WO2021195885A1 - 光学系统、拍摄装置及可移动平台 - Google Patents

光学系统、拍摄装置及可移动平台 Download PDF

Info

Publication number
WO2021195885A1
WO2021195885A1 PCT/CN2020/082198 CN2020082198W WO2021195885A1 WO 2021195885 A1 WO2021195885 A1 WO 2021195885A1 CN 2020082198 W CN2020082198 W CN 2020082198W WO 2021195885 A1 WO2021195885 A1 WO 2021195885A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
distance
focal length
photographing device
Prior art date
Application number
PCT/CN2020/082198
Other languages
English (en)
French (fr)
Inventor
甘汝婷
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080005662.1A priority Critical patent/CN112955804B/zh
Priority to PCT/CN2020/082198 priority patent/WO2021195885A1/zh
Publication of WO2021195885A1 publication Critical patent/WO2021195885A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements

Definitions

  • This application relates to the field of optical technology, and in particular to an optical system, a photographing device using the optical system, and a movable platform.
  • the present application provides an optical system, a photographing device, and a movable platform.
  • the optical system is used to increase the field of view of the photographing device and at the same time improve the imaging quality.
  • the present application provides an optical system including a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens arranged in order from the object side to the image side ,
  • the seventh lens and the eighth lens, the first lens, the second lens, the sixth lens, and the seventh lens have negative refractive power, and the third lens, the fourth lens, and the eighth lens have positive refractive power,
  • the fifth lens has negative refractive power or positive refractive power;
  • optical system satisfies the following expression:
  • f is the focal length of the optical system
  • f 1 is the focal length of the first lens
  • f 2 is the focal length of the second lens
  • f 3 is the focal length of the third lens
  • f 4 is the first lens.
  • the focal length of the four lenses f 5 is the focal length of the fifth lens
  • f 6 is the focal length of the sixth lens
  • f 7 is the focal length of the seventh lens
  • f 8 is the focal length of the eighth lens
  • TL BFL is the distance on the optical axis from the center of the lens surface of the first lens near the object side to the imaging surface
  • BFL is the distance on the optical axis from the center of the lens surface of the eighth lens near the image side to the imaging surface.
  • the present application also provides a photographing device.
  • the photographing device includes an optical system and a photographing device.
  • the optical system includes: a first lens, a second lens, and a third lens arranged in sequence from the object side to the image side.
  • the lens, the fourth lens, the fifth lens, the sixth lens, the seventh lens, and the eighth lens, the first lens, the second lens, the sixth lens, and the seventh lens have negative refractive power, and the third lens
  • the fourth lens and the eighth lens have positive refractive power
  • the fifth lens has negative refractive power or positive refractive power;
  • optical system satisfies the following expression:
  • f is the focal length of the optical system
  • f 1 is the focal length of the first lens
  • f 2 is the focal length of the second lens
  • f 3 is the focal length of the third lens
  • f 4 is the first lens.
  • the focal length of the four lenses f 5 is the focal length of the fifth lens
  • f 6 is the focal length of the sixth lens
  • f 7 is the focal length of the seventh lens
  • f 8 is the focal length of the eighth lens
  • TL BFL is the distance on the optical axis from the center of the lens surface of the first lens near the object side to the imaging surface
  • BFL is the distance on the optical axis from the center of the lens surface of the eighth lens near the image side to the imaging surface.
  • the present application also provides a movable platform.
  • the movable platform includes a main body and a photographing device.
  • the photographing device is installed on the main body.
  • the photographing device includes an optical system and a photographing device.
  • the optical system is connected to the photographing device, and the optical system includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens arranged in sequence from the object side to the image side
  • the eighth lens the first lens, the second lens, the sixth lens, and the seventh lens have negative refractive power
  • the third lens, the fourth lens, and the eighth lens have positive refractive power
  • the fifth lens The lens has negative refractive power or positive refractive power;
  • optical system satisfies the following expression:
  • f is the focal length of the optical system
  • f 1 is the focal length of the first lens
  • f 2 is the focal length of the second lens
  • f 3 is the focal length of the third lens
  • f 4 is the first lens.
  • the focal length of the four lenses f 5 is the focal length of the fifth lens
  • f 6 is the focal length of the sixth lens
  • f 7 is the focal length of the seventh lens
  • f 8 is the focal length of the eighth lens
  • TL is The distance on the optical axis from the center of the lens surface of the first lens near the object side to the imaging surface
  • BFL is the distance on the optical axis from the center of the lens surface of the eighth lens near the image side to the imaging surface.
  • the optical system, the photographing device and the movable platform provided by the embodiments of the present application, wherein the optical system can be detachably installed on the photographing device, the photographing device can be installed on the main body of the movable platform, and the optical system uses eight lenses
  • the combination of and specific parameter settings increase the field of view of the camera and at the same time improve the imaging quality of the camera.
  • FIG. 1 is a schematic structural diagram of an optical system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the configuration of an optical system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another optical system provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another optical system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an optical system provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another view angle of the optical system provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a photographing device provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • Optical system 101, first lens; 102, second lens; 103, third lens, 104, fourth lens; 105, fifth lens; 106, sixth lens; 107, seventh lens; 108, first lens Eight lens
  • FIG. 1 is a schematic structural diagram of an optical system provided by an embodiment of the present application.
  • the optical system can be used to increase the angle of view of the shooting device, and at the same time can improve the imaging quality.
  • the optical system 100 includes a first lens 101, a second lens 102, a third lens 103, a fourth lens 104, a fifth lens 105, and a sixth lens arranged in order from the object side O to the image side I. 106.
  • the first lens 101, the second lens 102, the sixth lens 106, and the seventh lens 107 have negative refractive power
  • the third lens 103, the fourth lens 104, and the eighth lens 108 have positive refractive power
  • the fifth lens 105 It can have a negative power or a positive power.
  • the optical system 100 satisfies the following expression:
  • f is the focal length of optical system 100
  • f 1 is the focal length of the first lens 101
  • f 2 is the focal length of the second lens 102
  • f is the focal length of the third lens.
  • 3 103, f. 4 are The focal length of the four lens 104
  • f 5 is the focal length of the fifth lens 105
  • f 6 is the focal length of the sixth lens 106
  • f 7 is the focal length of the seventh lens 107
  • f 8 is the focal length of the eighth lens 108
  • TL is the first The distance on the optical axis X from the center of the lens surface of the lens 101 on the object side to the imaging surface I
  • BFL is the distance on the optical axis X from the center of the lens surface of the eighth lens 108 on the image side to the imaging surface I.
  • the optical system configured according to the above parameters can be installed on the lens of the shooting device to increase the angle of view of the lens, thereby shooting a larger range of scenes, and at the same time improving the imaging quality of the shooting device, and the combination of multiple lenses makes The relative distance is small, the volume of the optical system is reduced, and the miniaturization and portability are realized.
  • the aperture stop S of the optical system 100 is located between the third lens 103 and the fourth lens 104.
  • the distance between the positions of the aperture stop S of the optical system 100 is greater than 3.2 mm, where the distance between the positions is the distance between two lenses adjacent to the aperture stop S, specifically the first The distance between the three lenses 103 and the fourth lens 104.
  • This facilitates the setting of the iris diaphragm, that is, it facilitates the realization of the mechanical structure of the iris diaphragm, thereby facilitating the design of the optical system diaphragm.
  • the miniaturized optical system can be adapted to a large image area camera, while the FNO can reach 2.06 and is adjustable.
  • the optical system provided by the above embodiment has a compact structure and adopts the design of placing the stop S as close to the object side as possible, so that the total length of the optical system is shortened, that is, the total length of the entire inner focusing optical system of the optical system (the first lens The distance from the apex of the object side 101 to the imaging surface I) is less than 30mm, and the entire lens system (the distance from the apex of the object side of the first lens 101 to the apex of the image side of the eighth lens 108) is less than 24mm, thus realizing the miniaturization and light weight of the optical system. Quantification and portability.
  • the optical parameters include at least one of the field of view, F-number, and focal length of the optical system.
  • one or both of the two lens surfaces of the third lens 103 and the fourth lens 104 are configured as aspherical surfaces.
  • the F number is greater than 2.0
  • one or both of the two lens surfaces of the third lens 103 and the fourth lens 104 are configured as aspheric surfaces, thereby improving the imaging quality of the optical system.
  • one of the lens surface 5 and the lens surface 6 of the third lens 103 is aspherical, and/or, one of the lens surface 8 and the lens surface 9 of the fourth lens 104 is aspherical.
  • the lens surface 5 and the lens surface 6 of the third lens 103 may both be aspherical surfaces, and/or the lens surface 8 and the lens surface 9 of the fourth lens 104 may also be aspherical surfaces.
  • At least one of the two lens surfaces of the first lens 101, the second lens 102, and the eighth lens 108 is aspherical.
  • At least one of the lens surface 1 and the lens surface 2 of the first lens 101 is aspherical; and/or, at least one of the lens surface 3 and the lens surface 4 of the second lens 102 has a mirror surface Is an aspherical surface; and/or, at least one of the lens surface 15 and the lens surface 16 of the eighth lens 108 is an aspherical surface. Of course, all of them may be aspherical.
  • the distance from the center vertex of the lens surface 16 near the image side of the eighth lens 108 to the imaging surface I is greater than a preset distance.
  • the preset distance includes 6 mm. This design can help reduce the impact of dust on the imaging quality of the optical system, and facilitate the realization of the mechanical structure of the interchangeable lens, that is, it is convenient for the optical system to be installed on the shooting device through the mechanical structure design.
  • At least one of the second lens 102 to the eighth lens 108 of the optical system 100 can be used as an internal focusing lens group.
  • the second lens 102, the third lens 103, the fourth lens 104, the fifth lens 105, the sixth lens 106, the seventh lens 107 and the eighth lens 108 one lens or a combination of multiple lenses can be selected as Internal focusing lens group. This can realize the focus from the infinity object (or the closest object) to the closest object (or the infinity object), especially for shooting with different object distances within the range of 0.3m to infinity, the imaging effect is good, so the solution This solves the problem that the existing lens can only shoot objects in a certain range or a certain focal range.
  • the distance between the focusing lens and the adjacent lens during internal focusing is at least greater than 0.95 mm. It can effectively avoid the collision of the front and rear mechanical structures used for the focusing lens, and ensure the safety of the optical system.
  • the fourth lens 104 is used as the internal focusing lens group, and the distance between the fourth lens 104 and the adjacent lenses (the third lens 103 and the fourth lens 105) during internal focusing is at least greater than 0.95 mm.
  • only one lens may be used as the inner focusing lens group in the optical system 100, or a cemented lens formed by at least two lenses may be used as the inner focusing lens group.
  • the sixth lens 106 and the seventh lens 107 are cemented to form a cemented lens, and the cemented lens can be used as an internal focusing lens group.
  • the eighth lens 108 is used as an internal focusing lens group, at least one of the two lens surfaces of the eighth lens 108 is aspherical. It can well control the aberration caused by the focusing lens in the moving process, thereby improving the optical image quality of the optical system.
  • the cemented lens formed by the sixth lens 106 and the seventh lens 107 is used as the internal focusing lens group, in order to well control the aberration caused by the focusing lens during the moving process and improve the optical image quality of the optical system, it is necessary to The sixth lens 106 and the seventh lens 107 satisfy the following expressions:
  • vd 6 is the dispersion coefficient (Abbe number) of the sixth lens 106
  • vd 7 is the dispersion coefficient (Abbe number) of the seventh lens 107.
  • the adjustment amount corresponding to the internal focusing can be made less than 0.5mm through the above setting, the focusing amount of the optical system is small, and the breathing effect of the optical system is small. It can ensure that the change in the field of view of the picture is less than 1°.
  • the optical system of this application uses a single lens or two glued lenses for internal focusing, so that the focusing weight of the optical system is lighter, and the focusing weight can be achieved less than 0.3g, so the focusing speed is faster, and when shooting at close range Able to obtain good performance.
  • the first lens 101 is set to satisfy the following expression:
  • D 1 is the diameter of the first lens 101
  • R 1 is the radius of curvature of the lens surface (lens surface 1) of the first lens 101 close to the object side
  • R 2 is the first lens 101 close to the image side
  • the optical system in order to miniaturize and lighten the optical system, is further limited, that is, the optical system satisfies the following expression:
  • TL is the distance on the optical axis from the center vertex of the lens surface of the first lens 101 close to the object side to the imaging surface
  • T 1 to T 8 are the first lens 101, the second lens 102, and the first lens 101, respectively.
  • a 1 is the interval between the first lens 101 and the second lens 102
  • a 2 is the interval between the second lens 102 and the third lens 103,
  • a 3 is the interval between the third lens 103 and the fourth lens 104, and
  • a 7 is the interval between the seventh lens 107 and the eighth lens 108.
  • the optical system in order to correct the chromatic aberration of the optical system, the optical system satisfies the following expression:
  • vd 1 , vd 2 , vd 3 , vd 4 , vd 5 , vd 6 , vd 7 , and vd 8 are the first lens 101, the second lens 102, the third lens 103, and the fourth lens, respectively.
  • the second lens 102, the sixth lens 106, and the seventh lens 107 satisfy the following expressions: 0 ⁇ (vd 2 , vd 7 ) ⁇ 30, vd 6 >50.
  • the chromatic aberration of the optical system can be better corrected, that is, the chromatic aberration of the optical system can be effectively reduced, and the imaging quality of the optical system can be improved.
  • the optical system in order to correct the chromatic aberration of the optical system and improve the imaging quality of the optical system, the optical system satisfies the following expression:
  • nd 1 , nd 2 , nd 3 , nd 4 , nd 5 , nd 6 , nd 7 , and nd 8 are respectively the first lens 101, the second lens 102, the third lens 103, the fourth lens 104, and the fifth lens 105.
  • the second lens 102, the third lens 103, and the sixth lens 106 satisfy the following expressions: (nd 2 , nd 3 )>1.9, nd 6 ⁇ 1.7.
  • the chromatic aberration of the optical system can be reduced more effectively to improve the imaging quality of the optical system.
  • the two mirror surfaces or aspheric lens surfaces of the aforementioned aspheric lens are both high-order aspheric surfaces, and the high-order aspheric surface is adopted to satisfy the following expression:
  • z is the aspherical rotational symmetry axis
  • c is the curvature of the vertex
  • y is the radial coordinate, and its unit is the same as the lens unit length
  • k is the conic constant
  • a 1 to a 8 represent each The coefficient corresponding to the radial coordinate.
  • the materials of the first lens 101, the second lens 102,..., And the eighth lens 108 may be the same or different.
  • some lenses use common materials such as glass, and some lenses use plastic lenses; or all use plastic lenses.
  • the weight of the optical system can be further reduced. Realize the light weight of the optical system for the convenience of users.
  • the surface numbers 1, 2,..., 16 represent the surface numbers in the optical system, and represent the first lens 101 and the second lens 101, respectively.
  • the mirror surfaces of the lenses 102,..., and the eighth lens 108, where the surface 13 is the lens surface of the sixth lens 106 and the seventh lens, and the radius of curvature of the lens surfaces of the sixth lens 106 and the seventh lens are the same, which is convenient for glueing together. Cemented lens.
  • the two lens surfaces of the first lens 101 are surface 1 and surface 2
  • the two lens surfaces of the second lens 102 are surface 3 and surface 4, and the two lens surfaces of the third lens 103 respectively.
  • the lens surfaces are surface 5 and surface 6
  • the aperture stop S is surface 7
  • the two lens surfaces of the fourth lens 104 are surface 8 and surface 9
  • the two lens surfaces of the fifth lens 105 are surface 10 and surface respectively.
  • the two lens surfaces of the sixth lens 106 are surface 12 and surface 13
  • the two lens surfaces of the seventh lens 107 are surface 13 and surface 14, respectively
  • the two lens surfaces of the eighth lens 108 are surface 15 and Surface 16.
  • the radius of curvature indicates the degree of curvature of the lens surface, which can be represented by R.
  • the eighth lens 108 is used as an inner focusing lens, and the focusing amount is different at different object distances (infinity and closest). Therefore, the air gap values of the 14th surface and the 16th surface are different.
  • k is a conic constant, and a 1 to a 8 respectively represent the coefficients corresponding to each radial coordinate.
  • Table 3 and Table 6 show the corresponding focal length, image-side F-number (aperture F-number), field of view (FOV) and the amount of change in the movement of the inner focus group when focusing from the infinite object distance to the closest distance.
  • the movement changes of the group are AC(11), AC(14) and AC(16).
  • Table 1, Table 2 and Table 3 show the specific numerical configuration of the optical system, and the structure of the corresponding optical system is shown in Figure 1 or Figure 2, which is hereinafter referred to as the first embodiment; Table 4, Table 5 and Table 6
  • the specific numerical configuration of the optical system is shown, and the structure of the corresponding optical system is shown in Figure 3, which is referred to as the second embodiment below; the specific numerical configuration of the optical system shown in Table 7, Table 8 and Table 9 is the corresponding optical system.
  • the structure of the system is shown in Figure 4, which is referred to as the third embodiment below.
  • Table 1 shows the surface parameter data of the optical system in Example 1.
  • Table 2 shows the aspheric coefficient data of each surface of the optical system in Example 1.
  • Table 3 is the configuration data of the lens group of the optical system in the first embodiment
  • Table 4 shows the data of various surface parameters of the optical system of the second embodiment
  • Table 5 shows the aspheric coefficient data of each surface of the optical system in the second embodiment
  • Table 6 is the configuration data of the lens group of the optical system in the second embodiment
  • Table 7 shows the surface parameter data of the optical system of the third embodiment
  • Table 8 shows the aspheric coefficient data of each surface of the optical system in the third embodiment
  • Table 9 is the configuration data of the lens group of the optical system in the third embodiment
  • the optical system provided by the present application has a compact structure and adopts a structure that positions the diaphragm as close to the object side as possible, so that the total length of the optical system is shortened, that is, the total length of the entire inner focusing optical system (the first lens 101 is close to the object side).
  • the distance from the vertex of the lens surface to the imaging surface) is less than 30mm, and the entire optical system (the distance from the vertex of the lens surface of the first lens 101 near the object side to the vertex of the lens surface of the eighth lens 108 near the image side) is less than 24mm, so the optical system is realized Small size, light weight and portability;
  • the optical system provided by this application uses a single lens or two cemented lenses for internal focusing as the focusing method, so that the overall focusing weight of the system is lighter (the focusing weight is less than 0.3g) and the focusing speed is faster. And good performance can also be obtained when shooting at close range;
  • the focusing amount of the optical system provided by this application is small, and the overall focusing amount is less than 0.5mm, so that the breathing effect of the system is small (the change in the field of view of the picture is less than 1°);
  • the optical system provided by this application can achieve a wide range of system shooting, clear imaging, and can achieve shooting at different object distances from 0.3m to infinity; the peripheral brightness ratio is improved during design; even when the aperture is fully opened, The peripheral brightness ratio is also above 30%, and the light passing through the entire lens appears more evenly on the screen, effectively avoiding the problem of lens vignetting; FOV is greater than 115°, and the shooting field of view is large;
  • the optical system provided by this application adopts at least one aspheric lens surface, which not only enables the FNO to reach 2.06, and the aperture is larger; it can also improve the overall quality of the optical system; it can also achieve a large image surface. High-quality, high-resolution imaging effect greater than 20M (20 million pixels).
  • the optical system 100 of the present application further includes a housing 110, in which a first lens 101, a second lens 102, a third lens 103, a fourth lens 104, a fifth lens 105, and a
  • the six lenses 106, the seventh lens 107, and the eighth lens 107 are all installed in the housing 110.
  • it also includes an adjustment mechanism for achieving internal focusing.
  • the housing 110 of the optical system 100 may also have a threaded hole 111 through which the optical system 100 can be fixed to the lens of the photographing device, thereby realizing the interchangeability of the optical system.
  • FIG. 7 is a schematic structural diagram of a photographing device provided by an embodiment of the present application.
  • the camera uses an interchangeable optical system to increase the angle of view to achieve a large image surface and high-quality imaging effects.
  • the photographing apparatus 200 includes an optical system 100 and a photographing device 21, and the optical system 100 adopts any optical system provided in the above-mentioned embodiments.
  • the photographing device 200 is an electronic device capable of photographing, including a mobile phone, a digital camera, a sports camera, a wearable device, or a handheld pan-tilt camera.
  • the optical system 100 and the photographing device 21 are detachably connected or fixedly connected.
  • the detachable connection is convenient for users to use.
  • the optical system 100 and the photographing device 21 are fixed by one or more of magnetic attraction, pasting, screwing, or buckle.
  • the optical system 100 and the photographing device 21 are fixed by magnetic attraction, the optical system 100 and the photographing device 21 are connected by a magnet male and female pair of attraction.
  • a magnet may be installed on the optical system 100 , And the corresponding position of the photographing device 21 is equipped with opposite magnetic poles or metal parts that can be attracted by the magnet. The reverse is also true.
  • the magnet can also be installed on the photographing device 21.
  • the optical system 10 is equipped with opposite magnetic poles or metal parts that can be attracted by the magnet.
  • the shooting device 21 is a sports camera, and includes a lens group 210, a display screen 211 and a shooting button 212.
  • the lens group 210 is used to image the scene on the sensor of the shooting device 21, such as a COMS sensor or a CCD sensor, etc.;
  • the display screen 211 is used to display imaging, and the display screen 211 is a touch screen;
  • the shooting button 212 is used to trigger shooting.
  • the photographing device 21 includes a lens group 210, and the eighth lens 108 of the optical system 100 is kept at a certain distance from the outermost lens of the lens group 210. For example, it is larger than 6mm to connect the optical system and the shooting device 21 to ensure that there is no direct contact between the two and improve safety.
  • the optical system 100 matches the lens parameters of the photographing device 21. In turn, the image quality is improved.
  • the lens parameters of the optical system 100 include: aperture, aperture, and image plane, etc., wherein the aperture and aperture of the optical system 100 are consistent with those of the shooting device, thereby ensuring the consistency of the image quality of the overall system. sex.
  • the lens parameters include an image surface, and the image surface is larger than 16 mm. Furthermore, the large image plane imaging is realized through the setting of the above-mentioned optical system itself or the cooperation with the photographing equipment. In turn, the problem of the small imaging surface of the existing imaging device is solved.
  • the field of view of the photographing device 200 can be greater than 115°. This achieves a large shooting range and clear imaging.
  • the diameters of the first lens 101 to the eighth lens 108 of the optical system 100 are all larger than the lens diameter of the photographing device 21.
  • large image plane imaging can be realized, which in turn solves the problems that the imaging surface of the existing imaging device is small, mostly smaller than the image plane with a diameter of 16 mm, and the resolution is low and the image quality is poor.
  • the photographing device in the foregoing embodiment uses the optical system provided in the embodiment of the present application, the angle of view of the photographing device can be increased, and the imaging quality of the photographing device can be improved at the same time.
  • FIG. 8 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • the movable platform is equipped with a shooting device to realize shooting.
  • the movable platform 300 includes a main body 310 and a photographing device 200.
  • the photographing device 200 is mounted on the main body 310.
  • the photographing device 200 includes an optical system 100 and a photographing device 21.
  • the optical system 100 is connected to the photographing device 21.
  • the system 100 adopts any optical system provided in the foregoing embodiments.
  • the movable platform 300 includes an aircraft, a robot, or a handheld pan/tilt.
  • the aircraft includes drones, which include rotary-wing drones, such as four-rotor drones, hexa-rotor drones, and octo-rotor drones. It can also be a fixed-wing drone or It is a combination of rotary-wing and fixed-wing drones, and is not limited here.
  • rotary-wing drones such as four-rotor drones, hexa-rotor drones, and octo-rotor drones. It can also be a fixed-wing drone or It is a combination of rotary-wing and fixed-wing drones, and is not limited here.
  • the robot can also be called an educational robot. It uses a Mecanum wheel omnidirectional chassis and is equipped with multiple pieces of intelligent armor. Each intelligent armor has a built-in impact detection module that can quickly detect physical strikes. At the same time, it also includes a two-axis pan/tilt, which can be flexibly rotated, matched with the transmitter to accurately, stably and continuously fire crystal bombs or infrared beams, and matched with ballistic light effects, giving users a more realistic shooting experience.
  • the optical system can increase the angle of view of the lens, and then can shoot a larger range of scenes, while improving the imaging quality of the shooting device, and the combination of multiple lenses makes it relatively
  • the distance is small, thereby reducing the volume of the optical system, achieving miniaturization and portability. Therefore, when the drone is used for aerial photography, better images can be taken by using the optical system, thereby improving the user experience.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学系统、拍摄装置和可移动平台,所述光学系统包括从物侧至像侧依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜,所述第一透镜、第二透镜、第六透镜、第七透镜具有负光焦度,所述第三透镜、第四透镜、第八透镜具有正光焦度,所述第五透镜具有负光焦度或正光焦度;所述光学系统满足以下表达式:1<|f 1/f|<2.5,1<|f 2/f 1|<1.75,0.9<|f 4/f 3|<1.5,2<|f 5/f|<7,0.5<|f 7/f 6|<1.5,1.9<|f 8/f|<3.5,4.5<|TL/f|<6,0.2<|BFL/TL|<0.5,1<|BFL/f|<1.5;f是光学系统的焦距,f 1至f 8分别为第一透镜至第八透镜的焦距,TL是所述第一透镜靠近物侧的透镜面中心到成像面为止的光轴上的距离;BFL是所述第八透镜靠近像侧的透镜面中心到成像面为止的光轴上的距离。

