WO2022019704A1 - 카메라 엑추에이터 및 이를 포함하는 카메라 모듈 - Google Patents

카메라 엑추에이터 및 이를 포함하는 카메라 모듈 Download PDF

Info

Publication number
WO2022019704A1
WO2022019704A1 PCT/KR2021/009544 KR2021009544W WO2022019704A1 WO 2022019704 A1 WO2022019704 A1 WO 2022019704A1 KR 2021009544 W KR2021009544 W KR 2021009544W WO 2022019704 A1 WO2022019704 A1 WO 2022019704A1
Authority
WO
WIPO (PCT)
Prior art keywords
protrusion
housing
mover
disposed
camera actuator
Prior art date
Application number
PCT/KR2021/009544
Other languages
English (en)
French (fr)
Inventor
이성국
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200091615A external-priority patent/KR20220012618A/ko
Priority claimed from KR1020210096523A external-priority patent/KR20230015136A/ko
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to EP21846248.9A priority Critical patent/EP4187318A4/en
Priority to CN202180062570.1A priority patent/CN116075775A/zh
Priority to US18/017,542 priority patent/US20230259002A1/en
Priority to JP2023504632A priority patent/JP2023535072A/ja
Publication of WO2022019704A1 publication Critical patent/WO2022019704A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/01Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields, i.e. structural association with shields
    • H02K11/014Shields associated with stationary parts, e.g. stator cores
    • H02K11/0141Shields associated with casings, enclosures or brackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0023Movement of one or more optical elements for control of motion blur by tilting or inclining one or more optical elements with respect to the optical axis

