virology,351(2):368−380,2006)。また、本発明者らは、DIs母体のH5亜型及びH7型ヘマグルチニン(HA)タンパク質遺伝子発現組換え鳥インフルエンザワクチン(rDIs−H5 HA及びrDIs−H7 HA)の開発も進めており、ワクチン接種後1週間という短期間において発症防御効果を発揮されること、一度付与された免疫はマウスモデルにおいて終生免疫とも言える長期免疫持続効果を示すことを実証した。これらの知見を踏まえて、SARS−CoV−2ウイルス構造タンパク質遺伝子及び非構造タンパク質遺伝子を発現し得る組換えワクシニアウイルス(ワクシニアワクチン)の作製を行った(図4、5)。
2.組換えワクシニアウイルスの作製
 SARS−CoV−2のタンパク質をコードしているすべての遺伝子、外殻タンパク質領域をコードする遺伝子、及び複製に関与している非構造タンパク質領域をコードする遺伝子の情報としては、具体的には、SARS−CoV−2 ウイルス株:hCoV−19/Japan/AI/I−004/2020の遺伝子配列情報(配列番号9)が、NCBIのウェブサイト(https://www.ncbi.nlm.nih.gov/)において、GenBankアクセッション番号:LC521925として登録されている。
 したがって、本発明の組換えワクシニアウイルスに含まれる遺伝子、すなわちSARS−CoV−2の非構造タンパク質領域又は構造タンパク質領域を含む遺伝子は、通常の遺伝子工学的手法により得ることができる。例えば、遺伝子工学的手法として一般的に用いられているDNA合成装置を用いた核酸合成法を使用することができる。また、鋳型となる遺伝子配列を単離又は合成した後に、それぞれの遺伝子に特異的なプライマーを設計し、PCR装置を用いてその遺伝子配列を増幅するPCR法、又はクローニングベクターを用いた遺伝子増幅法を用いることができる。上記方法は、当業者であれば、「Molecular cloning 4th Edt.Cold Spring Harbor Laboratory Press(2012)」等に従って、行うことができる。得られたPCR産物の精製には公知の方法を用いることができる。
 本発明においては、SARS−CoV−2の全遺伝子領域のうちの非構造タンパク質領域又は構造タンパク質領域をコードする遺伝子DNAを、組換えワクシニアウイルスの作製に用いる。当該非構造タンパク質領域は、ORF1a、ORF1b、ORF3a、ORF6、ORF7a、ORF7b、ORF8、及びORF10領域からなる領域であり、本発明においては、例えば、ORF1b領域を選択して用いることが好ましい。また、当該構造タンパク質領域は、spike(S)、envelope(E)、integral membrane(M)、及びnucleoprotein(N)領域からなる領域であり、本発明においては、例えば、スパイク(S)タンパク質領域を選択して用いることが好ましい。
 本発明においては、SARS−CoV−2に由来する非構造タンパク質領域中のORF1b領域をコードする塩基配列DNAを、配列番号1に示し、SARS−CoV−2に由来する構造タンパク質領域中のSタンパク質領域をコードする塩基配列DNAを、配列番号5に示す。さらに、上記ORF1b領域をコードする塩基配列DNAの変異型DNA(組換えワクシニアウイルス内での遺伝子発現効率を高めるために、ORF1b領域をコードする塩基配列DNA中、6箇所の塩基を他の塩基に置換したもの)を、配列番号3に示し、上記Sタンパク質領域をコードする塩基配列DNAの変異型DNA(組換えワクシニアウイルス内での遺伝子発現効率を高めるために、Sタンパク質領域をコードする塩基配列DNA中、8箇所の塩基を他の塩基に置換したもの)を、配列番号7に示す。但し、配列番号1、3、5及び7に示される塩基配列からなるDNAのほか、以下のDNAも、本発明において使用することができる。
 配列番号1に示す塩基配列に相補的な塩基配列からなるDNAと80%以上、90%以上、95%以上、98%以上又は99%以上の同一性(相同性)を有し、かつ、SARS−CoV−2由来の非構造タンパク質をコードするDNA(ORF1b領域の変異型DNA)。
 配列番号3に示す塩基配列に相補的な塩基配列からなるDNAと80%以上、90%以上、95%以上、98%以上又は99%以上の同一性(相同性)を有し、かつ、SARS−CoV−2由来の非構造タンパク質をコードするDNA(ORF1b領域中に前述の塩基置換変異を加えた領域の変異型DNA)。
 配列番号5に示す塩基配列に相補的な塩基配列からなるDNAと80%以上、90%以上、95%以上、98%以上又は99%以上の同一性(相同性)を有し、かつ、SARS−CoV−2由来の構造タンパク質をコードするDNA(Sタンパク質領域の変異型DNA)。
 配列番号7に示す塩基配列に相補的な塩基配列からなるDNAと80%以上、90%以上、95%以上、98%以上又は99%以上の同一性(相同性)を有し、かつ、SARS−CoV−2由来の構造タンパク質をコードするDNA(Sタンパク質領域中に前述の塩基置換変異を加えた領域の変異型DNA)。
 配列番号1に示す塩基配列に相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、SARS−CoV−2由来の非構造タンパク質をコードするDNA(ORF1b領域の変異型DNA)。
 配列番号3に示す塩基配列に相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、SARS−CoV−2由来の非構造タンパク質をコードするDNA(ORF1b領域中に前述の塩基置換変異を加えた領域の変異型DNA)。
 配列番号5に示す塩基配列に相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、SARS−CoV−2由来の構造タンパク質をコードするDNA(Sタンパク質領域の変異型DNA)。
 配列番号7に示す塩基配列に相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、SARS−CoV−2由来の構造タンパク質をコードするDNA(Sタンパク質領域中に前述の塩基置換変異を加えた領域の変異型DNA)。
 ここで、「SARS−CoV−2由来の非構造タンパク質をコードする」とは、ウイルスが増殖するときに細胞中に産生されるタンパク質をコードすることを意味する。また、上記非構造タンパク質をコードする遺伝子には、全長配列のほか、その一部の配列も含まれる。
 また、「SARS−CoV−2由来の構造タンパク質をコードする」とは、ウイルスの外殻を構成するタンパク質をコードすることを意味する。また、上記構造タンパク質をコードする遺伝子には、全長配列のほか、その一部の配列も含まれる。
 上記変異型DNAは、化学合成により得ることができ、あるいは、配列番号1、3、5又は7で表される塩基配列からなるDNA、又はその断片をプローブとして、コロニーハイブリダイゼーション、プラークハイブリダイゼーション、サザンブロット等の公知のハイブリダイゼーション法により、cDNAライブラリー及びゲノムライブラリーから得ることができる。また、上記ハイブリダイゼーションにおいてストリンジェントな条件としては、たとえば、0.1×SSC~10×SSC、0.1%~1.0%SDS及び20℃~80℃の条件が挙げられ、より詳細には、37℃~56℃で30分以上プレハイブリダイゼーションを行った後、0.1×SSC、0.1%SDS中、室温で10~20分の洗浄を1~3回行う条件が挙げられる。ハイブリダイゼーション法の詳細な手順については、「Molecular cloning 4th Edt.Cold Spring Harbor Laboratory Press(2012)」等を参照することができる。
 本発明の組換えワクシニアウイルスの作製においては、特に限定はされず、公知の任意の手法を採用することができるが、例えば、まずSARS−CoV−2の非構造タンパク質領域(ORF1b領域等)や構造タンパク質領域(Sタンパク質領域等)をコードする塩基配列DNAを、所望の発現ベクター(プラスミド)(例えば、DIs株相同組換えベクター(プラスミド)(Koji Ishii et al.Virology 2006))に挿入する。そして、そのプラスミドベクターを所望のワクシニアウイルス株(例えば、弱毒ワクシニアウイルスDIs株)感染細胞にトランスフェクションすることにより、ワクシニアウイルスのゲノム内で相同組換えを引き起こし、SARS−CoV−2の非構造タンパク質又は構造タンパク質の所望の領域を発現する組換えワクシニアウイルスを作製することができる。当該発現ベクターとしては、特に限定はされないが、例えば、DIs株相同遺伝子配列領域を持ったpSMART(登録商標)ベクター等を用いることができ、本発明の組換えワクシニアウイルスに含まれる発現プロモーターは、以前からワクシニアウイルス遺伝子発現に使用されている各種発現プロモーター(例えばmH5プロモーター等)を用いることができる。