Description

光学系统、拍摄装置及可移动平台 技术领域
本申请涉及光学技术领域,尤其涉及一种光学系统、使用光学系统的拍摄装置以及可移动平台。
背景技术
随着技术的发展,小型化、高像质、低成本、大视场范围拍摄的摄影镜头越来越受到人们的青睐。现有的无人机及运动相机类镜头大都需要超高的光学素质,且拍摄范围都要求一定的微距功能,然而现有的运动相机类镜头的像面大都小于1英寸(inch),像面较小,光圈较小;并且不可交换,只能拍摄一定范围或者一定焦段范围的物体,对较大范围的多样化需求很难满足,因此无法满足用户的需求。
发明内容
基于此,本申请提供了一种光学系统、拍摄装置以及可移动平台,该光学系统用于增加拍摄装置的视场角,同时又可以提高成像质量。
第一方面,本申请提供了一种光学系统,所述光学系统包括从物侧至像侧依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜,所述第一透镜、第二透镜、第六透镜、第七透镜具有负光焦度,所述第三透镜、第四透镜、第八透镜具有正光焦度,所述第五透镜具有负光焦度或正光焦度;
所述光学系统满足以下表达式:
1<|f 1/f|<2.5,1<|f 2/f 1|<1.75,0.9<|f 4/f 3|<1.5,2<|f 5/f|<7,0.5<|f 7/f 6|<1.5,1.9<|f 8/f|<3.5,4.5<|TL/f|<6,0.2<|BFL/TL|<0.5,1<|BFL/f|<1.5;
其中,f是所述光学系统的焦距,f 1是所述第一透镜的焦距、f 2是所述第二透镜的焦距,f 3是所述第三透镜的焦距,f 4是所述第四透镜的焦距,f 5是所 述第五透镜的焦距,f 6是所述第六透镜的焦距,f 7是所述第七透镜的焦距,f 8是所述第八透镜的焦距,TL是所述第一透镜靠近物侧的透镜面中心到成像面为止的光轴上的距离;BFL是所述第八透镜靠近像侧的透镜面中心到成像面为止的光轴上的距离。
第二方面,本申请还提供了一种拍摄装置,所述拍摄装置包括光学系统和拍摄设备,所述光学系统包括:从物侧至像侧依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜,所述第一透镜、第二透镜、第六透镜、第七透镜具有负光焦度,所述第三透镜、第四透镜、第八透镜具有正光焦度,所述第五透镜具有负光焦度或正光焦度;
所述光学系统满足以下表达式:
1<|f 1/f|<2.5,1<|f 2/f 1|<1.75,0.9<|f 4/f 3|<1.5,2<|f 5/f|<7,0.5<|f 7/f 6|<1.5,1.9<|f 8/f|<3.5,4.5<|TL/f|<6,0.2<|BFL/TL|<0.5,1<|BFL/f|<1.5;
其中,f是所述光学系统的焦距,f 1是所述第一透镜的焦距、f 2是所述第二透镜的焦距,f 3是所述第三透镜的焦距,f 4是所述第四透镜的焦距,f 5是所述第五透镜的焦距,f 6是所述第六透镜的焦距,f 7是所述第七透镜的焦距,f 8是所述第八透镜的焦距,TL是所述第一透镜靠近物侧的透镜面中心到成像面为止的光轴上的距离;BFL是所述第八透镜靠近像侧的透镜面中心到成像面为止的光轴上的距离。
第三方面,本申请还提供了一种可移动平台,所述可移动平台包括主体和拍摄装置,所述拍摄装置安装在所述主体上,所述拍摄装置包括光学系统和拍摄设备,所述光学系统连接于所述拍摄设备,所述光学系统包括从物侧到像侧依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜,所述第一透镜、第二透镜、第六透镜、第七透镜具有负光焦度,所述第三透镜、第四透镜、第八透镜具有正光焦度,所述第五透镜具有负光焦度或正光焦度;
所述光学系统满足以下表达式:
1<|f 1/f|<2.5,1<|f 2/f 1|<1.75,0.9<|f 4/f 3|<1.5,2<|f 5/f|<7,0.5<|f 7/f 6|<1.5,1.9<|f 8/f|<3.5,4.5<|TL/f|<6,0.2<|BFL/TL|<0.5,1<|BFL/f|<1.5;
其中,f是所述光学系统的焦距,f 1是所述第一透镜的焦距、f 2是所述第二透镜的焦距,f 3是所述第三透镜的焦距,f 4是所述第四透镜的焦距,f 5是所 述第五透镜的焦距,f 6是所述第六透镜的焦距,f 7是所述第七透镜的焦距,f 8所述第八透镜的焦距,TL是所述第一透镜靠近物侧的透镜面中心到成像面为止的光轴上的距离;BFL是所述第八透镜靠近像侧的透镜面中心到成像面为止的光轴上的距离。
本申请实施例提供的光学系统、拍摄装置及可移动平台,其中光学系统能够以可拆卸的方式安装在拍摄装置上,拍摄装置能够安装在可移动平台的主体上,该光学系统利用八个透镜的组合及特定参数设置,增加了拍摄装置的视场角,同时又提高了拍摄装置的成像质量。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的一种光学系统的结构示意图;
图2是本申请一实施例提供的一种光学系统的配置示意图;
图3是本申请一实施例提供的另一种光学系统的结构示意图;
图4是本申请一实施例提供的又一种光学系统的结构示意图;
图5是本申请一实施例提供的一种光学系统的结构示意图;
图6是本申请一实施例提供的光学系统另一视角的结构示意图;
图7是本申请一实施例提供的一种拍摄装置的结构示意图;
图8是本申请一实施例提供的一种可移动平台的结构示意图。
主要元件及符号说明:
100、光学系统;101、第一透镜;102、第二透镜;103、第三透镜、104、第四透镜;105、第五透镜;106、第六透镜;107、第七透镜;108、第八透镜;
200、拍摄装置;21、拍摄设备;210、镜片组;211、显示屏;212、拍摄按键;
300、可移动平台;310、主体。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
请参阅图1,图1是本申请一实施例提供的一种光学系统的结构示意图。该光学系统能够用于增加拍摄装置的视场角,同时又可以提高成像质量。
如图1所示,该光学系统100包括从物侧O至像侧I依次设置的第一透镜101、第二透镜102、第三透镜103、第四透镜104、第五透镜105、第六透镜106、第七透镜107和第八透镜108。其中,第一透镜101、第二透镜102、第六透镜106、第七透镜107具有负光焦度,第三透镜103、第四透镜104、第八透镜108具有正光焦度,第五透镜105可以具有负光焦度或正光焦度。
其中,光学系统100满足以下表达式:
1<|f 1/f|<2.5,1<|f 2/f 1|<1.75,0.9<|f 4/f 3|<1.5,2<|f 5/f|<7,0.5<|f 7/f 6|<1.5,1.9<|f 8/f|<3.5,4.5<|TL/f|<6,0.2<|BFL/TL|<0.5,1<|BFL/f|<1.5        (1)
在表达式(1)中,f是光学系统100的焦距,f 1是第一透镜101的焦距、f 2是第二透镜102的焦距,f 3是第三透镜103的焦距,f 4是第四透镜104的焦距,f 5是第五透镜105的焦距,f 6是第六透镜106的焦距,f 7是第七透镜107 的焦距,f 8是第八透镜108的焦距,TL是第一透镜101靠近物侧的透镜面中心到成像面I为止的光轴X上的距离;BFL是第八透镜108靠近像侧的透镜面中心到成像面I为止的光轴X上的距离。
按照上述参数配置的光学系统,能够安装在拍摄装置的镜头上,以增加镜头的视场角,进而拍摄较大范围的景物,同时又可以提高拍摄装置的成像质量,而且多个透镜的组合使得相对距离较小,减小了光学系统的体积,实现了小型化和轻便化。
需要说明的是,4.5<|TL/f|<6有助于缩短光学系统长度,0.2<|BFL/TL|<0.5有助于提升光学系统后焦长度,由于后焦长度较长,使得图像传感器距离光学系统的镜面距离较远。具体地,图像传感器相对光学系统100的第八透镜108相对较远,因此灰尘在像面的成像比较弱,进而防止灰尘对成像面的影响。
该光学系统100的孔径光阑S位于第三透镜103和第四透镜104之间。在一些实施例中,光学系统100的孔径光阑S所处位置的间隔大于3.2mm,其中,所处位置的间隔为与孔径光阑S相邻的两个透镜之间的距离,具体为第三透镜103和第四透镜104的间隔距离。由此有利于设置可变光圈,即方便可变光圈的机械结构实现,进而方便光学系统光阑的设计。特别地,通过上述设置可使小型化光学系统在适配大像面相机的同时,FNO达到2.06且可调。
上述实施例提供的光学系统的结构紧凑,采用了将光阑S的位置尽可能靠近物侧面设计,使得光学系统的总长缩短化,即该光学系统的整个内对焦光学系统总长度(第一透镜101物侧面顶点到成像面I的距离)小于30mm,整个透镜系统(第一透镜101物侧面的顶点到第八透镜108像侧面顶点距离)小于24mm,因此实现了该光学系统的小型化、轻量化和便携化。
在一些实施例中,为了进一步地提高成像质量,在不同的光学参数需求下,设定第三透镜103和第四透镜104的两个透镜面均至少有一个镜面是非球面;其中,所述光学参数包括所述光学系统的视场角、F数和焦距中的至少一项。
