WO2022021665A1 - 定涡旋和涡旋压缩机 - Google Patents

定涡旋和涡旋压缩机 Download PDF

Info

Publication number
WO2022021665A1
WO2022021665A1 PCT/CN2020/127716 CN2020127716W WO2022021665A1 WO 2022021665 A1 WO2022021665 A1 WO 2022021665A1 CN 2020127716 W CN2020127716 W CN 2020127716W WO 2022021665 A1 WO2022021665 A1 WO 2022021665A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed scroll
scroll
section
guide passage
curvature
Prior art date
Application number
PCT/CN2020/127716
Other languages
English (en)
French (fr)
Inventor
刘轩
严宏
邹宏伟
刘鑫娴
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202021507746.9U external-priority patent/CN212717154U/zh
Priority claimed from CN202010731522.4A external-priority patent/CN113982913A/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Priority to EP20946875.0A priority Critical patent/EP4191063A4/en
Priority to US18/006,088 priority patent/US20230349381A1/en
Publication of WO2022021665A1 publication Critical patent/WO2022021665A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0292Ports or channels located in the wrap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/101Geometry of the inlet or outlet of the inlet

Definitions

  • the present application relates to the field of compressors, and in particular, to a fixed scroll and a scroll compressor including the fixed scroll.
  • Compressors such as scroll compressors
  • the scroll compressor includes a compression mechanism including a fixed scroll and an orbiting scroll that engage with each other to define an open suction chamber and a series of closed compression chambers, and, for the low pressure side scroll
  • the compressor is usually provided with an air inlet in the outer peripheral wall of the fixed scroll, the air inlet is fluidly connected to the suction chamber, and the refrigerant enters the suction chamber through the air inlet and is supplied to a compressor inside the compression mechanism.
  • a series of closed compression chambers to compress the refrigerant.
  • the present application provides a fixed scroll as described below and a scroll compressor including the fixed scroll, which can optimize the flow of refrigerant into the compression mechanism, thereby significantly reducing the The pressure loss and enthalpy difference of the refrigerant are reduced, and thus the refrigeration efficiency of the scroll compressor is improved.
  • a fixed scroll of a scroll compressor comprising:
  • An outer peripheral wall extending from the first side surface and located radially outward of the fixed scroll wrap and surrounding the fixed scroll wrap, an air inlet is provided in the outer peripheral wall,
  • the fixed scroll includes a start end engaging with the outer peripheral wall and an engaging position to be engaged with a radially outermost end of an orbiting scroll of the scroll compressor, and the fixed scroll
  • the wrap includes a wrap section extending from the start end to the engagement position
  • the fixed scroll further includes a guide passage in fluid communication with the air inlet, the guide passage extending from the starting end and extending along at least a portion of the scroll section,
  • the scroll section includes a first side wall in the flow guide passage, the first side wall including a first section having a first center of curvature extending from the starting end and a first side wall extending from the start end.
  • the segment extends a second segment having a second center of curvature, and the first center of curvature and the second center of curvature are respectively located on opposite sides of the first side wall in the radial direction.
  • the above two-stage design with different bending directions is specially designed for the flow of the refrigerant in the diversion passage, which can significantly reduce the turbulence and pressure loss of the refrigerant, thereby providing a better diversion effect for the refrigerant. .
  • the first section extends from the starting end to about 1/5 to 2/3 of the length of the first side wall, and the curvature change value of the first section is The curvature change value of the second section is larger than that of the second section, so that the turbulent flow is better restrained and the pressure loss of the refrigerant can be reduced.
  • the starting end has the largest curvature.
  • the distance between the outer peripheral wall and the fixed scroll wrap is a first radial width Xm at the engaging position, the starting end forms a rounded corner, and the circular
  • the radius of curvature Rc of the corner satisfies: 2mm ⁇ Rc ⁇ 0.4Xm.
  • the rounded starting end with such a curvature is combined with the first and second side walls of the aforementioned streamlined design so that the refrigerant does not form a vortex at the starting end when it enters the guide passage through the air inlet, And can significantly reduce the turbulence in the diversion channel, thereby reducing the pressure gradient of the refrigerant in the diversion channel, reducing the pressure loss, thereby improving the refrigeration efficiency of the scroll compressor
  • the first radial thickness of the guide scroll section of the scroll section that defines the flow guide passage and the first radial thickness is greater than or equal to a second radial thickness of the fixed scroll wrap at the engagement position and less than or equal to 3 times the second radial thickness.
  • the diversion passage includes a concave portion that is concave relative to the first side surface, the concave portion includes a concave bottom wall, and the concave bottom wall is opposite to the first side surface.
  • the concave depth L satisfies: L ⁇ 0.3H, where H is the axial height of the fixed scroll.
  • H is the axial height of the fixed scroll.
  • the internal volume of the guide passage and the associated flow guide effect can be better adjusted by further adjusting the depth dimension of the guide passage along the axial direction of the fixed scroll.
  • the depth of the recess increases towards the starting end. Therefore, the refrigerant can be smoothly guided into the subsequent suction chamber, which is beneficial to reduce the formation of turbulence and eddy currents, and can reduce the pressure gradient of the refrigerant in different regions of the flow guide passage.
  • the bottom wall of the recess includes an inclined slope, a horizontal plane, a curved surface or a combination thereof.
  • the distance between the outer peripheral wall and the fixed scroll wrap at the engaging position is a first radial width Xm
  • the third radial width K of the recessed portion satisfies : 0.7Xm ⁇ K ⁇ Xm
  • the guide passage has a second radial width
  • the third radial width of at least a part of the concave portion is smaller than the width of the guide passage along the fixed scroll.
  • a concave angle of the concave bottom wall relative to the first side surface is less than or equal to 70°.
  • At least one ventilation opening is provided in the outer peripheral wall, so that the refrigerant can enter the guide passage through the at least one ventilation opening.
  • the peripheral wall includes a bridge portion adjacent to the air inlet at an axial end of the peripheral wall, and the at least one ventilation opening is provided at the bridge portion.
  • the turbulent flow or eddy current that may appear in the guide passage can be dissipated, and the pressure gradient in each region in the guide passage can be balanced, thereby improving the refrigeration efficiency of the scroll compressor.
  • a circumferential side of the air inlet is substantially flush with the starting end.
  • a scroll compressor including the fixed scroll as described above.
  • the fixed scroll and the scroll compressor according to the present application provide at least the following beneficial technical effects: by providing the guide passages and ventilation openings of the above-mentioned configuration, the fixed scroll and the scroll compressor according to the present application can The flow of the refrigerant in the process of entering the compression mechanism is optimized and diverted, thereby significantly reducing the pressure loss and enthalpy difference of the refrigerant, and thus improving the refrigeration efficiency of the scroll compressor.
  • the structure is simple, easy to process and manufacture, and has high cost-effectiveness.
  • Figure 1 shows a longitudinal cross-sectional view of a scroll compressor according to the present application
  • Fig. 2a shows a perspective view of the fixed scroll of Fig. 1, wherein the inlet shroud is shown installed at the inlet of the fixed scroll;
  • Figure 2b shows a perspective view of the fixed scroll of Figure 2a from another angle, with the inlet shroud removed to show the inlet of the fixed scroll;
  • Figure 2c shows another configuration of the inlet port of the fixed scroll of the scroll compressor according to the present application
  • FIG. 3 shows a plan view of the fixed scroll according to the first embodiment of the present application, and the figure schematically shows the engagement between the fixed scroll and the movable scroll;
  • Fig. 4 shows a partial enlarged view of the fixed scroll in Fig. 3;
  • Figure 5 shows a perspective view of a fixed scroll according to a second embodiment of the present application
  • FIG. 6 shows a partial enlarged view of the fixed scroll in FIG. 5;
  • FIG. 7 shows a partial longitudinal sectional view of the fixed scroll in FIG. 5;
  • FIG. 8 shows a partial longitudinal cross-sectional view of the fixed scroll of FIG. 5 at another angle
  • FIG. 9 shows a perspective view of a fixed scroll according to a third embodiment of the present application.
  • FIG. 10 shows a perspective view of a fixed scroll according to a fourth embodiment of the present application.
  • FIG. 11 shows a perspective view of a fixed scroll according to a fifth embodiment of the present application.
  • Scroll compressor 1 housing 12; including stator 14; rotor 15; drive shaft 16; main bearing housing 11
  • Orbiting scroll 24 fixed scroll 22; cover 26; base 28; oil sump OR; center hole 52
  • Hub part G Compression mechanism CM; Fixed scroll end plate 221; Fixed scroll scroll 220; Exhaust port V
  • Refrigerant inlet 120 intake hood D; bridge portion Q; guide passage P; first side wall W1
  • second side wall W2 starting end C; engaging position A; second radial width X; first radial width Xm
  • the scroll compressor is exemplarily shown as a vertical scroll compressor, however the scroll compressor according to the present application is not limited to this type, but may be any suitable type of scroll compressor Scroll compressors, such as horizontal scroll compressors, etc.
  • FIG. 1 shows a longitudinal sectional view of a scroll compressor according to the present application
  • FIG. 2a shows a perspective view of the fixed scroll 1 in FIG. Intake shroud D
  • Figure 2b shows a perspective view of the fixed scroll 22 in Figure 2a from another angle, with the intake shroud D removed to show the inlet S of the fixed scroll 22
  • Figure 2c shows the vortex Another configuration of the intake port S of the fixed scroll 22 of the scroll compressor 1 .
  • the scroll compressor 1 may include a substantially cylindrical casing 12, an electric motor (including a stator 14 and a rotor 15), a drive shaft 16, a main bearing housing 11, a movable scroll 24, a fixed scroll twenty two.
  • a cover 26 at the top of the casing 12 and a base 28 at the bottom of the casing 12 may be mounted to the casing 12 , thereby defining the interior volume of the scroll compressor 1 .
  • Lubricant such as lubricating oil, may be stored in the oil sump OR within the bottom of the housing 12 for lubricating various components of the scroll compressor 1 .
  • the electric motor includes a stator 14 and a rotor 15 .
  • the rotor 15 is used to drive the drive shaft 16 to rotate the drive shaft 16 relative to the housing 12 about its axis of rotation.
  • the drive shaft 16 may include an eccentric pin mounted to or integrally formed with the first end (top end) of the drive shaft 16 .
  • the drive shaft 16 may include a central hole 52 formed at the second end (bottom end) of the drive shaft 16 and an eccentric hole (not shown) extending upwardly from the central hole 52 to the end of the eccentric pin surface.
  • the end (lower end) of the center hole 52 may be immersed in the oil sump OR at the bottom of the casing 12 of the scroll compressor 1 , so that, for example, due to the centrifugal force generated by the rotation of the drive shaft 16 , it can be removed from the casing 12 .