 なお、上記の弱毒ワクシニアウイルスDIs株は、天然痘のワクチンであった大連株(DIE)から1日卵継代法により樹立された宿主域遺伝子欠損体で高度に弱毒化したもので、Chick Embryo Fibroblast(CEF)cellsでのみ増殖可能であり、国立予防衛生研究所(現国立感染症研究所)の多賀谷勇博士により開発された(Tagaya et al.Nature,192:381−382,1961)。大規模な遺伝子欠失によりマウス、モルモット、ウサギ、ヒトなどほとんどの哺乳動物細胞で増殖ができない。このために免疫不全・免疫抑制患者に万が一接種されても、安全性が担保される。
 作製した組換えワクシニアウイルスは、ウイルスゲノムを鋳型としてSARS−CoV−2の非構造タンパク質領域遺伝子又は構造タンパク質領域遺伝子に特異的なプライマーによりPCRを行い、所望の非構造タンパク質領域又は構造タンパク質領域の遺伝子導入を確認することができる。
 また、所望の非構造タンパク質又は構造タンパク質の発現は、作製した組換えワクシニアウイルスを感染させた後の動物細胞をサンプルとして、ウエスタンブロット法により確認することができる。なお、ウエスタンブロット法における抗体は、例えば、所望の非構造タンパク質領域又は構造タンパク質領域を特異的に認識する市販の抗体や、SARS−CoV−2ポリペプチドを免疫して作製した抗血清からProtein GによりIgGを精製したものを使用することができる。
 本発明の組換えワクシニアウイルスは、温度安定性が高いものであり、例えば、室温下(限定はされないが、10~40℃の範囲を含み、通常10~20℃が好ましい。)でもSARS−CoV−2用ワクチンとしての安定性を保持し得るものである。従って、当該ワクシニアウイルスや後述する医薬組成物等は、その保存及び輸送時の温度が冷蔵の温度であっても室温であってもよく、実用性、利便性に優れたものである。
3.新型コロナウイルス感染症(COVID−19)の予防又は治療用の医薬組成物
 本発明は、上記組換えワクシニアウイルスを含む医薬組成物、より具体的には、新型コロナウイルス(SARS−CoV−2)感染症(COVID−19)の予防薬および治療薬としての医薬組成物を提供する。
 本発明の医薬組成物は、あらゆる公知の方法、例えば、筋肉、腹腔内、皮内又は皮下等の注射、あるいは鼻腔、口腔又は肺からの吸入、経口投与により生体に導入することができる。さらに、本発明の医薬組成物に含まれる組換えワクシニアウイルスと、既存の抗ウイルス薬(例えばインターフェロン)を併用することも可能である。併用の態様は特に限定されるものではなく、本発明の組換えワクシニアウイルスと既存の抗ウイルス薬とを同時に投与することもできるし、一方を投与後、一定時間経過後に他方を投与する方法により生体に導入することもできる。
 また、本発明の医薬組成物は、賦形剤、増量剤、結合剤、滑沢剤等公知の薬学的に許容される担体、緩衝剤、等張化剤、キレート剤、着色剤、保存剤、香料、風味剤、甘味剤等と混合することができる。
 本発明の医薬組成物は、錠剤、カプセル剤、散剤、顆粒剤、丸剤、液剤、シロップ剤等の経口投与剤、注射剤、外用剤、坐剤、点眼剤、点鼻剤等の非経口投与剤などの形態に応じて、経口投与又は非経口投与することができる。好ましくは、皮内、筋肉、腹腔等への局部注射等が例示される。
 投与量は、有効成分の種類、投与経路、投与対象、患者の年齢、体重、性別、症状その他の条件により適宜選択されるが、組換えワクシニアウイルスの一日投与量としては、経口の場合は1000~1000000000PFU(plaque forming units)程度、好ましくは100000~100000000PFU程度であり、非経口の場合は100~1000000000PFU(plaque forming units)程度、好ましくは1000~100000000PFU程度である。ウイルスは、1日1回投与することもでき、数回に分けて投与することもできる。
 本発明の組換えワクシニアウイルスは、COVID−19の予防用または治療用ワクチンとして使用され得るが、予めワクチンとしての抗体価または細胞性免疫活性を測定しておくことが好ましい。
 例えば、本発明の組換えワクシニアウイルス、または親株であるDIs株に対する抗体価は、これらのウイルス株をマウス、ウサギ等に接種後、経時的に血清を回収し、血清のSARS−CoV−2タンパク質に対するELISA価やLIPS(luciferase immunoprecipitation system)価等を測定することで得ることができる。これにより接種個体でのSARS−CoV−2の遺伝子発現及び免疫応答の有無を確認できる。本発明の組換えワクシニアウイルスを接種したマウス血清は、接種1週間後からSARS−CoV−2タンパク質に対する抗体価の上昇が認められ得るものである。
 また、細胞性免疫活性は、例えば、本発明の組換えワクシニアウイルス、または親株であるDIs株をマウスに接種後、免疫したマウスから脾臓細胞を分離し、SARS−CoV−2の非構造タンパク質や構造タンパク質に特異的なCD4陽性及びCD8陽性細胞が誘導・活性化されている否かを、FACSやELISPOT assayにより測定することができる。例えば、本発明の組換えワクシニアウイルスにより免疫したBALB/cマウス由来の脾臓細胞を、非構造タンパク質又は構造タンパク質を発現する標的細胞と共培養することによって、抗原特異的に活性化したCD4及びCD8陽性T細胞が検出され得る。
 本発明に係る組換えワクシニアウイルスは、SARS−CoV−2に対する細胞性免疫を誘導し得るものであり、特にSARS−CoV−2由来非構造タンパク質(好ましくはORF1b)を発現し得る組換えワクシニアウイルスにおいてその効果が顕著である。また、本発明に係る組換えワクシニアウイルスは、SARS−CoV−2に対する中和抗体を誘導し得るものであり、特にSARS−CoV−2由来構造タンパク質(好ましくはSタンパク質)を発現し得る組換えワクシニアウイルスにおいてその効果が顕著である。
 さらに、本発明に係る組換えワクシニアウイルス(SARS−CoV−2用ワクチン)は、当該ワクシニアウイルスが本来直接対象とするSARS−CoV−2に対してはもちろん、SARS−CoV−2の変異に伴う抗原性変化にも対応し得る幅広い交差反応性を持つワクチンとなり得る。すなわち、本発明に係る、SARS−CoV−2感染症の治療薬及び予防薬である医薬組成物、及びSARS−CoV−2用ワクチンにおいて、SARS−CoV−2としては、その塩基配列やアミノ酸配列に置換、欠失、付加等の任意の変異を有する、いわゆる変異株も含まれる。SARS−CoV−2変異株としては、例えば、SUMS2(滋賀医科大学分離株)、QHN001(UK型変異株)、TY7−501(ブラジル型変異株)、TY8−612(南アフリカ型変異株)等が挙げられる。
 また、本発明に係る組換えワクシニアウイルスは、今後出現する可能性がある未知の新型コロナウイルス(CoV)に対しても防御効果を示す、汎CoV感染症予防ワクチンとしても利用され得るものである。
 以下に、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
1.方法
(1)SARS−CoV−2ウイルス構造タンパク質遺伝子及び非構造タンパク質遺伝子組換えワクシニアワクチンの作製
 (i)遺伝子組換えに用いるSARS−CoV−2ウイルス株の選択
 SARS−CoV−2ウイルス株:hCoV−19/Japan/AI/I−004/2020の遺伝子配列情報(GenBankアクセッション番号:LC521925)(配列番号9)を基にし、下記の4種類の遺伝子を合成した。
 ・非構造タンパク質1b(ORF1b)遺伝子領域nCoV−Japan−1b(8198bp) (配列番号1)
 ・非構造タンパク質1b(ORF1b)遺伝子領域mnCoV−Japan−1b GND(8198bp) (配列番号3)
 ・スパイクタンパク質遺伝子領域nCoV−Japan−S(3926bp) (配列番号5)
 ・スパイクタンパク質遺伝子領域mnCoV−Japan−S(3926bp) (配列番号7)
 上記4種類の遺伝子のうち、配列番号1で示される遺伝子は、野生型のORF1b遺伝子であり、配列番号5で示される遺伝子は、野生型のスパイクタンパク質遺伝子である。
 他方、配列番号3及び7で示される遺伝子は、それぞれ、配列番号1及び5で示される遺伝子に基づいて、ワクシニアウイルスでの遺伝子発現効率が向上するように最適化した変異型の遺伝子である。
 具体的には、配列番号3で示される変異型遺伝子は、配列番号1で示される塩基配列の第2445番目、第2448番目、第4998番目、第5001番目、及び第6000番目のT(チミン)が、C(シトシン)に置換され、かつ、第2539番目のG(グアニン)が、A(アラニン)に置換されたもの(計6箇所の塩基置換がされたもの)である。
 また配列番号7で示される変異型遺伝子は、配列番号5で示される塩基配列の第99番目、第102番目、第2364番目、第2367番目、第3213番目、第3216番目、第3417番目、及び第3420番目のT(チミン)が、C(シトシン)に置換されたもの(計8箇所の塩基置換がされたもの)である。
 本実施例においては、上記4種類の遺伝子のうち、配列番号3及び7で示される遺伝子を、組換えワクシニアウイルスの樹立に用いた。
