WO2022024670A1 - 自動クレーンシステム、及び自動クレーンシステムの制御方法 - Google Patents

自動クレーンシステム、及び自動クレーンシステムの制御方法 Download PDF

Info

Publication number
WO2022024670A1
WO2022024670A1 PCT/JP2021/025175 JP2021025175W WO2022024670A1 WO 2022024670 A1 WO2022024670 A1 WO 2022024670A1 JP 2021025175 W JP2021025175 W JP 2021025175W WO 2022024670 A1 WO2022024670 A1 WO 2022024670A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
group
cargo handling
crane
adjacent
Prior art date
Application number
PCT/JP2021/025175
Other languages
English (en)
French (fr)
Inventor
紀明 宮田
Original Assignee
住友重機械搬送システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械搬送システム株式会社 filed Critical 住友重機械搬送システム株式会社
Priority to CN202180044570.9A priority Critical patent/CN115768713A/zh
Publication of WO2022024670A1 publication Critical patent/WO2022024670A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C19/00Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries

Definitions

  • This disclosure relates to an automated crane system and a control method for the automated crane system.
  • Patent Document 1 describes that a part of the container transportation work in the container yard is automated.
  • the automatic crane system includes a crane that transports containers in a plurality of container groups lined up in a container yard, a container in a cargo handling target container group that is a cargo handling target, and an adjacent container adjacent to the cargo handling target container group. It includes a detection unit that detects the positional relationship with the container in the group, and a control device that controls the crane based on the detection result of the detection unit.
  • the detection unit detects the positional relationship between the container in the cargo handling target container group which is the cargo handling target and the container in the adjacent container group adjacent to the cargo handling target container group. Therefore, the detection unit can detect a container that may collide when transporting a container of the cargo handling target container group in the adjacent container group.
  • the control device can adjust the transport route, output a warning, and avoid collisions between containers. From the above, it is possible to improve the safety of container transportation.
  • the detection unit may be arranged at a position higher than the upper surface of the container mounted on the transport trolley. In this case, it is possible to prevent the detection of the detection unit from being blocked by the container mounted on the transport trolley.
  • the detection unit may be able to set a detection range of multiple stages corresponding to containers of a plurality of lengths. In this case, even if the length of the container is changed, the detection unit can detect the container having the changed length.
  • the detection unit may have a three-dimensional scanner. In this case, the detection range of the detection unit can be widened.
  • the detection unit may have a three-dimensional camera. In this case, the detection unit can acquire the position of the depth of the container within the detection range.
  • the control device sets the transport route of the container so as to avoid the collision with the container in the adjacent container group. You can do it. In this case, the crane can transport the container while avoiding collisions and ensuring safety.
  • the control device sets a safety route for the container to move to a predetermined maximum height. It may be set as a transport route. In this case, regardless of the position of the container that may collide, the crane can move the container at the maximum height to transport the container while avoiding the collision.
  • the control method of the automatic crane system is a control method of an automatic crane system for transporting containers in a plurality of container groups arranged in a container yard by a crane, and is a container in a cargo handling target container group which is a cargo handling target.
  • a detection step for detecting the positional relationship with the container in the adjacent container group adjacent to the cargo handling target container group, and a control step for controlling the crane based on the detection result in the detection step are provided.
  • the safety of container transportation can be enhanced.
  • FIG. 3 is a plan view showing an exemplary container terminal to which the automated crane system according to the embodiment and the control method of the automated crane system are applied. It is a perspective view which shows the example of the cargo handling target container group and the adjacent container group arranged along the traveling direction of a transport carriage. It is a perspective view which shows an exemplary crane. It is a side view which looked at the container yard from the Y direction. It is a top view of the container yard. It is a block diagram which shows the structure and function of the automatic crane system which concerns on this embodiment. It is a conceptual diagram which shows an example of a transport path. It is a conceptual diagram which shows an example of a transport path. It is a flowchart which shows the example of each process of the control method of the automatic crane system which concerns on embodiment.
  • FIG. 1 is a plan view showing an exemplary container terminal 1 to which the present invention is applied.
  • the container terminal 1 the container yard 2 in which the container C is arranged, a plurality of gantry cranes 3 for transferring the container C to the berthed container ship, and the container yard 2
  • a plurality of cranes 10 that are arranged to handle the cargo of the container C and a remote control room 5 that can remotely operate the plurality of cranes 10 are provided.
  • FIG. 2 is a perspective view showing the container C of the container yard 2 and the exemplary transport trolley 20.
  • the transport trolley 20 is, for example, a truck, a freight car, a trailer, an AGV (Automated Guide Vehicle), or the like.
  • the container yard 2 is provided with a storage area in which a plurality of containers are stored and a travel path (truck lane) for the transport carriage 20.
  • the crane 10 acquires the container C from the transport trolley 20 stopped at a predetermined position, and places the container C at a predetermined address in the container yard 2. Further, the crane 10 acquires the container C arranged in the container yard 2 and transfers the container C to the transport trolley 20, and the transport trolley 20 carries out the container C.
  • container C is an ISO standard container.
  • the container C has a long rectangular parallelepiped shape, and for example, the length of the container C in the longitudinal direction is 20 feet or more and 45 feet or less.
  • the height of the container C is, for example, 8.5 feet or more and 9.5 feet or less.
  • the container C is stacked in one or a plurality of stages in the container yard 2. The number of stages in which the container C is arranged may be called a tier.
  • the container yard 2 includes a plurality of lanes L in which the container C is arranged, and a plurality of cranes 10 are arranged.
  • the crane 10 for example, the crane 10 is arranged for each lane L.
  • the number of cranes 10 arranged in the lane L may be one or a plurality.
  • the container C is stacked in one or more stages in the container yard 2 to form a plurality of rows R.
  • the number of rows R is, for example, six.
  • the longitudinal direction of the container C constituting the row R that is, the container C placed on the row R
  • the longitudinal direction of the container C constituting the other row R is parallel to the longitudinal direction of the container C constituting the other row R. Is aligned.
  • the longitudinal direction of the containers C arranged in the container yard 2 is the X direction
  • the lateral direction of the container C is the Y direction
  • the height direction of the container C is the Z direction.
  • the container yard 2 extends on the XY plane, and the containers C are stacked in the Z direction at any position on the XY plane, for example.
  • the X direction coincides with the traveling direction of the crane 10 in the lane L.
  • the Y direction coincides with the traverse direction of the crane 10 in the lane L.
  • Container C constitutes bay B, which is a group of containers arranged along the Y direction and stacked along the Z direction.
  • the container yard 2 is provided with a plurality of bays B arranged along the X direction.
  • Bay B includes, for example, a cargo handling target container group B1 which is a cargo handling target bay of the container C, and adjacent container groups B2 located on both sides of the cargo handling target container group B1 in the X direction.
  • the position where the container C is loaded is virtually set in the three-dimensional space, and the virtual loading position of the container C is defined as the address (X, Y, Z). That is, the container yard 2 has a plurality of addresses (X, Y, Z) predetermined as an area on which the container C can be placed. Of the addresses (X, Y, Z), "X" indicates a bay number, "Y” indicates a row number, and "Z" indicates a tier number.
  • FIG. 3 is a perspective view showing an exemplary crane 10 arranged in the container yard 2.
  • the crane 10 is a container handling crane that handles container C.
  • a tire type gantry crane RMG; Rubber Tired Gantry Crane
  • the crane 10 automatically handles the cargo of the container C arranged in the container yard 2 in the container terminal 1, for example.
  • the crane 10 includes, for example, a pair of legs 11, a crane girder 12 that connects the upper ends of the pair of legs 11, a trolley 13 that can traverse on the crane girder 12, a spreader 14 that handles container C, and wheels. It is provided with a traveling device 15 having the above.
