WO2022234958A1 - 카메라 엑추에이터 및 이를 포함하는 카메라 모듈 - Google Patents

카메라 엑추에이터 및 이를 포함하는 카메라 모듈 Download PDF

Info

Publication number
WO2022234958A1
WO2022234958A1 PCT/KR2022/004836 KR2022004836W WO2022234958A1 WO 2022234958 A1 WO2022234958 A1 WO 2022234958A1 KR 2022004836 W KR2022004836 W KR 2022004836W WO 2022234958 A1 WO2022234958 A1 WO 2022234958A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
axis direction
holder
coil
protrusion
Prior art date
Application number
PCT/KR2022/004836
Other languages
English (en)
French (fr)
Inventor
이승학
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US18/559,100 priority Critical patent/US20240231184A1/en
Priority to CN202280033289.XA priority patent/CN117355792A/zh
Publication of WO2022234958A1 publication Critical patent/WO2022234958A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0023Movement of one or more optical elements for control of motion blur by tilting or inclining one or more optical elements with respect to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Definitions

  • the present invention relates to a camera actuator and a camera module including the same.
  • a camera is a device that takes a picture or video of a subject, and is mounted on a portable device, a drone, a vehicle, or the like.
  • the camera module has an image stabilization (IS) function that corrects or prevents image shake caused by user movement to improve image quality, and automatically adjusts the distance between the image sensor and the lens to align the focal length of the lens. It may have a zooming function that increases or decreases the magnification of a distant subject through an auto-focusing (AF) function and a zoom lens.
  • IS image stabilization
  • AF auto-focusing
  • the resolution of the image sensor increases as the pixel becomes higher and the size of the pixel becomes smaller.
  • the amount of light received for the same time decreases. Therefore, the higher the pixel camera, the more severe the image shake caused by hand shake that occurs when the shutter speed is slowed in a dark environment.
  • ISO image stabilization
  • OIS optical image stabilizer
  • the general OIS technology it is possible to detect the movement of the camera through a gyro sensor, etc., and tilt or move the lens based on the detected movement, or tilt or move the camera module including the lens and the image sensor. have.
  • a lens or a camera module including a lens and an image sensor is tilted or moved for OIS, it is necessary to additionally secure a space for tilting or moving around the lens or camera module.
  • an actuator for OIS may be disposed around the lens.
  • the actuator for OIS may include two axes perpendicular to the optical axis Z, that is, an actuator in charge of tilting the X-axis and an actuator in charge of tilting the Y-axis.
  • the technical problem to be solved by the present invention can provide a camera actuator that accurately performs a two-axis tilt by magnets/coils respectively disposed on the side surfaces.
  • Another object of the present invention is to provide a camera actuator applicable to ultra-slim, ultra-compact and high-resolution cameras.
  • a camera actuator includes a housing; a mover disposed within the housing and including an optical member; a tilting guide unit for guiding the tilting of the mover; and a driving unit disposed in the housing and driving the mover, wherein the driving unit includes a first magnet and a 3-1 magnet disposed on one surface of the mover, and a second magnet disposed on the other surface facing the one surface; and a driving magnet including a 3-2 magnet, wherein the first magnet and the second magnet are adjacent to the tilting guide part and have a smaller area compared to the 3-1 magnet and the 3-2 magnet.
  • the first magnet and the second magnet may correspond to each other, and the 3-1 magnet and the 3-2 magnet may correspond to each other.
  • the first magnet includes a 1-1 magnet region and a 1-2 magnet region having different polarities
  • the second magnet includes a 2-1 magnet region and a 2-2 magnet region having different polarities
  • the 3-1 magnet includes a 3-1 magnet region and a 3-2 magnet region having different polarities
  • the 3-2 magnet includes a 3-3 magnet region and a third magnet region having different polarities from each other.
  • -4 may include a magnet area.
  • a first polarity direction is different from a second polarity direction, and the first polarity direction is a direction from the 3-1st magnet area to the 3-2th magnet area or the 3rd-th direction in the 3-3th magnet area.
  • 4 is a direction toward the magnet region, and the second polarity direction is a direction from the 1-1 magnet region to the 1-2 magnet region or from the 2-1 magnet region toward the 2-2 magnet region direction can be.
  • the 1-1 magnet region has the same polarity as any one of the 2-1 magnet region and the 2-2 magnet region, and the 1-2 magnet region includes the 2-1 magnet region and It may have the same polarity as that of the other one of the second-second magnet regions.
  • a length of the first magnet in an optical axis direction may be different from a length in an optical axis direction of the 3-1 magnet or the 3-2 magnet.
  • a length of the first magnet in an optical axis direction may be the same as a length of the second magnet in an optical axis direction.
  • the driving unit may include a first coil facing the first magnet; a second coil facing the second magnet; and a driving coil including a 3-1 coil facing the 3-1 magnet and a 3-2 coil facing the 3-2 magnet.
  • a length of the first coil in an optical axis direction may be different from a length in a vertical direction.
  • a length of the 3-1 coil may be different from a length in a vertical direction in an optical axis direction.
  • a length of the first coil in an optical axis direction may be smaller than a length in an optical axis direction of the 3-1 coil.
  • the first coil and the 3-1 coil may at least partially overlap in the optical axis direction, and the second coil and the 3-2 coil may at least partially overlap in the optical axis direction.
  • One end of the first coil and one end of the second coil may have the same node, and the other end of the first coil and the other end of the second coil may have the same node.
  • the first coil and the 3-1 coil may at least partially overlap in the optical axis direction, and the second coil and the 3-2 coil may at least partially overlap in the optical axis direction.
  • the tilting guide part may at least partially overlap in a horizontal direction between the first coil or the second coil.
  • the driving unit may include: a first Hall sensor disposed in the first coil; a second Hall sensor disposed within the second coil; a 3-1 Hall sensor disposed in the 3-1 coil; and a 3-2 th Hall sensor disposed in the 3-2 th coil.
  • Lengths of the first Hall sensor and the second Hall sensor in an optical axis direction may be different from lengths in an optical axis direction of the 3-1 th Hall sensor and the 3-2 th Hall sensor.
  • the first Hall sensor and the 3-1 Hall sensor may at least partially overlap in an optical axis direction.
  • the actuator for OIS can be efficiently arranged without increasing the overall size of the camera module.
  • tilting in the X-axis direction and tilting in the Y-axis direction do not cause magnetic field interference with each other, and tilting in the X-axis direction and tilting in the Y-axis direction can be implemented with a stable structure. Precise OIS function can be realized without causing magnetic field interference.
  • FIG. 1 is a perspective view of a camera module according to an embodiment
  • FIG. 2 is an exploded perspective view of a camera module according to an embodiment
  • FIG. 3 is a cross-sectional view taken along line AA' in FIG. 1,
  • FIG. 4 is a perspective view of a first camera actuator according to an embodiment
  • FIG. 5 is an exploded perspective view of a first camera actuator according to an embodiment
  • FIG. 6A is a perspective view of a first housing of a first camera actuator according to an embodiment
  • Figure 6b is a perspective view in a different direction from Figure 6a
  • 6C is a front view of a first housing of a first camera actuator according to an embodiment
  • FIG. 7 is a perspective view of an optical member of the first camera actuator according to the embodiment.
  • FIG. 8A is a perspective view of a holder of a first camera actuator according to an embodiment
  • FIG. 8B is a bottom view of the holder of the first camera actuator according to the embodiment.
  • 8C is a front view of the holder of the first camera actuator according to the embodiment.
  • 8D is a rear view of the fastening member of the first camera actuator according to the embodiment.
  • FIG. 8e is a bottom view of the fastening member of the first camera actuator according to the embodiment.
  • FIG. 9A is a perspective view of a tilting guide part of a first camera actuator according to an embodiment
  • Figure 9b is a perspective view in a different direction from Figure 9a
  • Fig. 9c is a cross-sectional view taken along FF' in Fig. 9a;
  • FIG. 10 is a view illustrating a first driving unit of a first camera actuator according to an embodiment
  • 11A is a perspective view of a first camera actuator according to an embodiment
  • Figure 11b is a cross-sectional view taken from PP' in Figure 11a
  • 11c is an enlarged view of part K1 in FIG. 11b,
  • Figure 11d is an enlarged view of part K2 in Figure 11b
  • 11e is a cross-sectional view taken along QQ' in FIG. 11a;
  • FIG. 12A is a perspective view of a first camera actuator according to an embodiment
  • FIG. 12B is a cross-sectional view taken along SS' in FIG. 12A;
  • FIG. 12C is an exemplary diagram of movement of the first camera actuator shown in FIG. 12B .
  • FIG. 13A is a cross-sectional view taken along RR' in FIG. 12A,
  • FIG. 13B is an exemplary view of the movement of the first camera actuator shown in FIG. 13A;
  • 14A is a side view of a holder and a driving unit according to an embodiment
  • 14B is another side view of the holder and the driving unit according to the embodiment.
  • 14c is another example of the holder, the tilting guide part and the driving part according to the embodiment.
  • 15A is a perspective view of a holder, a tilting guide part, and a driving part according to another embodiment
  • 15B is another perspective view of a holder, a tilting guide part and a driving part according to another embodiment
  • 15c is another example of a holder, a tilting guide part, and a driving part according to another embodiment
  • 16A is a perspective view of a holder, a tilting guide part, and a driving part according to another embodiment
  • 16B is another perspective view of a holder, a tilting guide part, and a driving part according to another embodiment
  • 16c is another example of a holder, a tilting guide part, and a driving part according to another embodiment
  • 17A is a perspective view of a holder, a tilting guide part, and a driving part according to a modified example
  • 17B is another perspective view of a holder, a tilting guide part, and a driving part according to a modified example
  • 17c is another example of a holder, a tilting guide part, and a driving part according to a modified example
  • FIG. 18 is a perspective view of a second camera actuator according to an embodiment
  • FIG. 19 is an exploded perspective view of a second camera actuator according to the embodiment.
  • FIG. 20 is a cross-sectional view taken along DD' in FIG. 18;
  • 21 is a cross-sectional view taken along EE' in FIG. 18;
  • FIG. 22 is a perspective view of a mobile terminal to which a camera module according to an embodiment is applied;
  • FIG. 23 is a perspective view of a vehicle to which a camera module according to an embodiment is applied.
  • Terms including an ordinal number such as second, first, etc. may be used to describe various elements, but the elements are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component. and/or includes a combination of a plurality of related listed items or any of a plurality of related listed items.
  • FIG. 1 is a perspective view of a camera module according to an embodiment
  • FIG. 2 is an exploded perspective view of a camera module according to the embodiment
  • FIG. 3 is a cross-sectional view taken along line AA′ in FIG. 1 .
  • the camera module 1000 may include a cover CV, a first camera actuator 1100 , a second camera actuator 1200 , and a circuit board 1300 .
  • the first camera actuator 1100 may be used as a first actuator
  • the second camera actuator 1200 may be used as a second actuator.
  • the cover CV may cover the first camera actuator 1100 and the second camera actuator 1200 .
  • the coupling force between the first camera actuator 1100 and the second camera actuator 1200 may be improved by the cover CV.
  • the cover CV may be made of a material that blocks electromagnetic waves. Accordingly, the first camera actuator 1100 and the second camera actuator 1200 in the cover CV can be easily protected.
  • the first camera actuator 1100 may be an optical image stabilizer (OIS) actuator.
  • OIS optical image stabilizer
  • the first camera actuator 1100 may move the optical member in a direction perpendicular to the optical axis.
  • the first camera actuator 1100 may include fixed focal length les disposed on a predetermined barrel (not shown). Fixed focal length les may also be referred to as “single focal length lenses” or “single focal length lenses”.
  • the first camera actuator 1100 may change the path of the light.
  • the first camera actuator 1100 may vertically change the optical path through an optical member (eg, a prism or a mirror) therein.
  • an optical member eg, a prism or a mirror
  • the present invention is not limited thereto, and the first camera actuator 1100 may change the optical path vertically or at a predetermined angle a plurality of times.
  • the second camera actuator 1200 may be disposed behind the first camera actuator 1100 .
  • the second camera actuator 1200 may be coupled to the first camera actuator 1100 . And the mutual coupling may be made by various methods.
  • the second camera actuator 1200 may be a zoom actuator or an auto focus (AF) actuator.
  • the second camera actuator 1200 may support one or a plurality of lenses and may perform an auto-focusing function or a zoom function by moving the lenses according to a control signal of a predetermined controller.
  • one or a plurality of lenses are moved along the optical axis direction independently or individually,
  • the circuit board 1300 may be disposed behind the second camera actuator 1200 .
  • the circuit board 1300 may be electrically connected to the second camera actuator 1200 and the first camera actuator 1100 . Also, there may be a plurality of circuit boards 1300 .
  • the circuit board 1300 may include an image sensor and the like, and may include a connector electrically connected to another external camera module or process of a terminal.
  • the circuit board 1300 may further include a protective member (eg, glass) and a filter for protecting the image sensor.
  • a protective member eg, glass
  • a filter for protecting the image sensor.
  • the camera module according to the embodiment may be formed of a single or a plurality of camera modules.
  • the plurality of camera modules may include a first camera module and a second camera module.
  • the first camera module may include a single or a plurality of actuators.
  • the first camera module may include a first camera actuator 1100 and a second camera actuator 1200 .
  • the second camera module may be disposed in a predetermined housing (not shown) and include an actuator (not shown) capable of driving the lens unit.
  • the actuator may be a voice coil motor, a micro actuator, a silicon actuator, etc., and may be applied in various ways such as an electrostatic method, a thermal method, a bimorph method, an electrostatic force method, and the like, but is not limited thereto.
  • the camera actuator may be referred to as an actuator or the like.
  • a camera module including a plurality of camera modules may be mounted in various electronic devices such as a mobile terminal.
  • the electronic device may include a smart phone, a mobile terminal (eg, a phone), a mobile terminal, and the like.
  • the camera module may include a first camera actuator 1100 performing an OIS function and a second camera actuator 1200 performing a zooming function and an AF function.
  • Light may be incident into the camera module or the first camera actuator through an opening area located on the upper surface of the first camera actuator 1100 . That is, the light may be incident into the interior of the first camera actuator 1100 along the optical axis direction (eg, the X-axis direction), and the optical path may be changed in the vertical direction (eg, the Z-axis direction) through the optical member. And the optical axis direction (Z-axis direction) may correspond to the movement direction of the light reflected by the optical member to be described later, which will be described as a reference.
  • the light passes through the second camera actuator 1200, and the second camera actuator ( It may be incident to the image sensor IS located at one end of the 1200 , PATH . That is, the optical axis may be changed by the optical member.
  • the bottom means one side in the first direction.
  • the first direction is the X-axis direction in the drawing, and may be used interchangeably with the second axis direction.
  • the second direction is the Y-axis direction in the drawing and may be used interchangeably with the first axis direction.
  • the second direction is a direction perpendicular to the first direction.