  • the oil sump OR at the bottom conveys the lubricating oil and causes the lubricating oil to flow upward through the center hole 52 and the eccentric hole and out the end surface of the eccentric pin.
  • the lubricating oil flowing out from the end surface of the eccentric pin may flow into, for example, lubricating oil supply regions formed between the eccentric pin and the movable scroll 24 and between the main bearing housing 11 and the movable scroll 24 .
  • the lubricating oil in this lubricating oil supply area can lubricate the rotating joints and sliding surfaces, for example, between the eccentric pin and the orbiting scroll 24 and between the main bearing housing 11 and the orbiting scroll 24 .
  • the fixed scroll 22 is mounted to the main bearing housing 11 using, for example, mechanical fasteners such as screw fastening members.
  • the movable scroll 24 is axially supported by the main bearing housing 11 and supported by the main bearing housing 11 so as to be capable of orbiting motion.
  • the hub G of the orbiting scroll 24 may be rotatably coupled to an eccentric pin of the drive shaft 16 through which the orbiting scroll 24 is driven by an electric motor via the drive shaft 16 (in particular, the eccentric pin), thereby by means of an Oldham slip ring And can perform translational rotation relative to the fixed scroll 22, that is, the orbiting (that is, the axis of the movable scroll 24 revolves relative to the axis of the fixed scroll 22, but the movable scroll 24 and the fixed scroll 22 are two are not themselves rotated about their respective axes).
  • the movable scroll 24 and the fixed scroll 22 constitute a compression mechanism CM suitable for compressing a working fluid (eg refrigerant), wherein the fixed scroll 22 includes a fixed scroll end plate 221 , a fixed scroll wrap 220 and a fixed scroll 22 .
  • a working fluid eg refrigerant
  • a series of closed compression chambers for compression wherein the inlet S is in fluid communication with the suction chamber and with a refrigerant source external to the compression mechanism CM, thereby passing refrigerant from the refrigerant source through the inlet S is supplied to the suction chamber of the compression mechanism CM and a series of closed compression chambers, thereby compressing the refrigerant and discharging the compressed refrigerant from the discharge port V at the center of the fixed scroll 22 to the compression mechanism CM external.
  • one side of the casing 12 of the scroll compressor 1 is provided with a refrigerant inlet 120
  • the scroll compressor 1 shown in FIG. 1 includes a refrigerant inlet 120 extending from the inlet 120 .
  • the air inlet S of the fixed scroll 22 and the air inlet cover D installed at the air inlet S are clearly shown, which can It plays the role of conveying and guiding the refrigerant, so that the refrigerant can flow directly into the air inlet S from the inlet 120, so as to avoid the refrigerant staying in the shell 12 and the environment outside the compression mechanism CM and absorbing heat to cause enthalpy The difference is reduced, thereby improving the cooling efficiency of the scroll compressor 1 .
  • FIG. 2c shows another configuration of the air inlet S of the fixed scroll 22 of the scroll compressor 1 according to the application, as shown in FIG.
  • the air inlet S does not extend up to the top of the peripheral wall 223, but a portion of the peripheral wall 223 remains above the air inlet S to form a bridge Q.
  • the two configurations of the air inlet S will be involved in the following specific embodiments, and will be described in further detail.
  • the present application improves the fixed scroll 22 of the scroll compressor 1.
  • a guide passage P is designed between the air inlet S and the suction chamber, and the guide passage P is The streamlined design, as well as the design of anti-turbulence, eddy current and pressure loss, can significantly improve the refrigeration efficiency of the scroll compressor.
  • FIG. 1 Various preferred embodiments of the fixed scroll 22 of the scroll compressor 1 according to the present application will be described in detail below with reference to FIGS. 3 to 11 to specifically describe the optimal design of various aspects of the flow guide passage P.
  • FIG. 1 Various preferred embodiments of the fixed scroll 22 of the scroll compressor 1 according to the present application will be described in detail below with reference to FIGS. 3 to 11 to specifically describe the optimal design of various aspects of the flow guide passage P.
  • FIG. 3 shows a plan view of the fixed scroll 22 according to the first embodiment of the present application, which schematically shows the engagement between the fixed scroll 220 and the movable scroll 240;
  • FIG. 4 shows A partial enlarged view of the fixed scroll 22 in FIG. 3 with the orbiting scroll wrap 240 removed.
  • the fixed scroll 22 includes: a fixed scroll end plate 221 ; a fixed scroll wrap 220 extending from a first side surface 222 of the fixed scroll end plate 221 ; A side surface 222 extends and surrounds the outer peripheral wall 223 of the fixed scroll wrap 220 at the radially outer side of the fixed scroll wrap 220 .
  • the fixed scroll 22 also includes a fixed scroll wrap 220 , a fixed scroll end plate 221 and an outer peripheral wall 223 .
  • the guide passage P in the defined space, the guide passage P extends from the starting end C of the fixed scroll wrap 220 that engages with the outer peripheral wall 223, and along the fixed scroll wrap 220 from the starting end C to the fixed scroll wrap At least a part of the wrap section of the engagement position A of the orbiting scroll 240 of the orbiting scroll 240 of the scroll compressor 1 extends at least a part of the wrap section of the engagement position A to be engaged with the radially outermost end of the orbiting scroll wrap 240 of the scroll compressor 1, and an inlet is provided in the outer peripheral wall 223.
  • the air port S, the guide passage P is in fluid communication with the air inlet port S.
  • the air inlet port S in the peripheral wall 223 has the configuration in FIG. 2c as previously described, and in FIGS.
  • the bridge Q above the air inlet S is shown in 4 .
  • the guide passage P extends from the starting end C to the joining position A, and the two inner side walls of the guide passage P are the first side wall W1 on the fixed scroll wrap 220 and the first side wall on the fixed scroll wrap 220 .
  • the second side wall W2, the first side wall W1 and the second side wall W2 (including the bridge portion Q) on the outer peripheral wall 223 converge from the joint position A toward the starting end C, that is, such that the first side wall W1 and the second side wall W2
  • the second radial width X of the guide passage P defined by the side wall W2 (including the bridge Q) decreases as a whole from the engagement position A towards the starting end C, it should be noted that this is not limited to the second radial width
  • X decreases all the way from the engagement position A towards the starting end C (to be described in detail below)
  • the second radial width X of the guide passage P is smaller than the adjoining section adjoining the guide passage P - ie, Fig.
  • the first side wall W1 includes a first section W11 extending from the starting end C and the remaining second sections W12, the first center of curvature of the first section W11 and the second center of curvature of the second section W12 are respectively The diametrically opposite sides of the guide scroll section P20 (or of the first side wall W1 ) of the fixed scroll wrap 220 located within the extension of the guide passage P, that is, as shown in FIGS. 3 and 4 .
  • the first section W11 and the second section W12 are demarcated by the position of point B, and the first section W11 and the second section W12 on both sides of point B are respectively curved in opposite directions as shown in the figure.
  • the curvature change value of the first section W11 is larger than that of the second section W12, that is, the first section W11 has a smaller curvature radius than the second section W12 as a whole.
  • first section W11 and the second section W12 are arc-shaped respectively curved in opposite directions as shown in the figure, and the curvature change value of the first section W11 is greater than the curvature change value of the second section W12 , therefore, although as a whole, the second radial width X of the guide passage P decreases from the engagement position A toward the starting end C, the second radial width X does not necessarily decrease from the engagement position A toward the starting end C all the time.
  • the value of the second radial width X of the diversion channel P may locally fluctuate—for example Especially around point B, not necessarily always decreasing.
  • the second radial width X decreases from the engaging position A toward the starting end C, thereby forming a smooth and gradual streamline to reduce the resistance of the refrigerant flow and reduce the refrigerant pressure gradient.
  • the above-mentioned two-stage design with different bending directions and different curvatures is also specially designed for the flow of the refrigerant in the guide passage P, which can significantly reduce the turbulence and pressure loss of the refrigerant, thereby providing the refrigerant with Better diversion effect.
  • the air inlet S in the peripheral wall 223 has the configuration in FIG. 2c as previously described, and as shown in FIGS. 3 and 4 .
  • the outer peripheral wall 223 includes a bridge portion Q located above the air inlet S, and the bridge portion Q will guide the flow of the refrigerant.
  • the width X mainly means the second radial width X defined by the first side wall W1 and the second side wall W2 (the side walls of the section comprising the bridge Q), however, it should be understood that the aforementioned The second radial width X of the guide passage P actually also covers the radial width X of the bottom of the guide passage P adjacent to the air inlet S and defined by the outer edge S10 of the bottom of the guide passage P and the first side wall W1 '. Specifically, as shown in FIGS.
  • the second side wall W2 at the inner side of the bridge portion Q expands radially outward, that is, from FIG. 3
  • the outer edge of the bottom of the guide passage P can be seen through the second side wall W2 inside the bridge portion Q S10, that is, a part of the air inlet S can be seen, that is to say, the second radial width X defined by the first side wall W1 and the second side wall W2 is slightly larger than the radial width X' of the bottom of the guide passage P,
  • the design of the radial width X' it can be similar to the design of the second radial width X defined by the first side wall W1 and the second side wall W2, that is, the radial width X' of the bottom of the guide passage P is less than
  • the first radial width Xm of the abutment section, and preferably, the radial width X' decreases or decreases from the engagement position A towards the starting end C. It will be appreciated that the above-described design is also applicable to an air inlet S of a configuration such as that shown in Figure 2b which does not include a bridge Q.
  • the position of point B is used as the boundary, and the position of point B can be adjusted according to the actual application requirements to adjust the flow of the refrigerant, for example, according to the refrigerant intake volume, Depending on the different requirements of flow rate, pressure, etc., point B may be located at a position extending from the starting end C to about 1/5 to 2/3 of the length of the first side wall W1 - that is, the first section W11 occupies the first side wall About 1/5 to 2/3 of the length of W1, preferably, in this embodiment, point B may be located at a position extending from the starting end C to about 1/3 of the length of the first side wall W1, that is, the first part
  • the section W11 occupies about 1/3 of the length of the first side wall W1
  • the second section W12 occupies about 2/3 of the length of the first side wall W1, so as to have a better inhibitory effect on turbulence and reduce the amount of refrigerant. pressure loss.
  • the first radial thickness Y of the guide scroll section P20 at the guide passage P is increased, and the first radial thickness Y is increased.
  • the radial thickness Y satisfies: Ym ⁇ Y ⁇ 3Ym, wherein Ym represents the second radial thickness of the fixed scroll wrap 220 at the above-mentioned adjoining section (including the engagement position A) adjacent to the guide passage P.