Definitions

  • the present invention relates to a camera actuator and a camera module including the same.
  • a camera is a device that takes a picture or video of a subject, and is mounted on a portable device, a drone, a vehicle, or the like.
  • the camera module has an image stabilization (IS) function that corrects or prevents image shake caused by user movement to improve image quality, and automatically adjusts the distance between the image sensor and the lens to align the focal length of the lens. It may have a zooming function that increases or decreases the magnification of a distant subject through an auto-focusing (AF) function and a zoom lens.
  • IS image stabilization
  • AF auto-focusing
  • the resolution of the image sensor increases as the pixel becomes higher and the size of the pixel becomes smaller.
  • the amount of light received for the same time decreases. Therefore, the higher the pixel camera, the more severe the image shake caused by hand shake that occurs when the shutter speed is slowed in a dark environment.
  • ISO image stabilization
  • OIS optical image stabilizer
  • the general OIS technology it is possible to detect the movement of the camera through a gyro sensor, etc., and tilt or move the lens based on the detected movement, or tilt or move the camera module including the lens and the image sensor. have.
  • a lens or a camera module including a lens and an image sensor is tilted or moved for OIS, it is necessary to additionally secure a space for tilting or moving around the lens or camera module.
  • an actuator for OIS may be disposed around the lens.
  • the actuator for OIS may include two axes perpendicular to the optical axis Z, that is, an actuator in charge of tilting the X-axis and an actuator in charge of tilting the Y-axis.
  • the technical problem to be solved by the present invention can provide a camera actuator that suppresses oscillation by the elastic member through a damper member while having a holding force in the OIS actuator by using the elasticity of the elastic member.
  • Another object of the present invention is to provide a camera actuator applicable to ultra-slim, ultra-compact and high-resolution cameras.
  • a camera actuator includes a housing; a mover disposed within the housing; a tilting guide part disposed between the housing and the mover; and a driving unit disposed in the housing and configured to drive the mover.
  • an elastic member for contacting the tilting guide and the mover; and a damper member coupled to at least one group of the elastic member and the mover, and the elastic member and the housing.
  • the mover may include a seating groove for accommodating the tilting guide part, a first member accommodated in the seating groove, disposed outside the tilting guide part, and coupled to the mover.
  • At least a portion of the second member disposed between the tilting guide part and the first member and coupled to the housing; may include.
  • the first member and the second member may be accommodated in the seating groove.
  • the elastic member may include a first joint connected to the housing; a second joint portion connected to the first member; and a connection part connecting the first junction part and the second junction part.
  • the mover may include a plurality of mover protrusions protruding toward the elastic member, and the damper member may be disposed in a mover groove positioned between the plurality of mover protrusions to contact the mover.
  • connection part may be at least partially disposed in the mover groove and contact the damper member.
  • the protrusion includes a first protrusion and a second protrusion spaced apart from each other in a first direction, the connection part passes through the mover groove, and the mover groove is positioned between the first protrusion and the second protrusion.
  • the protrusion may include a third protrusion disposed inside the mover groove.
  • a height of the third protrusion may be lower than a height of the first protrusion or the second protrusion.
  • the first member may include a member protrusion disposed adjacent to the connection part.
  • the member protrusion may at least partially overlap the connecting portion in an optical axis direction, and at least a portion of the connecting portion may be curved to correspond to an outer surface of the member protrusion.
  • the damper member may be coupled to the member protrusion and the connection part.
  • the member protrusion may be positioned between the first junction part and the second junction part.
  • the second member may include a housing protrusion disposed adjacent to the connection part.
  • the housing protrusion may at least partially overlap the connection part in an optical axis direction.
  • At least a portion of the connecting portion may be curved to correspond to an outer surface of the housing protrusion.
  • the damper member may be coupled to the housing protrusion and the connection part.
  • the housing protrusion may at least partially overlap the damper member in the first direction.
  • the damper member may be coupled to the legs of the connecting part.
  • the second junction may be disposed between the mover and the first junction.
  • the camera actuator includes a housing; a mover disposed in the housing and including an optical member; a tilting guide part disposed between the housing and the mover; and a driving unit disposed in the housing and configured to drive the mover. and an elastic member disposed between the tilting guide part and the housing, wherein the driving part includes: a first magnet disposed on a first side surface of the mover; and a dummy member disposed on a second side surface facing the first side surface.
  • the driving unit may include a second magnet disposed under the mover; a first coil facing the first magnet; and a second coil facing the second magnet.
  • the third substrate side portion may further include a driving driver electrically connected to the second coil and disposed on any one of the first substrate side portion and the third substrate side portion.
  • the second substrate side may be a dummy substrate.
  • the driving driver may provide a current to the first coil and the second coil.
  • the elastic member may be in close contact with the tilting guide unit and the mover.
  • a first member connected to the housing; a second member coupled to the mover; wherein the second member is disposed between the first member and the mover, and the elastic member includes: a first joint connected to the housing; a second joint portion connected to the first member; and a connection part connecting the first junction part and the second junction part.
  • the second junction may be disposed between the mover and the first junction.
  • the tilting guide part includes a base, a first protrusion protruding from a first surface of the base, and a second protrusion protruding from a second surface of the base, and the mover moves toward a first axis based on the first protrusion. It may be tilted and tilted along a second axis based on the second protrusion.
  • the connecting portion includes first connecting portions to fourth connecting portions respectively disposed in first to fourth quadrants defined by the first bisector and the second bisector, wherein the first to fourth quadrants include: located along a counterclockwise direction, wherein the first connection portion and the third connection portion are symmetrical to the first bisector and the second bisector, and the second connection portion and the fourth connection portion are symmetrical to the first bisector and the second bisector, and ,
  • the first bisector may be a line that bisects the elastic member along a first direction
  • the second bisector may be a line that bisects the elastic member along a second direction.
  • An electronic device includes: a first camera module in which an aperture through which light is incident and an image sensor overlap at least partially in an optical axis direction; and a second camera module including an optical member for changing an optical path of incident light; including, wherein the second camera module includes: a first side surface adjacent to the first camera module; a second side opposite the first side; a driving unit for moving the optical member between the optical member and the second side surface; and a dummy member between the optical member and the first side surface.
  • a camera actuator that suppresses oscillation by the elastic member through a damper member while having a holding force in the OIS actuator by using the elasticity of the elastic member.
  • the actuator for OIS can be efficiently arranged without increasing the overall size of the camera module.
  • tilting in the X-axis direction and tilting in the Y-axis direction do not cause magnetic field interference with each other, and tilting in the X-axis direction and tilting in the Y-axis direction can be implemented with a stable structure. Precise OIS function can be realized without causing magnetic field interference.
  • FIG. 1 is a perspective view of a camera module according to an embodiment
  • FIG. 2 is an exploded perspective view of a camera module according to an embodiment
  • FIG. 3 is a cross-sectional view taken along line AA' in FIG. 1;
  • FIG. 4 is a perspective view of a first camera actuator according to the first embodiment
  • FIG. 5 is an exploded perspective view of a first camera actuator according to the first embodiment
  • FIG. 6 is a perspective view of a housing according to an embodiment
  • FIG. 7 is a view of a housing according to an embodiment
  • FIG. 8 is a perspective view of a mover according to the embodiment.
  • FIG. 9 is a perspective view of a holder according to an embodiment
  • FIG. 10 is a bottom view of the holder according to the embodiment.
  • FIG. 11 is a side view of a holder according to an embodiment
  • FIG. 13 is a side view of an elastic member according to an embodiment
  • 15 is a view for explaining the coupling between the first member, the second member, and the elastic member in the first camera actuator according to the first embodiment
  • FIG. 16 is an enlarged view of part K in FIG. 15;
  • 17A is a perspective view before application of the damper member in the first camera actuator according to the first embodiment
  • 17B is a perspective view after application of the damper member in the first camera actuator according to the first embodiment
  • 17C is a view showing coupling between the first member, the second member, and the elastic member in the first camera actuator according to the first embodiment
  • FIG. 17D is a view of another aspect of FIG. 17C;
  • FIG. 17E is a view of another aspect of FIG. 17C;
  • FIG. 18 is a view in which the first member is removed in FIG. 17C;
  • FIG. 19 is a perspective view of a tilting guide part according to the embodiment.
  • FIG. 20 is a perspective view of the tilting guide part in a different direction from FIG. 19;
  • 21 is a cross-sectional view of the tilting guide part cut along FF' in FIG. 19;
  • FIG. 22 is a perspective view of the first camera actuator according to the first embodiment in which the shield can and the substrate are removed;
  • FIG. 23 is a cross-sectional view taken along PP' in FIG. 22;
  • 25 is a view showing a driving unit according to an embodiment
  • 26 is a diagram illustrating a driving unit according to a modified example.
  • FIG. 27 is a perspective view of a first camera actuator according to the first embodiment
  • FIG. 29 is an exemplary view of the movement of the first camera actuator shown in FIG. 28;
  • FIG. 30 is a perspective view of a first camera actuator according to the first embodiment
  • FIG. 31 is a cross-sectional view taken along line RR' in FIG. 30;
  • FIG. 32 is an exemplary diagram of the movement of the first camera actuator shown in FIG. 31;
  • FIG. 33 is a perspective view of a first camera actuator according to a second embodiment
  • 34 is a view showing a first member in the first camera actuator according to the second embodiment
  • 35 is a top view of a first member in a first camera actuator according to a second embodiment
  • 36 is a side view of a first camera actuator according to a second embodiment
  • FIG. 37 is a perspective view of a first camera actuator according to a third embodiment
  • FIG. 38 is a view showing a first camera actuator according to a third embodiment
  • 39 is a side view of a first camera actuator according to a third embodiment.
  • FIG. 40 is a view showing a first camera actuator according to a modified example
  • 41 is a perspective view of a first camera actuator according to a fourth embodiment
  • 43A is a perspective view of a housing of a first camera actuator according to a fourth embodiment
  • Fig. 43b is a perspective view in a different direction from Fig. 43a;
  • 43C is a front view of the housing of the first camera actuator according to the fourth embodiment.
  • 44A is a perspective view of a holder of a first camera actuator according to a fourth embodiment
  • 44B is a bottom view of the holder of the first camera actuator according to the fourth embodiment.
  • 44C is a front view of the holder of the first camera actuator according to the fourth embodiment.
  • 44D is a rear view of a second member of the first camera actuator according to the fourth embodiment.
  • 44E is a bottom view of a second member of the first camera actuator according to the fourth embodiment.
  • 45A is a plan view of an elastic member according to an embodiment
  • 45B is a side view of the elastic member according to the embodiment.
  • 45c is a top view of the elastic member according to the embodiment.
  • 45D is a view for explaining the coupling between the first member, the second member, and the elastic member in the first camera actuator according to the fourth embodiment
  • 45E is a view with the first member and the second member removed in FIG. 45D;
  • 46 is a view of a first camera actuator according to a fifth embodiment
  • FIG. 48 is a view of a first camera actuator according to a seventh embodiment
  • FIG. 49 is a view of a first camera actuator according to an eighth embodiment, and FIG. 50 is a perspective view of a second camera actuator according to an embodiment;
  • 51 is an exploded perspective view of a second camera actuator according to the embodiment.
  • FIG. 52 is a cross-sectional view taken along DD' in FIG. 50;
  • FIG. 53 is a cross-sectional view taken along EE 'in FIG. 50,
  • FIG. 54 is a perspective view of a mobile terminal to which a camera module according to an embodiment is applied;
  • 55 is a perspective view of a vehicle to which a camera module according to an embodiment is applied.
  • Terms including an ordinal number such as second, first, etc. may be used to describe various elements, but the elements are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component. and/or includes a combination of a plurality of related listed items or any of a plurality of related listed items.
  • FIG. 1 is a perspective view of a camera module according to an embodiment
  • FIG. 2 is an exploded perspective view of a camera module according to the embodiment
  • FIG. 3 is a cross-sectional view taken along line AA′ in FIG. 1 .
  • the camera module 1000 may include a cover CV, a first camera actuator 1100 , a second camera actuator 1200 , and a circuit board 1300 .
  • the first camera actuator 1100 may be used as a 'first actuator'
  • the second camera actuator 1200 may be used as a 'second actuator'.
  • the cover CV may cover the first camera actuator 1100 and the second camera actuator 1200 .
  • the coupling force between the first camera actuator 1100 and the second camera actuator 1200 may be improved by the cover CV.
  • the cover CV may be made of a material that blocks electromagnetic waves. Accordingly, the first camera actuator 1100 and the second camera actuator 1200 in the cover CV can be easily protected.
  • the first camera actuator 1100 may be an optical image stabilizer (OIS) actuator.
  • OIS optical image stabilizer
  • the first camera actuator 1100 may move the optical member in a direction perpendicular to the optical axis.
  • the first camera actuator 1100 may include fixed focal length les disposed on a predetermined barrel (not shown). Fixed focal length les may also be referred to as “single focal length lenses” or “single focal length lenses”.
  • the first camera actuator 1100 may change the path of the light.
  • the first camera actuator 1100 may change the optical path vertically through an optical member (eg, a prism or a mirror) therein.
  • an optical member eg, a prism or a mirror
  • the present invention is not limited thereto, and the first camera actuator 1100 may change the optical path vertically or at a predetermined angle a plurality of times.
  • the second camera actuator 1200 may be disposed at a rear end of the first camera actuator 1100 .
  • the second camera actuator 1200 may be coupled to the first camera actuator 1100 . And the mutual coupling may be made by various methods.
  • the second camera actuator 1200 may be a zoom actuator or an auto focus (AF) actuator.
  • the second camera actuator 1200 may support one or a plurality of lenses and may perform an auto-focusing function or a zoom function by moving the lenses according to a control signal of a predetermined control unit.
  • one or a plurality of lenses are moved independently or individually along the optical axis direction to
  • the circuit board 1300 may be disposed behind the second camera actuator 1200 .
  • the circuit board 1300 may be electrically connected to the second camera actuator 1200 and the first camera actuator 1100 . Also, there may be a plurality of circuit boards 1300 .
  • the circuit board 1300 may include an image sensor and the like, and a connector electrically connected to another external camera module or process of a terminal.
  • the camera module according to the embodiment may be formed of a single or a plurality of camera modules.
  • the plurality of camera modules may include a first camera module and a second camera module.
  • the first camera module may include a single or a plurality of actuators.
  • the first camera module may include a first camera actuator 1100 and a second camera actuator 1200 .
  • the second camera module is disposed in a predetermined housing (not shown) and may include an actuator (not shown) capable of driving the lens unit.
  • the actuator may be a voice coil motor, a micro actuator, a silicon actuator, etc., and may be applied in various ways, such as an electrostatic method, a thermal method, a bimorph method, an electrostatic force method, and the like, but is not limited thereto.
  • the camera actuator may be referred to as an actuator or the like.
  • a camera module including a plurality of camera modules may be mounted in various electronic devices such as a mobile terminal.
  • the electronic device may include all of a smart phone, a mobile terminal (eg, a phone), a mobile terminal, and the like.
  • the camera module may include a first camera actuator 1100 performing an OIS function and a second camera actuator 1200 performing a zooming function and AF function.
  • Light may be incident into the camera module or the first camera actuator through an opening area located on the upper surface of the first camera actuator 1100 . That is, the light may be incident into the interior of the first camera actuator 1100 along the optical axis direction (eg, the X-axis direction), and the optical path may be changed in the vertical direction (eg, the Z-axis direction) through the optical member. And the optical axis direction (Z-axis direction) may correspond to the movement direction of the light reflected by the optical member to be described later, and will be described based on this. And the light passes through the second camera actuator 1200, and the second camera actuator ( It may be incident to the image sensor IS located at one end of the 1200 (PATH).
  • the optical axis direction eg, the X-axis direction
  • Z-axis direction may correspond to the movement direction of the light reflected by the optical member to be described later, and will be described based on this.
  • the light passes through the second camera actuator 1200, and the second camera actuator ( It may be
  • the bottom means one side in the first direction.
  • the first direction is the X-axis direction in the drawing, and may be used interchangeably with the second axis direction.
  • the second direction is the Y-axis direction in the drawing, and may be used interchangeably with the first axis direction.
  • the second direction is a direction perpendicular to the first direction.
  • the third direction is the Z-axis direction in the drawing, and may be used interchangeably with the third axis direction. And the third direction is a direction perpendicular to both the first direction and the second direction.
  • the third direction (Z-axis direction) corresponds to the direction of the optical axis
  • the first direction (X-axis direction) and the second direction (Y-axis direction) are directions perpendicular to the optical axis and are to be tilted by the second camera actuator.
  • the optical axis direction is the third direction (Z axis direction) and will be described below based on this.
  • the inner side may be a direction from the cover (CV) toward the first camera actuator, and the outer side may be the opposite direction of the inner side. That is, the first camera actuator and the second camera actuator may be located inside the cover CV, and the cover CV may be located outside the first camera actuator or the second camera actuator.
  • the camera module according to the embodiment may improve the spatial limitation of the first camera actuator and the second camera actuator by changing the path of light. That is, the camera module according to the embodiment may extend the optical path while minimizing the thickness of the camera module in response to the change in the path of the light. Furthermore, it should be understood that the second camera actuator may provide a high range of magnification by controlling a focus or the like in the extended optical path.
  • the camera module according to the embodiment can implement OIS through control of the optical path through the first camera actuator, thereby minimizing the occurrence of a decent or tilt phenomenon, and providing the best optical characteristics. can pay
  • the second camera actuator 1200 may include an optical system and a lens driver.
  • a lens driver for example, at least one of a first lens assembly, a second lens assembly, a third lens assembly, and a guide pin may be disposed.
  • the second camera actuator 1200 may include a coil and a magnet to perform a high-magnification zooming function.
  • the first lens assembly and the second lens assembly may be a moving lens that moves through a coil, a magnet, and a guide pin, and the third lens assembly may be a fixed lens, but is not limited thereto.
  • the third lens assembly may function as a concentrator to image light at a specific position, and the first lens assembly may re-image an image formed by the third lens assembly, which is a concentrator, to another location. It can perform the function of a variable (variator).
  • the magnification change may be large because the distance to the subject or the image distance changes a lot, and the first lens assembly as the variable magnification may play an important role in changing the focal length or magnification of the optical system.
  • the image formed in the first lens assembly which is a variable changer
  • the second lens assembly may perform a position compensation function for the image formed by the variable magnifier.
  • the second lens assembly may perform a compensator function that accurately forms an image formed by the first lens assembly, which is a variable changer, at an actual image sensor position.
  • the first lens assembly and the second lens assembly may be driven by electromagnetic force due to an interaction between a coil and a magnet. The above may be applied to a lens assembly to be described later.
  • the first to third lens assemblies may move along the optical axis direction, that is, the third direction.
  • the first to third lens assemblies may move in the third direction independently or depending on each other.
  • the actuator for OIS and the actuator for AF or zoom are disposed according to an embodiment of the present invention
  • magnetic field interference with the magnet for AF or zoom can be prevented when OIS is driven. Since the first driving magnet of the first camera actuator 1100 is disposed separately from the second camera actuator 1200, magnetic field interference between the first camera actuator 1100 and the second camera actuator 1200 can be prevented.
  • OIS may be used interchangeably with terms such as hand shake correction, optical image stabilization, optical image correction, and image stabilization.
  • FIG. 4 is a perspective view of a first camera actuator according to the first embodiment
  • FIG. 5 is an exploded perspective view of the first camera actuator according to the first embodiment
  • FIG. 6 is a perspective view of a housing according to the embodiment
  • FIG. 7 is A drawing of a housing according to an embodiment.
  • the first camera actuator 1100 includes a shield can 1110, a housing 1120, a mover 1130, a rotating unit 1140, an elastic member (EE), It includes a first driving unit 1150 , a first member 1131a , a second member 1126 , and a damper member DP.
  • the mover 1130 may include a holder 1131 and an optical member 1132 seated on the holder 1131 .
  • the rotating unit 1140 may include a tilting guide unit 1141 .
  • the first driving unit 1150 includes a driving magnet 1151 , a driving coil 1152 , a Hall sensor unit 1153 , a substrate unit 1154 , and a yoke unit 1155 .
  • the shield can 1110 may be positioned at the outermost side of the first camera actuator 1100 to surround the rotating part 1140 , the first driving part 1150 , the housing 1120 , and the like, which will be described later.
  • the shield can 1110 may block or reduce electromagnetic waves generated from the outside. That is, the shield can 1110 may reduce the occurrence of a malfunction in the rotating unit 1140 or the first driving unit 1150 .
  • the housing 1120 may be located inside the shield can 1110 . In addition, the housing 1120 may be located inside the substrate part 1154 to be described later. The housing 1120 may be fitted or fitted with the shield can 1110 to be fastened to each other. The housing 1120 may be used interchangeably with a 'first housing'.
  • the housing 1120 may include a first housing side 1121 , a second housing side 1122 , a third housing side 1123 , and a fourth housing side 1124 .
  • the first housing side 1121 and the second housing side 1122 may be disposed to face each other. Also, the third housing side 1123 and the fourth housing side 1124 may be disposed between the first housing side 1121 and the second housing side 1122 .
  • the third housing side 1123 may abut the first housing side 1121 , the second housing side 1122 , and the fourth housing side 1124 .
  • the third housing side 1123 may have a bottom surface in the housing 1120 .
  • the first housing side 1121 , the second housing side 1122 , and the fourth housing side 1124 may have side surfaces.
  • the third direction corresponds to the direction of the optical axis (with respect to the light reflected by the rigid member and moving)
  • the first direction (X-axis direction) and the second direction (Y-axis direction) ) is a direction perpendicular to the optical axis and may be tilted by the first camera actuator. A detailed description thereof will be given later.
  • first housing side 1121 may include a first housing hole 1121a.
  • a first coil 1152a to be described later may be positioned in the first housing hole 1121a.
  • the second housing side 1122 may include a second housing hole 1122a.
  • a second coil 1152b to be described later may be positioned in the second housing hole 1122a.
  • the first coil 1152a and the second coil 1152b may be coupled to the substrate unit 1154 .
  • the first coil 1152a and the second coil 1152b may be electrically connected to the substrate unit 1154 so that current may flow.
  • This current is a component of electromagnetic force that allows the first camera actuator to tilt with respect to the X-axis.
  • the third housing side portion 1123 may include a third housing hole 1123a and a housing groove 1123b'.
  • a third coil 1152c to be described later may be positioned in the third housing hole 1123a.
  • the third coil 1152c may be coupled to the substrate unit 1154 .
  • the third coil 1152c may be electrically connected to the substrate unit 1154 so that current may flow. This current is a component of electromagnetic force that allows the first camera actuator to tilt with respect to the Y-axis.
  • a second member 1126 to be described later may be seated in the housing groove 1123b'.
  • the second member 1126 may be used interchangeably with 'housing rigid', 'housing additional member', and the like.
  • the housing groove 1123b ′ may extend from the third housing side 1123 to the first housing side 1121 and the second housing side 1122 . That is, the housing groove 1123b ′ may be positioned on the first housing side portion 1121 , the second housing side portion 1122 , and the third housing side portion 1123 . Accordingly, the second member 1126 may be coupled to the first housing side 1121 , the second housing side 1122 , and the third housing side 1123 . As in the case of the first camera actuator of the embodiment, the second member 1126 may be seated in a housing groove formed by a protrusion or the like to be coupled to the housing 1120 . The second member 1126 may be coupled to the housing 1120 according to the above description.
  • the mover 1130, the tilting guide part 1141, the second member 1126, and the first member 1131a which will be described later, are sequentially stacked on the fourth housing side 1124.
  • the second member 1126 may be formed integrally with the housing 1120 .
  • the first member 1131a may be used interchangeably with 'mover rigid', 'additional mover member', and the like.
  • the camera module according to the embodiment may include a fixing member
  • the fixing member may be a component that does not move during one-axis tilt or two-axis tilt in the camera actuator.
  • the fixing member may include at least one of the housing 1120 and the second member 1126 . In this specification, it will be described based on this.
  • the elastic member EE may be positioned between the mover 1130 and the fixing member.
  • the tilting guide unit 1141 may be positioned between the fixing member and the mover.
  • the elastic member EE may bring the tilting guide unit 1141 into close contact with the fixing member and the mover by pulling the mover 1130 to the fixing member.
  • the elastic member EE may closely contact the tilting guide 1141 and the mover 1130 .
  • the elastic member EE may pull the mover 1130 to the housing 1120 or the second member 1126 which is a fixing member. This structure will be described later.
  • a fourth housing side 1124 is disposed between the first housing side 1121 , the second housing side 1122 , and the first housing side 1121 , the second housing side 1122 and the third housing side (1123) can be encountered.
  • the fourth housing side 1124 may be in contact with a second camera actuator connected to the first camera actuator. Accordingly, the fourth housing side 1124 may include a protrusion, a groove, or a plurality of grooves formed on the housing outer surface 1124b. Accordingly, the fourth housing side may provide easy engagement with another adjacent camera actuator. That is, the coupling force between the second camera actuator and the first camera actuator through the fourth housing side 1124 may be further improved. In addition, with this configuration, the fourth housing side provides an optical path and, at the same time, improves coupling force between other components, thereby suppressing movement of the opening due to separation or the like, thereby minimizing change in the optical path.
  • the fourth housing side 1124 may include an opening area 1124a.
  • the light whose path is changed in the optical member of the first camera actuator may move to the second camera actuator through the opening region 1124a.
  • auto focusing and/or zooming may be performed in the second camera actuator
  • hand shake correction OIS
  • the housing 1120 may include a receiving portion 1125 formed by the first housing side portion 1121 to the fourth housing side portion 1124 .
  • a second member 1126 , a first member 1131a , a tilting guide part 1141 , a mover 1130 , and an elastic member EE may be positioned in the receiving part 1125 as components.
  • the second member 1126 may be disposed on the housing 1120 to be coupled to the housing 1120 .
  • the second member 1126 may be disposed within the housing or may be connected to the housing 1120 .
  • the second member 1126 may be easily coupled to the housing 1120 .
  • the second member 1126 may seat or at least partially penetrate the housing groove 1123b ′ formed in the third housing side 1123 to be coupled to the third housing side 1123 . Through this, the second member 1126 may be coupled to the housing 1120 and maintain the fixation between the mover 1130 and the tilting guide unit 1141 to be described later.
  • the second member 1126 may include the first housing side portion 1121 and the first coupling portion PP1 disposed in an area adjacent to the second housing side portion 1121 .
  • the first coupling part PP1 may be disposed on the outer surface of the fourth housing side part 1124 of the housing 1120 .
  • the first coupling part PP1 may be formed of a protrusion.
  • the first coupling part PP1 may be coupled to the first bonding part EP1 . As will be described later, the first coupling part PP1 may be inserted into the first bonding hole of the first bonding part EP1 .
  • the second member 1126 includes a second protrusion groove PH2 in which the second protrusion of the tilting guide part is seated. Accordingly, the second member 1126 causes the protrusion of the tilting guide part to be disposed adjacent to the optical member in the fourth seating groove. Accordingly, the projection, which is the reference axis of tilt, may be disposed close to the center of gravity of the mover 1130 . Accordingly, since the moment of moving the mover 1130 for tilting during tilting is minimized, current consumption for driving the coil is also minimized, thereby reducing power consumption.
  • the second member 1126 may be formed integrally or separately from the housing 1120 as described above. In the case of being integrally formed, the coupling force between the second member 1126 and the housing 1120 may be improved, so that the reliability of the camera actuator may be improved. In addition, when the second member 1126 and the housing 1120 are separated, the easiness of assembling and manufacturing may be improved. Hereinafter, it will be described based on separation.
  • the mover 1130 includes a holder 1131 and an optical member 1132 seated on the holder 1131 .
  • the holder 1131 may be seated in the receiving portion 1125 of the housing 1120 .
  • the holder 1131 includes a first holder outer surface corresponding to the first housing side 1121 , the second housing side 1122 , the third housing side 1123 , and the fourth housing side 1124 respectively to the fourth holder and others. side may be included.
  • the holder 1131 may include a first member 1131a disposed in the fourth seating groove 1131S4a. A detailed description thereof will be given later.
  • the optical member 1132 may be seated on the holder 1131 .
  • the holder 1131 may have a seating surface, and the seating surface may be formed by a receiving groove.
  • the optical member 1132 may be formed of a mirror.
  • a mirror is shown as a reference, but as in the above-described embodiment, a plurality of lenses may be used.
  • the optical member 1132 may include a reflector disposed therein.
  • the optical member 1132 may reflect light reflected from the outside (eg, an object) into the camera module.
  • the optical member 1132 may improve the spatial limit of the first camera actuator and the second camera actuator by changing the path of the reflected light.
  • the camera module may extend the optical path while minimizing thickness to provide a high range of magnification.
  • the first member 1131a may be coupled to the holder 1131 .
  • the first member 1131a may be in contact with a protrusion located in an area other than the fourth seating groove on the outer surface of the fourth holder in the holder 1131 .
  • the first member 1131a may be integrally formed with the holder 1131 .
  • the first member 1231a may have a structure separated from the holder 1131 . Even when the first member 1131a and the holder 1131 are integrally coupled, a fourth seating groove may be located in the holder 1131 . And when the first member 1131a is not coupled to the holder 1131, the fourth seating groove is opened downward and rearward, but when the first member 1131a is coupled, the fourth seating groove is opened downward. can
  • the elastic member EE may be disposed between the tilting guide unit 1141 and the housing 1120 .
  • the elastic member EE may be sequentially disposed on the tilting guide unit 1141 , the second member 1126 , and the first member 1131a. Accordingly, the elastic member EE may be disposed on the first member 1131a.
  • the elastic member EE may be made of an elastic material, is coupled between the second member 1126 and the first member 1131a, and is based on the second member 1126 fixed to the housing 1120 .
  • An elastic force may be provided to the member 1131a and the holder 1131 connected to the first member 1131a.
  • the elastic member EE may be coupled to the housing 1120 and the mover 1130 between the housing 1120 and the mover 1130 , and may press the tilting guide unit 1141 through the mover 1130 . Accordingly, the mover 1130 may be tilted in the X-axis and/or in the Y-axis through the tilting guide unit 1141 .
  • a portion of the elastic member EE in contact with the first member 1131a (or the holder 1131 ) and the housing 1120 may be spaced apart from each other in the third direction (Z-axis direction).
  • the elastic member EE may have a preload due to the spaced distance between the contact portions (first and second joint portions to be described later).
  • this preload may be transmitted to the tilting guide unit 1141 through the mover 1130 and to the second member 1126 through the tilting guide unit 1141 .
  • the tilting guide part 1141 disposed between the mover 1130 and the second member 1126 may be pressed by the elastic member EE. That is, the force at which the tilting guide unit 1141 is positioned between the mover 1130 and the second member 1126 may be maintained. Accordingly, it is possible to maintain a position between the mover 1130 and the housing 1120 without separation of the tilting guide unit 1141 even during X-axis tilt or Y-axis tilt.
  • the rotating unit 1140 may include a tilting guide unit 1141 .
  • the tilting guide unit 1141 may be coupled to the above-described mover 1130 and the housing 1120 .
  • the tilting guide unit 1141 may be disposed between the mover 1130 and the second member 1126 to be coupled to the mover 1130 and the housing 1120 .
  • the tilting guide unit 1141 may be disposed between the second member 1126 and the holder 1131 .
  • the tilting guide part 1141 may be positioned between the second member 1126 and the fourth seating groove 1131S4a of the holder 1131 .
  • the first member 1131a , the second member 1126 , the tilting guide part 1141 , the holder 1131 and the fourth housing side (1124) can be arranged in the order.
  • the tilting guide unit 1141 may be disposed adjacent to the optical axis. Accordingly, the camera actuator according to the embodiment can easily change the optical path according to the first and second axis tilt to be described later.
  • the tilting guide unit 1141 may include a first protrusion spaced apart from each other in a first direction (X-axis direction) and a second protrusion spaced apart from each other in a second direction (Y-axis direction). Also, the first protrusion and the second protrusion may protrude in opposite directions. A detailed description thereof will be given later. Furthermore, the tilting guide part 1141 may include a hemisphere or a circle coupled to the base like the first protrusion and the second protrusion. In addition, the tilting guide unit 1141 may be formed of a base or plate and a plurality of spheres or balls penetrating the plate.
  • the first driving unit 1150 includes a driving magnet 1151 , a driving coil 1152 , a Hall sensor unit 1153 , a substrate unit 1154 , and a yoke unit 1155 .
  • the above contents may be applied in the same way.
  • the damper member DP may be disposed between at least one of the mover 1130 and the housing 1120 and the elastic member EE. Accordingly, the damper member DP may be coupled to at least one of the mover 1130 and the housing 1120 and the elastic member EE. In addition, the damper member DP may be coupled to at least one group of the elastic member EE, the mover 1130 , and the elastic member EE and the housing 1120 . For example, the damper member DP may be coupled to the elastic member EE and the mover 1130 . Also, the damper member DP may be coupled to the elastic member EE and the housing 1120 .
  • each of the first member 1131a and the second member 1126 may be considered as an element of the mover 1130 and the housing 1120 .
  • the damper member DP may be coupled to the elastic member EE and the first member 1131a of the mover 1130 .
  • the damper member DP may be coupled to the elastic member EE and the second member 1126 of the housing 1120 .
  • the damper member DP may be disposed to connect the spaced apart regions of the elastic member EE to each other. A detailed description thereof will be provided later in various embodiments.
  • the damper member DP may be denoted by a symbol DP, DP1, DP2, DP3, etc. depending on the position thereof.
  • FIG. 8 is a perspective view of a mover according to an embodiment.
  • the optical member 1132 may be seated on the holder.
  • the optical member 1132 may be a right-angle optical member as a reflector, but is not limited thereto.
  • the optical member 1132 may have a protrusion structure on a portion of the outer surface.
  • the optical member 1132 may be easily coupled to the holder through the protrusion structure.
  • the optical member 1132 may be seated on the seating surface of the holder on the bottom surface 1132b.
  • the bottom surface 1132b of the optical member 1132 may correspond to the seating surface of the holder.
  • the bottom surface 1132b may be formed of an inclined surface identical to the seating of the holder. Accordingly, it is possible to prevent the optical member 1132 from being separated from the holder according to the movement of the optical member and the movement of the holder.
  • the optical member 1132 may have a structure capable of reflecting light reflected from the outside (eg, an object) into the camera module.
  • the optical member 1132 may be formed of a single mirror.
  • the optical member 1132 may be formed of a prism.
  • the optical member 1132 may be formed of an optical element having various materials or structures that change the path of light.
  • the optical member 1132 may improve the spatial limitation of the first camera actuator and the second camera actuator by changing the path of the reflected light.
  • the camera module may extend the optical path while minimizing thickness to provide a high range of magnification.
  • the camera module including the camera actuator according to the embodiment may provide a high range of magnification by extending the optical path while minimizing the thickness.
  • FIG. 9 is a perspective view of the holder according to the embodiment
  • FIG. 10 is a bottom view of the holder according to the embodiment
  • FIG. 11 is a side view of the holder according to the embodiment.
  • the holder 1131 may include a seating surface 1131k on which the optical member 1132 is mounted.
  • the seating surface 1131k may be an inclined surface.
  • the holder 1131 may include a jaw portion 1131b on the seating surface 1131k. And in the holder 1131 , the jaw portion 1131b may be coupled to the protrusion structure of the optical member 1132 .
  • the holder 1131 may include a plurality of outer surfaces.
  • the holder 1131 may include a first holder outer surface 1131S1 , a second holder outer surface 1131S2 , a third holder outer surface 1131S3 , and a fourth holder outer surface 1131S4 .
  • the description of the above-described embodiment may be equally applied.
  • the fourth holder outer surface 1131S4 may include a fourth seating groove 1131S4a.
  • the first member 1131a, the second member 1126, and the tilting guide part 1141 may be sequentially positioned in the fourth seating groove 1131S4a in the third direction (Z-axis direction).
  • the fourth seating groove 1131S4a may include a plurality of regions. It may include a first area AR1 , a second area AR2 , and a third area AR3 .
  • a first member 1131a may be positioned in the first area AR1 . That is, the first area AR1 may overlap the first member 1131a in the first direction (X-axis direction).
  • a second member 1126 may be positioned in the second area AR2 . That is, the second area AR2 may overlap the second member 1126 in the first direction (X-axis direction).
  • a tilting guide 1141 may be positioned in the third area AR3 .
  • the third area AR3 may overlap the tilting guide unit 1141 in the first direction (X-axis direction).
  • the third area AR3 may overlap the base of the tilting guide unit 1141 in the first direction (X-axis direction).
  • the second area AR2 may be located between the first area AR1 and the third area AR3 .
  • the first area AR1 , the second area AR2 , and the third area AR3 may have different heights in the first direction (X-axis direction).
  • the first area AR1 may have a greater height in the first direction (X-axis direction) than the second area AR2 and the third area AR3 . Accordingly, a step may be positioned between the first area AR1 and the second area AR2 .
  • the first member 1131a may be seated on the fourth holder outer surface 1131S4.
  • a second coupling part PP2 may be positioned on an outer surface of the first member 1131a (eg, a surface opposite to the surface facing the second member).
  • the second coupling part PP2 may include a coupling base PP2a and a second coupling protrusion PP2b.
  • the second coupling part PP2 may be disposed to overlap with a first protrusion to be described later in a first direction (X-axis direction).
  • a plurality of second coupling protrusions PP2b may be disposed to be spaced apart from each other in the second direction (Y-axis direction). In this case, all of the bisectors between the plurality of second coupling protrusions PP2b may be located on the apex of the first protrusion and in the first direction (X-axis direction).
  • the tilting guide part may be accommodated in the fourth seating groove 1131S4a.
  • the first member 1131a may also be accommodated in the fourth seating groove 1131S4a.
  • the first member 1131a may be disposed outside the tilting guide part in the fourth seating groove 1131S4a.
  • the first member 1131a, a portion of the second member, and the tilting guide part may be sequentially disposed in the fourth seating groove 1131S4a in the third direction (Z-axis direction).
  • the first member 1131a may be disposed in the upper region AR1 of the fourth seating groove 1131S4a.
  • the tilting guide part may be disposed in the lower area AR3 of the fourth seating groove 1131S4a.
  • a portion of the second member may be disposed in the middle region AR2 between the upper region and the lower region. Accordingly, at least a portion of the second member may be disposed between the tilting guide unit and the first member 1131a.
  • the first member 1131a and the second member may be at least partially raised in the fourth seating groove 1131S4a.
  • the holder 1131 of the mover 1130 may include a mover protrusion 1131p protruding outward or toward the spring from the fourth holder outer surface 1131S4.
  • the mover protrusion 1131p may include a first protrusion 1131ap1 , a second protrusion 1131ap2 , and a third protrusion 1131ap3 .
  • the first protrusion 1131ap1 and the second protrusion 1131ap2 may be spaced apart from each other in the first direction (X-axis direction). In addition, the first protrusion 1131ap1 and the second protrusion 1131ap2 may overlap in the first direction (X-axis direction).
  • a mover groove 1131h may be included between the first protrusion 1131ap1 and the second protrusion 1131ap2 according to the embodiment.
  • the mover groove 1131h may correspond to a region between the first protrusion 1131ap1 and the second protrusion 1131ap2 in the first direction (X-axis direction).
  • the elastic member may be disposed in the mover groove 1131h. Also, the elastic member may pass through the mover groove 1131h.
  • the third protrusion 1131ap3 may be disposed inside the mover groove 1131h. That is, the mover groove 1131h may be surrounded by the first protrusion 1131ap1 , the second protrusion 1131ap2 , and the third protrusion 1131ap3 .
  • the third protrusion 1131ap3 may be located adjacent to the mover groove 1131h. Accordingly, the mover groove 1131h and the third protrusion 1131ap3 may at least partially overlap in the second direction (Y-axis direction). Furthermore, the third protrusion 1131ap3 may at least partially overlap the first protrusion 1131ap1 or the second protrusion 1131ap2 in the second direction (Y-axis direction). According to this configuration, even if the damper member is applied to the mover groove 1131h, it may not flow outward by the first protrusion 1131ap1, the second protrusion 1131ap2, and the third protrusion 1131ap3. In addition, the third protrusion 1131ap3 may prevent the damper member from moving to the inside, that is, to the first member.
  • the width or length W1 in the first direction (X-axis direction) of the first protrusion 1131ap1 and the width or length W2 in the first direction (X-axis direction) of the second protrusion 1131ap2 are may be the same or different.
  • the third protrusion 1131ap3 may be greater than the separation distance in the first direction (X-axis direction) between the first protrusion 1131ap1 and the second protrusion 1131ap2 . Accordingly, the third protrusion 1131ap3 can easily suppress the movement of the damper member inward.
  • the mover groove 1131h may have a stepped portion ST.
  • the step portion ST in the mover groove 1131h may be lower in either the inner region 1131hi or the outer region 1131ho.
  • the inner side (the direction toward the first protrusion groove PH1) may be lower than the outer side. Accordingly, blurring to the inside of the damper member can be suppressed.
  • the mover groove 1131h may be a groove region formed by the first protrusion 1131ap1 and the second protrusion 1131ap2 .
  • the mover groove 1131h may be a groove formed downward from the lower surface of the first protrusion 1131ap1 or the second protrusion 1131ap2 .
  • FIG. 12 is a plan view of the elastic member according to the embodiment
  • FIG. 13 is a side view of the elastic member according to the embodiment
  • FIG. 14 is a top view of the elastic member according to the embodiment
  • FIG. 15 is the first embodiment according to the first embodiment. 1 is a view for explaining the coupling between the first member, the second member, and the elastic member in the camera actuator
  • FIG. 16 is an enlarged view of part K in FIG. 15 .
  • the elastic member EE includes a first junction part EP1 , a second junction part EP2 , and a connection part CP.
  • the first bonding portion EP1 may be connected to the housing 1120 , so that the first bonding portion EP1 and the housing 1120 may be coupled to each other.
  • the number of first bonding portions EP1 may be plural. Hereinafter, the number of the first bonding portions EP1 will be described on the basis of two.
  • first bonding portion EP1 may be coupled to the fixing member. That is, the first bonding portion EP1 may be coupled to the housing 1120 or the second member 1126 . Hereinafter, as shown in the drawings, the first bonding portion EP1 may be coupled to the second member 1126 .
  • the second bonding portion EP2 may be connected to the first member 1131a, so that the second bonding portion EP2 and the first member 1131a may be coupled to each other.
  • connection part CP may be disposed between the first junction part EP1 and the second junction part EP2 . That is, the connection part CP may have one end connected to the first junction part EP1 and the other end connected to the second junction part EP2 .
  • the second bonding portion EP2 may be positioned between the plurality of first bonding portions EP1 spaced apart from each other. Specifically, the second bonding portion EP2 may be disposed between the mover 1130 and the first bonding portion EP1 . That is, the second bonding portion EP2 may be disposed to be spaced apart from the first bonding portion EP1 in the third direction (Z-axis direction). Accordingly, the connection part CP may extend from the first member 1131a toward the second member 1126 . Alternatively, the connection part CP may extend in the third direction (Z-axis direction). For example, the connection part CP may have a curved shape from the first junction part EP1 to the second junction part EP2 .
  • the elastic restoring force generated by the elastic member EE may be formed from the second bonding portion EP2 toward the first bonding portion EP1 because the first bonding portion EP1 is fixed (the housing is fixed). Accordingly, the first member 1131a connected to the second junction part EP2 and the mover 1130 coupled to the first member 1131a also generate a force from the second junction part EP2 toward the first junction part EP1. can Accordingly, the above-described force may also be applied between the mover 1130 and the tilting guide unit 1141 . And finally, since the tilting guide 1141 presses the second member 1126, the tilting guide 1141 moves the mover 1130 and the second member ( 1126 (or the housing). In addition, the elastic member ( EE) may have a preload, which is the aforementioned force.
  • the second bonding portion EP2 of the elastic member EE may not be disposed on a surface in contact with one surface of the first bonding portion EP1 of the elastic member EE and the second member 1126 serving as the fixing member.
  • the second bonding portion EP2 of the elastic member EE is a plane (eg, a surface in contact with the second member) of the first bonding portion EP1 of the elastic member EE or a surface in contact with the second member. It may not be placed on the (XY plane). That is, as described above, the first junction part EP1 and the second junction part EP2 may be positioned on different planes XY and may be spaced apart from each other in the third direction (Z-axis direction). Accordingly, the second bonding portion EP2 may be located closer to the reflective member than the first bonding portion EP1 .
  • the position of the tilting guide part 1141 may be easily maintained.
  • a magnetic material is not used, a malfunction due to magnetic force in another camera actuator (eg, the second camera actuator) adjacent to the first camera actuator may be prevented.
  • the camera actuator according to the embodiment can be easily miniaturized by using an elastic member having a light weight and a thin thickness without using a magnetic material or the like.
  • the second bonding portion EP2 may be disposed between the mover 1130 and the first bonding portion EP1 .
  • the first bonding portion EP1 may include a first flat area EP1f and a plurality of first bonding holes EP1h positioned in the first flat area EP1f.
  • the first flat area EP1f may be disposed to be spaced apart from the contact area CA1 in which the inner surface contacts the housing and the first flat area EP1f in the second direction (Y-axis direction).
  • the first flat area EP1f may have an inner surface positioned inside the contact area CA1 between the housing and the first flat area EP1f.
  • the second member 1126 in contact with the first flat area EP1f may not provide interference to the connection part CP. Accordingly, the camera actuator according to the embodiment may provide accurate X-axis tilt and/or Y-axis tilt.
  • the second junction portion EP2 may include the second flat region EP2f and a plurality of second junction holes EP2h positioned in the second planar region EP2f.
  • the second flat area EP2f may be disposed to be spaced apart from the contact area CA2 in which the outer surface EP2s contacts the coupling base PP2a of the first member 1131a in the second direction (Y-axis direction).
  • the outer surface EP2d of the second flat area EP2f may be located outside the outer surface of the coupling base PP2a. Accordingly, the first member 1131a in contact with the second flat area EP2f may not provide interference to the connection part CP. Accordingly, the camera actuator according to the embodiment may provide accurate X-axis tilt and/or Y-axis tilt.
  • first junction hole EP1h and the second junction hole EP2h may be plural.
  • first junction holes EP1h may be spaced apart from each other in the first direction (X-axis direction).
  • second junction holes EP2h may be spaced apart from each other in the second direction (Y-axis direction).
  • the length dd3 (eg, diameter) in the first direction (X-axis direction) of the second bonding holes EP2h is in the first direction (X-axis direction) between the plurality of first bonding holes EP1h. It may be less than the length (dd2).
  • the second bonding hole EP2h may be positioned between the first bonding holes EP1h.
  • the second bonding hole EP2h may be disposed on the first virtual line LX1 that bisects the first bonding hole EP1h. Accordingly, the force applied by the elastic member EE in the camera actuator according to the embodiment may be uniformly provided to the upper or lower portions of the mover.
  • the amount of current provided to the first coil and the second coil may not be changed differently according to positive (+)/negative (-) with respect to the Y-axis. That is, the change width of the current provided to the first coil and the second coil may be uniform in response to the position of the mover. Accordingly, control for the Y-axis tilt can be easily made. Furthermore, since the elastic restoring force is not uniformly formed in one area in the elastic member EE, the reliability of the elastic member EE may be improved.
  • the second imaginary line LX2 connecting the centers of the first junction holes EP1h in the first junction part EP1 (or the first flat region) and the third imaginary line bisect the second junction hole EP2h ( LX3) may be parallel to each other. Accordingly, the force applied by the elastic member EE in the camera actuator according to the embodiment may be uniformly provided even to the movement of the mover.
  • the amount of current provided to the third coil may not be changed differently according to positive (+)/negative (-) with respect to the X-axis. That is, the change width of the current provided to the third coil may be uniform in response to the position of the mover. Accordingly, the control for the X-axis tilt can be easily made. Furthermore, since the elastic restoring force is not uniformly formed in one area in the elastic member EE, the reliability of the elastic member EE may be improved.
  • the second virtual line LX2 and the third virtual line LX3 may be parallel to the first direction (X-axis direction).
  • connection part CP includes a first connection part CP1, a second connection part CP2, a third connection part CP3 and a fourth connection part located between the first junction part EP1 and the second junction part EP2.
  • CP4 may be included.
  • the number of connection parts CP may be plural.
  • first connection part CP1, the second connection part CP2, the third connection part CP3, and the fourth connection part CP4 may be sequentially disposed from the first junction part EP1 to the second junction part EP2. . That is, the first connection part CP1 , the second connection part CP2 , the third connection part CP3 , and the fourth connection part CP4 may be sequentially disposed from the outside to the inside.
  • first connection part CP1 , the second connection part CP2 , the third connection part CP3 , and the fourth connection part CP4 may be symmetrically disposed with respect to the second connection part EP2 .
  • first connection part CP1 , the second connection part CP2 , the third connection part CP3 , and the fourth connection part CP4 may be symmetrically disposed with respect to the third virtual line LX3 .
  • first connection part CP1 , the second connection part CP2 , the third connection part CP3 , and the fourth connection part CP4 may be symmetrically disposed with respect to the first virtual line LX1 .
  • first connection part CP1 may be in contact with the first bonding part EP1 .
  • first connection part CP1 may extend toward the second bonding part EP2 . That is, the first connection portion CP1 may be in contact with the first bonding portion EP1 and may extend inward.
  • the second connection part CP2 may be connected to the other end of the first connection part CP1 . That is, one end of the second connection part CP2 may be in contact with the other end of the first connection part CP1 .
  • the second connection part CP2 may be bent in a first direction (X-axis direction) with respect to the first connection part CP1 .
  • the second connection part CP2 may extend from a lower portion of the first virtual line LX1 to a lower portion and may extend from an upper portion of the first virtual line LX1 toward an upper portion.
  • the second connection part CP2 may extend with a first inclination ⁇ 1 with respect to the first connection part CP1 .
  • the first slope may be 90 degrees.
  • the third connection part CP3 may be connected to the other end of the second connection part CP2 . That is, one end of the third connection part CP3 may be in contact with the other end of the second connection part CP2 .
  • the third connection part CP3 may be bent in the second direction (Y-axis direction) with respect to the second connection part CP2 .
  • the third connection part CP3 may extend toward the second connection part EP2 with respect to the second connection part CP2 .
  • the 3rd connection part CP3 may extend toward the right from the left of the 3rd virtual line LX3, and may extend toward the left from the right of the 3rd virtual line Lx3.
  • connection part CP3 may extend with a second inclination ⁇ 2 with respect to the second connection part CP2 .
  • the second slope may be the same as the first slope.
  • the fourth connection part CP4 may be connected to the other end of the third connection part CP3 .
  • One end of the fourth connection part CP4 may be in contact with the other end of the third connection part CP3 .
  • the other end of the fourth connection part CP4 may be connected to the second connection part EP2 .
  • the fourth connection part CP4 may extend toward the third virtual line LX3 at a predetermined inclination with respect to the third connection part CP3 . That is, the fourth connection part CP4 may be bent at a predetermined angle toward the second connection part EP2 with respect to the third connection part CP3 .
  • the fourth connection part CP4 may extend with a third inclination ⁇ 3 with respect to the third connection part CP3 .
  • the third slope ⁇ 3 may be smaller than the first slope ⁇ 1 and the second slope ⁇ 2 .
  • the elastic member EE is a lung symmetrical with respect to the third imaginary line LX3 or the second junction EP2 by the first junction part EP1 , the second junction part EP2 , and the connection part CP You can have two loops.
  • the height between the first connection parts CP1 in the closed loop may be maintained. That is, the first connection portion CP1 may have the same separation distance CL1 between the first virtual lines LX1 .
  • a height between the second connection part CP2 and the third connection part CP3 may be greater than a height between the first connection parts CP1 . That is, the separation distance CL1 between the first connection part CP1 and the first virtual line LX1 may be smaller than the separation distance CL2 between the third connection part CP3 and the first virtual line LX1 .
  • the height length in the first direction (X-axis direction)) may increase in the closed loop compared to the first connection part CP1 .
  • the height between the third connection parts CP3 may be maintained.
  • the fourth connection portion CP4 may decrease by a predetermined length as the separation distance CL3 between the first virtual lines LX3 is adjacent to the third virtual line. That is, in the closed loop, the height may be decreased with a slight inclination by the fourth connection part CP4. Accordingly, the fourth connection part CP4 may be in contact with the second bonding part EP2 .
  • FIG. 17A is a perspective view before application of the damper member in the first camera actuator according to the first embodiment
  • FIG. 17B is a perspective view after application of the damper member in the first camera actuator according to the first embodiment
  • FIG. 17C is the first embodiment It is a view showing the coupling between the first member, the second member, and the elastic member in the first camera actuator according to the example
  • FIG. 17D is a view of another aspect of FIG. 17C
  • FIG. 17E is a view of another aspect of FIG. 17C and
  • FIG. 18 is a view in which the first member is removed in FIG. 17C .
  • the height hc or length in the third direction (Z-axis direction) of the third protrusion 1131ap3 is the first protrusion 1131ap1 or the second protrusion 1131ap2 in the embodiment. It may be different from the height (ha, hb) or the length in three directions (Z-axis direction). For example, the height or length of the third protrusion 1131ap3 in the third direction (Z-axis direction) may be smaller than the height or length of the first protrusion 1131ap1 in the third direction (Z-axis direction).
  • the height or length of the third protrusion 1131ap3 in the third direction may be smaller than the height or length of the second protrusion 1131ap2 in the third direction (Z-axis direction).
  • the height of each protrusion may be a length in the third direction (Z-axis direction) from the lowermost surface of the plurality of protrusions to the upper surface of each protrusion.
  • the lowermost surface of the plurality of protrusions may be the lowermost surface of the third protrusion 1131ap3 .
  • the third protrusion 1131ap3 may be in contact with at least a portion of the elastic member to support the elastic member.
  • the elastic member may pass through a region between the first protrusion 1131ap1 and the second protrusion 1131ap2.
  • the lower surface of the third protrusion 1131ap3 may be located more inside or lower than the first protrusion 1131ap1 or the second protrusion 1131ap2 .
  • the lower surface of the third protrusion 1131ap3 may be spaced apart from the lower surface of the first protrusion 1131ap1 or the second protrusion 1131ap2 in the third direction (Z-axis direction).
  • the third protrusion 1131ap3 may be coupled to a groove formed on a side surface of the first member 1131a. With this configuration, the third protrusion 1131ap3 may improve the coupling force between the first member 1131a and the holder (or mover). Furthermore, as described above, the third protrusion 1131ap3 may suppress the damper member DP from moving inward.
  • a groove may be formed in a region between the first protrusion 1131ap1 and the second protrusion 1131ap2 due to the protruding structure.
  • the groove may correspond to the mover groove 1131h described above.
  • an additional step structure may be further present in the mover groove 1131h.
  • the damper member DP may be disposed between the first protrusion 1131ap1 and the second protrusion 1131ap2. Also, the damper member DP may be disposed on the third protrusion 1131ap3 . Alternatively, the damper member DP may be disposed between the first protrusion 1131ap1 and the second protrusion 1131ap2 and on the third protrusion 1131ap3 .
  • the third protrusion 1131ap3 may improve the coupling force between the first member 1131a and the holder and, at the same time, improve the coupling force between the elastic member and the mover by the damper member DP.
  • the third protrusion 1131ap3 may suppress the flow of the damper member, thereby improving the reliability of the actuator.
  • the second bonding portion EP2 may overlap the first protrusion portion PR1 in the second axis or in the first direction.
  • the vertex of the first protrusion PR1 may be disposed on an intermediate axis (corresponding to the third virtual line described above) that bisects the plurality of second bonding holes EP2h.
  • the force applied to the tilting guide unit by the elastic member EE may be uniformly generated based on the second axis or the first direction.
  • the second member 1126 may include a protruding region 1126a protruding backward.
  • the protrusion region 1126a may partially overlap the elastic member EE in the second direction (Y-axis direction). Accordingly, the connecting portion CP of the elastic member EE may have a structure surrounding the protruding region 1126a.
  • an apex of the second protrusion PR2 may be positioned on the first virtual line LX1 . That is, the apex of the second protrusion PR2 may be disposed on the first virtual line LX1 that bisects the first bonding hole EP1h. Accordingly, the force applied by the elastic member EE in the camera actuator according to the embodiment may be uniformly provided to the upper or lower portions of the mover.
  • the damper member DP may be disposed in the above-described mover groove 1131h to contact the mover 1130 or the holder 1131 .
  • the damper member DP may be coupled to the holder 1131 (or mover) and the elastic member EE.
  • the damper member DP may suppress vibration at a settling time when the shaft rotates of the mover.
  • the damper member DP may suppress damage to the spring due to the resonance frequency. Accordingly, the reliability of the first camera actuator according to the embodiment may be improved.
  • connection portion CP of the elastic member EE may be at least partially disposed in the mover groove 1131h and contact the damper member DP.
  • the third protrusion 1131ap3 may at least partially contact the elastic member EE.
  • the upper surface of the third protrusion 1131ap3 may be in contact with the elastic member EE. Accordingly, the third protrusion 1131ap3 may support at least a part of the elastic member EE.
  • the elastic member EE may pass through a region between the first protrusion 1131ap1 and the second protrusion 1131ap2 .
  • the connection part CP may pass through the mover groove 1131h or the damper member DP in the mover groove 113h.
  • the elastic member EE may pass through the damper member DP. Accordingly, coupling force between the damper member DP, the elastic member EE, and the holder 1131 may be improved, and vibration suppression may be improved. Accordingly, durability of the first camera actuator may also be improved.
  • FIG. 19 is a perspective view of the tilting guide part according to the embodiment
  • FIG. 20 is a perspective view of the tilting guide part in a different direction from FIG. 19
  • FIG. 21 is a cross-sectional view of the tilting guide part cut along FF' in FIG.
  • the tilting guide part 1141 includes a base (BS), a first protrusion (PR1) protruding from the first surface 1141a of the base (BS), and a base (BS). It may include a second protrusion PR2 protruding from the second surface 1141b of the .
  • the surfaces on which the first protrusion and the second protrusion are formed may be opposite to each other depending on the structure.
  • the base BS may include a first surface 1141a and a second surface 1141b opposite to the first surface 1141a. That is, the first surface 1141a may be spaced apart from the second surface 1141b in the third direction (Z-axis direction), and may be outer surfaces facing each other or facing each other within the tilting guide unit 1141 . .
  • the tilting guide part 1141 may include a first protrusion PR1 extending to one side on the first surface 1141a.
  • the first protrusion PR1 may protrude toward the mover from the first surface 1141a.
  • a plurality of first protrusions PR1 may include a 1-1 protrusion PR1a and a 1-2 protrusion PR1b.
  • the 1-1 protrusion PR1a and the 1-2 protrusion PR1b may be positioned side by side in the first direction (X-axis direction). In other words, the 1-1 protrusion PR1a and the 1-2 protrusion PR1b may overlap in the first direction (X-axis direction). Also, in the embodiment, the 1-1 protrusion PR1a and the 1-2 protrusion PR1b may be bisected by an imaginary line extending in the first direction (X-axis direction).
  • the 1-1 protrusion PR1a and the 1-2 protrusion PR1b may have a curvature and, for example, may have a hemispherical shape.
  • the tilting guide part 1141 may include a second protrusion PR2 extending to one side on the second surface 1141a.
  • the second protrusion PR2 may protrude toward the housing from the second surface 1141b.
  • the second protrusion PR2 is plural, and may include a 2-1 protrusion PR2a and a 2-2 protrusion PR2b in an embodiment.
  • the 2-1 protrusion PR2a and the 2-2 protrusion PR2b may be positioned side by side in the second direction (Y-axis direction). That is, the 2-1 protrusion PR2a and the 2-2 protrusion PR2b may overlap in the second direction (Y-axis direction). Also, in the embodiment, the 2-1 th protrusion PR2a and the 2-2 th protrusion PR2b may be bisected by an imaginary line VL2 ′ extending in the second direction (Y-axis direction).
  • the second-first protrusion PR2a and the second-second protrusion PR2b may have a curvature, for example, a hemispherical shape.
  • the 2-1 protrusion PR2a and the 2-2 protrusion PR2b may contact the first member 1131a at a point spaced apart from the second surface 1141b of the base BS.
  • the 1-1 protrusion PR1a and the 1-2 protrusion PR1b may be positioned in a region between the 2-1 protrusion PR2a and the 2-2 protrusion PR2b in the second direction.
  • the 1-1 protrusion PR1a and the 1-2 protrusion PR1b are disposed in the center of the space between the 2-1 protrusion PR2a and the 2-2 protrusion PR2b in the second direction.
  • the actuator according to the embodiment may have the X-axis tilt angle with respect to the X-axis in the same range.
  • the tilting guide unit 1141 sets the X-axis tiltable range (eg, positive/negative range) of the mover based on the 1-1 protrusion PR1a and the 1-2 protrusion PR1b.
  • the X-axis tiltable range eg, positive/negative range
  • the 2-1 protrusion PR2a and the 2-2 protrusion PR2b may be positioned in a region between the 1-1 protrusion PR1a and the 1-2 protrusion PR1b in the first direction.
  • the 2-1 protrusion PR2a and the 2-2 protrusion PR2b are disposed at the center of the space between the 1-1 protrusion PR1a and the 1-2 protrusion PR1b in the first direction. can be located With this configuration, the actuator according to the embodiment can have the angle of the Y-axis tilt with respect to the Y-axis in the same range.
  • the tilting guide 1141 and the mover set the Y-axis tiltable range (eg, positive/negative range) on the Y-axis.
  • the Y-axis tiltable range eg, positive/negative range
  • the first protrusion PR1 may be positioned on the first bisector VL1 .
  • the first bisector VL1 is a line that bisects the first surface 1141a in the second direction (Y-axis direction). Accordingly, the tilting guide unit 1141 may easily perform the X-axis tilt through the first protrusion PR1 .
  • a rotational force may be uniformly applied to the tilting guide unit 1141 . Accordingly, the X-axis tilt can be precisely performed and the reliability of the device can be improved.
  • the 1-1 protrusion PR1a and the 1-2 protrusion PR1b may be symmetrically disposed with respect to the first bisector VL1 and the second bisector VL2.
  • the 1-1 protrusion PR1a and the 1-2 protrusion PR1b may be symmetrically positioned with respect to the first central point C1 .
  • the support force supported by the first protrusion PR1 may be equally applied to the upper and lower sides of the second bisector VL2 when tilting the X-axis. Accordingly, the reliability of the tilting guide unit may be improved.
  • the second bisector VL2 is a line that bisects the first surface 1141a in the first direction (X-axis direction).
  • the first central point C1 may be an intersection of the first bisector VL1 and the second bisector VL2. Alternatively, it may be a point corresponding to the center of gravity according to the shape of the tilting guide unit 1141 .
  • the tilting guide 1141 performs the Y-axis tilt based on the fourth bisector VL2 ′, a rotational force may be uniformly applied to the tilting guide 1141 . Accordingly, the Y-axis tilt can be precisely performed and the reliability of the device can be improved.
  • the second-first protrusion PR2a and the second-second protrusion PR2b may be symmetrically disposed on the fourth bisector VL2' to the third bisector VL1'.
  • the second-first protrusion PR2a and the second-second protrusion PR2b may be symmetrically positioned with respect to the second central point C1 ′. According to this configuration, the support force supported by the second protrusion PR2 may be equally applied to the upper and lower sides of the tilting guide unit with respect to the fourth bisector VL2 ′ when the Y-axis is tilted. Accordingly, the reliability of the tilting guide unit may be improved.
  • the third bisector VL1 ′ is a line that bisects the second surface 1141b in the second direction (Y-axis direction).
  • the fourth bisector VL2' is a line that bisects the second surface 1141b in the first direction (X-axis direction).
  • the second central point C1' may be an intersection of the third bisector VL1' and the fourth bisector VL2'. Alternatively, it may be a point corresponding to the center of gravity according to the shape of the tilting guide unit 1141 .
  • first protrusion PR1 and the second protrusion PR2 may be the same as described above.
  • shape of the base BS may be variously changed according to the weight or fastening structure of the camera actuator.
  • FIG. 22 is a perspective view of the first camera actuator according to the first embodiment in which the shield can and the substrate are removed
  • FIG. 23 is a cross-sectional view taken along PP' in FIG. 22
  • FIG. 24 is a cross-sectional view taken along QQ' in FIG. to be.
  • the first coil 1152a may be located on the first housing side 1121 , and the first magnet 1151a may be located on the first holder outer surface 1131S1 of the holder 1131 . have. Accordingly, the first coil 1152a and the first magnet 1151a may be positioned to face each other. The first magnet 1151a may at least partially overlap the first coil 1152a in the second direction (Y-axis direction).
  • the second coil 1152b may be positioned on the second housing side 1122 , and the second magnet 1151b may be positioned on the second holder outer surface 1131S2 of the holder 1131 . Accordingly, the second coil 1152b and the second magnet 1151b may be positioned to face each other. The second magnet 1151b may at least partially overlap the second coil 1152b in the second direction (Y-axis direction).
  • first coil 1152a and the second coil 1152b overlap in the second direction (Y-axis direction), and the first magnet 1151a and the second magnet 1151b are disposed in the second direction (Y-axis direction). can be nested.
  • the electromagnetic force applied to the outer surface of the holder (the first holder outer surface and the second holder outer surface) is located on the parallel axis in the second direction (Y-axis direction), so that the X-axis tilt is accurate and precise. can be performed.
  • the second protrusions PR2a and PR2b of the tilting guide part 1141 may contact the second member 1126 of the housing 1120 .
  • the second protrusion PR2 may be seated in the second protrusion groove PH2 formed on one side surface of the second member 1126 .
  • the second protrusions PR2a and PR2b may be the reference axis (or rotation axis) of the tilt. Accordingly, the tilting guide unit 1141 and the mover 1130 may move up and down.
  • the first Hall sensor 1153a may be positioned outside for electrical connection and coupling with the substrate unit 1154 . However, it is not limited to these positions.
  • the third coil 1152c may be positioned on the third housing side 1123
  • the third magnet 1151c may be positioned on the third holder outer surface 1131S3 of the holder 1131 .
  • the third coil 1152c and the third magnet 1151c may at least partially overlap in the first direction (X-axis direction). Accordingly, the strength of the electromagnetic force between the third coil 1152c and the third magnet 1151c may be easily controlled.
  • the tilting guide part 1141 may be located on the fourth holder outer surface 1131S4 of the holder 1131 as described above. In addition, the tilting guide part 1141 may be seated in the fourth seating groove 1131S4a of the outer surface of the fourth holder. As described above, the fourth seating groove 1131S4a may include the above-described first area AR1 , the second area AR2 , and the third area AR3 .
  • a first member 1131a may be disposed in the first area AR1 .
  • the outer surface of the first member 1131a may be coupled to the second bonding portion EP2 of the elastic member EE. Accordingly, the holder 1131 may apply a force from the holder 1131 to the tilting guide unit 1141 in the same direction as the restoring force RF2 generated by the elastic member EE (RF2').
  • a second member 1126 may be disposed in the second area AR2 .
  • the second member 1126 may include a second protrusion groove PH2.
  • the second protrusion groove PH2 may be located on a surface of the second member 1126 facing the holder 1131 .
  • the restoring force RF2 generated in the elastic member EE may be applied to the second member 1126 through the above-described path. Accordingly, the restoring forces RF2 and RF2' generated through the elastic member EE may press the tilting guide part 1141 disposed between the second member 1126 and the holder 1131 .
  • a tilting guide unit 1141 may be disposed in the third area AR3 .
  • the tilting guide part 1141 may include the first protrusion PR1 and the second protrusion PR2 as described above.
  • the first protrusion PR1 and the second protrusion PR2 may be respectively disposed on the second surface 1141b and the first surface 1141a of the base BS.
  • the first protrusion PR1 and the second protrusion PR2 may be variously positioned on the opposite surface of the base BS.
  • a first protrusion groove PH1 may be positioned in the holder 1131 .
  • the first protrusion groove PH1 may be located in the fourth seating groove 1131S4a.
  • the first protrusion PR1 may be positioned in the first protrusion groove PH1 . Accordingly, the first protrusion PR1 may at least partially contact the first protrusion groove PH1.
  • the apex of the first protrusion PR1 may be located on the bisector of the junction hole of the second junction.
  • the maximum diameter of the first protrusion groove PH1 may correspond to the maximum diameter of the first protrusion portion PR1 . This may be equally applied to the second protrusion groove PH2 and the second protrusion portion PR2 . That is, the maximum diameter of the second protrusion groove PH2 may correspond to the maximum diameter of the second protrusion portion PR2 . In addition, the second protrusion PR2 may contact the second protrusion groove PH2 . With this configuration, the second axis tilt with respect to the first protrusion PR1 and the first axis tilt with respect to the second protrusion PR2 may easily occur, and the radius of the tilt may be improved.
  • the tilting guide part 1141 is arranged side by side with the first member 1131a and the second member 1126 in the third direction (Z-axis direction), so that the tilting guide part 1141 is connected to the optical member 1132 and the second member 1131 . They may overlap in one direction (X-axis direction). More specifically, in the embodiment, the first protrusion PR1 may overlap the optical member 1132 in the first direction (X-axis direction). Furthermore, at least a portion of the first protrusion PR1 may overlap the third coil 1152c or the third magnet 1151c in the first direction (X-axis direction).
  • each protrusion which is a central axis of tilt in the camera actuator according to the embodiment, may be located adjacent to the center of gravity of the mover 1130 .
  • the tilting guide unit may be positioned adjacent to the center of gravity of the mover. Accordingly, the camera actuator according to the embodiment can minimize the moment value for tilting the mover, and can also minimize the amount of current applied to the coil unit to tilt the mover, so power consumption and reliability of the device can be improved.
  • the second Hall sensor 1153b located inside the third coil 1153c detects a change in magnetic flux, whereby the position sensing between the third magnet 1151c and the second Hall sensor 1153b is performed. can be performed.
  • 25 is a diagram illustrating a driving unit according to an embodiment.
  • the first driving unit 1150 includes a driving magnet 1151 , a driving coil 1152 , a hall sensor unit 1153 , and a substrate unit 1154 .
  • the driving magnet 1151 may include a first magnet 1151a , a second magnet 1151b , and a third magnet 1151c providing driving force by electromagnetic force.
  • the first magnet 1151a , the second magnet 1151b , and the third magnet 1151c may be respectively located on the outer surface of the prism holder 1131 .
  • the driving coil 1152 may include a plurality of coils.
  • the driving coil 1152 may include a first coil 1152a , a second coil 1152b , and a third coil 1152c .
  • the first coil 1152a may be positioned to face the first magnet 1151a. Accordingly, the first coil 1152a may be positioned in the first housing hole 1121a of the first housing side 1121 as described above. Also, the second coil 1152b may be positioned to face the second magnet 1151b. Accordingly, the second coil 1152b may be located in the second housing hole 1122a of the second housing side 1122 as described above.
  • the first camera actuator rotates the mover 1130 in a first axis (X-axis direction) or in a second axis (Y-axis direction) by electromagnetic force between the driving magnet 1151 and the driving coil 1152 .
  • X-axis direction first axis
  • Y-axis direction second axis
  • OIS is implemented to solve the size limitation of the actuator, so that an ultra-slim, ultra-small camera actuator and A camera module including this may be provided.
  • the substrate portion 1154 may include a first substrate side portion 1154a , a second substrate side portion 1154b , and a third substrate side portion 1154c .
  • the first substrate side portion 1154a and the second substrate side portion 1154b may be disposed to face each other.
  • the third substrate side portion 1154c may be positioned between the first substrate side portion 1154a and the second substrate side portion 1154b.
  • first substrate side 1154a may be positioned between the first housing side and the shield can
  • second substrate side 1154b may be positioned between the second housing side and the shield can
  • third substrate side part 1154c may be positioned between the third housing side part and the shield can, and may be a bottom surface of the substrate part 1154 .
  • the first substrate side portion 1154a may be coupled to the first coil 1152a and electrically connected thereto. Also, the first substrate side portion 1154a may be coupled to the first Hall sensor 1153a and electrically connected thereto.
  • the second substrate side 1154b may be coupled to and electrically connected to the second coil 1152b. It should also be understood that the second substrate side 1154b may engage and electrically connect with the first Hall sensor.
  • the third substrate side 1154c may be coupled to and electrically connected to the third coil 1152c.
  • the third substrate side portion 1154c may be coupled to and electrically connected to the second Hall sensor 1153b.
  • 26 is a diagram illustrating a driving unit according to a modified example.
  • the first driving unit 1150A includes a driving magnet 1151 , a driving coil 1152 , a Hall sensor unit 1153 , a first substrate unit 1154 , and a yoke unit 1155 .
  • the driving magnet 1151 may include a first magnet 1151a and a second magnet 1151b that provide driving force by electromagnetic force.
  • the first magnet 1151a and the second magnet 1151b may be respectively located on the outer surface of the holder 1131 .
  • the dummy member DM is described as being included in the driving unit 1150A in the drawing, but it should be understood that it may be a separate member. That is, since the dummy member DM is not disposed to face the coil and does not generate electromagnetic force, it is not a driving source that generates a driving force for tilting the dummy member in a predetermined direction, for example, the Y-axis. However, the dummy member DM may be positioned symmetrically with the first magnet 1151a in the first direction or the second direction by being seated on the outer surface of the holder. Also, the dummy member DM may have the same weight as the first magnet 1151a.
  • the dummy member DM compensates by the weight of the first magnet 1151a in the holder so that the weight is concentrated toward the first magnet 1151a when the holder rotates in the second direction (Y-axis direction). it can be prevented In other words, the dummy member DM may improve the accuracy of the Y-axis tilt of the holder 1131 . Furthermore, since the coil is not disposed at positions symmetrical in the first direction and the second direction to the first coil 1152a by the dummy member DM, the current efficiency for the Y-axis tilt may be improved. In addition, since the overall weight of the first camera actuator according to the first embodiment is reduced, it is possible to achieve weight reduction.
  • the driving coil 1152 may include a plurality of coils.
  • the driving coil 1152 may include a first coil 1152a and a second coil 1152b.
  • the first coil 1152a may be positioned to face the first magnet 1151a. Accordingly, the first coil 1152a may be positioned in the first housing hole 1121a of the first housing side 1121 as described above.
  • the weight of the first camera actuator may be reduced.
  • the opening may be positioned to face the dummy member DM.
  • the first camera actuator moves the mover 1130 to the first axis (X-axis direction) or the second axis (Y-axis direction) by the electromagnetic force between the driving magnet 1151 and the driving coil 1152 .
  • the rotation it is possible to provide the best optical properties by minimizing the occurrence of decent or tilt when implementing OIS.
  • OIS is implemented to solve the size limitation of the actuator, so that the ultra-slim, ultra-small camera It is possible to provide an actuator and a camera module including the same.
  • the first substrate portion 1154 may include a first substrate side portion 1154a , a second substrate side portion 1154b , and a third substrate side portion 1154c .
  • the first substrate side portion 1154a and the second substrate side portion 1154b may be disposed to face each other.
  • the third substrate side portion 1154c may be positioned between the first substrate side portion 1154a and the second substrate side portion 1154b.
  • first substrate side 1154a may be positioned between the first housing side and the shield can
  • second substrate side 1154b may be positioned between the second housing side and the shield can
  • third substrate side part 1154c may be positioned between the third housing side part and the shield can, and may be the bottom surface of the first substrate part 1154 .
  • the first substrate side portion 1154a may be coupled to the first coil 1152a and electrically connected thereto. Also, the first substrate side portion 1154a may be coupled to the first Hall sensor 1153a and electrically connected thereto.
  • the second substrate side portion 1154b may be a dummy substrate.
  • the third substrate side portion 1154c may be coupled to and electrically connected to the second coil 1152b.
  • the third substrate side portion 1154c may be coupled to and electrically connected to the second Hall sensor 1153b.
  • the first camera actuator there is no need for electrical connection to the second substrate side portion 1154b, so that an electrical path (CPH) is formed only on the first substrate side portion 1154a and the third substrate side portion 1154c.
  • CPH electrical path
  • the length of the electrical connection may be reduced, thereby reducing the electrical resistance. That is, current efficiency can be improved.
  • the driver dR controlling the amount of current injected into the first coil or the second coil may also be disposed on any one of the first substrate side portion 1154a and the third substrate side portion 1154b. Accordingly, it is possible to minimize the electrical resistance by minimizing the electrical path.
  • the yoke unit 1155 may include a first yoke 1155a and a second yoke 1155b.
  • the first yoke 1155a may be positioned in the first seating groove and may be coupled to the first magnet 1151a.
  • the second yoke 1155b may be positioned in the third seating groove and may be coupled to the second magnet 1151b.
  • the dummy yoke may be positioned in the second seating groove and coupled to the dummy member DM.
  • the first yoke 1155a and the second yoke 1155b allow the first magnet 1151a and the second magnet 1151b to be easily seated in the first and third seating grooves to be coupled to the housing.
  • FIG. 27 is a perspective view of the first camera actuator according to the first embodiment
  • FIG. 28 is a cross-sectional view taken along SS′ in FIG. 27,
  • FIG. 29 is an exemplary view of movement of the first camera actuator shown in FIG.
  • Y-axis tilt may be performed. That is, the OIS may be implemented by rotating in the first direction (X-axis direction).
  • the third magnet 1151c disposed under the holder 1131 forms an electromagnetic force with the third coil 1152c to tilt or rotate the mover 1130 based on the second direction (Y-axis direction). can do it
  • the restoring force of the elastic member EE may be transmitted to the first member 1131a and finally to the tilting guide unit 1141 disposed between the second member 1126 and the holder 1131 . Accordingly, the tilting guide unit 1141 may be pressed by the mover 1130 and the housing 1120 by the above-described repulsive force.
  • the second protrusion PR2 may be supported by the second member 1126 .
  • the tilting guide unit 1141 uses the second protrusion PR2 protruding toward the second member 1126 as a reference axis (or rotation axis), that is, in the second direction (Y-axis direction). It can be rotated or tilted. In other words, the tilting guide 1141 may rotate or tilt the second protrusion PR2 protruding toward the second member 1126 in the first direction (X-axis direction) with respect to the reference axis (or rotation axis).
  • the mover 1130 is moved by the first electromagnetic force F1A, F1B between the third magnet 1151c disposed in the third seating groove and the third coil unit 1152c disposed on the side of the third substrate.