  • the third direction is the Z-axis direction in the drawing, and may be used interchangeably with the third axis direction. And the third direction is a direction perpendicular to both the first direction and the second direction.
  • the third direction (Z-axis direction) corresponds to the direction of the optical axis
  • the first direction (X-axis direction) and the second direction (Y-axis direction) are directions perpendicular to the optical axis and are to be tilted by the second camera actuator.
  • the optical axis direction is the third direction (Z axis direction) and will be described below based on this.
  • the inner side may be a direction from the cover (CV) toward the first camera actuator, and the outer side may be the opposite direction of the inner side. That is, the first camera actuator and the second camera actuator may be located inside the cover CV, and the cover CV may be located outside the first camera actuator or the second camera actuator.
  • the camera module according to the embodiment may improve the spatial limitation of the first camera actuator and the second camera actuator by changing the path of light. That is, the camera module according to the embodiment may extend the optical path while minimizing the thickness of the camera module in response to the change in the path of the light. Furthermore, it should be understood that the second camera actuator may provide a high range of magnification by controlling a focus or the like in the extended optical path.
  • the camera module according to the embodiment can implement OIS through the control of the optical path through the first camera actuator, thereby minimizing the occurrence of a depression or a tilt phenomenon, and providing the best optical characteristics. can pay
  • the second camera actuator 1200 may include an optical system and a lens driver.
  • a lens driver for example, at least one of a first lens assembly, a second lens assembly, a third lens assembly, and a guide pin may be disposed.
  • the second camera actuator 1200 may include a coil and a magnet to perform a high-magnification zooming function.
  • the first lens assembly and the second lens assembly may be a moving lens that moves through a coil, a magnet, and a guide pin
  • the third lens assembly may be a fixed lens, but is not limited thereto.
  • the third lens assembly may function as a concentrator to image light at a specific position, and the first lens assembly may re-image an image formed by the third lens assembly, which is a concentrator, to another location. It can perform the function of a variable (variator).
  • the magnification change may be large because the distance to the subject or the image distance is changed a lot, and the first lens assembly, which is the variable magnification, may play an important role in changing the focal length or magnification of the optical system.
  • the image formed in the first lens assembly which is a variable changer
  • the second lens assembly may perform a position compensation function for the image formed by the variable magnifier.
  • the second lens assembly may perform a compensator function that accurately forms an image formed by the first lens assembly, which is a variable changer, at an actual image sensor position.
  • the first lens assembly and the second lens assembly may be driven by electromagnetic force due to an interaction between a coil and a magnet. The above description may be applied to a lens assembly to be described later.
  • the first to third lens assemblies may move along the optical axis direction, that is, the third direction.
  • the first to third lens assemblies may move in the third direction independently or depending on each other.
  • the actuator for OIS and the actuator for AF or zoom are disposed according to an embodiment of the present invention
  • magnetic field interference with the magnet for AF or zoom can be prevented when OIS is driven. Since the first driving magnet of the first camera actuator 1100 is disposed separately from the second camera actuator 1200 , magnetic field interference between the first camera actuator 1100 and the second camera actuator 1200 can be prevented.
  • OIS may be used interchangeably with terms such as hand shake correction, optical image stabilization, optical image correction, and image stabilization.
  • FIG. 4 is a perspective view of a first camera actuator according to an embodiment
  • FIG. 5 is an exploded perspective view of the first camera actuator according to an embodiment.
  • the first camera actuator 1100 includes a first housing 1120 , a mover 1130 , a rotating unit 1140 , a first driving unit 1150 , and a fastening member 1131a. ) is included.
  • the mover 1130 may include a holder 1131 and an optical member 1132 seated on the holder 1131 . Furthermore, the mover 1130 may include the fastening member 1131a described above, and may be coupled to the fastening member 1131a to rotate integrally.
  • the rotating part 1140 may include the tilting guide part 1141 and the first magnetic body 1142 and the second magnetic body 1143 having different polarities to press the tilting guide part 1141 .
  • the first driving unit 1150 includes a first driving magnet 1151 , a first driving coil 1152 , a hall sensor unit 1153 , a first substrate unit 1154 , and a yoke unit (not shown). .
  • the first camera actuator 1100 may include a shield can (not shown).
  • the shield can (not shown) may be positioned at the outermost side of the first camera actuator 1100 to surround the rotating part 1140 and the first driving part 1150 to be described later.
  • Such a shield can may block or reduce electromagnetic waves generated from the outside. That is, the shield can (not shown) may reduce the occurrence of a malfunction in the rotating unit 1140 or the first driving unit 1150 .
  • the first housing 1120 may be located inside a shield can (not shown). When there is no shield can, the first housing 1120 may be located at the outermost side of the first camera actuator.
  • first housing 1120 may be located inside the first substrate unit 1154 to be described later.
  • the first housing 1120 may be fastened by fitting or matching with a shield can (not shown).
  • the first housing 1120 may include a first housing side 1121 , a second housing side 1122 , a third housing side 1123 , a fourth housing side 1124 , and a fifth housing side 1126 . have. A detailed description thereof will be provided later.
  • the fifth housing side 1126 may be formed integrally with or separately from the first housing 1120 . In this specification, it will be described on the basis that it is made integrally. In addition, the fifth housing side portion 1126 may be penetrated by the fastening member 1131a. This will be described later.
  • the mover 1130 includes a holder 1131 and an optical member 1132 seated on the holder 1131 .
  • the holder 1131 may be seated in the receiving part 1125 of the first housing 1120 .
  • the holder 1131 includes a first holder outer surface corresponding to the first housing side 1121 , the second housing side 1122 , the third housing side 1123 , and the fifth housing side 1126 , respectively, in addition to the fourth holder. side may be included.
  • the first holder outer surface to the fourth holder outer surface may have inner surfaces of the first housing side 1121 , the second housing side 1122 , the third housing side 1123 , and the fifth housing side 1126 , respectively. may correspond or face.
  • the holder 1131 may include a fastening member 1131a disposed in the fourth seating groove. A detailed description thereof will be given later.
  • the optical member 1132 may be seated on the holder 1131 .
  • the holder 1131 may have a seating surface, and the seating surface may be formed by a receiving groove.
  • the optical member 1132 may be formed of various reflective members.
  • the optical member 1132 may be formed of a mirror or a prism.
  • a prism is shown as a reference, but as in the above-described embodiment, a plurality of lenses may be used.
  • the optical member 1132 may include a plurality of lenses and prisms or mirrors.
  • the optical member 1132 may include a reflector disposed therein.
  • the present invention is not limited thereto.
  • the optical member 1132 may reflect light reflected from the outside (eg, an object) into the camera module.
  • the optical member 1132 may improve the spatial limit of the first camera actuator and the second camera actuator by changing the path of the reflected light.
  • the camera module may extend the optical path while minimizing thickness to provide a high range of magnification.
  • the fastening member 1131a may be coupled to the holder 1131 .
  • the fastening member 1131a may be disposed outside and at least a portion of the holder 1131 inside the housing.
  • the fastening member 1131a may be seated in an additional groove located in an area other than the fourth seating groove on the outer surface of the fourth holder of the holder 1131 .
  • the fastening member 1131a and the holder 1131 may be coupled to each other through the bonding member.
  • the bonding member may be made of a material such as epoxy.
  • the fastening member 1131a may be coupled to the holder 1131 , and at least a portion of the fifth housing side portion 1126 may be positioned between the fastening member 1131a and the holder 1131 .
  • at least a portion of the fifth housing side portion 1126 may pass through a space formed between the fastening member 1131a and the holder 1131 .
  • the fastening member 1131a may have a structure separated from the holder 1131 . With this configuration, as will be described later, the assembly of the first camera actuator can be easily performed.
  • the fastening member 1131a may be formed integrally with the holder 1131, but will be described as a separate structure below.
  • the rotating part 1140 includes a tilting guide part 1141 and a first magnetic body 1142 and a second magnetic body 1143 having different polarities to press the tilting guide part 1141 .
  • the tilting guide unit 1141 may be coupled to the above-described mover 1130 and the first housing 1120 . Specifically, the tilting guide part 1141 may be disposed between the holder 1131 and the fifth housing side part 1126 . Accordingly, the tilting guide unit 1141 may be coupled to the mover 1130 and the first housing 1120 of the holder 1131 . However, unlike the above description, in the present embodiment, the tilting guide part 1141 may be disposed between the fifth housing side part 1126 and the holder 1131 . Specifically, the tilting guide part 1141 may be positioned between the fifth housing side part 1126 and the fourth seating groove of the holder 1131 .
  • the fastening member 1131a, the fifth housing side part 1126, the tilting guide part 1141, and the holder 1131 may be disposed in the order (based on the outermost side).
  • the first magnetic body 1142 and the second magnetic body 1143 may be seated in the first groove formed in the fastening member 1131a and the second groove formed in the fifth housing side part 1126 , respectively.
  • the first groove and the second groove may be different from the positions of the first and second grooves in other embodiments.
  • the first groove is located in the fastening member 1131a and moves integrally with the holder
  • the second groove is located on the fifth housing side 1126 corresponding to the first groove and is coupled to the first housing 1120 . do. Accordingly, the present terms will be used interchangeably.
  • a second groove may be positioned between the first groove and the tilting guide unit 1141 .
  • the tilting guide unit 1141 may be disposed adjacent to the optical axis. Accordingly, the actuator according to the embodiment can easily change the optical path according to the first and second axis tilt to be described later.
  • the tilting guide part 1141 may include a first protrusion spaced apart in a first direction (X-axis direction) and a second protrusion spaced apart in a second direction (Y-axis direction). Also, the first protrusion and the second protrusion may protrude in opposite directions. A detailed description thereof will be given later.
  • the first magnetic body 1142 may be located in the fastening member 1131a. Also, the second magnetic body 1143 may be located in the fifth housing side 1126 .
  • the first magnetic material 1142 and the second magnetic material 1143 may have the same polarity.
  • the first magnetic body 1142 may be a magnet having an N pole
  • the second magnetic body 1143 may be a magnet having an N pole.
  • the first magnetic body 1142 may be a magnet having an S pole
  • the second magnetic body 1143 may be a magnet having an S pole.
  • the second pole surface of the second magnetic material 1143 and the first pole surface of the first magnetic material 1142 facing the second pole surface may have the same polarity. That is, the first magnetic body 1142 and the second magnetic body 1143 may generate a force to repel each other, and for this, various materials and functions may be provided.
  • the first magnetic body 1142 and the second magnetic body 1143 may generate a repulsive force between each other due to the above-described polarity.
  • the above-described repulsive force is coupled to the fastening member 1131a or holder 1131 and the second magnetic body 1143 coupled to the first magnetic body 1142 and the fifth housing side 1126 or the first housing ( 1120) can be added.
  • the repulsive force applied to the fastening member 1131a may be transmitted to the holder 1131 coupled to the fastening member 1131a. Accordingly, the tilting guide portion 1141 disposed between the fastening member 1131a and the fifth housing side portion 1126 may be closely pressed by the repulsive force.
  • the repulsive force may maintain the tilting guide part 1141 positioned between the holder 1131 and the first housing 1120 (or the fifth housing side part 1126 ).
  • the position between the mover 1130 and the first housing 1120 may be maintained even during the X-axis tilt or the Y-axis tilt.
  • the tilting guide part may be in close contact with the fifth housing side part 1126 and the holder 1131 by a repulsive force between the second magnetic body 1143 and the first magnetic body 1142 .
  • the first driving unit 1150 includes a first driving magnet 1151 , a first driving coil 1152 , a Hall sensor unit 1153 (or a first Hall sensor unit), a first substrate unit 1154 , and a yoke unit (not shown). shown). Details on this will be described later.
  • FIG. 6A is a perspective view of a first housing of a first camera actuator according to an embodiment
  • FIG. 6B is a perspective view different from FIG. 6A
  • FIG. 6C is a front view of the first housing of the first camera actuator according to the embodiment.
  • the first housing 1120 may include a first housing side portion 1121 to a fifth housing side portion 1126 .
  • the first housing side 1121 and the second housing side 1122 may be disposed to face each other.
  • the third housing side 1123 and the fourth housing side 1124 may be disposed to face each other.
  • third housing side 1123 and the fourth housing side 1124 may be disposed between the first housing side 1121 and the second housing side 1122 .
  • the third housing side 1123 and the fourth housing side 1124 may abut the first housing side 1121 , the second housing side 1122 , and the fourth housing side 1124 .
  • the third housing side 1123 may be a bottom surface of the first housing 1120 .
  • the fourth housing side 1124 may be an upper surface of the first housing 1120 .
  • the description of the direction may be applied in the same manner as described above.
  • first housing side 1121 may include a first housing hole 1121a.
  • a first coil to be described later may be positioned in the first housing hole 1121a.
  • the first housing side 1121 may include a 3-1 th housing hole 1121b.
  • a 3-1 coil may be positioned in the 3-1 housing hole 1121b.
  • the 3-1 th housing hole 1121b may be spaced apart from the first housing hole 1121a.
  • the second housing side 1122 may include a second housing hole 1122a.
  • a second coil to be described later may be positioned in the second housing hole 1122a.
  • the second housing side 1122 may include a 3-2 housing hole 1122b.
  • a 3-2 coil may be positioned in the 3-2 housing hole 1122b.
  • the 3-2 housing hole 1122b may be spaced apart from the second housing hole 1122a.
  • first housing side 1121 and the second housing side 1122 may be side surfaces of the first housing 1120 .
  • the first coil and the second coil may be coupled to the first substrate unit.
  • the first coil and the second coil may be electrically connected to the first substrate part so that a current may flow.
  • This current is a component of the electromagnetic force that allows the first camera actuator to tilt with respect to the X-axis or the Y-axis (X-axis in an embodiment).
  • the 3-1 coil and the 3-2 coil may be coupled to the first substrate unit.
  • the 3-1 th coil and the 3-2 th coil may be electrically connected to the first substrate part so that a current may flow. This current is a component of the electromagnetic force capable of tilting with respect to the first camera actuator X-axis or Y-axis (Y-axis in the embodiment).
  • the third housing side 1123 may be positioned between the first housing side 1121 and the second housing side 1122 .
  • a fifth housing side portion 1126 may be seated between the first housing side portion 1121 to the fourth housing side portion 1124 . Accordingly, the fifth housing side 1126 may be positioned on the third housing side 1123 . For example, the fifth housing side 1126 may be located on one side. Based on the third direction, the fifth housing side 1126 and the holder may be sequentially positioned.
  • the fourth housing side 1124 is disposed between the first housing side 1121 , the second housing side 1122 , the first housing side 1121 , the second housing side 1122 , and the third housing side 1123 . ) can be encountered.
  • the fourth housing side 1124 may include a fourth housing hole 1124a.
  • the fourth housing hole 1124a may be located above the optical member. Accordingly, light may pass through the fourth housing hole 1124a and be incident on the optical member.
  • first housing 1120 may include a receiving portion 1125 formed by the first housing side portion 1121 to the fifth housing side portion 1126 .