 (ii)2種類の合成遺伝子をpSMART−DIs−L3ベクター内にクローニング
 2種類の合成遺伝子(配列番号3及び7で示される遺伝子)を、DIs組換えワクチン作製用の組換えベクター:pSMART−DIs−L3(配列番号10)へ挿入した(図6,7)。これらの組換えベクターを用いて組換えワクシニアウイルス(rDIs−1b−GND、rDIs−S)の樹立(図4)を進めた。「rDIs−1b−GND」は、配列番号3で示される遺伝子を挿入したベクター(pSMART−DIs−L3−mnCoV−Japan−1b GND−GPTF)を用いて得られる組換えワクシニアウイルスのことであり、「rDIs−mnCoV−1b−GND」と称されることもある。「rDIs−S」は、配列番号7で示される遺伝子を挿入したベクター(pSMART−DIs−L3−mnCoV−Japan−S−GPTF)を用いて得られる組換えワクシニアウイルスのことであり、「rDIs−mnCoV−S」と称されることもある。
(2)SARS−CoV−2ウイルス非構造タンパク質遺伝子あるいは構造タンパク質遺伝子組換えワクシニアワクチンの評価
 (i)ORF1b非構造タンパク質遺伝子組換えDIs(rDIs−1b−GND)に挿入された遺伝子配列を確認した後、mRNAが発現していることをReal−Time Detection polymerase chain reaction(RTD−PCR)法で確認し(図8)、ORF1b構成タンパク質が発現していることをウエスタンブロット法で確認した(図11B)。
 上記RTD−PCRに用いたプライマー・プローブ、反応液組成、反応条件は、以下の通りである。
<プライマー・プローブ>
Figure JPOXMLDOC01-appb-I000001
<反応液組成>
水(RNase free)           8.5μL
4x Reaction mix         5μL
Forward Primer(10μM)    1μL
Reverse Primer(10μM)    1μL
Probe(10μM)             0.5μL
RNA sample              4μL   
Final reaction volume   20μL
<反応条件>
Figure JPOXMLDOC01-appb-T000002
 (ii)スパイクタンパク質遺伝子領域組換えDIs(rDIs−S)に挿入された遺伝子配列を確認した後、スパイクタンパク質が発現していることをウエスタンブロット法で確認した(図9、図11A)。
2.結果
(1)ORF1b非構造タンパク質遺伝子組換えDIs(rDIs−1b−GND)に挿入された遺伝子配列を確認した後、mRNAが発現していることをReal−Time Detection polymerase chain reaction(RTD−PCR)法で確認した(図8)。12クローン中10クローンで良好なmRNA発現が確認された。また、rDIs−1b−GNDにおいて、ORF1b構成タンパク質が発現していることがウエスタンブロット法で確認された(図11B)。
(2)スパイクタンパク質遺伝子領域組換えDIs(rDIs−S)に挿入された遺伝子配列を確認した後、スパイクタンパク質が発現していることをウエスタンブロット法で確認した(図9、図11A)。9クローン中9クローンで良好なスパイクタンパク質発現が確認された。
3.考察
 SARS−CoV−2由来ORF1b非構造タンパク質に対するワクチン(rDIs−1b−GND)は細胞性免疫を誘導する有効な予防ワクチンとなり得る。また、SARS−CoV−2由来スパイクタンパク質に対するワクチン(rDIs−S)は中和抗体を誘導する有効な予防ワクチンとなり得る(図10)。
 rDIs−1b−GNDを、ヒトACE2発現トランスジェニックマウス(hACE2発現Tgマウス)に接種し、当該マウスにおけるSARS−CoV−2特異的T細胞応答の解析を行った。具体的には、図12に示すとおり、rDIs−1b−GND又はDIs(コントロール)を3週間隔で2回接種し、その1週間後にSARS−CoV−2による攻撃感染を行い、感染6日後のSARS−CoV−2に対する抗原特異的T細胞の活性化をインターフェロンγ ELISpotアッセイによって解析した。
 その結果、rDIs−1b−GND接種群でSARS−CoV−2特異的なT細胞(ORF1b抗原(RdRp)特異的T細胞)の活性化(インターフェロンγの産生)が認められた(図12)。
 rDIs−Sの有効性及び安全性を、カニクイザルを用いて評価した。具体的には、図13に示すとおり、rDIs−S又はDIs(コントロール)をカニクイザルに3週間隔で2回皮内接種し、その1週間後にSARS−CoV−2による攻撃感染を行い、感染7日後に剖検した。以下(1)~(5)に、各評価内容とその結果について説明する。
(1)SARS−CoV−2感染後の体温変化を測定した。コントロール(DIs)群(破線)では、SARS−CoV−2感染から2日後に1度以上の体温上昇が認められたが、rDIs−S接種群(実線)では、体温上昇は認められなかった(図14)。
(2)鼻腔・気道拭い液中の感染性ウイルス量の経時変化を測定した。
 鼻腔拭い液中のウイルス量:DIs接種群では、感染7日後まで感染性ウイルスが検出された。rDIs−S接種群では、感染1日後にのみ検出され、その後速やかに排除された。rDIs−S接種群の4頭中1頭では、感染1日後でも検出限界以下であった(図15A)。
 気道拭い液中のウイルス量:DIs接種群では、4頭中1頭で感染7日後まで感染性ウイルスが検出された。rDIs−S接種群では、4頭中2頭では、感染1日後でも検出限界以下であり、検出された2頭でも顕著に低値であった(図15B)。
(3)SARS−CoV−2感染7日後の肺中ウイルスRNA量を測定した。DIs接種群では、4頭のほとんどの肺葉で高いウイルスRNA量が検出され、rDIs−S接種群では、肺葉でのウイルスRNA量は殆ど検出限界以下であり、良好な排除効果を示された(図16)。
(4)SARS−CoV−2感染7日後の肺の病理所見と病理スコアを確認した。DIs接種群では間質部の肥厚化を伴う肺炎像が観察された。一方、rDIs−S接種群では病変部分はほとんど認められず、肺炎を軽減できることが示された(図17)。
(5)rDIs−S接種群での中和抗体誘導効果(NT50 titer)を確認した。rDIs−S接種群では4頭すべてで中和抗体が検出され(0dpi)、SARS−CoV−2攻撃感染(7dpi)による速やかな抗体価の増大が認められた(図18)。
 rDIs−Sの有効性を、ヒトACE2発現トランスジェニックマウス(hACE2発現Tgマウス)及びC57BL/6を用いて評価した。以下(1)及び(2)に、各評価内容とその結果について説明する。
(1)rDIs−S接種hACE2発現TgマウスでのSARS−CoV−2感染防御試験
 図19に示すとおり、rDIs−S又はDIs(コントロール)をhACE2発現Tgマウスに3週間隔で2回接種し、その1週間後にSARS−CoV−2による攻撃感染実験を行った。DIs接種個体では、急激な体重変化に伴い、死亡したが、rDIs−S接種個体では、殆ど体重減少を認めず、100%の生存率を示した(図19)。
(2)rDIs−S接種C57BL/6マウスでの抗原特異的細胞障害性T細胞のin vivo活性評価
 図20に示すとおり、rDIs−S又はDIs(コントロール)をC57BL/6マウスに3週間隔で2回接種し、その1週間後にSARS−CoV−2のSタンパク質で刺激した脾細胞及び未刺激脾細胞の1:1混合液を当該マウスに静脈内移入した。翌日、脾臓を採取し、細胞移入個体内での抗原刺激細胞の排除効果について、フローサイトメトリー法を用いて解析した。DIs接種個体では、Sタンパク質ペプチド刺激細胞を排除できないが、rDIs−S接種個体では、Sタンパク質由来ペプチド刺激細胞を速やかに排除できた(図20)。このことから、rDIs−Sによる、SARS−CoV−2のSタンパク質特異的細胞障害性T細胞の誘導が確認された。
 rDIs−Sの抗体誘導能を、C57BL/6Jマウスを用いて評価した。以下(1)及び(2)に、各評価内容とその結果について説明する。
(1)図21に示すとおり、rDIs−S又はDIs(コントロール)をC57BL/6Jマウスに3週間隔で2回接種し、接種前から4週後まで毎週採血を行った。血清検体を希釈溶液(1%BSA、0.5%Tween20、2.5mM EDTA含有PBS(−)で100倍希釈した後、SARS−CoV−2のSタンパク質に特異的な結合抗体(イムノグロブリンG;IgG)の産生をELISAにより測定した。rDIs−S接種個体(n=3)では、rDIs−S接種1週後からSタンパク質特異的抗体が検出された。さらに、初回接種から3週後にrDIs−Sを追加接種することにより、その1週後の血清中に含まれるSタンパク質特異的IgG量が増加していた。