  • the pair of legs 11 and the crane girder 12 have a phylum shape.
  • the crane 10 includes, for example, two sets of a pair of legs 11 and a crane girder 12 having a phylum shape, and the two sets are arranged so as to be arranged along the X direction.
  • the trolley 13 traverses along the Y direction, for example, by driving a traversing motor.
  • the Y direction coincides with the traversing direction of the trolley 13.
  • the trolley 13 has a winding drive unit 16 including a drum that is rotated forward and reverse by a drum drive motor, and suspends the spreader 14 via a suspension member 18 including a wire. From the trolley 13, suspension members 18 extend from two positions arranged in the X direction. The spreader 14 is suspended from the suspension member 18 at two positions arranged in the X direction.
  • the spreader 14 is a hanging tool for suspending the container C.
  • the spreader 14 has, for example, a rectangular shape extending in the X direction.
  • the spreader 14 can lock the container C from above, and handles the cargo of the container C by locking and lifting the container C.
  • the operation of the spreader 14 is controlled by driving the traversing motor and the drum drive motor described above.
  • the drive of the traversing motor and the drum drive motor is controlled by the automatic crane system 100 according to the present embodiment.
  • the crane 10 is provided with a pair of detectors 25 which are components of the detection unit 120.
  • the detector 25 is provided on one leg 11 in the Y direction.
  • the pair of detectors 25 are attached to support portions 21 provided on each of the pair of leg portions 11.
  • Each support portion 21 extends in parallel from each leg portion 11 toward the outside in the X direction.
  • Each detector 25 is provided at the tip of the support portion 21.
  • FIG. 4 is a side view of the container yard 2 as viewed from the Y direction.
  • the leg portion 11 on the side where the detector 25 is provided is shown on the surface side of the paper surface.
  • FIG. 5 is a plan view of the container yard 2 as viewed from above. In the following description, “left” and “right” may be used for explanation, but it means “left” and “right” when the state of FIG. 4 is used as a reference.
  • Adjacent container groups B2 are arranged on the left and right of the cargo handling target container group B1.
  • the container C has a left end Cb and a right end Ca.
  • a gap GP1 is formed between the adjacent container group B2 on the left side and the cargo handling target container group B1.
  • the gap GP1 is formed between the right end Ca of the plurality of containers C of the left adjacent container group B2 and the left end Cb of the plurality of containers C of the cargo handling target container group B1.
  • a gap GP2 is formed between the adjacent container group B2 on the right side and the cargo handling target container group B1.
  • the gap GP2 is formed between the left end Cb of the plurality of containers C of the adjacent container group B2 on the right side and the right end Ca of the plurality of containers C of the cargo handling target container group B1.
  • travel paths 26 for traveling the crane 10 are set on both sides of each container group in the Y-axis direction.
  • a traveling path 27 of the transport carriage 20 is formed between the traveling path 26 and each container group.
  • the detector 25 detects an object in the sensing areas S1 and S2.
  • the detector 25 acquires information for detecting the positional relationship between the container C in the cargo handling target container group B1 and the container C in the adjacent container group B2 as a detection result. It should be noted that how the positional relationship is detected will be described later.
  • the sensing area S1 of the detector 25 on the left side is set at a position including at least the entire area of the gap GP1 in the XZ direction (see FIG. 4) and the entire area in the Y direction (see FIG. 5).
  • the sensing area S2 of the detector 25 on the right side is set at a position including at least the entire area of the gap GP2 in the XZ direction (see FIG.
  • the sensing areas S1 and S2 extend to the position of the ground on the lower side, and extend to a position higher than the upper surface of the uppermost container C on the upper side (see FIG. 4).
  • the sensing areas S1 and S2 extend from the detector 25 to the container C at the farthest position in the Y direction (see FIG. 5).
  • the detector 25 is arranged at a position higher than the upper surface Cc (see FIG. 4) of the container C mounted on the transport carriage 20. Therefore, the sensing areas S1 and S2 can be expanded in the Y direction without being blocked by the container C of the transport carriage 20.
  • the detector 25 may be configured by any kind of device.
  • the detector 25 may be configured by a three-dimensional scanner.
  • a three-dimensional scanner is a detector that can convert the surface shape of an object into data based on coordinates and convert it into a three-dimensional model.
  • the detector 25 may be configured by a three-dimensional camera.
  • a three-dimensional camera is a camera that can acquire not only the position of an object in a captured image on a plane but also the position of depth. When these devices are used, the detector 25 can secure the sensing areas S1 and S2 having a required size without moving from the tip of the support portion 21.
  • the direction of the detector 25 may or may not be changed at the tip of the support portion 21. Further, a mechanism may be provided so that the detector 25 moves in the XZ plane by moving the support portion 21 itself.
  • FIG. 6 is a block diagram showing the configuration and function of the automatic crane system 100 according to the present embodiment.
  • the automatic crane system 100 includes a control device 110.
  • the control device 110 receives the detection result from the detector 25 described above.
  • the control device 110 outputs a control signal to the drive unit 30 and the output unit 31 of the crane 100.
  • the place where the control device 110 is arranged is not limited to that, and may be provided at any position of the crane 10 or may be provided at a position away from the crane 10.
  • the drive unit 30 is a device that generates a driving force for moving the spreader 14 according to a set transport path.
  • the drive unit 30 includes, for example, a winding device for the spreader 14 and a motor for traversing the trolley 13.
  • the output unit 31 is a device that outputs various information.
  • the output unit 31 is composed of, for example, a monitor, a speaker, a warning light, and the like.
  • the control device 110 includes, for example, a processor, a memory, a storage, and a communication interface, and may be configured as a computer (also referred to as an on-board automatic control PC).
  • the processor is an arithmetic unit such as a CPU (Central Processing Unit).
  • the memory is a storage unit such as a ROM (Read Only Memory) or a RAM (Random Access Memory).
  • the storage is a storage unit (storage medium) such as an HDD (Hard Disk Drive).
  • a communication interface is a communication device that realizes data communication.
  • the processor controls the memory, the storage, and the communication interface, and realizes the function as the control device 110 described later.
  • the program stored in the ROM is loaded into the RAM, and the program loaded in the RAM is executed by the CPU to realize various functions.
  • the number of computers constituting the control device 110 may be singular or plural.
  • the control device 110 includes an information processing unit 111, a route setting unit 112, a drive control unit 113, and a warning control unit 114.
  • the information processing unit 111 acquires information on the detection result detected by the detector 25, and based on the calculation result, the positional relationship between the container C in the cargo handling target container group B1 and the container C in the adjacent container group B2. Is detected by calculation. As a result, the detector 25 and the information processing unit 111 configure a detection unit 120 that detects the positional relationship between the container C in the cargo handling target container group B1 and the container C in the adjacent container group B2. Further, the information processing unit 111 determines whether or not the safety response process should be performed based on the positional relationship between the container C in the cargo handling target container group B1 and the container C in the adjacent container group B2. For example, as shown in FIG.
  • the information processing unit 111 can calculate the degree of proximity of the container C in the cargo handling target container group B1 and the container C in the adjacent container group B2 in the X-axis direction in order to detect the above-mentioned deviation E and the like. .. How the information processing unit 111 calculates the degree of proximity and how to determine it is not limited to profit.
  • the information processing unit 111 may detect the presence of a container C that protrudes more toward the cargo handling target container group B1 than the other containers C among the plurality of containers C of the adjacent container group B2. Specifically, the information processing unit 111 acquires the position of the right end Ca of each container C of the adjacent container group B2 in the sensing area S1. The information processing unit 111 detects the container C having the end Ca when there is an end Ca protruding to the right side as compared with the end Ca of the other container C. The information processing unit 111 determines whether or not the detected protrusion amount of the container C to the right side is equal to or greater than a predetermined threshold value.