  • the OIS may be implemented while rotating (X1->X1a) at a first angle ⁇ 1 in the axial direction.
  • the mover 1130 is moved in the X-axis direction by the first electromagnetic forces F1A and F1B between the third magnet 1151c disposed in the third seating groove and the third coil unit 1152c disposed on the side of the third substrate.
  • OIS may be implemented while rotating (X1->X1b) at a first angle ⁇ 1.
  • the first angle ⁇ 1 may be ⁇ 1° to ⁇ 3°.
  • the electromagnetic force may generate a force in a described direction to move the mover, or may generate a force in another direction to move the mover in the described direction. That is, the direction of the described electromagnetic force means the direction of the force generated by the magnet and the coil to move the mover.
  • FIG. 30 is a perspective view of a first camera actuator according to the first embodiment
  • FIG. 31 is a cross-sectional view taken along line RR' in FIG. 30,
  • FIG. 32 is an exemplary view of movement of the first camera actuator shown in FIG.
  • an X-axis tilt may be performed. That is, OIS may be implemented while the mover 1130 is tilted or rotated in the Y-axis direction.
  • the first magnet 1151a and the second magnet 1151b disposed in the holder 1131 form an electromagnetic force with the first coil 1152a and the second coil 1152b, respectively, in the first direction (X axial direction), the tilting guide unit 1141 and the mover 1130 may be tilted or rotated.
  • the restoring force of the elastic member EE is transmitted to the first member 1131a and the holder 1131 , and finally to the tilting guide part 1141 disposed between the holder 1131 and the second member 1126 . can be transmitted. Accordingly, the tilting guide unit 1141 may be pressed by the mover 1130 and the housing 1120 by the above-described repulsive force.
  • the tilting guide unit 1141 uses the first protrusion PR1 protruding toward the holder 1131 (eg, toward the third direction) as a reference axis (or rotation axis), that is, in the first direction (X). axial direction) can be rotated or tilted.
  • the OIS may be implemented.
  • the second electromagnetic force (F2A, F2B) between the first and second magnets 1151a and 1151b disposed in the first seating groove and the first and second coil units 1152a and 1152b disposed on the side of the first and second substrates OIS may be implemented while rotating the mover 1130 at a second angle ⁇ 2 in the Y-axis direction (Y1->Y1b).
  • the second angle ⁇ 2 may be ⁇ 1° to 3°.
  • the present invention is not limited thereto.
  • the electromagnetic force generated by the first and second magnets 1151a and 1151b and the first and second coil units 1152a and 1152b may act in the third direction or in a direction opposite to the third direction.
  • the electromagnetic force may be generated in the third direction (Z-axis direction) from the left side of the mover 1130 , and may act in the opposite direction to the third direction (Z-axis direction) from the right side of the mover 1130 .
  • the mover 1130 may rotate based on the first direction. Alternatively, it may move along the second direction.
  • the second actuator rotates the mover 1130 in the first direction (X-axis direction) or in the second direction (Y-axis direction) by electromagnetic force between the driving magnet in the holder and the driving coil disposed in the housing.
  • 'Y-axis tilt' means rotating or tilting in the first direction (X-axis direction)
  • 'X-axis tilting' means rotating or tilting in the second direction (Y-axis direction).
  • Fig. 33 is a perspective view of a first camera actuator according to a second embodiment
  • Fig. 34 is a view showing a first member in the first camera actuator according to a second embodiment
  • Fig. 35 is a first camera actuator according to the second embodiment.
  • 1 is a top view of the first member in the camera actuator
  • FIG. 36 is a side view of the first camera actuator according to the second embodiment.
  • the first camera actuator 1100A includes a shield can, a housing, a mover, a rotating part, an elastic member EE, a driving part, a first member 1131a, and a second member. (1126) and a damper member.
  • a shield can a housing, a mover, a rotating part, an elastic member EE, a driving part, a first member 1131a, and a second member. (1126) and a damper member.
  • the above contents may be applied in the same manner except for the contents described below.
  • the first member 1131a may include a member protrusion 1131ap disposed adjacent to the connection part CP.
  • the member protrusion 1131ap may at least partially overlap the connection part CP in the optical axis direction or the third direction (Z-axis direction).
  • at least a portion of the connecting portion CP may be curved to correspond to the outer surface of the member protrusion 1131ap. That is, the connecting portion CP and the member protrusion 1131ap may have opposite surfaces or lines in a region overlapping each other in the first direction (X-axis direction).
  • the above-described facing surfaces or lines may be curved with each other. Accordingly, the damper member DP1 may be easily coupled to the first member 1131a and the elastic member EE.
  • the member protrusion 1131ap a phenomenon in which the damper member DP1 is coupled to members other than the first member 1131a and the elastic member EE may be suppressed. Furthermore, due to the above-described curved surface or line, the member protrusion 1131ap may have an area 1131app protruding to one side.
  • the upper surface 1131apu of the first member 1131a may have a smaller width or length in the first direction (X-axis direction) than the lower surface 1131apb.
  • the width or length W5 in the first direction (X-axis direction) of the upper surface 1131apu in the first member 1131a is the width or length W4 in the first direction (X-axis direction) of the lower surface 1131apb. may be smaller than
  • the upper surface 1131apu of the first member 1131a may have a smaller area than the lower surface 1131apb.
  • the height or length d2 in the third direction (Z-axis direction) of the second coupling part PP2 may be smaller than the width or length d1 in the third direction of the member protrusion 1131ap. Accordingly, as described above, the preload of the elastic member EE is easily formed, and the coupling between the member protrusion 1131ap and the damper member DP1 may also be made.
  • the width or length d3 in the third direction of the coupling base PP2a may be smaller than the height or length d2 in the third direction (Z-axis direction) of the second coupling part PP2.
  • the damper member DP1 may be coupled to the member protrusion 1131ap and the connection part CP. Accordingly, the damper member DP1 can suppress vibration at a settling time when the shaft rotates of the mover. In addition, the damper member DP1 can suppress the damage of the spring due to the resonance frequency. Accordingly, the reliability of the first camera actuator according to the embodiment may be improved.
  • the member protrusion 1131ap may be positioned between the first coupling part and the second coupling part PP2 . Specifically, the member protrusion 1131ap may be located in a region spaced apart from the first coupling part and the second coupling part PP2 in the second direction (Y-axis direction). For example, the member protrusion 1131ap may be located at a point that bisects a region spaced apart in the second direction (Y-axis direction) between the first coupling part and the second coupling part PP2 . Accordingly, the vibration damping effect by the damper member DP2 may be further improved.
  • the second member 1126 may include a housing protrusion 1126p disposed adjacent to the connection part CP.
  • connection part CP may correspond to the outer surface of the housing protrusion 1126p.
  • facing surfaces or lines of the connection part CP and the housing protrusion 1126p in a region overlapping each other in the first direction (X-axis direction) may correspond to each other.
  • the above-described facing surfaces or lines may be curved with each other. Accordingly, the damper member DP2 may be easily coupled to the second member 1126 and the elastic member EE. Furthermore, a phenomenon in which the damper member DP2 is coupled to members other than the second member 1126 and the elastic member EE may be suppressed.
  • the housing protrusion 1126p may have an area 1126pp protruding to one side. Accordingly, the damper member DP2 can suppress vibration at a settling time when the shaft rotates of the mover. In addition, the damper member DP2 may suppress damage to the spring due to the resonance frequency. Accordingly, the reliability of the first camera actuator according to the embodiment may be improved.
  • the housing protrusion 1126p may at least partially overlap the connection part CP in the optical axis direction or the third direction (Z axis direction). Accordingly, coupling force between the housing protrusion 1126p and the connection portion CP by the damper member DP2 may be further improved. Furthermore, the escape of the connection part CP may be suppressed by the housing protrusion 1126p.
  • FIG. 37 is a perspective view of a first camera actuator according to a third embodiment
  • FIG. 38 is a diagram illustrating a first camera actuator according to a third embodiment
  • FIG. 39 is a view of the first camera actuator according to the third embodiment It is a side view.
  • the first camera actuator 1100B includes a shield can, a housing, a mover, a rotating part, an elastic member (EE), a driving part, a first member 1131a, and a second member. (1126) and a damper member.
  • a shield can a housing, a mover, a rotating part, an elastic member (EE), a driving part, a first member 1131a, and a second member. (1126) and a damper member.
  • EE elastic member
  • (1126) and a damper member a damper member.
  • the above contents may be applied in the same manner except for the contents described below.
  • the holder 1131 of the mover 1130 may include a mover protrusion 1131p protruding outward or toward the spring from the fourth holder outer surface 1131S4. Also, in the holder 1131 of the mover 1130 , there may be a plurality of protrusions 1131ap.
  • the mover protrusion 1131p may include a first protrusion 1131ap1 , a second protrusion 1131ap2 , and a third protrusion 1131ap3 .
  • the damper member DP and the mover or holder 1131 may be easily coupled through the mover protrusion 1131p.
  • the first member 1131a may include a member protrusion 1131ap disposed adjacent to the connection part CP.
  • the damper member DP1 may be easily coupled to the first member 1131a and the elastic member EE.
  • the second member 1126 may include a housing protrusion 1126p disposed adjacent to the connection part CP. Accordingly, the damper member DP2 may be easily coupled to the second member 1126 and the elastic member EE.
  • the elastic member EE may be coupled to the second member (or housing), the first member 1131a, and the holder 1131 or the mover by the damper members DP, DP1, and DP2. Accordingly, the coupling force between the damper member and each member may be further improved. And, by this configuration, the vibration in the settling time (settling time) when the shaft rotation of the mover can be further suppressed. In addition, the damper member can further suppress the breakage of the spring due to the resonant frequency (vibration at the resonant frequency). Accordingly, durability or reliability of the first camera actuator according to the embodiment may be greatly improved.
  • FIG. 40 is a diagram illustrating a first camera actuator according to a modified example.
  • the first camera actuator includes a shield can, a housing, a mover, a rotating part, an elastic member EE, a driving part, a first member 1131a, a second member 1126 and a damper member DP. ) is included.
  • a shield can a housing, a mover, a rotating part, an elastic member EE, a driving part, a first member 1131a, a second member 1126 and a damper member DP.
  • the above contents may be applied in the same manner except for the contents described below.
  • each leg of the connection part CP may be disposed adjacent to each other in the connection part CP of the elastic member EE.
  • the damper member DP3 may couple the legs of the adjacent connection parts. That is, the leg of the connection part CP may be a branch connecting the first junction part and the second junction part. Furthermore, the aforementioned legs may be plural.
  • one leg of the connection part CP may include the above-described first connection part to the fourth connection part.
  • the damper member DP3 may be easily coupled to the housing protrusion 1126p or the member protrusion 1131ap of the first member 1131a while coupling the legs of the adjacent connection parts to each other. Accordingly, the damper member DP3 may be engaged with adjacent legs, or a leg and a housing protrusion, or a leg and a member protrusion, or a leg and a member protrusion and a housing protrusion. Accordingly, durability or reliability of the first camera actuator according to the embodiment may be greatly improved.
  • FIG. 41 is a perspective view of the first camera actuator according to the fourth embodiment
  • FIG. 42 is an exploded perspective view of the first camera actuator according to the fourth embodiment.
  • the first camera actuator 1100C includes a first housing 1120 , a mover 1130 , a rotating unit 1140 , a first driving unit 1150 , and an elastic member ( EE), a second member 1126 , a first member 1131a and a damper member. Furthermore, the above contents may be applied in the same manner except for the contents described below.
  • the mover 1130 may include a holder 1131 and an optical member 1132 seated on the holder 1131 .
  • the rotating unit 1140 may include a tilting guide unit 1141 .
  • the first driving unit 1150 includes a driving magnet 1151 , a driving coil 1152 , a Hall sensor unit 1153 , a first substrate unit 1154 , and a yoke unit 1155 .
  • the first camera actuator 1100C may include a shield can (not shown).
  • the shield can (not shown) may be positioned at the outermost side of the first camera actuator 1100C to surround the rotating part 1140 and the first driving part 1150 to be described later.
  • Such a shield can may block or reduce electromagnetic waves generated from the outside. That is, the shield can (not shown) may reduce the occurrence of a malfunction in the rotating unit 1140 or the first driving unit 1150 .
  • the first housing 1120 may be located inside a shield can (not shown). When there is no shield can, the first housing 1120 may be located at the outermost side of the first camera actuator.
  • first housing 1120 may be located inside the first substrate unit 1154 to be described later.
  • the first housing 1120 may be coupled to or fitted to a shield can (not shown).
  • the first housing 1120 may include a first housing side 1121 , a second housing side 1122 , a third housing side 1123 , and a fourth housing side 1124 . A detailed description thereof will be given later.
  • the second member 1126 may be disposed in the first housing 1120 .
  • the second member 1126 may be disposed between the first member 1131a and the first housing.
  • the second member 1126 may be disposed within the first housing or may be included in the first housing 1120 . This will be described later.
  • the mover 1130 includes a holder 1131 and an optical member 1132 seated on the holder 1131 .
  • the holder 1131 may be seated in the receiving part 1125 of the first housing 1120 .
  • the holder 1131 has a first holder outer surface to a fourth holder outer surface corresponding to the first housing side 1121 , the second housing side 1122 , the third housing side 1123 , and the second member 1126 , respectively.
  • the first holder outer surface to the fourth holder outer surface may correspond to inner surfaces of each of the first housing side 1121 , the second housing side 1122 , the third housing side 1123 , and the second member 1126 . may or may not face.
  • the holder 1131 may include a first member 1131a disposed in the fourth seating groove. A detailed description thereof will be given later.
  • the optical member 1132 may be seated on the holder 1131 .
  • the holder 1131 may have a seating surface, and the seating surface may be formed by a receiving groove.
  • a bonding member may be applied to the seating surface. Accordingly, the optical member 1132 may be coupled to the holder 1131 .
  • the optical member 1132 may be formed of a mirror or a prism.
  • a prism is shown as a reference, but as in the above-described embodiment, a plurality of lenses may be used.
  • the optical member 1132 may include a plurality of lenses and prisms or mirrors.
  • the optical member 1132 may include a reflector disposed therein.
  • the present invention is not limited thereto.
  • the optical member 1132 may reflect light reflected from the outside (eg, an object) into the camera module.
  • the optical member 1132 may improve the spatial limit of the first camera actuator and the second camera actuator by changing the path of the reflected light.
  • the camera module may extend the optical path while minimizing thickness to provide a high range of magnification.
  • first member 1131a may be coupled to the holder 1131 .
  • the first member 1131a may be disposed outside the holder 1131 and inside the housing.
  • the first member 1131a may be seated in an additional groove located in an area other than the fourth seating groove on the outer surface of the fourth holder in the holder 1131 .
  • the first member 1131a may be coupled to the holder 1131 , and at least a portion of the second member 1126 may be positioned between the first member 1131a and the holder 1131 .
  • at least a portion of the second member 1126 may pass through a space formed between the first member 1131a and the holder 1131 .
  • the first member 1131a may have a structure separated from the holder 1131 . With this configuration, as will be described later, the assembly of the first camera actuator can be easily performed.
  • the first member 1131a may be integrally formed with the holder 1131 , but a separate structure will be described below.
  • the rotating unit 1140 may include a tilting guide unit 1141 . Additionally, the rotating unit 1140 may include magnetic materials having the same polarity to press the tilting guide unit 1141 .
  • the tilting guide unit 1141 may be coupled to the above-described mover 1130 and the first housing 1120 . Specifically, the tilting guide unit 1141 may be disposed between the holder 1131 and the second member 1126 . Accordingly, the tilting guide unit 1141 may be coupled to the mover 1130 and the first housing 1120 of the holder 1131 . However, unlike the above description, in the present embodiment, the tilting guide part 1141 may be disposed between the second member 1126 and the holder 1131 . Specifically, the tilting guide part 1141 may be positioned between the second member 1126 and the fourth seating groove of the holder 1131 .
  • the first member 1131a , the second member 1126 , the tilting guide part 1141 , and the holder 1131 may be disposed in this order.
  • the tilting guide unit 1141 may be disposed adjacent to the optical axis. Accordingly, the actuator according to the embodiment can easily change the optical path according to the first and second axis tilt to be described later.
  • the tilting guide part 1141 may include a first protrusion spaced apart in a first direction (X-axis direction) and a second protrusion spaced apart in a second direction (Y-axis direction). Also, the first protrusion and the second protrusion may protrude in opposite directions. A detailed description thereof will be given later.
  • the first driving unit 1150 includes a driving magnet 1151 , a driving coil 1152 , a Hall sensor unit 1153 , a first substrate unit 1154 , and a yoke unit 1155 .
  • the above description may be applied to this description. Accordingly, the dummy member DM may be replaced with the second magnet, and the lower magnet may correspond to the third magnet.
  • the elastic member EE may be positioned between the mover 1130 and the fixing member (eg, the first housing 1120 or the second member 1126 ).
  • the tilting guide unit 1141 may be positioned between the fixing member and the mover.
  • the elastic member EE may bring the tilting guide unit 1141 into close contact with the fixing member and the mover by pulling the mover 1130 to the fixing member.
  • the elastic member EE may closely contact the tilting guide 1141 and the mover 1130 . In other words, the elastic member EE may pull the mover 1130 toward the housing 1220 or the second member 1126 which is a fixing member.
  • the elastic member EE may be disposed between the tilting guide unit 1141 and the housing 1120 .
  • the elastic member EE may be sequentially disposed on the tilting guide unit 1141 , the second member 1126 , and the first member 1131a. That is, in the third direction, the second member 1126 , the elastic member EE, the first member 1131a , the tilting guide part 1141 , and the mover 1130 may be disposed in this order.
  • the elastic member EE may be made of an elastic material, and may be disposed between the second member 1126 and the first member 1131a to couple the second member 1126 and the first member 1131a to each other. In addition, the elastic member EE may provide an elastic force to the first member 1131a and the holder 1131 connected thereto based on the second member 1126 fixed to the housing 1120 .
  • the elastic member EE may be coupled to the housing 1120 and the mover 1130 between the housing 1120 and the mover 1130 , and may press the tilting guide unit 1141 through the mover 1130 . Accordingly, the mover 1130 may be tilted in the X-axis and/or in the Y-axis through the tilting guide unit 1141 .
  • the elastic member EE may have a preload due to the spaced distance between the contact portions (first and second joint portions to be described later). In addition, this preload may be transmitted to the tilting guide unit 1141 through the mover 1130 and to the second member 1126 through the tilting guide unit 1141 . Accordingly, the tilting guide part 1141 disposed between the mover 1130 and the second member 1126 may be pressed by the elastic member EE.
  • the tilting guide unit 1141 may maintain a force positioned between the mover 1130 and the second member 1126 . Accordingly, it is possible to maintain a position between the mover 1130 and the housing 1120 without separation of the tilting guide unit 1141 even during X-axis tilt or Y-axis tilt. In addition, if there is no injection of current after the current is injected into the first coil and the second coil for X-axis tilt or Y-axis tilt (for example, when the current is 0), the mover by the above-mentioned preload or restoring force 1130 may move to the initial position.
  • the mover 1130 tilts the X/Y axis, and when a force smaller than the preload occurs, the mover 1130 returns to the initial position or the position is maintained.
  • damper member may be coupled to at least one of the housing 1120 (or the second member) and the mover (or the first member) and the elastic member.
  • FIG. 43A is a perspective view of a first housing of a first camera actuator according to a fourth embodiment
  • FIG. 43B is a perspective view in a different direction from that of FIG. 43A
  • FIG. 43C is a first housing of a first camera actuator according to a fourth embodiment is a front view of
  • the first housing 1120 may include a first housing side portion 1121 to a fourth housing side portion 1124 .
  • the second member 1126 may be integrally formed by being coupled to the first housing 1120 . Accordingly, the second member 1126 may be included in the first housing 1120 . That is, the first housing 1120 may be integrated with the second member 1126 . Alternatively, the first housing 1120 may include the second member 1126 .
  • the first housing side 1121 and the second housing side 1122 may be disposed to face each other. Also, the third housing side portion 1123 and the fourth housing side portion 1124 may be disposed to face each other.
  • third housing side 1123 and the fourth housing side 1124 may be disposed between the first housing side 1121 and the second housing side 1122 .
  • the third housing side 1123 and the fourth housing side 1124 may abut the first housing side 1121 , the second housing side 1122 , and the fourth housing side 1124 .
  • the third housing side 1123 may be a bottom surface of the first housing 1120 .
  • the fourth housing side 1124 may be an upper surface of the first housing 1120 .
  • the description of the direction may be applied in the same manner as described above.
  • the first housing side 1121 may include a first housing hole 1121a.
  • a first coil to be described later may be positioned in the first housing hole 1121a.
  • the second housing side 1122 may include a second housing hole 1122a.
  • the second housing hole 1122a may be positioned symmetrically with the first housing hole 1121a in the first direction or the third direction.
  • the second housing hole 1122a may be an empty area.
  • first housing side 1121 and the second housing side 1122 may be side surfaces of the first housing 1120 .
  • the third housing side portion 1123 may include a third housing hole 1123a.
  • a second coil (when the dummy member is present) or a third coil (when the dummy member does not exist), which will be described later, may be positioned in the third housing hole 1123a.
  • a second member 1126 may be seated between the first housing side portion 1121 to the fourth housing side portion 1124 . Accordingly, the second member 1126 may be positioned on the third housing side portion 1123 . For example, the second member 1126 may be located on one side. Based on the third direction, the second member 1126 and the holder may be sequentially positioned.
  • the fourth housing side 1124 is disposed between the first housing side 1121 , the second housing side 1122 , the first housing side 1121 , the second housing side 1122 , and the third housing side 1123 . ) can be encountered.
  • the fourth housing side 1124 may include a fourth housing hole 1124a.
  • the fourth housing hole 1124a may be located above the optical member. Accordingly, light may pass through the fourth housing hole 1124a and be incident on the optical member.
  • the first housing 1120 may include a receiving portion 1125 formed by the first housing side portion 1121 to the fourth housing side portion 1124 .
  • a second member 1126 , a first member 1131a , a mover 1130 , and an elastic member EE may be positioned in the receiving part 1125 as components.
  • the first housing 1120 may further include a fifth housing side facing the second member 1126 . and a fifth housing side is disposed between the first housing side 1121 and the second housing side 1122 , the first housing side 1121 , the second housing side 1122 and the third housing side 1123 and can be reached
  • the fifth housing side may include an opening region to provide a path through which light reflected from the optical member 1132 travels.
  • the fifth housing side may include protrusions or grooves, etc., to provide easy engagement with other adjacent camera actuators. With this configuration, it is possible to minimize the change of the optical path by suppressing movement of the opening due to separation or the like by improving the coupling force between the side of the fifth housing in which the opening providing the optical path is formed and other components while providing the optical path. .
  • the second member 1126 may be coupled to the first housing 1120 to be included in the first housing 1120 . That is, the second member 1126 may be disposed in the first housing 1120 . Alternatively, the second member 1126 may be located in the first housing 1120 .
  • the second member 1126 may be coupled to the first housing 1120 .
  • the second member 1126 may be positioned between the first housing side 1121 and the second housing side 1122 .
  • the second member 1126 may be positioned between the third housing side 1123 and the fourth housing side 1124 .
  • the second member 1126 is positioned on the third housing side 1123 and may be joined to the first housing side to the third housing side.
  • a first stopper 1121b may be positioned on the inner surface of the first housing side portion 1121 .
  • a second stopper 1122b may be positioned on the inner surface of the second housing side 1122 .
  • the first stopper 1121b and the second stopper 1122b may be positioned symmetrically with respect to the first direction (X-axis direction).
  • the first stopper 1121b and the second stopper 1122b may extend in a first direction (X-axis direction). With this configuration, even if the second member 1126 moves into the first housing 1120 , the position may be maintained by the first stopper 1121b and the second stopper 1122b. In other words, the first stopper 1121b and the second stopper 1122b may maintain the second member 1126 positioned on one side of the first housing 1120 .
  • the first stopper 1121b and the second stopper 1122b fix the position of the second member 1126 to fix the position of the tilting guide part between the second member 1126 and the mover to cause errors such as vibration. can be removed. Accordingly, in the first camera actuator according to the fourth embodiment, the X-axis tilt and the Y-axis tilt can be accurately performed.
  • the separation distance L2 in the second direction (Y-axis direction) between the first stopper 1121b and the second stopper 1122b is the maximum length in the second direction (Y-axis direction) of the second member 1126 ( It may be smaller than L1). Accordingly, the second member 1126 may be assembled or inserted laterally with respect to the first housing 1120 to be coupled to the first housing 1120 .
  • the housing 1120 may include a receiving portion 1125 formed by the first housing side portion 1121 to the fourth housing side portion 1124 .
  • a second member 1126 , a first member 1131a , a tilting guide part 1141 , a mover 1130 , and an elastic member EE may be positioned in the receiving part 1125 as components.
  • the second member 1126 may be disposed in the housing 1120 .
  • the second member 1126 may be disposed or included within the first housing.
  • the second member 1126 may be coupled to the first housing 1120 .
  • the second member 1126 may seat or at least partially penetrate the housing groove 1123b ′ formed in the third housing side 1123 to be coupled to the third housing side 1123 . Through this, the second member 1126 may be coupled to the housing 1120 and maintain the fixation between the mover 1130 and the tilting guide unit 1141 to be described later.
  • the second member 1126 may include the first housing side portion 1121 and the first coupling portion PP1 disposed in an area adjacent to the second housing side portion 1121 .
  • the first coupling part PP1 may be formed of a protrusion.
  • the first coupling part PP1 may be coupled to the first bonding part EP1 .
  • the first coupling part PP1 may be inserted into the first bonding hole of the first bonding part EP1 .
  • the second member 1126 includes a second protrusion groove in which the second protrusion of the tilting guide part is seated.
  • the second protrusion groove PH2 may be located on the inner surface 1126s1 of the second member 1126 . Accordingly, in the second member 1126 , the protrusion (eg, the second protrusion) of the tilting guide is disposed adjacent to the prism in the fourth seating groove, so that the protrusion, which is the reference axis of tilt, is close to the center of gravity of the mover 1130 . to be placed Accordingly, when the holder tilts, the moment of moving the mover 1130 for tilting can be minimized. Accordingly, since current consumption for driving the coil is also minimized, power consumption of the camera actuator may be reduced.
  • the second member 1126 may include through holes 1126a and 1126b.
  • a plurality of through-holes may be formed of a first through-hole 1126a and a second through-hole 1126b.
  • the first and second extension portions of the first member to be described later may pass through the first through hole 1126a and the second through hole 1126b, respectively. Through this, the first member and the second member may be coupled. In other words, the first housing and the mover may be coupled to each other.
  • a second protrusion groove PH2 may be positioned between the first through hole 1126a and the second through hole 1126b. Due to this configuration, the coupling force between the tilting guide unit 1141 and the second member 1126 is improved, so that a decrease in tilt accuracy caused by the tilting guide unit 1141 moving within the first housing can be blocked.
  • a second groove gr2 may be positioned on the outer surface 1126s2 of the second member 1126 .
  • a magnetic material may be seated in the second groove gr2 .
  • the outer surface 1126s2 of the second member 1126 may face the inner surface of the first member or the member base portion.
  • the magnetic body seated on the first member and the magnetic body of the second member 1126 may face each other and have the same polarity. Accordingly, a repulsive force may be generated.
  • the mover since the second member 1126 presses the tilting guide part inward or the holder by the repulsive force, the mover may be spaced apart from the third housing side by a predetermined distance in the first housing even if there is no current injection into the coil. In other words, the coupling force between the mover and the housing and the tilting guide unit may be maintained.
  • the coupling force between the second member 1126 and the first housing 1120 may be improved, thereby improving the reliability of the camera actuator.
  • the second member 1126 and the first housing 1120 are separated, the easiness of assembling and manufacturing may be improved.
  • the second member 1126 may include the first through-hole 1126a and the second through-hole 1126b as described above.
  • the first through-hole 1126a and the second through-hole 1126b may be disposed side by side in the second direction (Y-axis direction) to overlap each other.
  • the second member 1126 is the upper member UA positioned above the first through-hole 1126a and the second through-hole 1126b, and the lower portion of the first through-hole 1126a and the second through-hole 1126b. It may include a lower member (BA) located in the. Accordingly, the first through-hole 1126a and the second through-hole 1126b may be located in the middle of the second member 1126 . That is, the second member 1126 may include the connecting member MA located on the side of the first through hole 1126a and the second through hole 1126b. That is, the upper member UA and the lower member BA may be connected to each other through the connecting member MA.
  • a plurality of lower members BA may be provided to form the first and second through-holes, and may be disposed to be spaced apart from each other in the second direction (Y-axis direction).
  • the second member 1126 may have the upper member UA, so that rigidity may be improved.
  • the rigidity of the second member 1126 may be increased.
  • the unit may be N/ ⁇ m. Accordingly, the reliability of the first camera actuator according to the fourth embodiment may be improved.
  • first coupling groove 1126k may be positioned on the outer surface 1126s2 of the second member 1126 .
  • the first coupling groove 1126k may be located at an edge of the outer surface 1126s2 of the second member 1126 .
  • the first coupling groove 1126k may be located at an end (eg, left and right side portions) on the outer surface 1126s2 of the second member 1126 to be adjacent to the first housing side portion 1121 .
  • the first coupling groove 1126k may be positioned to correspond to the second coupling grooves 1121m and 1122m of the first housing side portion 1121 and the second housing side portion 1122 .
  • the first coupling groove 1126k may be positioned to face the second coupling grooves 1121m and 1122m of the first housing side portion 1121 and the second housing side portion 1122 .
  • the second coupling grooves 1121m and 1122m may be adjacent to the outer surface 1126s2 of the above-described second member 1126 and may be located on the same side surface.
  • first coupling groove 1126k and the second coupling grooves 1121m and 1122m may be plural, and the plurality of first coupling grooves 1126k and the second coupling grooves 1121m and 1122m are in the first direction. Alternatively, it may be positioned symmetrically in the second direction.
  • a coupling member may be applied to the first coupling groove 1126k and the second coupling groove 1121m and 1122m. That is, the bonding member may be applied between the first housing side (or the second housing side) and the second member 1126 to improve the bonding force between the housing 1120 and the second member 1126 .
  • a bonding member may include an epoxy or the like, but is not limited to these materials.
  • the second member 1126 may further include a first protrusion and a second protrusion.
  • the first protrusion may contact the first housing side, and the second protrusion may contact the second housing side.
  • the first protrusion may extend in the third direction (Z-axis direction) from one end of the outer surface 1126s2 of the second member.
  • the second protrusion may extend in the third direction (Z-axis direction) from the other end of the outer surface 1126s2 of the second member. That is, the first protrusion and the second protrusion may extend toward the holder.
  • the position of the first protrusion may be maintained by the first stopper 1121b, and the position of the second protrusion may be maintained by the second stopper 1122b. Accordingly, reliability of the camera actuator according to the embodiment may be improved.
  • FIG. 44A is a perspective view of the holder of the first camera actuator according to the fourth embodiment
  • FIG. 44B is a bottom view of the holder of the first camera actuator according to the fourth embodiment
  • FIG. 44C is a first view of the first camera actuator according to the fourth embodiment It is a front view of the holder of the camera actuator
  • Fig. 44D is a rear view of the first member of the first camera actuator according to the fourth embodiment
  • Fig. 44E is a bottom view of the first member of the first camera actuator according to the fourth embodiment to be.
  • the holder 1131 may include a seating surface 1131k on which the optical member 1132 is mounted.
  • the seating surface 1131k may be an inclined surface.
  • the holder 1131 may include a chin on the seating surface 1131k, and in the holder 1131 , the chin may be coupled to a protrusion (not shown) of the optical member 1132 .
  • the holder 1131 may include a plurality of outer surfaces.
  • the holder 1131 may include a first holder outer surface 1131S1 , a second holder outer surface 1131S2 , a third holder outer surface 1131S3 , and a fourth holder outer surface 1131S4 .
  • the first holder outer surface 1131S1 may be positioned to face the second holder outer surface 1131S2 . That is, the first holder outer surface 1131S1 may be symmetrically disposed with respect to the second holder outer surface 1131S2 and the first direction (X-axis direction).
  • the first holder outer surface 1131S1 may be the first side surface.
  • the second holder outer surface 1131S2 to be described later may be the second side surface.
  • the first holder outer surface 1131S1 may be positioned to correspond to the side of the first housing. That is, the first holder outer surface 1131S1 may be positioned to face the side of the first housing.
  • the second holder outer surface 1131S2 may be positioned to correspond to the second housing side. That is, the second holder outer surface 1131S2 may be positioned to face the second housing side.
  • first holder outer surface 1131S1 may include a first seating groove 1131S1a.
  • second holder outer surface 1131S2 may include a second seating groove 1131S2a.
  • the first seating groove 1131S1a and the second seating groove 1131S2a may be symmetrically disposed with respect to the first direction (X-axis direction).
  • first seating groove 1131S1a and the second seating groove 1131S2a may be disposed to overlap in the second direction (Y-axis direction).
  • a first magnet 1151a may be disposed in the first seating groove 1131S1a
  • a dummy member DM may be disposed in the second seating groove 1131S2a.
  • the first magnet 1151a and the dummy member DM may also be disposed symmetrically with respect to the first direction (X-axis direction).
  • the first to second magnets may be coupled to the housing through a yoke or a bonding member.
  • the electromagnetic force induced by the first magnet of the first seating groove 1131S1a may be provided to the holder 1131 .
  • the first magnet of the first seating groove 1131S1a and the dummy member DM of the second seating groove 1131S2a may have the same weight. Accordingly, even if the holder 1131 is tilted along the X-axis by the electromagnetic force generated by the first magnet, tilting to one side due to an imbalance in weight can be prevented. Thereby, the X-axis tilting can be made accurately.
  • the third holder outer surface 1131S3 is in contact with the first holder outer surface 1131S1 and the second holder outer surface 1131S2, and from one side of the first holder outer surface 1131S1 and the second holder outer surface 1131S2 It may be an outer surface extending in two directions (Y-axis direction). Also, the third holder outer surface 1131S3 may be positioned between the first holder outer surface 1131S1 and the second holder outer surface 1131S2 . The third holder outer surface 1131S3 may be a bottom surface of the holder 1131 . That is, the third holder outer surface 1131S3 may be positioned to face the third housing side.
  • the third holder outer surface 1131S3 may include a third seating groove 1131S3a.
  • a second magnet 1151b may be disposed in the third seating groove 1131S3a.
  • the third holder outer surface 1131S3 may be positioned to face the third housing side portion 1123 .
  • the third housing hole 1123a may at least partially overlap the third seating groove 1131S3a in the first direction (X-axis direction). Accordingly, the second magnet 1151b in the third seating groove 1131S3a and the second coil 1152c in the third housing hole 1123a may be positioned to face each other. In addition, the second magnet 1151b and the second coil 1152c generate an electromagnetic force so that the first camera actuator can tilt the Y-axis.
  • the X-axis tilt may be performed by the first magnet, and the Y-axis tilt may be performed only by the second magnet.
  • the third seating groove 1131S3a may be the same as the first seating groove 1131S1a or the second seating groove 1131S2a.
  • the Y-axis tilt can be performed with the same current control as the X-axis tilt.
  • the fourth holder outer surface 1131S4 is in contact with the first holder outer surface 1131S1 and the second holder outer surface 1131S2, and in the first direction from the first holder outer surface 1131S1 and the second holder outer surface 1131S2 It may be an outer surface extending in the (X-axis direction). Also, the fourth holder outer surface 1131S4 may be positioned between the first holder outer surface 1131S1 and the second holder outer surface 1131S2 . That is, the fourth holder outer surface 1131S4 may be positioned to face the second member.
  • a first member may be disposed in the first area AR1 , and the first member 1131a may include a first groove gr1 .
  • the first member 1131a may include a first groove gr1 formed in the inner surface 1131aas.
  • a magnetic material may be disposed in the first groove gr1 as described above.
  • the second member may be disposed in the second area AR2 .
  • the first groove gr1 may be positioned to face the second groove gr2 .
  • the first groove gr1 may at least partially overlap the second groove gr2 in the third direction (Z-axis direction).
  • the repulsive force generated by the magnetic material disposed in the first and second grooves may be transmitted to the fourth seating grooves 1131S4a of the holder 1131 through the first member.
  • the holder may apply a force to the tilting guide unit in the same direction as the repulsive force generated by the magnetic body. This applied force may be combined with the preload of the elastic member to firmly maintain the coupling between the mover, the housing, and the tilting guide unit. Accordingly, the reliability of the camera module against external shocks and the like can be improved.
  • the second member may include a second groove gr2 facing the first groove gr1 formed on the outer surface.
  • the second member may include a second protrusion groove formed on the inner surface as described above.
  • the second protrusion may be seated in the second protrusion groove.
  • a tilting guide unit 1141 may be disposed in the third area AR3 .
  • the first protrusion groove PH1 may be located in the fourth seating groove 1131S4a.
  • the first protrusion of the tilting guide part 1141 may be accommodated in the first protrusion groove PH1 . Accordingly, the first protrusion PR1 may be in contact with the first protrusion groove.
  • a maximum diameter of the first protrusion groove PH1 may correspond to a maximum diameter of the first protrusion portion PR1 . This may be equally applied to the second protrusion groove and the second protrusion PR2 . That is, the maximum diameter of the second protrusion groove may correspond to the maximum diameter of the second protrusion portion PR2 . Accordingly, the second protrusion may be in contact with the second protrusion groove. With this configuration, the first axis tilt with respect to the first protrusion and the second axis tilt with respect to the second protrusion may easily occur, and the radius of tilt may be improved.
  • the number of the first protrusion grooves PH1 may be plural.
  • any one of the first protrusion groove PH1 and the second protrusion groove PH2 may include a 1-1 protrusion groove PH1a and a 1-2 protrusion groove PH1b.
  • the first protrusion groove PH1 includes a 1-1 protrusion groove PH1a and a 1-2 protrusion groove PH1b. And the following description may be equally applied to the second protrusion groove PH2.
  • the second protrusion groove PH2 includes the 2-1 protrusion groove and the 2-2 protrusion groove, and the description of the 1-1 protrusion groove is applied to the 2-1 protrusion groove, and the 2-2 protrusion groove is applied.
  • the description of the 1-2 protrusion groove may be applied.
  • the 1-1 protrusion groove PH1a and the 1-2 protrusion groove PH1b may be arranged side by side in the first direction (x-axis direction).
  • the 1-1 protrusion groove PH1a and the 1-2 protrusion groove PH1b may have the same maximum width.
  • the number of inclined surfaces of the plurality of first protrusion grooves PH1 may be different from each other.
  • the first protrusion groove PH1 may include a bottom surface of the groove and an inclined surface.
  • the number of inclined surfaces of the plurality of protrusion grooves may be different from each other.
  • the width of the bottom surface of the projection groove may be different. This can be equally applied to the above-described first and second protrusion grooves.
  • the 1-1 protrusion groove PH1a may include a first groove bottom surface LS1 and a first inclined surface CS1.
  • the 1-2 protrusion groove PH1b may include a second groove bottom surface LS2 and a second inclined surface CS2.
  • first groove bottom surface LS1 and the second groove bottom surface LS2 may have different widths.
  • An area of the first groove bottom surface LS1 may be smaller than an area of the second groove bottom surface LS2.
  • the number of the first inclined surfaces CS1 in contact with the first groove bottom surface LS1 may be different from the number of the second inclined surfaces CS2 .
  • the number of the first inclined surfaces CS1 may be greater than the number of the second inclined surfaces CS2 .
  • the assembly tolerance of the first protrusion seated in the first protrusion groove PH1 can be easily supplemented.
  • the first protrusions come into contact with the more inclined surfaces, so that the position of the first protrusions in the 1-1 protrusion groove PH1a is more accurately determined. can keep
  • the number of inclined surfaces in contact with the first protrusion is smaller than that of the 1-1 protrusion groove PH1b, so that the position of the first protrusion can be easily adjusted.
  • the second inclined surfaces CS2 may be spaced apart from each other in the second direction (Y-axis direction).
  • the second groove bottom surface LS2 extends in the first direction (X-axis direction) so that the first protrusion can easily move in the first direction (X-axis direction) while the first protrusion is in contact with the second inclined surface CS2 . That is, the position of the first protrusion may be easily adjusted in the 1-2 protrusion groove PH1b.
  • the first member 1131a may be seated on the fourth holder outer surface 1131S4.
  • the second coupling part PP2 may be positioned on an outer surface of the first member 1131a (eg, a surface opposite to the surface facing the first member).
  • the second coupling part PP2 may include a coupling base PP2a and a second coupling protrusion PP2b.
  • the second coupling part PP2 may be disposed to overlap with a first protrusion to be described later in a first direction (X-axis direction).
  • a plurality of second coupling protrusions PP2b may be disposed to be spaced apart from each other in the second direction (Y-axis direction). In this case, all of the bisectors between the plurality of second coupling protrusions PP2b may be located on the apex of the first protrusion and in the first direction (X-axis direction).
  • the first member 1131a may include a first groove gr1 .
  • the first groove gr1 may be positioned on the inner surface of the member base portion 1131aa.
  • the above-described magnetic material may be seated in the first groove gr1 .
  • the number of first grooves gr1 may be plural according to the number of magnetic materials. That is, the number of the first grooves gr1 may correspond to the number of magnetic materials.
  • the first member 1131a may include a member base portion 1131aa , a first extension portion 1131ab , and a second extension portion 1131ac .
  • the member base portion 1131aa may be located at the outermost side of the first camera actuator.
  • the member base portion 1131aa may be positioned outside the second member. That is, the second member may be positioned between the member base part 1131aa and the tilting guide part.
  • the first extension portion 1131ab may extend in the third direction (Z-axis direction) from the edge of the member base portion 1131aa. That is, the first extension portion 1131ab may extend from the member base portion 1131aa toward the holder 1131 . This may be the same for the second extension part 1131ac. Also, the second extension portion 1131ac may extend in the third direction (Z-axis direction) from the edge of the member base portion 1131aa. In an embodiment, the first extension portion 1131ab and the second extension portion 1131ac may be positioned at edges of the member base portion 1131aa in the second direction (Y-axis direction). In addition, the first extension portion 1131ab and the second extension portion 1131ac may be disposed between the upper member and the lower member.
  • the first member 1131a may have a groove formed by the first extension portion 1131ab and the second extension portion 1131ac. That is, a groove may be positioned between the first extension part 1131ab and the second extension part 1131ac. Accordingly, the first extension portion 1131ab and the second extension portion 1131ac may be connected to each other only by the member base portion 1131aa.
  • the rigidity of the first member 1131a may be greater than that of the second member.
  • the rigidity of the second member according to the embodiment may be increased by having the upper member and the lower member. With this configuration, a difference in stiffness between the first member and the second member may be reduced. Accordingly, when the first member 1131a and the holder 1131 coupled to the first member 1131a are tilted along the X-axis or the Y-axis, the first member 1131a has a small adjacent distance to the second member. and may be in contact with the second member. Accordingly, since the second member has improved rigidity as described above, it is possible to easily perform an operation as a stopper. That is, the reliability of the camera actuator may be improved.
  • the difference in stiffness between the second member and the first member is reduced, damage due to contact during tilting may be minimized. That is, the reliability of the camera actuator may be improved.
  • first extension portion 1131ab may be spaced apart from the second extension portion 1131ac in the second direction (Y-axis direction) to form a separation space.
  • the second member and the tilting guide unit may be seated in this spaced apart space.
  • first extension 1131ab and the second extension 1131ac may have the same length in the third direction (Z-axis direction). Accordingly, since the coupling force and weight are balanced, the tilt of the holder can be accurately performed without inclining to one side.
  • first extension portion 1131ab and the second extension portion 1131ac may be coupled to the holder.
  • the coupling may be coupled to each other through a bonding member other than the above-described protrusion and groove structures.
  • the first extension portion 1131ab and the second extension portion 1131ac may include a third coupling groove 1131k formed in a third direction (Z-axis direction).
  • a coupling protrusion 1131m may be positioned in a region overlapping the first extension portion 1131ab and the second extension portion 1131ac in the third direction (Z-axis direction) in the fourth seating groove 1131S4a.
  • the coupling protrusion 1131m may be positioned to correspond to the third coupling groove 1131k.
  • a bonding member such as epoxy may be applied to the third coupling groove 1131k.
  • the coupling protrusion 1131m may be inserted into the third coupling groove 1131k of the first extension 1131ab and the second extension 1131ac.
  • the first member 1131a and the holder 1131 may be coupled to each other.
  • the repulsive force applied to the first member 1131a may be transmitted to the holder 1130 through this coupling.
  • the positions of the protrusion and the groove structure may be changed as described above.
  • the holder 1131 or the first member 1131a coupled to the holder 1131 of the mover 1130 may be disposed on the outer side or spring at the fourth holder outer surface 1131S4 or on the outer surface of the first member. It may include a mover protrusion 1131p protruding toward the.
  • the mover protrusion 1131ap may be formed of a plurality of protrusions.
  • the mover protrusion 1131p may include a first protrusion 1131ap1 , a second protrusion 1131ap2 , and a third protrusion 1131ap3 , and the above description may be applied to the present embodiment.
  • FIG. 45A is a plan view of the elastic member according to the embodiment
  • FIG. 45B is a side view of the elastic member according to the embodiment
  • FIG. 45C is a top view of the elastic member according to the embodiment
  • FIG. 45D is a fourth embodiment 1 is a view for explaining the coupling between the second member, the first member, and the elastic member in the camera actuator
  • FIG. 45E is a view in which the second member and the first member are removed in FIG. 45D .
  • the elastic member EE may include a first junction part EP1 , a second junction part EP2 , and a connection part CP.
  • the first bonding portion EP1 may be connected to the first housing 1120 , and the first bonding portion EP1 and the first housing 1120 may be coupled to each other. That is, the first bonding portion EP1 may be coupled to the fixing member. Alternatively, the first bonding portion EP1 may be coupled to the housing 1120 or the second member 1126 . Hereinafter, as shown in the drawings, the first bonding portion EP1 may be coupled to the second member 1126 . Through this, the first bonding portion EP1 may be coupled to the above-described housing 1120 .
  • the second bonding portion EP2 may be connected to the first member 1131a, so that the second bonding portion EP2 and the first member 1131a may be coupled to each other.
  • connection part CP may be disposed between the first junction part EP1 and the second junction part EP2 . That is, the connection part CP may have one end connected to the first junction part EP1 and the other end connected to the second junction part EP2 .
  • the first junction portion EP1 may include a first flat region EP1f and a plurality of first junction holes EP1h positioned in the first flat region EP1f.
  • the first flat area EP1f may have a rectangular shape. Accordingly, the first flat region EP1f may have a closed loop shape. In addition, the first flat region EP1f may be positioned along an edge of the second member 1126 . Accordingly, the bonding force of the first bonding portion EP1 with the second member 1126 may be improved, and the reliability of the device may be improved by supporting and coupling by the second member 1126 when generating a preload, which will be described later.
  • the first bonding hole EP1h may be plural, and may be in the form of a hole or a groove. In addition, the first bonding hole EP1h may be coupled to a protrusion formed on the second member 1126 .
  • first junction hole EP1h may be disposed on the first bisector LX1 or the second bisector LX2, or may be disposed symmetrically with respect to the first bisector LX1 or the second bisector LX2. . Accordingly, since the coupling force by the elastic member EE is not concentrated on one side, the X-axis tilt or the Y-axis tilt can be accurately performed.
  • first bisector LX1 may be a line that bisects the first junction part EP1 in the first direction (X-axis direction).
  • first bisector LX1 may be a line that bisects the second junction part EP2 in the first direction (X-axis direction).
  • second bisector LX2 may be a line that bisects the first junction part EP1 in the second direction (Y-axis direction).
  • second bisector LX2 may be a line that bisects the second junction portion EP2 in the second direction (Y-axis direction).
  • intersection CK may be a point where the first bisector LX1 and the second bisector LX2 intersect. Hereinafter, it will be described based on this.
  • the second bonding portion EP2 may be located inside the first bonding portion EP1 . Specifically, the second bonding portion EP2 may be surrounded by the first bonding portion EP1 .
  • the inner side corresponds to a direction from the first bonding portion EP toward the second bonding portion EP2 , and corresponds to a direction from the first bonding portion toward the second bonding portion.
  • the second bonding portion EP2 may be disposed between the mover 1130 and the first bonding portion EP1 .
  • the second bonding portion EP2 may be disposed between the first member 1131a and the first bonding portion EP1 . That is, the second bonding portion EP2 may be disposed to be spaced apart from the first bonding portion EP1 in the third direction (Z-axis direction).
  • connection part CP may extend from the first member 1131a toward the second member 1126 or from the second member 1126 toward the first member 1131a. That is, the connection part CP may extend in the third direction (Z-axis direction).
  • the connection part CP may be disposed between the first junction part EP1 and the second junction part EP2 to connect the first junction part EP1 and the second junction part EP2 to each other. Accordingly, since the elastic restoring force generated by the elastic member EE is a fixing member in which the first junction part EP1 is fixed to the housing (the housing is fixed), the second junction part EP2 to be formed toward the first junction part EP1.
  • the first member 1131a connected to the second junction part EP2 and the mover 1130 coupled to the first member 1131a also generate a force from the second junction part EP2 toward the first junction part EP1.
  • the above-described force may also be applied between the mover 1130 and the tilting guide unit 1141 .
  • the tilting guide 1141 presses the second member 1126 the tilting guide 1141 moves the mover 1130 and the second member ( 1126) (or housing).
  • the elastic member EE may have the above-described preload due to the separation distance dd1 in the third direction (Z-axis direction) between the first junction part EP1 and the second junction part EP2 .
  • the second bonding portion EP2 of the elastic member EE may not be disposed on a surface in contact with one surface of the first bonding portion EP1 of the elastic member EE and the second member 1126 serving as the fixing member.
  • the first junction part EP1 and the second junction part EP2 may be positioned on different planes XY and may be spaced apart from each other in a third direction (Z-axis direction). Accordingly, the second bonding portion EP2 may be located closer to the reflective member than the first bonding portion EP1 .
  • the position of the tilting guide part 1141 may be easily maintained.
  • a magnetic material or the like is not used, a malfunction due to magnetic force in another camera actuator (eg, the second camera actuator) adjacent to the first camera actuator may be prevented.
  • the first camera actuator according to the fourth embodiment uses an elastic member having a light weight and a thin thickness without using a magnetic material, miniaturization can be easily achieved.
  • a repulsive force between the magnetic materials may be generated by disposing magnetic materials having the same polarity in the above-described first and second grooves.
  • the generated repulsive force may be transmitted to the fourth seating groove of the holder through the first member.
  • the holder may apply a force to the tilting guide in the same direction as the generated repulsive force. Accordingly, the elastic member can be easily restored by the repulsive force by the magnetic body. That is, the reliability of the elastic member may be improved. Furthermore, the position of the tilting guide part 1141 is more easily maintained by the generated repulsive force, so that the X-axis tilt or the Y-axis tilt can be accurately performed.
  • the second bonding portion EP2 may include the second flat area EP2f and a plurality of second bonding holes EP2h positioned in the second flat area EP2f.
  • the second flat area EP2f may have a circular shape and may be in contact with the first member 1131a.
  • the second bonding hole EP2h may be coupled to the second coupling portion PP2.
  • the plurality of first bonding holes EP1h may be spaced apart from each other in the first direction (X-axis direction) or the second direction (Y-axis direction).
  • the second junction holes EP2h may be spaced apart from each other in the second direction (Y-axis direction).
  • the second junction hole EP2h may be positioned between the adjacent first junction holes EP1h.
  • the second junction hole EP2h and the first junction hole EP1h may be disposed on the first bisector LX1 .
  • the first junction hole EP1h may be disposed on the second bisector LX2 . Accordingly, the force pressed by the elastic member EE in the first camera actuator according to the fourth embodiment may be uniformly provided to the mover.
  • the X-axis tilt may be performed. That is, since the position of the mover is restored to the initial position by the elastic member EE after driving, the X-axis tilt can be easily performed only with the current applied to the first coil. Accordingly, the camera module according to the embodiment may improve energy efficiency and may be easily driven.
  • connection part CP includes a first connection part CP1, a second connection part CP2, a third connection part CP3 and a fourth connection part located between the first junction part EP1 and the second junction part EP2.
  • CP4 may be included. The following descriptions may be applied to the first to fourth connecting units CP to CP4.
  • the first connection part CP1, the second connection part CP2, the third connection part CP3, and the fourth connection part CP4 are a first quadrant region divided by the first bisector LX1 and the second bisector LX2. S1) to the fourth quadrant region S4 may be respectively disposed.
  • the first connection part CP1 , the second connection part CP2 , the third connection part CP3 , and the fourth connection part CP4 move from the first junction part EP1 to the second junction part EP2 in a clockwise or counterclockwise direction. They may be arranged sequentially. Hereinafter, it will be described with reference to the counterclockwise direction.
  • the first connection part CP1 , the second connection part CP2 , the third connection part CP3 , and the fourth connection part CP4 are a first quadrant divided by the first bisector LX1 and the second bisector LX2 . It may be located in each of the region S1 , the second quadrant S2 , the third quadrant S3 , and the fourth quadrant S4 .
  • the first quadrant S1 to the fourth quadrant S4 are positioned in a counterclockwise direction.
  • first connection part CP1 , the second connection part CP2 , the third connection part CP3 , and the fourth connection part CP4 are bent between the first junction part EP1 and the second junction part EP2 , respectively.
  • first connection part CP1 , the second connection part CP2 , the third connection part CP3 , and the fourth connection part CP4 may have the same shape in a counterclockwise direction.
  • first connection part CP1 and the third connection part CP3 may be symmetrical to each other with respect to the first bisector LX1 and the second bisector LX2 .
  • second connection part CP2 and the fourth connection part CP4 may be symmetrical with respect to the first bisector LX1 and the second bisector LX2.
  • connection part CP1 to the fourth connection part CP4 are symmetric with respect to only one of the first bisector LX1 and the second bisector LX2, the restoring force for the X/Y axis tilt is in one direction. may be unbalanced.
  • this imbalance may be resolved.
  • the first junction part EP1 may include a first junction point P1 to a fourth junction point P4 contacting the connection part CP.
  • the second junction part EP2 may include a fifth junction point P5 to an eighth junction point P5 in contact with the connection part CP.
  • the first connection part CP1 may contact the first junction point P1 of the first junction part EP1 and may contact the fifth junction point P5 of the second junction part EP2 .
  • the second connection part CP2 may contact the second junction point P2 of the first junction part EP1 and may contact the sixth junction point P6 of the second junction part EP2 .
  • the third connection part CP3 may contact the third junction point P3 of the first junction part EP1 and may contact the seventh junction point P7 of the second junction part EP2 .
  • the fourth connection part CP4 may contact the fourth junction point P1 of the first junction part EP1 and may contact the eighth junction point P8 of the second junction part EP2 .
  • first junction point P1, the fifth junction point P5, the third junction point P3, and the seventh junction point P7 may be disposed on the first diagonal line DL1 passing through the intersection point CK.
  • second junction point P2 , the sixth junction point P6 , the fourth junction point P4 , and the eighth junction point P8 may be disposed on the second diagonal line DL2 passing through the intersection point CK.
  • first connection part CP1 extends inward from the first junction point P1 , is bent downward of the first imaginary line DL1 , and then extends inward to protrude below the first imaginary line DL1 .
  • first connection part CP1 may have a protruding structure by extending and bending over the first virtual line DL1 .
  • first connection part CP1 may have a protruding structure by extending and bending below the first imaginary line DL1 , and then contact the fifth junction point P5 of the second junction part EP2 .
  • the second connection part CP2 may have a structure extending inward from the second junction point P2 , bent over the second diagonal line DL2 , and then extending inward to protrude below the second imaginary line DL2 . .
  • the second connection part CP2 extends and bends below the second imaginary line DL2 to have a protruding structure, and then extends and bends to the upper portion of the second imaginary line DL2 to form a protruding structure. It may contact the sixth junction point P6 of the second junction part EP2 .
  • the third connection part CP3 may have a structure extending inward from the third junction point P3 , bent over the first diagonal line DL1 , and then extending inward to protrude below the first imaginary line DL1 . .
  • the third connection part CP3 extends and bends below the first imaginary line DL1 to have a protruding structure, and then extends and bends to the upper portion of the first imaginary line DL1 to form a protruding structure. It may contact the seventh junction point P7 of the second junction part EP2 .
  • the fourth connection part CP4 extends inward from the fourth junction point P4 , is bent downward of the second imaginary line DL2 , and then extends inward to form a structure protruding below the second imaginary line DL2 .
  • the fourth connection part CP4 may have a protruding structure by extending and bending over the second virtual line DL2 .
  • the fourth connection part CP4 may have a protruding structure by extending and bending below the second imaginary line DL2 , and then contact the eighth bonding point P8 of the second bonding part EP2 .
  • the second junction EP2 may overlap the first protrusion PR1 in the second axis or in the first direction.
  • the vertex of the first protrusion PR1 may be disposed on an intermediate axis (corresponding to the above-described second virtual line LX2 ) that bisects the plurality of second bonding holes EP2h.
  • an apex of the second protrusion PR2 may be positioned on the first bisector LX1 . That is, the apex of the second protrusion PR2 may be disposed on the first bisector LX1 that bisects the first junction hole EP1h. Accordingly, the force applied by the elastic member EE in the camera actuator according to the embodiment may be uniformly provided to the upper or lower portions of the mover.
  • the mover protrusion 1131ap may at least partially overlap the connection part CP in the first direction.
  • the damper member DP may be disposed between the mover protrusion 1131ap and the connection part CP. Accordingly, the damper member DP may be coupled to the mover protrusion 1131ap and the connecting part CP. With this configuration, the damper member DP may suppress vibration at a settling time when the shaft rotates of the mover. In addition, the damper member DP may suppress damage to the spring due to the resonance frequency. Accordingly, the reliability of the first camera actuator according to the embodiment may be improved.
  • 46 is a view of a first camera actuator according to the fifth embodiment.
  • the first camera actuator 1100F includes a first housing 1120 , a mover 1130 , a rotating unit 1140 , a first driving unit 1150 , an elastic member (EE), It includes a second member 1126 , a first member 1131a , and damper members DP1 and DP2 . Furthermore, the above contents may be applied in the same manner except for the contents described below.
  • the first member 1131a may include a member protrusion 1131ap disposed adjacent to the connection part CP.
  • the member protrusion 1131ap may at least partially overlap the connection part CP in the optical axis direction or the third direction (Z-axis direction). Alternatively, the member protrusion 1131ap may be disposed adjacent to the connection part CP even if it does not overlap the connection part CP in the optical axis direction.
  • the connecting portion CP may be curved to correspond to the outer surface of the member protrusion 1131ap. That is, the connecting portion CP and the member protrusion 1131ap may have opposite surfaces or lines corresponding to each other. In addition, the above-described facing surfaces or lines may be curved with each other. Accordingly, the damper member DP1 may be easily coupled to the first member 1131a and the elastic member EE. Furthermore, in the member protrusion 1131ap, a phenomenon in which the damper member DP1 is coupled to members other than the first member 1131a and the elastic member EE may be suppressed.
  • the member protrusion 1131ap may have a region protruding to one side. Accordingly, the first member protrusion 1131ap and the first member 1131a may be easily coupled by the damper member DP1.
  • the upper surface of the first member 1131a may have a smaller width or length in the first direction (X-axis direction) than the lower surface.
  • the width or length in the first direction (X-axis direction) of the upper surface of the first member 1131a may be smaller than the width or length in the first direction (X-axis direction) of the lower surface.
  • the upper surface of the first member 1131a may have a smaller area than the lower surface.
  • the height or length of the second coupling portion in the third direction may be smaller than the width or length of the member protrusion 1131ap in the third direction. Accordingly, as described above, the preload of the elastic member EE is easily formed, and the coupling between the member protrusion 1131ap and the damper member DP1 may also be made.
  • the damper member DP1 may be disposed in an upper region with respect to the second bonding portion EP2 .
  • the member protrusion 1131ap may be disposed in the upper region with respect to the second bonding portion EP2 .
  • the damper member DP1 may be coupled to the member protrusion 1131ap and the connection part CP in the first direction side region with respect to the second junction part EP2 .
  • the damper member DP1 may suppress vibration at a settling time when the shaft rotates of the mover.
  • the damper member DP1 can suppress the damage of the spring due to the resonance frequency. Accordingly, the reliability of the first camera actuator according to the embodiment may be improved.
  • the member protrusion 1131ap may be positioned between the first junction part and the second junction part.
  • the member protrusions 1131ap may at least partially overlap in the second direction (Y-axis direction).
  • the member protrusion 1131ap since the first connection part and the second connection part are not symmetrical with respect to the first direction, the member protrusion 1131ap may not be symmetrically disposed with respect to the first direction.
  • the second member 1126 may include a housing protrusion 1126p disposed adjacent to the connection part CP.
  • the housing protrusion 1126p may be disposed adjacent to the connection part CP.
  • the housing protrusion 1126p may at least partially overlap the connection part CP in the first direction (X-axis direction).
  • connection part CP may correspond to the outer surface of the housing protrusion 1126p.
  • the connecting portion CP and the housing protrusion 1126p may have opposite surfaces or lines corresponding to each other.
  • the above-described facing surfaces or lines may be curved with each other. Accordingly, the damper member DP2 may be easily coupled to the second member 1126 and the elastic member EE. Furthermore, a phenomenon in which the damper member DP2 is coupled to members other than the second member 1126 and the elastic member EE may be suppressed. Accordingly, due to the aforementioned curved surface or line, the housing protrusion 1126p may have an area 1126pp protruding to one side.
  • the damper member DP2 can further suppress vibration at a settling time when the shaft rotates of the mover.
  • the damper member DP2 can more effectively suppress the breakage of the spring due to the resonance frequency. Accordingly, the reliability of the first camera actuator according to the embodiment may be improved.
  • the housing protrusion 1126p may at least partially overlap the connection part CP in the optical axis direction or the third direction (Z axis direction). Accordingly, coupling force between the housing protrusion 1126p and the connection part CP by the damper member DP2 may be further improved. Furthermore, the escape of the connection part CP may be suppressed by the housing protrusion 1126p.
  • the housing protrusion 1126p may be spaced apart from each other in a region intersecting the third direction without overlapping with the connecting portion CP in the third direction.
  • FIG. 47 is a view of a first camera actuator according to the sixth embodiment.
  • the first camera actuator 1100D includes a first housing 1120 , a mover 1130 , a rotation unit 1140 , a first driving unit 1150 , an elastic member EE, It includes a second member 1126 , a first member 1131a , and a damper member DP1 . Furthermore, the above contents may be applied in the same manner except for the contents described below.
  • the first member 1131a may include a member protrusion 1131ap disposed adjacent to the connection part CP.
  • the above description for this may be applied.
  • the above-described housing protrusion and the damper member may not be coupled to the elastic member EE.
  • the member protrusion 1131ap may be disposed in the upper region with respect to the second bonding portion EP2 as described above.
  • the damper member DP1 may be disposed in an upper region with respect to the second bonding portion EP2 .
  • a plurality of member protrusions 1131ap may be disposed in a lower region with respect to the second bonding portion EP2 .
  • the member protrusion 1131ap may be disposed adjacent to each of the first connecting portion to the fourth connecting portion.
  • each of the plurality of member protrusions 1131ap may be coupled to the first to fourth connecting portions through the damper member DP1.
  • FIG. 48 is a diagram of a first camera actuator according to the seventh embodiment.
  • the first camera actuator 1100F includes a first housing 1120 , a mover 1130 , a rotating unit 1140 , a first driving unit 1150 , an elastic member (EE), It includes a second member 1126 , a first member 1131a , and a damper member DP2 . Furthermore, the above contents may be applied in the same manner except for the contents described below.
  • the first member 1131a may not be coupled to the elastic member through the member protrusion 1131ap and the damper member disposed adjacent to the connection part CP.
  • the second member 1126 may include a housing protrusion 1126p protruding outward or along the third direction (Z-axis direction).
  • the housing protrusion 1126p may be coupled to the elastic member (connection part) through the damper member DP2. The above description for this may be applied.
  • the housing protrusion 1126p may be disposed in the lower region with respect to the second bonding portion EP2 .
  • the damper member DP1 may be disposed in a lower region with respect to the second bonding portion EP2 .
  • 49 is a view of a first camera actuator according to an eighth embodiment.
  • the first camera actuator 1100G includes a first housing 1120 , a mover 1130 , a rotation unit 1140 , a first driving unit 1150 , an elastic member EE, It includes a second member 1126 , a first member 1131a , and a damper member DP. Furthermore, the above contents may be applied in the same manner except for the contents described below.
  • the holder 1131 or the first member 1131a coupled to the holder 1131 of the mover 1130 may be disposed on the outer side or spring at the fourth holder outer surface 1131S4 or on the outer surface of the first member. It may include a mover protrusion 1131p protruding toward the.
  • the mover protrusion 1131ap may be formed of a plurality of protrusions.
  • the mover protrusion 1131p may include a first protrusion 1131ap1 , a second protrusion 1131ap2 , and a third protrusion 1131ap3 , and the above description may be applied to the present embodiment.
  • the mover protrusion 1131ap may at least partially overlap the connection part CP in the first direction.
  • the damper member DP may be disposed between the mover protrusion 1131ap and the connection part CP. Accordingly, the damper member DP may be coupled to the mover protrusion 1131ap and the connecting part CP. With this configuration, the damper member DP may suppress vibration at a settling time when the shaft rotates of the mover. In addition, the damper member DP may suppress damage to the spring due to the resonance frequency. Accordingly, the reliability of the first camera actuator according to the embodiment may be improved.
  • the first member 1131a may include a member protrusion 1131ap disposed adjacent to the connection part CP.
  • the above description for this may be applied.
  • the above-described housing protrusion and the damper member may not be coupled to the elastic member EE.
  • the member protrusion 1131ap may be disposed in the upper region with respect to the second bonding portion EP2 as described above.
  • the damper member DP1 may be disposed in an upper region with respect to the second bonding portion EP2 .
  • a plurality of member protrusions 1131ap may be disposed in a lower region with respect to the second bonding portion EP2 .
  • the member protrusion 1131ap may be disposed adjacent to each of the first connecting portion to the fourth connecting portion.
  • each of the plurality of member protrusions 1131ap may be coupled to the first to fourth connecting portions through the damper member DP1.
  • the second member 1126 may include the housing protrusion 1126p protruding outward or in the third direction (Z-axis direction).
  • the housing protrusion 1126p may be coupled to the elastic member (connection part) through the damper member DP2. The above description for this may be applied.
  • FIG. 50 is a perspective view of the second camera actuator according to the embodiment
  • FIG. 51 is an exploded perspective view of the second camera actuator according to the embodiment
  • FIG. 52 is a cross-sectional view taken along DD′ in FIG. 50
  • FIG. 53 is FIG. It is a cross-sectional view viewed from EE'.
  • the second camera actuator 1200 includes a lens unit 1220 , a second housing 1230 , a second driving unit 1250 , a base unit (not shown), and a second camera actuator 1200 .
  • Two substrate units 1270 may be included.
  • the second camera actuator 1200 may further include a second shield can (not shown), an elastic part (not shown), and a bonding member (not shown).
  • the second camera actuator 1200 according to the embodiment may further include an image sensor IS.
  • the second shield can (not shown) is located in one region (eg, the outermost) of the second camera actuator 1200 and includes components (the lens unit 1220 , the second housing 1230 , and the elastic unit to be described later). (not shown), the second driving unit 1250, the base unit (not shown), the second substrate unit 1270, and the image sensor IS).
  • the second shield can (not shown) may block or reduce electromagnetic waves generated from the outside. Accordingly, the occurrence of a malfunction in the second driving unit 1250 may be reduced.
  • the lens unit 1220 may be located in the second shield can (not shown).
  • the lens unit 1220 may move in a third direction (Z-axis direction). Accordingly, the above-described AF function may be performed.
  • the lens unit 1220 may include a lens assembly 1221 and a bobbin 1222 .
  • the lens assembly 1221 may include at least one lens. Also, there may be a plurality of lens assemblies 1221 , but hereinafter, one lens assembly will be used as a reference.
  • the lens assembly 1221 is coupled to the bobbin 1222 to move in the third direction (Z-axis direction) by electromagnetic force generated from the fourth magnet 1252a and the second magnet 1252b coupled to the bobbin 1222 . .
  • the bobbin 1222 may include an opening area surrounding the lens assembly 1221 .
  • the bobbin 1222 may be coupled to the lens assembly 1221 by various methods.
  • the bobbin 1222 may include a groove in the side thereof, and may be coupled to the fourth magnet 1252a and the second magnet 1252b through the groove. A bonding member or the like may be applied to the groove.
  • the bobbin 1222 may be coupled to an elastic part (not shown) at the upper end and the rear end. Accordingly, the bobbin 1222 may be supported by an elastic part (not shown) to move in the third direction (Z-axis direction). That is, the position of the bobbin 1222 may be maintained while being maintained in the third direction (Z-axis direction).
  • the elastic part (not shown) may be formed of a leaf spring.
  • the second housing 1230 may be disposed between the lens unit 1220 and the second shield can (not shown). In addition, the second housing 1230 may be disposed to surround the lens unit 1220 .
  • a hole may be formed in a side of the second housing 1230 .
  • a fourth coil 1251a and a fifth coil 1251b may be disposed in the hole.
  • the hole may be positioned to correspond to the groove of the bobbin 1222 described above.
  • the fourth magnet 1252a may be positioned to face the fourth coil 1251a. Also, the second magnet 1252b may be positioned to face the fifth coil 1251b.
  • the elastic part (not shown) may include a first elastic member (not shown) and a second elastic member (not shown).
  • the first elastic member (not shown) may be coupled to the upper surface of the bobbin 1222 .
  • the second elastic member (not shown) may be coupled to the lower surface of the bobbin 1222 .
  • the first elastic member (not shown) and the second elastic member (not shown) may be formed of a leaf spring as described above.
  • the first elastic member (not shown) and the second elastic member (not shown) may provide elasticity with respect to the movement of the bobbin 1222 .
  • the second driving unit 1250 may provide driving forces F3 and F4 for moving the lens unit 1220 in the third direction (Z-axis direction).
  • the second driving unit 1250 may include a second driving coil 1251 and a second driving magnet 1252 .
  • the lens unit 1220 may move in the third direction (Z-axis direction) by the electromagnetic force formed between the second driving coil 1251 and the second driving magnet 1252 .
  • the second driving coil 1251 may include a fourth coil 1251a and a fifth coil 1251b.
  • the fourth coil 1251a and the fifth coil 1251b may be disposed in a hole formed in the side of the second housing 1230 .
  • the fourth coil 1251a and the fifth coil 1251b may be electrically connected to the second substrate unit 1270 . Accordingly, the fourth coil 1251a and the fifth coil 1251b may receive current or the like through the second substrate unit 1270 .
  • the second driving magnet 1252 may include a fourth magnet 1252a and a fifth magnet 1252b.
  • the fourth magnet 1252a and the fifth magnet 1252b may be disposed in the aforementioned groove of the bobbin 1222 and may be positioned to correspond to the fourth coil 1251a and the fifth coil 1251b.
  • the base unit (not shown) may be positioned between the lens unit 1220 and the image sensor IS.
  • a component such as a filter may be fixed to the base portion (not shown).
  • the base part (not shown) may be disposed to surround the image sensor IS.
  • the second camera actuator may be a zoom actuator or an auto focus (AF) actuator.
  • the second camera actuator may support one or a plurality of lenses and may perform an autofocusing function or a zooming function by moving the lenses according to a control signal of a predetermined control unit.
  • the second camera actuator may be a fixed zoom or a continuous zoom.
  • the second camera actuator may provide movement of the lens assembly 1221 .
  • the second camera actuator may be formed of a plurality of lens assemblies.
  • the second camera actuator may include at least one of a first lens assembly (not shown), a second lens assembly (not shown), a third lens assembly (not shown), and a guide pin (not shown). can be placed.
  • the second camera actuator may perform a high-magnification zooming function through the driving unit.
  • the first lens assembly (not shown) and the second lens assembly (not shown) may be a moving lens that moves through a driving unit and a guide pin (not shown), and the third lens The assembly (not shown) may be a fixed lens, but is not limited thereto.
  • a third lens assembly may perform a function of a concentrator to image light at a specific location, and a first lens assembly (not shown) may function as a concentrator. (not shown) may perform a variator function to reimage the image formed in another place.
  • the distance to the subject or the image distance changes a lot, so the magnification change may be large. can play an important role in
  • the image formed by the first lens assembly (not shown), which is a variable changer may be slightly different depending on the location.
  • the second lens assembly may perform a position compensation function for the image formed by the variable changer.
  • the second lens assembly functions as a compensator to accurately image the image formed by the first lens assembly (not shown), which is a variable changer, at the actual image sensor position. can be done
  • the image sensor IS may be located inside or outside the second camera actuator. In an embodiment, as shown, the image sensor IS may be located inside the second camera actuator.
  • the image sensor IS may receive light and convert the received light into an electrical signal.
  • the image sensor IS may have a plurality of pixels in the form of an array. And the image sensor IS may be located on the optical axis.
  • FIG. 54 is a perspective view of a mobile terminal to which a camera module according to an embodiment is applied.
  • the mobile terminal 1500 may include a camera module 1000 , a flash module 1530 , and an autofocus device 1510 provided on the rear side.
  • the camera module 1000 may include an image capturing function and an auto focus function.
  • the camera module 1000 may include an auto-focus function using an image.
  • the camera module 1000 processes an image frame of a still image or a moving image obtained by an image sensor in a shooting mode or a video call mode.
  • the processed image frame may be displayed on a predetermined display unit and stored in a memory.
  • a camera (not shown) may also be disposed on the front of the mobile terminal body.
  • the camera module 1000 may include a first camera module 1000A and a second camera module 1000B, and OIS may be implemented together with an AF or zoom function by the first camera module 1000A.
  • OIS may be implemented together with an AF or zoom function by the first camera module 1000A.
  • AF, zoom, and OIS functions may be performed by the second camera module 1000b.
  • the first camera module 1000A includes both the above-described first camera actuator and the second camera actuator, it is possible to easily reduce the size of the camera device or the camera module by changing the optical path.
  • the first magnet is disposed on the first side surface (corresponding to the first holder outer surface) of the first camera actuator 1100 and the second side surface (described above)
  • a dummy member instead of the second magnet
  • the first camera module 1000A may be disposed adjacent to the second side compared to the first side.
  • the second camera module 1000B has a first side adjacent to the first camera module and a second side opposite to the first side, and the optical member moves between the inner optical member and the second side. It may include a driving unit (corresponding to a magnet/coil, etc.). That is, the second camera module 1000B may include a dummy member between the optical member and the first side surface.
  • the second camera module 1000B may perform an actuator function using a magnetic material (eg, a magnet) while minimizing the influence of the magnetic force generated by the first camera module.
  • a magnetic material eg, a magnet
  • the dummy member is also disposed adjacent to the second camera module 1000B in the first camera module 1000A, the magnetic force generated from the second camera module 1000B is applied to the actuator of the first camera module 1000A. As a result, the effect on the function can be minimized.
  • the flash module 1530 may include a light emitting device that emits light therein.
  • the flash module 1530 may be operated by a camera operation of a mobile terminal or a user's control.
  • the autofocus device 1510 may include one of the packages of the surface light emitting laser device as a light emitting part.
  • the auto-focusing device 1510 may include an auto-focusing function using a laser.
  • the auto focus device 1510 may be mainly used in a condition in which the auto focus function using the image of the camera module 1000 is deteriorated, for example, close to 10 m or less or in a dark environment.
  • the autofocus device 1510 may include a light emitting unit including a vertical cavity surface emitting laser (VCSEL) semiconductor device and a light receiving unit that converts light energy such as a photodiode into electrical energy.
  • a light emitting unit including a vertical cavity surface emitting laser (VCSEL) semiconductor device and a light receiving unit that converts light energy such as a photodiode into electrical energy.
  • VCSEL vertical cavity surface emitting laser
  • 55 is a perspective view of a vehicle to which a camera module according to an embodiment is applied.
  • FIG. 55 is an external view of a vehicle including a vehicle driving assistance device to which the camera module 1000 according to an embodiment is applied.
  • the vehicle 700 may include wheels 13FL and 13FR that rotate by a power source and a predetermined sensor.
  • the sensor may be the camera sensor 2000, but is not limited thereto.
  • the camera 2000 may be a camera sensor to which the camera module 1000 according to the embodiment is applied.
  • the vehicle 700 of the embodiment may acquire image information through a camera sensor 2000 that captures a front image or a surrounding image, and determines a lane unidentified situation using the image information and generates a virtual lane when unidentified can do.
  • the camera sensor 2000 may acquire a front image by photographing the front of the vehicle 700 , and a processor (not shown) may obtain image information by analyzing an object included in the front image.
  • the processor detects these objects thus, it can be included in the image information.
  • the processor may further supplement the image information by acquiring distance information from the object detected through the camera sensor 2000 .
  • the image information may be information about an object photographed in an image.
  • the camera sensor 2000 may include an image sensor and an image processing module.
  • the camera sensor 2000 may process a still image or a moving image obtained by an image sensor (eg, CMOS or CCD).
  • an image sensor eg, CMOS or CCD
  • the image processing module may process a still image or a moving image obtained through the image sensor, extract necessary information, and transmit the extracted information to the processor.
  • the camera sensor 2000 may include, but is not limited to, a stereo camera to improve the measurement accuracy of the object and further secure information such as the distance between the vehicle 700 and the object.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combustion & Propulsion (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Cameras In General (AREA)
  • Structure And Mechanism Of Cameras (AREA)