(2)上記(1)で使用した同一血清検体を用いて、SARS−CoV−2(TY/WK−521:流行初期株)に対する中和抗体価を、プラーク減少中和試験法により評価した。具体的には、血清を培地により10倍希釈した後、さらに4倍階段希釈した。10倍、40倍、160倍、640倍、2560倍、10240倍希釈血清50μLと50PFU/50μLのウイルス溶液をそれぞれ混合し、37度で一時間反応させた。その後、階段希釈血清/ウイルス混合溶液(100μL)をSARS−CoV−2に感染感受性を有するVeroE6/TMPRSS2細胞に接種し、1時間吸着させた。溶液を除去し、培地で細胞を洗浄後に0.6%アガロース含有培地を添加し、48時間培養した。48時間後血清不含検体で形成されるプラーク数を100%とした際に、血清添加によりプラーク数が半数となる血清希釈率の逆数を「50% neutralization titer」として算出した。図22に示すとおり、rDIs−S接種個体(n=3)では、rDIs−S接種1週後から中和抗体が誘導されることが明らかとなった。また、初回接種から3週後の追加接種により、中和抗体価も増強した。
 実施例3においてrDIs−Sを接種(3週間隔で2回皮内接種)したカニクイザルの血漿検体を用いて、SARS−CoV−2の流行初期株(TY/WK−521)及び変異株(SUMS2:滋賀医科大学分離株、QHN001:UK型変異株、TY7−501:ブラジル型変異株)に対する中和抗体価をTCID50法で測定した。本実施例においては、初回rDIs−S接種から3週後の追加免疫時(図23のグラフ中day−7)、SARS−CoV−2攻撃感染時(図23のグラフ中day0)、及び剖検時(図23のグラフ中day7)に採取した血漿を用いた。図23に示すとおり、ワクチンを2回接種することで、流行初期株及びいずれの変異株に対しても中和抗体が誘導されることが判明した。
 rDIs−S又はDIs(コントロール)をhACE2発現Tgマウスに3週間隔で2回接種し、追加免疫から1週後に100PFUのSARS−CoV−2南アフリカ型変異株(TY8−612)を経気道感染させた。連日、生存率を観測し、感染から7日後に剖検した。図24に示すとおり、DIs接種(コントロール)群では、4匹中2匹が死亡したが、rDIs−S接種群では、5匹全個体生存していた。当該変異株(TY8−612)に対しても、rDIs−S接種による発症防御効果が確認された。
関連情報・論文
(1)Masahiro Kitabatake,Shingo Inoue,Fumihiko Yasui,Shoji Yokochi,Masaaki Arai,Kouichi Morita,Hisatoshi Shida,Minoru Kidokoro,Fukashi Murai,Mai Quynh Le,Kouji Matsushima and Michinori Kohara.SARS−CoV spike protein recombinant vaccinia virus efficiently induces neutralizing antibodies in spite of pre−immunization with vaccinia virus.Vaccine 25:630−637(2007).
(2)Fumihiko Yasui,Chieko Kai,Masahiro Kitabatake,Shingo Inoue,Misako Yoneda,Shoji Yokochi,Ryoichi Kase,Satoshi Sekiguchi,Kouichi Morita,Tsunekazu Hishima,Hidenori Suzuki,Katsuo Karamatsu,Yasuhiro Yasutomi,Hisatoshi Shida,Minoru Kidokoro,Kyosuke Mizuno,Kouji Matsushima,Michinori Kohara.Prior immunization with SARS−CoV nucleocapsid protein causes severe pneumonia in mice infected with SARS−CoV.J.Immunology 181(9):6337−48(2008).
(3)Jin−Won Youn,Yu−Wen Hu,Nancy Tricoche,Wolfram Pfahler,Mohamed Tarek Shata,Marlene Dreux,Francois−Loic Cosset,Antonella Folgori,Dong−Hun Lee,Betsy Brotman,and Alfred M.Prince.Evidence for Protection against Chronic Hepatitis C Virus Infection in Chimpanzees by Immunization with Replicating Recombinant Vaccinia Virus.JOURNAL OF VIROLOGY,Nov.2008,82(21):10896−10905.doi:10.1128/JVI.01179−08
(4)FRANCOIS HABERSETZER,GERALDINE HONNET,CHRISTINE BAIN,MARIANNE MAYNARD−MUET,VINCENT LEROY,JEAN−PIERRE ZARSKI,CYRILLE FERAY,THOMAS F.BAUMERT,JEAN−PIERRE BRONOWICKI,MICHEL DOFFOEL,CHRISTIAN TREPO,DELPHINE AGATHON,MYEW−LING TOH,MARTINE BAUDIN,JEAN−YVES BONNEFOY,JEAN−MARC LIMACHER,and GENEVIEVE INCHAUSPE.A Poxvirus Vaccine Is Safe,Induces T−Cell Responses,and Decreases Viral Load in Patients With Chronic Hepatitis C.GASTROENTEROLOGY 2011;141:890−899.doi:10.1053/j.gastro.2011.06.009
(5).Satoshi Sekiguchi,Kiminori Kimura,Tomoko Chiyo,Takahiro Ohtsuki,Yoshimi Tobita,Yuko Tokunaga,Fumihiko Yasui,Kyoko Tsukiyama−Kohara,Takaji Wakita,Toshiyuki Tanaka,Masayuki Miyasaka,Kyosuke Mizuno,Yukiko Hayashi,Tsunekazu Hishima,Kouji Matsushima and Michinori Kohara.Immunization with a recombinant vaccinia virus that encodes nonstructural proteins of the hepatitis C virus suppresses viral protein levels in mouse liver.PLoS ONE 7(12):e51656(2012).
(6)Takeshi Wada,Michinori Kohara and Yasuhiro Yasutomi.DNA vaccine expressing the non−structural proteins of hepatitis C virus diminishes the expression of HCV proteins in a mouse model.Vaccine 31(50):5968−74,doi:10.1016/j.vaccine.2013.10.037(2013).
(7)Takahiro Ohtsuki,Kiminori Kimura,Yuko Tokunaga,Kyoko Tsukiyama−Kohara,Chise Tateno,Yukiko Hayashi,Tsunekazu Hishima,and Michinori Kohara.M2 macrophages play critical roles in progression of inflammatory liver disease in hepatitis C virus transgenic mice.J.Virology 2015 Oct 14;90(1):300−7.doi:10.1128/JVI.02293−15.
 本発明に係るCOVID−19予防ワクチン(SARS−CoV−2用ワクチン)としての組換えワクシニアウイルス、及びそれを用いた医薬組成物等は、強力に免疫を誘導し、かつ長期間免疫を維持し得る、SARS−CoV−2用ワクチンとして、COVID−19感染症の予防又は治療に、極めて有用なものである。また、本発明の組換えワクシニアウイルスは、室温下でもSARS−CoV−2用ワクチンとしての安定性を保持し得るものであり、その保存及び輸送時の温度が冷蔵であっても室温であってもよく、実用性に優れたものである。
 配列番号3:合成DNA
 配列番号4:合成コンストラクト
 配列番号7:合成DNA
 配列番号8:合成コンストラクト
 配列番号10:合成DNA
 配列番号11:合成DNA
 配列番号12:合成DNA
 配列番号13:合成DNA