示例性的,比如视场角大于118°时,将第三透镜103和第四透镜104的两个透镜面其中一个或两个配置为非球面。再比如,F数大于2.0时,将第三透镜103和第四透镜104的两个透镜面其中一个或两个配置为非球面,由此提高光学系统的成像质量。
具体地,如图2所示,第三透镜103的透镜面5和透镜面6有一个面为非 球面,和/或,第四透镜104的透镜面8和透镜面9有一个面为非球面。当然,第三透镜103的透镜面5和透镜面6也可以均为非球面,和/或,第四透镜104的透镜面8和透镜面9也可以均为非球面。
在一些实施例中,第一透镜101、第二透镜102、第八透镜108的两个透镜面中均至少有一个镜面是非球面。通过在第一透镜101、第二透镜102、第八透镜108的两个透镜面中一个镜面或两个镜面采用非球面设计,可以有效矫正视场角过大带来的畸变,可以在光学系统的光圈较大时,提高光学系统的整体解像力和实现镜头的小型化。
具体地,如图2所示,第一透镜101的透镜面1和透镜面2中至少有一个镜面是非球面;和/或,第二透镜102的透镜面3和透镜面4中至少有一个镜面是非球面;和/或,第八透镜108的的透镜面15和透镜面16中至少有一个镜面是非球面。当然,也可以均为非球面。
在一些实施例中,第八透镜108靠近像侧的透镜面16的中心顶点到成像面I的间隔大于预设距离。比如,所述预设距离包括6mm。通过此设计,可以有助于减少灰尘对该光学系统成像质量的影响,以及有助于可交换镜头的机械结构的实现,即方便该光学系统通过机械结构设计安装在拍摄装置上。
在一些实施例中,光学系统100的第二透镜102至第八透镜108中至少有一个透镜能够作为内对焦透镜组。具体地,第二透镜102、第三透镜103、第四透镜104、第五透镜105、第六透镜106、第七透镜107和第八透镜108中,均可以选择一个透镜或多个透镜组合作为内对焦透镜组。由此可以实现从无穷远物体(或最近距离物体)向最近距离物体(或无穷远物体)的对焦,特别是对于0.3m至无穷远范围内不同物距的拍摄,成像效果好,由此解决了现有的镜头只能拍摄一定范围或者一定焦段范围的物体的问题。
其中,通过对焦结构设计,还需保证在内对焦时对焦透镜与相邻透镜的间隔均至少大于0.95mm。可以有效避免了用于对焦镜片的前后机械结构件的碰撞,确保了光学系统的安全。
示例性的,比如将第四透镜104作为内对焦透镜组,在内对焦时第四透镜104与相邻透镜(第三透镜103和第四透镜105)的间隔均至少大于0.95mm。
在一些实施例中,在光学系统100中可以只采用一个透镜作为内对焦透镜组,或者采用由至少两个透镜形成的胶合透镜作为内对焦透镜组。比如,将第 六透镜106和第七透镜107胶合形成胶合透镜,该胶合透镜可以作为内对焦透镜组。
其中,若第八透镜108作为内对焦透镜组时,第八透镜108的两个透镜面至少有一个镜面是非球面。可以很好地控制对焦镜片在移动过程中引起的像差,进而提升了光学系统的光学像质。
其中,若第六透镜106和第七透镜107形成的胶合透镜作为内对焦透镜组时,为了很好地控制对焦镜片在移动过程中引起的像差,以提升了光学系统的光学像质,需要该第六透镜106和第七透镜107满足如下表达式:
vd 6>50,vd 7<30  (2)
在表达式(2)中,vd 6为第六透镜106的色散系数(阿贝数),vd 7为第七透镜107的色散系数(阿贝数)。
需要说明的是,为了进一步地提高成像质量,在内对焦时,通过上述设置能够使得内对焦对应的调整量小于0.5mm,光学系统对焦量较小,且使得该光学系统的呼吸效应较小,可以确保画面视场变化小于1°。
本申请的光学系统采用某一单片透镜或者两片胶合镜片进行内对焦,使得光学系统的对焦重量较轻,可以实现对焦重量小于0.3g,因此对焦速度较快,并且在近距离对焦拍摄时能够获得良好的性能。
在一些实施例中,为了矫正光学系统的畸变,设置第一透镜101满足如下表达式:
0.4<|D 1/R 1|<1.95,2<|D 1/R 2|<3.6  (3)
在表达式(3)中,D 1是第一透镜101的直径,R 1是第一透镜101靠近物侧的透镜面(透镜面1)的曲率半径,R 2是第一透镜101靠近像侧的透镜面(透镜面2)的曲率半径。
在一些实施例中,为了使光学系统小型化和轻便化,对光学系统进行进一步限定,即光学系统满足如下表达式:
1<|T 1/T 2|<2,0<|T 2/TL|<0.05,1<|T 3/T 4|<2.5,0.05<|T 3/TL|<0.15,0<|T 5/TL|<0.1,0.02<|(T 6+T 7)/TL|<0.15,2.5<|T 6/T 7|<4.5,0<|T 8/TL|<0.1,0.1<|A 1/TL|<0.25,
0.1<|(A 1+A 2)/TL|<0.25,0.1<|A 3/TL|<0.2,0.035<|A 7/TL|<0.2;  (4)
在表达式(4),TL是第一透镜101靠近物侧的透镜面中心顶点到成像面为止的光轴上的距离,T 1至T 8分别是第一透镜101、第二透镜102、第三透镜103、 第四透镜104、第五透镜105、第六透镜106、第七透镜107、第八透镜108的中心厚度;A 1是第一透镜101与第二透镜102之间的间隔,A 2是第二透镜102与第三透镜103之间的间隔,A 3是第三透镜103与第四透镜104之间的间隔,A 7是第七透镜107与第八透镜108之间的间隔。
需要说明的是,0.1<|A 3/TL|<0.2对光学系统的限定,有助于光学系统可变光圈对应的机械结构的实现;0.035<|A 7/TL|<0.2对光学系统的限定,有助于光学系统内对焦对应的机械结构的实现。
在一些实施例中,为了矫正光学系统的色像差,所述光学系统满足如下表达式:
(vd 1,vd 4,vd 6,vd 8)>40,0<(vd 2,vd 3,vd 7)<40,25<vd 5<50  (5)
在表达式(5)中,vd 1、vd 2、vd 3、vd 4、vd 5、vd 6、vd 7、vd 8分别是第一透镜101、第二透镜102、第三透镜103、第四透镜104、第五透镜105、第六透镜106、第七透镜107、第八透镜108的色散系数(阿贝数)。
特别地,第二透镜102、第六透镜106和第七透镜107满足如下表达式:0<(vd 2,vd 7)<30,vd 6>50。可以使得光学系统的色像差得到较好矫正,即可以有效地降低光学系统的色像差,进而提高光学系统的成像质量。
在一些实施例中,为了矫正光学系统的色像差,提高该光学系统的成像质量,所述光学系统满足如下表达式:
1.7<(nd 1,nd 2,nd 3,nd 4,nd 7,nd 8)<2.1,1.4<(nd 5,nd 6)<1.75  (6)
其中,nd 1、nd 2、nd 3、nd 4、nd 5、nd 6、nd 7、nd 8分别是第一透镜101、第二透镜102、第三透镜103、第四透镜104、第五透镜105、第六透镜106、第七透镜107、第八透镜108的折射率。
特别地,第二透镜102、第三透镜103、第六透镜106满足如下表达式:(nd 2,nd 3)>1.9,nd 6<1.7。可以更为有效地降低光学系统的色像差,以提高光学系统的成像质量。
在一个实施例中,为了进一步地矫正,上述的非球面透镜的两个镜面或者非球面的透镜面均是高次非球面,采用所述高次非球面满足以下表达式:
Figure PCTCN2020082198-appb-000001
在表达式(7)中,z为非球面旋转对称轴,c为顶点曲率;y为径向坐标,其单位和透镜单位长度相同;k为二次曲线常数,a 1至a 8分别表示各径向坐标所对应的系数。
需要说明的是,在一些实施例中,第一透镜101、第二透镜102、...、第八透镜108的材质可以相同,也可以不同。比如,部分透镜采用玻璃等常用材质透镜,部分透镜采用塑胶透镜;或者均采用塑胶透镜。由此可以进一步地减轻光学系统的重量。实现光学系统的轻量化,以方便用户使用。
以下结合附图以及表,给出光学系统的具体数值配置,如图2所示,面数1、2、...、16表示光学系统中的表面标号,分别表示第一透镜101、第二透镜102、...、第八透镜108的镜面,其中表面13为第六透镜106和第七透镜的透镜面,第六透镜106和第七透镜的透镜面的曲率半径相同,便于胶合成一个胶合透镜。
具体地,如图2所示,第一透镜101的两个透镜面分别为表面1和表面2、第二透镜102的两个透镜面分别为表面3和表面4、第三透镜103的两个透镜面分别为表面5和表面6、孔径光阑S为表面7、第四透镜104的两个透镜面分别为表面8和表面9、第五透镜105的两个透镜面分别为表面10和表面11、第六透镜106的两个透镜面分别为表面12和表面13、第七透镜107的两个透镜面分别为表面13和表面14、第八透镜108的两个透镜面分别为表面15和表面16。
在表1和表9中,曲率半径表示透镜表面弯曲的程度,可以用R表示,R值越小,镜片表面越弯;间隔或厚度(Thickness),间隔表示为光学系统的透镜之间在光轴上的间隔距离,厚度为透镜的中心厚度;Nd表示透镜的折射率;Vd表示透镜的色散系数,也称为阿贝系数;“Infinity”表示平面;“Air”表示空气;“A(11)”表示第11表面的间隔,“A(14)”表示第14表面的间隔,“A(16)”表示第14表面的间隔,以A(16)为例,具体表示第八透镜108前后的空气间隔,该第八透镜108作为内对焦透镜,在不同的物距(无限远和最近)时,对焦量是不同的,因此第14面和第16面的空气间隔数值是不同的。k为二次曲线常数,a 1至a 8分别表示各径向坐标所对应的系数。表3和表6表示从无限远物距到最近距离对焦时对应的焦距、像方F数(光阑F数)、视场角(FOV)以及内对焦组的移动变化量的数据,内对焦组的移动变化量即为AC(11)、 AC(14)和AC(16)。