Abstract

본 발명의 실시예는 하우징; 상기 하우징 내에 배치되는 무버; 상기 하우징과 상기 무버 사이에 배치되는 틸팅 가이드부; 및 상기 하우징 내에 배치되며 상기 무버를 구동시키는 구동부; 상기 틸팅 가이드부와 상기 무버를 밀착시키는 탄성부재; 및 상기 무버 및 상기 하우징 중 적어도 하나와 상기 탄성부재 사이에 배치되는 댐퍼부재;를 포함하는 카메라 엑추에이터를 개시한다.

Description

카메라 엑추에이터 및 이를 포함하는 카메라 모듈
본 발명은 카메라 엑추에이터 및 이를 포함하는 카메라 모듈에 관한 것이다.
카메라는 피사체를 사진이나 동영상으로 촬영하는 장치이며, 휴대용 디바이스, 드론, 차량 등에 장착되고 있다. 카메라 모듈은 영상의 품질을 높이기 위하여 사용자의 움직임에 의한 이미지의 흔들림을 보정하거나 방지하는 영상 안정화(Image Stabilization, IS) 기능, 이미지 센서와 렌즈 사이의 간격을 자동 조절하여 렌즈의 초점거리를 정렬하는 오토포커싱(Auto Focusing, AF) 기능, 줌 렌즈(zoom lens)를 통해 원거리의 피사체의 배율을 증가 또는 감소시켜 촬영하는 주밍(zooming) 기능을 가질 수 있다.
한편, 이미지센서는 고화소로 갈수록 해상도가 높아져 화소(Pixel)의 크기가 작아지게 되는데, 화소가 작아질수록 동일한 시간 동안 받아들이는 빛의 양이 감소하게 된다. 따라서, 고화소 카메라일수록 어두운 환경에서 셔터속도가 느려지면서 나타나는 손떨림에 의한 이미지의 흔들림 현상이 더욱 심하게 나타날 수 있다. 영상 안정화(IS) 기술 중 대표적인 것으로 빛의 경로를 변화시킴으로써 움직임을 보정하는 기술인 광학식 영상 안정화(optical image stabilizer, OIS) 기술이 있다.
일반적인 OIS 기술에 따르면, 자이로 센서(gyro sensor) 등을 통해 카메라의 움직임을 감지하고, 감지된 움직임을 바탕으로 렌즈를 틸팅 또는 이동시키거나 렌즈와 이미지센서를 포함하는 카메라 모듈을 틸팅 또는 이동시킬 수 있다. 렌즈 또는 렌즈와 이미지센서를 포함하는 카메라 모듈이 OIS를 위하여 틸팅 또는 이동할 경우, 렌즈 또는 카메라 모듈 주변에 틸팅 또는 이동을 위한 공간이 추가적으로 확보될 필요가 있다.
한편, OIS를 위한 엑추에이터는 렌즈 주변에 배치될 수 있다. 이때, OIS를 위한 엑추에이터는 광축 Z에 대하여 수직하는 두 축, 즉 X축 틸팅을 담당하는 엑추에이터와 Y축 틸팅을 담당하는 엑추에이터를 포함할 수 있다.
다만, 초슬림 및 초소형의 카메라 모듈의 니즈에 따라 OIS를 위한 엑추에이터를 배치하기 위한 공간 상의 제약이 크며, 렌즈 또는 렌즈와 이미지센서를 포함하는 카메라 모듈 자체가 OIS를 위하여 틸팅 또는 이동할 수 있는 충분한 공간이 보장되기 어려울 수 있다. 또한, 고화소 카메라일수록 수광되는 빛의 양을 늘리기 위해 렌즈의 사이즈가 커지는 것이 바람직한데, OIS를 위한 엑추에이터가 차지하는 공간으로 인하여 렌즈의 사이즈를 키우는데 한계가 있을 수 있다.
또한, 카메라 모듈 내에 주밍 기능, AF 기능 및 OIS 기능이 모두 포함되는 경우, OIS용 마그넷과 AF용 또는 Zoom용 마그넷이 서로 근접하게 배치되어 자계 간섭을 일으키는 문제도 있다.
또한, OIS 기능시 발진이 발생하는 문제점이 존재한다.
본 발명이 해결하고자 하는 기술적 과제는 탄성부재의 탄성을 이용하여 OIS 엑추에이터에서 유지력을 가지면서 탄성부재에 의한 발진을 댐퍼부재를 통해 억제하는 카메라 엑추에이터를 제공할 수 있다.
또한, 댐퍼부재에 의한 여러 구성요소와 탄성부재 간의 결합력을 통해 신뢰성 및 내구성이 개선된 카메라 엑추에이터를 제공할 수 있다.
또한, 초슬림, 초소형 및 고해상 카메라에 적용 가능한 카메라 엑추에이터를 제공하는 것이다.
또한, 안정적으로 틸팅 가이드부를 홀딩하는 카메라 엑추에이터를 제공할 수 있다.
실시 예에서 해결하고자 하는 과제는 이에 한정되는 것은 아니며, 아래에서 설명하는 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 포함된다고 할 것이다.
본 발명의 실시예에 따른 카메라 엑추에이터는 하우징; 상기 하우징 내에 배치되는 무버; 상기 하우징과 상기 무버 사이에 배치되는 틸팅 가이드부; 및 상기 하우징 내에 배치되며 상기 무버를 구동시키는 구동부; 상기 틸팅 가이드부와 상기 무버를 밀착시키는 탄성부재; 및 상기 탄성부재와 상기 무버, 및 상기 탄성부재와 상기 하우징 중 적어도 하나의 그룹과 결합하는 댐퍼부재;를 포함한다.
상기 무버는 상기 틸팅 가이드부를 수용하는 안착홈을 포함하고, 상기 안착홈에 수용되고 상기 틸팅 가이드부의 외측에 배치되고 상기 무버와 결합된 제1 부재;를 포함할 수 있다.
적어도 일부가 상기 틸팅 가이드부와 상기 제1 부재 사이에 배치되고 상기 하우징과 결합된 제2 부재;를 포함할 수 있다.
상기 제1 부재 및 상기 제2 부재는 상기 안착홈에 수용될 수 있다.
상기 탄성부재는 상기 하우징과 연결되는 제1 접합부; 상기 제1 부재와 연결되는 제2 접합부; 및 상기 제1 접합부와 상기 제2 접합부를 연결하는 연결부;를 포함할 수 있다.
상기 무버는 상기 탄성부재를 향해 돌출되는 복수 개의 무버 돌기부;를 포함하며, 상기 댐퍼부재는 상기 복수 개의 무버 돌기부 사이 위치한 무버 홈 내에 배치되어 상기 무버와 접할 수 있다.
상기 연결부는 상기 무버 홈 내에 적어도 일부 배치되고 상기 댐퍼부재와 접할 수 있다.
상기 돌기부는, 제1 방향을 따라 이격 배치되는 제1 돌기부와 제2 돌기부를 포함하고, 상기 연결부는 상기 무버 홈을 관통하고, 상기 무버 홈은 상기 제1 돌기부와 상기 제2 돌기부 사이에 위치할 수 있다.
상기 돌기부는 상기 무버 홈의 내측에 배치되는 제3 돌기부;를 포함할 수 있다.
상기 제3 돌기부의 높이는 상기 제1 돌기부 또는 상기 제2 돌기부의 높이보다 낮을 수 있다.
상기 제1 부재는 상기 연결부에 인접하게 배치되는 부재 돌기를 포함할 수 있다.
상기 부재 돌기는 상기 연결부와 광축 방향으로 적어도 일부 중첩되고, 상기 연결부는 적어도 일부가 상기 부재 돌기의 외면에 대응하여 곡률질 수 있다.
상기 댐퍼부재는 상기 부재 돌기 및 상기 연결부와 결합할 수 있다.
상기 부재 돌기는 제1 접합부와 상기 제2 접합부 사이에 위치할 수 있다.
상기 제2 부재는 상기 연결부에 인접하게 배치되는 하우징 돌기를 포함할 수 있다.
상기 하우징 돌기는 상기 연결부와 광축 방향으로 적어도 일부 중첩될 수 있다.
상기 연결부는 적어도 일부가 상기 하우징 돌기의 외면에 대응하여 곡률질 수 있다.
상기 댐퍼부재는 상기 하우징 돌기 및 상기 연결부와 결합할 수 있다.
상기 하우징 돌기는 상기 댐퍼부재와 제1 방향을 따라 적어도 일부 중첩될 수 있다.
상기 댐퍼부재는 상기 연결부의 레그들과 결합할 수 있다.
상기 제2 접합부는 상기 무버와 상기 제1 접합부 사이에 배치될 수 있다.
또한, 다른 예에 따른 카메라 엑추에이터는 하우징; 상기 하우징 내에 배치되고 광학부재를 포함하는 무버; 상기 하우징과 상기 무버 사이에 배치되는 틸팅 가이드부; 및 상기 하우징 내에 배치되며 상기 무버를 구동시키는 구동부; 및 상기 틸팅 가이드부와 상기 하우징 사이에 배치되는 탄성부재;를 포함하고, 상기 구동부는, 상기 무버의 제1 측면에 배치되는 제1 마그넷; 및 상기 제1 측면과 마주하는 제2 측면에 배치되는 더미 부재;를 포함한다.
상기 구동부는, 상기 무버의 하부에 배치되는 제2 마그넷; 상기 제1 마그넷과 마주하는 제1 코일; 및 상기 제2 마그넷과 마주하는 제2 코일;을 더 포함할 수 있다.
상기 구동부와 전기적으로 연결되는 기판부;를 포함하고, 상기 기판부는, 제1 기판 측부; 상기 제1 기판 측부에 대향하는 제2 기판 측부 및 상기 제1 기판 측부와 상기 제2 기판 측부 사이에 배치되는 제3 기판 측부;를 포함하고, 상기 제1 기판 측부는 상기 제1 코일과 전기적으로 연결되고, 상기 제3 기판 측부는 상기 제2 코일과 전기적으로 연결되고, 상기 제1 기판 측부 및 상기 제3 기판 측부 중 어느 하나에 배치되는 구동 드라이버를 더 포함할 수 있다.
상기 제2 기판 측부는 더미 기판일 수 있다.
상기 구동 드라이버는 상기 제1 코일과 상기 제2 코일로 전류를 제공할 수 있다.
상기 탄성부재는 상기 틸팅 가이드부와 상기 무버를 밀착시킬 수 있다.
상기 하우징과 연결되는 제1 부재; 상기 무버와 결합하는 제2 부재;를 더 포함하고, 상기 제2 부재는 상기 제1 부재와 상기 무버 사이에 배치되고, 상기 탄성부재는 상기 하우징과 연결되는 제1 접합부; 상기 제1 부재와 연결되는 제2 접합부; 및 상기 제1 접합부와 상기 제2 접합부를 연결하는 연결부;를 포함할 수 있다.
상기 제2 접합부는 상기 무버와 상기 제1 접합부 사이에 배치될 수 있다.
상기 틸팅 가이드부는, 베이스, 상기 베이스의 제1 면으로부터 돌출되는 제1 돌출부 및 상기 베이스의 제2 면으로부터 돌출되는 제2 돌출부를 포함하고, 상기 무버는 상기 제1 돌출부를 기준으로 제1 축으로 틸팅되고, 상기 제2 돌출부를 기준으로 제2 축으로 틸팅될 수 있다.
상기 연결부는 제1 이등분선과 제2 이등분선에 의해 구획되는 제1 사분영역 내지 제4 사분영역에 각각 배치되는 제1 연결부 내지 제4 연결부;를 포함하고, 상기 제1 사분영역 내지 제4 사분영역은 반시계 방향을 따라 위치하고, 상기 제1 연결부 및 제3 연결부는 상기 제1 이등분선 및 상기 제2 이등분선에 대칭이고, 제2 연결부 및 상기 제4 연결부는 상기 제1 이등분선 및 상기 제2 이등분선에 대칭이고, 상기 제1 이등분선은 상기 탄성부재를 제1 방향을 따라 이등분하는 선이고, 상기 제2 이등분선은 상기 탄성부재를 제2 방향을 따라 이등분하는 선일 수 있다.
실시예에 따른 전자 장치는 광이 입사하는 개구와 이미지 센서가 광축 방향으로 적어도 일부 중첩하는 제1 카메라 모듈; 및 입사광의 광 경로를 변경시키는 광학부재를 포함하는 제2 카메라 모듈; 을 포함하고, 상기 제2 카메라 모듈은, 상기 제1 카메라 모듈과 인접하는 제1 측면; 상기 제1 측면과 대향하는 제2 측면; 상기 광학부재와 상기 제2 측면 사이에 상기 광학부재가 움직이도록 하는 구동부; 및 상기 광학부재와 상기 제1 측면 사이에 더미 부재를 포함한다.
본 발명의 실시예에 따르면, 탄성부재의 탄성을 이용하여 OIS 엑추에이터에서 유지력을 가지면서 탄성부재에 의한 발진을 댐퍼부재를 통해 억제하는 카메라 엑추에이터를 구현할 수 있다.
또한, 댐퍼부재에 의한 여러 구성요소와 탄성부재 간의 결합력을 통해 신뢰성 및 내구성이 개선된 카메라 엑추에이터를 구현할 수 있다.
또한, 초슬림, 초소형 및 고해상 카메라에 적용 가능한 카메라 엑추에이터를 제공할 수 있다. 특히, 카메라 모듈의 전체적인 사이즈를 늘리지 않으면서도 OIS용 엑추에이터를 효율적으로 배치할 수 있다.
또한, 본 발명의 실시예에 따르면, 카메라 엑추에이터의 구동 안정성을 개선할 수 있다.
또한, X축 방향의 틸팅 및 Y축 방향의 틸팅이 서로 자계 간섭을 일으키지 않으며, 안정적인 구조로 X축 방향의 틸팅 및 Y축 방향의 틸팅이 구현될 수 있고, AF용 또는 주밍용 엑추에이터와도 서로 자계 간섭을 일으키지 않아 정밀한 OIS 기능을 실현할 수 있다.
본 발명의 실시예에 따르면, 렌즈의 사이즈 제한을 해소하여 충분한 광량 확보가 가능하며, 저소비 전력의 OIS 구현이 가능하다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 실시예에 따른 카메라 모듈의 사시도이고,
도 2는 실시예에 따른 카메라 모듈의 분해 사시도이고,
도 3는 도 1에서 AA’로 바라본 단면도이고,
도 4는 제1 실시예에 따른 제1 카메라 엑추에이터의 사시도이고,
도 5는 제1 실시예에 따른 제1 카메라 엑추에이터의 분해 사시도이고,
도 6는 실시예에 따른 하우징의 사시도이고,
도 7는 실시예에 따른 하우징의 도면이고,
도 8는 실시예에 따른 무버의 사시도이고,
도 9는 실시예에 따른 홀더의 사시도이고,
도 10는 실시예에 따른 홀더의 저면도이고,
도 11는 실시예에 따른 홀더의 측면도이고,
도 12는 실시예에 따른 탄성부재의 평면도이고,
도 13은 실시예에 따른 탄성부재의 측면도이고,
도 14는 실시예에 따른 탄성부재의 상면도이고,
도 15는 제1 실시예에 따른 제1 카메라 엑추에이터에서 제1 부재, 제2 부재 및 탄성부재 간의 결합을 설명하는 도면이고,
도 16은 도 15에서 K부분의 확대도이고,
도 17a는 제1 실시예에 따른 제1 카메라 엑추에이터에서 댐퍼부재의 도포전 사시도이고,
도 17b는 제1 실시예에 따른 제1 카메라 엑추에이터에서 댐퍼부재의 도포후 사시도이고,
도 17c는 제1 실시예에 따른 제1 카메라 엑추에이터에서 제1 부재, 제2 부재 및 탄성부재 간의 결합을 도시한 도면이고,
도 17d는 도 17c의 다른 양태의 도면이고,
도 17e는 도 17c의 또 다른 양태의 도면이고,
도 18은 도 17c에서 제1 부재가 제거된 도면이고
도 19는 실시예에 따른 틸팅 가이드부의 사시도이고,
도 20는 도 19와 상이한 방향에서 틸팅 가이드부의 사시도이고,
도 21는 도 19에서 FF'로 절단된 틸팅 가이드부의 단면도이고,
도 22는 쉴드 캔 및 기판이 제거된 제1 실시예에 따른 제1 카메라 엑추에이터의 사시도이고,
도 23는 도 22에서 PP'로 절단된 단면도이고,
도 24는 도 22에서 QQ'로 절단된 단면도이고,
도 25은 실시예에 따른 구동부를 도시한 도면이고,
도 26은 변형예에 따른 구동부를 도시한 도면이다.
도 27는 제1 실시예에 따른 제1 카메라 엑추에이터의 사시도이고,
도 28는 도 27에서 SS'로 절단된 단면도이고,
도 29는 도 28에 도시된 제1 카메라 엑추에이터의 이동의 예시도이고,
도 30는 제1 실시예에 따른 제1 카메라 엑추에이터의 사시도이고,
도 31는 도 30에서 RR'로 절단된 단면도이고,
도 32는 도 31에 도시된 제1 카메라 엑추에이터의 이동의 예시도이고,
도 33은 제2 실시예에 따른 제1 카메라 엑추에이터의 사시도이고,
도 34는 제2 실시예에 따른 제1 카메라 엑추에이터에서 제1 부재를 도시한 도면이고,
도 35는 제2 실시예에 따른 제1 카메라 엑추에이터에서 제1 부재의 상면도이고,
도 36은 제2 실시예에 따른 제1 카메라 엑추에이터의 측면도이고,
도 37은 제3 실시예에 따른 제1 카메라 엑추에이터의 사시도이고,
도 38은 제3 실시예에 따른 제1 카메라 엑추에이터를 도시한 도면이고,
도 39는 제3 실시예에 따른 제1 카메라 엑추에이터의 측면도이고,
도 40은 변형예에 따른 제1 카메라 엑추에이터를 도시한 도면이고,
도 41는 제4 실시예에 따른 제1 카메라 엑추에이터의 사시도이고,
도 42는 제4 실시예에 따른 제1 카메라 엑추에이터의 분해 사시도이고,
도 43a는 제4 실시예에 따른 제1 카메라 엑추에이터의 하우징의 사시도이고,
도 43b는 도 43a와 상이한 방향의 사시도이고,
도 43c는 제4 실시예에 따른 제1 카메라 엑추에이터의 하우징의 정면도이고,
도 44a는 제4 실시예에 따른 제1 카메라 엑추에이터의 홀더의 사시도이고,
도 44b는 제4 실시예에 따른 제1 카메라 엑추에이터의 홀더의 저면도이고,
도 44c는 제4 실시예에 따른 제1 카메라 엑추에이터의 홀더의 정면도이고,
도 44d는 제4 실시예에 따른 제1 카메라 엑추에이터의 제2 부재의 후면도이고,
도 44e는 제4 실시예에 따른 제1 카메라 엑추에이터의 제2 부재의 저면도이고,
도 45a는 실시예에 따른 탄성부재의 평면도이고,
도 45b는 실시예에 따른 탄성부재의 측면도이고,
도 45c는 실시예에 따른 탄성부재의 상면도이고,
도 45d는 제4 실시예에 따른 제1 카메라 엑추에이터에서 제1 부재, 제2 부재 및 탄성부재 간의 결합을 설명하는 도면이고,
도 45e는 도 45d에서 제1 부재 및 제2 부재가 제거된 도면이고,
도 46은 제5 실시예에 따른 제1 카메라 엑추에이터의 도면이고,
도 47은 제6 실시예에 따른 제1 카메라 엑추에이터의 도면이고,
도 48은 제7 실시예에 따른 제1 카메라 엑추에이터의 도면이고,
도 49는 제8 실시예에 따른 제1 카메라 엑추에이터의 도면이고,도 50는 실시예에 따른 제2 카메라 엑추에이터의 사시도이고,
도 51는 실시예에 따른 제2 카메라 엑추에이터의 분해 사시도이고,
도 52은 도 50에서 DD’로 바라본 단면도이고,
도 53는 도 50에서 EE’로 바라본 단면도이고,
도 54는 실시예에 따른 카메라 모듈이 적용된 이동 단말기의 사시도이고,
도 55은 실시예에 따른 카메라 모듈이 적용된 차량의 사시도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되지는 않는다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 실시예에 따른 카메라 모듈의 사시도이고, 도 2는 실시예에 따른 카메라 모듈의 분해 사시도이고, 도 3는 도 1에서 AA’로 바라본 단면도이다.
도 1 및 도 2를 참조하면, 실시예에 따른 카메라 모듈(1000)은 커버(CV), 제1 카메라 엑추에이터(1100), 제2 카메라 엑추에이터(1200), 및 회로 기판(1300)으로 이루어질 수 있다. 여기서, 제1 카메라 엑추에이터(1100)는 '제1 엑추에이터'로, 제2 카메라 엑추에이터(1200)는 '제2 엑추에이터'로 혼용될 수 있다.
커버(CV)는 제1 카메라 엑추에이터(1100) 및 제2 카메라 엑추에이터(1200)를 덮을 수 있다. 커버(CV)에 의해 제1 카메라 엑추에이터(1100)와 제2 카메라 엑추에이터(1200) 간의 결합력이 개선될 수 있다.
나아가, 커버(CV)는 전자파 차단을 수행하는 재질로 이루어질 수 있다. 이에, 커버(CV) 내의 제1 카메라 엑추에이터(1100)와 제2 카메라 엑추에이터(1200)를 용이하게 보호할 수 있다.
그리고 제1 카메라 엑추에이터(1100)는 OIS(Optical Image Stabilizer) 엑추에이터일 수 있다. 예컨대, 제1 카메라 엑추에이터(1100)는 광축에 대해 수직한 방향으로 광학 부재를 이동시킬 수 있다.
제1 카메라 엑추에이터(1100)는 소정의 경통(미도시)에 배치된 고정 초점거리 렌즈(fixed focal length les)를 포함할 수 있다. 고정 초점거리 렌즈(fixed focal length les)는“단일 초점거리 렌즈” 또는 “단(單) 렌즈”로 칭해질 수도 있다.
제1 카메라 엑추에이터(1100)는 광의 경로를 변경할 수 있다. 실시예로, 제1 카메라 엑추에이터(1100)는 내부의 광학 부재(예컨대, 프리즘 또는 미러)를 통해 광 경로를 수직으로 변경할 수 있다. 이러한 구성에 의하여, 이동 단말기의 두께가 감소하더라도 광 경로의 변경을 통해 이동 단말기의 두께보다 큰 렌즈 구성이 이동 단말기 내에 배치되어 배율, 오토 포커싱(AF) 및 OIS 기능이 수행될 수 있다.
다만, 이에 한정되는 것은 아니며 제1 카메라 엑추에이터(1100)는 광 경로를 복수 회 수직 또는 소정의 각도로 변경할 수 있다.
제2 카메라 엑추에이터(1200)는 제1 카메라 엑추에이터(1100) 후단에 배치될 수 있다. 제2 카메라 엑추에이터(1200)는 제1 카메라 엑추에이터(1100)와 결합할 수 있다. 그리고 상호 간의 결합은 다양한 방식에 의해 이루어질 수 있다.
또한, 제2 카메라 엑추에이터(1200)는 줌(Zoom) 엑추에이터 또는 AF(Auto Focus) 엑추에이터일 수 있다. 예를 들어, 제2 카메라 엑추에이터(1200)는 하나 또는 복수의 렌즈를 지지하며 소정의 제어부의 제어신호에 따라 렌즈를 움직여 오토 포커싱 기능 또는 줌 기능을 수행할 수 있다.
그리고 하나 또는 복수의 렌즈는 독립 또는 개별적으로 광축 방향을 따라 이동하여
회로 기판(1300)은 제2 카메라 엑추에이터(1200) 후단에 배치될 수 있다. 회로 기판(1300)은 제2 카메라 엑추에이터(1200) 및 제1 카메라 엑추에이터(1100)와 전기적으로 연결될 수 있다. 또한, 회로 기판(1300)은 복수 개일 수 있다. 회로 기판(1300)은 이미지 센서 등을 포함하고, 외부의 다른 카메라 모듈 또는 단말기의 프로세스와 전기적으로 연결되는 커넥터를 포함할 수 있다.
실시예에 따른 카메라 모듈은 단일 또는 복수의 카메라 모듈로 이루어질 수도 있다. 예컨대, 복수의 카메라 모듈은 제1 카메라 모듈과 제2 카메라 모듈을 포함할 수 있다.
그리고 제1 카메라 모듈은 단일 또는 복수의 엑추에이터를 포함할 수 있다. 예를 들어, 제1 카메라 모듈은 제1 카메라 엑추에이터(1100)와 제2 카메라 엑추에이터(1200)를 포함할 수 있다.
그리고 제2 카메라 모듈은 소정의 하우징(미도시)에 배치되고, 렌즈부를 구동할 수 있는 엑추에이터(미도시)를 포함할 수 있다. 엑추에이터는 보이스 코일 모터, 마이크로 엑추에이터, 실리콘 엑추에이터 등일 수 있고, 정전방식, 써멀 방식, 바이 모프 방식, 정전기력 방식 등 여러 가지로 응용될 수 있으며 이에 한정되는 것은 아니다. 또한, 본 명세서에서 카메라 엑추에이터는 엑추에이터 등으로 언급할 수 있다. 또한, 복수 개의 카메라 모듈로 이루어진 카메라 모듈은 이동 단말기 등 다양한 전자 기기 내에 실장될 수 있다. 예컨대, 전자 기기는 스마트폰, 이동단말기(예, 폰), 모바일 단말기 등을 모두 포함할 수 있다.
도 3을 참조하면, 실시예에 따른 카메라 모듈은 OIS 기능을 하는 제1 카메라 엑추에이터(1100) 및 주밍(zooming) 기능 및 AF 기능을 하는 제2 카메라 엑추에이터(1200)를 포함할 수 있다.
광은 제1 카메라 엑추에이터(1100)의 상면에 위치한 개구 영역을 통해 카메라 모듈 또는 제1 카메라 엑추에이터 내로 입사될 수 있다. 즉, 광은 광축 방향(예컨대, X축 방향)을 따라 제1 카메라 엑추에이터(1100)의 내부로 입사되고, 광학 부재를 통해 광경로가 수직 방향으로 변경(예컨대, Z축 방향)될 수 있다. 그리고 광축 방향(Z축 방향)은 후술하는 광학 부재에 의해 반사된 광의 이동 방향에 대응할 수 있으며, 이를 기준으로 설명한다.그리고 광은 제2 카메라 엑추에이터(1200)를 통과하고, 제2 카메라 엑추에이터(1200)의 일단에 위치하는 이미지 센서(IS)로 입사될 수 있다(PATH).
본 명세서에서, 저면은 제1 방향에서 일측을 의미한다. 그리고 제1 방향은 도면 상 X축 방향이고 제2 축 방향 등과 혼용될 수 있다. 제2 방향은 도면 상 Y축 방향이며 제1 축 방향 등과 혼용될 수 있다. 제2 방향은 제1 방향과 수직한 방향이다. 또한, 제3 방향은 도면 상 Z축 방향이고, 제3 축 방향 등과 혼용될 수 있다. 그리고 제3 방향은 제1 방향 및 제2 방향에 모두 수직한 방향이다. 여기서, 제3 방향(Z축 방향)은 광축의 방향에 대응하며, 제1 방향(X축 방향)과 제2 방향(Y축 방향)은 광축에 수직한 방향이며 제2 카메라 엑추에이터에 의해 틸팅될 수 있다. 또한, 이하에서 제1 카메라 엑추에이터(1100) 또는 제2 카메라 엑추에이터(1200)에 대한 설명에서 광축 방향은 제3 방향(Z축 방향)이며 이를 기준으로 이하 설명한다.
또한, 본 명세서에서 내측은 커버(CV)에서 제1 카메라 엑추에이터를 향한 방향일 수 있고, 외측은 내측의 반대 방향일 수 있다. 즉, 제1 카메라 엑추에이터, 제2 카메라 엑추에이터는 커버(CV) 내측에 위치하고, 커버(CV)는 제1 카메라 엑추에이터 또는 제2 카메라 엑추에이터의 외측에 위치할 수 있다.
그리고 이러한 구성에 의하여, 실시예에 따른 카메라 모듈은 광의 경로를 변경하여 제1 카메라 엑추에이터 및 제2 카메라 엑추에이터의 공간적 한계를 개선할 수 있다. 즉, 실시예에 따른 카메라 모듈은 광의 경로 변경에 대응하여 카메라 모듈의 두께가 최소화하면서 광 경로를 확장할 수 있다. 나아가, 제2 카메라 엑추에이터는 확장된 광 경로에서 초점 등을 제어하여 높은 범위의 배율을 제공할 수도 있음을 이해해야 한다.
또한, 실시예에 따른 카메라 모듈은 제1 카메라 엑추에이터를 통해 광 경로의 제어를 통해 OIS를 구현할 수 있으며, 이에 따라 디센터(decent)나 틸트(tilt) 현상의 발생을 최소화하고, 최상의 광학적 특성을 낼 수 있다.
나아가, 제2 카메라 엑추에이터(1200)는 광학계와 렌즈 구동부를 포함할 수 있다. 예를 들어, 제2 카메라 엑추에이터(1200)는 제1 렌즈 어셈블리, 제2 렌즈 어셈블리, 제3 렌즈 어셈블리 및 가이드 핀 중 적어도 하나 이상이 배치될 수 있다.
또한. 제2 카메라 엑추에이터(1200)는 코일과 마그넷을 구비하여 고배율 주밍 기능을 수행할 수 있다.
예를 들어, 제1 렌즈 어셈블리와 제2 렌즈 어셈블리는 코일, 마그넷과 가이드 핀 등을 통해 이동하는 이동 렌즈(moving lens)일 수 있으며, 제3 렌즈 어셈블리는 고정 렌즈일 수 있으나 이에 한정되는 것은 아니다. 예를 들어, 제3 렌즈 어셈블리는 광을 특정 위치에 결상하는 집광자(focator)의 기능을 수행할 수 있고, 제1 렌즈 어셈블리는 집광자인 제3 렌즈 어셈블리에서 결상된 상을 다른 곳에 재결상시키는 변배자(variator) 기능을 수행할 수 있다. 한편, 제1 렌즈 어셈블리에서는 피사체와의 거리 또는 상 거리가 많이 바뀌어서 배율변화가 큰 상태일 수 있으며, 변배자인 제1 렌즈 어셈블리는 광학계의 초점거리 또는 배율변화에 중요한 역할을 할 수 있다. 한편, 변배자인 제1 렌즈 어셈블리에서 결상되는 상점은 위치에 따라 약간 차이가 있을 수 있다. 이에 제2 렌즈 어셈블리는 변배자에 의해 결상된 상에 대한 위치 보상 기능을 할 수 있다. 예를 들어, 제2 렌즈 어셈블리는 변배자인 제1 렌즈 어셈블리에서 결상된 상점을 실제 이미지 센서 위치에 정확히 결상시키는 역할을 수행하는 보상자(compensator) 기능을 수행할 수 있다. 예를 들어, 제1 렌즈 어셈블리와 제2 렌즈 어셈블리는 코일과 마그넷의 상호작용에 의한 전자기력으로 구동될 수 있다. 상술한 내용은 후술하는 렌즈 어셈블리에 적용될 수 있다. 또한, 제1 렌즈 어셈블리 내지 제3 렌즈 어셈블리는 광축 방향 즉, 제3 방향을 따라 이동할 수 있다. 그리고 제1 렌즈 어셈블리 내지 제3 렌즈 어셈블리는 서로 독립 또는 종속하여 제3 방향으로 이동할 수 있다.
한편, 본 발명의 실시예에 따라 OIS용 엑추에이터와 AF 또는 Zoom용 엑추에이터가 배치될 경우, OIS 구동 시 AF 또는 Zoom용 마그넷과의 자계 간섭이 방지될 수 있다. 제1 카메라 엑추에이터(1100)의 제1 구동 마그넷이 제2 카메라 엑추에이터(1200)와 분리되어 배치되므로, 제1 카메라 엑추에이터(1100)와 제2 카메라 엑추에이터(1200) 간 자계 간섭이 방지될 수 있다. 본 명세서에서, OIS는 손떨림 보정, 광학식 이미지 안정화, 광학식 이미지 보정, 떨림 보정 등의 용어와 혼용될 수 있다.
도 4는 제1 실시예에 따른 제1 카메라 엑추에이터의 사시도이고, 도 5는 제1 실시예에 따른 제1 카메라 엑추에이터의 분해 사시도이고, 도 6는 실시예에 따른 하우징의 사시도이고, 도 7는 실시예에 따른 하우징의 도면이다.
도 4 내지 도 7을 참조하면, 제1 실시예에 따른 제1 카메라 엑추에이터(1100)는 쉴드 캔(1110), 하우징(1120), 무버(1130), 회전부(1140), 탄성부재(EE), 제1 구동부(1150), 제1 부재(1131a), 제2 부재(1126) 및 댐퍼부재(DP)를 포함한다.
무버(1130)는 홀더(1131) 및 홀더(1131)에 안착하는 광학 부재(1132)를 포함할 수 있다. 그리고 회전부(1140)는 틸팅 가이드부(1141)를 포함할 수 있다. 또한, 제1 구동부(1150)는 구동 마그넷(1151), 구동 코일(1152), 홀 센서부(1153), 기판부(1154) 및 요크부(1155)를 포함한다.
쉴드 캔(1110)은 제1 카메라 엑추에이터(1100)의 최외측에 위치하여 후술하는 회전부(1140), 제1 구동부(1150), 하우징(1120) 등을 감싸도록 위치할 수 있다.
이러한 쉴드 캔(1110)은 외부에서 발생한 전자기파를 차단 또는 저감할 수 있다. 즉, 쉴드 캔(1110)은 회전부(1140) 또는 제1 구동부(1150)에서 오작동의 발생을 감소시킬 수 있다.
하우징(1120)은 쉴드 캔(1110) 내부에 위치할 수 있다. 또한, 하우징(1120)은 후술하는 기판부(1154) 내측에 위치할 수 있다. 하우징(1120)은 쉴드 캔(1110)과 서로 끼워지거나 맞춰져 서로 체결될 수 있다. 하우징(1120)은 '제1 하우징'과 혼용될 수 있다.
하우징(1120)은 제1 하우징 측부(1121), 제2 하우징 측부(1122), 제3 하우징 측부(1123) 및 제4 하우징 측부(1124)를 포함할 수 있다.
제1 하우징 측부(1121)와 제2 하우징 측부(1122)는 서로 마주보도록 배치될 수 있다. 또한, 제3 하우징 측부(1123)와 제4 하우징 측부(1124)는 제1 하우징 측부(1121)와 제2 하우징 측부(1122) 사이에 배치될 수 있다.
제3 하우징 측부(1123)는 제1 하우징 측부(1121), 제2 하우징 측부(1122) 및 제4 하우징 측부(1124)와 접할 수 있다. 그리고 제3 하우징 측부(1123)는 하우징(1120)에서 저면을 가질 수 있다. 그리고 제1 하우징 측부(1121), 제2 하우징 측부(1122) 및 제4 하우징 측부(1124)는 측면을 가질 수 있다.
또한, 상술한 바와 같이 제3 방향(Z축 방향)은 광축의 방향에 대응(강학 부재에서 반사되어 이동하는 광에 대해)하며, 제1 방향(X축 방향)과 제2 방향(Y축 방향)은 광축에 수직한 방향이며 제1 카메라 엑추에이터에 의해 틸팅될 수 있다. 이에 대한 자세한 설명은 후술한다.
그리고 제1 하우징 측부(1121)는 제1 하우징 홀(1121a)을 포함할 수 있다. 제1 하우징 홀(1121a)에는 후술하는 제1 코일(1152a)이 위치할 수 있다.
또한, 제2 하우징 측부(1122)는 제2 하우징 홀(1122a)을 포함할 수 있다. 그리고 제2 하우징 홀(1122a)에는 후술하는 제2 코일(1152b)이 위치할 수 있다.
제1 코일(1152a)과 제2 코일(1152b)은 기판부(1154)와 결합할 수 있다. 실시예로, 제1 코일(1152a)과 제2 코일(1152b)은 기판부(1154)와 전기적으로 연결되어 전류가 흐를 수 있다. 이러한 전류는 제1 카메라 엑추에이터가 X축을 기준으로 틸팅할 수 있는 전자기력의 요소이다.
또한, 제3 하우징 측부(1123)는 제3 하우징 홀(1123a) 및 하우징 홈(1123b')을 포함할 수 있다.
제3 하우징 홀(1123a)에는 후술하는 제3 코일(1152c)이 위치할 수 있다. 제3 코일(1152c)은 기판부(1154)와 결합할 수 있다. 그리고 제3 코일(1152c)은 기판부(1154)와 전기적으로 연결되어 전류가 흐를 수 있다. 이러한 전류는 제1 카메라 엑추에이터가 Y축을 기준으로 틸팅할 수 있는 전자기력의 요소이다.
하우징 홈(1123b')에는 후술하는 제2 부재(1126)가 안착할 수 있다. 제2 부재(1126)는 '하우징 리지드', '하우징 추가부재' 등과 혼용될 수 있다.
또한, 하우징 홈(1123b')은 제3 하우징 측부(1123)에서 제1 하우징 측부(1121) 및 제2 하우징 측부(1122)로 연장 형성될 수 있다. 즉, 하우징 홈(1123b')은 제1 하우징 측부(1121), 제2 하우징 측부(1122) 및 제3 하우징 측부(1123)에 위치할 수 있다. 이에 따라, 제2 부재(1126)는 제1 하우징 측부(1121), 제2 하우징 측부(1122) 및 제3 하우징 측부(1123)와 결합할 수 있다. 실시예의 제1 카메라 엑추에이터에서와 같이 돌기 등에 의해 형성된 하우징 홈에 제2 부재(1126)가 안착하여 하우징(1120)과 결합할 수 있다. 이러한 제2 부재(1126)는 하우징(1120)과 상술한 내용에 의해 서로 결합할 수 있다. 다만, 하우징 홈에 의한 결합으로 인하여 제4 하우징 측부(1124) 상에 후술하는 무버(1130), 틸팅 가이드부(1141), 제2 부재(1126) 및 제1 부재(1131a)를 순차적으로 적층할 수 있다. 이에 따라, 조립 용이성이 개선될 수 있다. 또는 제2 부재(1126)는 하우징(1120)과 일체로 이루어질 수도 있다. 또한, 제1 부재(1131a)는 '무버 리지드', '무버 추가부재' 등과 혼용될 수 있다.
그리고 실시예에 따른 카메라 모듈은 고정부재를 포함하며, 고정부재는 카메라 엑추에이터에서 1축 틸트 또는 2축 틸트 시에 이동하지 않는 구성요소일 수 있다. 실시예로, 고정부재는 하우징(1120)과 제2 부재(1126) 중 적어도 하나를 포함할 수 있다. 본 명세서에서는 이를 기준으로 설명한다.
탄성부재(EE)는 무버(1130)와 고정부재 사이에 위치할 수 있다. 또한, 틸팅 가이드부(1141)는 고정부재와 무버 사이에 위치할 수 있다. 그리고 탄성부재(EE)는 무버(1130)를 고정부재로 당김으로써 틸팅 가이드부(1141)를 고정부재와 무버에 밀착시킬 수 있다. 다시 말해, 탄성부재(EE)는 무버(1130)를 고정부재로 당김으로써, 틸팅 가이드부(1141)가 고정부재와 무버에 의해 가압될 수 있다. 또한, 탄성부재(EE)는 틸팅 가이드부(1141)와 무버(1130)를 밀착시킬 수 있다. 다시 말해, 탄성부재(EE)는 무버(1130)를 고정부재인 하우징(1120) 또는 제2 부재(1126)로 당길 수 있다. 이러한 구조에 대해 후술한다.
또한, 제4 하우징 측부(1124)는 제1 하우징 측부(1121), 제2 하우징 측부(1122) 사이에 배치되고, 제1 하우징 측부(1121), 제2 하우징 측부(1122) 및 제3 하우징 측부(1123)와 접할 수 있다.
제4 하우징 측부(1124)는 제1 카메라 엑추에이터와 연결되는 제2 카메라 엑추에이터와 접할 수 있다. 이에, 제4 하우징 측부(1124)는 하우징 외측면(1124b)에 형성된 돌기, 그루브 또는 복수 개의 홈을 포함할 수 있다. 이에 따라, 제4 하우징 측부는 인접한 다른 카메라 엑추에이터와의 용이한 결합을 제공할 수 있다. 즉, 제2 카메라 엑추에이터는 제4 하우징 측부(1124)를 통해 제1 카메라 엑추에이터 간의 결합력이 더욱 개선될 수 있다. 또한, 이러한 구성에 의하여, 제4 하우징 측부는 광 경로를 제공함과 동시에 다른 구성 요소 간의 결합력을 개선하여 이격 등에 의한 개구의 이동을 억제하여 광 경로의 변경을 최소화할 수 있다.
그리고 제4 하우징 측부(1124)는 개구 영역(1124a)을 포함할 수 있다. 개구 영역(1124a)을 통해 제1 카메라 엑추에이터의 광학 부재에서 경로가 변경된 광이 제2 카메라 엑추에이터로 이동할 수 있다. 상술한 바와 같이, 제2 카메라 엑추에이터에서는 오토 포커싱 및/또는 줌(zoom)이 수행될 수 있고, 제1 카메라 엑추에이터에서는 손떨림 보정(OIS)이 수행될 수 있다.
또한, 하우징(1120)은 제1 하우징 측부(1121) 내지 제4 하우징 측부(1124)에 의해 형성되는 수용부(1125)를 포함할 수 있다. 수용부(1125)에는 구성요소로 제2 부재(1126), 제1 부재(1131a), 틸팅 가이드부(1141), 무버(1130) 및 탄성부재(EE)가 위치할 수 있다.
제2 부재(1126)는 하우징(1120)과 결합하도록, 하우징(1120)에 배치될 수 있다. 제2 부재(1126)는 하우징 내에 배치되거나, 하우징(1120)에 연결될 수 있다. 그리고 제2 부재(1126)는 하우징(1120)과 용이하게 결합할 수 있다. 실시예로, 제2 부재(1126)는 제3 하우징 측부(1123)에 형성된 하우징 홈(1123b')을 안착하거나 적어도 일부 관통하여 제3 하우징 측부(1123)와 결합할 수 있다. 이를 통해, 제2 부재(1126)는 하우징(1120)과 결합하고, 후술하는 무버(1130와 틸팅 가이드부(1141) 간의 고정을 유지할 수 있다.
또한, 제2 부재(1126)는 제1 하우징 측부(1121) 및 제2 하우징 측부(1121)에 인접한 영역에 배치된 제1 결합부(PP1)를 포함할 수 있다. 변형예로, 제1 결합부(PP1)는 하우징(1120)의 제4 하우징 측부(1124)의 외면에 배치될 수도 있다. 그리고 제1 결합부(PP1)는 돌기로 이루어질 수 있다. 그리고 제1 결합부(PP1)는 제1 접합부(EP1)와 결합할 수 있다. 후술하는 바와 같이 제1 결합부(PP1)는 제1 접합부(EP1)의 제1 접합홀에 삽입될 수 있다.
또한, 제2 부재(1126)는 틸팅 가이드부의 제2 돌출부가 안착하는 제2 돌기홈(PH2)을 포함한다. 이에 따라, 제2 부재(1126)는 틸팅 가이드부의 돌기가 제4 안착홈 내에서 광학 부재에 인접하게 배치되게 한다. 이에, 틸트의 기준축인 돌기가 무버(1130)의 무게중심에 가까이 배치될 수 있다. 이로써, 틸트 시, 틸트를 위해 무버(1130)를 이동시키는 모멘트를 최소화하므로 코일을 구동하는 전류 소모도 최소화하여 전력 소모를 줄일 수 있다.
또한, 제2 부재(1126)는 하우징(1120)과 상술한 바와 같이 일체로 또는 분리되어 이루어질 수 있다. 일체로 이루어진 경우 제2 부재(1126)와 하우징(1120)의 결합력이 향상되어 카메라 엑추에이터의 신뢰성이 개선될 수 있다. 또한, 분리되어 이루어진 경우 제2 부재(1126)와 하우징(1120)의 조립 및 제작의 용이성이 향상될 수 있다. 이하에서는 분리되는 것을 기준으로 설명한다.
무버(1130)는 홀더(1131) 및 홀더(1131)에 안착하는 광학 부재(1132)를 포함한다.
먼저, 홀더(1131)는 하우징(1120)의 수용부(1125)에 안착할 수 있다. 홀더(1131)는 제1 하우징 측부(1121), 제2 하우징 측부(1122), 제3 하우징 측부(1123), 제4 하우징 측부(1124)에 각각 대응하는 제1 홀더 외측면 내지 제4 홀더 외측면을 포함할 수 있다. 또한, 홀더(1131)는 제4 안착홈(1131S4a)에 배치되는 제1 부재(1131a)를 포함할 수 있다. 이에 대한 자세한 설명은 후술한다.
광학 부재(1132)는 홀더(1131)에 안착할 수 있다. 이를 위해, 홀더(1131)는 안착면을 가질 수 있으며, 안착면은 수용홈에 의해 형성될 수 있다. 실시예로 광학 부재(1132)는 미러(mirror)로 이루어질 수 있다. 이하에서는 미러를 기준으로 도시하나, 상술한 실시예에서와 같이 복수 개의 렌즈로 이루어질 수도 있다. 예컨대, 광학 부재(1132)는 내부에 배치되는 반사부를 포함할 수 있다. 다만, 이에 한정되는 것은 아니다. 그리고 광학 부재(1132)는 외부(예컨대, 물체)로부터 반사된 광을 카메라 모듈 내부로 반사할 수 있다. 다시 말해, 광학 부재(1132)는 반사된 광의 경로를 변경하여 제1 카메라 엑추에이터 및 제2 카메라 엑추에이터의 공간적 한계를 개선할 수 있다. 이로써, 카메라 모듈은 두께가 최소화하면서 광 경로를 확장하여 높은 범위의 배율을 제공할 수도 있음을 이해해야 한다.
추가적으로, 제1 부재(1131a)는 홀더(1131)와 결합할 수 있다. 제1 부재(1131a)는 홀더(1131)에서 제4 홀더 외측면에서 제4 안착홈 이외의 영역에 위치한 돌기와 접할 수 있다. 제1 부재(1131a)는 홀더(1131)와 일체로 형성될 수 있다. 또는 제1 부재1231a)는 홀더(1131)와 분리된 구조로 이루어질 수 있다. 제1 부재(1131a)와 홀더(1131)는 일체로 결합되는 경우에도 홀더(1131)에는 제4 안착홈이 위치할 수 있다. 그리고 홀더(1131)에 제1 부재(1131a)가 결합되지 않은 경우에 제4 안착홈은 하부 및 후방으로 개방되나, 제1 부재(1131a)가 결합된 경우에 제4 안착홈은 하부로 개방될 수 있다.
탄성부재(EE)는 틸팅 가이드부(1141)와 하우징(1120) 사이에 배치될 수 있다. 특히, 탄성부재(EE)는 틸팅 가이드부(1141), 제2 부재(1126) 및 제1 부재(1131a)에 순차로 배치될 수 있다. 이에, 탄성부재(EE)는 제1 부재(1131a) 상에 배치될 수 있다.
탄성부재(EE)는 탄성 재질로 이루어질 수 있으며, 제2 부재(1126)와 제1 부재(1131a) 사이를 서로 결합하고, 하우징(1120)에 고정된 제2 부재(1126)를 기준으로 제1 부재(1131a)와 제1 부재(1131a)에 연결된 홀더(1131)에 탄성력을 제공할 수 있다.
이에, 탄성부재(EE)는 하우징(1120) 및 무버(1130) 사이에서 하우징(1120) 및 무버(1130)와 결합하고, 무버(1130)를 통해 틸팅 가이드부(1141)를 가압할 수 있다. 이에, 틸팅 가이드부(1141를 통해 무버(1130)가 X축 틸트 및/또는 Y축 틸트될 수 있다.
탄성부재(EE)에서 제1 부재(1131a)(또는 홀더(1131))와 하우징(1120)에 접하는 부분이 제3 방향(Z축 방향)으로 서로 이격될 수 있다. 상술한 접하는 부분(후술하는 제1,2 접합부)의 이격된 거리에 의해 탄성부재(EE)는 예압을 가질 수 있다. 그리고 이러한 예압은 무버(1130)를 통해 틸팅 가이드부(1141)로 그리고 틸팅 가이드부(1141)를 통해 제2 부재(1126)로 전달될 수 있다. 이로써, 무버(1130)와 제2 부재(1126) 사이에 배치되는 틸팅 가이드부(1141)가 탄성부재(EE)에 의해 가압될 수 있다. 즉, 틸팅 가이드부(1141)가 무버(1130)와 제2 부재(1126) 사이에서 위치하는 힘이 유지될 수 있다. 이로써, X축 틸트 또는 Y축 틸트 시에도 틸팅 가이드부(1141)의 이탈없이 무버(1130)와 하우징(1120) 사이에서 위치를 유지할 수 있다.
또한, 회전부(1140)는 틸팅 가이드부(1141)를 포함할 수 있다.
틸팅 가이드부(1141)는 상술한 무버(1130) 및 하우징(1120)과 결합할 수 있다. 또한, 틸팅 가이드부(1141)는 무버(1130)와 제2 부재(1126) 사이에 배치되어 무버(1130) 및 하우징(1120)과 결합할 수 있다. 다시 말해, 틸팅 가이드부(1141)는 제2 부재(1126)와 홀더(1131) 사이에 배치될 수 있다. 틸팅 가이드부(1141)는 제2 부재(1126)와 홀더(1131)의 제4 안착홈(1131S4a) 사이에 위치할 수 있다.
이에 따라, 실시예에 따른 카메라 엑추에이터에서 제3 방향(Z축 방향)으로, 제1 부재(1131a), 제2 부재(1126), 틸팅 가이드부(1141), 홀더(1131) 및 제4 하우징 측부(1124) 순으로 배치될 수 있다.
또한, 틸팅 가이드부(1141)는 광축과 인접하게 배치될 수 있다. 이로써, 실시예에 따른 카메라 엑추에이터는 후술하는 제1,2 축 틸트에 따라 광 경로의 변경을 용이하게 수행할 수 있다.
실시예로, 틸팅 가이드부(1141)는 제1 방향(X축 방향)으로 이격 배치되는 제1 돌출부와 제2 방향(Y축 방향)으로 이격 배치되는 제2 돌출부를 포함할 수 있다. 또한, 제1 돌출부와 제2 돌출부는 서로 반대 방향으로 돌출될 수 있다. 이에 대한 자세한 설명은 후술한다. 나아가, 틸팅 가이드부(1141)는 제1 돌출부와 제2 돌출부처럼 베이스에 결합된 반구 또는 원을 포함할 수 있다. 또한, 틸팅 가이드부(1141)는 베이스 또는 플레이트와 플레이트를 관통하는 복수 개의 구 또는 볼로 이루어질 수 있다.
제1 구동부(1150)는 구동 마그넷(1151), 구동 코일(1152), 홀 센서부(1153), 기판부(1154) 및 요크부(1155)를 포함한다. 이에 대한 내용은 상술한 내용이 동일하게 적용될 수 있다.
댐퍼부재(DP)는 무버(1130) 및 하우징(1120) 중 적어도 하나와 탄성부재(EE) 사이에 배치될 수 있다. 이에, 댐퍼부재(DP)는 무버(1130) 및 하우징(1120) 중 적어도 하나 및 탄성부재(EE)와 결합할 수 있다. 또한, 댐퍼부재(DP)는 탄성부재(EE)와 무버(1130) 및 탄성부재(EE)와 하우징(1120) 중 적어도 하나의 그룹과 결합할 수 있다. 예컨대, 댐퍼부재(DP)는 탄성부재(EE)와 무버(1130)와 결합할 수 있다. 또한, 댐퍼부재(DP)는 탄성부재(EE)와 하우징(1120)과 결합할 수 있다.
나아가, 제1 부재(1131a)와 제2 부재(1126) 각각을 무버(1130)와 하우징(1120)의 요소로 고려할 수 있다. 이에, 댐퍼부재(DP)는 탄성부재(EE)와 무버(1130)의 제1 부재(1131a)와 결합할 수 있다. 또한, 댐퍼부재(DP)는 탄성부재(EE)와 하우징(1120)의 제2 부재(1126)와 결합할 수 있다. 나아가, 댐퍼부재(DP)는 탄성부재(EE)의 이격된 영역을 서로 연결하도록 배치될 수도 있다. 이에 대한 자세한 설명은 다양한 실시예에서 후술한다. 또한, 이하에서 댐퍼부재(DP)는 위치에 따라 부호가 DP, DP1, DP2, DP3 등으로 표현될 수 있다.
도 8는 실시예에 따른 무버의 사시도이다.
도 8를 참조하면, 광학 부재(1132)는 홀더 상에 안착할 수 있다. 이러한 광학 부재(1132)는 반사부로서 직각 광학 부재일 수 있으나, 이에 한정하는 것은 아니다.
실시예로, 광학 부재(1132)는 외측면 일부에 돌기 구조를 가질 수 있다. 광학 부재(1132)는 돌기 구조를 통해 홀더와 용이하게 결합할 수 있다. 또한, 광학 부재(1132)는 저면(1132b)에 홀더의 안착면 상에 안착할 수 있다. 이에, 광학 부재(1132)는 저면(1132b)이 홀더의 안착면과 대응할 수 있다. 실시예로, 저면(1132b)은 홀더의 안착과 동일하게 경사면으로 이루어질 수 있다. 이에 따라, 홀더의 이동에 따라 광학 부재가 이동함과 동시에 이동에 따라 광학 부재(1132)가 홀더로부터 분리되는 것을 방지할 수 있다.
또한, 상술한 바와 같이, 광학 부재(1132)는 외부(예컨대, 물체)로부터 반사된 광을 카메라 모듈 내부로 반사할 수 있는 구조로 이루어질 수 있다. 실시예와 같이, 광학 부재(1132)는 단일의 미러로 이루어질 수도 있다. 또한, 광학 부재(1132)는 프리즘으로 이루어질 수도 있다. 예컨대, 광학 부재(1132)는 광의 경로를 변경하는 다양한 재질 또는 구조의 광학 요소로 이루어질 수 있다. 광학 부재(1132)는 반사된 광의 경로를 변경하여 제1 카메라 엑추에이터 및 제2 카메라 엑추에이터의 공간적 한계를 개선할 수 있다. 이로써, 카메라 모듈은 두께가 최소화하면서 광 경로를 확장하여 높은 범위의 배율을 제공할 수도 있음을 이해해야 한다. 또한, 실시예에 따른 카메라 엑추에이터를 포함하는 카메라 모듈은 두께가 최소화하면서 광 경로를 확장하여 높은 범위의 배율을 제공할 수도 있음을 이해해야 한다.
도 9는 실시예에 따른 홀더의 사시도이고, 도 10는 실시예에 따른 홀더의 저면도이고, 도 11는 실시예에 따른 홀더의 측면도이다.
도 9 내지 도 11를 참조하면, 홀더(1131)는 광학 부재(1132)가 안착하는 안착면(1131k)을 포함할 수 있다. 안착면(1131k)은 경사면일 수 있다. 또한, 홀더(1131)는 안착면(1131k) 상부에 턱부(1131b)를 포함할 수 있다. 그리고 홀더(1131)에서 턱부(1131b)는 광학 부재(1132)의 돌기 구조와 결합할 수 있다.
홀더(1131)는 복수 개의 외측면을 포함할 수 있다. 예컨대, 홀더(1131)는 제1 홀더 외측면(1131S1), 제2 홀더 외측면(1131S2), 제3 홀더 외측면(1131S3), 제4 홀더 외측면(1131S4)을 포함할 수 있다. 이에 대한 설명은 상술한 실시예에 대한 설명이 동일하게 적용될 수 있다.
구체적으로, 제4 홀더 외측면(1131S4)은 제4 안착홈(1131S4a)을 포함할 수 있다. 그리고 제4 안착홈(1131S4a)에는 제1 부재(1131a), 제2 부재(1126) 및 틸팅 가이드부(1141)가 제3 방향(Z축 방향)으로 순차로 위치할 수 있다.
실시예로, 제4 안착홈(1131S4a)은 복수 개의 영역을 포함할 수 있다. 제1 영역(AR1), 제2 영역(AR2) 및 제3 영역(AR3)을 포함할 수 있다.
제1 영역(AR1)에는 제1 부재(1131a)가 위치할 수 있다. 즉, 제1 영역(AR1)은 제1 부재(1131a)와 제1 방향(X축 방향)으로 중첩될 수 있다.
제2 영역(AR2)은 제2 부재(1126)가 위치할 수 있다. 즉, 제2 영역(AR2)은 제2 부재(1126)와 제1 방향(X축 방향)으로 중첩될 수 있다.
제3 영역(AR3)은 틸팅 가이드부(1141)가 위치할 수 있다. 또한, 제3 영역(AR3)은 틸팅 가이드부(1141)와 제1 방향(X축 방향)으로 중첩될 수 있다. 특히, 제3 영역(AR3)은 틸팅 가이드부(1141)의 베이스와 제1 방향(X축 방향)으로 중첩될 수 있다.
그리고 실시예에 따르면, 제2 영역(AR2)은 제1 영역(AR1)과 제3 영역(AR3) 사이에 위치할 수 있다. 그리고 제1 영역(AR1), 제2 영역(AR2) 및 제3 영역(AR3)은 제1 방향(X축 방향)으로 높이가 상이할 수 있다. 실시예로, 제1 영역(AR1)은 제2 영역(AR2) 및 제3 영역(AR3)보다 제1 방향(X축 방향)으로 높이가 더 클 수 있다. 이에, 제1 영역(AR1)과 제2 영역(AR2) 사이에 단차가 위치할 수 있다
제4 홀더 외측면(1131S4)에는 제1 부재(1131a)가 안착할 수 있다. 제1 부재(1131a)의 외측면(예로, 제2 부재와 마주하는 면에 대향하는 면)에는 제2 결합부(PP2)가 위치할 수 있다. 제2 결합부(PP2)는 결합 베이스(PP2a)와 제2 결합 돌기부(PP2b)를 포함할 수 있다. 제2 결합부(PP2)는 후술하는 제1 돌출부와 제1 방향(X축 방향)으로 중첩되게 배치될 수 있다.
제2 결합 돌기부(PP2b)는 복수 개로 제2 방향(Y축 방향)으로 이격 배치될 수 있다. 이 때, 복수 개의 제2 결합 돌기부(PP2b) 간의 이등분선은 모두 제1 돌출부의 정점과 제1 방향(X축 방향) 상에 위치할 수 있다.
실시예로, 제4 안착홈(1131S4a)에는 틸팅 가이드부가 수용될 수 있다. 그리고 상술한 바와 같이 제1 부재(1131a)도 제4 안착홈(1131S4a)에 수용될 수 있다. 이 경우, 제1 부재(1131a)는 제4 안착홈(1131S4a) 내에서 틸팅 가이드부의 외측에 배치될 수 있다. 보다 구체적으로, 제4 안착홈(1131S4a) 내에서 제3 방향(Z축 방향)을 따라 제1 부재(1131a), 제2 부재의 일부, 틸팅 가이드부가 순차로 배치될 수 있다. 다시 말해, 제1 부재(1131a)는 제4 안착홈(1131S4a)의 상부 영역(AR1)에 배치될 수 있다. 그리고 틸팅 가이드부는 제4 안착홈(1131S4a)의 하부 영역(AR3)에 배치될 수 있다. 그리고 상부 영역과 하부 영역의 중간 영역(AR2)에는 제2 부재의 일부가 배치될 수 있다. 이에, 제2 부재의 적어도 일부가 틸팅 가이드부와 제1 부재(1131a) 사이에 배치될 수 있다. 또한, 제1 부재(1131a)와 제2 부재가 제4 안착홈(1131S4a) 내에 적어도 일부 숭ㅇ될 수 있다
또한, 실시예로, 무버(1130)의 홀더(1131)는 제4 홀더 외측면(1131S4)에서 외측 또는 스프링을 향해 돌출된 무버 돌기부(1131p)를 포함할 수 있다.
무버(1130)의 홀더(1131)에서 돌기부(1131ap)는 복수 개일 수 있다. 예컨대, 무버 돌기부(1131p)는 제1 돌기부(1131ap1), 제2 돌기부(1131ap2) 및 제3 돌기부(1131ap3)를 포함할 수 있다.
제1 돌기부(1131ap1)와 제2 돌기부(1131ap2)는 제1 방향(X축 방향)을 따라 이격 배치될 수 있다. 그리고 제1 돌기부(1131ap1)와 제2 돌기부(1131ap2)는 제1 방향(X축 방향)을 따라 중첩될 수 있다.
나아가, 실시예에 따른 제1 돌기부(1131ap1)와 제2 돌기부(1131ap2) 사이에는 무버 홈(1131h)을 포함할 수 있다. 무버 홈(1131h)은 제1 돌기부(1131ap1)와 제2 돌기부(1131ap2)의 제1 방향(X축 방향)으로 사이 영역에 대응할 수 있다.
탄성부재는 무버 홈(1131h) 내에 배치될 수 있다. 또한, 탄성부재는 무버 홈(1131h)을 관통할 수 있다.
나아가, 제3 돌기부(1131ap3)는 무버 홈(1131h)의 내측에 배치될 수 있다. 즉, 무버 홈(1131h)은 제1 돌기부(1131ap1), 제2 돌기부(1131ap2) 및 제3 돌기부(1131ap3)에 의해 둘러싸일 수 있다.
그리고 제3 돌기부(1131ap3)는 무버 홈(1131h)에 인접하게 위치할 수 있다. 이에, 무버 홈(1131h)과 제3 돌기부(1131ap3)는 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다. 나아가, 제3 돌기부(1131ap3)는 제1 돌기부(1131ap1) 또는 제2 돌기부(1131ap2)와 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다. 이러한 구성에 의하여, 무버 홈(1131h)에 댐퍼부재가 도포되더라도 제1 돌기부(1131ap1), 제2 돌기부(1131ap2) 및 제3 돌기부(1131ap3)에 의해 외측으로 흐르지 않을 수 있다. 그리고 제3 돌기부(1131ap3)는 댐퍼부재가 내측 즉, 제1 부재로 이동하는 것을 방지할 수 있다.
실시예로, 제1 돌기부(1131ap1)의 제1 방향(X축 방향)으로 폭 또는 길이(W1)와 제2 돌기부(1131ap2)의 제1 방향(X축 방향)으로 폭 또는 길이(W2)는 동일하거나 상이할 수 있다. 이 때, 제3 돌기부(1131ap3)는 제1 돌기부(1131ap1)와 제2 돌기부(1131ap2) 간의 제1 방향(X축 방향)으로 이격 거리보다 클 수 있다. 이에, 제3 돌기부(1131ap3)는 댐퍼부재가 내측으로 이동하는 것을 용이하게 억제할 수 있다.
또한, 무버 홈(1131h)은 단차부(ST)를 가질 수 있다. 예컨대, 무버 홈(1131h)에서 단차부(ST)는 내측영역(1131hi) 또는 외측영역(1131ho) 중 어느 하나가 더 낮을 수 있다. 실시예로, 내측(제1 돌기홈(PH1)을 향한 방향)이 외측보다 더 낮을 수 있다. 이에, 댐퍼부재의 내측으로 흐림이 억제될 수 있다. 그리고 무버 홈(1131h)는 제1 돌기부(1131ap1)와 제2 돌기부(1131ap2)에 의해 형성된 홈 영역일 수 있다. 또한, 무버 홈(1131h)는 제1 돌기부(1131ap1) 또는 제2 돌기부(1131ap2)의 하면에서 하부로 형성된 홈일 수도 있다.
도 12는 실시예에 따른 탄성부재의 평면도이고, 도 13은 실시예에 따른 탄성부재의 측면도이고, 도 14는 실시예에 따른 탄성부재의 상면도이고, 도 15는 제1 실시예에 따른 제1 카메라 엑추에이터에서 제1 부재, 제2 부재 및 탄성부재 간의 결합을 설명하는 도면이고, 도 16은 도 15에서 K부분의 확대도이다.
도 12 내지 도 16을 참조하면, 실시예에 따른 탄성부재(EE)는 제1 접합부(EP1), 제2 접합부(EP2) 및 연결부(CP)를 포함한다.
제1 접합부(EP1)는 하우징(1120)과 연결되어, 제1 접합부(EP1)와 하우징(1120)은 서로 결합할 수 있다. 제1 접합부(EP1)는 복수 개일 수 있다. 이하에서 제1 접합부(EP1)는 2개인 것을 기준으로 설명한다.
또한, 제1 접합부(EP1)는 고정부재와 결합할 수 있다. 즉, 제1 접합부(EP1)는 하우징(1120) 또는 제2 부재(1126)와 결합할 수 있다. 이하에서는 도면과 같이 제1 접합부(EP1)는 제2 부재(1126)와 결합할 수 있다.
그리고 제2 접합부(EP2)는 제1 부재(1131a)와 연결되어, 제2 접합부(EP2)와 제1 부재(1131a)는 서로 결합할 수 있다.
연결부(CP)는 제1 접합부(EP1)와 제2 접합부(EP2) 사이에 배치될 수 있다. 즉, 연결부(CP)는 일단이 제1 접합부(EP1)와 연결되고, 타단이 제2 접합부(EP2)와 연결될 수 있다.
실시예로, 제2 접합부(EP2)는 이격 배치된 복수 개의 제1 접합부(EP1) 사이에 위치할 수 있다. 구체적으로, 제2 접합부(EP2)는 무버(1130)와 제1 접합부(EP1) 사이에 배치될 수 있다. 즉, 제2 접합부(EP2)는 제1 접합부(EP1)와 제3 방향(Z축 방향)으로 이격 배치될 수 있다. 이에, 연결부(CP)는 제1 부재(1131a)에서 제2 부재(1126)를 향해 연장될 수 있다. 또는 연결부(CP)는 제3 방향(Z축 방향)으로 연장될 수 있다. 예컨대, 연결부(CP)는 제1 접합부(EP1)에서 제2 접합부(EP2)로 휘어진 형상일 수 있다. 이에 따라, 탄성부재(EE)에서 생성된 탄성 복원력은 제1 접합부(EP1)가 고정이므로(하우징은 고정) 제2 접합부(EP2)에서 제1 접합부(EP1)를 향해 형성될 수 있다. 이에, 제2 접합부(EP2)에 연결된 제1 부재(1131a) 및 제1 부재(1131a)에 결합된 무버(1130)도 제2 접합부(EP2)에서 제1 접합부(EP1)를 향해 힘이 생성될 수 있다. 이로써, 무버(1130)와 틸팅 가이드부(1141) 사이에도 상술한 힘이 가해질 수 있다. 그리고 최종적으로 틸팅 가이드부(1141)가 제2 부재(1126)를 가압하므로 후술하는 제1 축 틸트 또는 제2 축 틸트가 이루어질 수 있도록 틸팅 가이드부(1141)가 무버(1130)와 제2 부재(1126)(또는 하우징) 사이에서 위치를 유지할 수 있다.또한, 제1 접합부(EP1)와 제2 접합부(EP2) 사이의 제3 방향(Z축 방향)으로 이격 거리(dd1)에 의해 탄성부재(EE)는 상술한 힘인 예압을 가질 수 있다.
또한, 탄성부재(EE)의 제2 접합부(EP2)는 탄성부재(EE)의 제1 접합부(EP1)와 고정부재인 제2 부재(1126)의 일면에 접하는 면 상에 배치되지 않을 수 있다. 다시 말해, 탄성부재(EE)의 제2 접합부(EP2)는 탄성부재(EE)의 제1 접합부(EP1)의 일면(예로, 제2 부재와 접하는 면) 또는 제2 부재와 접하는 면에 대한 평면(XY 평면) 상에 배치되지 않을 수 있다. 즉, 상술한 바와 같이 제1 접합부(EP1)와 제2 접합부(EP2)는 서로 다른 평면(XY) 상에 위치하고, 제3 방향(Z축 방향)으로 이격될 수 있다. 이에, 제2 접합부(EP2)는 제1 접합부(EP1)보다 반사부재에 더 인접하게 위치할 수 있다.
그리고 실시예에서, 예압이 제3 방향에 반대 방향(예로, 틸팅 가이드부에서 제2 부재를 향한 방향)으로 형성되더라도 틸팅 가이드부(1141)의 위치가 용이하게 유지될 수 있다. 또한, 자성체 등을 사용하지 않아 제1 카메라 엑추에이터에 인접한 다른 카메라 엑추에이터(예로, 제2 카메라 엑추에이터)에 자기력에 의한 오작동이 방지될 수 있다. 뿐만 아니라, 실시예에 따른 카메라 엑추에이터는 자성체 등을 사용하지 않고 무게가 가볍고 두께가 얇은 탄성부재를 사용함으로써, 소형화가 용이하게 이루어질 수 있다. 또한, 제2 접합부(EP2)는 무버(1130)와 제1 접합부(EP1) 사이에 배치될 수 있다.
또한, 실시예로, 제1 접합부(EP1)는 제1 평탄 영역(EP1f) 및 제1 평탄 영역(EP1f)에 위치하는 복수 개의 제1 접합홀(EP1h)을 포함할 수 있다.
제1 평탄 영역(EP1f)은 내측면이 하우징과 상기 제1 평탄 영역(EP1f) 간의 접하는 접촉 영역(CA1)과 제2 방향(Y축 방향)으로 이격 배치될 수 있다 .다시 말해, 제1 평탄 영역(EP1f)은 내측면이 하우징과 상기 제1 평탄 영역(EP1f) 간의 접하는 접촉 영역(CA1)보다 내측에 위치할 수 있다.
이에 따라, 제1 평탄 영역(EP1f)과 접하는 제2 부재(1126)가 연결부(CP)에 간섭을 제공하지 않을 수 있다. 이에 실시예에 따른 카메라 엑추에이터는 정확한 X축 틸트 및/또는 Y축 틸트를 제공할 수 있다.
또한, 제2 접합부(EP2)는 제2 평탄 영역(EP2f) 및 제2 평탄 영역(EP2f)에 위치하는 복수 개의 제2 접합홀(EP2h)을 포함할 수 있다.
제2 평탄 영역(EP2f)은 외측면(EP2s)이 제1 부재(1131a)의 결합 베이스(PP2a)와 접하는 접촉 영역(CA2)과 제2 방향(Y축 방향)으로 이격 배치될 수 있다. 다시 말해, 제2 평탄 영역(EP2f)은 외측면(EP2d)이 결합 베이스(PP2a)의 외측면보다 외측에 위치할 수 있다. 이에 따라, 제2 평탄 영역(EP2f)과 접하는 제1 부재(1131a)가 연결부(CP)에 간섭을 제공하지 않을 수 있다. 이에 실시예에 따른 카메라 엑추에이터는 정확한 X축 틸트 및/또는 Y축 틸트를 제공할 수 있다.
또한, 제1 접합홀(EP1h)과 제2 접합홀(EP2h)은 복수 개일 수 있다.
그리고 제1 접합홀(EP1h)은 제1 방향(X축 방향)으로 서로 이격 배치될 수 있다. 그리고 제2 접합홀(EP2h)은 제2 방향(Y축 방향)으로 서로 이격 배치될 수 있다.
실시예로, 제2 접합홀(EP2h)의 제1 방향(X축 방향)으로 길이(dd3)(예로, 직경)는 복수의 제1 접합홀(EP1h) 간의 제1 방향(X축 방향)으로 길이(dd2)보다 작을 수 있다.
또한, 제2 접합홀(EP2h)은 제1 접합홀(EP1h) 사이에 위치할 수 있다. 예컨대, 제1 접합홀(EP1h)을 서로 이등분하는 제1 가상선(LX1) 상에 제2 접합홀(EP2h)이 배치될 수 있다. 이에 따라, 실시예에 따른 카메라 엑추에이터에서 탄성부재(EE)에 의해 가압되는 힘이 무버의 상부 또는 하부에 모두 균일하게 제공될 수 있다.
Y축 틸트가 이루어지는 경우 제1 코일과 제2 코일로 제공되는 전류의 양이 Y축에 대해 양(+)/음(-)에 따라 상이하게 변경되지 않을 수 있다. 즉, 무버의 위치에 대응하여 제1 코일과 제2 코일로 제공되는 전류의 변화폭이 균일할 수 있다. 이에, Y축 틸트를 위한 제어가 용이하게 이루어질 수 있다. 나아가, 탄성부재(EE)에서 탄성 복원력이 일 영역에서 분귤일하게 형성되지 않아, 탄성부재(EE)의 신뢰성이 개선될 수 있다.
그리고 제1 접합부(EP1)(또는 제1 평탄 영역)에서 제1 접합홀(EP1h)의 중심을 연결한 제2 가상선(LX2)과 제2 접합홀(EP2h)을 이등분하는 제3 가상선(LX3)은 서로 평행할 수 있다. 이에 따라, 실시예에 따른 카메라 엑추에이터에서 탄성부재(EE)에 의해 가압되는 힘이 무버의 이동에도 모두 균일하게 제공될 수 있다.
X축 틸트가 이루어지는 경우 제3 코일로 제공되는 전류의 양이 X축에 대해 양(+)/음(-)에 따라 상이하게 변경되지 않을 수 있다. 즉, 무버의 위치에 대응하여 제3 코일로 제공되는 전류의 변화폭이 균일할 수 있다. 이에, X축 틸트를 위한 제어가 용이하게 이루어질 수 있다. 나아가, 탄성부재(EE)에서 탄성 복원력이 일 영역에서 분귤일하게 형성되지 않아, 탄성부재(EE)의 신뢰성이 개선될 수 있다.
그리고 제2 가상선(LX2) 및 제3 가상선(LX3)은 제1 방향(X축 방향)에 평행할 수 있다.
실시예로, 연결부(CP)는 제1 접합부(EP1)와 제2 접합부(EP2) 사이에 위치한 제1 연결부(CP1), 제2 연결부(CP2), 제3 연결부(CP3) 및 제4 연결부(CP4)를 포함할 수 있다. 나아가, 연결부(CP)는 복수 개일 수 있다.
상세히, 제1 연결부(CP1), 제2 연결부(CP2), 제3 연결부(CP3) 및 제4 연결부(CP4)는 제1 접합부(EP1)에서 제2 접합부(EP2)로 순차로 배치될 수 있다. 즉, 제1 연결부(CP1), 제2 연결부(CP2), 제3 연결부(CP3) 및 제4 연결부(CP4)는 외측에서 내측을 향해 순차로 배치될 수 있다.
또한, 제1 연결부(CP1), 제2 연결부(CP2), 제3 연결부(CP3) 및 제4 연결부(CP4)는 제2 접합부(EP2)를 기준으로 대칭으로 배치될 수 있다. 또한, 제1 연결부(CP1), 제2 연결부(CP2), 제3 연결부(CP3) 및 제4 연결부(CP4)는 제3 가상선(LX3)을 기준으로 대칭으로 배치될 수 있다. 그리고 제1 연결부(CP1), 제2 연결부(CP2), 제3 연결부(CP3) 및 제4 연결부(CP4)는 제1 가상선(LX1)에 대해서도 대칭으로 배치될 수 있다.
제1 연결부(CP1)는 일단부가 제1 접합부(EP1)와 접할 수 있다. 그리고 제1 연결부(CP1)는 제2 접합부(EP2)를 향해 연장될 수 있다. 즉, 제1 연결부(CP1)는 제1 접합부(EP1)에 접하고, 내측으로 연장될 수 있다.
제2 연결부(CP2)는 제1 연결부(CP1)의 타단부와 연결될 수 있다. 즉, 제2 연결부(CP2)의 일단부는 제1 연결부(CP1)의 타단부와 접할 수 있다.
제2 연결부(CP2)는 제1 연결부(CP1)에 대해 제1 방향(X축 방향)으로 절곡될 수 있다. 실시예로, 제2 연결부(CP2)는 제1 가상선(LX1) 하부에서 하부를 향해 연장되고, 제1 가상선(LX1) 상부에서 상부를 향해 연장될 수 있다. 이에, 제2 연결부(CP2)는 제1 연결부(CP1)에 대해 제1 기울기(θ1)로 기울어져 연장될 수 있다. 예컨대, 제1 기울기는 90도일 수 있다.
제3 연결부(CP3)는 제2 연결부(CP2)의 타단부와 연결될 수 있다. 즉, 제3 연결부(CP3)의 일단부는 제2 연결부(CP2)의 타단부와 접할 수 있다.
제3 연결부(CP3)는 제2 연결부(CP2)에 대해 제2 방향(Y축 방향)으로 절곡될 수 있다. 실시예로, 제3 연결부(CP3)는 제2 연결부(CP2)에 대해 제2 접합부(EP2)를 향해 연장될 수 있다. 또한, 제3 연결부(CP3)는 제3 가상선(LX3)의 좌측에서 우측을 향해 연장되고, 제3 가상선(Lx3) 우측에서 좌측을 향해 연장될 수 있다.
또한, 제3 연결부(CP3)는 제2 연결부(CP2)에 대해 제2 기울기(θ2)로 기울어져 연장될 수 있다. 제2 기울기는 제1 기울기와 동일할 수 있다.
제4 연결부(CP4)는 제3 연결부(CP3)의 타단부와 연결될 수 있다. 제4 연결부(CP4)의 일단부는 제3 연결부(CP3)의 타단부와 접할 수 있다. 그리고 제4 연결부(CP4)의 타단부는 제2 접합부(EP2)와 연결될 수 있다.
제4 연결부(CP4)는 제3 연결부(CP3)에 대해 소정의 기울기로 제3 가상선(LX3)을 향해 연장될 수 있다. 즉, 제4 연결부(CP4)는 제3 연결부(CP3)에 대해 제2 접합부(EP2)를 향해 소정의 각도로 절곡될 수 있다.