  • the information processing unit 111 has an X-axis between the rightmost end Ca of the adjacent container group B2 and the leftmost end Cb of the cargo handling target container group B1 in the gap GP1. Calculate the separation distance in the direction. The information processing unit 111 determines whether or not the separation distance is equal to or less than a predetermined threshold value. In the sensing area S2, the same calculation as in the sensing area S1 is performed except that the left and right sides are reversed.
  • the route setting unit 112 sets the transfer route of the container C by the spreader 14 of the crane 10.
  • H1 shown in FIG. 7A shows a transport route when the container C mounted on the transport carriage 20 is transferred to the storage area in a normal time (when safety response processing does not need to be performed).
  • H2 shown in FIG. 7B shows a transport route when the container C in the storage area is transferred to the transport trolley 20 in a normal time.
  • the route setting unit 112 transports the container C in the direction away from the transport trolley 20, the route setting unit 112 transports the container C according to the storage status of the container C of the cargo handling target container group B1.
  • FIG. 7A is an example of transporting the container C on the transport carriage 20 to the storage area.
  • the route setting unit 112 is a transport route H1 (hereinafter, an optimum route) that transfers a position higher by a predetermined distance from the highest height of the containers C stored in each of the plurality of rows R in the cargo handling target container group B1. (Sometimes referred to as) is set.
  • the route setting unit 112 may also set the transport route H2, which is the optimum route, even when the container is transported from the cargo handling target container group B1 and transferred to the transport carriage 20.
  • the route setting unit 112 sets the corner portion between the vertical transport path of the container C and the horizontal transport path within a range that does not collide with the stored container C. It may be curved.
  • the route setting unit 112 sets the container in the adjacent container group B2 as a safety response process.
  • the transport route of the container C is set so as to avoid the collision with C.
  • the route setting unit 112 may set a safety route defined so that the container C moves at a predetermined maximum height as a transport route of the container C. Specifically, as shown in FIG. 8, the route setting unit 112 is conveyed so as to exceed the maximum height M of the container C of the cargo handling target container group B1 regardless of the actual storage status of the cargo handling target container group B1.
  • the route H3 may be set.
  • the route setting unit 112 sets the transport route H3 higher than the container C of the actual cargo handling target container group B1.
  • the transport path H3 that exceeds the maximum height M of the container C of the cargo handling target container group B1 may be referred to as a safety route.
  • the route setting unit 112 will be a container in the adjacent container group B2.
  • An optimum route may be set as a transport route for avoiding a collision with C. For example, in FIG. 7B, when the container C of the adjacent container group B2 protrudes at the position corresponding to the container C indicated by “CX”, the protruding container C moves the container C related to transportation. It will be on the opposite side of the direction. In this case, since the collision between the two does not occur, the route setting unit 112 may set the transport route H2 related to the optimum route.
  • the drive control unit 113 controls the drive unit 30 so that the spreader 14 moves according to the transport path set by the route setting unit 112.
  • the drive control unit 113 controls the spreader 14 to move according to a predetermined transfer path by transmitting a control signal to each device such as a motor constituting the drive unit 30.
  • the warning control unit 114 controls the output unit 31 to give a warning to the user when it is necessary to perform safety response processing. For example, when the warning control unit 114 has a container C protruding toward the cargo handling target container group B1 in the adjacent container group B2, the container C exists (the deviation in the adjacent container group B2). The output unit 31 warns that it exists). It should be noted that the output unit 31 may give a warning at the same time as carrying out the transportation along the safety route as shown in FIG. 8, and when the warning is given by the output unit 31, the movement of the spreader 14 is stopped to correct the deviation. The spreader 14 may be controlled so as to perform such an operation.
  • FIG. 9 is a flowchart showing each exemplary process of the control method of the automatic crane system according to the present embodiment.
  • the control method of the automatic crane system according to the present embodiment is performed using the automatic crane system 100.
  • the process shown in FIG. 9 is executed when the container C from the cargo handling target container group B1 is to be transported.
  • the information processing unit 111 acquires the detection result from the detector 25 (step S1: detection step). Next, the information processing unit 111 detects by calculating the positional relationship between the container C in the cargo handling target container group B1 and the container C in the adjacent container group B2 (step S2: detection step). Next, the information processing unit 111 determines the existence of the container C protruding toward the cargo handling target container group B1 in the adjacent container group B2 based on the calculation result in step S2, and determines the necessity of the safety response process. (Step S3).
  • the route setting unit 112 sets the optimum route (see FIG. 7) as the transport route (step S4).
  • the route setting unit 112 sets the safety route (see FIG. 8) as the transport route (step S5).
  • the crane 10 holds the container C of the cargo handling target container group B1.
  • the detection unit 120 detects the positional relationship between the container C in the cargo handling target container group B1 which is the cargo handling target and the container C in the adjacent container group B2 adjacent to the cargo handling target container group B1. Therefore, the detection unit 120 can detect the container C that may collide when the container C of the cargo handling target container group B1 is conveyed in the adjacent container group B2.
  • the control device 110 can adjust the transport path, output a warning, and avoid collisions between the containers C. From the above, the safety of transporting the container C can be enhanced.
  • the detector 25 of the detection unit 120 may be arranged at a position higher than the upper surface Cc of the container C mounted on the transport carriage 20. In this case, it is possible to prevent the detection of the detector 25 from being blocked by the container C mounted on the transport carriage 20.
  • the detection unit 120 may have a three-dimensional scanner as the detector 25. In this case, the detection range (sensing areas S1 and S2) of the detection unit 120 can be widened.
  • the detection unit 120 may have a three-dimensional camera as the detector 25. In this case, the detection unit 120 can acquire the position of the depth of the container within the detection range.
  • the control device 110 avoids the collision with the container C in the adjacent container group B2. May set the transport route of the container C. In this case, the crane 10 can convey the container C while avoiding a collision and ensuring safety.
  • the control device 110 determines that the container C moves a predetermined maximum height.
  • the safety route provided may be set as the transport route of the container C. In this case, regardless of the position of the container C that may collide, the crane 10 moves the container C at the maximum height to transport the container C in a state where the collision is avoided. Can be done.
  • the control method of the automatic crane system 100 is a control method of the automatic crane system 100 for transporting the container C in a plurality of container groups arranged in the container yard 2 by the crane 10, and is a cargo handling target container which is a cargo handling target.
  • the present invention is not limited to the above-described embodiment.
  • the detector 25 has a configuration that can handle only a container C having a single length.
  • the detection unit 120 may be able to set a detection range of a plurality of stages corresponding to the containers C having a plurality of lengths. In this case, even if the length of the container C is changed, the detection unit 120 can detect the container C having the changed length as well.
  • a pair of detectors 125 may be further provided at the position of the root portion of the support portion 21.
  • the detector 25 at the tip of the support portion 21 detects the state of the gaps GP1 and GP2 between the containers, and when handling a 20-foot container C, the support portion.
  • the state of the gap between the containers may be detected by the detector 125 at the base of the container.
  • the method of setting the detection range of a plurality of stages corresponding to the containers C having a plurality of lengths in the detection unit 120 is not limited to the method of increasing the number of detectors.
  • the detection unit 120 may move the detector 25 in the X direction to adjust the positions of the sensing areas S1 and S2 according to the containers C having different lengths.
  • the type of crane 10 is not limited to the RTG crane, and a type of crane such as RMGC may be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