Claims (11)

  1.  SARS−CoV−2由来の非構造タンパク質又は構造タンパク質をコードするcDNAの全部又は一部と、発現プロモーターとを含む、組換えワクシニアウイルス。
  2.  ワクシニアウイルスがDIs株である、請求項1に記載の組換えワクシニアウイルス。
  3.  前記非構造タンパク質をコードするcDNAが、SARS−CoV−2由来の非構造タンパク質中のORF1b領域をコードするcDNAを含むものである、請求項1又は2に記載の組換えワクシニアウイルス。
  4.  前記非構造タンパク質をコードするcDNAが、以下の(a)~(d)のいずれかのDNAである、請求項1~3のいずれか1項に記載の組換えワクシニアウイルス。
     (a)配列番号1に示す塩基配列からなるDNA
     (b)配列番号1に示す塩基配列と相補的な塩基配列からなるDNAと80%以上の同一性を有し、かつ、SARS−CoV−2由来の非構造タンパク質をコードするDNA
     (c)配列番号3に示す塩基配列からなるDNA
     (d)配列番号3に示す塩基配列と相補的な塩基配列からなるDNAと80%以上の同一性を有し、かつ、SARS−CoV−2由来の非構造タンパク質をコードするDNA
  5.  前記構造タンパク質をコードするcDNAが、SARS−CoV−2由来の構造タンパク質中のスパイクタンパク質をコードするcDNAを含むものである、請求項1又は2に記載の組換えワクシニアウイルス。
  6.  前記構造タンパク質をコードするcDNAが、以下の(a)~(d)のいずれかのDNAである、請求項1、2又は5に記載の組換えワクシニアウイルス。
     (a)配列番号5に示す塩基配列からなるDNA
     (b)配列番号5に示す塩基配列と相補的な塩基配列からなるDNAと80%以上の同一性を有し、かつ、SARS−CoV−2由来の構造タンパク質をコードするDNA
     (c)配列番号7に示す塩基配列からなるDNA
     (d)配列番号7に示す塩基配列と相補的な塩基配列からなるDNAと80%以上の同一性を有し、かつ、SARS−CoV−2由来の構造タンパク質をコードするDNA
  7.  室温下においても安定性を保持し得るものである、請求項1~6のいずれか1項に記載の組換えワクシニアウイルス。
  8.  請求項1~7のいずれか1項に記載の組換えワクシニアウイルスを含む、医薬組成物。
  9.  SARS−CoV−2感染症の予防薬である、請求項8に記載の医薬組成物。
  10.  SARS−CoV−2感染症の治療薬である、請求項8に記載の医薬組成物。
  11.  請求項1~7のいずれか1項に記載の組換えワクシニアウイルスを含む、SARS−CoV−2用ワクチン。
PCT/JP2021/029240 2020-07-31 2021-07-30 組換えワクシニアウイルス WO2022025298A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022539632A JPWO2022025298A1 (ja) 2020-07-31 2021-07-30
EP21848897.1A EP4190902A4 (en) 2020-07-31 2021-07-30 RECOMBINANT VACCINIA VIRUS
CN202180058328.7A CN116615214A (zh) 2020-07-31 2021-07-30 重组牛痘病毒
US18/018,442 US20230295655A1 (en) 2020-07-31 2021-07-30 Recombinant vaccinia virus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020-130717 2020-07-31
JP2020130717 2020-07-31
JP2020-215454 2020-12-24
JP2020215454 2020-12-24
JP2021078781 2021-05-06
JP2021-078781 2021-05-06