제4 연결부(CP4)는 제3 연결부(CP3)에 대해 제3 기울기(θ3)로 기울어져 연장될 수 있다. 제3 기울기(θ3)는 제1 기울기(θ1) 및 제2 기울기(θ2)보다 작을 수 있다.
실시예로, 탄성부재(EE)는 제1 접합부(EP1), 제2 접합부(EP2) 및 연결부(CP)에 의해 제3 가상선(LX3) 또는 제2 접합부(EP2)를 기준으로 대칭되는 폐루프를 2개를 가질 수 있다. 그리고 폐루프에서 제1 연결부(CP1) 간의 높이는 유지될 수 있다. 즉, 제1 연결부(CP1)는 제1 가상선(LX1) 간의 이격거리(CL1)가 같을 수 있다.
그리고 폐루프에서 제2 연결부(CP2) 및 제3 연결부(CP3) 간의 높이는 제1 연결부(CP1) 간의 높이보다 클 수 있다. 즉, 제1 연결부(CP1)와 제1 가상선(LX1) 간의 이격거리(CL1)는 제3 연결부(CP3)와 제1 가상선(LX1) 간의 이격거리(CL2)보다 작을 수 있다. 다시 말해, 제2 연결부(CP2) 및 제3 연결부(CP3)에서는 제1 연결부(CP1)대비 폐루프에서 높이(제1 방향(X축 방향)으로 길이)가 증가할 수 있다.
또한, 폐루프에서 제3 연결부(CP3) 간의 높이는 유지될 수 있다.
그리고 폐루프에서 제4 연결부(CP4)는 제1 가상선(LX3) 간의 이격 거리(CL3)가 제3 가상선에 인접할수록 일정한 길이만큼 감소할 수 있다. 즉, 폐루프에서 제4 연결부(CP4)에 의해 높이가 소저으이 기울기로 감소할 수 있다. 이에, 제4 연결부(CP4)는 제2 접합부(EP2)와 접할 수 있다.
도 17a는 제1 실시예에 따른 제1 카메라 엑추에이터에서 댐퍼부재의 도포전 사시도이고, 도 17b는 제1 실시예에 따른 제1 카메라 엑추에이터에서 댐퍼부재의 도포후 사시도이고, 도 17c는 제1 실시예에 따른 제1 카메라 엑추에이터에서 제1 부재, 제2 부재 및 탄성부재 간의 결합을 도시한 도면이고, 도 17d는 도 17c의 다른 양태의 도면이고, 도 17e는 도 17c의 또 다른 양태의 도면이고, 도 18은 도 17c에서 제1 부재가 제거된 도면이다.
도 17a 및 도 17b를 참조하면, 실시예로 제3 돌기부(1131ap3)의 제3 방향(Z축 방향)으로 높이(hc) 또는 길이는 제1 돌기부(1131ap1) 또는 제2 돌기부(1131ap2)의 제3 방향(Z축 방향)으로 높이(ha, hb) 또는 길이와 상이할 수 있다. 예컨대, 제3 돌기부(1131ap3)의 제3 방향(Z축 방향)으로 높이 또는 길이는 제1 돌기부(1131ap1)의 제3 방향(Z축 방향)으로 높이 또는 길이보다 작을 수 있다. 또한, 제3 돌기부(1131ap3)의 제3 방향(Z축 방향)으로 높이 또는 길이는 제2 돌기부(1131ap2)의 제3 방향(Z축 방향)으로 높이 또는 길이보다 작을 수 있다. 이 때, 각 돌기부의 높이는 복수의 돌기부 중 최하면으로부터 각 돌기부의 상면까지 제3 방향(Z축 방향)으로 길이일 수 있다. 예컨대, 복수의 돌기부 중 최하면은 제3 돌기부(1131ap3)의 최하면일 수 있다.
이러한 구성에 의하여, 제3 돌기부(1131ap3)는 탄성부재의 적어도 일부와 접하여, 탄성부재를 지지할 수 있다. 그리고 탄성부재가 제1 돌기부(1131ap1)와 제2 돌기부(1131ap2) 사이의 영역을 관통할 수 있다.
또한, 제3 돌기부(1131ap3)은 제1 돌기부(1131ap1) 또는 제2 돌기부(1131ap2)보다 하면이 더 내측 또는 하부에 위치할 수 있다. 다시 말해, 제3 돌기부(1131ap3)의 하면은 제1 돌기부(1131ap1) 또는 제2 돌기부(1131ap2)의 하면 대비 제3 방향(Z축 방향)으로 이격될 수 있다. 그리고 제3 돌기부(1131ap3)는 제1 부재(1131a)의 측면에 형성됨 홈과 결합할 수 있다. 이러한 구성에 의하여, 제3 돌기부(1131ap3)은 제1 부재(1131a)와 홀더(또는 무버) 간의 결합력을 향상시킬 수 있다. 나아가, 상술한 바오 k같이 제3 돌기부(1131ap3)는 댐퍼부재(DP)가 내측으로 이동하는 것을 억제할 수 있다.
나아가, 상술한 바와 같이 제1 돌기부(1131ap1)와 제2 돌기부(1131ap2) 사이 영역에는 돌출된 구조로 인해 홈이 형성될 수 있다. 상기 홈이 상술한 무버 홈(1131h)에 대응할 수 있다. 나아가, 상술한 바와 같이 무버 홈(1131h)에는 추가적인 단차 구조가 더 존재할 수 있다.
도 17c 내지 도 17d 및 도 18을 참조하면, 실시예에 따르면 댐퍼부재(DP)는 제1 돌기부(1131ap1)와 제2 돌기부(1131ap2) 사이에 배치될 수 있다. 또한, 댐퍼부재(DP)는 제3 돌기부(1131ap3) 상에 배치될 수 있다. 또는 댐퍼부재(DP)는 제1 돌기부(1131ap1)와 제2 돌기부(1131ap2) 사이 및 제3 돌기부(1131ap3) 상에 배치될 수 있다.
이로써, 제3 돌기부(1131ap3)는 제1 부재(1131a)와 홀더 간의 결합력을 향상시킴과 동시에 댐퍼부재(DP)에 의한 탄성부재 및 무버 간의 결합력도 향상시킬 수 있다. 또한, 제3 돌기부(1131ap3)는 댐퍼부재의 흐름을 억제하여 엑추에이터의 신뢰성을 개선할 수 있다.
그리고 실시예에 따른 제1 카메라 엑추에이터에서 제2 접합부(EP2)는 제1 돌출부(PR1)와 제2 축 또는 제1 방향으로 중첩될 수 있다.
또한, 후술하는 베이스에서 제1 돌출부(PR1)의 정점은 복수 개의 제2 접합홀(EP2h)을 이등분하는 중간축(상술한 제3 가상선에 대응)에 배치될 수 있다.
이러한 구성에 의하여, 제1 돌출부(PR1)에 의한 제2 축 틸트가 이루어지는 경우 탄성부재(EE)에 의해 틸팅 가이드부로 가압되는 힘이 제2 축 또는 제1 방향을 기준으로 균일하게 생성될 수 있다.
또한, 제2 부재(1126)는 후방으로 돌출된 돌출 영역(1126a)을 포함할 수 있다. 돌출 영역(1126a)은 탄성부재(EE)와 제2 방향(Y축 방향)으로 일부 중첩될 수 있다. 이에, 탄성부재(EE)의 연결부(CP)는 돌출 영역(1126a)을 감싸는 구조로 이루어질 수 있다. 이러한 구성에 의하여, 살빼기에 의한 무게 중심 조절이 용이하게 이루어질 수 있다.
또한, 제1 가상선(LX1) 상에 제2 돌출부(PR2)의 정점이 위치할 수 있다. 즉, 제2 돌출부(PR2)의 정점은 제1 접합홀(EP1h)을 서로 이등분하는 제1 가상선(LX1) 상에 배치될 수 있다. 이에 따라, 실시예에 따른 카메라 엑추에이터에서 탄성부재(EE)에 의해 가압되는 힘이 무버의 상부 또는 하부에 모두 균일하게 제공될 수 있다.
또한, 실시예에 따른 댐퍼부재(DP)는 상술한 무버 홈(1131h) 내에 배치되어 무버(1130) 또는 홀더(1131)와 접할 수 있다. 다시 말해, 댐퍼부재(DP)는 홀더(1131)(또는 무버), 탄성부재(EE)와 결합할 수 있다. 이러한 구성에 의하여, 댐퍼부재(DP)는 무버의 축 회전 시 세틀링타임(settling time)에서의 진동을 억제할 수 있다. 또한, 댐퍼부재(DP)는 공진 주파수에 의한 스프링의 파손을 억제할 수 있다. 이로써, 실시예에 따른 제1 카메라 엑추에이터의 신뢰성이 향상될 수 있다.
특히, 탄성부재(EE)의 연결부(CP)는 무버 홈(1131h) 내에 적어도 일부 배치되고 댐퍼부재(DP)와 접할 수 있다.
또한, 상술한 바와 같이 제3 돌기부(1131ap3)는 탄성부재(EE)오 적어도 일부 접할 수 있다. 예컨대, 제3 돌기부(1131ap3)의 상면은 탄성부재(EE)와 접할 수 있다. 이에, 제3 돌기부(1131ap3)는 탄성부재(EE)를 적어도 일부 지지할 수 있다.
나아가, 탄성부재(EE)는 제1 돌기부(1131ap1)와 제2 돌기부(1131ap2) 사이의 영역을 관통할 수 있다. 또한, 연결부(CP)는 무버 홈(1131h) 또는 무버 홈(113h) 내의 댐퍼부재(DP)를 관통할 수 있다. 예컨대, 탄성부재(EE)는 댐퍼부재(DP)를 관통할 수 있다. 이로써, 댐퍼부재(DP), 탄성부재(EE) 및 홀더(1131) 간의 결합력이 향상되어, 진동 억제가 향상될 수 있다. 이로써, 제1 카메라 엑추에이터의 내구성도 향상될 수 있다.
도 19는 실시예에 따른 틸팅 가이드부의 사시도이고, 도 20는 도 19와 상이한 방향에서 틸팅 가이드부의 사시도이고, 도 21는 도 19에서 FF’로 절단된 틸팅 가이드부의 단면도이다.
도 19 내지 도 21를 참조하면, 실시예에 따른 틸팅 가이드부(1141)는 베이스(BS), 베이스(BS)의 제1 면(1141a)으로부터 돌출되는 제1 돌출부(PR1), 베이스(BS)의 제2 면(1141b)으로부터 돌출되는 제2 돌출부(PR2)를 포함할 수 있다. 또한, 상술한 바와 같이 구조에 따라 제1 돌출부와 제2 돌출부는 형성된 면이 반대일 수 있으나, 상술한 내용을 기준으로 이하 설명한다.
먼저, 베이스(BS)는 제1 면(1141a) 및 제1 면(1141a)에 대향하는 제2 면(1141b)을 포함할 수 있다. 즉, 제1 면(1141a)은 제2 면(1141b)과 제3 방향(Z축 방향)으로 이격될 수 있고, 틸팅 가이드부(1141) 내에서 서로 대향하는 또는 서로 마주보는 외측면일 수 있다.
틸팅 가이드부(1141)는 제1 면(1141a) 상에서 일측으로 연장된 제1 돌출부(PR1)를 포함할 수 있다. 실시예에 따르면, 제1 돌출부(PR1)는 제1 면(1141a)에서 무버를 향해 돌출될 수 있다. 제1 돌출부(PR1)는 복수 개로, 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)를 포함할 수 있다.
제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)는 제1 방향(X축 방향)으로 나란히 위치할 수 있다. 다시 말해, 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)는 제1 방향(X축 방향)으로 중첩될 수 있다. 또한, 실시예에서 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)는 제1 방향(X축 방향)으로 연장된 가상선에 의해 이등분될 수 있다.
또한, 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)는 곡률을 가지며, 예를 들어 반구 형상일 수 있다.
또한, 틸팅 가이드부(1141)는 제2 면(1141a) 상에서 일측으로 연장된 제2 돌출부(PR2)를 포함할 수 있다. 실시예에 따르면, 제2 돌출부(PR2)는 제2 면(1141b)에서 하우징을 향해 돌출될 수 있다. 그리고 제2 돌출부(PR2)는 복수 개이며, 실시예에서 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)를 포함할 수 있다.
제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)는 제2 방향(Y축 방향)으로 나란히 위치할 수 있다. 즉, 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)는 제2 방향(Y축 방향)으로 중첩될 수 있다. 또한, 실시예에서 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)는 제2 방향(Y축 방향)으로 연장된 가상선(VL2’)에 의해 이등분될 수 있다.
제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)는 곡률을 가질 수 있으며, 예를 들어 반구 형상일 수 있다. 그리고 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)는 베이스(BS)의 제2 면(1141b)로부터 이격된 지점에서 제1 부재(1131a)와 접할 수 있다.
제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)는 제2 방향으로 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b) 사이 영역에 위치할 수 있다. 실시예에 따르면, 제2 방향으로 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b) 간의 이격 공간의 중앙에 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)가 위치할 수 있다. 이러한 구성에 의하여, 실시예에 따른 엑추에이터는 X축을 기준으로 X축 틸트의 각도가 동일 범위를 가지게 할 수 있다. 다시 말해, 틸팅 가이드부(1141)는 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)를 기준으로 무버가 X축 틸트가 가능한 범위(예컨대, 양/음의 범위)를 X축을 기준으로 동일하게 제공할 수 있다.
또한, 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)는 제1 방향으로 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b) 사이 영역에 위치할 수 있다. 실시예에 따르면, 제1 방향으로 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b) 간의 이격 공간의 중앙에 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)가 위치할 수 있다. 이러한 구성에 의하여, 실시예에 따른 엑추에이터는 Y축을 기준으로 Y축 틸트의 각도가 동일 범위를 가지게 할 수 있다. 다시 말해, 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)를 기준으로 틸팅 가이드부(1141) 및 무버는 Y축 틸트가 가능한 범위(예컨대, 양/음의 범위)를 Y축을 기준으로 동일하게 제공할 수 있다.
제1 돌출부(PR1)는 제1 이등분선(VL1) 상에 위치할 수 있다. 여기서, 제1 이등분선(VL1)은 제1 면(1141a)을 제2 방향(Y축 방향)으로 이등분하는 선이다. 이에 따라, 제1 돌출부(PR1)를 통해 틸팅 가이드부(1141)가 X축 틸트를 용이하게 수행할 수 있다. 뿐만 아니라, 틸팅 가이드부(1141)가 X축 틸트를 제1 이등분선(VL1)을 기준으로 수행하므로 회전력이 틸팅 가이드부(1141)에 균일하게 가해질 수 있다. 이에, X축 틸트가 정교하게 이루어지고 소자의 신뢰성이 개선될 수 있다.
또한, 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)는 제1 이등분선(VL1) 및 제2 이등분선(VL2)을 기준으로 대칭으로 배치될 수 있다. 또는 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)는 제1 중심점(C1)을 기준으로 대칭으로 위치할 수 있다. 이러한 구성에 의하여, X축 틸트 시 제1 돌출부(PR1)에 의해 지지되는 지지력이 제2 이등분선(VL2)을 기준으로 상측과 하측에 동일하게 가해질 수 있다. 이에, 틸팅 가이드부의 신뢰성이 개선될 수 있다. 여기서, 제2 이등분선(VL2)은 제1 면(1141a)을 제 제1 방향(X축 방향)으로 이등분하는 선이다. 그리고 제1 중심점(C1)은 제1 이등분선(VL1)과 제2 이등분선(VL2)의 교점일 수 있다. 또는, 틸팅 가이드부(1141)의 형상에 따라 무게 중심에 대응하는 지점일 수도 있다.
뿐만 아니라, 틸팅 가이드부(1141)가 Y축 틸트를 제4 이등분선(VL2')을 기준으로 수행하므로 회전력이 틸팅 가이드부(1141)에 균일하게 가해질 수 있다. 이에, Y축 틸트가 정교하게 이루어지고 소자의 신뢰성이 개선될 수 있다.
또한, 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)는 제4 이등분선(VL2') 상에 서 제3 이등분선(VL1')에 대칭으로 배치될 수 있다. 또는 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)는 제2 중심점(C1’)을 기준으로 대칭으로 위치할 수 있다. 이러한 구성에 의하여, Y축 틸트 시 제2 돌출부(PR2)에 의해 지지되는 지지력이 제4 이등분선(VL2')을 기준으로 틸팅 가이드부의 상측과 하측에 동일하게 가해질 수 있다. 이에, 틸팅 가이드부의 신뢰성이 개선될 수 있다. 여기서, 제3 이등분선(VL1’)은 제2 면(1141b)을 제2 방향(Y축 방향)으로 이등분하는 선이다. 제4 이등분선(VL2')은 제2 면(1141b)을 제1 방향(X축 방햐)으로 이등분하는 선이다. 그리고 제2 중심점(C1’)은 제3 이등분선(VL1')과 제4 이등분선(VL2')의 교점일 수 있다. 또는, 틸팅 가이드부(1141)의 형상에 따라 무게 중심에 대응하는 지점일 수도 있다.
또한, 제1 돌출부(PR1)와 제2 돌출부(PR2)에 대한 설명은 상술한 내용이 동일하게 적용될 수 있다. 또한, 베이스(BS)의 형상은 카메라 엑추에이터의 무게 또는 체결 구조에 따라 다양하게 변경될 수 있다.
도 22는 쉴드 캔 및 기판이 제거된 제1 실시예에 따른 제1 카메라 엑추에이터의 사시도이고, 도 23는 도 22에서 PP’로 절단된 단면도이고, 도 24는 도 22에서 QQ’로 절단된 단면도이다.
도 22 내지 도 24를 참조하면, 제1 코일(1152a)은 제1 하우징 측부(1121)에 위치하고, 제1 마그넷(1151a)은 홀더(1131)의 제1 홀더 외측면(1131S1)에 위치할 수 있다. 이에, 제1 코일(1152a)과 제1 마그넷(1151a)은 서로 대향하여 위치할 수 있다. 제1 마그넷(1151a)은 제1 코일(1152a)과 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다.
또한, 제2 코일(1152b)은 제2 하우징 측부(1122)에 위치하고, 제2 마그넷(1151b)은 홀더(1131)의 제2 홀더 외측면(1131S2)에 위치할 수 있다. 이에, 제2 코일(1152b)과 제2 마그넷(1151b)은 서로 대향하여 위치할 수 있다. 제2 마그넷(1151b)은 제2 코일(1152b)과 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다.
또한, 제1 코일(1152a)과 제2 코일(1152b)은 제2 방향(Y축 방향)으로 중첩되고, 제1 마그넷(1151a)과 제2 마그넷(1151b)은 제2 방향(Y축 방향)으로 중첩될 수 있다.
이러한 구성에 의하여, 홀더의 외측면(제1 홀더 외측면 및 제2 홀더 외측면)에 가해지는 전자기력이 제2 방향(Y축 방향)으로 평행 축 상에 위치하여 X축 틸트가 정확하고 정밀하게 수행될 수 있다.
또한, 틸팅 가이드부(1141)의 제2 돌출부(PR2a, PR2b)는 하우징(1120)의 제2 부재(1126)와 접할 수 있다. 제2 돌출부(PR2)는 제2 부재(1126)의 일측면에 형성된 제2 돌기홈(PH2) 내에 안착할 수 있다. 그리고 X축 틸트를 수행하는 경우, 제2 돌출부(PR2a, PR2b)가 틸트의 기준축(또는 회전축)일 수 있다. 이에, 틸팅 가이드부(1141), 무버(1130)가 상하로 이동할 수 있다.
또한, 제1 홀 센서(1153a)는 상술한 바와 같이 기판부(1154)와 전기적 연결 및 결합을 위해 외측에 위치할 수 있다. 다만, 이러한 위치에 한정되는 것은 아니다.
또한, 제3 코일(1152c)은 제3 하우징 측부(1123)에 위치하고, 제3 마그넷(1151c)은 홀더(1131)의 제3 홀더 외측면(1131S3)에 위치할 수 있다. 제3 코일(1152c)과 제3 마그넷(1151c)은 제1 방향(X축 방향)으로 적어도 일부 중첩될 수 있다. 이에 따라, 제3 코일(1152c)과 제3 마그넷(1151c) 간의 전자기력의 세기가 용이하게 제어될 수 있다.
틸팅 가이드부(1141)는 상술한 바와 같이 홀더(1131)의 제4 홀더 외측면(1131S4) 상에 위치할 수 있다. 또한, 틸팅 가이드부(1141)는 제4 홀더 외측면의 제4 안착홈(1131S4a) 내에 안착할 수 있다. 상술한 바와 같이 제4 안착홈(1131S4a)은 상술한 제1 영역(AR1), 제2 영역(AR2) 및 제3 영역(AR3)을 포함할 수 있다.
제1 영역(AR1)에는 제1 부재(1131a)가 배치될 수 있다. 그리고 제1 부재(1131a)의 외측면은 탄성부재(EE)의 제2 접합부(EP2)와 결합할 수 있다. 이에, 홀더(1131)는 탄성부재(EE)에서 발생한 복원력(RF2)과 동일한 방향으로 홀더(1131)에서 틸팅 가이드부(1141)로 힘을 가할 수 있다(RF2').
제2 영역(AR2)에는 제2 부재(1126)가 배치될 수 있다. 제2 부재(1126)는 제2 돌기홈(PH2)을 포함할 수 있다. 제2 돌기홈(PH2)은 제2 부재(1126)가 홀더(1131)와 마주하는 면에 위치할 수 있다.
그리고 탄성부재(EE)에서 발생한 복원력(RF2)이 상술한 경로를 거쳐 제2 부재(1126)에 가해질 수 있다. 이에 따라, 탄성부재(EE)를 통해 발생한 복원력(RF2, RF2')은 제2 부재(1126)와 홀더(1131) 사이에 배치된 틸팅 가이드부(1141)를 가압할 수 있다.
제3 영역(AR3)에는 틸팅 가이드부(1141)가 배치될 수 있다. 틸팅 가이드부(1141)는 상술한 바와 같이 제1 돌출부(PR1)와 제2 돌출부(PR2)를 포함할 수 있다. 이 때, 제1 돌출부(PR1)와 제2 돌출부(PR2)는 베이스(BS)의 제2 면(1141b)과 제1 면(1141a)에 각각 배치될 수도 있다. 제1 돌출부(PR1)와 제2 돌출부(PR2)는 베이스(BS)의 마주보는 면 상에 다양하게 위치할 수 있다. 다만, 도면을 기준으로 이하 설명한다.
그리고 홀더(1131)에는 제1 돌기홈(PH1)이 위치할 수 있다. 특히, 제1 돌기홈(PH1)은 제4 안착홈(1131S4a)에 위치할 수 있다. 그리고 제1 돌출부(PR1)는 제1 돌기홈(PH1)에 위치할 수 있다. 이에, 제1 돌출부(PR1)는 제1 돌기홈(PH1)과 적어도 일부 접할 수 있다. 또한, 상술한 바와 같이 제1 돌출부(PR1)의 정점은 제2 접합부의 접합홀의 이등분선 상에 위치할 수 있다.
또한, 제1 돌기홈(PH1)은 최대 직경이 제1 돌출부(PR1)의 최대 직경에 대응할 수 있다. 이는 제2 돌기홈(PH2)과 제2 돌출부(PR2)에도 동일하게 적용될 수 있다. 즉, 제2 돌기홈(PH2)은 최대 직경이 제2 돌출부(PR2)의 최대 직경에 대응할 수 있다. 또한, 이에, 제2 돌출부(PR2)는 제2 돌기홈(PH2)과 접할 수 있다. 이러한 구성에 의하여, 제1 돌출부(PR1)를 기준으로 제2 축 틸트와 제2 돌출부(PR2)를 기준으로 제1 축 틸트가 용이하게 일어날 수 있으며, 틸트의 반경이 향상될 수 있다.
또한, 틸팅 가이드부(1141)가 제3 방향(Z축 방향)으로 제1 부재(1131a) 및 제2 부재(1126)와 나란히 배치되어, 틸팅 가이드부(1141)가 광학 부재(1132)와 제1 방향(X축 방향)으로 중첩될 수 있다. 보다 구체적으로, 실시예에서 제1 돌출부(PR1)가 제1 방향(X축 방향)으로 광학 부재(1132)와 중첩될 수 있다. 나아가, 제1 돌출부(PR1)는 적어도 일부가 제3 코일(1152c) 또는 제3 마그넷(1151c)과 제1 방향(X축 방향)으로 중첩될 수 있다. 즉, 실시예에 따른 카메라 엑추에이터에서 틸트의 중심축인 각 돌출부가 무버(1130)의 무게 중심에 인접하게 위치할 수 있다. 이로써, 틸팅 가이드부가 무버의 무게 중심에 인접하게 위치할 수 있다. 이로써, 실시예에 따른 카메라 엑추에이터는 무버를 틸트시키는 모멘트 값을 최소화할 수 있고, 무버를 틸트시키기 위해 코일부 등에 인가되는 전류의 소모량도 최소화할 수 있어 전력 소모량 및 소자의 신뢰도를 개선할 수 있다.
또한, 상술한 바와 같이 제3 코일(1153c) 내측에 위치하는 제2 홀 센서(1153b)는 자속 변화를 감지하고, 이에 의해 제3 마그넷(1151c)과 제2 홀 센서(1153b) 간의 위치 센싱이 수행될 수 있다.
도 25은 실시예에 따른 구동부를 도시한 도면이다.
도 25를 참조하면, 상술한 바와 같이 제1 구동부(1150)는 구동 마그넷(1151), 구동 코일(1152), 홀 센서부(1153) 및 기판부(1154)를 포함한다.
또한, 상술한 바와 같이 구동 마그넷(1151)은 전자기력에 의한 구동력을 제공하는 제1 마그넷(1151a), 제2 마그넷(1151b) 및 제3 마그넷(1151c)을 포함할 수 있다. 제1 마그넷(1151a), 제2 마그넷(1151b) 및 제3 마그넷(1151c)은 각각 프리즘 홀더(1131)의 외측면에 위치할 수 있다.
또한, 구동 코일(1152)은 복수 개의 코일을 포함할 수 있다. 실시예로, 구동 코일(1152)은 제1 코일(1152a), 제2 코일(1152b) 및 제3 코일(1152c)을 포함할 수 있다.
제1 코일(1152a)은 제1 마그넷(1151a)과 대향하게 위치할 수 있다. 이에, 제1 코일(1152a)은 상술한 바와 같이 제1 하우징 측부(1121)의 제1 하우징 홀(1121a)에 위치할 수 있다. 또한, 제2 코일(1152b)은 제2 마그넷(1151b)과 대향하게 위치할 수 있다. 이에, 제2 코일(1152b)은 상술한 바와 같이 제2 하우징 측부(1122)의 제2 하우징 홀(1122a)에 위치할 수 있다.
제1 실시예에 따른 제1 카메라 엑추에이터는 구동 마그넷(1151)과 구동 코일(1152) 간의 전자기력에 의해 무버(1130)를 제1 축(X축 방향) 또는 제2 축(Y축 방향)으로 회전 제어함으로써 OIS 구현 시 디센터(decent)나 틸트(tilt) 현상의 발생을 최소화하여 최상의 광학적 특성을 제공할 수 있다.
또한, 실시예에 의하면 하우징(1120)과 무버(1130) 사이에 배치되는 회전부(1140)의 틸팅 가이드부(1141)를 통해, OIS 구현함으로써 엑추에이터의 사이즈 제한을 해소하여 초슬림, 초소형의 카메라 엑추에이터 및 이를 포함하는 카메라 모듈을 제공할 수 있다.
기판부(1154)는 제1 기판 측부(1154a), 제2 기판 측부(1154b) 및 제3 기판 측부(1154c)를 포함할 수 있다.
제1 기판 측부(1154a)와 제2 기판 측부(1154b)는 서로 마주보게 배치될 수 있다. 그리고 제3 기판 측부(1154c)는 제1 기판 측부(1154a)와 제2 기판 측부(1154b) 사이에 위치할 수 있다.
또한, 제1 기판 측부(1154a)는 제1 하우징 측부와 쉴드 캔 사이에 위치할 수 있고, 제2 기판 측부(1154b)는 제2 하우징 측부와 쉴드 캔 사이에 위치할 수 있다. 또한, 제3 기판 측부(1154c)는 제3 하우징 측부와 쉴드 캔 사이에 위치할 수 있고, 기판부(1154)의 저면일 수 있다.
제1 기판 측부(1154a)는 제1 코일(1152a)과 결합하고, 전기적으로 연결될 수 있다. 또한, 제1 기판 측부(1154a)는 제1 홀 센서(1153a)와 결합하고, 전기적으로 연결될 수 있다.
제2 기판 측부(1154b)는 제2 코일(1152b)과 결합하고 전기적으로 연결될 수 있다. 또한, 제2 기판 측부(1154b)는 제1 홀 센서와 결합하고 전기적으로 연결될 수도 있음을 이해해야 한다.
제3 기판 측부(1154c)는 제3 코일(1152c)과 결합하고 전기적으로 연결될 수 있다. 또한, 제3 기판 측부(1154c)는 제2 홀 센서(1153b)와 결합하고 전기적으로 연결될 수 있다.
도 26은 변형예에 따른 구동부를 도시한 도면이다.
제1 구동부(1150A)는 구동 마그넷(1151), 구동 코일(1152), 홀 센서부(1153), 제1 기판부(1154) 및 요크부(1155)를 포함한다.
또한, 상술한 바와 같이 구동 마그넷(1151)은 전자기력에 의한 구동력을 제공하는 제1 마그넷(1151a) 및 제2 마그넷(1151b)을 포함할 수 있다. 제1 마그넷(1151a), 및 제2 마그넷(1151b)은 각각 홀더(1131)의 외측면에 위치할 수 있다.
또한, 상술한 바와 같이 더미 부재(DM)는 도면 상에서 구동부(1150A)에 포함되는 것으로 설명하나, 별도의 부재일 수도 있음을 이해해야 한다. 즉, 더미 부재(DM)는 코일과 대향하여 배치되지 않아 전자기력을 발생하지 않으므로 소정의 방향 예컨대, Y축 틸트를 수행하는 구동력을 발생하는 구동원이 아니다. 다만, 더미 부재(DM)는 홀더의 외측면에 안착하여 제1 마그넷(1151a)과 제1 방향 또는 제2 방향으로 대칭으로 위치할 수 있다. 또한, 더미 부재(DM)는 제1 마그넷(1151a)과 무게가 동일할 수 있다. 이에 따라, 더미 부재(DM)는 홀더에서 제1 마그넷(1151a)의 무게만큼 보상하여 제2 방향(Y축 방향)을 기준으로 홀더가 회전하는데 있어서 제1 마그넷(1151a)을 향해 무게가 집중되는 것을 방지할 수 있다. 다시 말해, 더미 부재(DM)는 홀더(1131)의 Y축 틸트에 대한 정확도를 향상시킬 수 있다. 나아가, 더미 부재(DM)에 의해, 제1 코일(1152a)에 제1 방향 및 제2 방향으로 대칭된 위치에 코일이 배치되지 않으므로 Y축 틸트를 위한 전류 효율이 개선될 수 있다. 뿐만 아니라, 제1 실시예에 따른 제1 카메라 엑추에이터의 전체 무게가 감소하여 경량화를 도모할 수 있다.
또한, 구동 코일(1152)은 복수 개의 코일을 포함할 수 있다. 실시예로, 구동 코일(1152)은 제1 코일(1152a) 및 제2 코일(1152b)을 포함할 수 있다.
제1 코일(1152a)은 제1 마그넷(1151a)과 대향하게 위치할 수 있다. 이에, 제1 코일(1152a)은 상술한 바와 같이 제1 하우징 측부(1121)의 제1 하우징 홀(1121a)에 위치할 수 있다.
또한, 제2 하우징 측부(1122)의 제2 하우징 홀(1122a)은 개구된 바, 제1 카메라 엑추에이터의 무게가 감소할 수 있다. 상기 개구는 더미 부재(DM)와 대향하게 위치할 수 있다.
그리고 제1 실시예에 따른 제1 카메라 엑추에이터는 구동 마그넷(1151)과 구동 코일(1152) 간의 전자기력에 의해 무버(1130)를 제1 축(X축 방향) 또는 제2 축(Y축 방향)으로 회전 제어함으로써 OIS 구현 시 디센터(decent)나 틸트(tilt) 현상의 발생을 최소화하여 최상의 광학적 특성을 제공할 수 있다.
또한, 실시예에 의하면 제1 하우징(1120)과 무버(1130) 사이에 배치되는 회전부(1140)의 틸팅 가이드부(1141)를 통해, OIS 구현함으로써 엑추에이터의 사이즈 제한을 해소하여 초슬림, 초소형의 카메라 엑추에이터 및 이를 포함하는 카메라 모듈을 제공할 수 있다.
제1 기판부(1154)는 제1 기판 측부(1154a), 제2 기판 측부(1154b) 및 제3 기판 측부(1154c)를 포함할 수 있다.
제1 기판 측부(1154a)와 제2 기판 측부(1154b)는 서로 마주보게 배치될 수 있다. 그리고 제3 기판 측부(1154c)는 제1 기판 측부(1154a)와 제2 기판 측부(1154b) 사이에 위치할 수 있다.
또한, 제1 기판 측부(1154a)는 제1 하우징 측부와 쉴드 캔 사이에 위치할 수 있고, 제2 기판 측부(1154b)는 제2 하우징 측부와 쉴드 캔 사이에 위치할 수 있다. 또한, 제3 기판 측부(1154c)는 제3 하우징 측부와 쉴드 캔 사이에 위치할 수 있고, 제1 기판부(1154)의 저면일 수 있다.
제1 기판 측부(1154a)는 제1 코일(1152a)과 결합하고, 전기적으로 연결될 수 있다. 또한, 제1 기판 측부(1154a)는 제1 홀 센서(1153a)와 결합하고, 전기적으로 연결될 수 있다.
제2 기판 측부(1154b)는 더미 기판일 수 있다.
나아가, 제3 기판 측부(1154c)는 제2 코일(1152b)과 결합하고 전기적으로 연결될 수 있다. 또한, 제3 기판 측부(1154c)는 제2 홀 센서(1153b)와 결합하고 전기적으로 연결될 수 있다.
이에, 제1 실시예에 따른 제1 카메라 엑추에이터에서, 제2 기판 측부(1154b)로의 전기적 연결이 필요 없어 제1 기판 측부(1154a)와 제3 기판 측부(1154c)에만 전기적 경로(CPH)가 형성될 수 있다. 이에, 전기적 연결의 길이가 감소하여 전기적 저항이 감소할 수 있다. 즉, 전류 효율이 개선될 수 있다.
또한, 제1 코일 또는 제2 코일 등으로 주입되는 전류의 양을 제어하는 드라이버(dR)도 제1 기판 측부(1154a) 및 제3 기판 측부(1154b) 중 어느 하나에 배치될 수 있다. 이로써, 전기적 경로를 최소화하여 전기적 저항을 최소화할 수 있다.
또한, 요크부(1155)는 제1 요크(1155a) 및 제2 요크(1155b)를 포함할 수 있다. 제1 요크(1155a)는 제1 안착홈 내에 위치하고, 제1 마그넷(1151a)과 결합할 수 있다. 또한, 제2 요크(1155b)는 제3 안착홈 내에 위치하고, 제2 마그넷(1151b)과 결합할 수 있다. 추가적으로, 더미 요크는 제2 안착홈 내에 위치하고 더미 부재(DM)와 결합할 수 있다. 이러한 제1 요크(1155a) 및 제2 요크(1155b)는 제1 마그넷(1151a) 및 제2 마그넷(1151b)이 제1 안착홈과 제3 안착홈에 용이하게 안착하여 하우징과 결합하게 한다.
도 27는 제1 실시예에 따른 제1 카메라 엑추에이터의 사시도이고, 도 28는 도 27에서 SS’로 절단된 단면도이고, 도 29는 도 28에 도시된 제1 카메라 엑추에이터의 이동의 예시도이다.
도 27 내지 도 29를 참조하면, Y축 틸트가 수행될 수 있다. 즉, 제1 방향(X축 방향)으로 회전하여 OIS 구현이 이루어질 수 있다.
실시예로, 홀더(1131)의 하부에 배치되는 제3 마그넷(1151c)은 제3 코일(1152c)과 전자기력을 형성하여 제2 방향(Y축 방향)을 기준으로 무버(1130)를 틸팅 또는 회전시킬 수 있다.
구체적으로, 탄성부재(EE)의 복원력이 제1 부재(1131a)로 전달되고, 최종적으로 제2 부재(1126)와 홀더(1131) 사이에 배치되는 틸팅 가이드부(1141)로 전달될 수 있다. 이에 따라, 틸팅 가이드부(1141)는 상술한 척력에 의해 무버(1130)와 하우징(1120)에 의해 가압될 수 있다.
또한, 제2 돌출부(PR2)는 제2 부재(1126)에 의해 지지될 수 있다. 이 때, 실시예로 틸팅 가이드부(1141)는 제2 부재(1126)를 향해 돌출된 제2 돌출부(PR2)를 기준축(또는 회전축)으로 즉, 제2 방향(Y축 방향)을 기준으로 회전 또는 틸팅할 수 있다. 다시 말해, 틸팅 가이드부(1141)는 제2 부재(1126)를 향해 돌출된 제2 돌출부(PR2)를 기준축(또는 회전축)으로 제1 방향(X축 방향)으로 회전 또는 틸팅할 수 있다.
예를 들어, 제3 안착홈에 배치된 제3 마그넷(1151c)과 제3 기판 측부 상에 배치된 제3 코일부(1152c) 간의 제1 전자기력(F1A, F1B)에 의해 무버(1130)를 X축 방향으로 제1 각도(θ1) 회전(X1->X1a)하면서 OIS 구현이 이루어질 수 있다. 또한, 제3 안착홈에 배치된 제3 마그넷(1151c)과 제3 기판 측부 상에 배치된 제3 코일부(1152c) 간의 제1 전자기력(F1A, F1B)에 의해 무버(1130)를 X축 방향으로 제1 각도(θ1)로 회전(X1->X1b)하면서 OIS 구현이 이루어질 수 있다. 제1 각도(θ1)는 ±1° 내지 ±3°일 수 있다. 다만, 이에 한정되는 것은 아니다. 이하 여러 실시예에 따른 제1 카메라 엑추에이터에서 전자기력은 기재된 방향으로 힘을 생성하여 무버를 움직이거나, 다른 방향으로 힘을 생성하더라도 기재된 방향으로 무버를 움직일 수 있다. 즉, 기재된 전자기력의 방향은 마그넷과 코일에 의해 발생되어 무버를 움직이는 힘의 방향을 의미한다.
도 30는 제1 실시예에 따른 제1 카메라 엑추에이터의 사시도이고, 도 31는 도 30에서 RR’로 절단된 단면도이고, 도 32는 도 31에 도시된 제1 카메라 엑추에이터의 이동의 예시도이다.
도 30 내지 도 32를 참조하면, X축 틸트가 수행될 수 있다. 즉, Y축 방향으로 무버(1130)가 틸팅 또는 회전하면서 OIS 구현이 이루어질 수 있다.
실시예로, 홀더(1131)에 배치되는 제1 마그넷(1151a) 및 제2 마그넷(1151b)은 각각이 제1 코일(1152a) 및 제2 코일(1152b)과 전자기력을 형성하여 제1 방향(X축 방향)을 기준으로 틸팅 가이드부(1141) 및 무버(1130)를 틸팅 또는 회전시킬 수 있다.
구체적으로, 탄성부재(EE)의 복원력이 제1 부재(1131a) 및 홀더(1131)로 전달되고, 최종적으로 홀더(1131)와 제2 부재(1126) 사이에 배치되는 틸팅 가이드부(1141)로 전달될 수 있다. 이에 따라, 틸팅 가이드부(1141)는 상술한 척력에 의해 무버(1130)와 하우징(1120)에 의해 가압될 수 있다.
그리고 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)는 제1 방향(X축 방향)으로 이격되어 홀더(1131)의 제4 안착홈(1131S4a)에 형성된 제1 돌기홈(PH1)에 의해 지지될 수 있다. 또한, 실시예로 틸팅 가이드부(1141)는 홀더(1131)를 향해(예컨대, 제3 방향을 향해) 돌출된 제1 돌출부(PR1)를 기준축(또는 회전축)으로 즉, 제1 방향(X축 방향)을 기준으로 회전 또는 틸팅할 수 있다.
예를 들어, 제1 안착홈에 배치된 제1, 2 마그넷(1151a, 1151b)과 제1, 2 기판 측부 상에 배치된 제1, 2 코일부(1152a, 1152b) 간의 제2 전자기력(F2A, F2B)에 의해 무버(1130)를 Y축 방향으로 제2 각도(θ2) 회전(Y1->Y1a)하면서 OIS 구현이 이루어질 수 있다. 또한, 제1 안착홈에 배치된 제1, 2 마그넷(1151a, 1151b)과 제1, 2 기판 측부 상에 배치된 제1, 2 코일부(1152a, 1152b) 간의 제2 전자기력(F2A, F2B)에 의해 무버(1130)를 Y축 방향으로 제2 각도(θ2) 회전(Y1->Y1b)하면서 OIS 구현이 이루어질 수 있다. 제2 각도(θ2)는 ±1° 내지 3°일 수 있다. 다만, 이에 한정되는 것은 아니다.
또한, 상술한 바와 같이 제1,2 마그넷(1151a, 1151b)과 제1,2 코일부(1152a, 1152b)에 의한 전자기력은 제3 방향 또는 제3 방향의 반대 방향으로 작용할 수 있다. 예컨대, 전자기력은 무버(1130)의 좌측부에서 제3 방향(Z축 방향)으로 발생하고, 무버(1130)의 우측부에서 제3 방향(Z축 방향)의 반대 방향으로 작용할 수 있다. 이에, 무버(1130)는 제1 방향을 기준으로 회전할 수 있다. 또는 제2 방향을 따라 이동할 수 있다.
이와 같이, 실시예에 따른 제2 엑추에이터는 홀더 내의 구동 마그넷과 하우징에 배치되는 구동 코일 간의 전자기력에 의해 무버(1130)를 제1 방향(X축 방향) 또는 제2 방향(Y축 방향)으로 회전 제어함으로써, OIS 구현 시 디센터(decent)나 틸트(tilt) 현상의 발생을 최소화하고 최상의 광학적 특성을 제공할 수 있다. 또한, 상술한 바와 같이 ‘Y축 틸트’는 제1 방향(X축 방향)으로 회전 또는 틸트하는 것을 의미하고, 'X축 틸트’는 제2 방향(Y축 방향)으로 회전 또는 틸트하는 것을 의미한다.
도 33은 제2 실시예에 따른 제1 카메라 엑추에이터의 사시도이고, 도 34는 제2 실시예에 따른 제1 카메라 엑추에이터에서 제1 부재를 도시한 도면이고, 도 35는 제2 실시예에 따른 제1 카메라 엑추에이터에서 제1 부재의 상면도이고, 도 36은 제2 실시예에 따른 제1 카메라 엑추에이터의 측면도이다.
도 33 내지 도 36을 참조하면, 제2 실시예에 따른 제1 카메라 엑추에이터(1100A)는 쉴드 캔, 하우징, 무버, 회전부, 탄성부재(EE), 구동부, 제1 부재(1131a), 제2 부재(1126) 및 댐퍼부재를 포함한다. 그리고 이하에서 설명하는 내용을 제외하고 상술한 내용이 동일하게 적용될 수 있다.
제2 실시예에 따른 제1 카메라 엑추에이터(1100A)에서, 제1 부재(1131a)는 연결부(CP)에 인접하게 배치되는 부재 돌기(1131ap)를 포함할 수 있다.
부재 돌기(1131ap)는 연결부(CP)와 광축 방향 또는 제3 방향(Z축 방향)으로 적어도 일부 중첩될 수 있다. 그리고 연결부(CP)는 적어도 일부가 부재 돌기(1131ap)의 외면에 대응하여 곡률질 수 있다. 즉, 연결부(CP)와 부재 돌기(1131ap)는 서로 제1 방향(X축 방향)으로 중첩되는 영역에서 마주보는 면 또는 선이 서로 대응할 수 있다. 그리고 상술한 마주보는 면 또는 선이 서로 곡률질 수 있다. 이에, 댐퍼부재(DP1)가 제1 부재(1131a) 및 탄성부재(EE)와 용이하게 결합할 수 있다. 나아가, 부재 돌기(1131ap)는 댐퍼부재(DP1)가 제1 부재(1131a) 및 탄성부재(EE) 이외의 부재와 결합되는 현상이 억제될 수 있다. 나아가, 상술한 곡률진 면 또는 선에 의해, 부재 돌기(1131ap)는 일측으로 돌출된 영역(1131app)을 가질 수 있다.
또한, 제1 부재(1131a)의 상면(1131apu)은 하면(1131apb)보다 제1 방향(X축 방향)으로 폭 또는 길이가 작을 수 있다. 예컨대, 제1 부재(1131a)에서 상면(1131apu)의 제1 방향(X축 방향)으로 폭 또는 길이(W5)는 하면(1131apb)의 제1 방향(X축 방향)으로 폭 또는 길이(W4)보다 작을 수 있다.
나아가, 제1 부재(1131a)의 상면(1131apu)은 하면(1131apb)보다 면적이 작을 수 있다. 이러한 구성에 의하여, 댐퍼부재(DP1)와 탄성부재(EE) 간의 결합 영역이 용이하게 확보되며 하부로 댐퍼부재가 흘러내리는 현상이 용이하게 억제될 수 있다.
또한, 제2 결합부(PP2)의 제3 방향(Z축 방향)으로 높이 또는 길이(d2)는 부재 돌기(1131ap)의 제3 방향으로 폭이 또는 길이(d1)보다 작을 수 있다. 이에, 상술한 바와 같이 탄성부재(EE)의 예압 형성이 용이하게 이루어지면서, 부재 돌기(1131ap)와 댐퍼부재(DP1) 간의 결합도 이루어질 수 있다.
나아가, 결합 베이스(PP2a)의 제3 방향으로 폭이 또는 길이(d3)는 제2 결합부(PP2)의 제3 방향(Z축 방향)으로 높이 또는 길이(d2)보다 작을 수 있다.
또한, 댐퍼부재(DP1)는 부재 돌기(1131ap) 및 연결부(CP)와 결합할 수 있다. 이로써, 댐퍼부재(DP1)는 무버의 축 회전 시 세틀링타임(settling time)에서의 진동을 억제할 수 있다. 또한, 댐퍼부재(DP1)는 공진 주파수에 의한 스프링의 파손을 억제할 수 있다. 이로써, 실시예에 따른 제1 카메라 엑추에이터의 신뢰성이 향상될 수 있다.
또한, 부재 돌기(1131ap)는 제1 결합부와 제2 결합부(PP2) 사이에 위치할 수 있다. 구체적으로, 부재 돌기(1131ap)는 제1 결합부와 제2 결합부(PP2) 간의 제2 방향(Y축 방향)으로 이격된 영역에 위치할 수 있다. 예컨대, 부재 돌기(1131ap)는 제1 결합부와 제2 결합부(PP2) 간의 제2 방향(Y축 방향)으로 이격된 영역을 이등분하는 지점에 위치할 수 있다. 이에, 댐퍼부재(DP2)에 의한 진동 감쇠 효과가 더욱 향상될 수 있다.
또한, 실시예로, 제2 부재(1126)는 연결부(CP)에 인접하게 배치되는 하우징 돌기(1126p)를 포함할 수 있다.
연결부(CP)는 적어도 일부가 하우징 돌기(1126p)의 외면에 대응할 수 있다. 예컨대, 연결부(CP)와 하우징 돌기(1126p)는 서로 제1 방향(X축 방향)으로 중첩되는 영역에서 마주보는 면 또는 선이 서로 대응할 수 있다. 그리고 상술한 마주보는 면 또는 선이 서로 곡률질 수 있다. 이에, 댐퍼부재(DP2)가 제2 부재(1126) 및 탄성부재(EE)와 용이하게 결합할 수 있다. 나아가, 댐퍼부재(DP2)가 제2 부재(1126) 및 탄성부재(EE) 이외의 부재와 결합되는 현상이 억제될 수 있다. 이에, 상술한 곡률진 면 또는 선에 의해, 하우징 돌기(1126p)는 일측으로 돌출된 영역(1126pp)을 가질 수 있다. 이로써, 댐퍼부재(DP2)는 무버의 축 회전 시 세틀링타임(settling time)에서의 진동을 억제할 수 있다. 또한, 댐퍼부재(DP2)는 공진 주파수에 의한 스프링의 파손을 억제할 수 있다. 이로써, 실시예에 따른 제1 카메라 엑추에이터의 신뢰성이 향상될 수 있다.
하우징 돌기(1126p)는 연결부(CP)와 광축 방향 또는 제3 방향(Z축 방향)으로 적어도 일부 중첩될 수 있다. 이에, 하우징 돌기(1126p)와 연결부(CP)는 댐퍼부재(DP2)에 의한 결합력이 더욱 향상될 수 있다. 나아가, 연결부(CP)의 탈출이 하우징 돌기(1126p)에 의해 억제될 수 있다.
도 37은 제3 실시예에 따른 제1 카메라 엑추에이터의 사시도이고, 도 38은 제3 실시예에 따른 제1 카메라 엑추에이터를 도시한 도면이고, 도 39는 제3 실시예에 따른 제1 카메라 엑추에이터의 측면도이다.
도 37 내지 도 39를 참조하면, 제3 실시예에 따른 제1 카메라 엑추에이터(1100B)는 쉴드 캔, 하우징, 무버, 회전부, 탄성부재(EE), 구동부, 제1 부재(1131a), 제2 부재(1126) 및 댐퍼부재를 포함한다. 그리고 이하에서 설명하는 내용을 제외하고 상술한 내용이 동일하게 적용될 수 있다.
또한, 상술한 바와 같이, 무버(1130)의 홀더(1131)는 제4 홀더 외측면(1131S4)에서 외측 또는 스프링을 향해 돌출된 무버 돌기부(1131p)를 포함할 수 있다. 그리고 무버(1130)의 홀더(1131)에서 돌기부(1131ap)는 복수 개일 수 있다. 예컨대, 무버 돌기부(1131p)는 제1 돌기부(1131ap1), 제2 돌기부(1131ap2) 및 제3 돌기부(1131ap3)를 포함할 수 있다. 나아가, 상술한 바와 같이 무버 돌기부(1131p)를 통해 댐퍼부재(DP)와 무버 또는 홀더(1131)가 용이하게 결합할 수 있다.
뿐만 아니라, 제1 부재(1131a)는 연결부(CP)에 인접하게 배치되는 부재 돌기(1131ap)를 포함할 수 있다. 상술한 바와 같이 댐퍼부재(DP1)가 제1 부재(1131a) 및 탄성부재(EE)와 용이하게 결합할 수 있다.
또한, 제2 부재(1126)는 연결부(CP)에 인접하게 배치되는 하우징 돌기(1126p)를 포함할 수 있다. 이에, 댐퍼부재(DP2)가 제2 부재(1126) 및 탄성부재(EE)와 용이하게 결합할 수 있다.
이러한 구성에 의하여, 댐퍼부재(DP, DP1, DP2)에 의해 탄성부재(EE)는 제2 부재(또는 하우징), 제1 부재(1131a), 홀더(1131, 또는 무버)와 결합할 수 있다. 이로써, 댐퍼부재와 각 부재 간의 결합력이 더욱 향상될 수 있다. 그리고 이러한 구성에 의하여, 무버의 축 회전 시 세틀링타임(settling time)에서의 진동이 더욱 억제될 수 있다. 또한, 댐퍼부재는 공진 주파수에 의한(공진 주파수로 진동) 스프링의 파손을 더욱 억제할 수 있다. 이로써, 실시예에 따른 제1 카메라 엑추에이터의 내구성 또는 신뢰성이 크게 향상될 수 있다.
도 40은 변형예에 따른 제1 카메라 엑추에이터를 도시한 도면이다.
도 40을 참조하면, 변형예에 따른 제1 카메라 엑추에이터는 쉴드 캔, 하우징, 무버, 회전부, 탄성부재(EE), 구동부, 제1 부재(1131a), 제2 부재(1126) 및 댐퍼부재(DP)를 포함한다. 그리고 이하에서 설명하는 내용을 제외하고 상술한 내용이 동일하게 적용될 수 있다.
먼저, 탄성부재(EE)는 탄성부재(EE)의 연결부(CP)에서 연결부(CP)의 각 레그들이 서로 인접하게 배치될 수 있다. 이 때, 댐퍼부재(DP3)는 인접한 연결부의 레그들을 결합할 수 있다. 즉, 연결부(CP)의 레그는 제1 접합부와 제2 접합부 사이를 연결하는 가지일 수 있다. 나아가, 상술한 레그는 복수 개일 수 있다. 또한, 연결부(CP)에서 하나의 레그는 상술한 제1 연결부 내지 제4 연결부를 포함할 수 있다.
그리고 댐퍼부재(DP3)는 인접한 연결부의 레그들을 서로 결합하면서, 하우징 돌기(1126p) 또는 제1 부재(1131a)의 부재 돌기(1131ap)와도 용이하게 결합할 수 있다. 이로써, 댐퍼부재(DP3)는 인접한 레그들, 또는 레그와 하우징 돌기, 또는 레그와 부재 돌기, 또는 레그와 부재 돌기 그리고 하우징 돌기와 결합할 수 있다. 이로써, 실시예에 따른 제1 카메라 엑추에이터의 내구성 또는 신뢰성이 크게 향상될 수 있다.
도 41는 제4 실시예에 따른 제1 카메라 엑추에이터의 사시도이고, 도 42는 제4 실시예에 따른 제1 카메라 엑추에이터의 분해 사시도이다.
도 41 및 도 42를 참조하면, 제4 실시예에 따른 제1 카메라 엑추에이터(1100C)는 제1 하우징(1120), 무버(1130), 회전부(1140), 제1 구동부(1150), 탄성부재(EE), 제2 부재(1126), 제1 부재(1131a) 및 댐퍼부재를 포함한다. 나아가, 이하에서 설명하는 내용을 제외하고 상술한 내용이 동일하게 적용될 수 있다.
무버(1130)는 홀더(1131) 및 홀더(1131)에 안착하는 광학 부재(1132)를 포함할 수 있다. 그리고 회전부(1140)는 틸팅 가이드부(1141)를 포함할 수 있다. 또한, 제1 구동부(1150)는 구동 마그넷(1151), 구동 코일(1152), 홀 센서부(1153), 제1 기판부(1154) 및 요크부(1155)를 포함한다.
먼저, 제1 카메라 엑추에이터(1100C)는 쉴드 캔(미도시됨)을 포함할 수 있다. 쉴드 캔(미도시됨)은 제1 카메라 엑추에이터(1100C)의 최외측에 위치하여 후술하는 회전부(1140)와 제1 구동부(1150)를 감싸도록 위치할 수 있다.
이러한 쉴드 캔(미도시됨)은 외부에서 발생한 전자기파를 차단 또는 저감할 수 있다. 즉, 쉴드 캔(미도시됨)은 회전부(1140) 또는 제1 구동부(1150)에서 오작동의 발생을 감소시킬 수 있다.
제1 하우징(1120)은 쉴드 캔(미도시됨) 내부에 위치할 수 있다. 쉴드 캔이 없는 경우, 제1 하우징(1120)은 제1 카메라 엑추에이터의 최외측에 위치할 수 있다.
또한, 제1 하우징(1120)은 후술하는 제1 기판부(1154) 내측에 위치할 수 있다. 제1 하우징(1120)은 쉴드 캔(미도시됨)과 서로 끼워지거나 맞춰져 체결될 수 있다.
제1 하우징(1120)은 제1 하우징 측부(1121), 제2 하우징 측부(1122), 제3 하우징 측부(1123) 및 제4 하우징 측부(1124)를 포함할 수 있다. 이에 대한 자세한 설명은 후술한다.
제2 부재(1126)는 제1 하우징(1120)에 배치될 수 있다. 제2 부재(1126)는 제1 부재(1131a)와 제1 하우징 사이에 배치될 수 있다. 제2 부재(1126)는 제1 하우징 내에 배치되거나 제1 하우징(1120)에 포함될 수 있다. 이에 대한 설명은 후술한다.
무버(1130)는 홀더(1131) 및 홀더(1131)에 안착하는 광학 부재(1132)를 포함한다.
홀더(1131)는 제1 하우징(1120)의 수용부(1125)에 안착할 수 있다. 홀더(1131)는 제1 하우징 측부(1121), 제2 하우징 측부(1122), 제3 하우징 측부(1123), 제2 부재(1126)에 각각 대응하는 제1 홀더 외측면 내지 제4 홀더 외측면을 포함할 수 있다. 예컨대, 제1 홀더 외측면 내지 제4 홀더 외측면은 제1 하우징 측부(1121), 제2 하우징 측부(1122), 제3 하우징 측부(1123), 제2 부재(1126) 각각의 내측면과 대응하는 또는 마주할 수 있다.
또한, 홀더(1131)는 제4 안착홈에 배치되는 제1 부재(1131a)를 포함할 수 있다. 이에 대한 자세한 설명은 후술한다.
광학 부재(1132)는 홀더(1131)에 안착할 수 있다. 이를 위해, 홀더(1131)는 안착면을 가질 수 있으며, 안착면은 수용홈에 의해 형성될 수 있다. 안착면에는 접합 부재가 도포될 수 있다. 이에, 광학 부재(1132)가 홀더(1131)와 결합할 수 있다.
실시예로 광학 부재(1132)는 미러(mirror) 또는 프리즘으로 이루어질 수 있다. 이하에서는 프리즘을 기준으로 도시하나, 상술한 실시예에서와 같이 복수 개의 렌즈로 이루어질 수도 있다. 또는 광학 부재(1132)는 복수의 렌즈와 프리즘 또는 미러로 이루어질 수 있다. 그리고 광학 부재(1132)는 내부에 배치되는 반사부를 포함할 수 있다. 다만, 이에 한정되는 것은 아니다.
또한, 광학 부재(1132)는 외부(예컨대, 물체)로부터 반사된 광을 카메라 모듈 내부로 반사할 수 있다. 다시 말해, 광학 부재(1132)는 반사된 광의 경로를 변경하여 제1 카메라 엑추에이터 및 제2 카메라 엑추에이터의 공간적 한계를 개선할 수 있다. 이로써, 카메라 모듈은 두께가 최소화하면서 광 경로를 확장하여 높은 범위의 배율을 제공할 수도 있음을 이해해야 한다.
그리고 제1 부재(1131a)는 홀더(1131)와 결합할 수 있다. 제1 부재(1131a)는 홀더(1131)의 외측 및 하우징 내측에 배치될 수 있다. 그리고 제1 부재(1131a)는 홀더(1131)에서 제4 홀더 외측면에서 제4 안착홈 이외의 영역에 위치한 추가 홈 내에 안착할 수 있다. 이를 통해, 제1 부재(1131a)는 홀더(1131)와 결합하고, 제1 부재(1131a)와 홀더(1131) 사이에는 제2 부재(1126)의 적어도 일부가 위치할 수 있다. 예컨대, 제2 부재(1126)의 적어도 일부는 제1 부재(1131a)와 홀더(1131) 사이에 형성된 공간을 관통할 수 있다.
또한, 제1 부재(1131a)는 홀더(1131)와 분리된 구조로 이루어질 수 있다. 이러한 구성에 의하여, 후술하는 바와 같이 제1 카메라 엑추에이터의 조립이 용이하게 수행될 수 있다. 또는 제1 부재(1131a)는 홀더(1131)와 일체로 형성될 수 있으나, 이하에서는 분리된 구조로 설명한다.
회전부(1140)는 틸팅 가이드부(1141)를 포함할 수 있다. 추가적으로, 그리고 회전부(1140)는 틸팅 가이드부(1141)를 가압하도록 서로 같은 극성을 갖는 자성체를 포함할 수 있다.
틸팅 가이드부(1141)는 상술한 무버(1130) 및 제1 하우징(1120)과 결합할 수 있다. 구체적으로, 틸팅 가이드부(1141)는 홀더(1131)와 제2 부재(1126) 사이에 배치될 수 있다. 이에, 틸팅 가이드부(1141)는 홀더(1131)의 무버(1130) 및 제1 하우징(1120)과 결합할 수 있다. 다만, 상술한 내용과 달리, 본 실시예에서 틸팅 가이드부(1141)는 제2 부재(1126)와 홀더(1131) 사이에 배치될 수 있다. 구체적으로, 틸팅 가이드부(1141)는 제2 부재(1126)와 홀더(1131)의 제4 안착홈 사이에 위치할 수 있다.
제3 방향(Z축 방향)으로, 제1 부재(1131a), 제2 부재(1126), 틸팅 가이드부(1141) 및 홀더(1131) 순으로 배치될 수 있다. 또한, 틸팅 가이드부(1141)는 광축과 인접하게 배치될 수 있다. 이로써, 실시예에 따른 엑추에이터는 후술하는 제1,2 축 틸트에 따라 광 경로의 변경을 용이하게 수행할 수 있다.
틸팅 가이드부(1141)는 제1 방향(X축 방향)으로 이격 배치되는 제1 돌출부와 제2 방향(Y축 방향)으로 이격 배치되는 제2 돌출부를 포함할 수 있다. 또한, 제1 돌출부와 제2 돌출부는 서로 반대 방향으로 돌출될 수 있다. 이에 대한 자세한 설명은 후술한다.
제1 구동부(1150)는 구동 마그넷(1151), 구동 코일(1152), 홀 센서부(1153), 제1 기판부(1154) 및 요크부(1155)를 포함한다. 이에 대한 설명은 상술한 내용이 적용될 수 있다. 이에, 더미부재(DM)는 제2 마그넷으로 대체되고, 하부의 마그넷은 제3 마그넷에 대응할 수 있다.
또한, 탄성부재(EE)는 무버(1130)와 고정부재(예로, 제1 하우징(1120) 또는 제2 부재(1126)) 사이에 위치할 수 있다. 또한, 틸팅 가이드부(1141)는 고정부재와 무버 사이에 위치할 수 있다. 그리고 탄성부재(EE)는 무버(1130)를 고정부재로 당김으로써 틸팅 가이드부(1141)를 고정부재와 무버에 밀착시킬 수 있다. 또한, 탄성부재(EE)는 틸팅 가이드부(1141)와 무버(1130)를 밀착시킬 수 있다. 다시 말해, 탄성부재(EE)는 무버(1130)를 고정부재인 하우징(1220) 또는 제2 부재(1126)로 당길 수 있다.
탄성부재(EE)는 틸팅 가이드부(1141)와 하우징(1120) 사이에 배치될 수 있다. 특히, 탄성부재(EE)는 틸팅 가이드부(1141), 제2 부재(1126) 및 제1 부재(1131a)에 순차로 배치될 수 있다. 즉, 제3 방향으로, 제2 부재(1126), 탄성부재(EE), 제1 부재(1131a), 틸팅 가이드부(1141), 무버(1130) 순으로 배치될 수 있다.
탄성부재(EE)는 탄성 재질로 이루어질 수 있으며, 제2 부재(1126)와 제1 부재(1131a) 사이에 배치되어 제2 부재(1126)와 제1 부재(1131a)를 서로 결합할 수 있다. 그리고 탄성 부재(EE)는 하우징(1120)에 고정된 제2 부재(1126)를 기준으로 제1 부재(1131a)와 이에 연결된 홀더(1131)에 탄성력을 제공할 수 있다.
이에, 탄성부재(EE)는 하우징(1120) 및 무버(1130) 사이에서 하우징(1120) 및 무버(1130)와 결합하고, 무버(1130)를 통해 틸팅 가이드부(1141)를 가압할 수 있다. 이에, 틸팅 가이드부(1141)를 통해 무버(1130)가 X축 틸트 및/또는 Y축 틸트될 수 있다.
탄성부재(EE)에서 제2 부재(1126)와 접하는 부분과 제1 부재(1131a)(또는 홀더(1131))와 하우징(1120)에 접하는 부분이 제3 방향(Z축 방향)으로 서로 이격될 수 있다. 이러한 접하는 부분(후술하는 제1,2 접합부)의 이격된 거리에 의해 탄성부재(EE)는 예압을 가질 수 있다. 그리고 이러한 예압은 무버(1130)를 통해 틸팅 가이드부(1141)로 그리고 틸팅 가이드부(1141)를 통해 제2 부재(1126)로 전달될 수 있다. 이로써, 무버(1130)와 제2 부재(1126) 사이에 배치되는 틸팅 가이드부(1141)가 탄성부재(EE)에 의해 가압될 수 있다. 즉, 틸팅 가이드부(1141)가 무버(1130)와 제2 부재(1126) 사이에 위치하는 힘을 유지할 수 있다. 이로써, X축 틸트 또는 Y축 틸트 시에도 틸팅 가이드부(1141)의 이탈없이 무버(1130)와 하우징(1120) 사이에서 위치를 유지할 수 있다. 뿐만 아니라, X축 틸트 또는 Y축 틸트를 위해 제1 코일과 제2 코일에 전류가 주입된 이후에 전류의 주입이 없는 경우(예로, 전류가 0인 경우)에는 상술한 예압 또는 복원력에 의해 무버(1130)가 초기 위치로 이동할 수 있다. 즉, 예압보다 큰 힘(후술하는 전자기력)이 발생한 경우 무버(1130)가 X/Y축 틸트를 수행하고, 예압보다 작은 힘이 발생하는 경우 무버(1130)가 초기 위치로 돌아가거나 위치가 유지될 수 있다.
나아가, 댐퍼부재는 하우징(1120)(또는 제2 부재) 및 무버(또는 제1 부재) 중 적어도 하나와 탄성부재와 결합할 수 있다.
도 43a는 제4 실시예에 따른 제1 카메라 엑추에이터의 제1 하우징의 사시도이고, 도 43b는 도 43a와 상이한 방향의 사시도이고, 도 43c는 제4 실시예에 따른 제1 카메라 엑추에이터의 제1 하우징의 정면도이다.
도 43a 내지 도 43c를 참조하면, 실시예에 따른 제1 하우징(1120)은 제1 하우징 측부(1121) 내지 제4 하우징 측부(1124)를 포함 수 있다. 또한, 제2 부재(1126)는 제1 하우징(1120)과 결합되어 일체로 이루어질 수 있다. 이에, 제2 부재(1126)는 제1 하우징(1120)에 포함되는 구성일 수 있다. 즉, 제1 하우징(1120)은 제2 부재(1126)와 결합되어 일체로 이루어질 수 있다. 또는 제1 하우징(1120)은 제2 부재(1126)를 포함할 수 있다.
제1 하우징 측부(1121)와 제2 하우징 측부(1122)는 서로 마주보도록 배치될 수 있다. 또한, 제3 하우징 측부(1123)와 제4 하우징 측부(1124)는 서로 마주보도록 배치될 수 있다.
그리고 제3 하우징 측부(1123)와 제4 하우징 측부(1124)는 제1 하우징 측부(1121)와 제2 하우징 측부(1122) 사이에 배치될 수 있다.
제3 하우징 측부(1123) 및 제4 하우징 측부(1124)는 제1 하우징 측부(1121), 제2 하우징 측부(1122) 및 제4 하우징 측부(1124)와 접할 수 있다. 그리고 제3 하우징 측부(1123)는 제1 하우징(1120)에서 저면일 수 있다. 그리고 제4 하우징 측부(1124)는 제1 하우징(1120)에서 상부면일 수 있다. 또한, 방향에 대한 설명도 상술한 내용이 동일하게 적용될 수 있다.
제1 하우징 측부(1121)는 제1 하우징 홀(1121a)을 포함할 수 있다. 제1 하우징 홀(1121a)에는 후술하는 제1 코일이 위치할 수 있다.
또한, 제2 하우징 측부(1122)는 제2 하우징 홀(1122a)을 포함할 수 있다. 그리고 제2 하우징 홀(1122a)은 제1 하우징 홀(1121a)과 제1 방향 또는 제3 방향으로 대칭으로 위치할 수 있다. 제2 하우징 홀(1122a)은 빈 영역일 수 있다.
또한, 제1 하우징 측부(1121)와 제2 하우징 측부(1122)는 제1 하우징(1120)의 측면일 수 있다.
또한, 제3 하우징 측부(1123)는 제3 하우징 홀(1123a)을 포함할 수 있다.
제3 하우징 홀(1123a)에는 후술하는 제2 코일(더미 부재 존재하는 경우) 또는 제3 코일(더미 부재 미존재하는 경우)이 위치할 수 있다.
제1 하우징 측부(1121) 내지 제4 하우징 측부(1124) 사이에는 제2 부재(1126)가 안착할 수 있다. 이에 따라, 제2 부재(1126)는 제3 하우징 측부(1123) 상에 위치할 수 있다. 예컨대, 제2 부재(1126)는 일측에 위치할 수 있다. 제3 방향을 기준으로, 제2 부재(1126)와 홀더는 순차로 위치할 수 있다.
제4 하우징 측부(1124)는 제1 하우징 측부(1121), 제2 하우징 측부(1122) 사이에 배치되고, 제1 하우징 측부(1121), 제2 하우징 측부(1122) 및 제3 하우징 측부(1123)와 접할 수 있다.
또한, 제4 하우징 측부(1124)는 제4 하우징 홀(1124a)을 포함할 수 있다. 제4 하우징 홀(1124a)은 광학 부재 상부에 위치할 수 있다. 이에, 광이 제4 하우징 홀(1124a)을 통과하여 광학 부재로 입사될 수 있다.
또한, 제1 하우징(1120)은 제1 하우징 측부(1121) 내지 제4 하우징 측부(1124)에 의해 형성되는 수용부(1125)를 포함할 수 있다. 수용부(1125)에는 구성요소로 제2 부재(1126), 제1 부재(1131a), 무버(1130) 및 탄성부재(EE)가 위치할 수 있다.
또한, 제1 하우징(1120)은 제2 부재(1126)와 마주보는 제5 하우징 측부를 더 포함할 수 있다. 그리고 제5 하우징 측부는 제1 하우징 측부(1121)와 제2 하우징 측부(1122) 사이에 배치되고, 제1 하우징 측부(1121), 제2 하우징 측부(1122) 및 제3 하우징 측부(1123)와 접할 수 있다. 또한, 제5 하우징 측부는 개구 영역을 포함하여 광학 부재(1132)에서 반사된 광이 이동하는 경로를 제공할 수 있다. 또한, 제5 하우징 측부는 돌기 또는 그루브 등을 포함하여 인접한 다른 카메라 엑추에이터와의 용이한 결합을 제공할 수 있다. 이러한 구성에 의하여, 광 경로를 제공함과 동시에 광 경로를 제공하는 개구가 형성된 제5 하우징 측부와 다른 구성 요소 간의 결합력을 개선하여 이격 등에 의한 개구의 이동을 억제하여 광 경로의 변경을 최소화할 수 있다.
또한, 상술한 바와 같이 제2 부재(1126)는 제1 하우징(1120)과 결합하여, 제1 하우징(1120)에 포함된 구성일 수 있다. 즉, 제2 부재(1126)는 제1 하우징(1120)에 배치될 수 있다. 또는 제2 부재(1126)는 제1 하우징(1120) 내에 위치할 수 있다.
그리고 제2 부재(1126)는 제1 하우징(1120)과 결합할 수 있다. 실시예로, 제2 부재(1126)는 제1 하우징 측부(1121)와 제2 하우징 측부(1122) 사이에 위치할 수 있다. 또한, 제2 부재(1126)는 제3 하우징 측부(1123)와 제4 하우징 측부(1124) 사이에 위치할 수 있다.
그리고 제2 부재(1126)는 제3 하우징 측부(1123) 상에 위치하며, 제1 하우징 측부 내지 제3 하우징 측부와 접합 수 있다.
또한, 제1 하우징 측부(1121)의 내측면에는 제1 스토퍼(1121b)가 위치할 수 있다. 또한, 제2 하우징 측부(1122)의 내측면에는 제2 스토퍼(1122b)가 위치할 수 있다.
제1 스토퍼(1121b)와 제2 스토퍼(1122b)는 제1 방향(X축 방향)을 기준으로 대칭으로 위치할 수 있다. 제1 스토퍼(1121b)와 제2 스토퍼(1122b)는 제1 방향(X축 방향)으로 연장될 수 있다. 이러한 구성에 의하여, 제2 부재(1126)가 제1 하우징(1120) 내로 이동하더라도 제1 스토퍼(1121b)와 제2 스토퍼(1122b)에 의해 위치가 유지될 수 있다. 다시 말해, 제1 스토퍼(1121b)와 제2 스토퍼(1122b)는 제2 부재(1126)가 제1 하우징(1120)에서 일측에 위치하는 것을 유지할 수 있다.
나아가, 제1 스토퍼(1121b)와 제2 스토퍼(1122b)는 제2 부재(1126)의 위치를 고정하여 제2 부재(1126)와 무버 사이에서 틸팅 가이드부의 위치를 고정하여 진동 등의 오차 발생 요인을 제거할 수 있다. 이로써, 제4 실시예에 따른 제1 카메라 엑추에이터는 X축 틸트 및 Y축 틸트가 정확하게 수행될 수 있다.
또한, 제1 스토퍼(1121b)와 제2 스토퍼(1122b) 간의 제2 방향(Y축 방향)으로 이격 거리(L2)는 제2 부재(1126)의 제2 방향(Y축 방향)으로 최대 길이(L1)보다 작을 수 있다. 이에, 제2 부재(1126)가 제1 하우징(1120)에 대해 측면으로 조립 또는 삽입되어 제1 하우징(1120)과 결합할 수 있다. 또한, 하우징(1120)은 제1 하우징 측부(1121) 내지 제4 하우징 측부(1124)에 의해 형성되는 수용부(1125)를 포함할 수 있다. 수용부(1125)에는 구성요소로 제2 부재(1126), 제1 부재(1131a), 틸팅 가이드부(1141), 무버(1130) 및 탄성부재(EE)가 위치할 수 있다.