  • a fastening member, a tilting guide part, a mover, and the like may be positioned as components in the receiving part 1125 .
  • the fifth housing side 1126 may be positioned between the first housing side 1121 and the second housing side 1122 . Also, the fifth housing side 1126 may be positioned between the third housing side 1123 and the fourth housing side 1124 .
  • the fifth housing side portion 1126 is positioned on the third housing side portion 1123 , and may be joined to the first housing side portion 1121 to the third housing side portion 1123 .
  • the fifth housing side portion 1126 includes a second protrusion groove in which the second protrusion of the tilting guide part is seated.
  • the second protrusion groove PH2 may be located on the inner surface 1126S1 of the fifth housing side portion 1126 .
  • the inner surface 1126S1 of the fifth housing side 1126 may protrude inward between the through holes 1126a and 1126b of the fifth housing side 1126 .
  • the protrusion (eg, the second protrusion) of the tilting guide is disposed adjacent to the prism in the fourth seating groove, so that the protrusion, which is the reference axis of tilt, is located at the center of gravity of the mover 1130. to be placed close. Accordingly, when the holder tilts, the moment of moving the mover 1130 for tilting can be minimized. Accordingly, since current consumption for driving the coil is also minimized, power consumption of the camera actuator may be reduced.
  • the fifth housing side portion 1126 may include through holes 1126a and 1126b.
  • a plurality of through-holes may be formed of a first through-hole 1126a and a second through-hole 1126b.
  • the first and second extension portions of the fastening member to be described later may pass through the first through hole 1126a and the second through hole 1126b, respectively. Through this, the fastening member and the side of the fifth housing may be coupled. In other words, the first housing and the mover may be coupled to each other.
  • a second protrusion groove PH2 may be positioned between the first through hole 1126a and the second through hole 1126b. Due to this configuration, the coupling force between the tilting guide part and the fifth housing side part 1126 is improved, so that a decrease in tilt accuracy caused by the tilting guide part moving in the first housing can be blocked.
  • a second groove gr2 may be positioned on the outer surface 1126s2 of the fifth housing side portion 1126 .
  • a second magnetic material may be seated in the second groove gr2 .
  • the outer surface 1126S2 of the fifth housing side portion 1126 may face the inner surface of the fastening member or the member base portion.
  • the first magnetic body seated on the fastening member and the second magnetic body of the fifth housing side 1126 may face each other and generate the above-described repulsive force. Accordingly, since the fifth housing side 1126 presses the tilting guide inward or the holder by the repulsive force, the mover may be spaced apart from the third housing side by a predetermined distance in the first housing even without current injection into the coil. In other words, the coupling force between the mover and the housing and the tilting guide unit may be maintained.
  • a plurality of other grooves may be present in the outer surface 1126S2 of the fifth housing side 1126 . This is to facilitate the manufacturing of the first housing in the process.
  • the coupling force between the fifth housing side portion 1126 and the first housing 1120 may be improved, thereby improving the reliability of the camera actuator.
  • the easiness of assembling and manufacturing the fifth housing side 1126 and the first housing 1120 may be improved.
  • the fifth housing side portion 1126 may include a first through hole 1126a and a second through hole 1126b.
  • first through-hole 1126a and the second through-hole 1126b may be disposed side by side in the second direction (Y-axis direction) to overlap each other.
  • the fifth housing side 1126 is the upper member UA positioned above the first through-hole 1126a and the second through-hole 1126b, the first through-hole 1126a and the second through-hole 1126b. It may include a lower member BA located at the lower portion. Accordingly, the first through-hole 1126a and the second through-hole 1126b may be located in the middle of the fifth housing side portion 1126 . That is, the fifth housing side portion 1126 may include the connecting member MA positioned on the side of the first through hole 1126a and the second through hole 1126b. That is, the upper member UA and the lower member BA may be connected to each other through the connecting member MA. In addition, a plurality of lower members BA may be provided to form the first and second through-holes, and may be spaced apart from each other in the second direction (Y-axis direction).
  • the fifth housing side 1126 may have the upper member UA, so that rigidity may be improved.
  • the rigidity of the fifth housing side 1126 may be increased.
  • the unit may be N/ ⁇ m. Accordingly, the reliability of the first camera actuator according to the embodiment may be improved.
  • the fifth housing side portion 1126 may further include a first protrusion and a second protrusion.
  • the first protrusion may contact the first housing side, and the second protrusion may contact the second housing side.
  • the first protrusion may extend in the third direction (Z-axis direction) from one end of the outer surface 1126s2 of the fifth housing side.
  • the second protrusion may extend in the third direction (Z-axis direction) from the other end of the outer surface 1126s2 of the fifth housing side. That is, the first protrusion and the second protrusion may extend toward the holder.
  • the inner thickness Id1 may be greater than the outer thickness Id2 .
  • the thickness may be a length in the third direction (Z-axis direction).
  • FIG. 7 is a perspective view of an optical member of a first camera actuator according to an embodiment.
  • the optical member 1132 may be seated on the holder.
  • the optical member 1132 may be, for example, a prism as a reflection unit, but is not limited thereto as described above.
  • the optical member 1132 may have a protrusion (not shown) on a portion of the outer surface.
  • the optical member 1132 may be easily coupled to the holder through a protrusion (not shown).
  • the holder since the holder has a groove or a protrusion, it may be coupled to the optical member 1132 .
  • the optical member 1132 may have a bottom surface 1132b mounted on a seating surface of the holder. Accordingly, the bottom surface 1132b of the optical member 1132 may correspond to the seating surface of the holder. In an embodiment, the bottom surface 1132b may be formed of an inclined surface similar to the seating of the holder. Accordingly, it is possible to prevent the optical member 1132 from being separated from the holder according to the movement of the prism and the movement of the holder.
  • a groove is formed on the bottom surface 1132b of the optical member 1132 and a bonding member is applied, so that the optical member 1132 can be coupled to the holder.
  • the holder may be coupled to the optical member 1132 by applying a bonding member to the groove or protrusion of the holder.
  • the optical member 1132 may have a structure capable of reflecting light reflected from the outside (eg, an object) into the camera module.
  • the optical member 1132 may be formed of a single mirror.
  • the optical member 1132 may improve the spatial limit of the first camera actuator and the second camera actuator by changing the path of the reflected light.
  • the camera module may extend the optical path while minimizing thickness to provide a high range of magnification.
  • the camera module including the camera actuator according to the embodiment may provide a high range of magnification by extending the optical path while minimizing the thickness.
  • FIG. 8A is a perspective view of the holder of the first camera actuator according to the embodiment
  • FIG. 8B is a bottom view of the holder of the first camera actuator according to the embodiment
  • FIG. 8C is a front view of the holder of the first camera actuator according to the embodiment 8D is a rear view of the fastening member of the first camera actuator according to the embodiment
  • FIG. 8E is a bottom view of the fastening member of the first camera actuator according to the embodiment.
  • the holder 1131 may include a seating surface 1131k on which the optical member 1132 is mounted.
  • the seating surface 1131k may be an inclined surface.
  • the holder 1131 may include a chin on the seating surface 1131k. And in the holder 1131 , the chin may be coupled to a protrusion (not shown) of the optical member 1132 .
  • the holder 1131 may include a plurality of outer surfaces.
  • the holder 1131 may include a first holder outer surface 1131S1 , a second holder outer surface 1131S2 , a third holder outer surface 1131S3 , and a fourth holder outer surface 1131S4 .
  • the first holder outer surface 1131S1 may be positioned to face the second holder outer surface 1131S2 . That is, the first holder outer surface 1131S1 may be symmetrically disposed with respect to the second holder outer surface 1131S2 and the first direction (X-axis direction).
  • the first holder outer surface 1131S1 may be positioned to correspond to the side of the first housing. That is, the first holder outer surface 1131S1 may be positioned to face the side of the first housing.
  • the second holder outer surface 1131S2 may be positioned to correspond to the second housing side. That is, the second holder outer surface 1131S2 may be positioned to face the second housing side.
  • first holder outer surface 1131S1 may include a first seating groove 1131S1a.
  • first holder outer surface 1131S1 may include a 3-1 th seating groove 1131S1b.
  • the second holder outer surface 1131S2 may include a second seating groove 1131S2a. Also, the second holder outer surface 1131S2 may include a 3-2 th seating groove 1131S2b.
  • first seating groove 1131S1a and the second seating groove 1131S2a may be disposed symmetrically with each other based on the first direction (X-axis direction).
  • the 3-1 seating groove 1131S1b and the 3-2 seating groove 1131S2b may be symmetrically disposed with respect to the first direction (X-axis direction).
  • first seating groove 1131S1a and the second seating groove 1131S2a may be disposed to overlap in the second direction (Y-axis direction).
  • 3-1 seating groove 1131S1b and the 3-2 seating groove 1131S2b may be disposed to overlap in the second direction (Y-axis direction).
  • first seating groove 1131S1a and the 3-1 seating groove 1131S1b may be separated or integrally formed.
  • a partition wall, a member, a wing, etc. are positioned between the first seating groove 1131S1a and the 3-1 seating groove 1131S1b so that the first seating groove 1131S1a and the 3-1 seating groove 1131S1b are mutually connected. can be separated.
  • first seating groove 1131S1a and the 3-1 seating groove 1131S1b may be formed as a single groove.
  • the first magnet may be seated on one side (region corresponding to the first seating groove).
  • the 3-1 magnet may be seated on the other side (region corresponding to the 3-1 seating groove).
  • the second seating groove 1131S2a and the 3-2 seating groove 1131S2b may be separated or integrally formed.
  • a partition wall, a member, a wing, etc. are positioned between the second seating groove 1131S2a and the 3-2 seating groove 1131S2b, so that the second seating groove 1131S2a and the 3-2 seating groove 1131S2b are connected to each other. can be separated.
  • the second seating groove 1131S2a and the 3-2 seating groove 1131S2b may be formed as a single groove. Accordingly, the second magnet may be seated on one side (region corresponding to the second seating groove). In addition, the 3-2 magnet may be seated on the other side (region corresponding to the 3-2 seating groove).
  • a first magnet may be disposed in the first seating groove 1131S1a, and a second magnet may be disposed in the second seating groove 1131S2a.
  • the first magnet and the second magnet may also be disposed symmetrically with respect to the first direction (X-axis direction).
  • a 3-1 magnet may be disposed in the 3-1 seating groove 1131S1b.
  • a 3-2 magnet may be disposed in the 3-2 seating groove 1132S1b.
  • the 3-1 magnet and the 3-2 magnet may also be disposed symmetrically with respect to the first direction (X-axis direction).
  • first to third magnets may be coupled to the housing through a yoke or a bonding member.
  • the electromagnetic force induced by each magnet is coaxial to the first holder outer surface S1231S1 and the second holder outer surface 1131S2.
  • the electromagnetic force induced by each magnet due to the positions of the 3-1 seating groove and the 3-2 seating groove (the 3-1 magnet and the 3-2 magnet) is applied to the first holder outer surface (S1231S1) and the second holder. 2 may be provided on the same axis as the holder outer surface 1131S2.
  • a region eg, a portion having the strongest electromagnetic force
  • a region applied on the second holder outer surface S1231S1 eg, a portion having the strongest electromagnetic force
  • a region applied on the second holder outer surface S1231S1 eg, a portion having the strongest electromagnetic force
  • the region (eg, the portion having the strongest electromagnetic force) applied to the first holder outer surface S1231S1 and the region applied to the second holder outer surface S1231S1 (eg, the portion having the strongest electromagnetic force) are the second It may be located on an axis parallel to the direction (Y-axis direction). Accordingly, the Y-axis tilting can be accurately performed.
  • a first magnet 1151a may be disposed in the first seating groove 1131S1a, and a second magnet 1151b may be disposed in the second seating groove 1131S2a.
  • a 3-1 magnet 1151ca may be disposed in the 3-1 seating groove 1131S1b.
  • a 3-2 magnet 1151cb may be disposed in the 3-2 seating groove 1131S2b.
  • the third holder outer surface 1131S3 is in contact with the first holder outer surface 1131S1 and the second holder outer surface 1131S2, and from one side of the first holder outer surface 1131S1 and the second holder outer surface 1131S2 It may be an outer surface extending in two directions (Y-axis direction). Also, the third holder outer surface 1131S3 may be positioned between the first holder outer surface 1131S1 and the second holder outer surface 1131S2 . The third holder outer surface 1131S3 may be a bottom surface of the holder 1131 . That is, the third holder outer surface 1131S3 may be positioned to face the third housing side.
  • the third holder outer surface 1131S3 may be positioned to face the third housing side portion 1123 .
  • the 3-1 th seating groove 1131S1b and the 3-2 th seating groove 1131S2b may be wider than the first seating groove 1131S1a or the second seating groove 1131S2a.
  • the Y-axis tilt can be performed with current control similar to the X-axis tilt.
  • the Y-axis tilt can be easily achieved by the 3-1 th seating groove 1131S1b and the 3-2 th seating groove 1131S2b having a large separation distance from the tilting guide part.
  • the first seating groove 1131S1a, the second seating groove At least one of the groove 1131S2a, the 3-1 seating groove 1131S1b, and the 3-2 seating groove 1131S2b is formed with the tilting guide in the first direction (X-axis direction) or the second direction (Y-axis direction) at least Some may overlap.
  • the first protrusion of the tilting guide part may overlap the first and second seating grooves 1131S1a and 1131S2a in the second direction (Y-axis direction).
  • a portion of the base of the tilting guide part may overlap the first and second seating grooves 1131S1a and 1131S2a in the second direction (Y-axis direction).
  • the fourth holder outer surface 1131S4 is in contact with the first holder outer surface 1131S1 and the second holder outer surface 1131S2, and in the first direction from the first holder outer surface 1131S1 and the second holder outer surface 1131S2 It may be an outer surface extending in the (X-axis direction). Also, the fourth holder outer surface 1131S4 may be positioned between the first holder outer surface 1131S1 and the second holder outer surface 1131S2 . That is, the fourth holder outer surface 1131S4 may be positioned to face the fifth housing side.
  • the fourth holder outer surface 1131S4 may include a fourth seating groove 1131S4a.
  • a tilting guide part 1141 may be positioned in the fourth seating groove 1131S4a.
  • the fastening member 1131a and the fifth housing side portion 1126 may be positioned in the fourth seating groove 1131S4a.
  • the fourth seating groove 1131S4a may include a plurality of areas. It may include a first area AR1 , a second area AR2 , and a third area AR3 .
  • a fastening member 1131a may be positioned in the first area AR1 .
  • the member base portion of the fastening member 1131a may be positioned in the first area AR1 . That is, the first area AR1 may overlap the fastening member 1131a in the first direction (X-axis direction).
  • the first area AR1 may be located on the fourth holder outer surface 1131S4 . That is, the first area AR1 may correspond to an area located above the fourth seating groove 1131S4a. In this case, the first area AR1 may not be an area within the fourth seating groove 1131S4a.