其中,表1、表2和表3示出的光学系统的具体数值配置,对应的光学系统的结构如图1或图2所示,以下称为实施例一;表4、表5和表6示出的光学系统的具体数值配置,对应的光学系统的结构如图3所示,以下称为实施例二;表7、表8和表9示出的光学系统的具体数值配置,对应的光学系统的结构如图4所示,以下称为实施例三。
表1为实施例一的光学系统各个表面参数数据
Figure PCTCN2020082198-appb-000002
表2为实施例一光学系统各个表面非球面系数数据
Figure PCTCN2020082198-appb-000003
Figure PCTCN2020082198-appb-000004
表3为实施例一光学系统透镜组配置数据
  无限远 最近
focal length 5.87mm  
FNO 2.06 2.078
FOV 116.5° 117.4°
AC(14) 1.155 0.974
AC(16) 6.522 6.703
表4为实施例二的光学系统各个表面参数数据
Figure PCTCN2020082198-appb-000005
表5为实施例二光学系统各个表面非球面系数数据
Figure PCTCN2020082198-appb-000006
Figure PCTCN2020082198-appb-000007
表6为实施例二光学系统透镜组配置数据
  无限远 最近
Focal length 6.05mm  
FNO 2.45 2.46
FOV 118.25° 118.27°
AC(11) 1.395 1.489
AC(14) 1.485 1.391
表7为实施例三的光学系统各个表面参数数据
Figure PCTCN2020082198-appb-000008
表8为实施例三光学系统各个表面非球面系数数据
Figure PCTCN2020082198-appb-000009
Figure PCTCN2020082198-appb-000010
表9为实施例三光学系统透镜组配置数据
  无限远 最近
Focal length 6.15mm  
FNO 2.5 2.5
FOV 116.7° 117.5°
AC(14) 1.13 0.964
AC(16) 6.67 6.837
需要说明的是,上述给出三个具体实施例(实施例一、实施例二和实施例三的光学系统),当然可以改变其中一个参数后再进行光学设计,得到更多个不同的光学系统。
同时,通过上述三个具体实施例,可以看出本申请提供的光学系统具有以下优点:
(1)、本申请提供的光学系统结构紧凑,采用了将光阑位置尽可能靠近物侧面的结构,使得光学系统的总长缩短,即整个内对焦光学系统总长度(第一透镜101靠近物侧的透镜面顶点到成像面的距离)小于30mm,整个光学系统(第一透镜101靠近物侧的透镜面顶点到第八透镜108靠近像侧面的透镜面顶点距离)小于24mm,因此实现了光学系统的小型、轻量化和便携化;
(2)、本申请提供的光学系统的光阑S位置处的空气间隔大于3.2mm,有助于可变光圈机械结构的实现;
(3)、本申请提供的光学系统第八透镜靠近像侧面的透镜面的中心顶点到成像面的空气间隔大于6mm,有助于减少灰尘对成像质量的影响,同时又有助于可交换镜头机械结构的实现;
(4)、本申请提供的光学系统采用其中的某一单片透镜或者两片胶合透镜进行内对焦作为对焦方式,使得系统整体对焦重量较轻(对焦重量小于0.3g), 对焦速度较快,并且在近距离对焦拍摄时也能获得良好的性能;
(5)、本申请提供的光学系统对焦量较小,整体对焦量小于0.5mm,使得系统的呼吸效应较小(画面视场变化小于1°);
(6)、本申请提供的光学系统可实现系统拍摄范围大,成像清晰,可实现0.3m至无穷远不同物距的拍摄;在设计时提升了周边光亮比;即使在光圈全开的时候,周边光亮比也在30%以上,通过整个镜头的光在画面上呈现得更均匀,有效地避免了镜头有暗角的问题;FOV大于115°,拍摄视场画面大;
(7)、本申请提供的光学系统,采用至少一片非球面透镜面,不仅使得FNO可达到2.06,光圈较大;也能提升光学系统的整体素质;还可以实现大像面
Figure PCTCN2020082198-appb-000011
高像质、高分辨率大于20M(2000万像素)的成像效果。
需要说明的是,如图5所示,本申请的光学系统100还包括壳体110,其中第一透镜101、第二透镜102、第三透镜103、第四透镜104、第五透镜105、第六透镜106、第七透镜107和第八透镜107均安装在壳体110内。其中,还包括调节机构,用于实现内对焦。
此外,如图6所示,光学系统100的壳体110上还可以有螺纹孔111,通过该螺纹孔111可以将光学系统100固定在拍摄装置的镜头上,进而实现了光学系统的可交换。
请参阅图7,图7是本申请的实施例提供的一种拍摄装置的结构示意图。该拍摄装置使用可交换的光学系统以增加视场角,用于实现大像面以及高像质的成像效果。
如图7所示,拍摄装置200包括光学系统100和拍摄设备21,光学系统100采用上述实施例提供的任意一种光学系统。
拍摄装置200为可以进行拍摄的电子设备,包括手机、数码相机、运动相机、可穿戴设备或手持云台相机等。
其中,光学系统100和拍摄设备21可拆卸连接,或者固定连接。可拆卸连接方便用户使用。
示例性的,光学系统100与拍摄设备21通过磁吸、粘贴、螺纹或卡扣中的一种或多种连接方式固定。
以磁吸为例,当光学系统100与拍摄设备21通过磁吸方式固定时,光学系统100和拍摄设备21上通过磁铁公母对吸方式连接,具体地,可以在光学系统 100上安装有磁铁,而拍摄设备21的对应位置安装有可供磁铁吸合的异性磁极或金属件。反之亦然,磁铁也可安装在拍摄设备21,此时光学系统10上安装有可供磁铁吸合的异性磁极或金属件。通过上述设置,可以在方便用户安装及盲操的同时,避免了频繁装卸下容易产生的接口磨损问题。
如图7所示,该拍摄设备21为运动相机,包括镜片组210、显示屏211和拍摄按键212。镜片组210用于将景物成像于拍摄设备21的传感器,比如COMS传感器或CCD传感器等;显示屏211用于显示成像,显示屏211为触控显示屏;拍摄按键212用于触发拍摄。
其中,拍摄设备21包括镜片组210,光学系统100的第八透镜108与镜片组210的最外侧镜片保持一定距离。比如大于6mm,以在光学系统与拍摄设备21连接,确保两者之间不直接接触,提高安全性。
在一个实施例中,光学系统100与拍摄设备21的镜头参数相匹配。进而提高成像质量。
示例性的,光学系统100的镜头参数包括:孔径、光圈和像面等,其中,光学系统100的孔径、光圈与拍摄设备的孔径、光圈保持一致,进而保证了整体系统像面像质的一致性。
在一个实施例中,所述镜头参数包括像面,且像面大于16mm。进而通过上述光学系统自身的设置或其与拍摄设备的配合实现了大像面成像。进而解决了现有拍摄装置的成像面小的问题。
在一个实施例中,通过使用该光学系统100,可以使拍摄装置200的视场角大于115°。由此实现了拍摄范围较大,成像清晰。
在一个实施例中,光学系统100的第一透镜101至第八透镜108的直径均大于拍摄设备21的镜片直径。由此可以实现大像面成像,进而解决了现有拍摄装置的成像面较小,多小于直径为16mm的像面,且分辨率较低和像质较差等问题。
上述实施例中的拍摄装置,由于使用了本申请实施例提供的光学系统,由此可以增加拍摄装置的视场角,同时又提高了拍摄装置的成像质量。
请参阅图8,图8是本申请的实施例提供的一种可移动平台的结构示意图。该可移动平台搭载有拍摄装置,实现拍摄。
如图8所示,可移动平台300包括主体310和拍摄装置200,拍摄装置200 安装在主体310上,拍摄装置200包括光学系统100和拍摄设备21,光学系统100连接于拍摄设备21上,光学系统100采用上述实施例提供的任意一种光学系统。
示例性的,可移动平台300包括飞行器、机器人或手持云台等。
其中,该飞行器包括无人机,该无人机包括旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机,还可以是旋翼型与固定翼无人机的组合,在此不作限定。
其中,机器人也可以称为教育机器人,使用了麦克纳姆轮全向底盘,且全身设有多块智能装甲,每个智能装甲内置击打检测模块,可迅速检测物理打击。同时还包括两轴云台,可以灵活转动,配合发射器准确、稳定、连续地发射水晶弹或红外光束,配合弹道光效,给用户更为真实的射击体验。
比如,将光学系统安装在无人机上,由于光学系统可以以增加镜头的视场角,进而可拍摄较大范围的景物,同时又可以提高拍摄装置的成像质量,而且多个透镜的组合使得相对距离较小,进而减小了光学系统的体积,实现了小型化和轻便化。由此,在无人机用于航拍时,通过使用该光学系统可以拍摄出更好的图像,进而提高了用户的体验度。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (62)