Publications (1)

Publication Number Publication Date
WO2022025298A1 true WO2022025298A1 (ja) 2022-02-03

Family

ID=80036488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029240 WO2022025298A1 (ja) 2020-07-31 2021-07-30 組換えワクシニアウイルス

Country Status (5)

Country Link
US (1) US20230295655A1 (ja)
EP (1) EP4190902A4 (ja)
JP (1) JPWO2022025298A1 (ja)
TW (1) TW202212567A (ja)
WO (1) WO2022025298A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024130198A3 (en) * 2022-12-15 2024-07-25 Conagen Inc. Novel tryptophanases from streptomyces with novel properties and the uses thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038742A1 (ja) * 2004-10-08 2006-04-13 Post Genome Institute Co., Ltd. 組み換えウイルスおよびその用途
JP2020130717A (ja) 2019-02-21 2020-08-31 積水ホームテクノ株式会社 風呂蓋および風呂システム
JP2021078781A (ja) 2019-11-19 2021-05-27 バーテックス株式会社 手術台用クランプ
WO2021163622A1 (en) * 2020-02-14 2021-08-19 Geovax, Inc. Vaccines and uses thereof to induce an immune response to sars-cov2
WO2021174142A1 (en) * 2020-02-26 2021-09-02 Tonix Pharmaceuticals Holding Corp. Recombinant poxvirus based vaccine against sars-cov-2 virus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038742A1 (ja) * 2004-10-08 2006-04-13 Post Genome Institute Co., Ltd. 組み換えウイルスおよびその用途
JP2020130717A (ja) 2019-02-21 2020-08-31 積水ホームテクノ株式会社 風呂蓋および風呂システム
JP2021078781A (ja) 2019-11-19 2021-05-27 バーテックス株式会社 手術台用クランプ
WO2021163622A1 (en) * 2020-02-14 2021-08-19 Geovax, Inc. Vaccines and uses thereof to induce an immune response to sars-cov2
WO2021174142A1 (en) * 2020-02-26 2021-09-02 Tonix Pharmaceuticals Holding Corp. Recombinant poxvirus based vaccine against sars-cov-2 virus