  • At the starting end C has the greatest curvature—that is, has the smallest radius of curvature, and more preferably, at the starting end C A fillet is formed at the corner, and the radius of curvature Rc of the fillet satisfies: 2mm ⁇ Rc ⁇ 0.4Xm, where Xm represents the aforementioned first radial width, and the starting end C of the fillet with such a radius of curvature is the same as the aforementioned streamlined design.
  • the first side wall W1 and the second side wall W2 are combined so that the refrigerant does not form a vortex at the starting end C when it enters the guide passage P through the air inlet S as shown in 2c and FIGS. 3-4 , and the turbulent flow in the guide passage P can be significantly reduced, thereby reducing the pressure gradient of the refrigerant in the guide passage P, reducing the pressure loss, and further improving the refrigeration efficiency of the scroll compressor 1 .
  • the air inlet S transverse to the air intake direction of the air inlet S is flush with the starting end C
  • the air inlet S can also be set farther away from the starting end C, that is, the side of the air inlet S transverse to the air intake direction is not flush with the starting end C and is at a certain distance from the starting end C, even if In this case, due to the special design of the rounded corner and its curvature radius at the starting end C in this application, and in combination with the first and second side walls W1 and W2 of the aforementioned streamlined design, it is also possible to avoid or The formation of eddy or turbulent flows in the guide passage P, especially at the rounded corners of the starting end C, is improved.
  • arranging the intake port S such that the side of the intake port S transverse to the intake direction is flush with the starting end C will best avoid
  • the diversion passage P extends from the starting end C to the joining position A
  • the diversion passage P can also be limited It extends only along a portion of the wrap section of the fixed scroll wrap 220 from the start end C to the engagement position A. That is to say, although in the specific embodiments herein, it is assumed that the diversion passage P extends from the starting end C to the joining position A, and the joining position A is used to describe the relevant features in the diversion passage P, but it should be clear that What’s more, each relevant feature described in this paper with respect to the diversion channel P—for example, the corresponding ratio value, etc.
  • the guide passage P only extends along a part of the scroll section of the fixed scroll wrap 220 from the starting end C to the engaging position A, and does not extend to the engaging position A , some features that might otherwise be located at, abutting, or extending to the engagement location A will also move away from the engagement location A.
  • the orientation and streamline design of the two side walls of the guide passage P and the adjustment of the width of the guide passage P are mainly adopted to realize the optimal guide effect on the refrigerant.
  • the present application is not limited to Therefore, the internal volume of the guide passage P and the related flow guide effect can also be better adjusted by further adjusting the depth dimension of the guide passage P along the axial direction of the fixed scroll 22 , for example, as shown in FIGS. 5-8 .
  • the second embodiment will be described in detail below with reference to FIGS. 5-8 .
  • FIG. 5 shows a perspective view of the fixed scroll 22 of the second embodiment
  • Fig. 6 shows a partial enlarged view of the fixed scroll 22 in Fig. 5
  • Fig. 7 shows a part of the fixed scroll 22 in Fig. 5 Longitudinal sectional view
  • FIG. 8 shows a partial longitudinal sectional view of the fixed scroll 22 in FIG. 5 at another angle.
  • the air inlet S in the outer peripheral wall 223 of the fixed scroll 22 has the configuration in FIG. 2 b as described above, that is, the upper part of the air inlet S does not include a bridge portion .
  • the guide passage P has a streamline design similar to that of the guide passage P in the aforementioned first embodiment in the radial direction along the fixed scroll 22 , the difference is that: in this embodiment , the guide passage P further includes a concave portion P1 concave relative to the first side surface 222 of the fixed scroll end plate 221 , the concave portion P1 includes a concave bottom wall P10, and the concave bottom wall P10 relative to the first side surface 222
  • the concave depth L satisfies: L ⁇ 0.3H, where H is the axial height of the fixed scroll wrap 220 (as best shown in FIG.
  • the recessed depth L increases from the aforementioned engagement position A toward the starting end C,
  • the first section W11 extending from the starting end C has a relatively larger axial space for receiving more refrigerant, so as to ease the impact of the refrigerant when it enters the guide passage P, and then with the direction of
  • the gradually decreasing concave depth L extending from point B to the joint position A can smoothly guide the refrigerant into the subsequent suction chamber, which is beneficial to reduce the formation of turbulence and eddy current, and can reduce the different areas in the guide passage P. pressure gradient of the refrigerant.
  • the recessed portion P1 extends along the entire length of the fluid passage P, that is, from the starting end C to the joining position A, but the present application is not limited to this, and can be adjusted accordingly according to actual application requirements,
  • the recessed portion P1 may extend from the starting end C by 3/4 length, 1/2 length, 1/3 length, etc. of the fluid passage P, which can be flexibly selected.
  • the recessed bottom wall P10 includes a beveled section P12 extending from the engagement location A and a remaining flat section P14 extending to the starting end C.
  • the respective lengths of the slope section P12 and the face section P14 can be adjusted according to actual application requirements, as long as the formation of turbulence and eddy currents can be reduced, and the pressure gradient of the refrigerant in different regions in the guide passage P can be reduced, that is,
  • the concave bottom wall P10 may also include only the inclined surface extending from the starting end C to the joint position A, and not include the plane section, or the concave bottom wall P10 may also include a curved surface or a curved surface and an inclined inclined surface or a horizontal plane.
  • the concave bottom wall P10 may also include a curved surface or a curved surface and an inclined inclined surface or a horizontal plane.
  • the value of the third radial width K of the concave bottom wall P10 of the concave portion P1 can be specially designed to preferably make 0.7Xm ⁇ K ⁇ Xm, where Xm represents the aforementioned first radial width.
  • the second radial width X of the guide passage P as mentioned in the first embodiment is also smaller than the first radial width Xm, it may be further set such that the third The radial width K is smaller than the corresponding second radial width X at the same position along the fixed scroll wrap 220, thereby forming a stepped portion T on the first side surface 222 of the fixed scroll end plate 221 (as shown in FIG.
  • a corresponding step T is also shown in FIG. 6 , which is located on the side of the first side wall W1 and extends from the joint position A for a section of the first side wall W1 and gradually narrows and merges Not extending to the starting end C, the third radial width K and the corresponding step portion T can be flexibly adjusted according to the actual application requirements, and it should be understood that the step portion T can also be located at one of the second side walls W2. on the side.
  • the concave bottom wall P10 it is preferably necessary to control the concave angle G formed relative to the first side surface 222 of the fixed scroll end plate 221, that is, it is preferable to make the concave angle G less than or equal to 70°, that is, the concave angle G
  • the concave angle G formed by each part of the bottom wall P10 with respect to the first side surface 222 is less than or equal to 70°, so as to control the formation of turbulent flow and eddy current, and adjust the pressure gradient of the refrigerant everywhere.
  • the design of the recessed portion P1 is combined with the streamlined design of the fluid passage P disclosed in the first embodiment, the present application is not limited thereto, and in some cases , the design of the recessed portion P1 disclosed in the second embodiment can be applied independently, and can also achieve the technical effects of reducing the formation of turbulence and eddy currents and reducing the pressure gradient of the refrigerant in different regions to a certain extent.
  • FIG. 9 shows a perspective view of the fixed scroll 22 according to the third embodiment of the present application.
  • This embodiment is a further improvement based on the combination of the streamlined design of the fluid passage P described in the first embodiment and the design of the recessed portion P1 described in the second embodiment.
  • the air inlet S in the peripheral wall 223 has the configuration in FIG. 2 c as previously described, and in FIG. 9 the bridge above the air inlet S is shown Department Q.
  • the improvement of this embodiment mainly lies in that: an elongated ventilation opening Q10 is provided in the bridge portion Q, so that a part of the refrigerant can enter into the guide passage P through the ventilation opening Q10, and the branched flow path can flush the
  • the turbulent flow or eddy current that may appear in the guide passage P is dispersed, and the pressure gradient in each region in the guide passage P is balanced, so as to improve the refrigeration efficiency of the scroll compressor 1 .
  • turbulent flow, eddy current or pressure gradient, etc. are usually more likely to be generated in the second section W12 of the diversion passage P, therefore, as shown in the figure, preferably the ventilation opening Q10 can be arranged corresponding to the second section. W12 location to function better.
  • FIG. 10 shows a perspective view of a fixed scroll according to a fourth embodiment of the present application
  • FIG. 11 shows a perspective view of a fixed scroll according to a fifth embodiment of the present application.
  • FIG. 10 It is shown in FIG. 10 that two circular ventilation openings Q20 are used, and the spacing between the two ventilation openings Q20 can be adjusted as required to achieve the best technical effect, and the number of ventilation openings Q20 can also be adjusted as required set up.
  • the rows of honeycomb-shaped ventilation openings Q30 can make more refrigerant flow into the guide passage P through the ventilation openings Q30, and the three rows of ventilation openings Q30 can also be positioned as shown in the figure
  • the shown ground corresponds to the first section W11 and the second section W12 respectively, which can be set according to requirements.
  • ventilation openings can also be similarly provided in other parts of the outer peripheral wall 223 of the fixed scroll 22 except for the bridging portion Q to achieve similar technical effects.
  • this ventilation opening is simple, and can be processed into holes with various other shapes by various common methods such as punching, milling, 3D printing drilling, etc. And this design can also be used alone without being combined with the streamlined design of the fluid passage P described in the first embodiment and the design of the recessed portion P1 described in the second embodiment.
  • the compressor and the scroll compressor using the fixed scroll of the prior art were compared and analyzed by CFD, and the results were shown in Table 1 below.
  • Compressor, the scroll compressor using the fixed scroll in the third embodiment of the present application can reduce the pressure loss at the air inlet by 25.7%. This fully verifies the significant technical progress brought about by the fixed scroll and scroll compressors of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种定涡旋(22)和涡旋压缩机(1),定涡旋(22)包括:定涡旋端板(221);定涡旋涡卷(220);以及外周壁(223),外周壁(223)中设置有进气口(S),定涡旋涡卷(220)包括与外周壁(223)接合的起始端(C)、待与涡旋压缩机(1)的动涡旋(24)的动涡旋涡卷(240)的径向最外侧末端接合的接合位置(A)以及从起始端(C)延伸至接合位置(A)的涡卷部段,定涡旋(22)还包括与进气口(S)流体连通的导流通路(P),导流通路(P)从起始端(C)延伸、并且沿着涡卷部段的至少一部分延伸,涡卷部段包括位于导流通路(P)中的第一侧壁(W1),第一侧壁(W1)包括分别位于第一侧壁(W1)的径向相反的两侧的具有第一曲率中心的第一部段(W11)和具有第二曲率中心的第二部段(W12)。定涡旋(22)和涡旋压缩机(1)能够对制冷剂进行优化导流,提高涡旋压缩机(1)的制冷效率,并且结构简单、易于加工制造。

Description

定涡旋和涡旋压缩机
本申请要求以下中国专利申请的优先权:于2020年7月27日提交中国专利局的申请号为202010731522.4、发明创造名称为“定涡旋和涡旋压缩机”的中国专利申请;以及于2020年7月27日提交中国专利局的申请号为202021507746.9、发明创造名称为“定涡旋和涡旋压缩机”的中国专利申请。上述专利申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及压缩机领域,具体涉及一种定涡旋和包括该定涡旋的涡旋压缩机。
背景技术
本部分提供了与本申请相关的背景信息,这些信息并不必然构成现有技术。
压缩机(例如涡旋压缩机)可以应用于例如制冷系统、空调系统和热泵系统中。涡旋压缩机包括压缩机构,压缩机构包括定涡旋和动涡旋,定涡旋和动涡旋彼此接合以限定开放的吸气腔和一系列封闭的压缩腔,并且,对于低压侧涡旋压缩机,通常在定涡旋的外周壁中设置有进气口,该进气口流体连通至吸气腔,制冷剂经由该进气口进入吸气腔并被供送至压缩机构内部的一系列封闭的压缩腔中,以对制冷剂进行压缩。
然而,在现有技术的涡旋压缩机中,制冷剂在经由进气口进入吸气腔时可能产生湍流或涡流以及速度梯度,从而造成压力损失,使制冷剂的焓差降低,涡旋压缩机的制冷效率因此降低。为此,需要对涡旋压缩机进行进一步改进,以提高制冷剂的利用效率,进而提高涡旋压缩机的制冷效率。
发明内容
在本部分中提供本申请的总体概要,而不是本申请完全范围或本申请所有特征的全面公开。
本申请的目的是在上面提到的一个或多个技术问题方面进行改进。总体而 言,本申请提供了一种如下文所述的定涡旋以及包括该定涡旋的涡旋压缩机,其能够对制冷剂进入压缩机构过程中的流动进行优化导流,从而显著减少制冷剂的压力损失和焓差降低,并因此提高涡旋压缩机的制冷效率。
根据本申请的一个方面,提供了一种涡旋压缩机的定涡旋,包括:
定涡旋端板;
从所述定涡旋端板的第一侧面延伸的定涡旋涡卷;以及
从所述第一侧面延伸并且位于所述定涡旋涡卷径向外侧、围绕所述定涡旋涡卷的外周壁,在所述外周壁中设置有进气口,
所述定涡旋涡卷包括与所述外周壁接合的起始端以及待与所述涡旋压缩机的动涡旋的动涡旋涡卷的径向最外侧末端接合的接合位置,并且所述定涡旋涡卷包括从所述起始端延伸至所述接合位置的涡卷部段,
其特征在于,所述定涡旋还包括与所述进气口流体连通的导流通路,所述导流通路从所述起始端延伸、并且沿着所述涡卷部段的至少一部分延伸,
所述涡卷部段包括位于所述导流通路中的第一侧壁,所述第一侧壁包括从所述起始端延伸的具有第一曲率中心的第一部段和从所述第一部段延伸的具有第二曲率中心的第二部段,所述第一曲率中心与所述第二曲率中心分别位于所述第一侧壁的径向相反的两侧。
上述这种两段式不同弯曲方向的设计是针对制冷剂在导流通路中的流动而特别设计得到的,能够显著减少制冷剂的湍流和压力损失,从而为制冷剂提供更好的导流效果。
根据本申请的一个优选实施方式,所述第一部段从所述起始端延伸至所述第一侧壁的大约1/5至2/3长度处,所述第一部段的曲率变化值大于所述第二部段的曲率变化值,从而对于湍流具有更好的抑制作用,并且能够减小制冷剂的压力损失。
根据本申请的一个优选实施方式,在所述导流通路中,在所述起始端处具有最大的曲率。
根据本申请的一个优选实施方式,所述外周壁与所述定涡旋涡卷之间的间距在所述接合位置处为第一径向宽度Xm,所述起始端形成圆角,并且所述圆角的曲率半径Rc满足:2mm≤Rc≤0.4Xm。
具有这样的曲率的圆角的起始端与前述流线型设计的第一侧壁和第二侧 壁相结合,使得制冷剂在经由进气口进入导流通路中时不会在起始端处形成涡流,并且能够显著降低导流通路中的湍流,从而减小制冷剂在导流通路中的压力梯度,减小压力损失,进而提高涡旋压缩机的制冷效率
根据本申请的一个优选实施方式,沿着从所述接合位置至所述起始端的方向,所述涡卷部段的限定所述导流通路的导流涡卷部段的第一径向厚度递增,并且所述第一径向厚度大于等于所述定涡旋涡卷的在所述接合位置处的第二径向厚度且小于等于所述第二径向厚度的3倍。
根据本申请的一个优选实施方式,所述导流通路包括相对于所述第一侧面凹陷的凹陷部分,所述凹陷部分包括凹陷底壁,并且所述凹陷底壁相对于所述第一侧面的凹陷深度L满足:L≤0.3H,其中H为所述定涡旋涡卷的轴向高度。能够通过进一步调节导流通路的沿着定涡旋的轴向方向的深度尺寸来更好地调节导流通路的内部容积和相关的导流效果。
根据本申请的一个优选实施方式,所述凹陷深度朝向所述起始端增大。从而能够平缓地将制冷剂疏导向随后的吸气腔中,而利于减少湍流和涡流的形成,并且能够降低导流通路中不同区域中的制冷剂的压力梯度。
根据本申请的一个优选实施方式,所述凹陷底壁包括倾斜斜面、水平平面、曲面或其组合。
根据本申请的一个优选实施方式,所述外周壁与所述定涡旋涡卷之间的间距在所述接合位置处为第一径向宽度Xm,所述凹陷部分的第三径向宽度K满足:0.7Xm≤K<Xm,并且所述导流通路具有第二径向宽度,所述凹陷部分的至少一部分的第三径向宽度小于所述导流通路的沿着所述定涡旋涡卷的延伸方向的对应位置处的所述第二径向宽度,以在所述第一侧面上形成台阶部。
根据本申请的一个优选实施方式,所述凹陷底壁相对于所述第一侧面的凹陷角度小于等于70°。
根据本申请的一个优选实施方式,在所述外周壁中设置至少一个通风开口,使得制冷剂能够经由所述至少一个通风开口进入所述导流通路中。
根据本申请的一个优选实施方式,所述外周壁包括位于所述外周壁的轴向末端的与所述进气口相邻的桥接部,所述至少一个通风开口设置在所述桥接部处。
借由此分支的流动路径,能够冲散导流通路中可能出现的湍流或涡流、平 衡导流通路中各区域中的压力梯度,从而提高涡旋压缩机的制冷效率。
根据本申请的一个优选实施方式,所述进气口的周向一侧与所述起始端大致齐平。
根据本申请的另一个方面,提供了一种涡旋压缩机,其包括如上所述的定涡旋。
综上可知,根据本申请的定涡旋和涡旋压缩机至少提供以下有益技术效果:通过设置上述构型的导流通路和通风开口,根据本申请的定涡旋和涡旋压缩机能够对制冷剂进入压缩机构过程中的流动进行优化导流,从而显著减少制冷剂的压力损失和焓差降低,并因此提高涡旋压缩机的制冷效率,并且其结构简单、易于加工制造,具有较高的成本效益。
附图说明
根据以下参照附图的详细描述,本申请的前述及另外的特征和特点将变得更加清楚,这些附图仅作为示例并且不一定是按比例绘制。在附图中采用相同的附图标记指示相同的部件,在附图中:
图1示出根据本申请的涡旋压缩机的纵向截面图;
图2a示出图1中的定涡旋的立体图,其中示出了安装在定涡旋的进气口处的进气罩;
图2b示出图2a中的定涡旋的另一角度的立体图,其中移除了进气罩以示出定涡旋的进气口;
图2c示出根据本申请的涡旋压缩机的定涡旋的进气口的另一种构型;
图3示出了根据本申请的第一实施例的定涡旋的平面图,图中示意性地示出了定涡旋涡卷与动涡旋涡卷之间的接合;
图4示出了图3中的定涡旋的局部放大图;
图5示出了根据本申请的第二实施例的定涡旋的立体图;
图6示出了图5中的定涡旋的局部放大图;
图7示出了图5中的定涡旋的局部纵向截面图;
图8示出了图5中的定涡旋的另一角度的局部纵向截面图;
图9示出了根据本申请的第三实施例的定涡旋的立体图;
图10示出了根据本申请的第四实施例的定涡旋的立体图;以及
图11示出了根据本申请的第五实施例的定涡旋的立体图。
参考标记列表
涡旋压缩机1;壳体12;包括定子14;转子15;驱动轴16;主轴承座11
动涡旋24;定涡旋22;盖26;基部28;油池OR;中心孔52
毂部G;压缩机构CM;定涡旋端板221;定涡旋涡卷220;排气口V
动涡旋端板241;动涡旋涡卷240;毂部G;外周壁223;进气口S
制冷剂入口120;进气罩D;桥接部Q;导流通路P;第一侧壁W1
第二侧壁W2;起始端C;接合位置A;第二径向宽度X;第一径向宽度Xm
第一部段W11;第二部段W12;B点;底部径向宽度X’;外边缘S10
第一径向厚度Y;第二径向厚度Ym;圆角的曲率半径Rc;凹陷部分P1
凹陷底壁P10;凹陷深度L;定涡旋涡卷的轴向高度H;斜面部段P12
平面部段P14;第三径向宽度K;台阶部T;凹陷角度G
通风开口Q10、Q20、Q30;导流涡卷部段P20
具体实施方式
下文将结合附图1-11对本申请的优选实施方式进行详细描述。以下的描述在本质上只是示例性的而非意在限制本申请及其应用或用途。
在下述示例性实施方式中,所述涡旋压缩机示例性地示出为立式涡旋压缩机,然而根据本申请的涡旋压缩机并不限于此类型,而可以是任何合适类型的涡旋压缩机,例如,卧式涡旋压缩机等。
图1示出了根据本申请的涡旋压缩机的纵向截面图;图2a示出图1中的定涡旋1的立体图,其中示出了安装在定涡旋22的进气口S处的进气罩D;图2b示出图2a中的定涡旋22的另一角度的立体图,其中移除了进气罩D以示出定涡旋22的进气口S;图2c示出涡旋压缩机1的定涡旋22的进气口S的另一种构型。首先,将参照图1至图2c概要地描述根据本申请的涡旋压缩机1的总体结构。
如图1所示,涡旋压缩机1可以包括呈大致筒状的壳体12、电动马达(包括定子14和转子15)、驱动轴16、主轴承座11、动涡旋24、定涡旋22。
位于壳体12的顶部处的盖26和位于壳体12的底部处的基部28可以安装至壳体12,从而限定了涡旋压缩机1的内部容积。例如润滑油的润滑剂可以储存在壳体12的底部内的油池OR中以用于润滑涡旋压缩机1的各种部件。
电动马达包括定子14和转子15。转子15用于对驱动轴16进行驱动以使驱动轴16绕其旋转轴线相对于外壳12旋转。驱动轴16可以包括偏心销,偏心销安装至驱动轴16的第一端(顶端)或者与驱动轴16的第一端一体地形成。驱动轴16可以包括中心孔52和偏心孔(图中未示出),中心孔52形成在驱动轴16的第二端(底端)处,偏心孔从中心孔52向上延伸至偏心销的端部表面。中心孔52的端部(下端)可以浸入在涡旋压缩机1的壳体12的底部的油池OR中,从而例如在因驱动轴16的旋转而产生的离心力的作用下能够从壳体12底部处的油池OR输送润滑油,并且使润滑油向上流动经过中心孔52和偏心孔并且从偏心销的端部表面流出。从偏心销的端部表面流出的润滑油可以流动至例如形成在偏心销与动涡旋24之间以及主轴承座11与动涡旋24之间的润滑油供应区域中。该润滑油供应区域中的润滑油可以对例如偏心销与动涡旋24之间以及主轴承座11与动涡旋24之间的旋转接合部和滑动表面进行润滑。
定涡旋22例如使用机械紧固件——如螺钉紧固构件——安装至主轴承座11。动涡旋24由主轴承座11轴向地支承并且被主轴承座11支承成能够进行绕动运动。具体地,动涡旋24的毂部G可以可旋转地联接至驱动轴16的偏心销,动涡旋24经由驱动轴16(具体为偏心销)通过电动马达而被驱动,从而借助十字滑环而能够相对于定涡旋22进行平动转动——即所述绕动(亦即,动涡旋24的轴线相对于定涡旋22的轴线公转,但是动涡旋24和定涡旋22二者本身并未绕它们各自的轴线旋转)。
动涡旋24和定涡旋22构成适于压缩工作流体(例如制冷剂)的压缩机构CM,其中,定涡旋22包括定涡旋端板221、定涡旋涡卷220和位于定涡旋22中心处的排气口V;动涡旋24包括动涡旋端板241、动涡旋涡卷240和上述毂部G,压缩机构CM包括位于定涡旋22的外周壁223上的进气口S(图2b和图2c中示出的两种构型的进气口S)、由定涡旋22与动涡旋24限定的开放的吸气腔以及用于对工作流体(例如制冷剂)进行压缩的一系列封闭的压缩腔,其中,该进气口S与所述吸气腔流体连通并且与压缩机构CM外部的制冷剂源流体连通,从而将来自制冷剂源的制冷剂经由进气口S供送至压缩机构CM的 吸气腔以及一系列封闭的压缩腔,从而对制冷剂进行压缩,并将压缩后的制冷剂从定涡旋22中心处的排气口V排出至压缩机构CM外部。
关于制冷剂源,如图1中所示,涡旋压缩机1的壳体12的一侧设置有制冷剂入口120,并且在图1所示的涡旋压缩机1中包括有从入口120延伸至定涡旋22的进气口S的进气罩D。在图2a和2b所示的定涡旋22的立体图中,清楚地示出了定涡旋22的进气口S以及安装在进气口S处的进气罩D,该进气罩D能够起到输送和导引制冷剂的作用,以使得制冷剂能够从入口120直接流入进气口S中,从而避免制冷剂在壳体12内、压缩机构CM外部的环境中停留而吸热导致焓差降低,从而提高涡旋压缩机1的制冷效率。但是应当理解的是,尽管本申请的下述实施例以及附图中均以这种具有进气罩D的涡旋压缩机1为例来进行描述,但是本申请的构型不限于此,而是也适用于不带有进气罩D的涡旋压缩机。
另外,如在图2b中所示,进气口S为设置在定涡旋22的外周壁223中的开口,并且进气口S于外周壁223的底部沿着定涡旋22的轴向方向向上延伸至外周壁223的顶部,但是,本申请不限于此,图2c示出了根据本申请的涡旋压缩机1的定涡旋22的进气口S的另一种构型,如图2c中所示,与图2b中的构型相比,进气口S并未向上延伸至外周壁223的顶部,而是在进气口S的上方保留有一部分的外周壁223从而形成桥接部Q。针对这两种构型的进气口S,将会在下文的具体实施方式中涉及,并做进一步详细描述。
如在前文所述,在现有技术中,制冷剂在经由进气口进入压缩机构的吸气腔时可能产生湍流或涡流以及速度梯度,从而造成压力损失,使制冷剂的焓差降低,涡旋压缩机的制冷效率因此降低。为了解决上述问题,本申请对涡旋压缩机1的定涡旋22进行了改进,具体地,在进气口S与吸气腔之间设计了导流通路P,并针对导流通路P进行了流线型设计,以及防湍流、涡流和压力损失等方面的设计,从而显著提高涡旋压缩机的制冷效率。
下面将参照图3至图11详细描述根据本申请的涡旋压缩机1的定涡旋22的各个优选实施方式,以具体描述对于导流通路P的各方面的优化设计。
图3示出了根据本申请的第一实施例的定涡旋22的平面图,图中示意性地示出了定涡旋涡卷220与动涡旋涡卷240之间的接合;图4示出了图3中的定涡旋22的局部放大图,并且移除了动涡旋涡卷240。
如图3中所示,定涡旋22包括:定涡旋端板221;从定涡旋端板221的第一侧面222延伸的定涡旋涡卷220;以及从定涡旋端板221的第一侧面222延伸并且在定涡旋涡卷220的径向外侧处围绕定涡旋涡卷220的外周壁223,定涡旋22还包括位于定涡旋涡卷220、定涡旋端板221和外周壁223限定的空间中的导流通路P,导流通路P从定涡旋涡卷220的与外周壁223接合的起始端C延伸、并且沿着定涡旋涡卷220的从起始端C至定涡旋涡卷220的待与涡旋压缩机1的动涡旋24的动涡旋涡卷240的径向最外侧末端接合的接合位置A的涡卷部段的至少一部分延伸,并且在外周壁223中设置有进气口S,导流通路P与进气口S流体连通,在本实施例中,外周壁223中的进气口S具有如前所述的图2c中的构型,并且在图3和图4中示出了位于进气口S上方的桥接部Q。
在本实施例中,优选地,导流通路P从起始端C延伸至接合位置A处,并且导流通路P的两个内侧壁为位于定涡旋涡卷220上的第一侧壁W1和位于外周壁223上的第二侧壁W2,第一侧壁W1和第二侧壁W2(包括桥接部Q)从接合位置A朝向起始端C汇聚,即,使得由第一侧壁W1和第二侧壁W2(包括桥接部Q)限定的导流通路P的第二径向宽度X在整体上从接合位置A朝向起始端C减小,应当注意的是,这不局限于第二径向宽度X从接合位置A朝向起始端C始终递减的情况(将在下文中详述),并且导流通路P的第二径向宽度X小于与导流通路P邻接的邻接部段——即,图3和图4中从接合位置A点起且包括接合位置A的延伸部段——的第一径向宽度Xm。并且,第一侧壁W1包括从起始端C延伸的第一部段W11和其余的第二部段W12,第一部段W11的第一曲率中心与第二部段W12的第二曲率中心分别位于定涡旋涡卷220的位于导流通路P的延伸范围内的导流涡卷部段P20的(或第一侧壁W1的)径向相反的两侧,即,如图3和图4中所示,第一部段W11和第二部段W12以B点位置作为分界,B点两侧的第一部段W11和第二部段W12如图所示地呈各自朝向相反的方向弯曲的弧形,并且第一部段W11的曲率变化值大于第二部段W12的曲率变化值,即,第一部段W11比第二部段W12整体上具有更小的曲率半径。
可知,由于第一部段W11和第二部段W12如图所示地呈各自朝向相反的方向弯曲的弧形,并且第一部段W11的曲率变化值大于第二部段W12的曲率 变化值,因此,尽管在整体上,导流通路P的第二径向宽度X从接合位置A朝向起始端C减小,但是第二径向宽度X从接合位置A朝向起始端C并不一定始终递减,根据在实际应用中导流通路P的第一侧壁W1和第二侧壁W2的流线型弯曲弧度的设计不同,导流通路P的第二径向宽度X的值可能局部出现波动——例如尤其是在B点附近,而不一定始终递减。
但是,在该第一实施例中,第二径向宽度X从接合位置A朝向起始端C递减,从而形成平滑渐变的流线型,以减小制冷剂流动的阻力,减小制冷剂压力梯度。并且,上述这种两段式不同弯曲方向且不同曲率的设计也是针对制冷剂在导流通路P中的流动而特别设计得到的,能够显著减少制冷剂的湍流和压力损失,从而为制冷剂提供更好的导流效果。
在此需要说明的是,如前所述,在此实施例中,外周壁223中的进气口S具有如前所述的图2c中的构型,并且如在图3和图4中示出的,外周壁223包括位于进气口S上方的桥接部Q,桥接部Q将会对制冷剂的流动起到导流作用,因此,前文所提及的导流通路P的第二径向宽度X主要意指由第一侧壁W1与第二侧壁W2(包括桥接部Q的部段的侧壁)限定的第二径向宽度X,但是,应当理解的是,前文所提及的导流通路P的第二径向宽度X实际上也涵盖了邻接进气口S的、由导流通路P底部的外边缘S10与第一侧壁W1限定的导流通路P底部径向宽度X’。具体地,如图3和图4中所示,为了为制冷剂的流动提供更大的导流空间,桥接部Q处内侧的第二侧壁W2沿径向向外扩张,即,从图3和图4中所示的定涡旋22的定涡旋端板221的第一侧面222俯视时,能够穿过桥接部Q处内侧的第二侧壁W2看到导流通路P底部的外边缘S10,即能够看到一部分的进气口S,也就是说,由第一侧壁W1与第二侧壁W2限定的第二径向宽度X略大于导流通路P底部径向宽度X’,而对于径向宽度X’的设计,可以类似于由第一侧壁W1与第二侧壁W2限定的第二径向宽度X的设计,即,使得导流通路P底部径向宽度X’小于所述邻接部段的第一径向宽度Xm,并且优选地,使得径向宽度X’从接合位置A朝向起始端C减小或递减。应当理解的是,对于例如图2b中所示的不包括桥接部Q的构型的进气口S,上述设计也是适用的。
更优选地,关于第一部段W11和第二部段W12以B点位置作为分界,可以根据实际应用需求来调整B点的位置,来调整制冷剂的流动,比如根据制 冷剂进气量、流速、压力等的不同要求,B点可以位于从起始端C延伸至第一侧壁W1长度的大约1/5至2/3的位置处——即,第一部段W11占第一侧壁W1长度的大约1/5至2/3,优选地,在本实施例中,B点可以位于从起始端C延伸至第一侧壁W1长度的大约1/3位置处,即,第一部段W11占第一侧壁W1长度的大约1/3,第二部段W12占第一侧壁W1长度的大约2/3,从而对于湍流具有更好的抑制作用,并且能够减小制冷剂的压力损失。
另外,基于第一侧壁W1的上述流线型设计,使得从接合位置A至起始端C,导流通路P处的导流涡卷部段P20的第一径向厚度Y递增,并且使得该第一径向厚度Y满足:Ym≤Y≤3Ym,其中,Ym表示与导流通路P邻接的上述邻接部段(包括接合位置A)处的定涡旋涡卷220的第二径向厚度。
并且,优选地,如图3和图4中所示,在导流通路P中,在起始端C处具有最大的曲率——即,具有最小的曲率半径,并且更优选地,在起始端C处形成圆角,并且使得该圆角的曲率半径Rc满足:2mm≤Rc≤0.4Xm,其中Xm表示前述第一径向宽度,具有这样的曲率半径的圆角的起始端C与前述流线型设计的第一侧壁W1和第二侧壁W2相结合,使得制冷剂在经由如2c和图3-4中所示的进气口S进入导流通路P中时不会在起始端C处形成涡流,并且能够显著降低导流通路P中的湍流,从而减小制冷剂在导流通路P中的压力梯度,减小压力损失,进而提高涡旋压缩机1的制冷效率。并且,应当说明的是,尽管在图示的优选实施方式中,进气口S的横向于进气口S的进气方向的一侧与起始端C齐平,但是本申请不局限于此,在实际应用中,进气口S也可以设置成较远离起始端C,即,进气口S的横向于进气方向的一侧不与起始端C齐平并且距离起始端C一定距离,即使在这种情况下,由于在本申请中对于起始端C处的圆角及其曲率半径进行了特别设计,并且结合前述流线型设计的第一侧壁W1和第二侧壁W2,也能够避免或改善在导流通路P中、特别是在起始端C的圆角处形成涡流或湍流的情况。当然,优选地,如在本申请的优选实施例中,将进气口S设置成使得进气口S的横向于进气方向的一侧与起始端C齐平将能够最佳地避免涡流或湍流的情况。
另外,需要指出,尽管在上述实施例以及下文将描述的各实施例中,导流通路P从起始端C延伸至接合位置A处,但是如前文所述的,导流通路P也可以被限定为仅沿着定涡旋涡卷220的从起始端C至接合位置A的涡卷部段 的一部分延伸。也就是说,尽管在本文的具体实施方式中默认导流通路P从起始端C延伸至接合位置A处、并且采用接合位置A来对导流通路P中的相关特征进行描述,但是,应当明确的是,本文中关于导流通路P进行描述的各个相关特征——例如相应的比例值等——均受到导流通路P本身的延伸范围的限制,也就是说,与导流通路P从起始端C延伸至接合位置A处的情况相比,当导流通路P仅沿着定涡旋涡卷220的从起始端C至接合位置A的涡卷部段的一部分延伸而未延伸至接合位置A时,原本可能位于、邻接或延伸至接合位置A处的一些特征部也将远离接合位置A。
在上述实施例中,主要采取对导流通路P的两侧壁的取向和流线型设计以及导流通路P的宽度尺寸的调节来实现对制冷剂的优化的导流作用,但是,本申请不限于此,也可以通过进一步调节导流通路P的沿着定涡旋22的轴向方向的深度尺寸来更好地调节导流通路P的内部容积和相关的导流效果,例如图5-8示出了根据本申请的第二实施例的定涡旋22,下面将结合图5-8详细描述第二实施例。
图5示出了第二实施例的定涡旋22的立体图;图6示出了图5中的定涡旋22的局部放大图;图7示出了图5中的定涡旋22的局部纵向截面图;图8示出了图5中的定涡旋22的另一角度的局部纵向截面图。
如图5所示,在本实施例中,定涡旋22的外周壁223中的进气口S具有如前所述的图2b中的构型,即,进气口S上方不包括桥接部。并且,在本实施例中,导流通路P在沿着定涡旋22的径向方向上具有与前述第一实施方式中的导流通路P相似的流线型设计,区别在于:在本实施例中,导流通路P进一步包括相对于定涡旋端板221的第一侧面222凹陷的凹陷部分P1,凹陷部分P1包括凹陷底壁P10,并且凹陷底壁P10相对于第一侧面222的凹陷深度L满足:L≤0.3H,其中H为定涡旋涡卷220的轴向高度(如在图7中最佳示出),并且优选地,凹陷深度L从前述接合位置A朝向起始端C增大,由此使得从起始端C延伸的第一部段W11具有相对更大的轴向空间以供接收较多的制冷剂,以利于缓和制冷剂在进入导流通路P时的冲击,随后随着向B点至接合位置A延伸而逐渐减小的凹陷深度L,能够平缓地将制冷剂疏导向随后的吸气腔中,而利于减少湍流和涡流的形成,并且能够降低导流通路P中不同区域中的制冷剂的压力梯度。
优选地,在本实施例中,凹陷部分P1沿着流体通路P的全长延伸,即从起始端C延伸至接合位置A,但是本申请不限于此,根据实际应用需求可以进行相应的调整,例如,凹陷部分P1可以从起始端C延伸流体通路P的3/4长度、1/2长度、1/3长度等,可以进行灵活选择。
另外,如图6和图8中最佳示出的,凹陷底壁P10包括从接合位置A延伸的斜面部段P12和其余延伸至起始端C的平面部段P14。关于斜面部段P12和平面部段P14各自的长度,均可以根据实际应用需求进行调节,只要能够实现减少湍流和涡流的形成,并且能够降低导流通路P中不同区域中的制冷剂的压力梯度即可,比如,凹陷底壁P10也可以仅包括从起始端C延伸至接合位置A的斜面,而不包括平面部段,或者,凹陷底壁P10也可以包括曲面或曲面与倾斜斜面或水平平面的各种可能的组合。
进一步,为了便于更好地调节导流通路P对于制冷剂的导流作用,可以特别设计凹陷部分P1的凹陷底壁P10的第三径向宽度K的数值,以优选地使得0.7Xm≤K<Xm,其中Xm表示前述第一径向宽度。并且,考虑到如在第一实施例中提及的导流通路P的第二径向宽度X也小于第一径向宽度Xm,可以进一步设定使得凹陷部分P1的至少一部分部段的第三径向宽度K小于沿着定涡旋涡卷220的相同位置处的相应的第二径向宽度X,从而在定涡旋端板221的第一侧面222上形成台阶部T(如在图7中最佳示出)。在图6中也示出了相应的台阶部T,图中的台阶部T位于第一侧壁W1一侧,并且从接合位置A延伸第一侧壁W1的一个部段且逐渐变窄而并未延伸至起始端C,关于第三径向宽度K以及相应的台阶部T,可以依据实际应用需求进行灵活调节,并且,应当理解的是,台阶部T也可以位于第二侧壁W2的一侧上。
另外,对于凹陷底壁P10,优选地需要控制其相对于定涡旋端板221的第一侧面222形成的凹陷角度G,即,优选地使得凹陷角度G小于等于70°,也就是说,凹陷底壁P10的各处相对于第一侧面222形成的凹陷角度G均小于等于70°,以控制湍流和涡流的形成,并调节各处制冷剂的压力梯度。
应当理解的是,尽管在上述第二实施例中,将凹陷部分P1的设计与第一实施例中公开的流体通路P的流线型设计进行了组合,但是,本申请不限于此,在一些情况下,第二实施例中公开的凹陷部分P1的设计完全可以独立应用,也能够在一定程度上实现减少湍流和涡流的形成以及降低不同区域中的制冷 剂的压力梯度的技术效果。
下面将结合附图9-11描述根据本申请的其他进一步的改型。
图9示出了根据本申请的第三实施例的定涡旋22的立体图。
本实施例是在第一实施例所述的流体通路P的流线型设计和第二实施例所述的凹陷部分P1的设计的组合基础上进行的进一步改进。如图9所示,在本实施例中,外周壁223中的进气口S具有如前所述的图2c中的构型,并且在图9中示出了位于进气口S上方的桥接部Q。本实施例的改进主要在于:在桥接部Q中设置有一个长形的通风开口Q10,使得一部分制冷剂能够经由该通风开口Q10进入导流通路P中,借由此分支的流动路径,能够冲散导流通路P中可能出现的湍流或涡流、平衡导流通路P中各区域中的压力梯度,从而提高涡旋压缩机1的制冷效率。
并且优选地,通常在导流通路P的第二部段W12中更容易产生湍流、涡流或压力梯度等,因此,如图所示,优选地可以将通风开口Q10设置在对应于第二部段W12的位置,以更好地发挥作用。
类似地,可以根据实际应用需求设置其他形式的通风开口,来实现类似的目的。如图10示出了根据本申请的第四实施例的定涡旋的立体图;以及图11示出了根据本申请的第五实施例的定涡旋的立体图。
在图10中示出采用两个圆形通风开口Q20,这两个通风开口Q20之间的间距可以根据需要进行调节,以实现最佳的技术效果,并且通风开口Q20的数量也可以根据需要来设置。
如在图11中示出了成排的蜂窝状的通风开口Q30,能够使更多的制冷剂经由通风开口Q30流入导流通路P中,并且这三排通风开口Q30也可以定位成如图所示地分别对应于第一部段W11和第二部段W12,这可以根据需求进行设置。
还应理解的是,这种通风开口也可以类似地设置在定涡旋22的外周壁223的除了桥接部Q的其他部分中,以实现类似的技术效果。
这种通风开口的设计结构简单,可以采用诸如打孔、铣槽、3D打印钻孔等各种常见的方法加工形成为具有各种其他形状的孔。并且这种设计也能够单独采用,而不与第一实施例所述的流体通路P的流线型设计和第二实施例所述的凹陷部分P1的设计进行组合。
为了更好地说明本申请的有益技术效果,发明人以29cc型号的涡旋压缩机为研究对象,进行了如下对比实验:以采用了本申请的第三实施例中的定涡旋的涡旋压缩机、采用现有技术的定涡旋的涡旋压缩机进行CFD对比分析,结果如下表1所示,结果表明:同一工况下,相比于采用现有技术的定涡旋的涡旋压缩机,采用了本申请的第三实施例中的定涡旋的涡旋压缩机在进气口处的压损可以减少25.7%。这充分验证了本申请的定涡旋和涡旋压缩机所带来的显著的技术进步。
Figure PCTCN2020127716-appb-000001
显而易见的是,通过将不同的实施方式及各个技术特征以不同的方式进行组合或者对其进行改型,可以进一步设计得出各种不同的实施方式。
上文结合具体实施方式描述了根据本申请的优选实施方式的定涡旋和涡旋压缩机。可以理解,以上描述仅为示例性的而非限制性的,在不背离本申请的范围的情况下,本领域技术人员参照上述描述可以想到多种变型和修改。这些变型和修改同样包含在本申请的保护范围内。