自動クレーンシステムは、コンテナヤードに並ぶ複数のコンテナ群におけるコンテナの搬送を行うクレーンと、荷役対象である荷役対象コンテナ群におけるコンテナと、荷役対象コンテナ群に隣接する隣接コンテナ群におけるコンテナとの位置関係を検出する検出部と、検出部の検出結果に基づいて、クレーンを制御する制御装置と、を備える。

Description

自動クレーンシステム、及び自動クレーンシステムの制御方法
 本開示は、自動クレーンシステム、及び自動クレーンシステムの制御方法に関する。
 特許文献1には、コンテナヤードにおけるコンテナの搬送作業の一部を自動化することが記載されている。
特開2004-123367号公報
 自動運転においては、搬送するコンテナが荷役対象のコンテナ以外のものに干渉することを確実に回避することが求められる。
 本開示は、コンテナの搬送の安全性を高めることができる自動クレーンシステム、及び自動クレーンシステムの制御方法を提供することを目的とする。
 本開示の一側面に係る自動クレーンシステムは、コンテナヤードに並ぶ複数のコンテナ群におけるコンテナの搬送を行うクレーンと、荷役対象である荷役対象コンテナ群におけるコンテナと、荷役対象コンテナ群に隣接する隣接コンテナ群におけるコンテナとの位置関係を検出する検出部と、検出部の検出結果に基づいて、クレーンを制御する制御装置と、を備える。
 例えば隣接コンテナ群の中に、ずれなどによって、荷役対象コンテナ群側に突出するようなコンテナが存在している場合、クレーンが荷役対象コンテナ群のコンテナを搬送する時に、搬送しているコンテナが、当該突出したコンテナと衝突する可能性がある。これに対し、検出部は、荷役対象である荷役対象コンテナ群におけるコンテナと、荷役対象コンテナ群に隣接する隣接コンテナ群におけるコンテナとの位置関係を検出する。従って、検出部は、隣接コンテナ群において、荷役対象コンテナ群のコンテナを搬送するときに、衝突の可能性があるコンテナを検出することができる。制御装置は、検出部の検出結果に応じてクレーンを制御することで、搬送経路を調整したり、警告を出力するなどして、コンテナ同士の衝突を回避することができる。以上より、コンテナの搬送の安全性を高めることができる。
 検出部は、搬送台車に載置されたコンテナの上面よりも高い位置に配置されてよい。この場合、検出部の検出が、搬送台車に載置されたコンテナによって遮断されることを抑制できる。
 検出部は、複数の長さのコンテナに対応して、複数段階の検出範囲を設定可能であってよい。この場合、コンテナの長さが変更された場合であっても、検出部は、変更後の長さのコンテナについても、検出を行うことができる。
 検出部は、三次元スキャナを有してよい。この場合、検出部の検出範囲を広くすることができる。
 検出部は、三次元カメラを有してよい。この場合、検出部は、検出範囲内のコンテナの奥行きの位置を取得することができる。
 検出部によって、荷役対象コンテナ群におけるコンテナと、隣接コンテナ群におけるコンテナとの近接が検出された場合、制御装置は、隣接コンテナ群におけるコンテナとの衝突を回避するように、コンテナの搬送経路を設定してよい。この場合、クレーンは、衝突を回避して安全性を確保しながらコンテナを搬送することができる。
 検出部によって、荷役対象コンテナ群におけるコンテナと、隣接コンテナ群におけるコンテナとの近接が検出された場合、制御装置は、コンテナが所定の最大高さを移動するように定められた安全経路をコンテナの搬送経路として設定してよい。この場合、衝突の可能性のあるコンテナがどの位置に存在していたとしても、クレーンは、最大高さでコンテナを移動させることで、衝突を回避した状態でコンテナを搬送することができる。
 本開示の一側面に係る自動クレーンシステムの制御方法は、コンテナヤードに並ぶ複数のコンテナ群におけるコンテナをクレーンで搬送する自動クレーンシステムの制御方法であって、荷役対象である荷役対象コンテナ群におけるコンテナと、荷役対象コンテナ群に隣接する隣接コンテナ群におけるコンテナとの位置関係を検出する検出工程と、検出工程での検出結果に基づいて、クレーンを制御する制御工程と、を備える。
 この自動クレーンシステムの制御方法によれば、上述の自動クレーンシステムと同趣旨の作用・効果を得ることができる。
 本開示によれば、コンテナの搬送の安全性を高めることができる。
実施形態に係る自動クレーンシステム及び自動クレーンシステムの制御方法が適用される例示的なコンテナターミナルを示す平面図である。 搬送台車の走行方向に沿って並ぶ荷役対象コンテナ群及び隣接コンテナ群の例を示す斜視図である。 例示的なクレーンを示す斜視図である。 コンテナヤードをY方向から見た側面図である。 コンテナヤードを上方から見た平面図である。 本実施形態に係る自動クレーンシステムの構成及び機能を示すブロック図である。 搬送経路の一例を示す概念図である。 搬送経路の一例を示す概念図である。 実施形態に係る自動クレーンシステムの制御方法の各工程の例を示すフローチャートである。
 以下では、図面を参照しながら本発明を実施する形態について説明する。図面の説明において、同一又は相当する要素には同一の符号を付し、重複する説明を適宜省略する。また、図面は、説明の容易のため、一部を簡略化又は誇張して描いている場合があり、寸法比率等は図面に記載のものに限定されない。
 図1は、本発明が適用される例示的なコンテナターミナル1を示す平面図である。図1に示されるように、コンテナターミナル1には、コンテナCが配置されるコンテナヤード2と、接岸したコンテナ船に対してコンテナCの移載を行う複数のガントリクレーン3と、コンテナヤード2に配置されてコンテナCの荷役を行う複数のクレーン10と、複数のクレーン10の遠隔操作が可能な遠隔操作室5とが設けられる。
 図2は、コンテナヤード2のコンテナC及び例示的な搬送台車20を示す斜視図である。搬送台車20は、例えばトラック、貨車、トレーラ又はAGV(Automated Guide Vehicle:自動搬送台車)等である。図1及び図2に示されるように、コンテナヤード2には、複数のコンテナが蔵置される蔵置エリアと、搬送台車20の走行路(トラックレーン)が敷設されている。クレーン10は、所定の位置に停止した搬送台車20からコンテナCを取得してコンテナCをコンテナヤード2の所定の番地に載置する。また、クレーン10は、コンテナヤード2に配置されているコンテナCを取得してコンテナCを搬送台車20に移載し、搬送台車20はコンテナCを搬出する。
 一例として、コンテナCは、ISO規格のコンテナである。コンテナCは、長尺の直方体状を呈し、例えば、コンテナCの長手方向の長さは20フィート以上且つ45フィート以下である。コンテナCの高さは、例えば、8.5フィート以上且つ9.5フィート以下である。コンテナCは、コンテナヤード2に一段又は複数段積み上げられる。コンテナCが配置されている段数は、ティアとよばれることがある。
 図1に示すように、コンテナヤード2は、コンテナCが配置される複数のレーンLを備え、複数のクレーン10が配置される。クレーン10は、例えば、レーンLごとにクレーン10が配置されている。レーンLに配置されるクレーン10の台数は、1台であってもよいし、複数台であってもよい。