제2 부재(1126)는 하우징(1120)에 배치될 수 있다. 제2 부재(1126)는 제1 하우징 내에 배치 또는 포함될 수 있다. 그리고 제2 부재(1126)는 제 하우징(1120)과 결합할 수 있다. 실시예로, 제2 부재(1126)는 제3 하우징 측부(1123)에 형성된 하우징 홈(1123b')을 안착하거나 적어도 일부 관통하여 제3 하우징 측부(1123)와 결합할 수 있다. 이를 통해, 제2 부재(1126)는 하우징(1120)과 결합하고, 후술하는 무버(1130와 틸팅 가이드부(1141) 간의 고정을 유지할 수 있다.
또한, 제2 부재(1126)는 제1 하우징 측부(1121) 및 제2 하우징 측부(1121)에 인접한 영역에 배치된 제1 결합부(PP1)를 포함할 수 있다. 제1 결합부(PP1)는 돌기로 이루어질 수 있다. 그리고 제1 결합부(PP1)는 제1 접합부(EP1)와 결합할 수 있다. 후술하는 바와 같이 제1 결합부(PP1)는 제1 접합부(EP1)의 제1 접합홀에 삽입될 수 있다.
또한, 제2 부재(1126)는 틸팅 가이드부의 제2 돌출부가 안착하는 제2 돌기홈을 포함한다. 제2 돌기홈(PH2)은 제2 부재(1126)의 내측면(1126s1)에 위치할 수 있다. 이에 따라, 제2 부재(1126)는 틸팅 가이드부의 돌출부(예컨대, 제2 돌출부)가 제4 안착홈 내에서 프리즘에 인접하게 배치하여 틸트의 기준축인 돌출부가 무버(1130)의 무게중심에 가까이 배치되게 한다. 이로써, 홀더가 틸트하는 경우 틸트를 위해 무버(1130)를 이동시키는 모멘트가 최소화될 수 있다. 이에, 코일을 구동하는 전류 소모도 최소화되므로, 카메라 엑추에이터의 전력 소모가 감소될 수 있다.
또한, 제2 부재(1126)는 관통홀(1126a, 1126b)을 포함할 수 있다. 관통홀은 복수 개로 제1 관통홀(1126a)과 제2 관통홀(1126b)로 이루어질 수 있다.
제1 관통홀(1126a)과 제2 관통홀(1126b)로는 후술하는 제1 부재의 제1,2 연장부가 각각 관통할 수 있다. 이를 통해, 제1 부재와 제2 부재가 결합할 수 있다. 다시 말해, 제1 하우징과 무버가 서로 결합할 수 있다.
제1 관통홀(1126a)과 제2 관통홀(1126b) 사이에는 제2 돌기홈(PH2)이 위치할 수 있다. 이러한 구성에 의하여, 틸팅 가이드부(1141)와 제2 부재(1126) 간의 결합력이 향상되어 틸팅 가이드부(1141)가 제1 하우징 내에서 이동하여 발생하는 틸트의 정확도 저하가 차단될 수 있다.
또한, 제2 부재(1126)의 외측면(1126s2)에는 제2 홈(gr2)이 위치할 수 있다. 제2 홈(gr2)에는 자성체가 안착할 수 있다. 그리고 제2 부재(1126)의 외측면(1126s2)은 제1 부재 또는 부재 베이스부의 내측면과 마주할 수 있다. 나아가, 제1 부재에 안착한 자성체와 제2 부재(1126)의 자성체는 서로 마주하고 서로 동일한 극성을 가질 수 있다. 이에, 척력이 생성될 수 있다. 또한, 제2 부재(1126)가 척력에 의해 틸팅 가이드부를 내측으로 또는 홀더를 가압하므로, 코일로의 전류 주입이 없더라도 무버가 제1 하우징 내에서 제3 하우징 측부와 소정 거리 이격될 수 있다. 다시 말해, 무버와 하우징 및 틸팅 가이드부 간의 결합력이 유지될 수 있다.
또한, 제2 부재(1126)는 제1 하우징(1120)과 일체로 이루어진 경우 제2 부재(1126)와 제1 하우징(1120)의 결합력이 향상되어 카메라 엑추에이터의 신뢰성이 개선될 수 있다. 또한, 분리되어 이루어진 경우 제2 부재(1126)와 제1 하우징(1120)의 조립 및 제작의 용이성이 향상될 수 있다.
그리고 실시예로 제2 부재(1126)는 상술한 바와 같이 제1 관통홀(1126a)과 제2 관통홀(1126b)을 포함할 수 있다. 그리고 제1 관통홀(1126a)과 제2 관통홀(1126b)은 제2 방향(Y축 방향)으로 나란히 배치되어 서로 중첩될 수 있다.
그리고 제2 부재(1126)는 제1 관통홀(1126a) 및 제2 관통홀(1126b)의 상부에 위치한 상부부재(UA), 제1 관통홀(1126a) 및 제2 관통홀(1126b)의 하부에 위치한 하부부재(BA)를 포함할 수 있다. 이에, 제1 관통홀(1126a) 및 제2 관통홀(1126b)은 제2 부재(1126)의 중간에 위치할 수 있다. 즉, 제2 부재(1126)는 제1 관통홀(1126a) 및 제2 관통홀(1126b)의 측부에 위치한 연결부재(MA)를 포함할 수 있다. 즉, 상부부재(UA)와 하부부재(BA)는 연결부재(MA)를 통해 서로 연결될 수 있다. 그리고 하부부재(BA)는 제1,2 관통홀을 형성하기 위해 복수 개일 수 있으며, 제2 방향(Y축 방향)으로 서로 이격 배치될 수 있다.
이로써, 제2 부재(1126)는 상부부재(UA)를 가짐으로써 강성이 향상될 수 있다. 예컨대, 상부부재(UA)가 없는 경우 대비 제2 부재(1126)의 강성이 증가할 수 있다. 예를 들어, 본 실시예에서 강성은 단위가 N/㎛일 수 있다. 이에 따라, 제4 실시예에 따른 제1 카메라 엑추에이터의 신뢰성이 개선될 수 있다.
또한, 제2 부재(1126)의 외측면(1126s2)에는 제1 결합홈(1126k)이 위치할 수 있다. 제1 결합홈(1126k)은 제2 부재(1126)의 외측면(1126s2)의 가장자리에 위치할 수 있다. 특히, 제1 결합홈(1126k)은 제2 부재(1126)의 외측면(1126s2)에서 단부(예컨대, 좌우측부)에 위치하여, 제1 하우징 측부(1121)와 인접하게 위치할 수 있다.
제1 결합홈(1126k)은 제1 하우징 측부(1121) 및 제2 하우징 측부(1122)의 제2 결합홈(1121m, 1122m)과 대응하게 위치할 수 있다. 실시예로, 제1 결합홈(1126k)은 제1 하우징 측부(1121) 및 제2 하우징 측부(1122)의 제2 결합홈(1121m, 1122m)과 마주하게 위치할 수 있다. 제2 결합홈(1121m, 1122m)은 상술한 제2 부재(1126)의 외측면(1126s2)에 인접하고 동일면을 이루는 측면 상에 위치할 수 있다.
실시예로, 제1 결합홈(1126k) 및 제2 결합홈(1121m, 1122m)은 복수 개일 수 있으며, 복수 개의 제1 결합홈(1126k) 및 제2 결합홈(1121m, 1122m)은 제1 방향 또는 제2 방향으로 대칭되게 위치할 수 있다.
그리고 제1 결합홈(1126k) 및 제2 결합홈(1121m, 1122m)에는 결합부재가 도포될 수 있다. 즉, 접합부재는 제1 하우징 측부(또는 제2 하우징 측부)와 제2 부재(1126) 사이에 도포되어, 하우징(1120)과 제2 부재(1126) 간의 결합력을 향상시킬 수 있다. 이러한 접합부재는 에폭시 등을 포함할 수 있으나, 이러한 재질에 한정되는 것은 아니다.
또한, 제2 부재(1126)는 제1 돌기부와 제2 돌기부를 더 포함할 수 있다. 제1 돌기부는 제1 하우징 측부와 접하고, 제2 돌기부는 제2 하우징 측부와 접할 수 있다. 제1 돌기부는 제2 부재의 외측면(1126s2)의 일단부에서 제3 방향(Z축 방향) 연장될 수 있다. 제2 돌기부는 제2 부재의 외측면(1126s2)의 타단부에서 제3 방향(Z축 방향)으로 연장될 수 있다. 즉, 제1 돌기부와 제2 돌기부는 홀더를 향해 연장될 수 있다.
제1 돌기부는 제1 스토퍼(1121b)에 의해 위치가 유지되고, 제2 돌기부는 제2 스토퍼(1122b)에 의해 위치가 유지될 수 있다. 이에 따라, 실시예에 따른 카메라 엑추에이터는 신뢰성이 개선될 수 있다.
도 44a는 제4 실시예에 따른 제1 카메라 엑추에이터의 홀더의 사시도이고, 도 44b는 제4 실시예에 따른 제1 카메라 엑추에이터의 홀더의 저면도이고, 도 44c는 제4 실시예에 따른 제1 카메라 엑추에이터의 홀더의 정면도이고, 도 44d는 제4 실시예에 따른 제1 카메라 엑추에이터의 제1 부재의 후면도이고, 도 44e는 제4 실시예에 따른 제1 카메라 엑추에이터의 제1 부재의 저면도이다.
도 44a 내지 도 44e를 참조하면, 홀더(1131)는 광학 부재(1132)가 안착하는 안착면(1131k)을 포함할 수 있다. 안착면(1131k)은 경사면일 수 있다. 또한, 홀더(1131)는 안착면(1131k) 상부에 턱부(를 포함할 수 있다. 그리고 홀더(1131)에서 턱부는 광학 부재(1132)의 돌기부(미도시됨)와 결합할 수 있다.
홀더(1131)는 복수 개의 외측면을 포함할 수 있다. 예컨대, 홀더(1131)는 제1 홀더 외측면(1131S1), 제2 홀더 외측면(1131S2), 제3 홀더 외측면(1131S3) 및 제4 홀더 외측면(1131S4)을 포함할 수 있다.
제1 홀더 외측면(1131S1)은 제2 홀더 외측면(1131S2)과 마주보도록 위치할 수 있다. 즉, 제1 홀더 외측면(1131S1)은 제2 홀더 외측면(1131S2)과 제1 방향(X축 방향)을 기준으로 대칭으로 배치될 수 있다. 제1 홀더 외측면(1131S1)은 제1 측면일 수 있다. 그리고 후술하는 제2 홀더 외측면(1131S2)은 제2 측면일 수 있다.
제1 홀더 외측면(1131S1)은 제1 하우징 측부와 대응하게 위치할 수 있다. 즉, 제1 홀더 외측면(1131S1)은 제1 하우징 측부와 마주보게 위치할 수 있다. 그리고 제2 홀더 외측면(1131S2)은 제2 하우징 측부와 대응하게 위치할 수 있다. 즉, 제2 홀더 외측면(1131S2)은 제2 하우징 측부와 마주보게 위치할 수 있다.
또한, 제1 홀더 외측면(1131S1)은 제1 안착홈(1131S1a)을 포함할 수 있다. 그리고 제2 홀더 외측면(1131S2)은 제2 안착홈(1131S2a)을 포함할 수 있다. 제1 안착홈(1131S1a)과 제2 안착홈(1131S2a)은 제1 방향(X축 방향)을 기준으로 서로 대칭으로 배치될 수 있다.
또한, 제1 안착홈(1131S1a)과 제2 안착홈(1131S2a)은 제2 방향(Y축 방향)으로 중첩되도록 배치될 수 있다. 그리고 제1 안착홈(1131S1a)에는 제1 마그넷(1151a)이 배치될 수 있고, 제2 안착홈(1131S2a)에는 더미 부재(DM)가 배치될 수 있다. 제1 마그넷(1151a)과 더미 부재(DM)도 제1 방향(X축 방향)을 기준으로 서로 대칭으로 배치될 수 있다. 본 명세서에서, 제1 마그넷 내지 제2 마그넷은 요크 또는 접합 부재를 통해 하우징과 결합될 수 있음을 이해해야 한다.
상술한 바와 같이, 제1 안착홈(1131S1a)의 제1 마그넷에 의해 유발된 전자기력이 홀더(1131)에 제공될 수 있다.
실시예에 따르면, 제1 안착홈(1131S1a)의 제1 마그넷과 제2 안착홈(1131S2a)의 더미 부재(DM)는 동일한 무게를 가질 수 있다. 이에 따라, 제1 마그넷에 의해 생선된 전자기력에 의해 홀더(1131)가 X축 틸팅 하더라도 무게의 불균형에 따라 일측으로 기울어짐이 방지될 수 있다. 이로써, X축 틸팅이 정확하게 이루어질 수 있다.
제3 홀더 외측면(1131S3)은 제1 홀더 외측면(1131S1)과 제2 홀더 외측면(1131S2)과 접하고, 제1 홀더 외측면(1131S1)과 제2 홀더 외측면(1131S2)의 일측에서 제2 방향(Y축 방향)으로 연장된 외측면일 수 있다. 또한, 제3 홀더 외측면(1131S3)은 제1 홀더 외측면(1131S1)과 제2 홀더 외측면(1131S2) 사이에 위치할 수 있다. 제3 홀더 외측면(1131S3)은 홀더(1131)에서 저면일 수 있다. 즉, 제3 홀더 외측면(1131S3)은 제3 하우징 측부와 마주보게 위치할 수 있다.
또한, 제3 홀더 외측면(1131S3)은 제3 안착홈(1131S3a)을 포함할 수 있다. 제3 안착홈(1131S3a)에는 제2 마그넷(1151b)이 배치될 수 있다. 제3 홀더 외측면(1131S3)은 제3 하우징 측부(1123)와 마주보게 위치할 수 있다.
또한, 제3 하우징 홀(1123a)은 제3 안착홈(1131S3a)과 제1 방향(X축 방향)으로 적어도 일부 중첩될 수 있다. 이에 따라, 제3 안착홈(1131S3a) 내의 제2 마그넷(1151b)과 제3 하우징 홀(1123a) 내의 제2 코일(1152c)이 서로 마주보게 위치할 수 있다. 그리고 제2 마그넷(1151b)과 제2 코일(1152c)은 전자기력을 발생시킴으로써 제1 카메라 엑추에이터가 Y축 틸팅할 수 있다.
또한, X축 틸트가 제1 마그넷에 의해 이루어지고, Y축 틸트는 제2 마그넷에 의해서만 이루어질 수 있다.
실시예로, 제3 안착홈(1131S3a)은 제1 안착홈(1131S1a) 또는 제2 안착홈(1131S2a)과 동일할 수 있다. 이러한 구성에 의하여, Y축 틸트를 X축 틸트와 같은 전류 제어로 수행할 수 있다.
제4 홀더 외측면(1131S4)은 제1 홀더 외측면(1131S1)과 제2 홀더 외측면(1131S2)과 접하고, 제1 홀더 외측면(1131S1)과 제2 홀더 외측면(1131S2)에서 제1 방향(X축 방향)으로 연장된 외측면일 수 있다. 또한, 제4 홀더 외측면(1131S4)은 제1 홀더 외측면(1131S1)과 제2 홀더 외측면(1131S2) 사이에 위치할 수 있다. 즉, 제4 홀더 외측면(1131S4)은 제2 부재와 마주보게 위치할 수 있다.
그리고 제1 영역(AR1)에는 제1 부재가 배치되고, 제1 부재(1131a)는 제1 홈(gr1)을 포함할 수 있다. 실시예로, 제1 부재(1131a)는 내측면(1131aas)에 형성된 제1 홈(gr1)을 포함할 수 있다. 그리고 제1 홈(gr1)에는 상술한 바와 같이 자성체가 배치될 수 있다.
그리고 상술한 바와 같이 제2 영역(AR2)에는 제2 부재가 배치될 수 있다. 제1 홈(gr1)은 제2 홈(gr2)과 마주보게 위치할 수 있다. 예컨대, 제1 홈(gr1)은 제2 홈(gr2)과 제3 방향(Z축 방향)으로 적어도 일부 중첩될 수 있다. 그리고 상술한 바와 같이 제1,2 홈에 배치된 자성체에 의해 발생한 척력이 제1 부재를 통해 홀더(1131)의 제4 안착홈(1131S4a)으로 전달될 수 있다. 이에, 홀더는 자성체에서 발생한 척력과 동일한 방향으로 틸팅 가이드부로 힘을 가할 수도 있다. 이러한 가해지는 힘은 탄성부재의 예압과 결합하여, 무버와 하우징 그리고 틸팅 가이드부 간의 결합을 견고히 유지할 수 있다. 이에, 외부의 충격 등에 대한 카메라 모듈의 신뢰성이 개선될 수 있다.
제2 부재는 외측면에 형성된 제1 홈(gr1)과 마주하는 제2 홈(gr2)을 포함할 수 있다. 또한, 제2 부재는 상술한 바와 같이 내측면에 형성된 제2 돌기홈을 포함할 수 있다. 그리고 제2 돌기홈에는 제2 돌출부가 안착할 수 있다. 제3 영역(AR3)에는 틸팅 가이드부(1141)가 배치될 수 있다. 그리고 제1 돌기홈(PH1)은 제4 안착홈(1131S4a)에 위치할 수 있다. 또한, 제1 돌기홈(PH1)에는 틸팅 가이드부(1141)의 제1 돌출부가 수용될 수 있다. 이에, 제1 돌출부(PR1)는 제1 돌기홈과 접할 수 있다. 제1 돌기홈(PH1)은 최대 직경이 제1 돌출부(PR1)의 최대 직경에 대응할 수 있다. 이는 제2 돌기홈과 제2 돌출부(PR2)에도 동일하게 적용될 수 있다. 즉, 제2 돌기홈은 최대 직경이 제2 돌출부(PR2)의 최대 직경에 대응할 수 있다. 이에, 제2 돌출부는 제2 돌기홈과 접할 수 있다. 이러한 구성에 의하여, 제1 돌출부를 기준으로 제1 축 틸트와 제2 돌출부를 기준으로 제2 축 틸트가 용이하게 일어날 수 있으며, 틸트의 반경이 향상될 수 있다.
또한, 실시예로, 제1 돌기홈(PH1)은 복수 개일 수 있다. 예컨대, 제1 돌기홈(PH1) 및 제2 돌기홈(PH2) 중 어느 하나는 제1-1 돌기홈(PH1a)과 제1-2 돌기홈(PH1b)을 포함할 수 있다. 이하에서, 제1 돌기홈(PH1)이 제1-1 돌기홈(PH1a)과 제1-2 돌기홈(PH1b)을 포함하는 것으로 설명한다. 그리고 이하의 설명은 제2 돌기홈(PH2)에도 동일하게 적용될 수 있다. 예컨대, 제2 돌기홈(PH2)은 제2-1 돌기홈 및 제2-2 돌기홈을 포함하고, 제2-1 돌기홈은 제1-1 돌기홈의 설명이 적용되고, 제2-2 돌기홈은 제1-2 돌기홈의 설명이 적용될 수 있다.
제1-1 돌기홈(PH1a)과 제1-2 돌기홈(PH1b)은 제1 방향(x축 방향)으로 나란히 배치될 수 있다. 제1-1 돌기홈(PH1a)과 제1-2 돌기홈(PH1b)은 최대 넓이가 서로 동일할 수 있다.
복수 개의 제1 돌기홈(PH1)은 경사면의 개수가 서로 상이할 수 있다. 예컨대, 제1 돌기홈(PH1)은 홈저면 및 경사면을 포함할 수 있다. 이 때, 복수 개의 돌기홈은 경사면의 개수가 서로 상이할 수 있다. 또한, 돌기 홈에서 저면의 넓이도 상이할 수 있다. 이는 상술한 제1,2 돌기홈에도 동일하게 적용될 수 있다.
예컨대, 제1-1 돌기홈(PH1a)은 제1 홈저면(LS1)과 제1 경사면(CS1)을 포함할 수 있다. 제1-2 돌기홈(PH1b)은 제2 홈저면(LS2)과 제2 경사면(CS2)을 포함할 수 있다.
이 때, 제1 홈저면(LS1)과 제2 홈저면(LS2)은 넓이가 서로 상이할 수 있다. 제1 홈저면(LS1)의 넓이는 제2 홈저면(LS2)의 넓이보다 작을 수 있다.
또한, 제1 홈저면(LS1)과 접하는 제1 경사면(CS1)의 개수는 제2 경사면(CS2)의 개수와 상이할 수 있다. 예컨대, 제1 경사면(CS1)의 개수는 제2 경사면(CS2)의 개수보다 클 수 있다.
이러한 구성에 의하여, 제1 돌기홈(PH1)에 안착하는 제1 돌출부의 조립 공차를 용이하게 보완할 수 있다. 예컨대, 제1 경사면(CS1)의 개수가 제2 경사면(CS2)의 개수보다 많으므로 제1 돌출부가 보다 많은 경사면과 접하여, 제1-1 돌기홈(PH1a)에서 제1 돌출부의 위치를 보다 정확하게 유지할 수 있다.
이와 달리, 제1-2 돌기홈(PH1b)에서는 제1 돌출부와 접하는 경사면의 개수가 제1-1 돌기홈(PH1b) 대비 작은 바, 제1 돌출부의 위치 조정이 수월하게 이루어질 수 있다.
실시예로, 제2 경사면(CS2)은 제2 방향(Y축 방향)으로 서로 이격 배치될 수 있다. 그리고 제2 홈저면(LS2)은 제1 방향(X축 방향)으로 연장되어 제1 돌출부가 제2 경사면(CS2)과 접한 상태에서 제1 방향(X축 방향)으로 용이하게 이동할 수 있다. 즉, 제1-2 돌기홈(PH1b)에서는 제1 돌출부가 용이하게 위치 조정될 수 있다.
또한, 제4 홀더 외측면(1131S4)에는 제1 부재(1131a)가 안착할 수 있다. 제1 부재(1131a)의 외측면(예로, 제1 부재와 마주하는 면에 대향하는 면)에는 제2 결합부(PP2)가 위치할 수 있다. 제2 결합부(PP2)는 결합 베이스(PP2a)와 제2 결합 돌기부(PP2b)를 포함할 수 있다. 제2 결합부(PP2)는 후술하는 제1 돌출부와 제1 방향(X축 방향)으로 중첩되게 배치될 수 있다.
제2 결합 돌기부(PP2b)는 복수 개로 제2 방향(Y축 방향)으로 이격 배치될 수 있다. 이 때, 복수 개의 제2 결합 돌기부(PP2b) 간의 이등분선은 모두 제1 돌출부의 정점과 제1 방향(X축 방향) 상에 위치할 수 있다.
또한, 제1 부재(1131a)는 제1 홈(gr1)을 포함할 수 있다. 다시 말해, 부재 베이스부(1131aa)의 내측면에는 제1 홈(gr1)이 위치할 수 있다. 그리고 제1 홈(gr1)에는 상술한 자성체가 안착할 수 있다. 또한, 제1 홈(gr1)은 자성체의 개수에 따라 복수 개일 수 있다. 즉, 제1 홈(gr1)은 자성체의 개수에 대응한 개수로 이루어질 수 있다.
또한, 제1 부재(1131a)는 부재 베이스부(1131aa), 제1 연장부(1131ab) 및 제2 연장부(1131ac)를 포함할 수 있다.
부재 베이스부(1131aa)는 제1 카메라 엑추에이터의 최외측에 위치할 수 있다. 부재 베이스부(1131aa)는 제2 부재의 외측에 위치할 수 있다. 즉, 제2 부재는 부재 베이스부(1131aa)와 틸팅 가이드부 사이에 위치할 수 있다.
제1 연장부(1131ab)는 부재 베이스부(1131aa)의 가장자리에서 제3 방향(Z축 방향)으로 연장될 수 있다. 즉, 제1 연장부(1131ab)는 부재 베이스부(1131aa)에서 홀더(1131)를 향해 연장될 수 있다. 이는 제2 연장부(1131ac)도 마찬가지일 수 있다. 또한, 제2 연장부(1131ac)는 부재 베이스부(1131aa)의 가장자리에서 제3 방향(Z축 방향)을 연장될 수 있다. 실시예로, 제1 연장부(1131ab)와 제2 연장부(1131ac)는 부재 베이스부(1131aa)의 제2 방향(Y축 방향)으로 가장자리에 위치할 수 있다. 그리고 제1 연장부(1131ab)와 제2 연장부(1131ac)는 상부부재와 하부부재 사이에 배치될 수 있다.
이에, 제1 부재(1131a)는 제1 연장부(1131ab)와 제2 연장부(1131ac)에 의해 형성된 그루브(groove)를 가질 수 있다. 즉, 그루브(groove)는 제1 연장부(1131ab)와 제2 연장부(1131ac) 사이에 위치할 수 있다. 이에, 제1 연장부(1131ab)와 제2 연장부(1131ac)는 부재 베이스부(1131aa)에 의해서만 서로 연결될 수 있다.
그리고 제1 부재(1131a)는 홀더와 결합하여 X축 틸트 및 Y축 틸트 시 이동하는 바, 제1 부재(1131a)의 강성이 제2 부재의 강성보다 더 클 수 있다.
나아가, 상술한 바와 같이 실시예에 따른 제2 부재는 상부부재와 하부부재를 가짐으로써 강성이 증가할 수 있다. 이러한 구성에 의하여, 제1 부재와 제2 부재 간의 강성 차이가 줄어들 수 있다. 이로써, 제1 부재(1131a)와 제1 부재(1131a)에 결합된 홀더(1131)가 함께 X축 틸트 또는 Y축 틸트되는 경우, 제1 부재(1131a)는 제2 부재와의 인접거리가 작아지고, 제2 부재와 접촉할 수 있다. 이에, 제2 부재가 상술한 바와 같이 향상된 강성을 가짐으로써 스토퍼로서 동작을 용이하게 수행할 수 있다. 즉, 카메라 엑추에이터의 신뢰성이 개선될 수 있다.
나아가, 제2 부재와 제1 부재 간의 강성 차이가 감소하여 틸트 시 접촉에 의한 데미지가 최소화될 수 있다. 즉, 카메라 엑추에이터의 신뢰성이 향상될 수 있다.
또한, 제1 연장부(1131ab)는 제2 연장부(1131ac)와 제2 방향(Y축 방향)으로 이격되어 이격 공간을 형성할 수 있다. 이러한 이격 공간에는 제2 부재와 틸팅 가이드부가 안착할 수 있다.
또한, 제1 연장부(1131ab)와 제2 연장부(1131ac)는 제3 방향(Z축 방향)으로 길이가 동일할 수 있다. 이에, 결합력 및 무게 등이 균형있게 형성되어 홀더의 틸트가 일측으로 기울어지지 않고 정확하게 이루어질 수 있다.
그리고 제1 연장부(1131ab)와 제2 연장부(1131ac)는 홀더와 결합할 수 있다. 본 명세서에서 결합은 상술한 돌기 및 홈 구조 이외에 접합 부재를 통해 서로 결합될 수 있음을 이해해야 한다. 실시예로, 제1 연장부(1131ab)와 제2 연장부(1131ac)는 제3 방향(Z축 방향)으로 형성된 제3 결합홈(1131k)을 포함할 수 있다. 또한, 제4 안착홈(1131S4a)에서 제1 연장부(1131ab) 및 제2 연장부(1131ac)와 제3 방향(Z축 방향)으로 중첩되는 영역에는 결합 돌기(1131m)가 위치할 수 있다. 결합 돌기(1131m)는 제3 결합홈(1131k)과 대응하여 위치할 수 있다.
예컨대, 제3 결합홈(1131k)에는 에폭시 등의 접합 부재가 도포될 수 있다. 그리고 결합 돌기(1131m)는 제1 연장부(1131ab)와 제2 연장부(1131ac)의 제3 결합홈(1131k)으로 삽입될 수 있다. 이러한 구성에 의하여, 제1 부재(1131a)와 홀더(1131)가 서로 결합할 수 있다. 또한, 이러한 결합으로 제1 부재(1131a)에 가해지는 척력이 홀더(1130)으로 전달될 수 있다.다만, 상술한 바와 같이 돌기 및 홈 구조는 서로 위치가 바뀔 수도 있음을 이해해야 한다.
또한, 실시예로, 무버(1130)의 홀더(1131) 또는 홀더(1131)와 결합하는 제1 부재(1131a)는 제4 홀더 외측면(1131S4)에서 또는 제1 부재의 외측면에서 외측 또는 스프링을 향해 돌출된 무버 돌기부(1131p)를 포함할 수 있다.
무버 돌기부(1131ap)는 복수 개의 돌기로 이루어질 수 있다. 예컨대, 무버 돌기부(1131p)는 제1 돌기부(1131ap1), 제2 돌기부(1131ap2) 및 제3 돌기부(1131ap3)를 포함할 수 있으며, 상술한 내용이 본 실시예에 적용될 수도 있다.
도 45a는 실시예에 따른 탄성부재의 평면도이고, 도 45b는 실시예에 따른 탄성부재의 측면도이고, 도 45c는 실시예에 따른 탄성부재의 상면도이고, 도 45d는 제4 실시예에 따른 제1 카메라 엑추에이터에서 제2 부재, 제1 부재 및 탄성부재 간의 결합을 설명하는 도면이고, 도 45e는 도 45d에서 제2 부재 및 제1 부재가 제거된 도면이다.
도 45a 내지 도 45c를 참조하면, 실시예에 따른 탄성부재(EE)는 제1 접합부(EP1), 제2 접합부(EP2) 및 연결부(CP)를 포함할 수 있다.
실시예로, 제1 접합부(EP1)는 제1 하우징(1120)과 연결되어, 제1 접합부(EP1)와 제1 하우징(1120)은 서로 결합할 수 있다. 즉, 또한, 제1 접합부(EP1)는 고정부재와 결합할 수 있다. 또는 제1 접합부(EP1)는 하우징(1120) 또는 제2 부재(1126)와 결합할 수 있다. 이하에서는 도면과 같이 제1 접합부(EP1)는 제2 부재(1126)와 결합할 수 있다. 이를 통해 제1 접합부(EP1)는 상술한 하우징(1120)과 결합할 수 있다.
그리고 제2 접합부(EP2)는 제1 부재(1131a)와 연결되어, 제2 접합부(EP2)와 제1 부재(1131a)는 서로 결합할 수 있다.
연결부(CP)는 제1 접합부(EP1)와 제2 접합부(EP2) 사이에 배치될 수 있다. 즉, 연결부(CP)는 일단이 제1 접합부(EP1)와 연결되고, 타단이 제2 접합부(EP2)와 연결될 수 있다.
구체적으로, 실시예에 따른 제1 접합부(EP1)는 제1 평탄 영역(EP1f) 및 제1 평탄 영역(EP1f)에 위치하는 복수 개의 제1 접합홀(EP1h)을 포함할 수 있다.
제1 평탄 영역(EP1f)은 직사각형 형상을 가질 수 있다. 이에, 제1 평탄 영역(EP1f)은 폐루프 형상일 수 있다. 그리고 제1 평탄 영역(EP1f)은 제2 부재(1126)의 가장자리를 따라 위치할 수 있다. 이에, 제1 접합부(EP1)는 제2 부재(1126)와의 결합력이 향상될 수 있으며, 후술하는 예압 생성 시 제2 부재(1126)에 의한 지지 및 결합으로 소자의 신뢰성이 개선될 수 있다.
제1 접합홀(EP1h)은 복수 개일 수 있으며, 홀 또는 홈의 형태일 수 있다. 그리고 제1 접합홀(EP1h)은 제2 부재(1126)에 형성된 돌기 등과 결합할 수 있다.
또한, 제1 접합홀(EP1h)은 제1 이등분선(LX1) 또는 제2 이등분선(LX2) 상에 배치되거나, 제1 이등분선(LX1) 또는 제2 이등분선(LX2)을 기준으로 대칭으로 배치될 수 있다. 이에 따라, 탄성부재(EE)에 의한 결합력이 일측에 집중되지 않아 X축 틸트 또는 Y축 틸트가 정확하게 수행될 수 있다.
그리고 제1 이등분선(LX1)은 제1 접합부(EP1)를 제1 방향(X축 방향)으로 이등분하는 선일 수 있다. 또는 제1 이등분선(LX1)은 제2 접합부(EP2)를 제1 방향(X축 방향)으로 이등분하는 선일 수 있다. 또한, 제2 이등분선(LX2)은 제1 접합부(EP1)를 제2 방향(Y축 방향)으로 이등분하는 선일 수 있다. 또는 제2 이등분선(LX2)은 제2 접합부(EP2)를 제2 방향(Y축 방향)으로 이등분하는 선일 수 있다. 또한, 교점(CK)은 제1 이등분선(LX1)과 제2 이등분선(LX2)이 교차하는 지점일 수 있다. 이하 이를 기준으로 설명한다.
제2 접합부(EP2)는 제1 접합부(EP1)의 내측에 위치할 수 있다. 구체적으로, 제2 접합부(EP2)는 제1 접합부(EP1)에 의해 둘러싸일 수 있다. 내측은 제1 접합부(EP)에서 제2 접합부(EP2)를 향한 방향으로, 제1 결합부에서 제2 결합부를 향한 방향과 대응된다.
그리고 제2 접합부(EP2)는 무버(1130)와 제1 접합부(EP1) 사이에 배치될 수 있다. 또는 제2 접합부(EP2)는 제1 부재(1131a)와 제1 접합부(EP1) 사이에 배치될 수 있다. 즉, 제2 접합부(EP2)는 제1 접합부(EP1)와 제3 방향(Z축 방향)으로 이격 배치될 수 있다.
실시예에 따른 연결부(CP)는 제1 부재(1131a)에서 제2 부재(1126)를 향해 또는 제2 부재(1126)에서 제1 부재(1131a)를 향해 연장될 수 있다. 즉, 연결부(CP)는 제3 방향(Z축 방향)으로 연장될 수 있다. 예컨대, 연결부(CP)는 제1 접합부(EP1)와 제2 접합부(EP2) 사이에 배치되어 제1 접합부(EP1)와 제2 접합부(EP2)를 서로 연결할 수 있다. 이에 따라, 탄성부재(EE)에서 생성된 탄성 복원력은 제1 접합부(EP1)가 하우징에 고정되는 고정부재이므로(하우징은 고정됨) 제2 접합부(EP2)에서 제1 접합부(EP1)를 향해 형성될 수 있다. 이에, 제2 접합부(EP2)에 연결된 제1 부재(1131a)와 제1 부재(1131a)에 결합된 무버(1130)도 제2 접합부(EP2)에서 제1 접합부(EP1)를 향해 힘이 생성될 수 있다. 이로써, 무버(1130)와 틸팅 가이드부(1141) 사이에도 상술한 힘이 가해질 수 있다. 그리고 최종적으로 틸팅 가이드부(1141)가 제2 부재(1126)를 가압하므로 후술하는 제1 축 틸트 또는 제2 축 틸트가 이루어질 수 있도록 틸팅 가이드부(1141)가 무버(1130)와 제2 부재(1126)(또는 하우징) 사이에서 위치를 유지할 수 있다.
또한, 제1 접합부(EP1)와 제2 접합부(EP2) 사이의 제3 방향(Z축 방향)으로 이격 거리(dd1)에 의해 탄성부재(EE)는 상술한 힘인 예압을 가질 수 있다.
또한, 탄성부재(EE)의 제2 접합부(EP2)는 탄성부재(EE)의 제1 접합부(EP1)와 고정부재인 제2 부재(1126)의 일면에 접하는 면 상에 배치되지 않을 수 있다. 상술한 바와 같이 제1 접합부(EP1)와 제2 접합부(EP2)는 서로 다른 평면(XY) 상에 위치하고, 제3 방향(Z축 방향)으로 이격될 수 있다. 이에, 제2 접합부(EP2)는 제1 접합부(EP1)보다 반사부재에 더 인접하게 위치할 수 있다.
그리고 실시예에서, 예압이 제3 방향에 반대 방향(예로, 틸팅 가이드부에서 제1 부재를 향한 방향)으로 형성되더라도 틸팅 가이드부(1141)의 위치가 용이하게 유지될 수 있다. 또한, 자성체 등을 사용하지 않는 경우 제1 카메라 엑추에이터에 인접한 다른 카메라 엑추에이터(예로, 제2 카메라 엑추에이터)에 자기력에 의한 오작동이 방지될 수 있다. 뿐만 아니라, 제4 실시예에 따른 제1 카메라 엑추에이터는 자성체 등을 사용하지 않고 무게가 가볍고 두께가 얇은 탄성부재를 사용함으로써, 소형화가 용이하게 이루어질 수 있다. 또는 변형예로, 상술한 제1 홈 및 제2 홈에 서로 같은 극성의 자성체를 배치함으로써 자성체 간의 척력을 발생시킬 수 있다. 이 때, 발생한 척력이 제1 부재를 통해 홀더의 제4 안착홈으로 전달될 수 있다. 그리고 홀더는 발생한 척력과 동일한 방향으로 틸팅 가이드부로 힘을 가할 수 있다. 이로써, 탄성부재는 자성체에 의한 척력으로 복원이 쉽게 이루어질 수 있다. 즉, 탄성부재의 신뢰성이 개선될 수 있다. 나아가, 발생한 척력에 의해 틸팅 가이드부(1141)의 위치가 보다 용이하게 유지되어 X축 틸트 또는 Y축 틸트에 대한 정확한 수행이 이루어질 수 있다.
실시예로, 제2 접합부(EP2)는 제2 평탄 영역(EP2f) 및 제2 평탄 영역(EP2f)에 위치하는 복수 개의 제2 접합홀(EP2h)을 포함할 수 있다. 제2 평탄 영역(EP2f)은 원형일 수 있으며, 제1 부재(1131a)와 접할 수 있다. 그리고 제2 접합홀(EP2h)은 제2 결합부(PP2)와 결합할 수 있다.
그리고 실시예로, 복수의 제1 접합홀(EP1h)은 제1 방향(X축 방향) 또는 제2 방향(Y축 방향)으로 서로 이격 배치될 수 있다. 그리고 제2 접합홀(EP2h)은 제2 방향(Y축 방향)으로 서로 이격 배치될 수 있다.
또한, 제2 접합홀(EP2h)은 인접한 제1 접합홀(EP1h) 사이에 위치할 수 있다. 예컨대, 제2 접합홀(EP2h)과 제1 접합홀(EP1h)은 제1 이등분선(LX1) 상에 배치될 수 있다. 또한, 제1 접합홀(EP1h)은 제2 이등분선(LX2) 상에 배치될 수도 있다. 이에 따라, 제4 실시예에 따른 제1 카메라 엑추에이터에서 탄성부재(EE)에 의해 가압되는 힘이 무버에 균일하게 제공될 수 있다.
그리고 제1 코일로 제공되는 전류의 양이 조절됨으로써, X축 틸트가 수행될 수 있다. 즉, 무버의 위치는 구동 이후에 탄성부재(EE)에 의해 초기 위치로 복원되므로 제1 코일에 인가되는 전류만으로 X축 틸트를 용이하게 수행할 수 있다. 이로써, 실시예에 따른 카메라 모듈은 에너지 효율을 개선하고 구동이 용이하게 수행될 수 있다.
실시예로, 연결부(CP)는 제1 접합부(EP1)와 제2 접합부(EP2) 사이에 위치한 제1 연결부(CP1), 제2 연결부(CP2), 제3 연결부(CP3) 및 제4 연결부(CP4)를 포함할 수 있다. 이러한 제1 연결부(CP) 내지 제4 연결부(CP4)는 이하 설명하는 내용이 적용될 수 있다.
제1 연결부(CP1), 제2 연결부(CP2), 제3 연결부(CP3) 및 제4 연결부(CP4)는 제1 이등분선(LX1)과 제2 이등분선(LX2)에 의해 구획되는 제1 사분영역(S1) 내지 제4 사분영역(S4)에 각각 배치될 수 있다.
제1 연결부(CP1), 제2 연결부(CP2), 제3 연결부(CP3) 및 제4 연결부(CP4)는 제1 접합부(EP1)에서 제2 접합부(EP2)로 시계 방향 또는 반시계 방향을 따라 순차로 배치될 수 있다. 이하에서는 반시계 방향을 기준으로 설명한다. 예컨대, 제1 연결부(CP1), 제2 연결부(CP2), 제3 연결부(CP3) 및 제4 연결부(CP4)는 제1 이등분선(LX1)과 제2 이등분선(LX2)에 의해 구분된 제1 사분영역(S1), 제2 사분영역(S2), 제3 사분영역(S3) 및 제4 사분영역(S4) 각각에 위치할 수 있다. 제1 사분영역(S1) 내지 제4 사분영역(S4)은 반시계 방향을 따라 위치한다.
또한, 제1 연결부(CP1), 제2 연결부(CP2), 제3 연결부(CP3) 및 제4 연결부(CP4)는 각각 제1 접합부(EP1)와 제2 접합부(EP2) 사이에서 절곡 등의 형상을 가질 수 있다.
특히, 실시예에 따른 제1 연결부(CP1), 제2 연결부(CP2), 제3 연결부(CP3) 및 제4 연결부(CP4)는 반시계 방향으로 동일한 형상을 가질 수 있다. 다시 말해, 제1 연결부(CP1)와 제3 연결부(CP3)는 제1 이등분선(LX1) 및 제2 이등분선(LX2)을 기준으로 서로 대칭일 수 있다. 또한, 제2 연결부(CP2)와 제4 연결부(CP4)는 제1 이등분선(LX1) 및 제2 이등분선(LX2)을 기준으로 서로 대칭일 수 있다. 이러한 구성에 의하여, X축 틸트 또는 Y축 틸트에 대한 복원력의 선형성 개선될 수 있다. 예를 들어, 제1 연결부(CP1) 내지 제4 연결부(CP4)가 제1 이등분선(LX1) 및 제2 이등분선(LX2) 중 어느 하나에 대해서만 대칭인 경우 X/Y축 틸트에 대한 복원력이 일 방향으로 불균형해질 수 있다. 다만, 실시예에 따른 카메라 엑추에이터에서는 연결부가 제1 이등분선(LX1) 및 제2 이등분선(LX2)을 기준으로 서로 대칭이어서 이러한 불균형이 해소될 수 있다.
실시예로, 제1 접합부(EP1)는 연결부(CP)와 접하는 제1 접합 지점(P1) 내지 제4 접합 지점(P4)을 포함할 수 있다. 그리고 제2 접합부(EP2)는 연결부(CP)와 접하는 제5 접합 지점(P5) 내지 제8 접합 지점(P5)을 포함할 수 있다.
제1 연결부(CP1)는 제1 접합부(EP1)의 제1 접합 지점(P1)과 접하고, 제2 접합부(EP2)의 제5 접합 지점(P5)에서 접할 수 있다. 또한, 제2 연결부(CP2)는 제1 접합부(EP1)의 제2 접합 지점(P2)과 접하고, 제2 접합부(EP2)의 제6 접합 지점(P6)에서 접할 수 있다. 또한, 제3 연결부(CP3)는 제1 접합부(EP1)의 제3 접합 지점(P3)과 접하고, 제2 접합부(EP2)의 제7 접합 지점(P7)에서 접할 수 있다. 또한, 제4 연결부(CP4)는 제1 접합부(EP1)의 제4 접합 지점(P1)과 접하고, 제2 접합부(EP2)의 제8 접합 지점(P8)에서 접할 수 있다.
그리고 제1 접합 지점(P1), 제5 접합 지점(P5), 제3 접합 지점(P3) 및 제7 접합 지점(P7)은 교점(CK)을 지나는 제1 대각선(DL1) 상에 배치될 수 있다. 나아가, 제2 접합 지점(P2), 제6 접합 지점(P6), 제4 접합 지점(P4) 및 제8 접합 지점(P8)은 교점(CK)을 지나는 제2 대각선(DL2) 상에 배치될 수 있다.
그리고 제1 연결부(CP1)는 제1 접합 지점(P1)에서 내측으로 연장되고, 제1 가상선(DL1)의 하부로 절곡된 후 내측으로 연장되어 제1 가상선(DL1) 하부로 돌출된 구조를 가질 수 있다. 그리고 제1 연결부(CP1)는 제1 가상선(DL1) 상부로 연장 및 절곡되어 돌출된 구조를 가질 수 있다. 또한, 제1 연결부(CP1)는 제1 가상선(DL1) 하부로 연장 및 절곡되어 돌출된 구조를 가진 다음 제2 접합부(EP2)의 제5 접합 지점(P5)과 접할 수 있다.
제2 연결부(CP2)는 제2 접합 지점(P2)에서 내측으로 연장되고 제2 대각선(DL2) 상부로 절곡된 후 내측으로 연장되어 제2 가상선(DL2) 하부로 돌출된 구조를 가질 수 있다. 그리고 제2 연결부(CP2)는 제2 가상선(DL2) 하부로 연장 및 절곡되어 돌출된 구조를 가지며, 이후에 제2 가상선(DL2) 상부로 연장 및 절곡되어 돌출된 구조를 형성한 다음 제2 접합부(EP2)의 제6 접합 지점(P6)과 접할 수 있다.
제3 연결부(CP3)는 제3 접합 지점(P3)에서 내측으로 연장되고 제1 대각선(DL1) 상부로 절곡된 후 내측으로 연장되어 제1 가상선(DL1) 하부로 돌출된 구조를 가질 수 있다. 그리고 제3 연결부(CP3)는 제1 가상선(DL1) 하부로 연장 및 절곡되어 돌출된 구조를 가지며, 이후에 제1 가상선(DL1) 상부로 연장 및 절곡되어 돌출된 구조를 형성한 다음 제2 접합부(EP2)의 제7 접합 지점(P7)과 접할 수 있다.
제4 연결부(CP4)는 제4 접합 지점(P4)에서 내측으로 연장되고, 제2 가상선(DL2)의 하부로 절곡된 후 내측으로 연장되어 제2 가상선(DL2) 하부로 돌출된 구조를 가질 수 있다. 그리고 제4 연결부(CP4)는 제2 가상선(DL2) 상부로 연장 및 절곡되어 돌출된 구조를 가질 수 있다. 또한, 제4 연결부(CP4)는 제2 가상선(DL2) 하부로 연장 및 절곡되어 돌출된 구조를 가진 다음 제2 접합부(EP2)의 제8 접합 지점(P8)과 접할 수 있다.
도 45d 및 도 45e를 참조하면, 제4 실시예에 따른 제1 카메라 엑추에이터에서 제2 접합부(EP2)는 제1 돌출부(PR1)와 제2 축 또는 제1 방향으로 중첩될 수 있다.
또한, 후술하는 베이스에서 제1 돌출부(PR1)의 정점은 복수 개의 제2 접합홀(EP2h)을 이등분하는 중간축(상술한 제2 가상선(LX2)에 대응)에 배치될 수 있다. 이러한 구성에 의하여, 제1 돌출부(PR1)에 의한 제2 축 틸트가 이루어지는 경우 탄성부재(EE)에 의해 틸팅 가이드부로 가압되는 힘이 제2 축 또는 제1 방향을 기준으로 균일하게 생성될 수 있다.
또한, 제1 이등분선(LX1) 상에 제2 돌출부(PR2)의 정점이 위치할 수 있다. 즉, 제2 돌출부(PR2)의 정점은 제1 접합홀(EP1h)을 서로 이등분하는 제1 이등분선(LX1) 상에 배치될 수 있다. 이에 따라, 실시예에 따른 카메라 엑추에이터에서 탄성부재(EE)에 의해 가압되는 힘이 무버의 상부 또는 하부에 모두 균일하게 제공될 수 있다.
또한, 무버 돌기부(1131ap)는 연결부(CP)와 제1 방향으로 적어도 일부 중첩될 수 있다. 그리고 댐퍼부재(DP)는 무버 돌기부(1131ap)와 연결부(CP) 사이에 배치될 수 있다. 이에, 댐퍼부재(DP)는 무버 돌기부(1131ap) 및 연결부(CP)와 결합할 수 있다. 이러한 구성에 의하여, 댐퍼부재(DP)는 무버의 축 회전 시 세틀링타임(settling time)에서의 진동을 억제할 수 있다. 또한, 댐퍼부재(DP)는 공진 주파수에 의한 스프링의 파손을 억제할 수 있다. 이로써, 실시예에 따른 제1 카메라 엑추에이터의 신뢰성이 향상될 수 있다.
도 46은 제5 실시예에 따른 제1 카메라 엑추에이터의 도면이다.
도 46을 참조하면, 제5 실시예에 따른 제1 카메라 엑추에이터(1100F)는 제1 하우징(1120), 무버(1130), 회전부(1140), 제1 구동부(1150), 탄성부재(EE), 제2 부재(1126), 제1 부재(1131a) 및 댐퍼부재(DP1, DP2)를 포함한다. 나아가, 이하에서 설명하는 내용을 제외하고 상술한 내용이 동일하게 적용될 수 있다.
제4 실시예에 따른 제1 카메라 엑추에이터(1100C)에서 제1 부재(1131a)는 연결부(CP)에 인접하게 배치되는 부재 돌기(1131ap)를 포함할 수 있다.
부재 돌기(1131ap)는 연결부(CP)와 광축 방향 또는 제3 방향(Z축 방향)으로 적어도 일부 중첩될 수 있다. 또는, 부재 돌기(1131ap)는 연결부(CP)와 광축 방향으로 중첩되지 않더라도 연결부(CP)에 인접하게 배치될 수 있다.
그리고 연결부(CP)는 적어도 일부가 부재 돌기(1131ap)의 외면에 대응하여 곡률질 수 있다. 즉, 연결부(CP)와 부재 돌기(1131ap)는 서로 마주보는 면 또는 선이 서로 대응할 수 있다. 그리고 상술한 마주보는 면 또는 선이 서로 곡률질 수 있다. 이에, 댐퍼부재(DP1)가 제1 부재(1131a) 및 탄성부재(EE)와 용이하게 결합할 수 있다. 나아가, 부재 돌기(1131ap)는 댐퍼부재(DP1)가 제1 부재(1131a) 및 탄성부재(EE) 이외의 부재와 결합되는 현상이 억제될 수 있다. 또한, 상술한 곡률진 면 또는 선에 의해, 부재 돌기(1131ap)는 일측으로 돌출된 영역을 가질 수 있다. 이로써, 제1 부재 돌기(1131ap)와 제1 부재(1131a)가 댐퍼부재(DP1)에 의해 용이하게 결합할 수 있다.
또한, 제1 부재(1131a)의 상면은 하면보다 제1 방향(X축 방향)으로 폭 또는 길이가 작을 수 있다. 예컨대, 제1 부재(1131a)에서 상면의 제1 방향(X축 방향)으로 폭 또는 길이는 하면의 제1 방향(X축 방향)으로 폭 또는 길이보다 작을 수 있다.
나아가, 제1 부재(1131a)의 상면은 하면보다 면적이 작을 수 있다. 이러한 구성에 의하여, 댐퍼부재(DP1)와 탄성부재(EE) 간의 결합 영역이 용이하게 확보되며 하부로 댐퍼부재가 흘러내리는 현상이 용이하게 억제될 수 있다.
또한, 제2 결합부의 제3 방향(Z축 방향)으로 높이 또는 길이는 부재 돌기(1131ap)의 제3 방향으로 폭이 또는 길이보다 작을 수 있다. 이에, 상술한 바와 같이 탄성부재(EE)의 예압 형성이 용이하게 이루어지면서, 부재 돌기(1131ap)와 댐퍼부재(DP1) 간의 결합도 이루어질 수 있다.
그리고 댐퍼부재(DP1)는 제2 접합부(EP2)를 기준으로 상부 영역에 배치될 수 있다. 마찬가지로, 부재 돌기(1131ap)도 제2 접합부(EP2)를 기준으로 상부 영역에 배치될 수 있다. 이에, 댐퍼부재(DP1)는 제2 접합부(EP2)를 기준으로 제1 방향 측 영역에서 부재 돌기(1131ap) 및 연결부(CP)와 결합할 수 있다. 이러한 구성에 의하여, 댐퍼부재(DP1)는 무버의 축 회전 시 세틀링타임(settling time)에서의 진동을 억제할 수 있다. 또한, 댐퍼부재(DP1)는 공진 주파수에 의한 스프링의 파손을 억제할 수 있다. 이로써, 실시예에 따른 제1 카메라 엑추에이터의 신뢰성이 향상될 수 있다.
또한, 부재 돌기(1131ap)는 제1 접합부와 제2 접합부 사이에 위치할 수 있다. 또한, 부재 돌기(1131ap)는 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다. 또한, 제1 연결부와 제2 연결부가 서로 제1 방향에 대해 대칭이 아닌 바, 부재 돌기(1131ap)도 제1 방향에 대해 대칭으로 배치되지 않을 수 있다.
또한, 실시예로, 제2 부재(1126)는 연결부(CP)에 인접하게 배치되는 하우징 돌기(1126p)를 포함할 수 있다. 하우징 돌기(1126p)은 연결부(CP)에 인접하게 배치될 수 있다. 나아가, 하우징 돌기(1126p)는 연결부(CP)와 제1 방향(X축 방향)으로 적어도 일부 중첩될 수 있다.
또한, 연결부(CP)는 적어도 일부가 하우징 돌기(1126p)의 외면에 대응할 수 있다. 예컨대, 연결부(CP)와 하우징 돌기(1126p)는 서로 마주보는 면 또는 선이 서로 대응할 수 있다. 그리고 상술한 마주보는 면 또는 선이 서로 곡률질 수 있다. 이에, 댐퍼부재(DP2)가 제2 부재(1126) 및 탄성부재(EE)와 용이하게 결합할 수 있다. 나아가, 댐퍼부재(DP2)가 제2 부재(1126) 및 탄성부재(EE) 이외의 부재와 결합되는 현상이 억제될 수 있다. 이에, 상술한 곡률진 면 또는 선에 의해, 하우징 돌기(1126p)는 일측으로 돌출된 영역(1126pp)을 가질 수 있다. 이로써, 댐퍼부재(DP2)는 무버의 축 회전 시 세틀링타임(settling time)에서의 진동을 더욱 억제할 수 있다. 또한, 댐퍼부재(DP2)는 공진 주파수에 의한 스프링의 파손을 보다 효과적으로 억제할 수 있다. 이로써, 실시예에 따른 제1 카메라 엑추에이터의 신뢰성이 향상될 수 있다.
또한, 하우징 돌기(1126p)는 연결부(CP)와 광축 방향 또는 제3 방향(Z축 방향)으로 적어도 일부 중첩될 수 있다. 이에, 하우징 돌기(1126p)와 연결부(CP)는 댐퍼부재(DP2)에 의한 결합력이 더욱 향상될 수 있다. 나아가, 연결부(CP)의 탈출이 하우징 돌기(1126p)에 의해 억제될 수 있다.
또는, 하우징 돌기(1126p)는 연결부(CP)와 제3 방향으로 중첩되지 않고 제3 방향에 교차하는 영역으로 서로 이격 배치될 수도 있다.
그리고 감쇠부재(DP2)는 제2 접합부(EP2)를 기준으로 하부 영역에 배치될 수 있다. 마찬가지로, 하우징 돌기(1126p)도 제2 접합부(EP2)를 기준으로 상부 영역에 배치될 수 있다.도 47은 제6 실시예에 따른 제1 카메라 엑추에이터의 도면이다.
도 47을 참조하면, 제6 실시예에 따른 제1 카메라 엑추에이터(1100D)는 제1 하우징(1120), 무버(1130), 회전부(1140), 제1 구동부(1150), 탄성부재(EE), 제2 부재(1126), 제1 부재(1131a) 및 댐퍼부재(DP1)를 포함한다. 나아가, 이하에서 설명하는 내용을 제외하고 상술한 내용이 동일하게 적용될 수 있다.
제6 실시예에 따른 제1 카메라 엑추에이터(1100E)에서 제1 부재(1131a)는 연결부(CP)에 인접하게 배치되는 부재 돌기(1131ap)를 포함할 수 있다. 이에 대한 상술한 설명이 적용될 수 있다. 나아가, 상술한 하우징 돌기와 댐퍼부재는 탄성부재(EE)와 결합하지 않을 수 있다.
그리고 부재 돌기(1131ap)는 상술한 바와 같이 제2 접합부(EP2)를 기준으로 상부 영역에 배치될 수 있다. 또한, 댐퍼부재(DP1)는 제2 접합부(EP2)를 기준으로 상부 영역에 배치될 수 있다.
그리고 부재 돌기(1131ap)는 복수 개로, 제2 접합부(EP2)를 기준으로 하부 영역에 배치될 수 있다. 예컨대, 부재 돌기(1131ap)는 제1 연결부 내지 제4 연결부 각각에 인접하게 배치될 수 있다. 그리고 댐퍼부재(DP1)를 통해 복수의 부재 돌기(1131ap) 각각은 제1 연결부 내지 제4 연결부와 결합할 수 있다.
도 48은 제7 실시예에 따른 제1 카메라 엑추에이터의 도면이다.
도 48을 참조하면, 제7 실시예에 따른 제1 카메라 엑추에이터(1100F)는 제1 하우징(1120), 무버(1130), 회전부(1140), 제1 구동부(1150), 탄성부재(EE), 제2 부재(1126), 제1 부재(1131a) 및 댐퍼부재(DP2)를 포함한다. 나아가, 이하에서 설명하는 내용을 제외하고 상술한 내용이 동일하게 적용될 수 있다.
제7 실시예에 따른 제1 카메라 엑추에이터(1100E)에서 제1 부재(1131a)는 연결부(CP)에 인접하게 배치되는 부재 돌기(1131ap) 및 댐퍼부재를 통해 탄성부재와 결합하지 않을 수 있다. 또한, 제2 부재(1126)는 외측 또는 제3 방향(Z축 방향)을 따라 돌출된 하우징 돌기(1126p)를 포함할 수 있다. 그리고 하우징 돌기(1126p)는 댐퍼부재(DP2)를 통해 탄성 부재(연결부)와 결합할 수 있다. 이에 대한 상술한 설명이 적용될 수 있다.
그리고 하우징 돌기(1126p)는 상술한 바와 같이 제2 접합부(EP2)를 기준으로 하부 영역에 배치될 수 있다. 또한, 댐퍼부재(DP1)는 제2 접합부(EP2)를 기준으로 하부 영역에 배치될 수 있다.
도 49는 제8 실시예에 따른 제1 카메라 엑추에이터의 도면이다.
도 49를 참조하면, 제8 실시예에 따른 제1 카메라 엑추에이터(1100G)는 제1 하우징(1120), 무버(1130), 회전부(1140), 제1 구동부(1150), 탄성부재(EE), 제2 부재(1126), 제1 부재(1131a) 및 댐퍼부재(DP)를 포함한다. 나아가, 이하에서 설명하는 내용을 제외하고 상술한 내용이 동일하게 적용될 수 있다.
또한, 실시예로, 무버(1130)의 홀더(1131) 또는 홀더(1131)와 결합하는 제1 부재(1131a)는 제4 홀더 외측면(1131S4)에서 또는 제1 부재의 외측면에서 외측 또는 스프링을 향해 돌출된 무버 돌기부(1131p)를 포함할 수 있다.
무버 돌기부(1131ap)는 복수 개의 돌기로 이루어질 수 있다. 예컨대, 무버 돌기부(1131p)는 제1 돌기부(1131ap1), 제2 돌기부(1131ap2) 및 제3 돌기부(1131ap3)를 포함할 수 있으며, 상술한 내용이 본 실시예에 적용될 수도 있다.
또한, 무버 돌기부(1131ap)는 연결부(CP)와 제1 방향으로 적어도 일부 중첩될 수 있다. 그리고 댐퍼부재(DP)는 무버 돌기부(1131ap)와 연결부(CP) 사이에 배치될 수 있다. 이에, 댐퍼부재(DP)는 무버 돌기부(1131ap) 및 연결부(CP)와 결합할 수 있다. 이러한 구성에 의하여, 댐퍼부재(DP)는 무버의 축 회전 시 세틀링타임(settling time)에서의 진동을 억제할 수 있다. 또한, 댐퍼부재(DP)는 공진 주파수에 의한 스프링의 파손을 억제할 수 있다. 이로써, 실시예에 따른 제1 카메라 엑추에이터의 신뢰성이 향상될 수 있다.
실시예에 따른 제1 카메라 엑추에이터(1100E)에서 제1 부재(1131a)는 연결부(CP)에 인접하게 배치되는 부재 돌기(1131ap)를 포함할 수 있다. 이에 대한 상술한 설명이 적용될 수 있다. 나아가, 상술한 하우징 돌기와 댐퍼부재는 탄성부재(EE)와 결합하지 않을 수 있다.
그리고 부재 돌기(1131ap)는 상술한 바와 같이 제2 접합부(EP2)를 기준으로 상부 영역에 배치될 수 있다. 또한, 댐퍼부재(DP1)는 제2 접합부(EP2)를 기준으로 상부 영역에 배치될 수 있다.
그리고 부재 돌기(1131ap)는 복수 개로, 제2 접합부(EP2)를 기준으로 하부 영역에 배치될 수 있다. 예컨대, 부재 돌기(1131ap)는 제1 연결부 내지 제4 연결부 각각에 인접하게 배치될 수 있다. 그리고 댐퍼부재(DP1)를 통해 복수의 부재 돌기(1131ap) 각각은 제1 연결부 내지 제4 연결부와 결합할 수 있다.
또는, 2 부재(1126)는 외측 또는 제3 방향(Z축 방향)을 따라 돌출된 하우징 돌기(1126p)를 포함할 수 있다. 그리고 하우징 돌기(1126p)는 댐퍼부재(DP2)를 통해 탄성 부재(연결부)와 결합할 수 있다. 이에 대한 상술한 설명이 적용될 수 있다.
도 50는 실시예에 따른 제2 카메라 엑추에이터의 사시도이고, 도 51는 실시예에 따른 제2 카메라 엑추에이터의 분해 사시도이고, 도 52은 도 50에서 DD’로 바라본 단면도이고, 도 53는 도 50에서 EE’로 바라본 단면도이다.
도 50 내지 도 53을 참조하면, 실시예에 따른 제2 카메라 엑추에이터(1200)는 렌즈부(1220), 제2 하우징(1230), 제2 구동부(1250), 베이스부(미도시됨) 및 제2 기판부(1270)를 포함할 수 있다. 나아가, 제2 카메라 엑추에이터(1200)는 제2 쉴드 캔(미도시됨), 탄성부(미도시됨) 및 접합 부재(미도시됨)를 더 포함할 수 있다. 나아가, 실시예에 따른 제2 카메라 엑추에이터(1200)는 이미지 센서(IS)를 더 포함할 수 있다.
제2 쉴드 캔(미도시됨)은 제2 카메라 엑추에이터(1200)의 일 영역(예컨대, 최외측)에 위치하여, 후술하는 구성요소(렌즈부(1220), 제2 하우징(1230), 탄성부(미도시됨), 제2 구동부(1250), 베이스부(미도시됨), 제2 기판부(1270) 및 이미지 센서(IS))를 감싸도록 위치할 수 있다.
이러한 제2 쉴드 캔(미도시됨)은 외부에서 발생한 전자기파를 차단 또는 저감할 수 있다. 이에 따라, 제2 구동부(1250)에서 오작동의 발생이 감소할 수 있다.
렌즈부(1220)는 제2 쉴드 캔(미도시됨) 내에 위치할 수 있다. 렌즈부(1220)는 제3 방향(Z축 방향)으로 이동할 수 있다. 이에 따라 상술한 AF 기능이 수행될 수 있다.
구체적으로, 렌즈부(1220)는 렌즈 어셈블리(1221) 및 보빈(1222)을 포함할 수 있다.
렌즈 어셈블리(1221)는 적어도 하나 이상의 렌즈를 포함할 수 있다. 또한, 렌즈 어셈블리(1221)는 복수 개일 수 있으나, 이하에서는 하나를 기준으로 설명한다.
렌즈 어셈블리(1221)는 보빈(1222)과 결합되어 보빈(1222)에 결합된 제4 마그넷(1252a) 및 제2 마그넷(1252b)에서 발생한 전자기력에 의해 제3 방향(Z축 방향)으로 이동할 수 있다.
보빈(1222)은 렌즈 어셈블리(1221)를 감싸는 개구 영역을 포함할 수 있다. 그리고 보빈(1222)은 렌즈 어셈블리(1221)와 다양한 방법에 의해 결합될 수 있다. 또한, 보빈(1222)은 측면에 홈을 포함할 수 있으며, 상기 홈을 통해 제4 마그넷(1252a) 및 제2 마그넷(1252b)과 결합할 수 있다. 상기 홈에는 접합 부재 등이 도포될 수 있다.
또한, 보빈(1222)은 상단 및 후단에 탄성부(미도시됨)와 결합될 수 있다. 이에, 보빈(1222)은 제3 방향(Z축 방향)으로 이동하는데 탄성부(미도시됨)로부터 지지될 수 있다. 즉, 보빈(1222)의 위치가 유지되면서 제3 방향(Z축 방향)으로 유지될 수 있다. 탄성부(미도시됨)는 판스프링으로 이루어질 수 있다.
제2 하우징(1230)은 렌즈부(1220)와 제2 쉴드 캔(미도시됨) 사이에 배치될 수 있다. 그리고 제2 하우징(1230)은 렌즈부(1220)를 둘러싸도록 배치될 수 있다.
제2 하우징(1230)은 측부에 홀이 형성될 수 있다. 상기 홀에는 제4 코일(1251a) 및 제5 코일(1251b)이 배치될 수 있다. 상기 홀은 상술한 보빈(1222)의 홈에 대응하도록 위치할 수 있다.
제4 마그넷(1252a)은 제4 코일(1251a)과 마주보게 위치할 수 있다. 또한, 제2 마그넷(1252b)은 제5 코일(1251b)과 마주보게 위치할 수 있다.
탄성부(미도시됨)는 제1 탄성부재(미도시됨) 및 제2 탄성부재(미도시됨)를 포함할 수 있다. 제1 탄성부재(미도시됨)는 보빈(1222)의 상면과 결합될 수 있다. 제2 탄성부재(미도시됨)는 보빈(1222)의 하면과 결합할 수 있다. 또한, 제1 탄성부재(미도시됨)와 제2 탄성부재(미도시됨)는 상술한 바와 같이 판 스프링으로 형성될 수 있다. 또한, 제1 탄성부재(미도시됨)와 제2 탄성부재(미도시됨)는 보빈(1222)의 이동에 대한 탄성을 제공할 수 있다.
제2 구동부(1250)는 렌즈부(1220)를 제3 방향(Z축 방향)으로 이동시키는 구동력(F3, F4)을 제공할 수 있다. 이러한 제2 구동부(1250)는 제2 구동 코일(1251) 및 제2 구동 마그넷(1252)을 포함할 수 있다.
제2 구동 코일(1251)및 제2 구동 마그넷(1252) 간에 형성된 전자기력으로 렌즈부(1220)가 제3 방향(Z축 방향)으로 이동할 수 있다.
제2 구동 코일(1251)은 제4 코일(1251a) 및 제5 코일(1251b)을 포함할 수 있다. 제4 코일(1251a) 및 제5 코일(1251b)은 제2 하우징(1230)의 측부에 형성된 홀 내에 배치될 수 있다. 그리고 제4 코일(1251a) 및 제5 코일(1251b)은 제2 기판부(1270)와 전기적으로 연결될 수 있다. 이에, 제4 코일(1251a) 및 제5 코일(1251b)은 제2 기판부(1270)를 통해 전류 등을 공급받을 수 있다.
제2 구동 마그넷(1252)은 제4 마그넷(1252a) 및 제5 마그넷(1252b)을 포함할 수 있다. 제4 마그넷(1252a) 및 제5 마그넷(1252b)은 보빈(1222)의 상술한 홈에 배치될 수 있으며, 제4 코일(1251a) 및 제5 코일(1251b)에 대응하도록 위치할 수 있다.
베이스부(미도시됨)는 렌즈부(1220)와 이미지 센서(IS) 사이에 위치할 수 있다. 베이스부(미도시됨)는 필터 등의 구성요소가 고정될 수 있다. 또한, 베이스부(미도시됨)는 이미지 센서(IS)를 둘러싸도록 배치될 수 있다. 이러한 구성에 의하여, 이미지 센서(IS)는 이물질 등으로부터 자유로워지므로, 소자의 신뢰성이 개선될 수 있다.
또한, 제2 카메라 엑추에이터는 줌(Zoom) 엑추에이터 또는 AF(Auto Focus) 엑추에이터일 수 있다. 예를 들어, 제2 카메라 엑추에이터는 하나 또는 복수의 렌즈를 지지하며 소정의 제어부의 제어신호에 따라 렌즈를 움직여 오토포커싱 기능 또는 줌 기능을 수행할 수 있다.
그리고 제2 카메라 엑추에이터는 고정줌 또는 연속줌일 수 있다. 예컨대, 제2 카메라 엑추에이터는 렌즈 어셈블리(1221)의 이동을 제공할 수 있다.
뿐만 아니라, 제2 카메라 엑추에이터는 복수 개의 렌즈 어셈블리로 이루어질 수 있다. 예컨대, 제2 카메라 엑추에이터는 제1 렌즈 어셈블리(미도시됨), 제2 렌즈 어셈블리(미도시됨), 제3 렌즈 어셈블리(미도시됨), 및 가이드 핀(미도시됨) 중 적어도 하나 이상이 배치될 수 있다. 이에 대해서는 상술한 내용이 적용될 수 있다. 이에, 제2 카메라 엑추에이터는 구동부를 통해 고배율 주밍 기능을 수행할 수 있다. 예를 들어, 제1 렌즈 어셈블리(미도시됨)와 제2 렌즈 어셈블리(미도시됨)는 구동부와 가이드 핀(미도시됨)을 통해 이동하는 이동 렌즈(moving lens)일 수 있으며, 제3 렌즈 어셈블리(미도시됨)는 고정 렌즈일 수 있으나 이에 한정되는 것은 아니다. 예를 들어, 제3 렌즈 어셈블리(미도시됨)는 광을 특정 위치에 결상하는 집광자(focator)의 기능을 수행할 수 있고, 제1 렌즈 어셈블리(미도시됨)는 집광자인 제3 렌즈 어셈블리(미도시됨)에서 결상된 상을 다른 곳에 재결상시키는 변배자(variator) 기능을 수행할 수 있다. 한편, 제1 렌즈 어셈블리(미도시됨)에서는 피사체와의 거리 또는 상거리가 많이 바뀌어서 배율변화가 큰 상태일 수 있으며, 변배자인 제1 렌즈 어셈블리(미도시됨)는 광학계의 초점거리 또는 배율변화에 중요한 역할을 할 수 있다. 한편, 변배자인 제1 렌즈 어셈블리(미도시됨)에서 결상되는 상점은 위치에 따라 약간 차이가 있을 수 있다. 이에 제2 렌즈 어셈블리(미도시됨)는 변배자에 의해 결상된 상에 대한 위치 보상 기능을 할 수 있다. 예를 들어, 제2 렌즈 어셈블리(미도시됨)는 변배자인 제1 렌즈 어셈블리(미도시됨)에서 결상된 상점을 실제 이미지 센서 위치에 정확히 결상시키는 역할을 수행하는 보상자(compensator) 기능을 수행할 수 있다.
이미지 센서(IS)는 제2 카메라 엑추에이터의 내측에 또는 외측에 위치할 수 있다. 실시예로는, 도시한 바와 같이 이미지 센서(IS)가 제2 카메라 엑추에이터의 내측에 위치할 수 있다. 이미지 센서(IS)는 광을 수신하고, 수광된 광을 전기신호로 변환할 수 있다. 또한, 이미지 센서(IS)는 복수 개의 픽셀이 어레이 형태로 이루어질 수 있다. 그리고 이미지 센서(IS)는 광축 상에 위치할 수 있다.
도 54는 실시예에 따른 카메라 모듈이 적용된 이동 단말기의 사시도이다.
도 54에 도시된 바와 같이, 실시예의 이동단말기(1500)는 후면에 제공된 카메라 모듈(1000), 플래쉬모듈(1530), 자동초점장치(1510)를 포함할 수 있다.
카메라 모듈(1000)은 이미지 촬영 기능 및 자동 초점 기능을 포함할 수 있다. 예컨대, 카메라 모듈(1000)은 이미지를 이용한 자동 초점 기능을 포함할 수 있다.
카메라 모듈(1000)은 촬영 모드 또는 화상 통화 모드에서 이미지 센서에 의해 얻어지는 정지 영상 또는 동영상의 화상 프레임을 처리한다.
처리된 화상 프레임은 소정의 디스플레이부에 표시될 수 있으며, 메모리에 저장될 수 있다. 이동단말기 바디의 전면에도 카메라(미도시)가 배치될 수 있다.
예를 들어, 카메라 모듈(1000)은 제1 카메라 모듈(1000A)과 제2 카메라 모듈(1000B)을 포함할 수 있고, 제1 카메라 모듈(1000A)에 의해 AF 또는 줌 기능과 함께 OIS 구현이 가능할 수 있다. 또한, 제2 카메라 모듈(1000b)에 의해 AF, 줌 및 OIS 기능이 이루어질 수 있다. 이 때, 제1 카메라 모듈(1000A)은 상술한 제1 카메라 엑추에이터 및 제2 카메라 엑추에이터를 모두 포함하므로, 광 경로 변경을 통해 카메라 장치 또는 카메라 모듈의 소형화가 용이하게 이루어질 수 있다.
또한, 상술한 일 예에 따른 제2 카메라 모듈(1000B)에서 제1 카메라 엑추에이터(1100)의 제1 측면(상술한 제1 홀더 외측면에 대응)에 제1 마그넷이 배치되고 제2 측면(상술한 제2 홀더 외측면에 대응)에 더미 부재(제2 마그넷 대신)가 배치될 수 있다. 이 때, 제1 카메라 모듈(1000A)은 제1 측면 대비 제2 측면에 인접하게 배치될 수 있다. 또한, 제2 카메라 모듈(1000B)는 제1 카메라 모듈과 인접하는 제1 측면과 상기 제1 측면과 대향하는 제2 측면을 가지며, 내부의 광학부재와 제2 측면 사이에 광학부재가 움직이도록 하는 구동부(마그넷/코일 등에 대응)를 포함할 수 있다. 즉, 제2 카메라 모듈(1000B)은 광학부재와 제1 측면 사이에 더미 부재를 포함할 수 있다.
이에, 제2 측면에 더미 부재가 배치됨으로써 제2 카메라 모듈(1000B)은 제1 카메라 모듈에서 발생한 자기력에 의한 영향을 최소화한 상태로 자성체(예, 마그넷)를 이용하여 엑추에이터 기능을 수행할 수 있다. 또한, 이에 대응하여 제1 카메라 모듈(1000A)도 제2 카메라 모듈(1000B)에 인접하게 더미 부재가 배치되므로, 제2 카메라 모듈(1000B)로부터 발생하는 자기력이 제1 카메라 모듈(1000A)의 엑추에이터로서 기능에 영향이 최소화될 수 있다.
플래쉬모듈(1530)은 내부에 광을 발광하는 발광 소자를 포함할 수 있다. 플래쉬모듈(1530)은 이동단말기의 카메라 작동 또는 사용자의 제어에 의해 작동될 수 있다.
자동초점장치(1510)는 발광부로서 표면 광 방출 레이저 소자의 패키지 중의 하나를 포함할 수 있다.
자동초점장치(1510)는 레이저를 이용한 자동 초점 기능을 포함할 수 있다. 자동초점장치(1510)는 카메라 모듈(1000)의 이미지를 이용한 자동 초점 기능이 저하되는 조건, 예컨대 10m 이하의 근접 또는 어두운 환경에서 주로 사용될 수 있다.
자동초점장치(1510)는 수직 캐비티 표면 방출 레이저(VCSEL) 반도체 소자를 포함하는 발광부와, 포토 다이오드와 같은 빛 에너지를 전기 에너지로 변환하는 수광부를 포함할 수 있다.
도 55은 실시예에 따른 카메라 모듈이 적용된 차량의 사시도이다.
예를 들어, 도 55는 실시예에 따른 카메라 모듈(1000)이 적용된 차량 운전 보조 장치를 구비하는 차량의 외관도이다.
도 55를 참조하면, 실시예의 차량(700)은, 동력원에 의해 회전하는 바퀴(13FL, 13FR), 소정의 센서를 구비할 수 있다. 센서는 카메라센서(2000)일 수 있으나 이에 한정되는 것은 아니다.
카메라(2000)는 실시예에 따른 카메라 모듈(1000)이 적용된 카메라 센서일 수 있다. 실시예의 차량(700)은, 전방 영상 또는 주변 영상을 촬영하는 카메라센서(2000)를 통해 영상 정보를 획득할 수 있고, 영상 정보를 이용하여 차선 미식별 상황을 판단하고 미식별시 가상 차선을 생성할 수 있다.
예를 들어, 카메라센서(2000)는 차량(700)의 전방을 촬영하여 전방 영상을 획득하고, 프로세서(미도시)는 이러한 전방 영상에 포함된 오브젝트를 분석하여 영상 정보를 획득할 수 있다.
예를 들어, 카메라센서(2000)가 촬영한 영상에 차선, 인접차량, 주행방해물, 및 간접 도로 표시물에 해당하는 중앙 분리대, 연석, 가로수 등의 오브젝트가 촬영된 경우, 프로세서는 이러한 오브젝트를 검출하여 영상 정보에 포함시킬 수 있다. 이때, 프로세서는 카메라센서(2000)를 통해 검출된 오브젝트와의 거리 정보를 획득하여, 영상 정보를 더 보완할 수 있다.
영상 정보는 영상에 촬영된 오브젝트에 관한 정보일 수 있다. 이러한 카메라센서(2000)는 이미지 센서와 영상 처리 모듈을 포함할 수 있다.
카메라센서(2000)는 이미지 센서(예를 들면, CMOS 또는 CCD)에 의해 얻어지는 정지 영상 또는 동영상을 처리할 수 있다.
영상 처리 모듈은 이미지센서를 통해 획득된 정지 영상 또는 동영상을 가공하여, 필요한 정보를 추출하고, 추출된 정보를 프로세서에 전달할 수 있다.
이때, 카메라센서(2000)는 오브젝트의 측정 정확도를 향상시키고, 차량(700)과 오브젝트와의 거리 등의 정보를 더 확보할 수 있도록 스테레오 카메라를 포함할 수 있으나 이에 한정되는 것은 아니다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (20)