  • a fifth housing side 1126 may be positioned in the second area AR2 . Furthermore, a portion of the fastening member 1131a may be positioned in the second area AR2 . That is, the second area AR2 may overlap the fifth housing side portion 1126 in the first direction (X-axis direction).
  • the second area AR2 may be located on the outer surface 1131S4 of the fourth holder, like the first area AR1 . That is, the second area AR2 may correspond to an area located above the fourth seating groove 1131S4a.
  • a tilting guide unit may be positioned in the third area AR3 .
  • the base of the tilting guide part may be positioned in the third area AR3 . That is, the third area AR3 may overlap the tilting guide part (eg, the base) in the first direction (X-axis direction).
  • the second area AR2 may be positioned between the first area AR1 and the third area AR3 .
  • a fastening member may be disposed in the first area AR1 , and a first groove gr1 may be positioned in the fastening member 1131a.
  • the fastening member 1131a may include a first groove gr1 formed on an inner surface thereof.
  • a first magnetic material may be disposed in the first groove gr1 as described above. That is, the first magnetic material may also be positioned in the first area AR1 .
  • the fifth housing side may be disposed in the second area AR2 .
  • the first groove gr1 may be positioned to face the second groove gr2 .
  • the first groove gr1 may at least partially overlap the second groove gr2 in the third direction (Z-axis direction).
  • the repulsive force generated by the second magnetic body may be transmitted to the fourth seating groove 1131S4a of the holder 1131 through the fastening member. Accordingly, the holder may apply a force to the tilting guide unit in the same direction as the repulsive force generated by the second magnetic body.
  • the fifth housing side may include a second groove gr2 facing the first groove gr1 formed on the outer surface.
  • the fifth housing side may include a second protrusion groove formed on the inner surface as described above.
  • the second protrusion may be seated in the second protrusion groove.
  • a repulsive force generated by the first magnetic body and the second magnetic body may be applied to the side of the fifth housing. Accordingly, the fifth housing side and the fastening member may press the tilting guide unit disposed between the fifth housing side and the holder 1131 through a repulsive force.
  • a tilting guide 1141 may be disposed in the third area AR3 .
  • first protrusion groove PH1 may be located in the fourth seating groove 1131S4a.
  • first protrusion of the tilting guide part 1141 may be accommodated in the first protrusion groove PH1 .
  • the first protrusion PR1 may be in contact with the first protrusion groove.
  • a maximum diameter of the first protrusion groove PH1 may correspond to a maximum diameter of the first protrusion portion PR1 .
  • This may be equally applied to the second protrusion groove and the second protrusion PR2 . That is, the maximum diameter of the second protrusion groove may correspond to the maximum diameter of the second protrusion portion PR2 .
  • the second protrusion may be in contact with the second protrusion groove.
  • the number of the first protrusion grooves PH1 may be plural.
  • any one of the first protrusion groove PH1 and the second protrusion groove PH2 may include a 1-1 protrusion groove PH1a and a 1-2 protrusion groove PH1b.
  • the first protrusion groove PH1 includes a 1-1 protrusion groove PH1a and a 1-2 protrusion groove PH1b. And the following description may be equally applied to the second protrusion groove PH2.
  • the second protrusion groove PH2 includes a 2-1 protrusion groove and a 2-2 protrusion groove, and the description of the 1-1 protrusion groove is applied to the 2-1 protrusion groove, and the 2-2 protrusion groove is applied.
  • the description of the 1-2 protrusion groove may be applied.
  • the 1-1 protrusion groove PH1a and the 1-2 protrusion groove PH1b may be arranged side by side in the first direction (X-axis direction).
  • the 1-1 protrusion groove PH1a and the 1-2 protrusion groove PH1b may have the same maximum width.
  • the number of inclined surfaces of the plurality of first protrusion grooves PH1 may be different from each other.
  • the first protrusion groove PH1 may include a bottom surface of the groove and an inclined surface.
  • the number of inclined surfaces of the plurality of protrusion grooves may be different from each other.
  • the width of the bottom surface of the projection groove may be different.
  • the 1-1 protrusion groove PH1a may include a first groove bottom surface LS1 and a first inclined surface CS1.
  • the 1-2 protrusion groove PH1b may include a second groove bottom surface LS2 and a second inclined surface CS2.
  • first groove bottom surface LS1 and the second groove bottom surface LS2 may have different widths.
  • An area of the first groove bottom surface LS1 may be smaller than an area of the second groove bottom surface LS2.
  • the number of the first inclined surfaces CS1 in contact with the first groove bottom surface LS1 may be different from the number of the second inclined surfaces CS2 .
  • the number of the first inclined surfaces CS1 may be greater than the number of the second inclined surfaces CS2 .
  • the assembly tolerance of the first protrusion seated in the first protrusion groove PH1 can be easily supplemented.
  • the first protrusions come into contact with the more inclined surfaces, so that the position of the first protrusions in the 1-1 protrusion groove PH1a is more accurately determined. can keep
  • the number of inclined surfaces in contact with the first protrusion is smaller than that of the 1-1 protrusion groove PH1b, so that the position of the first protrusion can be easily adjusted.
  • the second inclined surfaces CS2 may be spaced apart from each other in the second direction (Y-axis direction).
  • the second groove bottom surface LS2 extends in the first direction (X-axis direction) so that the first protrusion can easily move in the first direction (X-axis direction) while the first protrusion is in contact with the second inclined surface CS2 . That is, the position of the first protrusion may be easily adjusted in the 1-2 protrusion groove PH1b.
  • the first area AR1 , the second area AR2 , and the third area AR3 may have different heights in the first direction (X-axis direction).
  • the first area AR1 may have a greater height in the first direction (X-axis direction) than the second area AR2 and the third area AR3 . Accordingly, a step may be positioned between the first area AR1 and the second area AR2 .
  • the fastening member 1131a may include a first groove gr1.
  • the first groove gr1 may be positioned on the inner surface of the member base portion 1131aa.
  • the above-described first magnetic material may be seated in the first groove gr1 .
  • the number of the first grooves gr1 may be plural according to the number of the first magnetic body. That is, the number of the first grooves gr1 may correspond to the number of the first magnetic materials.
  • the area of the first groove gr1 may be different from the area of the second groove.
  • the area of the first groove gr1 may be larger than the area of the second groove. Accordingly, the center of gravity may be moved adjacent to the tilting guide unit. Accordingly, it is possible to reduce the difference in driving force due to the posture difference and minimize the current consumption for rotation.
  • the fastening member 1131a may include a member base portion 1131aa, a first extension portion 1131ab, and a second extension portion 1131ac.
  • the member base portion 1131aa may be located at the outermost side of the first camera actuator.
  • the member base portion 1131aa may be located outside the fifth housing side portion. That is, the fifth housing side portion may be positioned between the member base portion 1131aa and the tilting guide portion.
  • the first extension portion 1131ab may extend in the third direction (Z-axis direction) from the edge of the member base portion 1131aa. Furthermore, the first extension portion 1131ab may extend along the second direction (Y-axis direction) after being bent. For example, the first extension portion 1131ab may extend in a direction opposite to the direction toward the first groove gr1 . That is, the first extension portion 1131ab may extend from the member base portion 1131aa toward the holder 1131 . This also applies to the second extension 1131ac. Also, the second extension portion 1131ac may extend in the third direction (Z-axis direction) from the edge of the member base portion 1131aa.
  • first extension portion 1131ab and the second extension portion 1131ac may be positioned at edges of the member base portion 1131aa in the second direction (Y-axis direction).
  • first extension portion 1131ab and the second extension portion 1131ac may be disposed between the upper member and the lower member.
  • the fastening member 1131a may have a groove formed by the first extension portion 1131ab and the second extension portion 1131ac. That is, a groove may be positioned between the first extension part 1131ab and the second extension part 1131ac. Accordingly, the first extension portion 1131ab and the second extension portion 1131ac may be connected to each other only by the member base portion 1131aa. With this configuration, the fastening member 1131a may continuously receive a repulsive force by the first magnetic body seated in the center of the member base portion 1131aa, particularly, the first groove gr1.
  • the rigidity of the fastening member 1131a may be greater than that of the side of the fifth housing.
  • the fifth housing side has an upper member and a lower member, so that rigidity may be increased.
  • a difference in stiffness between the fastening member and the side of the fifth housing may be reduced. Accordingly, when the holder 1131 coupled to the fastening member 1131a and the fastening member 1131a is tilted along the X-axis or the Y-axis, the adjacent distance between the fastening member 1131a and the side of the fifth housing becomes smaller, may contact the fifth housing side. Accordingly, since the fifth housing side has improved rigidity as described above, it is possible to easily perform an operation as a stopper. That is, the reliability of the camera actuator may be improved.
  • first extension portion 1131ab may be spaced apart from the second extension portion 1131ac in the second direction (Y-axis direction) to form a separation space.
  • the fifth housing side and the tilting guide may be seated in this spaced apart space.
  • the second magnetic body and the first magnetic body may be positioned in the separation space.
  • first extension portion 1131ab and the second extension portion 1131ac may have the same length in the third direction (Z-axis direction). Accordingly, the coupling force and weight are formed in a balanced manner, so that the tilt of the holder can be accurately performed without inclining to one side.
  • first extension portion 1131ab and the second extension portion 1131ac may be coupled to the holder.
  • the coupling may be coupled to each other through a bonding member other than the above-described protrusion and groove structures.
  • the first extension portion 1131ab and the second extension portion 1131ac may include a coupling groove 1131L that is opened to the outside.
  • a bonding member eg, epoxy
  • a bonding member is applied through the coupling groove 113L, so that the first extension 1131ab and the second extension 1131ac can be easily coupled to the outer surface of the holder or the fourth holder.
  • the positions of the protrusion and the groove structure for coupling may be changed from each other.
  • FIG. 9A is a perspective view of a tilting guide part of a first camera actuator according to an embodiment
  • FIG. 9B is a perspective view in a different direction from FIG. 9A
  • FIG. 9C is a cross-sectional view taken along FF′ in FIG. 9A.
  • the tilting guide part 1141 includes a base BS, a first protrusion PR1 protruding from the first surface 1141a of the base BS, and a second surface 1141b of the base BS. It may include a second protrusion PR2. Also, the surfaces on which the first protrusion and the second protrusion are formed may be opposite to each other depending on the structure, but will be described below with reference to the drawings. In addition, the first protrusion PR1 and the second protrusion PR2 may be integrally formed with the base BS, and as shown in the drawing, the first protrusion PR1 and the second protrusion PR2 have a spherical shape like a ball.
  • the base BS may include a groove at a position corresponding to the first protrusion PR1 and the second protrusion PR2 .
  • the ball may be inserted into the groove of the base (BS).
  • the tilting guide part 1141 may have a structure in which the above-described protrusion (first protrusion or second protrusion) and the groove of the base BS and the ball inserted into the groove are combined in various ways.
  • the base BS may include a first surface 1141a and a second surface 1141b facing the first surface 1141a. That is, the first surface 1141a may be spaced apart from the second surface 1141b in the third direction (Z-axis direction), and may be outer surfaces facing each other or facing each other within the tilting guide unit 1141 .
  • the first surface 1141a is a surface adjacent to the holder
  • the second surface 1141b is a surface adjacent to the fifth housing side.
  • the tilting guide part 1141 may include a first protrusion PR1 extending to one side on the first surface 1141a.
  • the first protrusion PR1 may protrude toward the holder from the first surface 1141a.
  • a plurality of first protrusions PR1 may include a 1-1 protrusion PR1a and a 1-2 protrusion PR1b.
  • the 1-1 protrusion PR1a and the 1-2 protrusion PR1b may be positioned side by side in the second direction (Y-axis direction). In other words, the 1-1 protrusion PR1a and the 1-2 protrusion PR1b may overlap in the second direction (Y-axis direction).
  • the 1-1 protrusion PR1a and the 1-2 protrusion PR1b are imaginary lines VL1 and VL2 extending in the first direction (X-axis direction) or the second direction (Y-axis direction). or bisected by a face.
  • the 1-1 protrusion PR1a and the 1-2 protrusion PR1b may have a curvature, for example, a hemispherical shape. Accordingly, the center of the first protrusion PR1 may be located on the first surface 1141a. Accordingly, rotation (Y-axis tilt) of the tilting guide may occur based on the first surface 1141a.
  • an alignment groove may be positioned on the first surface 1141a.
  • the alignment groove may be disposed on one side of the first surface 1141a to provide an assembly position or assembly direction of the tilting guide unit 1141 during the assembly process.
  • the tilting guide part 1141 may include a second protrusion PR2 extending to one side on the second surface 1141a.
  • the second protrusion PR2 may protrude toward the housing from the second surface 1141b.
  • the second protrusion PR2 is plural, and may include a 2-1 protrusion PR2a and a 2-2 protrusion PR2b in the embodiment.
  • rotation (X-axis tilt) of the tilting guide may occur based on the second surface 1141b.
  • the second-first protrusion PR2a and the second-second protrusion PR2b may be positioned side by side in the first direction (X-axis direction). That is, the second-first protrusion PR2a and the second-second protrusion PR2b may overlap in the first direction (X-axis direction).
  • the 2-1 protrusion PR2a and the 2-2 protrusion PR2b are imaginary lines VL1' and VL2 extending in the first direction (X-axis direction) or the second direction (Y-axis direction). ') or by a plane.
  • the second-first protrusion PR2a and the second-second protrusion PR2b may have a curvature, for example, a hemispherical shape.
  • the 2-1 protrusion PR2a and the 2-2 protrusion PR2b may contact the fastening member 1131a at a point spaced apart from the second surface 1141b of the base BS.
  • the 1-1 protrusion PR1a and the 1-2 protrusion PR1b may be located in a region between the 2-1 protrusion PR2a and the 2-2 protrusion PR2b in the second direction.
  • the 1-1 protrusion PR1a and the 1-2 protrusion PR1b are formed in the center of the space between the 2-1 protrusion PR2a and the 2-2 protrusion PR2b in the first direction.
  • the actuator according to the embodiment may have the X-axis tilt angle with respect to the X-axis in the same range.
  • the tilting guide part 1141 sets the Y-axis in a range (eg, positive/negative range) in which the holder can tilt the Y-axis based on the 1-1 protrusion PR1a and the 1-2 protrusion PR1b.
  • a range eg, positive/negative range
  • the holder can tilt the Y-axis based on the 1-1 protrusion PR1a and the 1-2 protrusion PR1b.
  • the same can be provided as a standard.
  • the second-first protrusion PR2a and the second-second protrusion PR2b may be positioned in a region between the first-first protrusion PR1a and the 1-2 protrusion PR1b in the second direction.
  • the actuator according to the embodiment may have the X-axis tilt angle with respect to the X-axis in the same range.
  • the tilting guide part 1141 and the holder set the X-axis tiltable range (eg, positive/negative range) to the X-axis.