 図2に示すように、コンテナCは、コンテナヤード2に一段又は複数段積み上げられて複数のロウRを形成している。ロウRの数は、一例として、6である。各ロウRは、当該ロウRを構成するコンテナC(すなわち、当該ロウRに載置されるコンテナC)の長手方向が他のロウRを構成するコンテナCの長手方向に対して平行となるように、整列されている。
 コンテナヤード2に整列配置されたコンテナCの長手方向をX方向、コンテナCの短手方向をY方向、コンテナCの高さ方向をZ方向、とする。このとき、コンテナヤード2はXY平面上に延在しており、コンテナCは、例えば、当該XY平面上のいずれかの位置においてZ方向に積み上げられる。X方向はレーンLにおけるクレーン10の走行方向に一致する。Y方向は、レーンLにおけるクレーン10の横行方向に一致する。
 コンテナCは、Y方向に沿って並ぶと共にZ方向に沿って積み上げられる複数のコンテナ群であるベイBを構成する。コンテナヤード2には、X方向に沿って並ぶ複数のベイBが設けられる。ベイBは、例えば、コンテナCの荷役対象とされる荷役対象ベイである荷役対象コンテナ群B1、及び荷役対象コンテナ群B1のX方向の両側のそれぞれに位置する隣接コンテナ群B2を含んでいる。
 コンテナヤード2においては、コンテナCを積み付ける位置が三次元空間に仮想的に設定されており、このコンテナCの仮想的な積み付け位置は番地(X,Y,Z)として定義される。すなわち、コンテナヤード2は、コンテナCを載置可能な領域として予め定められた複数の番地(X,Y,Z)を有する。番地(X,Y,Z)のうち、「X」はベイ番号、「Y」はロウ番号、「Z」はティア番号を示している。
 図3は、コンテナヤード2に配置された例示的なクレーン10を示す斜視図である。図3に示されるように、クレーン10は、コンテナCを荷役するコンテナ取り扱いクレーンである。本実施形態では、クレーン10として、タイヤ式ガントリークレーン(RTG;Rubber Tired Gantry Crane)が例示されている。クレーン10は、例えば、コンテナターミナル1においてコンテナヤード2に配置されたコンテナCの荷役を自動で行う。
 クレーン10は、例えば、一対の脚部11と、一対の脚部11の上端同士を繋ぐクレーンガーダ12と、クレーンガーダ12上を横行可能なトロリ13と、コンテナCを荷役するスプレッダ14と、車輪を有する走行装置15とを備える。一対の脚部11及びクレーンガーダ12は、門形を呈する。クレーン10は、例えば、門形を呈する一対の脚部11及びクレーンガーダ12の組を2つ備え、2つの当該組がX方向に沿って並ぶように配置される。
 トロリ13は、例えば、横行モータの駆動によってY方向に沿って横行する。本実施形態において、Y方向はトロリ13の横行方向に一致する。一例として、トロリ13は、ドラム駆動モータにより正逆回転するドラムを含む巻駆動部16を有し、ワイヤを含む吊部材18を介してスプレッダ14を吊り下げている。トロリ13からは、X方向に並ぶ2箇所の位置から吊部材18が延びている。スプレッダ14はX方向に並ぶ2箇所の位置において吊部材18に吊られている。
 スプレッダ14は、コンテナCを吊り下げる吊具である。スプレッダ14は、例えば、X方向に延びる矩形状を呈する。スプレッダ14は、コンテナCを上方から係止可能であり、コンテナCを係止して吊り上げることによってコンテナCの荷役を行う。例えば、スプレッダ14の動作は、前述した横行モータ及びドラム駆動モータの駆動によって制御される。当該横行モータ及びドラム駆動モータの駆動は本実施形態に係る自動クレーンシステム100によって制御される。
 クレーン10には、検出部120の構成要素である一対の検出器25が設けられている。検出器25は、Y方向における一方側の脚部11に設けられる。一対の検出器25は、一対の脚部11のそれぞれに設けられた支持部21に取り付けられている。各支持部21は、各脚部11からX方向における外側へ向かって平行に延びている。各検出器25は、支持部21の先端部に設けられる。
 次に、図4及び図5を参照して、検出器25の検出範囲について説明する。図4は、コンテナヤード2をY方向から見た側面図である。図4は、検出器25が設けられる側の脚部11が紙面の表面側に示される。図5は、コンテナヤード2を上方から見た平面図である。なお、以降の説明において、「左」「右」を用いて説明を行う場合があるが、図4の状態を基準としたときの「左」「右」を意味するものとする。
 荷役対象コンテナ群B1の左右には、隣接コンテナ群B2が配置されている。コンテナCは、左側の端部Cbと、右側の端部Caと、を有する。左側の隣接コンテナ群B2と荷役対象コンテナ群B1との間には隙間GP1が形成される。隙間GP1は、左側の隣接コンテナ群B2の複数のコンテナCの右側の端部Caと、荷役対象コンテナ群B1の複数のコンテナCの左側の端部Cbとの間に形成される。右側の隣接コンテナ群B2と荷役対象コンテナ群B1との間には隙間GP2が形成される。隙間GP2は、右側の隣接コンテナ群B2の複数のコンテナCの左側の端部Cbと、荷役対象コンテナ群B1の複数のコンテナCの右側の端部Caとの間に形成される。なお、図5に示すように、各コンテナ群のY軸方向の両側には、クレーン10が走行するための走行路26が設定される。検出器25側では、走行路26と各コンテナ群との間には、搬送台車20(図4参照)の走行路27が形成される。
 検出器25は、センシングエリアS1,S2内の物体を検出する。本実施形態では、検出器25は、荷役対象コンテナ群B1におけるコンテナCと、隣接コンテナ群B2におけるコンテナCとの位置関係を検出するための情報を検出結果として取得する。なお、当該位置関係がどのように検出されるかについては、後述する。左側の検出器25のセンシングエリアS1は、少なくとも隙間GP1のXZ方向における全域(図4参照)、Y方向における全域(図5参照)を含む位置に設定される。右側の検出器25のセンシングエリアS2は、少なくとも隙間GP2のXZ方向における全域(図4参照)、Y方向における全域(図5参照)を含む位置に設定される。すなわち、センシングエリアS1,S2は、下側では地面の位置まで及んでおり、上側では最上段のコンテナCの上面よりも高い位置まで及んでいる(図4参照)。センシングエリアS1,S2は、検出器25からY方向において最も遠い位置のコンテナCまで及んでいる(図5参照)。
 検出器25は、搬送台車20に載置されたコンテナCの上面Cc(図4参照)よりも高い位置に配置される。そのため、センシングエリアS1,S2は、搬送台車20のコンテナCに遮断されることなく、Y方向へ広がることができる。
 検出器25は、どのような種類の機器によって構成されてもよい。例えば、検出器25は、三次元スキャナによって構成されてよい。三次元スキャナは、物体の表面形状を座標に基づいてデータ化して、三次元モデルに変換することができる検出器である。あるいは、検出器25は、三次元カメラによって構成されてよい。三次元カメラは、撮影した画像中の物体の平面上の位置のみならず奥行きの位置まで取得できるカメラである。これらの機器を用いた場合、検出器25は、支持部21の先端部から移動することなく、必要な広さのセンシングエリアS1,S2を確保することができる。なお、検出器25は、支持部21の先端部で向きを変更可能であってもよいし、向きを変えなくともよい。また、支持部21自体が移動することによって、検出器25がXZ平面内で移動するような機構を設けてもよい。