Non-Patent Citations (30)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. LC521925
BISHT HIMANI ET AL: "Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, vol. 101, no. 17, 27 April 2004 (2004-04-27), pages 6641 - 6646, XP002332532, ISSN: 0027-8424, DOI: 10.1073/pnas.0401939101 *
CHANDRASEKAR SHASWATH S., PHANSE YASHDEEP, HILDEBRAND RACHEL E., HANAFY MOSTAFA, WU CHIA-WEI, HANSEN CHUNGYI H., OSORIO JORGE E., : "Localized and Systemic Immune Responses against SARS-CoV-2 Following Mucosal Immunization", VACCINES, vol. 9, no. 2, pages 132, XP055890042, DOI: 10.3390/vaccines9020132 *
CHIUPPESI FLAVIA, SALAZAR MARCELA D’ALINCOURT, CONTRERAS HEIDI, NGUYEN VU, MARTINEZ JOY, PARK SOOJIN, NGUYEN JENNY, KHA MINDY, INI: "Development of a Multi-Antigenic SARS-CoV-2 Vaccine Using a Synthetic Poxvirus Platform", 5 July 2020 (2020-07-05), XP055890023, Retrieved from the Internet <URL:https://assets.researchsquare.com/files/rs-40198/v1/c093cee3-b252-4a62-ab84-6bcc07625b35.pdf?c=1637596131> DOI: 10.21203/rs.3.rs-40198/v1 *
DATABASE NUCLEOTIDE 13 February 2020 (2020-02-13), ANONYMOUS: "Severe acute respiratory syndrome coronavirus 2 2019-nCoV/Japan/AI/I-004/2020 RNA, complete genome", XP009533764, retrieved from GENBANK Database accession no. LC521925 *
FAN WU ET AL.: "Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications.", MEDRXIV
FLAVIA CHIUPPESI, MARCELA D’ALINCOURT SALAZAR, HEIDI CONTRERAS, VU H NGUYEN, JOY MARTINEZ, SOOJIN PARK, JENNY NGUYEN, MINDY : "Abstract", BIORXIV, 2 July 2020 (2020-07-02), XP055745182, Retrieved from the Internet <URL:https://www.biorxiv.org/content/10.1101/2020.07.01.183236v1.full.pdf> DOI: 10.1101/2020.07.01.183236 *
FRANCOIS HABERSETZER, GERALDINE HONNET, CHRISTINE BAIN, MARIANNE MAYNARD-MUET, VINCENT LEROY, JEAN-PIERRE ZARSKI, CYRILLE FERAY, T: "A Poxvirus Vaccine Is Safe, Induces T-Cell Cell Responses, and Decreases Viral Load in Patients With Chronic Hepatitis C ", GASTROENTEROLOGY, vol. 141, 2011, pages 890 - 899
FUMIHIKO YASUI ET AL., J IMMUNOL, vol. 181, 2008, pages 6337 - 6348
FUMIHIKO YASUICHIEKO KAIMASAHIRO KITABATAKESHINGO INOUEMISAKO YONEDASHOJI YOKOCHIRYOICHI KASESATOSHI SEKIGUCHIKOUICHI MORITATSUNEK: "Prior immunization with SARS-CoV nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV", J. IMMUNOLOGY, vol. 181, no. 9, 2008, pages 6337 - 48, XP055890027, DOI: 10.4049/jimmunol.181.9.6337
GARCIA-ARRIAZA JUAN, URTZI GARAIGORTA, PATRICIA PÉREZ, ADRIÁN LÁZARO-FRÍAS, CARMEN ZAMORA, PABLO GASTAMINZA, CARLOS DEL FRESNO, JO: "COVID-19 Vaccine Candidates Based on Modified Vaccinia Virus Ankara Expressing the SARS-CoV-2 Spike Potein Induce Robust T- and B-Cell Immune Responses and Full Efficacy in Mice", JOURNAL OF VIROLOGY, vol. 95, no. 7, 7 January 2021 (2021-01-07), XP055890038, DOI: 10.1128/JVI.02260-20 *
HARBOUR JAKE C., LYSKI ZOE L., SCHELL JOHN B., THOMAS ARCHANA, MESSER WILLIAM B., SLIFKA MARK K., NOLZ JEFFREY C.: "Cellular and Humoral Immune Responses in Mice Immunized with Vaccinia Virus Expressing the SARS-CoV-2 Spike Protein", THE JOURNAL OF IMMUNOLOGY, WILLIAMS & WILKINS CO., US, vol. 206, no. 11, 1 June 2021 (2021-06-01), US , pages 2596 - 2604, XP055890039, ISSN: 0022-1767, DOI: 10.4049/jimmunol.2100054 *
ISAMU TAGAYA ET AL., NATURE, vol. 192, 1961, pages 381 - 382
ISHII, K. ; HASEGAWA, H. ; NAGATA, N. ; MIZUTANI, T. ; MORIKAWA, S. ; SUZUKI, T. ; TAGUCHI, F. ; TASHIRO, M. ; TAKEMORI, T. ; MIYA: "Induction of protective immunity against severe acute respiratory syndrome coronavirus (SARS-CoV) infection using highly attenuated recombinant vaccinia virus DIs", VIROLOGY, ELSEVIER, AMSTERDAM, NL, vol. 351, no. 2, 1 August 2006 (2006-08-01), AMSTERDAM, NL , pages 368 - 380, XP024896453, ISSN: 0042-6822, DOI: 10.1016/j.virol.2006.03.020 *
JIN-WON YOUNYU-WEN HUNANCY TRICOCHEWOLFRAM PFAHLERMOHAMED TAREK SHATAMARLENE DREUXFRANCOIS-LOIC COSSETANTONELLA FOLGORIDONG-HUN LE: "Evidence for Protection against Chronic Hepatitis C Virus Infection in Chimpanzees by Immunization with Replicating Recombinant Vaccinia Virus", JOURNAL OF VIROLOGY, vol. 82, no. 21, November 2008 (2008-11-01), pages 10896 - 10905
KOJI ISHII ET AL., VIROLOGY, vol. 351, no. 2, 2006, pages 368 - 380
LIU RUIKANG, AMERICO JEFFREY L., COTTER CATHERINE A., EARL PATRICIA L., EREZ NOAM, PENG CHEN, MOSS BERNARD: "MVA Vector Vaccines Inhibit SARS CoV-2 Replication in Upper and Lower Respiratory Tracts of Transgenic Mice and Prevent Lethal Disease", BIORXIV, 1 January 2021 (2021-01-01), XP055890049, Retrieved from the Internet <URL:https://www.biorxiv.org/content/10.1101/2020.12.30.424878v1.full.pdf> DOI: 10.1101/2020.12.30.424878 *
LIU RUIKANG, AMERICO JEFFREY L., COTTER CATHERINE A., EARL PATRICIA L., EREZ NOAM, PENG CHEN, MOSS BERNARD: "One or two injections of MVA-vectored vaccine shields hACE2 transgenic mice from SARS-CoV-2 upper and lower respiratory tract infection", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, vol. 118, no. 12, 23 March 2021 (2021-03-23), pages 1 - 11, XP055875133, ISSN: 0027-8424, DOI: 10.1073/pnas.2026785118 *
LUNDSTROM KENNETH: "Viral Vectors for COVID-19 Vaccine Development", VIRUSES, vol. 13, no. 2, 19 February 2021 (2021-02-19), XP055890052, DOI: 10.3390/v13020317 *
MASAHIRO KITABATAKESHINGO INOUEFUMIHIKO YASUISHOJI YOKOCHIMASAAKI ARAIKOUICHI MORITAHISATOSHI SHIDAMINORU KIDOKOROFUKASHI MURAIMAI: "SARS-CoV spike protein recombinant vaccinia virus efficiently induces neutralizing antibodies in spite of pre-immunization with vaccinia virus", VACCINE, vol. 25, 2007, pages 630 - 637
ROUTHU NANDA KISHORE, GANGADHARA SAILAJA, CHEEDARLA NARAYANAIAH, SHIFERAW AYALNESH, RAHMAN SHEIKH ABDUL, SAHOO ANUSMITA, SHI PEI-Y: "Modified Vaccinia Ankara Based SARS-CoV-2 Vaccine Expressing Full-Length Spike Induces Strong Neutralizing Antibody Response", BIORXIV, 27 June 2020 (2020-06-27), XP055890019, Retrieved from the Internet <URL:https://www.biorxiv.org/content/10.1101/2020.06.27.175166v1.full.pdf> [retrieved on 20220210], DOI: 10.1101/2020.06.27.175166 *
ROUTHU NANDA KISHORE, NARAYANAIAH CHEEDARLA, SAILAJA GANGADHARA, VENKATA SATISH BOLLIMPELLI, ARUN K. BODDAPATI, AYALNESH SHIFERAW,: "A modified vaccinia Ankara vector-based vaccine protects macaques from SARS-CoV-2 infection, immune pathology, and dysfunction in the lungs", IMMUNITY, vol. 54, no. 3, 9 March 2021 (2021-03-09), pages 542 - 556, XP055890031, DOI: 10.1016/j.immuni.2021.02.001 *
SATOSHI SEKIGUCHIKIMINORI KIMURATOMOKO CHIYOTAKAHIRO OHTSUKIYOSHIMI TOBITAYUKO TOKUNAGAFUMIHIKO YASUIKYOKO TSUKIYAMA-KOHARATAKAJI : "Immunization with a recombinant vaccinia virus that encodes nonstructural proteins of the hepatitis C virus suppresses viral protein levels in mouse liver", PLOS ONE, vol. 7, no. 12, 2012, pages e51656
See also references of EP4190902A4
TAKAHIRO OHTSUKIKIMINORI KIMURAYUKO TOKUNAGAKYOKO TSUKIYAMA-KOHARACHISE TATENOYUKIKO HAYASHITSUNEKAZU HISHIMAMICHINORI KOHARA: "M2 macrophages play critical roles in progression of inflammatory liver disease in hepatitis C virus transgenic mice", J. VIROLOGY, vol. 90, no. 1, 14 October 2015 (2015-10-14), pages 300 - 7
TAKESHI WADAMICHINORI KOHARAYASUHIRO YASUTOMI: "DNA vaccine expressing the non-structural proteins of hepatitis C virus diminishes the expression of HCV proteins in a mouse model", VACCINE, vol. 31, no. 50, pages 5968 - 74, XP028776483, DOI: 10.1016/j.vaccine.2013.10.037
TSCHERNE ALINA, SCHWARZ JAN HENDRIK, ROHDE CORNELIUS, KUPKE ALEXANDRA, KALODIMOU GEORGIA, LIMPINSEL LEONARD, OKBA NISREEN M.A., BO: "Immunogenicity and efficacy of the COVID-19 candidate vector vaccine MVA SARS 2 S in preclinical vaccination", BIORXIV, 11 January 2021 (2021-01-11), XP055890045, Retrieved from the Internet <URL:https://www.biorxiv.org/content/10.1101/2021.01.09.426032v1.full.pdf> DOI: 10.1101/2021.01.09.426032 *
YASUI FUMIHIKO, KAI CHIEKO, KITABATAKE MASAHIRO, INOUE SHINGO, YONEDA MISAKO, YOKOCHI SHOJI, KASE RYOICHI, SEKIGUCHI SATOSHI, MORI: "Prior Immunization with Severe Acute Respiratory Syndrome (SARS)-Associated Coronavirus (SARS-CoV) Nucleocapsid Protein Causes Severe Pneumonia in Mice Infected with SARS-CoV", THE JOURNAL OF IMMUNOLOGY, WILLIAMS & WILKINS CO., US, vol. 181, no. 9, 1 November 2008 (2008-11-01), US , pages 6337 - 6348, XP055890027, ISSN: 0022-1767, DOI: 10.4049/jimmunol.181.9.6337 *
ZHOU ET AL., NATURE, vol. 579, no. 7798, March 2020 (2020-03-01), pages 270 - 273
ZHOU PENG; YANG XING-LOU; WANG XIAN-GUANG; HU BEN; ZHANG LEI; ZHANG WEI; SI HAO-RUI; ZHU YAN; LI BEI; HUANG CHAO-LIN; CHEN HUI-DON: "A pneumonia outbreak associated with a new coronavirus of probable bat origin", NATURE, NATURE PUBLISHING GROUP UK, LONDON, vol. 579, no. 7798, 3 February 2020 (2020-02-03), London, pages 270 - 273, XP037060207, ISSN: 0028-0836, DOI: 10.1038/s41586-020-2012-7 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024130198A3 (en) * 2022-12-15 2024-07-25 Conagen Inc. Novel tryptophanases from streptomyces with novel properties and the uses thereof