  1. 하우징;
    상기 하우징 내에 배치되는 무버;
    상기 하우징과 상기 무버 사이에 배치되는 틸팅 가이드부;
    상기 하우징 내에 배치되며 상기 무버를 구동시키는 구동부;
    상기 틸팅 가이드부와 상기 무버를 밀착시키는 탄성부재; 및
    상기 무버 및 상기 하우징 중 적어도 하나와 상기 탄성부재 사이에 배치되는 댐퍼부재;를 포함하는 카메라 엑추에이터.
  2. 제1항에 있어서,
    상기 무버는 상기 틸팅 가이드부를 수용하는 안착홈을 포함하고,
    상기 안착홈에 수용되고 상기 틸팅 가이드부의 외측에 배치되고 상기 무버와 결합된 제1 부재;를 포함하는 카메라 엑추에이터.
  3. 제2항에 있어서,
    적어도 일부가 상기 틸팅 가이드부와 상기 제1 부재 사이에 배치되고 상기 하우징과 결합된 제2 부재;를 포함하는 카메라 엑추에이터.
  4. 제3항에 있어서,
    상기 제1 부재 및 상기 제2 부재는 상기 안착홈에 수용되는 카메라 엑추에이터.
  5. 제3항에 있어서,
    상기 탄성부재는 상기 하우징과 연결되는 제1 접합부; 상기 제1 부재와 연결되는 제2 접합부; 및 상기 제1 접합부와 상기 제2 접합부를 연결하는 연결부;를 포함하는 카메라 엑추에이터.
  6. 제5항에 있어서,
    상기 무버는 상기 탄성부재를 향해 돌출되는 복수 개의 무버 돌기부;를 포함하며,
    상기 댐퍼부재는 상기 복수 개의 무버 돌기부 사이 위치한 무버 홈 내에 배치되어 상기 무버와 접하는 카메라 엑추에이터.
  7. 제6항에 있어서,
    상기 연결부는 상기 무버 홈 내에 적어도 일부 배치되고 상기 댐퍼부재와 접하는 카메라 엑추에이터.
  8. 제6항에 있어서,
    상기 돌기부는, 제1 방향을 따라 이격 배치되는 제1 돌기부와 제2 돌기부를 포함하고,
    상기 연결부는 상기 무버 홈을 관통하고,
    상기 무버 홈은 상기 제1 돌기부와 상기 제2 돌기부 사이에 위치하는 카메라 엑추에이터.
  9. 제8항에 있어서,
    상기 돌기부는 상기 무버 홈의 내측에 배치되는 제3 돌기부;를 포함하는 카메라 엑추에이터.
  10. 제9항에 있어서,
    상기 제3 돌기부의 높이는 상기 제1 돌기부 또는 상기 제2 돌기부의 높이보다 낮은 카메라 엑추에이터.
  11. 제5항에 있어서,
    상기 제1 부재는 상기 연결부에 인접하게 배치되는 부재 돌기를 포함하는 카메라 엑추에이터.
  12. 제11항에 있어서,
    상기 부재 돌기는 상기 연결부와 광축 방향으로 적어도 일부 중첩되고,
    상기 연결부는 적어도 일부가 상기 부재 돌기의 외면에 대응하여 곡률진 카메라 엑추에이터.
  13. 제11항에 있어서,
    상기 댐퍼부재는 상기 부재 돌기 및 상기 연결부와 결합하는 카메라 엑추에이터.
  14. 제13항에 있어서,
    상기 부재 돌기는 제1 접합부와 상기 제2 접합부 사이에 위치하는 카메라 엑추에이터.
  15. 제14항에 있어서,
    상기 제2 부재는 상기 연결부에 인접하게 배치되는 하우징 돌기를 포함하는 카메라 엑추에이터.
  16. 제15항에 있어서,
    상기 하우징 돌기는 상기 연결부와 광축 방향으로 적어도 일부 중첩되는 카메라 엑추에이터.
  17. 제15항에 있어서,
    상기 연결부는 적어도 일부가 상기 하우징 돌기의 외면에 대응하여 곡률진 카메라 엑추에이터.
  18. 제17항에 있어서,
    상기 댐퍼부재는 상기 하우징 돌기 및 상기 연결부와 결합하는 카메라 엑추에이터.
  19. 제18항에 있어서,
    상기 하우징 돌기는 상기 댐퍼부재와 제1 방향을 따라 적어도 일부 중첩되는 카메라 엑추에이터.
  20. 제5항에 있어서,
    상기 댐퍼부재는 상기 연결부의 레그들과 결합하는 카메라 엑추에이터.
PCT/KR2021/009544 2020-07-23 2021-07-23 카메라 엑추에이터 및 이를 포함하는 카메라 모듈 WO2022019704A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21846248.9A EP4187318A4 (en) 2020-07-23 2021-07-23 CAMERA ACTUATOR AND CAMERA MODULE COMPRISING SAME
CN202180062570.1A CN116075775A (zh) 2020-07-23 2021-07-23 相机致动器和包括该相机致动器的相机模块
US18/017,542 US20230259002A1 (en) 2020-07-23 2021-07-23 Camera actuator and camera module comprising same
JP2023504632A JP2023535072A (ja) 2020-07-23 2021-07-23 カメラアクチュエータおよびこれを含むカメラモジュール