  • the X-axis tiltable range eg, positive/negative range
  • the first surface 1141a may include a first outer line M1 , a second outer line M2 , a third outer line M3 , and a fourth outer line M4 .
  • the first outer line M1 and the second outer line M2 may face each other, and the third outer line M3 and the fourth outer line M4 may face each other.
  • a third outer line M3 and a fourth outer line M4 may be positioned between the first outer line M1 and the second outer line M2 .
  • the first outer line M1 and the second outer line M2 are perpendicular to the first direction (X-axis direction), but the third outer line M3 and the fourth outer line M4 are in the first direction X axial direction).
  • the first protrusion PR1 may be positioned on the second virtual line VL2 .
  • the first imaginary line LV1 is a line that bisects the first outer line M1 and the second outer line M2 .
  • the first and third virtual lines LV1 and LV1' are lines that bisect the base BS in the second direction (Y-axis direction). Accordingly, the tilting guide unit 1141 may easily perform Y-axis tilt through the first protrusion PR1 .
  • the tilting guide unit 1141 since the tilting guide unit 1141 performs Y-axis tilt based on the second virtual line VL2 , a rotational force may be uniformly applied to the tilting guide unit 1141 . Accordingly, the X-axis tilt can be precisely performed and the reliability of the device can be improved.
  • the 1-1 protrusion PR1a and the 1-2 protrusion PR1b may be symmetrically disposed with respect to the first imaginary line VL1 and the second imaginary line VL2 .
  • the 1-1 protrusion PR1a and the 1-2 protrusion PR1b may be symmetrically positioned with respect to the first central point C1.
  • the supporting force supported by the first protrusion PR1 may be equally applied to the upper and lower sides of the second virtual line VL2 when the Y-axis is tilted. Accordingly, the reliability of the tilting guide unit may be improved.
  • the second virtual line VL2 is a line that bisects the third outer line M3 and the fourth outer line M4 .
  • the second and fourth virtual lines LV2 and LV2' are lines that bisect the base BS in the first direction (X-axis direction).
  • first central point C1 may be an intersection of the first virtual line VL1 and the second virtual line VL2 .
  • the first central point C1 may be disposed at a point (eg, overlapping) corresponding to the center of gravity in the third direction according to the shape of the tilting guide unit 1141 .
  • the second surface 1141b may include a fifth outer line M1 ′, a sixth outer line M2 ′, a seventh outer line M3 ′, and an eighth outer line M4 ′.
  • the fifth outer line M1' and the sixth outer line M2' may face each other, and the seventh outer line M3' and the eighth outer line M4' may face each other.
  • a seventh outer line M3 ′ and an eighth outer line M4 ′ may be positioned between the fifth outer line M1 ′ and the sixth outer line M2 ′.
  • the fifth outer line M1' and the sixth outer line M2' are perpendicular to the first direction (X-axis direction), but the seventh outer line M3' and the eighth outer line M4' are It may be parallel to one direction (X-axis direction).
  • the tilting guide 1141 performs the X-axis tilt based on the third virtual line VL1 ′, a rotational force may be uniformly applied to the tilting guide 1141 . Accordingly, the X-axis tilt can be precisely performed and the reliability of the device can be improved.
  • the 2-1 protrusion PR2a and the 2-2 protrusion PR2b may be symmetrically disposed on the third imaginary line VL1 ′ to the fourth imaginary line VL2 ′.
  • the second-first protrusion PR2a and the second-second protrusion PR2b may be symmetrically positioned with respect to the second central point C1 ′.
  • the third virtual line LV1' is a line that bisects the fifth outer line M1' and the sixth outer line M2'.
  • the second central point C1' may be an intersection of the third virtual line VL1' and the fourth virtual line VL2'. Alternatively, it may be a point corresponding to the center of gravity according to the shape of the tilting guide unit 1141 .
  • the interval in the second direction (Y-axis direction) between the 1-1 protrusion PR1a and the 1-2 protrusion PR1b is greater than the length in the second direction (Y-axis direction) of the second protrusion PR2 .
  • the interval in the first direction (X-axis direction) between the 2-1 protrusion PR2a and the 2-2 protrusion PR2b is in the first direction (X-axis direction) of the first protrusion PR1 . may be greater than the length. Accordingly, when the X-axis tilt is performed based on the 2-1 protrusion PR2a and the 2-2 protrusion PR2b, resistance due to the first protrusion PR1 may be minimized.
  • FIG. 10 is a diagram illustrating a first driving unit of a first camera actuator according to an embodiment.
  • the first driving unit 1150 includes a first driving magnet 1151 , a first driving coil 1152 , a hall sensor unit 1153 , a first substrate unit 1154 , and a yoke unit (not shown). ) is included.
  • the first driving magnet 1151 is a first magnet 1151a, a second magnet 1151b, a 3-1 magnet 1151ca, and a 3-2 magnet ( 1151cb).
  • the first magnet 1151a , the second magnet 1151b , the 3-1 magnet 1151ca , and the 3-2 magnet 1151cb may be located adjacent to the outer surface of the holder 1131 , respectively.
  • the first magnet 1151a , the second magnet 1151b , the 3-1 magnet 1151ca , and the 3-2 magnet 1151cb may be respectively located in grooves on the outer surface of the holder 1131 .
  • the first driving coil 1152 may include a plurality of coils.
  • the first driving coil 1152 may include at least one coil, and the at least one coil may be positioned to correspond to at least one magnet of the above-described first driving magnet.
  • the first driving coil 1152 may include a first coil 1152a, a second coil 1152b, a 3-1 coil 1152ca, and a 3-2 coil 1152cb.
  • the first coil 1152a may be positioned to face the first magnet 1151a. Accordingly, the first coil 1152a may be positioned in the first housing hole 1121a of the first housing side 1121 as described above. Also, the second coil 1152b may be positioned to face the second magnet 1151b. Accordingly, the second coil 1152b may be positioned in the second housing hole 1122a of the second housing side 1122 as described above.
  • the 3-1 th coil 1152ca may be positioned to face the 3-1 th magnet 1151ca.
  • the 3-2nd coil 1152cb may be positioned to face the 3-2nd magnet 1151cb.
  • the first camera actuator moves the mover 1130 along the first axis (X-axis direction) or the second axis (Y-axis direction) by electromagnetic force between the first driving magnet 1151 and the first driving coil 1152 . It is possible to provide the best optical characteristics by minimizing the occurrence of a decent or tilt phenomenon when implementing OIS by controlling the rotation.
  • OIS is implemented to solve the size limitation of the actuator, so that the ultra-slim, ultra-small camera It is possible to provide an actuator and a camera module including the same.
  • first coil 1152a and the 3-1 coil 1152ca may at least partially overlap in the third direction (Z-axis direction).
  • the second coil 1152b and the third-second coil 1152cb may at least partially overlap in the third direction (Z-axis direction).
  • the first coil 1152a and the 3-1 coil 1152ca may be spaced apart from each other in the third direction (Z-axis direction).
  • the second coil 1152b and the 3-2 coil 1152cb may be spaced apart from each other in the third direction (Z-axis direction).
  • the first substrate portion 1154 may include a first substrate side portion 1154a , a second substrate side portion 1154b , and a third substrate side portion 1154c .
  • the first substrate side portion 1154a and the second substrate side portion 1154b may be disposed to face each other.
  • the third substrate side portion 1154c may be positioned between the first substrate side portion 1154a and the second substrate side portion 1154b.
  • first substrate side 1154a may be positioned between the first housing side and the shield can
  • second substrate side 1154b may be positioned between the second housing side and the shield can
  • third substrate side part 1154c may be positioned between the third housing side part and the shield can, and may be the bottom surface of the first substrate part 1154 .
  • the first substrate side portion 1154a may be coupled to the first coil 1152a and the 3-1 coil 1152ca and may be electrically connected to each other.
  • the first substrate side portion 1154a may be coupled to and electrically connected to the first Hall sensor 1153a.
  • the second substrate side portion 1154b may be coupled to and electrically connected to the second coil 1152b and the third-second coil 1152cb. Also, it should be understood that the second substrate side 1154b may engage and electrically connect with the first Hall sensor.
  • the third substrate side portion 1154c may be connected to the first substrate side portion 1154a and the second substrate side portion 1154b.
  • the Hall sensor unit 1153 may include a first Hall sensor 1153a, a second Hall sensor 1153b, a 3-1 Hall sensor 1153ca, and a 3-2 Hall sensor 1153cb.
  • the first Hall sensor 1153a may be located in the first coil 1152a.
  • the second Hall sensor 1153b may be located in the second coil 1152b.
  • the 3-1 th Hall sensor 1153ca may be located in the 3-1 th coil 1153ca.
  • the 3-2nd Hall sensor 1153cb may be located in the 3-2nd coil 1153cb.
  • the yoke unit may include a first yoke, a second yoke, a 3-1 yoke, and a 3-2 yoke.
  • the first yoke is located in the first seating groove and may be coupled to the first magnet 1151a.
  • the second yoke may be positioned in the second seating groove and coupled to the second magnet 1151b.
  • the 3-1 yoke and the 3-2 yoke may be positioned in the 3-1 seating groove and the 3-2 seating groove, and may be coupled to the 3-1 magnet and the 3-2 magnet.
  • the first yoke to 3-2 yoke allows the first magnet to 3-2 magnet to be easily seated in the first to 3-2 yoke groove to be coupled to the housing.
  • FIG. 11A is a perspective view of a first camera actuator according to an embodiment
  • FIG. 11B is a cross-sectional view taken from PP′ in FIG. 11A
  • FIG. 11C is an enlarged view of part K1 in FIG. 11B
  • FIG. 11D is a portion K2 in FIG. 11B It is an enlarged view
  • FIG. 11E is a cross-sectional view taken along QQ' in FIG. 11A.
  • the first coil 1152a may be located on the first housing side 1121 , and the first magnet 1151a may be located on the first holder outer surface 1131S1 of the holder 1131 . have. Accordingly, the first coil 1152a and the first magnet 1151a may be positioned to face each other. The first magnet 1151a may at least partially overlap the first coil 1152a in the second direction (Y-axis direction).
  • the 3-1 th coil 1152ca may be located on the first housing side 1121 .
  • the 3-1 magnet 1151ca may be located on the outer surface 1131S1 of the first holder.
  • the 3-1 magnet 1151ca may be located in the 3-1 seating groove 1131S1b of the first holder outer surface 1131S1. Accordingly, the 3-1 th coil 1152ca and the 3-1 th magnet 1151ca may be positioned to face each other.
  • the 3-1 th magnet 1151ca may at least partially overlap the 3-1 th coil 1152ca in the second direction (Y-axis direction).
  • the second coil 1152b may be positioned on the second housing side 1122 , and the second magnet 1151b may be positioned on the second holder outer surface 1131S2 of the holder 1131 . Accordingly, the second coil 1152b and the second magnet 1151b may be positioned to face each other. The second magnet 1151b may at least partially overlap the second coil 1152b in the second direction (Y-axis direction).
  • the 3-2 coil 1152cb may be located on the second housing side 1122 .
  • the 3-2 magnet 1151cb may be located on the second holder outer surface 1131S2 .
  • the 3-2 magnet 1151cb may be positioned in the 3-2 seating groove 1131S2b of the second holder outer surface 1131S2.
  • the 3-2 coil 1152cb and the 3-2 magnet 1151cb may be positioned to face each other.
  • the 3-2 magnet 1151cb may at least partially overlap the 3-2 coil 1152cb in the second direction (Y-axis direction).
  • first coil 1152a and the second coil 1152b overlap in the second direction (Y-axis direction), and the first magnet 1151a and the second magnet 1151b are disposed in the second direction (Y-axis direction). may overlap at least partially.
  • the 3-1 th coil 1152ca and the 3-2 th coil 1152cb may overlap in the second direction (Y-axis direction).
  • the 3-1 magnet 1151ca and the 3-2 magnet 1151cb may at least partially overlap in the second direction (Y-axis direction).
  • the electromagnetic force applied to the outer surface of the holder (the first holder outer surface and the second holder outer surface) is located on the parallel axis in the second direction (Y-axis direction), so that the X-axis tilt is accurate and precise. can be performed.
  • the second protrusions PR2a and PR2b of the tilting guide 1141 may contact the fifth housing side 1126 of the first housing 1120 .
  • the second protrusion PR2 may be seated in the second protrusion groove PH2 formed on one side of the fifth housing side 1126 .
  • the second protrusions PR2a and PR2b may be the reference axis (or rotation axis) of the tilt. Accordingly, the tilting guide unit 1141 and the mover 1130 may move in the second direction.
  • the first Hall sensor 1153a may be positioned outside for electrical connection and coupling with the first substrate unit 1154 . However, it is not limited to these positions.
  • each of the 3-1 coil 1152ca and the 3-2 coil 1152cb may be positioned on the side of the first housing and the side of the second housing, as described above.
  • the 3-1 magnet 1151ca and the 3-2 magnet 1151cb may be positioned on the first holder outer surface 1131S1 and the second holder outer surface 1131S2 of the holder 1131 .
  • the 3-1 magnet 1151ca, the 3-2 magnet 1151cb, the 3-1 coil 1152ca, and the 3-2 coil 1152cb may overlap at least partially in the second direction (Y-axis direction).
  • the intensity of electromagnetic force between the 3-1 magnet 1151ca/the 3-2 magnet 1151cb and the 3-1 coil 1152ca/the 3-2 coil 1152cb may be easily controlled.
  • the tilting guide part 1141 may be located on the fourth holder outer surface 1131S4 of the holder 1131 as described above. In addition, the tilting guide part 1141 may be seated in the fourth seating groove 1131S4a of the outer surface of the fourth holder. As described above, the fourth seating groove 1131S4a may include the first region, the second region, and the third region.
  • a fastening member 1131a is disposed in the first region, and the fastening member 1131a may include a first groove gr1 formed on an inner surface thereof. And the first magnetic body 1142 is disposed in the first groove gr1 as described above, and the repulsive force RF2 generated from the first magnetic body 1142 is applied to the fourth seat of the holder 1131 through the fastening member 1131a. It can be transferred to the groove 1131S4a (RF2'). Accordingly, the holder 1131 may apply a force to the tilting guide unit 1141 in the same direction as the repulsive force RF2 generated by the first magnetic body 1142 .
  • a fifth housing side 1126 may be disposed in the second region.
  • the fifth housing side 1126 may include a second groove gr2 facing the first groove gr1 .
  • the fifth housing side portion 1126 may include a second protrusion groove PH2 disposed on a surface opposite to the second groove gr2 .
  • a repulsive force RF1 generated from the second magnetic body 1143 may be applied to the fifth housing side 1126 . Accordingly, the fifth housing side portion 1126 and the fastening member 1131a are tilted guide portions 1141 disposed between the fifth housing side portion 1126 and the holder 1131 through the generated repulsive forces RF1 and RF2'. can be pressurized.
  • the holder 1131 and the first housing The coupling between the 1120 and the tilting guide unit 1141 may be maintained.