 次に、図6を参照して、本実施形態に係る自動クレーンシステム100のブロック構成について説明する。図6は、本実施形態に係る自動クレーンシステム100の構成及び機能を示すブロック図である。図6に示すように、自動クレーンシステム100は、制御装置110を備える。制御装置110は、前述の検出器25からの検出結果を受信する。制御装置110は、クレーン100の駆動部30、及び出力部31へ制御信号を出力する。なお、制御装置110が配置される場所は得に限定されず、クレーン10の何れかの位置に設けられてもよいし、クレーン10から離れた位置に設けられてもよい。
 駆動部30は、スプレッダ14を設定した搬送経路に従って移動させるための駆動力を発生する機器である。駆動部30は、例えばスプレッダ14の巻上げ装置やトロリ13の横行用のモータなどを含んでいる。出力部31は、各種情報を出力する機器である。出力部31は、例えば、モニタ、スピーカ、警告灯などによって構成される。
 制御装置110は、例えば、プロセッサ、メモリ、ストレージ及び通信インタフェースを備え、コンピュータ(機上自動制御PCとも称される)として構成されていてもよい。プロセッサは、CPU(Central Processing Unit)等の演算器である。メモリは、ROM(Read Only Memory)又はRAM(Random Access Memory)等の記憶部である。ストレージは、HDD(Hard Disk Drive)等の記憶部(記憶媒体)である。通信インタフェースは、データ通信を実現する通信機器である。プロセッサは、メモリ、ストレージ及び通信インタフェースを制御し、後述する制御装置110としての機能を実現する。制御装置110では、例えば、ROMに記憶されているプログラムをRAMにロードし、RAMにロードされたプログラムをCPUで実行することにより各種機能を実現する。制御装置110を構成するコンピュータの数は、単数であってもよいし、複数であってもよい。
 制御装置110は、情報処理部111と、経路設定部112と、駆動制御部113と、警告制御部114と、を備える。
 情報処理部111は、検出器25で検出された検出結果に関する情報を取得すると共に、当該演算結果に基づいて、荷役対象コンテナ群B1におけるコンテナCと、隣接コンテナ群B2におけるコンテナCとの位置関係を演算によって検出する。これにより、検出器25、及び情報処理部111によって、荷役対象コンテナ群B1におけるコンテナCと、隣接コンテナ群B2におけるコンテナCとの位置関係を検出する検出部120が構成される。また、情報処理部111は、荷役対象コンテナ群B1におけるコンテナCと、隣接コンテナ群B2におけるコンテナCとの位置関係に基づいて、安全対応処理を行うべきか否かを判定する。例えば図2に示されるように、隣接コンテナ群B2に蔵置されているコンテナCにおいてX方向へのずれEが生じていた場合、荷役対象コンテナ群B1からコンテナCを搬送する際に、隣接コンテナ群B2のずれEの部分にコンテナCが干渉し、搬送台車20の上にコンテナCが落下する可能性が生じる。そのため、情報処理部111は、前述のずれEなどを検出するために、荷役対象コンテナ群B1におけるコンテナCと、隣接コンテナ群B2におけるコンテナCとのX軸方向における近接度合いを演算することができる。情報処理部111が、当該近接度合いをどのようにして演算し、どのように判定するかは得に限定されない。
 例えば、情報処理部111は、隣接コンテナ群B2の複数のコンテナCの中で、他のコンテナCよりも荷役対象コンテナ群B1側に大きく突出しているコンテナCの存在を検出してよい。具体的に、情報処理部111は、センシングエリアS1のうち、隣接コンテナ群B2の各コンテナCの右側の端部Caの位置を取得する。情報処理部111は、他のコンテナCの端部Caに比して、右側へ大きく突出する端部Caが存在する場合、当該端部Caを有するコンテナCを検出する。情報処理部111は、検出したコンテナCの右側への突出量が所定の閾値以上であるか否かを判定する。あるいは、情報処理部111は、隙間GP1のうち、隣接コンテナ群B2のうち最も右側に位置する端部Caと、荷役対象コンテナ群B1のうち最も左側に位置する端部Cbとの間のX軸方向の離間距離を演算する。情報処理部111は、当該離間距離が所定の閾値以下であるか否かを判定する。なお、センシングエリアS2では、左右が逆であること以外は、センシングエリアS1と同様な演算が行われる。
 経路設定部112は、クレーン10のスプレッダ14によるコンテナCの移送経路を設定する。図7(a)に示すH1は、通常時(安全対応処理を行わなくてよい時)において、搬送台車20に搭載されたコンテナCを蔵置エリアに移載する際の搬送経路を示している。図7(b)に示すH2は、通常時において、蔵置エリアのコンテナCを搬送台車20に移載する際の搬送経路を示している。
 図7(a)に示されるように、経路設定部112は、搬送台車20から離れる方向に向かってコンテナCを搬送する場合には、荷役対象コンテナ群B1のコンテナCの蔵置状況に応じて搬送経路H1を設定する。図7(a)は、搬送台車20上のコンテナCを蔵置エリアに搬送する例である。経路設定部112は、荷役対象コンテナ群B1における複数のロウRのそれぞれに蔵置されたコンテナCの高さのうち最も高い高さから所定距離高い位置を移送する搬送経路H1(以下では、最適経路と称することもある)を設定する。経路設定部112は、荷役対象コンテナ群B1からコンテナを搬送して搬送台車20へ移載する場合にも、最適経路である搬送経路H2を設定してよい。なお、経路設定部112は、最適経路を設定する場合、コンテナCの上下方向への搬送経路と、水平方向への搬送経路との間のコーナー部分を、蔵置されたコンテナCと衝突しない範囲で湾曲させてよい。
 一方、検出部120によって、荷役対象コンテナ群B1におけるコンテナCと、隣接コンテナ群B2におけるコンテナCとの近接が検出された場合、経路設定部112は、安全対応処理として、隣接コンテナ群B2におけるコンテナCとの衝突を回避するように、コンテナCの搬送経路を設定する。例えば、経路設定部112は、コンテナCが所定の最大高さを移動するように定められた安全経路をコンテナCの搬送経路として設定してよい。具体的に、図8に示されるように、経路設定部112は、実際の荷役対象コンテナ群B1の蔵置状況にかかわらず、荷役対象コンテナ群B1のコンテナCの最大高さMを超えるように搬送経路H3を設定してもよい。すなわち、搬送台車20側へコンテナCを搬送するときに、経路設定部112は、実際の荷役対象コンテナ群B1のコンテナCよりも高い搬送経路H3を設定する。このような経路にすることで、上述の搬送台車20の上にコンテナCが落下する可能性を回避することができる。荷役対象コンテナ群B1のコンテナCの最大高さMを超えるような搬送経路H3を安全経路と呼ぶことがある。
 なお、安全対応処理の場合であっても、荷役対象コンテナ群B1側に突出しているコンテナCが、搬送経路から離れた位置に存在してる場合、経路設定部112は、隣接コンテナ群B2におけるコンテナCとの衝突を回避するための搬送経路として、最適経路を設定してよい。例えば、図7(b)において、「CX」で示すコンテナCと対応する位置にて、隣接コンテナ群B2のコンテナCが突出している場合、当該突出したコンテナCは、搬送に係るコンテナCが移動する方向とは逆側に存在することになる。この場合、両者の衝突は起こらないため、経路設定部112は、最適経路に係る搬送経路H2を設定してよい。