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0091615 2020-07-23
KR1020200091615A KR20220012618A (ko) 2020-07-23 2020-07-23 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
KR10-2021-0096523 2021-07-22
KR1020210096523A KR20230015136A (ko) 2021-07-22 2021-07-22 카메라 엑추에이터 및 이를 포함하는 카메라 모듈

Publications (1)

Publication Number Publication Date
WO2022019704A1 true WO2022019704A1 (ko) 2022-01-27

Family

ID=79728893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009544 WO2022019704A1 (ko) 2020-07-23 2021-07-23 카메라 엑추에이터 및 이를 포함하는 카메라 모듈

Country Status (5)

Country Link
US (1) US20230259002A1 (ko)
EP (1) EP4187318A4 (ko)
JP (1) JP2023535072A (ko)
CN (1) CN116075775A (ko)
WO (1) WO2022019704A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130050828A1 (en) * 2011-08-24 2013-02-28 Mitsumi Electric Co., Ltd. Lens holder driving device including damper compound suppressing undesired resonance
KR20180041040A (ko) * 2016-10-13 2018-04-23 삼성전기주식회사 카메라 모듈 및 이를 포함하는 휴대용 전자기기
KR20180098074A (ko) * 2017-02-24 2018-09-03 엘지이노텍 주식회사 렌즈 구동 장치, 카메라 모듈 및 광학기기
US20180364450A1 (en) * 2017-06-16 2018-12-20 Samsung Electro-Mechanics Co., Ltd. Camera module
KR102046473B1 (ko) * 2017-03-08 2019-11-19 삼성전기주식회사 손떨림 보정 반사모듈 및 이를 포함하는 카메라 모듈

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6997370B2 (ja) * 2017-05-25 2022-01-17 ミツミ電機株式会社 カメラ用アクチュエータ、カメラモジュール、およびカメラ搭載装置
EP3674768B1 (en) * 2018-12-27 2023-09-20 Tdk Taiwan Corp. Optical member driving mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130050828A1 (en) * 2011-08-24 2013-02-28 Mitsumi Electric Co., Ltd. Lens holder driving device including damper compound suppressing undesired resonance
KR20180041040A (ko) * 2016-10-13 2018-04-23 삼성전기주식회사 카메라 모듈 및 이를 포함하는 휴대용 전자기기
KR20180098074A (ko) * 2017-02-24 2018-09-03 엘지이노텍 주식회사 렌즈 구동 장치, 카메라 모듈 및 광학기기
KR102046473B1 (ko) * 2017-03-08 2019-11-19 삼성전기주식회사 손떨림 보정 반사모듈 및 이를 포함하는 카메라 모듈
US20180364450A1 (en) * 2017-06-16 2018-12-20 Samsung Electro-Mechanics Co., Ltd. Camera module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4187318A4 *

Also Published As

Publication number Publication date
CN116075775A (zh) 2023-05-05
EP4187318A1 (en) 2023-05-31
US20230259002A1 (en) 2023-08-17
JP2023535072A (ja) 2023-08-15
EP4187318A4 (en) 2024-08-28

Similar Documents

Publication Publication Date Title
WO2021107524A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2018128489A1 (ko) 듀얼 렌즈 구동 장치, 듀얼 카메라 모듈 및 광학기기
WO2020213994A1 (ko) 카메라 모듈
WO2020076112A1 (ko) 카메라 액추에이터, 및 이를 포함하는 카메라 모듈
WO2020071852A1 (ko) 카메라 액추에이터 및 이를 포함하는 카메라 모듈
WO2021107525A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2022035192A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2022234958A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2020101232A1 (ko) 카메라 모듈
WO2022235109A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2023018076A1 (ko) 렌즈 구동장치 및 이를 포함하는 카메라 장치
WO2020076111A1 (ko) 카메라 액추에이터 및 이를 포함하는 카메라 모듈
WO2021187773A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2021071277A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2022019632A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2023277540A1 (ko) 액추에이터 장치 및 카메라 장치
WO2023018143A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2022164083A1 (ko) 액추에이터 장치
WO2021230557A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2022019704A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2021215759A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2022039463A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2023239167A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2024172511A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2023239125A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023504632

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021846248

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021846248

Country of ref document: EP

Effective date: 20230223