  • a tilting guide unit 1141 may be disposed in the third area.
  • the tilting guide part 1141 may include the first protrusion PR1 and the second protrusion PR2 as described above.
  • the first protrusion PR1 and the second protrusion PR2 may be respectively disposed on the second surface and the first surface of the base.
  • the first protrusion PR1 and the second protrusion PR2 may be variously positioned on opposite surfaces of the base.
  • the first protrusion groove PH1 may be located in the fourth seating groove 1131S4a.
  • the first protrusion PR1 of the tilting guide part 1141 may be accommodated in the first protrusion groove PH1 .
  • the first protrusion PR1 may contact the first protrusion groove PH1 .
  • a maximum diameter of the first protrusion groove PH1 may correspond to a maximum diameter of the first protrusion portion PR1 .
  • This may be equally applied to the second protrusion groove PH2 and the second protrusion portion PR2 . That is, the maximum diameter of the second protrusion groove PH2 may correspond to the maximum diameter of the second protrusion portion PR2 .
  • the second protrusion PR2 may contact the second protrusion groove PH2 .
  • the tilting guide part 1141 is arranged side by side with the fastening member 1131a and the fifth housing side part 1126 in the third direction (Z-axis direction), and the tilting guide part 1141 is the optical member 1132 and the second part. It may partially overlap in one direction (X-axis direction). More specifically, in the embodiment, the first protrusion PR1 may overlap the optical member 1132 in the first direction (X-axis direction). That is, in the camera actuator according to the embodiment, each protrusion that is the central axis of tilt may be located adjacent to the center of gravity of the mover 1130 . Accordingly, the tilting guide portion may be positioned adjacent to the center of gravity of the holder. Accordingly, the camera actuator according to the embodiment can minimize the value of the moment for tilting the holder, and can also minimize the consumption of current applied to the coil unit to tilt the holder, so power consumption and reliability of the device can be improved. .
  • the first magnetic body 1142 and the second magnetic body 1143 are connected to the 3-1 coil 1152ca, the 3-2 coil 1152cb or the optical member 1132 in the third direction (Z axis). direction) may be spaced apart. Furthermore, the first magnetic body 1142 and the second magnetic body 1143 may be spaced apart from the tilting guide unit 1141 in a direction opposite to the third direction. And the 3-1 coil 1152ca and the 3-2 coil 1152cb are further in the third direction (Z-axis direction) from the tilting guide unit 1141 compared to the first coil 1152a and the second coil 1152b. may be spaced apart. Accordingly, the camera actuator according to the embodiment can easily perform vertical driving (Y-axis tilt), and power consumption can be minimized.
  • the first camera actuator includes a fastening member 1131a, a first magnetic body 1142, a second magnetic body 1143, a fifth housing side part 1126, a tilting guide part 1141 and a holder ( 1141 ) in a third direction. 1131) may be arranged in order. However, the first magnetic body is positioned in the fastening member, and the second magnetic body is positioned in the fifth housing side, and may be arranged in the order of the fastening member, the fifth housing side, the tilting guide part, and the holder.
  • the separation distance between the first magnetic body 1142 and the second magnetic body 1143 in the third direction from the holder 1131 (or the optical member 1132) may be greater than the separation distance between the tilting guide parts 1141. have.
  • the first Hall sensors 1153a to 3-2 Hall sensors 1153cb disposed in the holder 1131 may also be spaced apart from the first magnetic body 1142 and the second magnetic body 1143 by a predetermined distance. Accordingly, in the first to third Hall sensors, the influence of the magnetic field formed from the first magnetic body 1142 and the second magnetic body 1143 is minimized, and the Hall voltage is concentrated in a positive or negative manner to prevent saturation. can That is, this configuration allows the Hall electrode to have a range in which Hall calibration can be performed. Furthermore, the temperature is also affected by the electrode of the Hall sensor, and the resolution of the camera lens varies according to the temperature. Thus, it is possible to easily prevent a decrease in resolution.
  • the tilting guide part 1141 may be seated in the fourth seating groove 1131S4a with respect to the base, except for the first protrusion PR1 and the second protrusion PR2 .
  • the length in the third direction (Z-axis direction) of the base BS may be smaller than the length in the third direction (Z-axis direction) of the fourth seating groove 1131S4a.
  • the maximum length of the tilting guide part 1141 in the third direction (Z-axis direction) may be greater than the length in the third direction (Z-axis direction) of the fourth seating groove 1131S4a.
  • the end of the second protrusion PR2 may be positioned between the outer surface of the fourth holder and the side of the fifth housing 1126 . That is, at least a portion of the second protrusion PR2 may be located in a direction opposite to that of the holder 1131 in the third direction (Z-axis direction). In other words, the holder 1131 may be spaced apart a predetermined distance from the end of the second protrusion PR2 (the portion in contact with the second protrusion groove) in the third direction (Z-axis direction).
  • the fifth housing side 1126 may have an inwardly extended and bent structure.
  • the fastening member 1131a may have a partial region positioned in the groove formed by the extended and bent structure of the fifth housing side portion 1126 described above.
  • a predetermined separation space may exist between the first magnetic body 1142 and the second magnetic body 1143 .
  • the first magnetic body 1142 and the second magnetic body 1143 may face each other with the same polarity.
  • the first driving unit may rotationally drive the mover 1130 in the first housing in the first direction (X-axis direction) or in the second direction (Y-axis direction).
  • the driving magnet in the first driving unit may include at least one magnet
  • the driving coil may also include at least one coil.
  • the at least one magnet may partially overlap the tilting guide part 1141 in the first direction (X-axis direction) or the second direction (Y-axis direction).
  • at least one coil may also partially overlap the tilting guide unit 1141 in the first direction (X-axis direction) or the second direction (Y-axis direction).
  • the first magnet 1151a and the second magnet 1151b overlap in the second direction (Y-axis direction), and between the first magnet 1151a and the second magnet 1151b in the second direction (Y-axis direction)
  • a tilting guide unit 1141 may be located in the area.
  • the tilting guide part 1141 is partially positioned between the first magnet 1151a and the second magnet 1151b, and includes the first magnet 1151a and the second magnet 1151b in the second direction (Y-axis direction). can be nested.
  • the first protrusion PR1 of the tilting guide part 1141 may overlap the first magnet 1151a and the second magnet 1151b in the second direction (Y-axis direction).
  • the first protrusion PR1 may be positioned between the mover 1130 and the base BS of the tilting guide 1141 .
  • the separation distance between the first magnet 1151a and the second magnet 1151b may be reduced from the tilting guide unit 1141 in the third direction (Z-axis direction).
  • the first magnet 1151a and the second magnet 1151b may be located at a distance adjacent to the tilting guide unit 1141 .
  • the center of gravity of the holder 1131 on which the first magnet 1151a and the second magnet 1151b are seated or the mover 1130 including the same may be located adjacent to the tilting guide unit 1141 .
  • the center of gravity of the holder 1131 or the mover 1130 including the same is adjacent to the tilting guide part 1141 having a rotation shaft or a rotation surface for a rotation ball, etc., it is constant according to the posture of the camera actuator or camera module.
  • the amount of change in moment or energy (eg, current) consumed for angular tilt driving may be reduced. That is, it is possible to reduce the influence of the posture difference. Accordingly, the camera actuator and the camera module according to the embodiment may be more accurately tilted.
  • the electromagnetic force which is a force that tries to rotate the mover (or holder), may be reduced as the above-described movement of the center of gravity approaches the rotation shaft or the rotation surface.
  • the first driving unit may be located adjacent to the tilting guide unit 1141 .
  • the first driving unit means the first driving magnet and the first driving coil, and the first driving magnet and the first driving coil will be described below, respectively.
  • the base BS of the tilting guide unit 1141 may at least partially overlap the first magnet 1151a and the second magnet 1151b in the second direction (Y-axis direction). Accordingly, the first magnet 1151a and the second magnet 1151b may be disposed closer to the tilting guide unit 1141 .
  • the electromagnetic force required for tilting in the second direction increases, so that the first magnet 1151a and the first magnet 1151a and the second magnet 1151a.
  • the center of the second magnet 1151b (a point bisected in the third direction) may be spaced apart from the first protrusion PR1 in the third direction (Z-axis direction) without overlapping with the first protrusion PR1 in the second direction (Y-axis direction).
  • the centers of the first magnets 1151a and the second magnets 1151b may be located at the rear end of the first protrusion PR1 , that is, in the third direction (Z-axis direction) side.
  • the center of the 3-1 magnet 1151ca and the 3-2 magnet 1151cb may be located at the rear end of the first protrusion PR1 , that is, in the third direction (Z-axis direction) side.
  • the base BS of the tilting guide unit 1141 may at least partially overlap the first coil 1152a and the second coil 1152b in the second direction (Y-axis direction). Accordingly, like the above-described first and second magnets, the first coil 1152a and the second coil 1152b may be disposed more adjacent to the tilting guide unit 1141 . Accordingly, it is possible to reduce the electromagnetic force required for the tilt and reduce the influence on the attitude difference.
  • the 3-1 magnet and the 3-2 magnet disposed on the outer surface of the third holder are spaced apart from the first protrusion PR1 in the first direction (X-axis direction) and the third direction (Z-axis direction).
  • the center of gravity of the holder 1131 or the mover 1130 including the holder 1131 may further move toward the tilting guide unit 1141 . Accordingly, as described above, it is possible to reduce the influence of the posture difference.
  • the camera actuator and the camera module according to the embodiment may be more accurately tilted.
  • the electromagnetic force which is a force that tries to rotate the mover (or holder)
  • the electromagnetic force may be reduced as the above-described movement of the center of gravity approaches the rotation shaft or the rotation surface. That is, energy efficiency for driving the camera actuator or camera module may be improved.
  • the description of the 3-1 magnet/3-2 magnet may be equally applied to the 3-1 coil and the 3-2 coil.
  • the center of gravity of the holder 1131 or the mover 1130 including the same may be positioned to overlap the first protrusion PR1 in the third direction (Z-axis direction). Accordingly, it is possible to suppress an increase in the amount of change in the electromagnetic force according to the rotational direction or the attitude difference. Accordingly, the camera actuator and the camera module according to the embodiment may accurately perform tilting.
  • the mover 1130 includes a fastening member 1131a penetrating through one side of the housing (eg, the fifth housing side), and may be coupled to the housing by the fastening member 1131a. Furthermore, a first groove gr1 may exist in the fastening member 1131a, and a first magnetic body 1142 may be located in the first groove gr1.
  • a second groove gr2 may be positioned on one side of the housing, for example, on an outer surface of the side of the fifth housing.
  • the second groove gr2 may be positioned to face the first groove gr1 of the fastening member 1131a.
  • a second magnetic body 1143 may be positioned in the second groove gr2 .
  • the coupling member 1131a that is coupled to the mover 1130 and the mover 1130 to rotate the first and second axis tilts integrally is coupled to the first magnetic body 1142, and the first magnetic body 1142 and the first magnetic body 1142 Since the magnetic body 1143 is positioned at the front end of the tilting guide part 1141 , the center of gravity of the mover 1130 and the fastening member 1131a may be positioned closer to the tilting guide part 1141 as described above. Accordingly, it is possible to reduce the amount of moment change according to the posture difference and to minimize the required electromagnetic force due to the tilt. In this case, the second magnetic body 1143 may be positioned between the first magnetic body 1142 and the mover 1130 in the third direction.
  • the fastening member 1131a may be made of a non-magnetic material and a metal. Furthermore, the fastening member 1131a has a protruding area 1131aap protruding in the opposite direction to the third direction (Z-axis direction), so that the above-described center of gravity is located closer to the tilting guide unit 1141. . Furthermore, the first magnetic body 1142 and the second magnetic body 1143 are disposed to at least partially overlap with the first protrusion PR1 in the third direction (Z-axis direction) to minimize the influence of the posture difference.
  • first magnetic body 1142 and the second magnetic body 1143 have different lengths in the first direction (X-axis direction) or the second direction (Y-axis direction), it is possible to further reduce the amount of change in electromagnetic force according to the attitude difference.
  • the mover 1130 may include a holder 1131 and an optical member 1132 .
  • the holder 1131 may have a first driving magnet and a first driving coil disposed on a part of an outer surface thereof.
  • the holder 1131 may include a first sidewall and a second sidewall.
  • the first sidewall may be an outer surface of the first holder and an outer surface of the second holder on which a magnet or a coil is located adjacently.
  • the second sidewall may be an outer surface of the fourth holder on which the tilting guide unit 1141 is located.
  • the first sidewall may be disposed perpendicular to the second sidewall.
  • the second sidewall may include a cavity in which the tilting guide unit 1141 is disposed.
  • the cavity may correspond to the third area AR3 , and may be a space in which the tilting guide unit 1141 is disposed and may be an area formed by the fourth seating groove.
  • at least a portion of the cavity according to the embodiment may overlap at least a portion of the first driving magnet or the first driving coil in a direction perpendicular to the optical axis.
  • the cavity may overlap at least a portion of the first magnet and the second magnet of the first driving magnet in the second direction.
  • the cavity may overlap at least a portion of the first coil and the second coil of the first driving coil in the second direction. Also, the cavity may overlap the magnets 3-1 and 3-2 of the first driving magnet in the first direction. In addition, the cavity may overlap with coils 3-1 and 3-2 of the first driving coil in the first direction.
  • FIG. 12A is a perspective view of a first camera actuator according to an embodiment
  • FIG. 12B is a cross-sectional view taken along SS′ in FIG. 12A
  • FIG. 12C is an exemplary view of movement of the first camera actuator shown in FIG. 12B.
  • the Y-axis tilt may be performed by the first camera actuator according to the embodiment. That is, the OIS may be implemented by rotating in the first direction (X-axis direction).
  • the repulsive force between the first magnetic body 1142 and the second magnetic body 1143 is transmitted to the fastening member 1131a and the fifth housing side 1126 , and finally the fifth housing side 1126 and the holder 1131 . It may be transmitted to the tilting guide unit 1141 disposed therebetween. Accordingly, as described above, the tilting guide unit 1141 may be pressed by the mover 1130 and the first housing 1120 by the above-described repulsive force.
  • the tilting guide unit 1141 uses the first protrusion PR1 protruding toward the holder 1131 (eg, toward the third direction) as a reference axis (or rotation axis), that is, in the second direction (Y). axial direction) can be rotated or tilted.
  • the 3-1 magnet 1151ca and the 3-2 magnet 1151cb disposed in the 3-1 seating groove and the 3-2 seating groove and the third magnet 1151cb disposed on the side of the first and second substrates OIS may be implemented by rotating the mover 1130 in the X-axis direction or in a direction opposite to the X-axis direction by a first angle by the first electromagnetic force between the -1 coil 1152ca and the 3-2 coil 1152cb.
  • the first angle may be ⁇ 1° to ⁇ 3°.
  • the present invention is not limited thereto.