 駆動制御部113は、経路設定部112により設定された搬送経路に従いスプレッダ14が移動するように駆動部30を制御する。駆動制御部113は、駆動部30を構成するモータ等の各機器に対して、制御信号を送信することで、スプレッダ14が、予め定めた搬送経路に従って移動するように制御する。
 警告制御部114は、安全対応処理を行う必要がある場合に、出力部31を制御して、ユーザーに対して警告を行う。例えば、警告制御部114は、隣接コンテナ群B2において荷役対象コンテナ群B1側に突出しているコンテナCが存在している場合、当該コンテナCが存在していること(隣接コンテナ群B2にてずれが存在している事)を出力部31にて警告する。なお、図8のような安全経路での搬送を行うと同時に出力部31で警告を行ってもよいし、出力部31で警告を行った場合はスプレッダ14の移動を停止し、ずれを修正するような動作を行うようにスプレッダ14の制御がなされてもよい。
 次に、本実施形態に係る自動クレーンシステムの制御方法の例について説明する。図9は、本実施形態に係る自動クレーンシステムの制御方法の例示的な各工程を示すフローチャートである。一例として、本実施形態に係る自動クレーンシステムの制御方法は、自動クレーンシステム100を用いて行われる。図9に示す処理は、荷役対象コンテナ群B1からあるコンテナCを搬送しようとする場合に実行される。
 まず、情報処理部111は、検出器25からの検出結果を取得する(ステップS1:検出工程)。次に、情報処理部111は、荷役対象コンテナ群B1におけるコンテナCと、隣接コンテナ群B2におけるコンテナCとの位置関係を演算することで検出する(ステップS2:検出工程)。次に、情報処理部111は、ステップS2での演算結果に基づいて、隣接コンテナ群B2に荷役対象コンテナ群B1側に突出するコンテナCの存在を判定して、安全対応処理の要否を判定する(ステップS3)。
 情報処理部111が、安全対応処理は不要と判定した場合(ステップS3でYES)、経路設定部112は、最適経路(図7参照)を搬送経路として設定する(ステップS4)。一方、情報処理部111が、安全対応処理が必要と判定した場合(ステップS3でNO)、経路設定部112は、安全経路(図8参照)を搬送経路として設定する(ステップS5)。ステップS4,S5の何れかの処理が終了すると、スプレッダ14が設定された搬送経路に従って移動すると共に、搬送台車20へコンテナCを移載する。そして、次のコンテナCを搬送するときに、再びステップS1から処理が再開される。なお、ステップS1~S3の処理は、コンテナCを搬送する時に、毎回実行されてもよいし、新たな荷役対象コンテナ群B1からコンテナCを搬送する時に、初回のみ実行されてよい。
 次に、本実施形態に係る自動クレーンシステム100、及び自動クレーンシステム100の制御方法の作用・効果について説明する。
 例えば隣接コンテナ群B2の中に、ずれEによって、荷役対象コンテナ群B1側に突出するようなコンテナCが存在している場合(図2参照)、クレーン10が荷役対象コンテナ群B1のコンテナCを搬送する時に、搬送しているコンテナCが当該突出したコンテナCと衝突する可能性がある。これに対し、検出部120は、荷役対象である荷役対象コンテナ群B1におけるコンテナCと、荷役対象コンテナ群B1に隣接する隣接コンテナ群B2におけるコンテナCとの位置関係を検出する。従って、検出部120は、隣接コンテナ群B2において、荷役対象コンテナ群B1のコンテナCを搬送するときに、衝突の可能性があるコンテナCを検出することができる。制御装置110は、検出部120の検出結果に応じてクレーン10を制御することで、搬送経路を調整したり、警告を出力するなどして、コンテナC同士の衝突を回避することができる。以上より、コンテナCの搬送の安全性を高めることができる。
 検出部120の検出器25は、搬送台車20に載置されたコンテナCの上面Ccよりも高い位置に配置されてよい。この場合、検出器25の検出が、搬送台車20に載置されたコンテナCによって遮断されることを抑制できる。
 検出部120は、検出器25として三次元スキャナを有してよい。この場合、検出部120の検出範囲(センシングエリアS1,S2)を広くすることができる。
 検出部120は、検出器25として三次元カメラを有してよい。この場合、検出部120は、検出範囲内のコンテナの奥行きの位置を取得することができる。
 検出部120によって、荷役対象コンテナ群B1におけるコンテナCと、隣接コンテナ群B2におけるコンテナCとの近接が検出された場合、制御装置110は、隣接コンテナ群B2におけるコンテナCとの衝突を回避するように、コンテナCの搬送経路を設定してよい。この場合、クレーン10は、衝突を回避して安全性を確保しながらコンテナCを搬送することができる。
 検出部120によって、荷役対象コンテナ群B1におけるコンテナCと、隣接コンテナ群B2におけるコンテナCとの近接が検出された場合、制御装置110は、コンテナCが所定の最大高さを移動するように定められた安全経路をコンテナCの搬送経路として設定してよい。この場合、衝突の可能性のあるコンテナCがどの位置に存在していたとしても、クレーン10は、最大高さでコンテナCを移動させることで、衝突を回避した状態でコンテナCを搬送することができる。
 本実施形態に係る自動クレーンシステム100の制御方法は、コンテナヤード2に並ぶ複数のコンテナ群におけるコンテナCをクレーン10で搬送する自動クレーンシステム100の制御方法であって、荷役対象である荷役対象コンテナ群B1におけるコンテナCと、荷役対象コンテナ群B1に隣接する隣接コンテナ群B2におけるコンテナCとの位置関係を検出する検出工程と、検出工程での検出結果に基づいて、クレーンを制御する制御工程と、を備える。
 この自動クレーンシステム100の制御方法によれば、上述の自動クレーンシステム100と同趣旨の作用・効果を得ることができる。
 本発明は、上述の実施形態に限定されるものではない。
 例えば、上述の実施形態に係る自動クレーンシステム100では、検出器25が、単一の長さのコンテナCにしか対応できない構成となっていた。これに変えて、検出部120は、複数の長さのコンテナCに対応して、複数段階の検出範囲を設定可能であってよい。この場合、コンテナCの長さが変更された場合であっても、検出部120は、変更後の長さのコンテナCについても、検出を行うことができる。例えば、図4において、二点鎖線で示すように、支持部21の付根部の位置に、一対の検出器125を更に設けてもよい。例えば、40フィートのコンテナCを取り扱う場合には、支持部21の先端の検出器25によって、コンテナ間の隙間GP1,GP2の様子を検出し、20フィートのコンテナCを取り扱う場合には、支持部の付根部の検出器125によって、コンテナ間の隙間の様子を検出してよい。なお、検出部120は、複数の長さのコンテナCに対応して、複数段階の検出範囲を設定する方法は、検出器の数を増やす方法に限定されない。例えば、検出部120は、検出器25をX方向に移動させて、センシングエリアS1,S2の位置を、長さの異なるコンテナCに合わせて調整してよい。
 なお、クレーン10の種類は、RTGクレーンに限定されず、RMGCなどの種類のクレーンが採用されてもよい。
 2…コンテナヤード、10…クレーン、20…搬送台車、25,125…検出器、100…自動クレーンシステム、110…制御装置、120…検出部、B1…荷役対象コンテナ群、B2…隣接コンテナ群、C…コンテナ。