  1. 一种光学系统,其特征在于,所述光学系统包括从物侧至像侧依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜,所述第一透镜、第二透镜、第六透镜、第七透镜具有负光焦度,所述第三透镜、第四透镜、第八透镜具有正光焦度,所述第五透镜具有负光焦度或正光焦度;
    所述光学系统满足以下表达式:
    1<|f 1/f|<2.5,1<|f 2/f 1|<1.75,0.9<|f 4/f 3|<1.5,2<|f 5/f|<7,0.5<|f 7/f 6|<1.5,1.9<|f 8/f|<3.5,4.5<|TL/f|<6,0.2<|BFL/TL|<0.5,1<|BFL/f|<1.5;
    其中,f是所述光学系统的焦距,f 1是所述第一透镜的焦距、f 2是所述第二透镜的焦距,f 3是所述第三透镜的焦距,f 4是所述第四透镜的焦距,f 5是所述第五透镜的焦距,f 6是所述第六透镜的焦距,f 7是所述第七透镜的焦距,f 8是所述第八透镜的焦距,TL是所述第一透镜靠近物侧的透镜面中心到成像面为止的光轴上的距离;BFL是所述第八透镜靠近像侧的透镜面中心到成像面为止的光轴上的距离。
  2. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜、第二透镜、第八透镜的两个透镜面中均至少有一个镜面是非球面。
  3. 根据权利要求1所述的光学系统,其特征在于,所述第三透镜和第四透镜位于所述光学系统的孔径光阑的两侧。
  4. 根据权利要求3所述的光学系统,其特征在于,所述光学系统的孔径光阑所处位置的间隔大于3.2mm,其中,所述所处位置的间隔为与所述孔径光阑相邻的两个透镜之间的距离。
  5. 根据权利要求3所述的光学系统,其特征在于,在不同的光学参数需求下,所述第三透镜和第四透镜的两个透镜面均至少有一个镜面是非球面;
    其中,所述光学参数包括所述光学系统的视场角、F数和焦距中的至少一项。
  6. 根据权利要求1所述的光学系统,其特征在于,所述第八透镜靠近像侧的透镜面的中心顶点到成像面的间隔大于预设距离。
  7. 根据权利要求6所述的光学系统,其特征在于,所述预设距离包括6mm。
  8. 根据权利要求1所述的光学系统,其特征在于,所述光学系统的第二透镜至第八透镜中至少有一个透镜能够作为内对焦透镜组。
  9. 根据权利要求8所述的光学系统,其特征在于,在内对焦时对焦透镜与相邻透镜的间隔均至少大于0.95mm。
  10. 根据权利要求8所述的光学系统,其特征在于,在所述光学系统中采用一个透镜或者由至少两个透镜形成的胶合透镜作为内对焦透镜组。
  11. 根据权利要求8所述的光学系统,其特征在于,若所述第八透镜作为内对焦透镜组时,所述第八透镜的两个透镜面至少有一个镜面是非球面。
  12. 根据权利要求8所述的光学系统,其特征在于,若所述第六透镜和第七透镜形成的胶合透镜作为内对焦透镜组时,所述第六透镜和第七透镜满足如下表达式:
    vd 6>50,vd 7<30
    其中,vd 6为所述第六透镜的色散系数,vd 7为所述第七透镜的色散系数。
  13. 根据权利要求8所述的光学系统,其特征在于,在内对焦时,内对焦对应的调整量小于0.5mm。
  14. 根据权利要求1所述的光学系统,其特征在于,所述第六透镜和第七透镜能够胶合在一起形成胶合透镜。
  15. 根据权利要求1至14任一项所述的光学系统,其特征在于,所述第一透镜满足如下表达式:
    0.4<|D 1/R 1|<1.95,2<|D 1/R 2|<3.6
    其中,D 1是所述第一透镜的直径,R 1是所述第一透镜靠近物侧的透镜面的曲率半径,R 2是所述第一透镜靠近像侧的透镜面的曲率半径。
  16. 根据权利要求1至14任一项所述的光学系统,其特征在于,所述光学系统满足如下表达式:
    1<|T 1/T 2|<2,0<|T 2/TL|<0.05,1<|T 3/T 4|<2.5,0.05<|T 3/TL|<0.15,0<|T 5/TL|<0.1,0.02<|(T 6+T 7)/TL|<0.15,2.5<|T 6/T 7|<4.5,0<|T 8/TL|<0.1,0.1<|A 1/TL|<0.25,0.1<|(A 1+A 2)/TL|<0.25,0.1<|A 3/TL|<0.2,0.035<|A 7/TL|<0.2;
    其中,TL是所述第一透镜靠近物侧的透镜面中心顶点到成像面为止的光轴上的距离,T 1至T 8分别是所述第一透镜、第二透镜、第三透镜、第四透镜、第 五透镜、第六透镜、第七透镜、第八透镜的中心厚度;A 1是所述第一透镜与所述第二透镜之间的间隔,A 2是所述第二透镜与所述第三透镜之间的间隔,A 3是所述第三透镜与所述第四透镜之间的间隔,A 7是所述第七透镜与所述第八透镜之间的间隔。
  17. 根据权利要求1至14任一项所述的光学系统,其特征在于,所述光学系统满足如下表达式:
    (vd 1,vd 4,vd 6,vd 8)>40,0<(vd 2,vd 3,vd 7)<40,25<vd 5<50,
    其中,vd 1、vd 2、vd 3、vd 4、vd 5、vd 6、vd 7、vd 8分别是所述第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜的色散系数。
  18. 根据权利要求17所述的光学系统,其特征在于,所述第二透镜、第六透镜和第七透镜满足如下表达式:0<(vd 2,vd 7)<30,vd 6>50。
  19. 根据权利要求1至14任一项所述的光学系统,其特征在于,所述光学系统满足如下表达式:
    1.7<(nd 1,nd 2,nd 3,nd 4,nd 7,nd 8)<2.1,1.4<(nd 5,nd 6)<1.75
    其中,nd 1、nd 2、nd 3、nd 4、nd 5、nd 6、nd 7、nd 8分别是所述第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜的折射率。
  20. 根据权利要求19所述的光学系统,其特征在于,所述第二透镜、第三透镜、第六透镜满足如下表达式:(nd 2,nd 3)>1.9,nd 6<1.7。
  21. 一种拍摄装置,其特征在于,所述拍摄装置包括光学系统和拍摄设备,所述光学系统连接于所述拍摄设备,所述光学系统包括从物侧到像侧依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜,所述第一透镜、第二透镜、第六透镜、第七透镜具有负光焦度,所述第三透镜、第四透镜、第八透镜具有正光焦度,所述第五透镜具有负光焦度或正光焦度;
    所述光学系统满足以下表达式:
    1<|f 1/f|<2.5,1<|f 2/f 1|<1.75,0.9<|f 4/f 3|<1.5,2<|f 5/f|<7,0.5<|f 7/f 6|<1.5,1.9<|f 8/f|<3.5,4.5<|TL/f|<6,0.2<|BFL/TL|<0.5,1<|BFL/f|<1.5;
    其中,f是所述光学系统的焦距,f 1是所述第一透镜的焦距、f 2是所述第 二透镜的焦距,f 3是所述第三透镜的焦距,f 4是所述第四透镜的焦距,f 5是所述第五透镜的焦距,f 6是所述第六透镜的焦距,f 7是所述第七透镜的焦距,f 8是所述第八透镜的焦距,TL是所述第一透镜靠近物侧的透镜面中心到成像面为止的光轴上的距离;BFL是所述第八透镜靠近像侧的透镜面中心到成像面为止的光轴上的距离。
  22. 根据权利要求21所述的拍摄装置,其特征在于,所述第一透镜、第二透镜、第八透镜的两个透镜面中均至少有一个镜面是非球面。
  23. 根据权利要求21所述的拍摄装置,其特征在于,所述第三透镜和第四透镜位于所述光学系统的孔径光阑的两侧。
  24. 根据权利要求23所述的拍摄装置,其特征在于,所述光学系统的孔径光阑所处位置的间隔大于3.2mm,其中,所述所处位置的间隔为与所述孔径光阑相邻的两个透镜之间的距离。
  25. 根据权利要求23所述的拍摄装置,其特征在于,在不同的光学参数需求下,所述第三透镜和第四透镜的两个透镜面均至少有一个镜面是非球面;
    其中,所述光学参数包括所述光学系统的视场角、F数和焦距中的至少一项。
  26. 根据权利要求21所述的拍摄装置,其特征在于,所述第八透镜靠近像侧的透镜面的中心顶点到成像面的间隔大于预设距离。
  27. 根据权利要求26所述的拍摄装置,其特征在于,所述预设距离包括6mm。
  28. 根据权利要求21所述的拍摄装置,其特征在于,所述光学系统的第二透镜至第八透镜中至少有一个透镜能够作为内对焦透镜组。
  29. 根据权利要求28所述的拍摄装置,其特征在于,在内对焦时对焦透镜与相邻透镜的间隔均至少大于0.95mm。
  30. 根据权利要求28所述的拍摄装置,其特征在于,在所述光学系统中采用一个透镜或者由至少两个透镜形成的胶合透镜作为内对焦透镜组。
  31. 根据权利要求28所述的拍摄装置,其特征在于,若所述第八透镜作为内对焦透镜组时,所述第八透镜的两个透镜面至少有一个镜面是非球面。
  32. 根据权利要求28所述的拍摄装置,其特征在于,若所述第六透镜和第七透镜形成的胶合透镜作为内对焦透镜组时,所述第六透镜和第七透镜满足如 下表达式:
    vd 6>50,vd 7<30
    其中,vd 6为所述第六透镜的色散系数,vd 7为所述第七透镜的色散系数。
  33. 根据权利要求28所述的拍摄装置,其特征在于,在内对焦时,内对焦对应的调整量小于0.5mm。
  34. 根据权利要求21所述的拍摄装置,其特征在于,所述第六透镜和第七透镜能够胶合在一起形成胶合透镜。
  35. 根据权利要求21至34任一项所述的拍摄装置,其特征在于,所述第一透镜满足如下表达式:
    0.4<|D 1/R 1|<1.95,2<|D 1/R 2|<3.6
    其中,D 1是所述第一透镜的直径,R 1是所述第一透镜靠近物侧的透镜面的曲率半径,R 2是所述第一透镜靠近像侧的透镜面的曲率半径。
  36. 根据权利要求21至34任一项所述的拍摄装置,其特征在于,所述光学系统满足如下表达式:
    1<|T 1/T 2|<2,0<|T 2/TL|<0.05,1<|T 3/T 4|<2.5,0.05<|T 3/TL|<0.15,0<|T 5/TL|<0.1,0.02<|(T 6+T 7)/TL|<0.15,2.5<|T 6/T 7|<4.5,0<|T 8/TL|<0.1,0.1<|A 1/TL|<0.25,0.1<|(A 1+A 2)/TL|<0.25,0.1<|A 3/TL|<0.2,0.035<|A 7/TL|<0.2;
    其中,TL是所述第一透镜靠近物侧的透镜面中心顶点到成像面为止的光轴上的距离,T 1至T 8分别是所述第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜的中心厚度;A 1是所述第一透镜与所述第二透镜之间的间隔,A 2是所述第二透镜与所述第三透镜之间的间隔,A 3是所述第三透镜与所述第四透镜之间的间隔,A 7是所述第七透镜与所述第八透镜之间的间隔。
  37. 根据权利要求21至34任一项所述的拍摄装置,其特征在于,所述光学系统满足如下表达式:
    (vd 1,vd 4,vd 6,vd 8)>40,0<(vd 2,vd 3,vd 7)<40,25<vd 5<50,
    其中,vd 1、vd 2、vd 3、vd 4、vd 5、vd 6、vd 7、vd 8分别是所述第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜的色散系数。
  38. 根据权利要求37所述的拍摄装置,其特征在于,所述第二透镜、第六 透镜和第七透镜满足如下表达式:0<(vd 2,vd 7)<30,vd 6>50。
  39. 根据权利要求21至34任一项所述的拍摄装置,其特征在于,所述光学系统满足如下表达式:
    1.7<(nd 1,nd 2,nd 3,nd 4,nd 7,nd 8)<2.1,1.4<(nd 5,nd 6)<1.75
    其中,nd 1、nd 2、nd 3、nd 4、nd 5、nd 6、nd 7、nd 8分别是所述第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜的折射率。
  40. 根据权利要求39所述的拍摄装置,其特征在于,所述第二透镜、第三透镜、第六透镜满足如下表达式:(nd 2,nd 3)>1.9,nd 6<1.7。
  41. 根据权利要求21所述的拍摄装置,其特征在于,所述光学系统与所述拍摄设备通过磁吸、粘贴、螺纹或卡扣中的一种或多种连接方式固定连接。
  42. 一种可移动平台,其特征在于,所述可移动平台包括主体和拍摄装置,所述拍摄装置安装在所述主体上,所述拍摄装置包括光学系统和拍摄设备,所述光学系统连接于所述拍摄设备,所述光学系统包括从物侧到像侧依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜,所述第一透镜、第二透镜、第六透镜、第七透镜具有负光焦度,所述第三透镜、第四透镜、第八透镜具有正光焦度,所述第五透镜具有负光焦度或正光焦度;
    所述光学系统满足以下表达式:
    1<|f 1/f|<2.5,1<|f 2/f 1|<1.75,0.9<|f 4/f 3|<1.5,2<|f 5/f|<7,0.5<|f 7/f 6|<1.5,1.9<|f 8/f|<3.5,4.5<|TL/f|<6,0.2<|BFL/TL|<0.5,1<|BFL/f|<1.5;
    其中,f是所述光学系统的焦距,f 1是所述第一透镜的焦距、f 2是所述第二透镜的焦距,f 3是所述第三透镜的焦距,f 4是所述第四透镜的焦距,f 5是所述第五透镜的焦距,f 6是所述第六透镜的焦距,f 7是所述第七透镜的焦距,f 8是所述第八透镜的焦距,TL是所述第一透镜靠近物侧的透镜面中心到成像面为止的光轴上的距离;BFL是所述第八透镜靠近像侧的透镜面中心到成像面为止的光轴上的距离。
  43. 根据权利要求42所述的可移动平台,其特征在于,所述第一透镜、第二透镜、第八透镜的两个透镜面中均至少有一个镜面是非球面。
  44. 根据权利要求42所述的可移动平台,其特征在于,所述第三透镜和第四透镜位于所述光学系统的孔径光阑的两侧。
  45. 根据权利要求44所述的可移动平台,其特征在于,所述光学系统的孔径光阑所处位置的间隔大于3.2mm,其中,所述所处位置的间隔为与所述孔径光阑相邻的两个透镜之间的距离。
  46. 根据权利要求44所述的可移动平台,其特征在于,在不同的光学参数需求下,所述第三透镜和第四透镜的两个透镜面均至少有一个镜面是非球面;
    其中,所述光学参数包括所述光学系统的视场角、F数和焦距中的至少一项。
  47. 根据权利要求42所述的可移动平台,其特征在于,所述第八透镜靠近像侧的透镜面的中心顶点到成像面的间隔大于预设距离。
  48. 根据权利要求47所述的可移动平台,其特征在于,所述预设距离包括6mm。
  49. 根据权利要求42所述的可移动平台,其特征在于,所述光学系统的第二透镜至第八透镜中至少有一个透镜能够作为内对焦透镜组。
  50. 根据权利要求49所述的可移动平台,其特征在于,在内对焦时对焦透镜与相邻透镜的间隔均至少大于0.95mm。
  51. 根据权利要求49所述的可移动平台,其特征在于,在所述光学系统中采用一个透镜或者由至少两个透镜形成的胶合透镜作为内对焦透镜组。
  52. 根据权利要求49所述的可移动平台,其特征在于,若所述第八透镜作为内对焦透镜组时,所述第八透镜的两个透镜面至少有一个镜面是非球面。
  53. 根据权利要求49所述的可移动平台,其特征在于,若所述第六透镜和第七透镜形成的胶合透镜作为内对焦透镜组时,所述第六透镜和第七透镜满足如下表达式:
    vd 6>50,vd 7<30
    其中,vd 6为所述第六透镜的色散系数,vd 7为所述第七透镜的色散系数。
  54. 根据权利要求49所述的可移动平台,其特征在于,在内对焦时,内对焦对应的调整量小于0.5mm。
  55. 根据权利要求42所述的可移动平台,其特征在于,所述第六透镜和第七透镜能够胶合在一起形成胶合透镜。
  56. 根据权利要求42至55任一项所述的可移动平台,其特征在于,所述第一透镜满足如下表达式:
    0.4<|D 1/R 1|<1.95,2<|D 1/R 2|<3.6
    其中,D 1是所述第一透镜的直径,R 1是所述第一透镜靠近物侧的透镜面的曲率半径,R 2是所述第一透镜靠近像侧的透镜面的曲率半径。
  57. 根据权利要求42至55任一项所述的可移动平台,其特征在于,所述光学系统满足如下表达式:
    1<|T 1/T 2|<2,0<|T 2/TL|<0.05,1<|T 3/T 4|<2.5,0.05<|T 3/TL|<0.15,0<|T 5/TL|<0.1,0.02<|(T 6+T 7)/TL|<0.15,2.5<|T 6/T 7|<4.5,0<|T 8/TL|<0.1,0.1<|A 1/TL|<0.25,0.1<|(A 1+A 2)/TL|<0.25,0.1<|A 3/TL|<0.2,0.035<|A 7/TL|<0.2;
    其中,TL是所述第一透镜靠近物侧的透镜面中心顶点到成像面为止的光轴上的距离,T 1至T 8分别是所述第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜的中心厚度;A 1是所述第一透镜与所述第二透镜之间的间隔,A 2是所述第二透镜与所述第三透镜之间的间隔,A 3是所述第三透镜与所述第四透镜之间的间隔,A 7是所述第七透镜与所述第八透镜之间的间隔。
  58. 根据权利要求42至55任一项所述的可移动平台,其特征在于,所述光学系统满足如下表达式:
    (vd 1,vd 4,vd 6,vd 8)>40,0<(vd 2,vd 3,vd 7)<40,25<vd 5<50,
    其中,vd 1、vd 2、vd 3、vd 4、vd 5、vd 6、vd 7、vd 8分别是所述第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜的色散系数。
  59. 根据权利要求58所述的可移动平台,其特征在于,所述第二透镜、第六透镜和第七透镜满足如下表达式:0<(vd 2,vd 7)<30,vd 6>50。
  60. 根据权利要求42至55任一项所述的可移动平台,其特征在于,所述光学系统满足如下表达式:
    1.7<(nd 1,nd 2,nd 3,nd 4,nd 7,nd 8)<2.1,1.4<(nd 5,nd 6)<1.75
    其中,nd 1、nd 2、nd 3、nd 4、nd 5、nd 6、nd 7、nd 8分别是所述第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜的折射率。
  61. 根据权利要求60所述的可移动平台,其特征在于,所述第二透镜、第三透镜、第六透镜满足如下表达式:(nd 2,nd 3)>1.9,nd 6<1.7。
  62. 根据权利要求42所述的可移动平台,其特征在于,所述光学系统与所述拍摄设备通过磁吸、粘贴、螺纹或卡扣中的一种或多种连接方式固定连接。
PCT/CN2020/082198 2020-03-30 2020-03-30 光学系统、拍摄装置及可移动平台 WO2021195885A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080005662.1A CN112955804B (zh) 2020-03-30 2020-03-30 光学系统、拍摄装置及可移动平台
PCT/CN2020/082198 WO2021195885A1 (zh) 2020-03-30 2020-03-30 光学系统、拍摄装置及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/082198 WO2021195885A1 (zh) 2020-03-30 2020-03-30 光学系统、拍摄装置及可移动平台