Also Published As

Publication number Publication date
EP4190902A1 (en) 2023-06-07
TW202212567A (zh) 2022-04-01
US20230295655A1 (en) 2023-09-21
JPWO2022025298A1 (ja) 2022-02-03
EP4190902A4 (en) 2024-09-25

Similar Documents

Publication Publication Date Title
KR100571479B1 (ko) Hiv에 대한 폴리엔브백신으로서 재조합 백시니아벡터의 혼합물
US20080044384A1 (en) Recombinant Human Cytomegalovirus And Vaccines Comprising Heterologous Antigens
WO2012053646A1 (ja) ワクシニアウイルスベクターおよびセンダイウイルスベクターからなるプライム/ブーストワクチン用ウイルスベクター
JP2008522621A (ja) 世界的に流行するトリインフルエンザに対して迅速に応答するためのワクチン
JP2005517639A (ja) ワクチン
Abdel-Moneim et al. Insights into SARS-CoV-2 evolution, potential antivirals, and vaccines
Xie et al. Influenza vaccine with consensus internal antigens as immunogens provides cross-group protection against influenza A viruses
Louz et al. Animal models in virus research: their utility and limitations
WO2022025298A1 (ja) 組換えワクシニアウイルス
JP6175167B2 (ja) 新型インフルエンザウイルス由来ヘマグルチニンタンパク質遺伝子を有する組換えワクシニアウイルス
Galler et al. Genetic variability among yellow fever virus 17D substrains
Ma et al. Immune responses of swine inoculated with a recombinant fowlpox virus co-expressing P12A and 3C of FMDV and swine IL-18
Li et al. Codon optimization and woodchuck hepatitis virus posttranscriptional regulatory element enhance the immune responses of DNA vaccines against infectious bursal disease virus in chickens
JP5884100B2 (ja) 新型インフルエンザウイルス由来ヘマグルチニンタンパク質遺伝子を有するDIs株由来組換えワクシニアウイルス
Li et al. Porcine IL-12 plasmid as an adjuvant improves the cellular and humoral immune responses of DNA vaccine targeting transmissible gastroenteritis virus spike gene in a mouse model
Zhao et al. Identification and immunogenic evaluation of T cell epitopes based on tembusu virus envelope protein in ducks
WO2020184730A1 (ja) デングウイルスワクチン
Ma et al. A vesicular stomatitis virus-based African swine fever vaccine prototype effectively induced robust immune responses in mice following a single-dose immunization
Ma et al. In vivo evolution of the gp90 gene and consistently low plasma viral load during transient immune suppression demonstrate the safety of an attenuated equine infectious anemia virus (EIAV) vaccine
WO2006022215A1 (ja) SARS-コロナウイルスタンパク質をコードするDNAを保有する組換えワクチニアウイルスDIs株、およびその利用
WO2020100990A1 (ja) 新型インフルエンザウイルス由来ヘマグルチニンタンパク質遺伝子を有するDIs株由来組換えワクシニアウイルス
CN116615214A (zh) 重组牛痘病毒
WO2019069561A1 (ja) インフルエンザに対する医薬
Saikh et al. Protective cross-reactive epitope on the nonstructural protein NS1 of influenza A virus
JP2024503482A (ja) 複製可能アデノウイルス4型sars-cov-2ワクチンおよびそれらの使用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848897

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539632

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180058328.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 202317008165

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2021848897

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021848897

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE