WO2022021417A1 - 光学系统、拍摄装置及可移动平台 - Google Patents

光学系统、拍摄装置及可移动平台 Download PDF

Info

Publication number
WO2022021417A1
WO2022021417A1 PCT/CN2020/106395 CN2020106395W WO2022021417A1 WO 2022021417 A1 WO2022021417 A1 WO 2022021417A1 CN 2020106395 W CN2020106395 W CN 2020106395W WO 2022021417 A1 WO2022021417 A1 WO 2022021417A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
photographing device
refractive power
movable platform
Prior art date
Application number
PCT/CN2020/106395
Other languages
English (en)
French (fr)
Inventor
甘汝婷
李玉文
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/106395 priority Critical patent/WO2022021417A1/zh
Priority to CN202080015945.4A priority patent/CN113490877A/zh
Publication of WO2022021417A1 publication Critical patent/WO2022021417A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • G03B17/14Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets interchangeably
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • the present application relates to the field of optical technology, and in particular, to an optical system, a photographing device using the optical system, and a movable platform.
  • the embodiments of the present application provide an optical system, a photographing device, and a movable platform.
  • the optical system is beneficial to the miniaturization of a product, and at the same time, the field of view of the photographing device can be increased.
  • an embodiment of the present application provides an optical system, the optical system includes a first lens, a second lens and a third lens sequentially arranged from the object side to the image side, the first lens having negative light power, the second lens has positive power or negative power, and the third lens has positive power or negative power;
  • optical system satisfies the following expression:
  • f 1 is the focal length of the first lens
  • f 2 is the focal length of the second lens
  • f 3 is the focal length of the third lens.
  • an embodiment of the present application further provides a photographing device, the photographing device includes an optical system and a photographing device, the optical system is connected to the photographing device, and the optical system includes an optical system from an object side to an image side
  • a first lens, a second lens and a third lens are arranged in sequence, the first lens has a negative refractive power, the second lens has a positive refractive power or a negative refractive power, and the third lens has a positive refractive power or negative power;
  • optical system satisfies the following expression:
  • f 1 is the focal length of the first lens
  • f 2 is the focal length of the second lens
  • f 3 is the focal length of the third lens.
  • the present application further provides a movable platform, the movable platform includes a platform body and a photographing device, the photographing device is mounted on the platform body, and the photographing device includes an optical system and a photographing device, The optical system is connected to the photographing device, the optical system includes a first lens, a second lens and a third lens arranged in sequence from the object side to the image side, the first lens has a negative refractive power, the The second lens has positive refractive power or negative refractive power, and the third lens has positive refractive power or negative refractive power;
  • optical system satisfies the following expression:
  • f 1 is the focal length of the first lens
  • f 2 is the focal length of the second lens
  • f 3 is the focal length of the third lens.
  • the optical system, the photographing device and the movable platform provided by the embodiments of the present application, wherein the optical system is installed on the photographing device, the photographing device can be installed on the main body of the movable platform, and the optical system utilizes the combination of three lenses and specific parameters
  • the setting can not only reduce the volume and weight of the product, but also increase the field of view of the photographing device and improve the imaging quality.
  • FIG. 1 is a schematic structural diagram of an optical system provided by an embodiment of the present application.
  • FIG. 2 is a schematic configuration diagram of an optical system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another optical system provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another optical system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another optical system provided by an embodiment of the present application.
  • FIG. 6 is a schematic configuration diagram of another optical system provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an optical system provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a photographing device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another photographing device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another photographing device provided by an embodiment of the present application.
  • 15 is a schematic structural diagram of another photographing device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • 300 a movable platform; 30, the platform body.
  • FIG. 1 is a schematic structural diagram of an optical system provided by an embodiment of the present application.
  • the optical system can be used to increase the field of view of the photographing equipment and at the same time improve the imaging quality.
  • the optical system 100 includes a first lens 101 , a second lens 102 and a third lens 103 arranged in order from the object side O to the image side I.
  • the first lens 101, the second lens 102 and the third lens 103 form the lens group 10, the first lens 101 has negative refractive power, the second lens 102 has positive refractive power or negative refractive power, and the third lens 103 has Positive or negative power.
  • the optical system 100 satisfies the following expression:
  • f 1 is the focal length of the first lens 101
  • f 2 is the focal length of the second lens 102
  • f 3 is the focal length of the third lens 103 .
  • the optical system configured according to the above parameters can be installed on the shooting device (mobile phone or hand-held camera) to increase the field of view of the shooting device, and then shoot a wider range of scenes.
  • the optical system uses the combination of three lenses and specific parameters
  • the setting can not only increase the viewing angle of the photographing device and improve the imaging quality, but also reduce the volume and weight of the photographing device.
  • optical system satisfies the following expression:
  • f 1 is the focal length of the first lens 101
  • f 2 is the focal length of the second lens 102
  • f 3 is the focal length of the third lens 103 . That is, when the optical system 100 satisfies the expression (1), it needs to further satisfy the expression (2).
  • the first lens 101 has negative refractive power
  • the second lens 102 has positive refractive power or negative refractive power
  • the third lens 103 has positive refractive power or negative refractive power, specifically including the following possibilities:
  • the first lens 101 has negative refractive power, the second lens 102 has positive refractive power, and the third lens 103 has positive refractive power; or, the first lens 101 has negative refractive power, and the second lens 102 has positive refractive power, And the third lens 103 has negative refractive power; or, the first lens 101 has negative refractive power, the second lens 102 has negative refractive power, and the third lens 103 has positive refractive power.
  • the optical system 100 can also be restricted to satisfy the expression: 0 ⁇
  • the optical system in order to correct chromatic aberration and further improve the imaging quality of the optical system, the optical system may also be limited to satisfy the following expression:
  • vd 1 , vd 2 , and vd 3 are the dispersion coefficients of the first lens 101 , the second lens 102 , and the third lens 103 , ie, Abbe numbers, respectively.
  • An optical system satisfying expression (3) can well correct chromatic aberration, including calibration of vertical chromatic aberration, thereby improving the imaging quality of the optical system.
  • the first lens 101 of the optical system 100 may also be limited, that is, the optical system 100 is limited to satisfy the expressions: 1.6 ⁇ n 1 ⁇ 1.95, 30 ⁇ vd 1 ⁇ 70, where n 1 is the refractive index of the first lens 101 , and vd 1 is the dispersion coefficient of the first lens 101 .
  • the second lens 102 of the optical system 100 may also be limited, that is, the optical system 100 is limited to satisfy the expressions: 1.5 ⁇ n 2 ⁇ 1.8, 25 ⁇ vd 2 ⁇ 60, where n 2 is the refractive index of the second lens 102 , and vd 2 is the dispersion coefficient of the second lens 102 .
  • the third lens 102 of the optical system 100 may also be limited, that is, the optical system 100 is limited to satisfy the expressions: 1.5 ⁇ n 3 ⁇ 1.8, 45 ⁇ vd 3 ⁇ 70, where n 3 is the refractive index of the third lens 103 , and vd 3 is the dispersion coefficient of the third lens 103 .
  • the above-mentioned limitations on the refractive index and dispersion coefficient of the first lens 101 , the second lens 102 and the third lens 103 of the optical system 100 can reduce the overall chromatic aberration of the optical system, thereby improving the imaging quality of the optical system .
  • the optical system 100 is limited to satisfy the following expression:
  • T1 is the center thickness of the first lens 101
  • T2 is the center thickness of the second lens 102
  • T3 is the center thickness of the third lens 103
  • TL is the first lens 101 near the object side The distance from the center of the lens surface to the center of the lens surface of the third lens 103 close to the image side.
  • the optical system 100 is limited to satisfy the following expression:
  • T2 is the center thickness of the second lens 102
  • T3 is the center thickness of the third lens 103
  • TL is the center of the lens surface of the first lens 101 near the object side to the third lens 103 near the image
  • a 1 is the distance between the first lens 101 and the second lens 102 .
  • optical system can be defined to satisfy the expression (4) and also satisfy the expression (5), so that the size of the optical system can be further limited and the weight of the optical system can be reduced.
  • the first lens 101 is limited to satisfy: 0.03 ⁇ T 1 /TL ⁇ 0.2, which can greatly reduce the weight of the first lens 101 and contribute to reducing the overall weight of the optical system.
  • the material of the first lens 101 , the second lens 102 and/or the third lens 103 includes at least one of plastic material and glass material.
  • the first lens 101 , the second lens 102 and the third lens 103 are all made of plastic or glass; or, the first lens 101 is made of plastic, and the second lens 102 and the third lens 103 The material is glass; or, the first lens 101 is made of glass, the second lens 102 is made of glass, the third lens 103 is made of plastic, and so on.
  • the first lens 101 , the second lens 102 and the third lens 103 are all made of glass.
  • the design of glass material makes the lens of the optical system easy to process, not easy to be scratched, and easy to carry and disassemble.
  • the density coefficient of the material of the first lens 101 may be limited to be less than or equal to 5.5 g/cm 3 .
  • the density coefficient of the material of the second lens 102 may be limited to be less than or equal to 3.3 g/cm 3 .
  • the density coefficient of the material of the third lens 103 may be limited to be less than or equal to 4.0 g/cm 3 .
  • the first lens 101 is a negative lens
  • the negative lens can be, for example, a meniscus lens or a biconcave lens.
  • the negative lens characteristic of the first lens 101 can help to reduce the turning force and the aberration caused by the large-angle incident light, thereby improving the imaging quality of the optical system.
  • the large angle means that the incident angle relative to the optical axis is greater than the preset angle value, such as greater than 40 degrees or 50 degrees, and of course other values, which are not limited here.
  • the second lens 102 and the third lens 103 are cemented to form a cemented lens in order to improve imaging quality and facilitate installation on a photographing device.
  • the radii of curvature of the lens surfaces of the second lens 102 and the third lens 103 on the cemented surface are equal, of course, they may not be equal.
  • the use of a cemented lens is also conducive to the correction of chromatic aberration of the optical system, and is conducive to effectively connecting with the main lens of the photographing device when the light from a large angle is incident, thereby improving the imaging quality of the optical system.
  • the length of the optical system may be defined to be less than or equal to 5.5 mm.
  • the weight of the optical system may be limited to be less than or equal to 3g.
  • the restriction on weight is conducive to the flexible setting of the optical system connection method, which makes it possible to install or store easily with quick release, such as magnetic attraction and sticking.
  • the lightweight configuration allows the optical system to use smaller magnets for magnetic attachment purposes.
  • the mounting and dismounting of the lightened optical device will not cause other devices connected to it, such as the gimbal, to vibrate or shake violently, thereby affecting the imaging effect.
  • the lightened optical system can realize a connection method without manual positioning, which is more user-friendly.
  • the field of view of the optical system can be increased to 110°, that is, the field of view is greater than 110°, thereby improving the field of view of the optical system. While being large, it can still ensure clear imaging, and can achieve shooting at different object distances from 0.01m to infinity, and also meets the needs of large viewing angle shooting on small imaging devices, making the device more applicable.
  • the first lens 101 , the second lens 102 and/or the third lens 103 are defined as aspherical lenses, that is, the first lens 101 , the second lens 102 and/or the third lens 103 are aspherical lenses. At least one aspherical lens exists in the lens 102 and the third lens 103 .
  • the first lens 101 , the second lens 102 , and the third lens 103 may have one lens surface that is aspherical, or both lens surfaces may be aspherical.
  • one mirror surface of the aspherical lens or all aspherical lens surfaces may be high-order aspherical surfaces, and the high-order aspherical surfaces satisfy the following expression:
  • z is the rotational symmetry axis of the aspheric surface
  • c is the curvature of the vertex
  • y is the radial coordinate, and its unit is the same as the unit length of the lens
  • k is the quadratic curve constant
  • a 1 to a 8 represent each The coefficients corresponding to the radial coordinates.
  • the optical system in order to facilitate the installation of the optical system on the photographing device, can be detachably and fixedly connected to the photographing device.
  • the optical system and the photographing device can be magnetically attracted, pasted, screwed, or snapped.
  • One or more connection methods are fixedly connected.
  • the distance between the optical system and the photographing device is set to be greater than 2.5mm in order to leave an operating space for the optical system during installation, disassembly and operation, and to avoid scratching the optical system or the lens of the photographing device.
  • the specific numerical configuration of the optical system is given below in conjunction with the accompanying drawings and tables.
  • the surface numbers 1, 2, 3, 4, and 5 represent the surface labels in the optical system, which respectively represent the mirror surface of the first lens 101 and the mirror surface of the second lens 102. , the mirror surface of the third lens 103 .
  • the two lens surfaces of the first lens 101 are surface 1 and surface 2 respectively
  • the two lens surfaces of the second lens 102 are respectively surface 3 and surface 4
  • the two lens surfaces of the third lens 103 The lens surfaces are surface 4 and surface 5, respectively.
  • the surface 4 of the second lens 102 and the surface 4 of the third lens 103 are the same, which means that the curvatures of the lens surfaces of the two lenses are the same, which is convenient for cementing to form a cemented lens.
  • the radius of curvature represents the degree of curvature of the lens surface, which can be represented by R.
  • optical system shown in Table 1, Table 2, and Table 3, and the structure of the corresponding optical system are shown in Figures 1 to 4, respectively.
  • the optical system shown in FIG. 1 and FIG. 2 is called Embodiment 1, corresponding to Table 1
  • the optical system shown in FIG. 3 is called Embodiment 2, corresponding to Table 2
  • the optical system shown in FIG. 4 is called Embodiment 2 Example 3, corresponding to Table 3.
  • Table 1 is the surface parameter data of the lens of the optical system of the first embodiment
  • Table 2 is the surface parameter data of the lens of the optical system of the second embodiment
  • Table 3 is the surface parameter data of the lens of the optical system of the third embodiment
  • Table 4 is the aspheric coefficient data of the optical system lens-surface of the third embodiment
  • k is a quadratic curve constant, and a 1 to a 8 respectively represent the coefficients corresponding to each radial coordinate.
  • FIG. 5 and 6 show another schematic structural diagram of the optical system
  • FIG. 5 shows a schematic structural diagram of an optical system provided by an embodiment of the application
  • FIG. 6 is a schematic configuration diagram of the optical system in FIG. 5
  • the surface numbers 1, 2, 3, 4, 5, and 6 represent surface numbers in the optical system, and represent the mirror surface of the first lens 101 , the mirror surface of the second lens 102 , and the mirror surface of the third lens 103 , respectively.
  • the two lens surfaces of the first lens 101 are Surface 1 and Surface 2 respectively
  • the two lens surfaces of the second lens 102 are Surface 3 and Surface 4
  • the two lens surfaces of the third lens 103 are respectively
  • the lens surfaces are surface 5 and surface 6, respectively.
  • the optical system shown in FIGS. 5 and 6 is called the fourth embodiment, and its specific numerical configuration is shown in Table 5.
  • Table 5 is the surface parameter data of the lens of the optical system of the fourth embodiment
  • the radius of curvature represents the degree of curvature of the lens surface, which can be represented by R.
  • the separation distance, the thickness is the central thickness of the lens; Nd represents the refractive index of the lens; Vd represents the dispersion coefficient of the lens, also known as the Abbe number.
  • Figure 7, Figure 8, Figure 9 and Figure 10 respectively reflect the distortion parameters of the optical systems of the first, second, third and fourth examples. It can be seen from Figures 7, 8, 9 and 10 that The optical system has better imaging effect and therefore higher imaging quality.
  • one of the parameters can be changed and then the optical design can be carried out to obtain more different optical systems .
  • FIG. 11 is a schematic structural diagram of an optical system provided by an embodiment of the present application.
  • the optical system 100 provided in the embodiment of the present application includes a housing 11 , and the lens group 10 (the first lens 101 , the second lens 102 and the third lens 103 ) of the optical system 100 is arranged in the housing 11 .
  • the housing 11 includes a first end 111 and a second end 112 .
  • the first end 111 faces the object side
  • the second end 112 faces the image side, that is, the first lens 101
  • the third lens 103 is arranged near the first end 111
  • the third lens 103 is arranged near the second end 112 .
  • the end surface of the second end portion 112 may be provided with at least one of magnets, stickers, snaps, and screw holes, so that the optical system 100 and the photographing device 20 can be magnetically attracted, pasted, screwed, or One or more connection methods in the buckle are fixedly connected.
  • An embodiment of the present application also provides a photographing device, the photographing device comprising any one of the optical systems and photographing equipment provided in the above embodiments, the optical system can be connected to the photographing equipment, and the optical system can be connected to the photographing equipment through the optical system.
  • the system can increase the field of view of the photographing equipment and improve the imaging quality of the photographing equipment.
  • the optical system 100 is installed on the photographing device 20 , wherein the optical system shown in FIG. 12 is the optical system in the first embodiment, and the optical system shown in FIG. 13 is the optical system in the second embodiment Optical system, the optical system shown in FIG. 14 is the optical system in the third embodiment, and the optical system shown in FIG. 15 is the optical system in the fourth embodiment.
  • the distance between the third lens 103 of the optical system 100 and the photographing device 20 is set to be greater than 2.5 mm.
  • the aperture diaphragm, aperture, and image plane of the optical system can be kept consistent with the lens parameters of the shooting device, which can ensure the consistency of the image plane and image quality of the overall system, and improve the imaging effect of the overall system.
  • FIG. 13 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • the movable platform is equipped with a photographing device to realize photographing.
  • the movable platform 300 includes a platform body 310 and a photographing device 200 .
  • the photographing device 200 is installed on the platform body 30 , and the photographing device 200 is the photographing device provided in the above-mentioned embodiment, that is, it includes any one of the above-mentioned embodiments.
  • the movable platform 300 includes any one of a drone, a robot, an unmanned vehicle, and a handheld gimbal.
  • the aircraft includes an unmanned aerial vehicle
  • the unmanned aerial vehicle includes a rotary-wing unmanned aerial vehicle, such as a quad-rotor unmanned aerial vehicle, a six-rotor unmanned aerial vehicle, an eight-rotored unmanned aerial vehicle, or a fixed-wing unmanned aerial vehicle. It is a combination of rotary-wing and fixed-wing drones, which is not limited here.
  • the robot can also be called an educational robot. It uses a Mecanum wheel omnidirectional chassis, and is equipped with multiple pieces of intelligent armor. Each intelligent armor has a built-in strike detection module, which can quickly detect physical strikes. At the same time, it also includes a two-axis gimbal, which can be rotated flexibly. With the launcher, it can accurately, steadily and continuously launch crystal bullets or infrared beams, and with ballistic light effects, it gives users a more realistic shooting experience.
  • the optical system can increase the field of view of the lens, it can shoot a wide range of scenes, and at the same time can improve the imaging quality of the shooting device, and the combination of multiple lenses makes the relative distance Smaller, thereby reducing the volume of the optical system, realizing miniaturization and lightening. Therefore, when the drone is used for aerial photography, better images can be captured by using the optical system, thereby improving the user's experience.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学系统(100)、拍摄装置(200)和可移动平台(300),光学系统(100)包括从物侧至像侧依次设置的第一透镜(101)、第二透镜(102)和第三透镜(103),第一透镜(101)具有负光焦度,第二透镜(102)具有正光焦度或负光焦度,第三透镜(103)具有正光焦度或负光焦度;光学系统(100)满足以下表达式:0<|f 1/f 2|<1.2,0<|f 2/f 3|<2.5,其中,f 1是第一透镜(101)的焦距,f 2是第二透镜(102)的焦距,f 3是第三透镜(103)的焦距。

Description

光学系统、拍摄装置及可移动平台 技术领域
本申请涉及光学技术领域,尤其涉及一种光学系统、使用光学系统的拍摄装置以及可移动平台。
背景技术
随着物质生活水平的提高,人们对于摄影的需求越来越高,而单反相机和微单相机的价格又居高不下,因此便携类的手持拍摄设备(比如手机或手持相机)逐渐走进人们的视野。然而由于现有手持相机的产品体积、成本及外观方面的要求和限制,使得手持相机实际的视场角较小,无法满足人们的需求。
发明内容
基于此,本申请实施例提供了一种光学系统、拍摄装置以及可移动平台,该光学系统有利于产品的小型化,同时又可以增加拍摄装置的视场角。
第一方面,本申请的实施例提供了一种光学系统,所述光学系统包括从物侧至像侧依次设置的第一透镜、第二透镜和第三透镜,所述第一透镜具有负光焦度,所述第二透镜具有正光焦度或负光焦度,所述第三透镜具有正光焦度或负光焦度;
所述光学系统满足以下表达式:
0<|f 1/f 2|<1.2,0<|f 2/f 3|<2.5
其中,f 1是所述第一透镜的焦距、f 2是所述第二透镜的焦距,f 3是所述第三透镜的焦距。
第二方面,本申请的实施例还提供了一种拍摄装置,所述拍摄装置包括光学系统和拍摄设备,所述光学系统连接于所述拍摄设备,所述光学系统包括从物侧至像侧依次设置的第一透镜、第二透镜和第三透镜,所述第一透镜具有负光焦度,所述第二透镜具有正光焦度或负光焦度,所述第三透镜具有正光焦度或负光焦度;
所述光学系统满足以下表达式:
0<|f 1/f 2|<1.2,0<|f 2/f 3|<2.5
其中,f 1是所述第一透镜的焦距、f 2是所述第二透镜的焦距,f 3是所述第三透镜的焦距。
第三方面,本申请还提供了一种可移动平台,所述可移动平台包括平台主体和拍摄装置,所述拍摄装置安装在所述平台主体上,所述拍摄装置包括光学系统和拍摄设备,所述光学系统连接于所述拍摄设备,所述光学系统包括从物侧至像侧依次设置的第一透镜、第二透镜和第三透镜,所述第一透镜具有负光焦度,所述第二透镜具有正光焦度或负光焦度,所述第三透镜具有正光焦度或负光焦度;
所述光学系统满足以下表达式:
0<|f 1/f 2|<1.2,0<|f 2/f 3|<2.5
其中,f 1是所述第一透镜的焦距、f 2是所述第二透镜的焦距,f 3是所述第三透镜的焦距。
本申请实施例提供的光学系统、拍摄装置及可移动平台,其中光学系统安装在拍摄装置上,该拍摄装置能够安装在可移动平台的主体上,该光学系统利用三个透镜的组合及特定参数设置,不仅可以减小产品体积和重量,同时又增加了拍摄装置的视场角以及提高了成像质量。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的一种光学系统的结构示意图;
图2是本申请一实施例提供的一种光学系统的配置示意图;
图3是本申请一实施例提供的另一种光学系统的结构示意图;
图4是本申请一实施例提供的另一种光学系统的结构示意图;
图5是本申请一实施例提供的又一种光学系统的结构示意图;
图6是本申请一实施例提供的又一种光学系统的配置示意图;
图7至图10是本申请实施例提供的光学系统的成像质量的效果示意图;
图11是本申请一实施例提供的光学系统的结构示意图;
图12是本申请实施例提供的一种拍摄装置的结构示意图;
图13是本申请实施例提供的另一种拍摄装置的结构示意图;
图14是本申请实施例提供的又一种拍摄装置的结构示意图;
图15是本申请实施例提供的又一种拍摄装置的结构示意图;
图16是本申请一实施例提供的一种可移动平台的结构示意图。
主要元件及符号说明:
100、光学系统;10、透镜组、101、第一透镜;102、第二透镜;103、第三透镜;
200、拍摄装置;20、拍摄设备;
300、可移动平台;30、平台本体。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且 包括这些组合。
请参阅图1,图1是本申请一实施例提供的一种光学系统的结构示意图。该光学系统可以用于增加拍摄设备的视场角,同时又可以提高其成像质量。
如图1所示,该光学系统100包括从物侧O至像侧I依次设置的第一透镜101、第二透镜102和第三透镜103。其中,第一透镜101、第二透镜102和第三透镜103组成透镜组10,第一透镜101具有负光焦度,第二透镜102具有正光焦度或负光焦度,第三透镜103具有正光焦度或负光焦度。
光学系统100满足以下表达式:
0<|f 1/f 2|<1.2,0<|f 2/f 3|<2.5  (1)
在表达式(1)中,f 1是第一透镜101的焦距、f 2是第二透镜102的焦距,f 3是第三透镜103的焦距。
按照上述参数配置的光学系统,能够安装在拍摄设备(手机或手持相机)上,以增加拍摄设备的视场角,进而拍摄较大范围的景物,该光学系统利用三个透镜的组合及特定参数设置,不仅可以增加拍摄装置的视场角以及提高成像质量,还可以减小拍摄装置体积和重量。
其中,为了提高光学系统100的视场角,进一步地限定光学系统满足以下表述式:
5<|f 1|<40,5<|f 2|<50,25<|f 3|<240  (2)
在表达式(2)中,f 1是第一透镜101的焦距、f 2是第二透镜102的焦距,f 3是第三透镜103的焦距。即光学系统100在满足表达式(1)的情况下,还需要进一步地满足表达式(2)。
其中,第一透镜101具有负光焦度,第二透镜102具有正光焦度或负光焦度,第三透镜103具有正光焦度或负光焦度,具体包括以下可能:
第一透镜101具有负光焦度,第二透镜102具有正光焦度,且第三透镜103具有正光焦度;或者,第一透镜101具有负光焦度,第二透镜102具有正光焦度,且第三透镜103具有负光焦度;或者,第一透镜101具有负光焦度,第二透镜102具有负光焦度,且第三透镜103具有正光焦度。
为了进一步地缩小该光学系统的体积,以方便可以更为稳定地将光学系统固定在拍摄设备上,还可以限制光学系统100满足表述式:0<|f 2/f 3|<0.15。不仅进一步地减小光学系统的体积,还可以增加该光学系统的整体外径,进而确 保光学系统具有较大的视场角。
在一些实施例中,为了矫正色差,进而提高光学系统的成像质量,还可以限定所述光学系统满足以下表述式:
vd 1>30,vd 2>25,vd 3>45  (3)
在表达式(3)中,vd 1、vd 2和vd 3分别为第一透镜101、第二透镜102、第三透镜103的色散系数,即阿贝数。满足表达式(3)的光学系统,可以很好地矫正色差,包括垂直色差的校准,进而提高光学系统的成像质量。
在一些实施例中,为了进一步地提高光学系统的成像质量,还可以对光学系统100的第一透镜101进行限定,即限定光学系统100满足表达式:1.6<n 1<1.95,30<vd 1<70,其中,n 1为第一透镜101的折射率,vd 1为第一透镜101的色散系数。
在一些实施例中,为了进一步地提高光学系统的成像质量,还可以对光学系统100的第二透镜102进行限定,即限定光学系统100满足表达式:1.5<n 2<1.8,25<vd 2<60,其中,n 2为第二透镜102的折射率,vd 2为第二透镜102的色散系数。
在一些实施例中,为了进一步地提高光学系统的成像质量,还可以对光学系统100的第三透镜102进行限定,即限定光学系统100满足表达式:1.5<n 3<1.8,45<vd 3<70,其中,n 3为第三透镜103的折射率,vd 3为第三透镜103的色散系数。
需要说明的是,上述对光学系统100的第一透镜101、第二透镜102和第三透镜103的折射率和色散系数的限定,可以减小光学系统的整体色差,进而提高光学系统的成像质量。
在一些实施例了,为了缩小光学系统的体积,使得光学系统更为小型化,限定光学系统100满足以下表述式:
0.03<T 1/TL<0.2,0.05<T 2/TL<0.45,0.05<T 3/TL<0.45  (4)
在表达式(4)中,T 1是第一透镜101的中心厚度,T 2是第二透镜102的中心厚度,T 3是第三透镜103的中心厚度,TL是第一透镜101靠近物侧的透镜面中心到第三透镜103靠近像侧的透镜面中心的距离。通过表达式(4)对光学系统的限定,不仅可以减小光学系统的体积,还可以减轻光学系统的整体重量。
在一些实施例了,为了进一步地缩小光学系统的体积,使得光学系统更为 小型化,限定光学系统100满足以下表述式:
0.2<(T 2+T 3)/TL<0.8,0.2<A 1/TL<0.8  (5)
在表达式(5)中,T 2是第二透镜102的中心厚度,T 3是第三透镜103的中心厚度,TL是第一透镜101靠近物侧的透镜面中心到第三透镜103靠近像侧的透镜面中心的距离,A 1是第一透镜101和第二透镜102之间的距离。
需要说明的是,可以限定光学系统在满足表达式(4)的同时,还需满足表达式(5),由此可以进一步地限定光学系统的尺寸以及减小光学系统的重量。当然,也可以分别限定光学系统满足表达式(4)或者满足表达式(5)。
需要说明的是,尤其是限定第一透镜101满足:0.03<T 1/TL<0.2,可以使得第一透镜101的重量大大减小,有助于光学系统的整体重量的减轻。
在一些实施例中,第一透镜101、第二透镜102和/或第三透镜103的材质包括塑胶材质、玻璃材质中的至少一种。
示例性的,第一透镜101、第二透镜102和第三透镜103的材质均为塑胶材质或者玻璃材质;或者,第一透镜101的材质为塑胶材质,第二透镜102和第三透镜103的材质为玻璃材质;或者,第一透镜101的材质为玻璃材质,第二透镜102的材质为玻璃材质,第三透镜103的材质为塑胶材质,等等。
在一些实施例中,第一透镜101、第二透镜102和第三透镜103的材质均为玻璃材质。采用玻璃材质设计,使得光学系统的透镜,容易加工,且不容易刮伤,便于携带和拆卸。
在一些实施例中,为了进一步地减小光学系统的重量,可以限定第一透镜101的材质的密度系数小于或等于5.5g/cm 3
在一些实施例中,为了进一步地减小光学系统的重量,可以限定第二透镜102的材质的密度系数小于或等于3.3g/cm 3
在一些实施例中,为了进一步地减小光学系统的重量,可以限定第三透镜103的材质的密度系数小于或等于4.0g/cm 3
通过上述材料密度的配置,有利于减轻光学系统的整体重量,以便安装在拍摄设备特别是小型手持设备上。
在一些实施例中,为了提高光学系统的成像质量,第一透镜101为负透镜,负透镜具体可例如为弯月形透镜或双凹形透镜。其中,第一透镜101的负透镜特性,可以有利于减缓大角度光线入射时转折力度以及大角度入射引起的像差, 进而提高了光学系统的成像质量。
需要说明的是,大角度是指相对光轴的入射角度大于预设角度值,比如大于40度或50度,当然也可以为其他数值,在此不做限定。
在一些实施例中,为了提高成像质量以及便于安装在拍摄设备上,将第二透镜102和第三透镜103胶合形成胶合透镜。其中,第二透镜102和第三透镜103在胶合面的透镜面的曲率半径相等,当然也可以不相等。利用胶合透镜还有利于光学系统的色差矫正,以及有利于大角度光线入射时可有效地与拍摄设备的主镜头衔接,进而提高光学系统的成像质量。
在一些实施例中,为了将光学系统设计成小型化和轻便化,可以限定光学系统的长度小于或等于5.5mm。
在一些实施例中,为了将光学系统设计成小型化和轻便化,可以限定光学系统的重量小于或等于3g。对重量的限制有利于光学系统连接方式的灵活化设置,使得磁吸、粘贴等便于快拆的安装或收纳方式变得可能。特别地,轻型化设置使光学系统可以使用较小的磁铁达到磁吸式连接的目的。其次,轻型化后的光学装置的装卸也不会导致与其连接的其他装置,例如云台,产生剧烈晃动或抖动从而影响成像效果。同时,轻型化后的光学系统可以实现无需人工定位的连接方式,更为用户友好。
在一些实施例中,通过对光学系统的参数限定,可以将光学系统的视场角增大至110°,即视场角大于110°,由此提高了光学系统的视场角,在拍摄范围大的同时仍能保证成像清晰,可实现0.01m至无穷远不同物距的拍摄,也满足了小型成像设备上的大视角拍摄需求,使得设备的适用性更强。
在一些实施例中,为了提高光学系统的成像性能和减少系统的整体重量,限定第一透镜101、第二透镜102和/或第三透镜103为非球面透镜,即第一透镜101、第二透镜102和第三透镜103中至少存在一个非球面透镜。
需要说明的是,第一透镜101、第二透镜102、第三透镜103可以是一个透镜面为非球面,也可以是两个透镜面都为非球面。
在一些实施例中,为了进一步地矫正,上述的非球面透镜的一个镜面或者所有的非球面的透镜面均可以是高次非球面,所述高次非球面满足以下表达式:
Figure PCTCN2020106395-appb-000001
在表达式(6)中,z为非球面旋转对称轴,c为顶点曲率;y为径向坐标,其单位和透镜单位长度相同;k为二次曲线常数,a 1至a 8分别表示各径向坐标所对应的系数。
在一些实施例,为了方便将光学系统安装在拍摄设备上,将光学系统能够与拍摄设备可拆卸固定连接,具体地,光学系统与拍摄设备可以通过磁吸、粘贴、螺纹或卡扣中的一种或多种连接方式固定连接。
在一些实施例中,为了给光学系统装卸和工作时留出操作空间,避免刮花光学系统或拍摄设备的镜头,将光学系统与拍摄设备之间的距离设置为大于2.5mm。以下结合附图以及表,给出光学系统的具体数值配置,面数1、2、3、4、5表示光学系统中的表面标号,分别表示第一透镜101的镜面、第二透镜102的镜面、第三透镜103的镜面。
具体地,如图2所示,第一透镜101的两个透镜面分别为表面1和表面2、第二透镜102的两个透镜面分别为表面3和表面4、第三透镜103的两个透镜面分别为表面4和表面5。其中,第二透镜102的表面4和第三透镜103的表面4相同,表示两个透镜的透镜面的曲率相同,便于胶合形成胶合透镜。
在表1、表2和表3中,曲率半径表示透镜表面弯曲的程度,可以用R表示,R值越小,镜片表面越弯;间隔或厚度(Thickness),间隔表示为光学系统的透镜之间在光轴上的间隔距离,厚度为透镜的中心厚度;Nd表示透镜的折射率;Vd表示透镜的色散系数,也称为阿贝数。
其中,表1、表2和表3示出的光学系统的具体数值配置,对应的光学系统的结构分别如图1至图4所示。具体地,图1和图2示出的光学系统称为实施例一,对应表1;图3示出的光学系统称为实施例二,对应表2;图4示出的光学系统称为实施例三,对应表3。
表1为实施例一的光学系统的透镜各个表面参数数据
Figure PCTCN2020106395-appb-000002
Figure PCTCN2020106395-appb-000003
表2为实施例二的光学系统的透镜各个表面参数数据
Figure PCTCN2020106395-appb-000004
表3为实施例三的光学系统的透镜各个表面参数数据
Figure PCTCN2020106395-appb-000005
表4为实施例三的光学系统透镜一表面非球面系数数据
Figure PCTCN2020106395-appb-000006
其中,在表4中,k为二次曲线常数,a 1至a 8分别表示各径向坐标所对应的系数。
图5和图6示出了该光学系统的另一结构示意图,图5示出的为本申请一实施例提供的一种光学系统的结构示意图,图6为图5中的光学系统的配置示意图。如图6所示,面数1、2、3、4、5、6表示光学系统中的表面标号,分别表示第一透镜101的镜面、第二透镜102的镜面、第三透镜103的镜面。
具体地,如图6所示,第一透镜101的两个透镜面分别为表面1和表面2、第二透镜102的两个透镜面分别为表面3和表面4、第三透镜103的两个透镜面分别为表面5和表面6。图5和图6示出的光学系统称为实施例四,其具体数值配置如表5所示。
表5为实施例四的光学系统的透镜各个表面参数数据
Figure PCTCN2020106395-appb-000007
在表5中,曲率半径表示透镜表面弯曲的程度,可以用R表示,R值越小,镜片表面越弯;间隔或厚度(Thickness),间隔表示为光学系统的透镜之间在光轴上的间隔距离,厚度为透镜的中心厚度;Nd表示透镜的折射率;Vd表示透镜的色散系数,也称为阿贝数。
图7、图8、图9和图10分别反映实施例一、实施例二、实施例三、实施例四示例的光学系统的畸变参数,由图7、图8、图9和图10可知,该光学系统具有较好的成像效果,因此具有较高成像质量。
需要说明的是,可以根据上述给出四个具体实施例(实施例一、二、三和实施例四的光学系统),改变其中一个参数后再进行光学设计,得到更多个不同的光学系统。
请参阅图11,图11是本申请一实施例提供的一种光学系统的结构示意图。如图11所示,本申请实施例提供的光学系统100包括壳体11,光学系统100的透镜组10(第一透镜101、第二透镜102和第三透镜103)设置在壳体11内。该壳体11包括第一端部111和第二端部112,在透镜安装在壳体11内时,第一端部111面向物侧,第二端部112面向像侧,即第一透镜101靠近第一端部111设置,第三透镜103靠近第二端部112设置。
在一些实施例中,第二端部112的端面上可以设置有磁铁、粘贴件、卡扣、螺孔中的至少一种,以便光学系统100与拍摄设备20可以通过磁吸、粘贴、螺纹或卡扣中的一种或多种连接方式固定连接。
本申请的实施例还提供了一种拍摄设装置,该拍摄装置包括上述实施例提供的任意一种所述的光学系统和拍摄设备,所述光学系统能够连接于所述拍摄设备,通过该光学系统可以增加拍摄设备的视场角,以及提高拍摄设备的成像质量。
如图12至图15所示,光学系统100安装在拍摄设备20上,其中,图12示出的光学系统为实施例一中的光学系统,图13示出的光学系统为实施例二中 的光学系统,图14示出的光学系统为实施例三中的光学系统,图15示出的光学系统为实施例四中的光学系统。
需要说明的是,在光学系统100安装在拍摄设备20上时,该光学系统100的第三透镜103与拍摄设备20之间的距离设置为大于2.5mm。
特别地,可以令光学系统的孔径光阑、光圈、像面与拍摄设备的镜头参数保持一致,可以保证整体系统像面像质的一致性,提升整体系统的成像效果。
请参阅图13,图13是本申请的实施例提供的一种可移动平台的结构示意图。该可移动平台搭载有拍摄装置,以实现拍摄。
如图13所示,可移动平台300包括平台主体310和拍摄装置200,拍摄装置200安装在平台主体30上,拍摄装置200为上述实施例提供的拍摄装置,即包括上述实施例提供的任意一种光学系统100和拍摄设备。
示例性的,可移动平台300包括无人机、机器人、无人驾驶车辆和手持云台中的任一种。
其中,该飞行器包括无人机,该无人机包括旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机,还可以是旋翼型与固定翼无人机的组合,在此不作限定。
其中,机器人也可以称为教育机器人,使用了麦克纳姆轮全向底盘,且全身设有多块智能装甲,每个智能装甲内置击打检测模块,可迅速检测物理打击。同时还包括两轴云台,可以灵活转动,配合发射器准确、稳定、连续地发射水晶弹或红外光束,配合弹道光效,给用户更为真实的射击体验。
比如,将光学系统安装在无人机上,由于光学系统可以增加镜头的视场角,进而可拍摄较大范围的景物,同时又可以提高拍摄装置的成像质量,而且多个透镜的组合使得相对距离较小,进而减小了光学系统的体积,实现了小型化和轻便化。由此,在无人机用于航拍时,通过使用该光学系统可以拍摄出更好的图像,进而提高了用户的体验感。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (61)

  1. 一种光学系统,其特征在于,所述光学系统包括从物侧至像侧依次设置的第一透镜、第二透镜和第三透镜,所述第一透镜具有负光焦度,所述第二透镜具有正光焦度或负光焦度,所述第三透镜具有正光焦度或负光焦度;
    所述光学系统满足以下表达式:
    0<|f 1/f 2|<1.2,0<|f 2/f 3|<2.5
    其中,f 1是所述第一透镜的焦距、f 2是所述第二透镜的焦距,f 3是所述第三透镜的焦距。
  2. 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足以下表述式:5<|f 1|<40,5<|f 2|<50,25<|f 3|<240。
  3. 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足以下表述式:0<|f 2/f 3|<0.15。
  4. 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足以下表述式:
    0.03<T 1/TL<0.2,0.05<T 2/TL<0.45,0.05<T 3/TL<0.45
    其中,T 1是所述第一透镜的中心厚度,T 2是所述第二透镜的中心厚度,T 3是所述第三透镜的中心厚度,TL是所述第一透镜靠近物侧的透镜面中心到所述第三透镜靠近像侧的透镜面中心的距离。
  5. 根据权利要求4所述的光学系统,其特征在于,所述光学系统满足以下表述式:
    0.2<(T 2+T 3)/TL<0.8,0.2<A 1/TL<0.8
    其中,A 1是所述第一透镜和所述第二透镜之间的距离。
  6. 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足以下表述式:
    vd 1>30,vd 2>25,vd 3>45
    其中,vd 1、vd 2和vd 3分别为所述第一透镜、第二透镜、第三透镜的色散系数。
  7. 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足以下 表达式:
    1.6<n 1<1.95,30<vd 1<70
    其中,n 1为所述第一透镜的折射率,vd 1为所述第一透镜的色散系数。
  8. 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足以下表达式:
    1.5<n 2<1.8,25<vd 2<60
    其中,n 2为所述第二透镜的折射率,vd 2为所述第二透镜的色散系数。
  9. 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足以下表达式:
    1.5<n 3<1.8,45<vd 3<70
    其中,n 3为所述第三透镜的折射率,vd 3为所述第三透镜的色散系数。
  10. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜、第二透镜和/或所述第三透镜的材质包括塑胶材质、玻璃材质中的至少一种。
  11. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜、第二透镜和所述第三透镜的材质均为玻璃材质。
  12. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜材质的密度系数小于或等于5.5g/cm 3;和/或,所述第二透镜材质的密度系数小于或等于3.3g/cm 3;和/或,所述第三透镜材质的密度系数小于或等于4.0g/cm 3
  13. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜包括弯月形透镜或双凹形透镜。
  14. 根据权利要求1所述的光学系统,其特征在于,所述第二透镜和第三透镜胶合形成胶合透镜。
  15. 根据权利要求1所述的光学系统,其特征在于,所述第二透镜具有正光焦度,且所述第三透镜具有正光焦度;或者,所述第二透镜具有正光焦度,且所述第三透镜具有负光焦度;或者,所述第二透镜具有负光焦度,且所述第三透镜具有正光焦度。
  16. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜、第二透镜和/或所述第三透镜为非球面透镜。
  17. 根据权利要求1所述的光学系统,其特征在于,所述光学系统能够与拍摄设备可拆卸固定连接。
  18. 根据权利要求17所述的光学系统,其特征在于,所述光学系统与所述拍摄设备通过磁吸、粘贴、螺纹或卡扣中的一种或多种连接方式固定连接。
  19. 根据权利要求17所述的光学系统,其特征在于,所述光学系统与所述拍摄设备之间的距离大于2.5mm。
  20. 根据权利要求1所述的光学系统,其特征在于,所述光学系统的长度小于或等于5.5mm;和/或,所述光学系统的重量小于或等于3g;和/或,所述光学系统的视场角大于110°。
  21. 一种拍摄装置,其特征在于,所述拍摄装置包括光学系统和拍摄设备,所述光学系统连接于所述拍摄设备,所述光学系统包括从物侧至像侧依次设置的第一透镜、第二透镜和第三透镜,所述第一透镜具有负光焦度,所述第二透镜具有正光焦度或负光焦度,所述第三透镜具有正光焦度或负光焦度;
    所述光学系统满足以下表达式:
    0<|f 1/f 2|<1.2,0<|f 2/f 3|<2.5
    其中,f 1是所述第一透镜的焦距、f 2是所述第二透镜的焦距,f 3是所述第三透镜的焦距。
  22. 根据权利要求21所述的拍摄装置,其特征在于,所述光学系统满足以下表述式:5<|f 1|<40,5<|f 2|<50,25<|f 3|<240。
  23. 根据权利要求21所述的拍摄装置,其特征在于,所述光学系统满足以下表述式:0<|f 2/f 3|<0.15。
  24. 根据权利要求21所述的拍摄装置,其特征在于,所述光学系统满足以下表述式:
    0.03<T 1/TL<0.2,0.05<T 2/TL<0.45,0.05<T 3/TL<0.45
    其中,T 1是所述第一透镜的中心厚度,T 2是所述第二透镜的中心厚度,T 3是所述第三透镜的中心厚度,TL是所述第一透镜靠近物侧的透镜面中心到所述第三透镜靠近像侧的透镜面中心的距离。
  25. 根据权利要求24所述的拍摄装置,其特征在于,所述光学系统满足以下表述式:
    0.2<(T 2+T 3)/TL<0.8,0.2<A 1/TL<0.8
    其中,A 1是所述第一透镜和所述第二透镜之间的距离。
  26. 根据权利要求21所述的拍摄装置,其特征在于,所述光学系统满足以 下表述式:
    vd 1>30,vd 2>25,vd 3>45
    其中,vd 1、vd 2和vd 3分别为所述第一透镜、第二透镜、第三透镜的色散系数。
  27. 根据权利要求21所述的拍摄装置,其特征在于,所述光学系统满足以下表达式:
    1.6<n 1<1.95,30<vd 1<70
    其中,n 1为所述第一透镜的折射率,vd 1为所述第一透镜的色散系数。
  28. 根据权利要求21所述的拍摄装置,其特征在于,所述光学系统满足以下表达式:
    1.5<n 2<1.8,25<vd 2<60
    其中,n 2为所述第二透镜的折射率,vd 2为所述第二透镜的色散系数。
  29. 根据权利要求21所述的拍摄装置,其特征在于,所述光学系统满足以下表达式:
    1.5<n 3<1.8,45<vd 3<70
    其中,n 3为所述第三透镜的折射率,vd 3为所述第三透镜的色散系数。
  30. 根据权利要求21所述的拍摄装置,其特征在于,所述第一透镜、第二透镜和/或所述第三透镜的材质包括塑胶材质、玻璃材质中的至少一种。
  31. 根据权利要求21所述的拍摄装置,其特征在于,所述第一透镜、第二透镜和所述第三透镜的材质均为玻璃材质。
  32. 根据权利要求21所述的拍摄装置,其特征在于,所述第一透镜材质的密度系数小于或等于5.5g/cm 3;和/或,所述第二透镜材质的密度系数小于或等于3.3g/cm 3;和/或,所述第三透镜材质的密度系数小于或等于4.0g/cm 3
  33. 根据权利要求21所述的拍摄装置,其特征在于,所述第一透镜包括弯月形透镜或双凹形透镜。
  34. 根据权利要求21所述的拍摄装置,其特征在于,所述第二透镜和第三透镜胶合形成胶合透镜。
  35. 根据权利要求21所述的拍摄装置,其特征在于,所述第二透镜具有正光焦度,且所述第三透镜具有正光焦度;或者,所述第二透镜具有正光焦度,且所述第三透镜具有负光焦度;或者,所述第二透镜具有负光焦度,且所述第 三透镜具有正光焦度。
  36. 根据权利要求21所述的拍摄装置,其特征在于,所述第一透镜、第二透镜和/或所述第三透镜为非球面透镜。
  37. 根据权利要求21所述的拍摄装置,其特征在于,所述光学系统能够与拍摄设备可拆卸固定连接。
  38. 根据权利要求37所述的拍摄装置,其特征在于,所述光学系统与所述拍摄设备通过磁吸、粘贴、螺纹或卡扣中的一种或多种连接方式固定连接。
  39. 根据权利要求37所述的拍摄装置,其特征在于,所述光学系统与所述拍摄设备之间的距离大于2.5mm。
  40. 根据权利要求21所述的拍摄装置,其特征在于,所述光学系统的长度小于或等于5.5mm;和/或,所述光学系统的重量小于或等于3g;和/或,所述光学系统的视场角大于110°。
  41. 一种可移动平台,其特征在于,所述可移动平台包括平台主体和拍摄装置,所述拍摄装置安装在所述平台主体上,所述拍摄装置包括光学系统和拍摄设备,所述光学系统连接于所述拍摄设备,所述光学系统包括从物侧至像侧依次设置的第一透镜、第二透镜和第三透镜,所述第一透镜具有负光焦度,所述第二透镜具有正光焦度或负光焦度,所述第三透镜具有正光焦度或负光焦度;
    所述光学系统满足以下表达式:
    0<|f 1/f 2|<1.2,0<|f 2/f 3|<2.5
    其中,f 1是所述第一透镜的焦距、f 2是所述第二透镜的焦距,f 3是所述第三透镜的焦距。
  42. 根据权利要求41所述的可移动平台,其特征在于,所述光学系统满足以下表述式:5<|f 1|<40,5<|f 2|<50,25<|f 3|<240。
  43. 根据权利要求41所述的可移动平台,其特征在于,所述光学系统满足以下表述式:0<|f 2/f 3|<0.15。
  44. 根据权利要求41所述的可移动平台,其特征在于,所述光学系统满足以下表述式:
    0.03<T 1/TL<0.2,0.05<T 2/TL<0.45,0.05<T 3/TL<0.45
    其中,T 1是所述第一透镜的中心厚度,T 2是所述第二透镜的中心厚度,T 3是 所述第三透镜的中心厚度,TL是所述第一透镜靠近物侧的透镜面中心到所述第三透镜靠近像侧的透镜面中心的距离。
  45. 根据权利要求44所述的可移动平台,其特征在于,所述光学系统满足以下表述式:
    0.2<(T 2+T 3)/TL<0.8,0.2<A 1/TL<0.8
    其中,A 1是所述第一透镜和所述第二透镜之间的距离。
  46. 根据权利要求41所述的可移动平台,其特征在于,所述光学系统满足以下表述式:
    vd 1>30,vd 2>25,vd 3>45
    其中,vd 1、vd 2和vd 3分别为所述第一透镜、第二透镜、第三透镜的色散系数。
  47. 根据权利要求41所述的可移动平台,其特征在于,所述光学系统满足以下表达式:
    1.6<n 1<1.95,30<vd 1<70
    其中,n 1为所述第一透镜的折射率,vd 1为所述第一透镜的色散系数。
  48. 根据权利要求41所述的可移动平台,其特征在于,所述光学系统满足以下表达式:
    1.5<n 2<1.8,25<vd 2<60
    其中,n 2为所述第二透镜的折射率,vd 2为所述第二透镜的色散系数。
  49. 根据权利要求41所述的可移动平台,其特征在于,所述光学系统满足以下表达式:
    1.5<n 3<1.8,45<vd 3<70
    其中,n 3为所述第三透镜的折射率,vd 3为所述第三透镜的色散系数。
  50. 根据权利要求41所述的可移动平台,其特征在于,所述第一透镜、第二透镜和/或所述第三透镜的材质包括塑胶材质、玻璃材质中的至少一种。
  51. 根据权利要求41所述的可移动平台,其特征在于,所述第一透镜、第二透镜和所述第三透镜的材质均为玻璃材质。
  52. 根据权利要求41所述的可移动平台,其特征在于,所述第一透镜材质的密度系数小于或等于5.5g/cm 3;和/或,所述第二透镜材质的密度系数小于或等于3.3g/cm 3;和/或,所述第三透镜材质的密度系数小于或等于4.0g/cm 3
  53. 根据权利要求41所述的可移动平台,其特征在于,所述第一透镜包括弯月形透镜或双凹形透镜。
  54. 根据权利要求41所述的可移动平台,其特征在于,所述第二透镜和第三透镜胶合形成胶合透镜。
  55. 根据权利要求41所述的可移动平台,其特征在于,所述第二透镜具有正光焦度,且所述第三透镜具有正光焦度;或者,所述第二透镜具有正光焦度,且所述第三透镜具有负光焦度;或者,所述第二透镜具有负光焦度,且所述第三透镜具有正光焦度。
  56. 根据权利要求41所述的可移动平台,其特征在于,所述第一透镜、第二透镜和/或所述第三透镜为非球面透镜。
  57. 根据权利要求41所述的可移动平台,其特征在于,所述光学系统能够与拍摄设备可拆卸固定连接。
  58. 根据权利要求57所述的可移动平台,其特征在于,所述光学系统与所述拍摄设备通过磁吸、粘贴、螺纹或卡扣中的一种或多种连接方式固定连接。
  59. 根据权利要求57所述的可移动平台,其特征在于,所述光学系统与所述拍摄设备之间的距离大于2.5mm。
  60. 根据权利要求41所述的可移动平台,其特征在于,所述光学系统的长度小于或等于5.5mm;和/或,所述光学系统的重量小于或等于3g;和/或,所述光学系统的视场角大于110°。
  61. 根据权利要求41所述的可移动平台,其特征在于,所述可移动平台包括无人机、机器人或手持云台。
PCT/CN2020/106395 2020-07-31 2020-07-31 光学系统、拍摄装置及可移动平台 WO2022021417A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/106395 WO2022021417A1 (zh) 2020-07-31 2020-07-31 光学系统、拍摄装置及可移动平台
CN202080015945.4A CN113490877A (zh) 2020-07-31 2020-07-31 光学系统、拍摄装置及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106395 WO2022021417A1 (zh) 2020-07-31 2020-07-31 光学系统、拍摄装置及可移动平台