  • the electromagnetic force generates a force in a direction described to move the mover, or even if a force is generated in a direction different from the illustrated direction, the mover may move in the described direction. That is, the direction shown in the drawing means the direction of the force generated by the magnet and the coil to move the mover.
  • first magnetic body 1142 and the second magnetic body 1143 may have different lengths in the first direction (X-axis direction).
  • the area of the first magnetic body 1142 tilted together with the mover 1130 in combination with the fastening member 1131a may be different from that of the second magnetic body 1143 .
  • the area of the first magnetic body 1142 may be larger than that of the second magnetic body 1143 .
  • the length of the first magnetic body 1142 in the first direction (X-axis direction) may be greater than the length of the second magnetic body 1143 in the first direction (X-axis direction).
  • the length of the first magnetic body 1142 in the second direction (Y-axis direction) may be greater than the length of the second magnetic body 1143 in the second direction (Y-axis direction).
  • the second magnetic body 1143 may be positioned within an imaginary straight line extending both ends of the first magnetic body 1142 in the third direction.
  • the camera actuator may include a first axis driving magnet and a second axis driving magnet.
  • the first shaft driving magnet may include a first magnet and a second magnet.
  • the second shaft driving magnet may include a 3-1 th magnet and a 3-2 th magnet.
  • the first axis driving magnet may be expressed as a 'first sub driving magnet', a 'first axis magnet', a 'first driving magnet unit', and the like.
  • the second axis driving magnet may be expressed as a 'second sub driving magnet', a 'second axis magnet', a 'second driving magnet unit', and the like.
  • FIG. 13A is a cross-sectional view taken along line RR′ in FIG. 12A
  • FIG. 13B is an exemplary view of movement of the first camera actuator shown in FIG. 13A .
  • an X-axis tilt may be performed. That is, OIS may be implemented while the mover 1130 is tilted or rotated in the Y-axis direction.
  • the first magnet 1151a and the second magnet 1151b disposed in the holder 1131 form an electromagnetic force with the first coil 1152a and the second coil 1152b, respectively, in the first direction (X axial direction), the tilting guide unit 1141, the mover 1130, and the fastening member 1131a may be tilted or rotated.
  • the repulsive force between the first magnetic body 1142 and the second magnetic body 1143 is transmitted to the fifth housing side 1126 and the holder 1131 , and finally between the holder 1131 and the fifth housing side 1126 . It may be transferred to the tilting guide unit 1141 disposed in the . Accordingly, the tilting guide unit 1141 may be pressed by the mover 1130 and the first housing 1120 by the above-described repulsive force.
  • the second protrusion PR2 may be supported by the fifth housing side 1126 .
  • the tilting guide unit 1141 rotates or uses the second protrusion PR2 protruding toward the holder 1131 as a reference axis (or rotation axis), that is, in a first direction (X-axis direction). can tilt.
  • the tilting guide 1141 may rotate or tilt the second protrusion PR2 protruding toward the fifth housing side 1126 in the second direction (Y-axis direction) with respect to the reference axis (or rotation axis). .
  • the second electromagnetic force F2A between the first and second magnets 1151a and 1151b disposed in the first seating groove and the first and second coil units 1152a and 1152b disposed on the side of the first and second substrates; F2B), while rotating the mover 1130 at a second angle ⁇ 2 in the Y-axis direction or in the opposite direction to the Y-axis direction (Y1->Y1a or Y1b), the OIS may be implemented.
  • the second angle ⁇ 2 may be ⁇ 1° to 3°.
  • the present invention is not limited thereto.
  • the electromagnetic force generated by the first and second magnets 1151a and 1151b and the first and second coil units 1152a and 1152b may act in the third direction or in a direction opposite to the third direction.
  • the electromagnetic force may be generated in the third direction (Z-axis direction) at the left side of the mover 1130 , and may act in the opposite direction to the third direction (Z-axis direction) at the right side of the mover 1130 .
  • the mover 1130 may rotate based on the first direction. Alternatively, it may move along the second direction.
  • the illustrated direction corresponds to the moving direction of the mover, and may be different from or the same as the direction of electromagnetic force generated by the actual magnet and coil.
  • the first camera actuator moves the mover 1130 in the first direction (X-axis direction) or in the second direction by the electromagnetic force between the first driving magnet in the holder and the first driving coil disposed in the first housing.
  • the rotation in the (Y-axis direction) it is possible to minimize the occurrence of decent or tilt and provide the best optical properties when implementing OIS.
  • 'Y-axis tilt' means rotation or tilting in the first direction (X-axis direction)
  • 'X-axis tilt' means rotating or tilting in the second direction (Y-axis direction). do.
  • FIG. 14A is a side view of the holder and the driving unit according to the embodiment
  • FIG. 14B is another side view of the holder and the driving unit according to the embodiment
  • FIG. 14C is another example of the holder, the tilting guide, and the driving unit according to the embodiment.
  • the first magnet 1151a and the 3-1 magnet 1151ca may be disposed on one surface of the mover 1130 .
  • the second magnet 1151b and the 3-2 magnet 1151cb may be disposed on the other surface of the mover 1130 .
  • one surface of the mover 1130 may be an outer surface of the first holder of the holder 1131 .
  • each of the first magnet 1151a and the 3-1 magnet 1151ca may be located in the first seating groove and the 3-1 seating groove.
  • each of the second magnet 1151b and the 3-2 magnet 1151cb may be positioned in the second seating groove and the 3-2 seating groove.
  • the first magnet 1151a and the second magnet 1151b may be adjacent to the tilting guide portion compared to the 3-1 magnet 1151ca and the 3-2 magnet 1151cb.
  • the areas of the first magnet 1151a and the second magnet 1151b may be different from those of the 3-1 th magnet 1151ca and the 3-2 th magnet 1151cb.
  • the areas of the first magnet 1151a and the second magnet 1151b may be smaller than those of the 3-1 th magnet 1151ca and the 3-2 th magnet 1151cb.
  • first magnet 1151a and the second magnet 1151b may correspond to each other.
  • first magnet 1151a and the second magnet 1151b may be positioned to face each other in the first direction (X-axis direction) as described above.
  • first magnet 1151a and the second magnet 1151b may be symmetrically disposed with respect to the first direction (X-axis direction) as described above.
  • the 3-1 magnet 1151ca and the 3-2 magnet 1151cb may correspond to each other.
  • the 3-1 magnet 1151ca and the 3-2 magnet 1151cb may be positioned to face each other based on the first direction (X-axis direction).
  • the 3-1 magnet 1151ca and the 3-2 magnet 1151cb may be symmetrically disposed with respect to the first direction (X-axis direction).
  • the 3-1 magnet 1151ca and the 3-2 magnet 1151cb have a larger area compared to the first magnet 1151a and the second magnet 1151b, and thus the third direction (Z-axis direction) from the tilting guide unit.
  • the tilting by the 3-1 th magnet 1151ca and the 3-2 th magnet 1151cb and the 3-1 th magnet 1151ca and the 3-2 th magnet 1151cb further spaced apart from each other may also be easily performed.
  • the first magnet 1151a may include a 1-1 magnet area MA1a and a 1-2 magnet area MA1b having different polarities. Also, the first magnet 1151a may include a first neutral area NA1 disposed between the first-first magnet area MA1a and the first-second magnet area MA1b.
  • the first neutral region NA1 may be a neutral region, a neutral region, or a non-polar region. Furthermore, the first neutral region NA1 may be made of a non-polar material or may form spaced apart grooves.
  • the 1-1 magnet area MA1a and the 1-2 th magnet area MA1b may be sequentially disposed along the optical axis direction (Z-axis direction).
  • the polarity providing the electromagnetic force means the polarity of the surface facing the adjacent coil.
  • the polarity means the polarity of the outer surface of each magnet or magnet region.
  • the 1-1 magnet area MA1a and the 1-2 magnet area MA1b may be spaced apart from each other in the third direction (Z-axis direction).
  • the 1-1 magnet area MA1a and the 1-2 th magnet area MA1b may overlap in a third direction (Z-axis direction).
  • the 1-1 magnet area MA1a may have an N pole
  • the 1-2 th magnet area MA1b may have an S pole.
  • the second magnet 1151b may include a 2-1 magnet area MA2a and a 2-2 magnet area MA2b. Also, the second magnet 1151b may include a second neutral area NA2 disposed between the 2-1 th magnet area MA2a and the 2-2 th magnet area MA2b.
  • the second neutral region NA2 may be made of a non-polar material or may form spaced apart grooves.
  • the 2-1th magnet area MA2a and the 2-2nd magnet area MA2b may be disposed above and below each other. For example, the 2-1 th magnet area MA2a may be located above the 2-2 th magnet area MA2b.
  • the 1-2 th magnet area MA1b may have a different polarity from the 2-1 th magnet area MA2a.
  • the 2-1 magnet area MA2a and the 2-2 magnet area MA2b may be spaced apart from each other in the third direction (Z-axis direction).
  • the 2-1 th magnet area MA2a and the 2-2 th magnet area MA2b may overlap in a third direction (Z-axis direction).
  • the 2-1 th magnet area MA2a may have an S pole and the 2-2 th magnet area MA2b may have an N pole.
  • the 1-1 magnet area MA1a and the 2-1 magnet area MA2a may overlap in the second direction (Y-axis direction).
  • the 1-2th magnet area MA1b and the 2-2nd magnet area MA2b may overlap in the second direction (Y-axis direction).
  • the 1-1 magnet area MA1a may have the same polarity as any one of the 2-1 magnet area MA2a and the 2-2 magnet area MA2b. Also, the 1-2 th magnet area MA1b may have the same polarity as the polarity of the other one of the 2-1 th magnet area MA2a and the 2-2 th magnet area MA2b.
  • the 1-1 magnet area MA1a and the 2-2 magnet area MA2b may have an N pole.
  • the 1-2 th magnet area MA1b and the 2-1 th magnet area MA2a may have an S pole. Accordingly, polarities of the magnet regions overlapping in the second direction (Y-axis direction) may be different from each other.
  • the mover 1130 when current is applied to each coil (eg, the first coil or the second coil) in the same direction, the mover 1130 may be tilted based on the first direction (X-axis direction). As another example, even when current is applied to each coil in a different direction, the mover 1130 may be tilted based on the first direction (X-axis direction).
  • the first magnet 1151a and the 3-1 magnet 1151ca may be an integral magnet or separate magnets. This may be different depending on the structure of the above-described seating groove.
  • the first magnet 1151a and the 3-1 magnet 1151ca are integrally formed, and a neutral region may be located between the first magnet and the 3-1 magnet.
  • the 1-1 magnet region and the 1-2 magnet region may be formed of an anode polarizer. For example, if the outer surface of the 1-1 magnet region is the N pole, the inner surface of the 1-1 magnet region may be the S pole. And if the outer surface of the 1-2 magnet region is the S pole, the inner surface of the 1-2 magnet region may be the N pole.
  • the inner surface of the 2-1 magnet region may be the N pole.
  • the outer surface of the 2-2 magnet area is the N pole, the inner surface of the 2-2 magnet area may be the S pole.
  • the inner surface of the 3-1 magnet region may be the S pole.
  • the inner surface of the 3-2 magnet region may be the N pole.
  • the inner surface of the 3-3 magnet region may be the S pole.
  • the inner surface of the 3-4th magnet area may be the N-pole.
  • the holder may be driven left and right by the first magnet 1151a. That is, the electromagnetic force may be generated in the third direction (Z-axis direction) or in a direction opposite to the third direction by the first magnet 1151a and the second magnet 1151b. Accordingly, the holder may rotate in the first direction (X-axis direction).
  • a magnetic force may be generated in the second direction (Y-axis direction) or in a direction opposite to the second direction (Y-axis direction) by the first magnet 1151a.
  • current may flow in a direction opposite to the first direction (first-first magnet region) and in a first direction (first-second magnet region) by the first coil 1152a.
  • the first coil 1152a may receive the electromagnetic force in a direction opposite to the third direction (Z-axis direction).
  • the holder since the first coil 1152a is a fixed component, the holder may move in the third direction (Z-axis direction).
  • a magnetic force may be generated in the second direction (Y-axis direction) or in a direction opposite to the second direction (Y-axis direction) by the second magnet 1151b.
  • the direction of the magnetic force in the 2-1 magnet region and the 1-1 magnet region may be the same.
  • the direction of the magnetic force in the 1-2 magnet region may be the same as the direction of the magnetic force in the 2-2 magnet region.
  • the second coil 1152b may receive electromagnetic force in the third direction (Z-axis direction).
  • the holder may move in a direction opposite to the third direction (Z-axis direction).
  • the outer surface of the first holder may move in the third direction (Z-axis direction).
  • the outer surface of the second holder may move in a direction opposite to the third direction (Z-axis direction). That is, the outer surface of the first holder may be spaced apart from the tilting guide, and the outer surface of the second holder may be adjacent to the tilting guide.
  • the holder may be tilted based on the first direction.
  • the holder may move in the first direction (X-axis direction) or in a direction opposite to the first direction. In other words, the holder may rotate in the second direction (Y-axis direction).
  • a magnetic force may be generated in the second direction (Y-axis direction) by the first magnet 1151a, and current may flow in the first coil 1152a in a clockwise or counterclockwise direction.
  • a current flows in the first direction (X-axis direction) in the first coil 1152a and a magnetic force is generated in the second direction (Y-axis direction)
  • the first coil 1152a moves in the third direction (Z direction).
  • axial may generate electromagnetic force.
  • a force by electromagnetic force
  • the first coil 1152a flows in the third direction ( An electromagnetic force may be generated in a direction opposite to the Z-axis direction). Accordingly, a force (by electromagnetic force) may be generated on the outer surface of the second holder of the holder in the third direction (Z-axis direction). Accordingly, the holder may be tilted based on the first direction. For example, the outer surface of the first holder may be positioned adjacent to the tilting guide, and the outer surface of the second holder may be positioned away from the tilting guide.
  • the 3-1 magnet 1151ca may include a 3-1 magnet area MA3aa and a 3-2 magnet area MA3ab having different polarities.
  • the 3-1 magnet area MA3aa and the 3-2 magnet area MA3ab may overlap in the first direction (X-axis direction).
  • the 3-1 magnet area MA3aa and the 3-2 magnet area MA3ab may be spaced apart from each other in the first direction (X-axis direction).
  • the 3-1 magnet 1151ca may include a third neutral area NA3a disposed between the 3-1 magnet area MA3aa and the 3-2 magnet area MA3ab.
  • the 3-1 magnet area MA3aa and the 3-2 magnet area MA3ab may overlap the third neutral area NA3a in the first direction (X-axis direction).
  • the 3-2 magnet 1151cb may include a 3-3 magnet area MA3ba and a 3-4 magnet area MA3bb having different polarities.
  • the 3 - 3 magnet area MA3ba and the 3 - 4 magnet area MA3bb may overlap in the first direction (X-axis direction).
  • the 3 - 3 magnet area MA3ba and the 3 - 4 magnet area MA3bb may be spaced apart from each other in the first direction (X-axis direction).