Claims (8)

  1.  コンテナヤードに並ぶ複数のコンテナ群におけるコンテナの搬送を行うクレーンと、
     荷役対象である荷役対象コンテナ群におけるコンテナと、前記荷役対象コンテナ群に隣接する隣接コンテナ群におけるコンテナとの位置関係を検出する検出部と、
     前記検出部の検出結果に基づいて、前記クレーンを制御する制御装置と、を備える、自動クレーンシステム。
  2.  前記検出部は、搬送台車に載置されたコンテナの上面よりも高い位置に配置される、請求項1に記載の自動クレーンシステム。
  3.  前記検出部は、複数の長さのコンテナに対応して、複数段階の検出範囲を設定可能である、請求項1又は2に記載の自動クレーンシステム。
  4.  前記検出部は、三次元スキャナを有する、請求項1~3の何れか一項に記載の自動クレーンシステム。
  5.  前記検出部は、三次元カメラを有する、請求項1~3の何れか一項に記載の自動クレーンシステム。
  6.  前記検出部によって、前記荷役対象コンテナ群におけるコンテナと、前記隣接コンテナ群におけるコンテナとの近接が検出された場合、
     前記制御装置は、前記隣接コンテナ群における前記コンテナとの衝突を回避するように、前記コンテナの搬送経路を設定する、請求項1~5の何れか一項に記載の自動クレーンシステム。
  7.  前記検出部によって、前記荷役対象コンテナ群におけるコンテナと、前記隣接コンテナ群におけるコンテナとの近接が検出された場合、
     前記制御装置は、前記コンテナが所定の最大高さを移動するように定められた安全経路を前記コンテナの搬送経路として設定する、請求項1~6の何れか一項に記載の自動クレーンシステム。
  8.  コンテナヤードに並ぶ複数のコンテナ群におけるコンテナをクレーンで搬送する自動クレーンシステムの制御方法であって、
     荷役対象である荷役対象コンテナ群におけるコンテナと、前記荷役対象コンテナ群に隣接する隣接コンテナ群におけるコンテナとの位置関係を検出する検出工程と、
     前記検出工程での検出結果に基づいて、前記クレーンを制御する制御工程と、を備える、自動クレーンシステムの制御方法。
PCT/JP2021/025175 2020-07-30 2021-07-02 自動クレーンシステム、及び自動クレーンシステムの制御方法 WO2022024670A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180044570.9A CN115768713A (zh) 2020-07-30 2021-07-02 自动起重机系统及自动起重机系统的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-129713 2020-07-30
JP2020129713A JP2022026315A (ja) 2020-07-30 2020-07-30 自動クレーンシステム、及び自動クレーンシステムの制御方法

Publications (1)

Publication Number Publication Date
WO2022024670A1 true WO2022024670A1 (ja) 2022-02-03

Family

ID=80035530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025175 WO2022024670A1 (ja) 2020-07-30 2021-07-02 自動クレーンシステム、及び自動クレーンシステムの制御方法

Country Status (3)

Country Link
JP (1) JP2022026315A (ja)
CN (1) CN115768713A (ja)
WO (1) WO2022024670A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205891A (ja) * 2000-10-27 2002-07-23 Mitsubishi Heavy Ind Ltd 荷役クレーンにおけるコンテナ位置検知方法及び装置並びにコンテナ着床、段積制御方法
JP2002527317A (ja) * 1998-10-22 2002-08-27 エービービー エービー コンテナ荷役方法及びスタッキングターゲット上の所望の位置を選択する方法を実施する手段
JP2014144836A (ja) * 2013-01-28 2014-08-14 Mitsubishi Heavy Industries Machinery Technology Corp コンテナクレーン
WO2015121973A1 (ja) * 2014-02-14 2015-08-20 三菱重工マシナリーテクノロジー株式会社 コンテナ配置位置検出装置、クレーン制御システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527317A (ja) * 1998-10-22 2002-08-27 エービービー エービー コンテナ荷役方法及びスタッキングターゲット上の所望の位置を選択する方法を実施する手段
JP2002205891A (ja) * 2000-10-27 2002-07-23 Mitsubishi Heavy Ind Ltd 荷役クレーンにおけるコンテナ位置検知方法及び装置並びにコンテナ着床、段積制御方法
JP2014144836A (ja) * 2013-01-28 2014-08-14 Mitsubishi Heavy Industries Machinery Technology Corp コンテナクレーン
WO2015121973A1 (ja) * 2014-02-14 2015-08-20 三菱重工マシナリーテクノロジー株式会社 コンテナ配置位置検出装置、クレーン制御システム

Also Published As

Publication number Publication date
CN115768713A (zh) 2023-03-07
JP2022026315A (ja) 2022-02-10

Similar Documents

Publication Publication Date Title
US11402830B2 (en) Collaborative automation logistics facility
KR101699672B1 (ko) 컨테이너 크레인을 사용하여 랜딩 타깃 상에 컨테이너들을 자동적으로 랜딩하기 위한 방법 및 시스템
JP4295591B2 (ja) コンテナ衝突防止方法および装置
JP2006151574A (ja) コンテナ用荷役機械、コンテナ管理システム、及びコンテナ荷役方法
JP7255401B2 (ja) 搬送車
ES2894125T3 (es) Elevador de pórtico para contenedores guiado automáticamente y procedimiento para el manejo de un elevador de pórtico de este tipo
JP2015172878A (ja) 無人搬送車と在庫管理システムの連動システム
EP3613699A1 (en) Inspection system for container
JP2019139549A (ja) 搬送車の走行制御システム、及び、搬送車の走行制御方法
CN111880525A (zh) 机器人避障方法、装置、电子设备及可读存储介质
JP2018188299A (ja) コンテナターミナルシステムとその制御方法
JP2023169367A (ja) 自動保管・回収システムを動作させる方法
WO2022024670A1 (ja) 自動クレーンシステム、及び自動クレーンシステムの制御方法
JP6672530B2 (ja) クレーン装置
WO2022070887A1 (ja) Rtgクレーン、及び制御装置
WO2021210443A1 (ja) 自動rtgシステム、制御装置、及びコンテナ搬送経路設定方法
JP7318713B2 (ja) 搬送システム、制御装置、搬送方法及びプログラム
WO2022054582A1 (ja) クレーン、及びクレーン制御システム
JP6113551B2 (ja) コンテナターミナル及びコンテナターミナルの運用方法
WO2024084971A1 (ja) クレーン制御システム、及びクレーン制御方法
US11932261B2 (en) Delivery system, delivery method, and program
WO2022070520A1 (ja) 遠隔自動rtgシステム、遠隔自動rtgシステムの制御方法、及び遠隔自動rtgシステム制御装置
KR100596675B1 (ko) 무인크레인의 3축 연동제어방법 및 시스템
JPWO2019012802A1 (ja) クレーン装置
US20230296385A1 (en) Information processing method, information processing device, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21848663

Country of ref document: EP

Kind code of ref document: A1