Publications (1)

Publication Number Publication Date
WO2022021417A1 true WO2022021417A1 (zh) 2022-02-03

Family

ID=77933702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106395 WO2022021417A1 (zh) 2020-07-31 2020-07-31 光学系统、拍摄装置及可移动平台

Country Status (2)

Country Link
CN (1) CN113490877A (zh)
WO (1) WO2022021417A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745301A (en) * 1994-12-19 1998-04-28 Benopcon, Inc. Variable power lens systems for producing small images
US20020024746A1 (en) * 2000-07-03 2002-02-28 Minolta Co., Ltd. Taking lens device
CN201298100Y (zh) * 2007-10-16 2009-08-26 富士能株式会社 摄像透镜及摄像装置
CN102608730A (zh) * 2011-01-20 2012-07-25 大立光电股份有限公司 摄像用光学透镜组
CN104820278A (zh) * 2014-01-31 2015-08-05 Hoya株式会社 广角镜头
CN206282024U (zh) * 2015-09-28 2017-06-27 富士胶片株式会社 摄像透镜以及具备摄像透镜的摄像装置
CN110989148A (zh) * 2019-12-18 2020-04-10 江西联创电子有限公司 广角镜头及成像设备
CN210720846U (zh) * 2019-08-30 2020-06-09 南昌欧菲精密光学制品有限公司 光学系统、取像装置及电子装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105824108B (zh) * 2015-01-09 2018-06-19 大立光电股份有限公司 薄型光学系统、取像装置及电子装置
CN106842504B (zh) * 2017-02-24 2022-09-13 东莞市宇光光电科技有限公司 内窥用摄像物镜光学系统
CN106842547B (zh) * 2017-02-24 2023-04-28 东莞市宇光光电科技有限公司 内窥用摄像物镜光学系统
CN210690926U (zh) * 2019-09-23 2020-06-05 深圳市大疆创新科技有限公司 光学系统及拍摄装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745301A (en) * 1994-12-19 1998-04-28 Benopcon, Inc. Variable power lens systems for producing small images
US20020024746A1 (en) * 2000-07-03 2002-02-28 Minolta Co., Ltd. Taking lens device
CN201298100Y (zh) * 2007-10-16 2009-08-26 富士能株式会社 摄像透镜及摄像装置
CN102608730A (zh) * 2011-01-20 2012-07-25 大立光电股份有限公司 摄像用光学透镜组
CN104820278A (zh) * 2014-01-31 2015-08-05 Hoya株式会社 广角镜头
CN206282024U (zh) * 2015-09-28 2017-06-27 富士胶片株式会社 摄像透镜以及具备摄像透镜的摄像装置
CN210720846U (zh) * 2019-08-30 2020-06-09 南昌欧菲精密光学制品有限公司 光学系统、取像装置及电子装置
CN110989148A (zh) * 2019-12-18 2020-04-10 江西联创电子有限公司 广角镜头及成像设备

Also Published As

Publication number Publication date
CN113490877A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
TWI617831B (zh) 光學影像鏡頭、取像裝置及電子裝置
TWI545365B (zh) 取像鏡頭組、取像裝置及電子裝置
TWI626487B (zh) 光學影像鏡頭系統組、取像裝置及電子裝置
TWI616676B (zh) 影像鏡片組、取像裝置及電子裝置
CN105759404B (zh) 一种镜头和成像装置
TWI625546B (zh) 攝像光學鏡片系統、取像裝置及電子裝置
CN213986992U (zh) 光学系统、拍摄装置及可移动平台
CN110333595B (zh) 一种成像透镜系统
CN211905843U (zh) 光学系统、拍摄装置及可移动平台
WO2019144382A1 (zh) 广角镜头、成像装置和无人机
CN217879825U (zh) 光学系统
CN212781468U (zh) 光学系统、拍摄装置及可移动平台
TW201917438A (zh) 光學鏡頭
WO2022021417A1 (zh) 光学系统、拍摄装置及可移动平台
CN214201899U (zh) 光学系统、拍摄装置、云台及可移动平台
CN212781465U (zh) 光学系统、拍摄装置及可移动平台
TWI786753B (zh) 紅外投影透鏡組及紅外投影模組
WO2021195885A1 (zh) 光学系统、拍摄装置及可移动平台
WO2021195884A1 (zh) 光学系统、拍摄装置及可移动平台
WO2022141315A1 (zh) 光学系统、拍摄装置及可移动平台
WO2022141124A1 (zh) 光学系统、拍摄装置、云台及可移动平台
WO2022141120A1 (zh) 光学系统、拍摄装置、云台及可移动平台
WO2022198418A1 (zh) 光学系统、拍摄装置、云台及可移动平台
WO2022036607A1 (zh) 光学系统、拍摄装置及可移动平台
WO2022041269A1 (zh) 光学系统、拍摄装置及可移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946984

Country of ref document: EP

Kind code of ref document: A1