Claims (14)

  1. 一种涡旋压缩机(1)的定涡旋(22),包括:
    定涡旋端板(221);
    从所述定涡旋端板的第一侧面(222)延伸的定涡旋涡卷(220);以及
    从所述第一侧面延伸并且位于所述定涡旋涡卷径向外侧、围绕所述定涡旋涡卷的外周壁(223),在所述外周壁中设置有进气口(S),
    所述定涡旋涡卷包括与所述外周壁接合的起始端(C)以及待与所述涡旋压缩机的动涡旋的动涡旋涡卷的径向最外侧末端接合的接合位置(A),并且所述定涡旋涡卷包括从所述起始端延伸至所述接合位置的涡卷部段,
    其特征在于,所述定涡旋还包括与所述进气口流体连通的导流通路(P),所述导流通路从所述起始端延伸、并且沿着所述涡卷部段的至少一部分延伸,
    所述涡卷部段包括位于所述导流通路中的第一侧壁,所述第一侧壁包括从所述起始端延伸的具有第一曲率中心的第一部段(W11)和从所述第一部段延伸的具有第二曲率中心的第二部段(W12),所述第一曲率中心与所述第二曲率中心分别位于所述第一侧壁的径向相反的两侧。
  2. 根据权利要求1所述的定涡旋,其特征在于,所述第一部段从所述起始端延伸至所述第一侧壁的大约1/5至2/3长度处,所述第一部段的曲率变化值大于所述第二部段的曲率变化值。
  3. 根据权利要求1所述的定涡旋,其特征在于,在所述导流通路中,在所述起始端处具有最大的曲率。
  4. 根据权利要求1所述的定涡旋,其特征在于,所述外周壁与所述定涡旋涡卷之间的间距在所述接合位置处为第一径向宽度Xm,所述起始端形成圆角,并且所述圆角的曲率半径Rc满足:2mm≤Rc≤0.4Xm。
  5. 根据权利要求1所述的定涡旋,其特征在于,沿着从所述接合位置至所述起始端的方向,所述涡卷部段的限定所述导流通路的导流涡卷部段(P20) 的第一径向厚度(Y)递增,并且所述第一径向厚度大于等于所述定涡旋涡卷的在所述接合位置处的第二径向厚度(Ym)且小于等于所述第二径向厚度的3倍。
  6. 根据权利要求1所述的定涡旋,其特征在于,所述导流通路包括相对于所述第一侧面凹陷的凹陷部分(P1),所述凹陷部分包括凹陷底壁(P10),并且所述凹陷底壁相对于所述第一侧面的凹陷深度L满足:L≤0.3H,其中H为所述定涡旋涡卷的轴向高度。
  7. 根据权利要求6所述的定涡旋,其特征在于,所述凹陷深度朝向所述起始端增大。
  8. 根据权利要求6所述的定涡旋,其特征在于,所述凹陷底壁包括倾斜斜面、水平平面、曲面或其组合。
  9. 根据权利要求6所述的定涡旋,其特征在于,所述外周壁与所述定涡旋涡卷之间的间距在所述接合位置处为第一径向宽度Xm,所述凹陷部分的第三径向宽度K满足:0.7Xm≤K<Xm,并且所述导流通路具有第二径向宽度(X),所述凹陷部分的至少一部分的第三径向宽度小于所述导流通路的沿着所述定涡旋涡卷的延伸方向的对应位置处的所述第二径向宽度,以在所述第一侧面上形成台阶部(T)。
  10. 根据权利要求6所述的定涡旋,其特征在于,所述凹陷底壁相对于所述第一侧面的凹陷角度(G)小于等于70°。
  11. 根据权利要求1-10中任一项所述的定涡旋,其特征在于,在所述外周壁中设置至少一个通风开口,使得制冷剂能够经由所述至少一个通风开口进入所述导流通路中。
  12. 根据权利要求11所述的定涡旋,其特征在于,所述外周壁包括位于 所述外周壁的轴向末端的与所述进气口相邻的桥接部,所述至少一个通风开口设置在所述桥接部处。
  13. 根据权利要求1所述的定涡旋,其特征在于,所述进气口的周向一侧与所述起始端大致齐平。
  14. 一种涡旋压缩机,其特征在于,包括权利要求1-13中任一项所述的定涡旋。
PCT/CN2020/127716 2020-07-27 2020-11-10 定涡旋和涡旋压缩机 WO2022021665A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20946875.0A EP4191063A4 (en) 2020-07-27 2020-11-10 FIXED SPIRAL AND SCROLL COMPRESSOR
US18/006,088 US20230349381A1 (en) 2020-07-27 2020-11-10 Fixed Scroll and Scroll Compressor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202021507746.9 2020-07-27
CN202021507746.9U CN212717154U (zh) 2020-07-27 2020-07-27 定涡旋和涡旋压缩机
CN202010731522.4 2020-07-27
CN202010731522.4A CN113982913A (zh) 2020-07-27 2020-07-27 定涡旋和涡旋压缩机

Publications (1)

Publication Number Publication Date
WO2022021665A1 true WO2022021665A1 (zh) 2022-02-03

Family

ID=80037448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127716 WO2022021665A1 (zh) 2020-07-27 2020-11-10 定涡旋和涡旋压缩机

Country Status (3)

Country Link
US (1) US20230349381A1 (zh)
EP (1) EP4191063A4 (zh)
WO (1) WO2022021665A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127209A (ja) * 2008-11-28 2010-06-10 Sanden Corp スクロール型流体機械
JP2012031768A (ja) * 2010-07-30 2012-02-16 Mitsubishi Heavy Ind Ltd スクロール圧縮機
CN202628514U (zh) * 2012-04-12 2012-12-26 艾默生环境优化技术(苏州)有限公司 涡旋压缩机
CN203321824U (zh) * 2013-06-14 2013-12-04 艾默生环境优化技术(苏州)有限公司 涡旋压缩机以及定涡旋部件和动涡旋部件
CN103502646A (zh) * 2011-04-28 2014-01-08 三洋电机株式会社 涡旋型压缩机
CN204646671U (zh) * 2015-04-30 2015-09-16 艾默生环境优化技术(苏州)有限公司 涡旋压缩机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364643B1 (en) * 2000-11-10 2002-04-02 Scroll Technologies Scroll compressor with dual suction passages which merge into suction path
JP4310960B2 (ja) * 2002-03-13 2009-08-12 ダイキン工業株式会社 スクロール型流体機械
KR100696123B1 (ko) * 2005-03-30 2007-03-22 엘지전자 주식회사 스크롤 압축기의 고정스크롤
KR100696125B1 (ko) * 2005-03-30 2007-03-22 엘지전자 주식회사 스크롤 압축기의 고정스크롤
JP6578504B2 (ja) * 2013-04-30 2019-09-25 パナソニックIpマネジメント株式会社 スクロール圧縮機
KR102385789B1 (ko) * 2017-09-01 2022-04-13 삼성전자주식회사 스크롤 압축기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127209A (ja) * 2008-11-28 2010-06-10 Sanden Corp スクロール型流体機械
JP2012031768A (ja) * 2010-07-30 2012-02-16 Mitsubishi Heavy Ind Ltd スクロール圧縮機
CN103502646A (zh) * 2011-04-28 2014-01-08 三洋电机株式会社 涡旋型压缩机
CN202628514U (zh) * 2012-04-12 2012-12-26 艾默生环境优化技术(苏州)有限公司 涡旋压缩机
CN203321824U (zh) * 2013-06-14 2013-12-04 艾默生环境优化技术(苏州)有限公司 涡旋压缩机以及定涡旋部件和动涡旋部件
CN204646671U (zh) * 2015-04-30 2015-09-16 艾默生环境优化技术(苏州)有限公司 涡旋压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4191063A4

Also Published As

Publication number Publication date
US20230349381A1 (en) 2023-11-02
EP4191063A4 (en) 2024-08-28
EP4191063A1 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
US9541310B2 (en) Sealed compressor and vapor compression refrigeration cycle apparatus including the sealed compressor
US7942628B2 (en) Turbo compressor
EP2096264A2 (en) Variable geometry turbine and turbocharger
EP1830067B1 (en) Scroll compressor
EP3198147B1 (en) Holding plate for piloted scroll compressor
EP2836718B1 (en) Piloted scroll compressor
CN109477486B (zh) 电动机集成型流体机械
WO2022021665A1 (zh) 定涡旋和涡旋压缩机
JP5511438B2 (ja) スクロール圧縮機
KR101447039B1 (ko) 횡형 스크롤 압축기
CN115126696B (zh) 压缩机泵体、压缩机及温度调节系统
CN212717154U (zh) 定涡旋和涡旋压缩机
JP6257806B2 (ja) 多気筒密閉型圧縮機
CN113982913A (zh) 定涡旋和涡旋压缩机
JP6369066B2 (ja) 圧縮機
WO2024003981A1 (ja) スクロール圧縮機
WO2023098102A1 (zh) 压缩机转子、压缩机泵体、压缩机及温度调节系统
CN217898187U (zh) 压缩机转子、压缩机泵体、压缩机及温度调节系统
CN217898186U (zh) 压缩机泵体、压缩机及温度调节系统
CN115126697B (zh) 压缩机泵体、压缩机及温度调节系统
US11067078B2 (en) Scroll compressor having single discharge port open at starting end of fixed-side wrap
JP2010084707A (ja) 圧縮機
WO2021212772A1 (zh) 涡旋压缩机
JP7028969B2 (ja) スクロール圧縮機
JP2018533684A (ja) 冷蔵庫圧縮機用の給油アセンブリ及び圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946875

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020946875

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020946875

Country of ref document: EP

Effective date: 20230227