Publications (1)

Publication Number Publication Date
WO2021195885A1 true WO2021195885A1 (zh) 2021-10-07

Family

ID=76236232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082198 WO2021195885A1 (zh) 2020-03-30 2020-03-30 光学系统、拍摄装置及可移动平台

Country Status (2)

Country Link
CN (1) CN112955804B (zh)
WO (1) WO2021195885A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321490A (ja) * 1999-05-13 2000-11-24 Cosina Co Ltd 写真レンズ
US20100315723A1 (en) * 2009-06-12 2010-12-16 Largan Pecision Co., Ltd. Imaging lens assembly
CN105403982A (zh) * 2015-12-28 2016-03-16 中山联合光电科技股份有限公司 一种高像质用于无人机航拍光学成像镜头
CN106501921A (zh) * 2016-12-21 2017-03-15 江西联益光学有限公司 无人机摄像镜头
CN110286476A (zh) * 2019-08-20 2019-09-27 江西联创电子有限公司 光学成像镜头及成像设备
CN110873944A (zh) * 2018-09-04 2020-03-10 佳能企业股份有限公司 光学镜头

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6813091B2 (en) * 2002-05-21 2004-11-02 Canon Kabushiki Kaisha Zoom lens system and photographing apparatus having the same
US8780463B2 (en) * 2010-06-24 2014-07-15 Ricoh Company, Ltd. Image-forming lens, and imaging apparatus and information device using the image-forming lens
KR102620545B1 (ko) * 2016-04-06 2024-01-03 삼성전기주식회사 촬상 광학계
CN110286479B (zh) * 2019-06-27 2024-05-24 东莞市宇瞳光学科技股份有限公司 一种变焦镜头
CN110208930B (zh) * 2019-06-29 2024-04-30 东莞市宇瞳光学科技股份有限公司 一种定焦镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321490A (ja) * 1999-05-13 2000-11-24 Cosina Co Ltd 写真レンズ
US20100315723A1 (en) * 2009-06-12 2010-12-16 Largan Pecision Co., Ltd. Imaging lens assembly
CN105403982A (zh) * 2015-12-28 2016-03-16 中山联合光电科技股份有限公司 一种高像质用于无人机航拍光学成像镜头
CN106501921A (zh) * 2016-12-21 2017-03-15 江西联益光学有限公司 无人机摄像镜头
CN110873944A (zh) * 2018-09-04 2020-03-10 佳能企业股份有限公司 光学镜头
CN110286476A (zh) * 2019-08-20 2019-09-27 江西联创电子有限公司 光学成像镜头及成像设备

Also Published As

Publication number Publication date
CN112955804B (zh) 2022-04-15
CN112955804A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
TWI626487B (zh) 光學影像鏡頭系統組、取像裝置及電子裝置
TWI640811B (zh) 攝像系統鏡片組、取像裝置及電子裝置
TWI617831B (zh) 光學影像鏡頭、取像裝置及電子裝置
TWI484215B (zh) 光學結像鏡片系統、取像裝置及可攜裝置
TWI565966B (zh) 光學攝像鏡組、取像裝置及電子裝置
TW201905531A (zh) 影像擷取鏡片系統組、取像裝置及電子裝置
TWI512327B (zh) 攝影透鏡系統、取像裝置及電子裝置
TW201830082A (zh) 影像擷取光學鏡片組、取像裝置及電子裝置
TW201901222A (zh) 光學影像擷取鏡片組、取像裝置及電子裝置
TWI629527B (zh) 攝影系統鏡片組、取像裝置及電子裝置
TWI625546B (zh) 攝像光學鏡片系統、取像裝置及電子裝置
TW201631352A (zh) 取像鏡頭組、取像裝置及電子裝置
CN211905843U (zh) 光学系统、拍摄装置及可移动平台
TW201932901A (zh) 光學攝像鏡組、取像裝置及電子裝置
CN213986992U (zh) 光学系统、拍摄装置及可移动平台
TW201913162A (zh) 影像鏡片系統組、取像裝置及電子裝置
CN212781468U (zh) 光学系统、拍摄装置及可移动平台
WO2021185201A1 (zh) 变焦镜头, 摄像头模组及移动终端
CN107121757B (zh) 一种超广角镜头
WO2021195885A1 (zh) 光学系统、拍摄装置及可移动平台
CN214201899U (zh) 光学系统、拍摄装置、云台及可移动平台
WO2021195884A1 (zh) 光学系统、拍摄装置及可移动平台
WO2022141315A1 (zh) 光学系统、拍摄装置及可移动平台
WO2022036607A1 (zh) 光学系统、拍摄装置及可移动平台
WO2022141124A1 (zh) 光学系统、拍摄装置、云台及可移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928093

Country of ref document: EP

Kind code of ref document: A1