  • the 3 - 2 magnet 1151cb may include a fourth neutral area NA3b disposed between the 3 - 3 magnet area MA3ba and the 3 - 4 magnet area MA3bb.
  • the 3 - 3 magnet area MA3ba and the 3 - 4 magnet area MA3bb may overlap the fourth neutral area NA3b in the first direction (X-axis direction).
  • the first polarity direction and the second polarity direction may be different from each other.
  • the first polarity direction is a direction from the 3-1 th magnet area MA3aa toward the 3-2 th magnet area MA3ab or from the 3-3 th magnet area MA3ba toward the 3-4 th magnet area MA3bb.
  • the second polarity direction is a direction from the 1-1th magnet area MA1a to the 1-2th magnet area MA1b or from the 2-1th magnet area MA2a toward the 2-2nd magnet area MA2b. can be direction.
  • the length L9 in the optical axis direction (Z-axis direction) of the first magnet 1151a is the length L10 in the optical axis direction (Z-axis direction) of the 3-1 magnet 1151ca or the 3-2 magnet 1151cb may be different from In an embodiment, the length L9 in the optical axis direction (Z-axis direction) of the first magnet 1151a is in the optical axis direction (Z-axis direction) of the 3-1 magnet 1151ca or the 3-2 magnet 1151cb It may be smaller than the length L10. With this configuration, the holder can be easily tilted in the second direction (Y-axis direction).
  • the length L9 in the optical axis direction (Z-axis direction) of the first magnet 1151a may be the same as the length L10 in the optical axis direction of the second magnet 1151b.
  • the driving unit faces the first coil 1152a facing the first magnet 1151a, the second coil 1152b facing the second magnet 1151b, and the 3-1 magnet 1151ca as described above. and a 3-1 th coil 1152ca and a 3-2 th coil 1152cb facing the 3-2 th magnet 1151cb.
  • the length L2 of the first coil 1152a in the optical axis direction (Z-axis direction) may be different from the length L1 in the vertical direction (X-axis direction). Also, the length of the second coil 1152b in the optical axis direction (Z-axis direction) may be different from the length in the vertical direction (X-axis direction).
  • the length L4 of the 3-1 coil 1152ca in the optical axis direction (Z-axis direction) may be different from the length L3 in the vertical direction (X-axis direction).
  • the length of the 3-2 coil 1152cb in the optical axis direction (Z-axis direction) may be different from the length in the vertical direction (X-axis direction).
  • the length L4 in the optical axis direction (Z-axis direction) may be the same as the length L3 in the vertical direction (X-axis direction).
  • the first coil 1152a and the third-first coil 1152ca may at least partially overlap in the optical axis direction (Z-axis direction).
  • the second coil 1152b and the 3-2 coil 1152cb may at least partially overlap in the optical axis direction (Z-axis direction).
  • first coil 1152a and one end of the second coil 1152b may have the same node.
  • the other end of the first coil 1152a and the other end of the second coil 1152b may have the same node. That is, the first coil 1152a and the second coil 1152b may be formed of the same channel. Also, one end and the other end of the first coil 1152a and the second coil 1152b may be wound in the same direction. More specifically, one end of the first coil 1152a and one end of the second coil 1152b may be connected to the same circuit pattern formed on the first substrate unit 1154 .
  • one end of the first coil 1152a and one end of the second coil 1152b may be connected to each of the electrode patterns of the circuit board unit electrically connected to each other in the first substrate unit 1154 .
  • one end of the 3-1 coil 1152ca and one end of the 3-2 coil 1152cb may be connected to the same circuit pattern formed on the first substrate unit 1154 .
  • one end of the 3-1 th coil 1152ca and one end of the 3-2 th coil 1152cb may be connected to each electrode pattern of the circuit board unit electrically connected to each other in the first substrate unit 1154 .
  • the electromagnetic force generated by the first coil 1152a and the second coil 1152b may form opposite directions.
  • the electromagnetic force generated by the first coil 1152a may be formed in the second direction (Y-axis direction).
  • the electromagnetic force generated by the second coil 1152b may be formed in a direction opposite to the second direction (Y-axis direction).
  • the tilting guide unit may be formed in a horizontal direction between the first coil 1152a or the second coil 11152b. Y-axis direction) may be partially overlapped. With this configuration, rotational driving efficiency by the tilting guide unit may be improved.
  • the tilting guide unit may be displaced in the horizontal direction (Y-axis direction) between the first coil 1152a or the second coil 11152b. With this configuration, it is possible to increase the tilt radius by the holder.
  • the Hall sensor unit is disposed in the first Hall sensor 1153a disposed in the first coil 1152a, the second Hall sensor 1153b disposed in the second coil 1152b, and the 3-1 coil 1152ca. It may include a 3-1 th Hall sensor 1153ca disposed within the 3-2 th Hall sensor 1153cb disposed within the 3-2 th coil 1152cb.
  • the length L5 in the optical axis direction of the first Hall sensor 1153a and the second Hall sensor 1153b is the optical axis direction (Z-axis direction) of the 3-1 Hall sensor 1153ca and the 3-2 Hall sensor 1153cb. ) may be different from the length L7.
  • the length L5 in the optical axis direction of the first Hall sensor 1153a and the second Hall sensor 1153b is the optical axis direction Z of the 3-1 Hall sensor 1153ca and the 3-2 Hall sensor 1153cb. in the axial direction) may be less than the length L7.
  • the first polarity direction and the second polarity direction may have different directions (eg, a vertical direction).
  • the first Hall sensor 1153a and the 3-1 Hall sensor 1153ca can perform accurate position detection. have. Furthermore, the first Hall sensor 1153a and the 3-1 Hall sensor 1153ca may at least partially overlap in the optical axis direction (Z-axis direction).
  • the length L5 in the optical axis direction of the first Hall sensor 1153a and the second Hall sensor 1153b is a length in the vertical direction (X-axis direction) of the first Hall sensor 1153a and the second Hall sensor 1153b. may be smaller than (L6).
  • the length L7 in the optical axis direction (Z-axis direction) of the 3-1 Hall sensor 1153ca and the 3-2 Hall sensor 1153cb is the 3-1 Hall sensor 1153ca and the 3-2 Hall sensor 1153cb. It may be greater than the length L8 in the vertical direction (X-axis direction) of the sensor 1153cb.
  • the detection of the position of the corresponding magnet by the first Hall sensor 1153a, the second Hall sensor 1153b, the 3-1 Hall sensor 1153ca, and the 3-2 Hall sensor 1153cb is possible. can be done precisely.
  • the positions of the first protrusion and the second protrusion of the tilting guide may be changed as described above.
  • the first protrusion may be disposed on the outside and the second protrusion may be disposed on the inside.
  • the second protrusions spaced apart in the second direction may face the outer surface of the fourth holder.
  • FIG. 15A is a perspective view of a holder, a tilting guide, and a driving unit according to another embodiment
  • FIG. 15B is another perspective view of a holder, a tilting guide, and a driving unit according to another embodiment
  • FIG. 15C is a holder and tilting according to another embodiment It is another example of a guide part and a driving part.
  • the driving unit or the first driving unit 1150 includes a first driving magnet 1151 , a first driving coil 1152 , a hall sensor unit 1153 , a first substrate unit 1154 , and a yoke. part (not shown).
  • the first driving unit 1150 includes a first driving magnet 1151 , a first driving coil 1152 , a Hall sensor unit 1153 (or a first Hall sensor unit), a first substrate unit 1154 , and a yoke unit (not shown). shown). Details on this will be described later.
  • the first driving magnet 1151 may include a first magnet 1151a, a second magnet 1151b, a 3-1 magnet 1151ca, and a 3-2 magnet 1151cb.
  • the first driving coil 1152 may include a first coil 1152a , a second coil 1152b , a 3-1 th coil 1152ca , and a 3-2 th coil 1152cb .
  • the Hall sensor unit 1153 may include a first Hall sensor 1153a, a second Hall sensor 1153b, a 3-1 Hall sensor 1153ca, and a 3-2 Hall sensor 1153cb. Descriptions thereof may be applied in the same manner except for the following description.
  • the above-described contents may be applied to the tilting guide unit 1141 according to another exemplary embodiment, except for those described later.
  • the holder may be driven left and right by the first magnet 1151a and the second magnet. That is, the first magnet and the second magnet may tilt with respect to the first direction.
  • the holder may be driven up and down by the 3-1 magnet and the 3-2 magnet, which have a larger separation distance from the tilting guide than the first magnet and the second magnet. That is, the holder may be tilted in the second direction by the 3-1 magnet and the 3-2 magnet.
  • the guide part 1141 may be disposed to be spaced apart from the outer surface of the fourth holder by a predetermined distance along the third direction (Z-axis direction) of the holder.
  • a first protrusion groove is disposed on the outer surface of the fourth holder so that the first protrusion of the tilting guide part may be accommodated.
  • the tilting guide part 1141 may have a space gap1 spaced apart from the first magnet 1151a or the second magnet of the holder in the optical axis direction (Z-axis direction). That is, unlike the above, the tilting guide part 1141 may at least partially overlap the first magnet 1151a or the second magnet of the holder in the horizontal direction (Y-axis direction). With this configuration, the tilt angle of the holder can be improved.
  • the positions of the first protrusion and the second protrusion of the tilting guide may be changed as described above.
  • the first protrusion may be disposed on the outside and the second protrusion may be disposed on the inside.
  • the second protrusions spaced apart in the second direction may face the outer surface of the fourth holder.
  • FIG. 16A is a perspective view of a holder, a tilting guide, and a driving unit according to another embodiment
  • FIG. 16B is another perspective view of a holder, a tilting guide, and a driving unit according to another embodiment
  • FIG. 16C is another embodiment It is another example of a holder, a tilting guide part, and a driving part.
  • the driving unit or the first driving unit 1150 includes a first driving magnet 1151 , a first driving coil 1152 , a hall sensor unit 1153 , a first substrate unit 1154 , and a yoke. part (not shown).
  • the first driving unit 1150 includes a first driving magnet 1151 , a first driving coil 1152 , a Hall sensor unit 1153 (or a first Hall sensor unit), a first substrate unit 1154 , and a yoke unit (not shown). shown). Details on this will be described later.
  • the first driving magnet 1151 may include a first magnet 1151a, a second magnet 1151b, a 3-1 magnet 1151ca, and a 3-2 magnet 1151cb.
  • the first driving coil 1152 may include a first coil 1152a , a second coil 1152b , a 3-1 th coil 1152ca , and a 3-2 th coil 1152cb .
  • the Hall sensor unit 1153 may include a first Hall sensor 1153a, a second Hall sensor 1153b, a 3-1 Hall sensor 1153ca, and a 3-2 Hall sensor 1153cb. Descriptions thereof may be applied in the same manner except for the following description.
  • the above-described contents may be applied to the tilting guide unit 1141 according to another exemplary embodiment, except for those described later.
  • the holder may be vertically driven by the first magnet 1151a. That is, the electromagnetic force may be generated in the first direction (X-axis direction) or in a direction opposite to the first direction (X-axis direction) by the first magnet 1151a and the second magnet 1151b. Accordingly, the holder may move in the first direction (X-axis direction) or in a direction opposite to the first direction. In other words, the holder may rotate in the second direction (Y-axis direction).
  • a magnetic force may be generated in the second direction (Y-axis direction) by the first magnet 1151a, and current may flow in the first coil 1152a in a clockwise or counterclockwise direction.
  • a current flows in the first direction (X-axis direction) in the first coil 1152a and a magnetic force is generated in the second direction (Y-axis direction)
  • the first coil 1152a moves in the third direction (Z direction).
  • axial may generate electromagnetic force.
  • a force by electromagnetic force
  • the first coil 1152a flows in the third direction ( An electromagnetic force may be generated in a direction opposite to the Z-axis direction). Accordingly, a force (by electromagnetic force) may be generated on the outer surface of the second holder of the holder in the third direction (Z-axis direction). Accordingly, the holder may be tilted based on the first direction. For example, the outer surface of the first holder may be positioned adjacent to the tilting guide, and the outer surface of the second holder may be positioned away from the tilting guide.
  • the tilting guide part 1141 may be disposed to be spaced apart from the fourth holder outer surface of the holder by a predetermined distance along the third direction (Z-axis direction).
  • a first protrusion groove is disposed on the outer surface of the fourth holder so that the first protrusion of the tilting guide part may be accommodated.
  • the tilting guide part 1141 may have a space gap2 spaced apart from the first magnet 1151a or the second magnet of the holder in the optical axis direction (Z-axis direction). That is, unlike the above, the tilting guide part 1141 may at least partially overlap the first magnet 1151a or the second magnet of the holder in the horizontal direction (Y-axis direction). With this configuration, the tilt angle of the holder can be improved.
  • the positions of the first and second protrusions of the tilting guide may be changed as described above.
  • the first protrusion may be disposed on the outside and the second protrusion may be disposed on the inside.
  • the second protrusions spaced apart in the second direction may face the outer surface of the fourth holder.
  • FIG. 17A is a perspective view of a holder, a tilting guide, and a driving unit according to a modification
  • FIG. 17B is another perspective view of a holder, a tilting guide, and a driving unit according to a modification
  • FIG. 15C is a holder, a tilting guide and a driving unit according to the modification Another example of a drive unit.
  • the driving unit or the first driving unit 1150 includes a first driving magnet 1151 , a first driving coil 1152 , a hall sensor unit 1153 , a first substrate unit 1154 , and a yoke. part (not shown).
  • the first driving unit 1150 includes a first driving magnet 1151 , a first driving coil 1152 , a Hall sensor unit 1153 (or a first Hall sensor unit), a first substrate unit 1154 , and a yoke unit (not shown). shown). Details on this will be described later.
  • the first driving magnet 1151 may include a first magnet 1151a, a second magnet 1151b, a 3-1 magnet 1151ca, and a 3-2 magnet 1151cb.
  • the first driving coil 1152 may include a first coil 1152a , a second coil 1152b , a 3-1 th coil 1152ca , and a 3-2 th coil 1152cb .
  • the Hall sensor unit 1153 may include a first Hall sensor 1153a, a second Hall sensor 1153b, a 3-1 Hall sensor 1153ca, and a 3-2 Hall sensor 1153cb. Descriptions thereof may be applied in the same manner except for the following description.
  • the above-described contents may be applied to the tilting guide unit 1141 according to another exemplary embodiment, except for those described later.
  • the holder may be vertically driven by the first magnet 1151a. That is, the electromagnetic force may be generated in the first direction (X-axis direction) or in a direction opposite to the first direction (X-axis direction) by the first magnet 1151a and the second magnet 1151b. Accordingly, the holder may move in the first direction (X-axis direction) or in a direction opposite to the first direction. In other words, the holder may rotate in the second direction (Y-axis direction).
  • a magnetic force may be generated in the second direction (Y-axis direction) by the first magnet 1151a, and current may flow in the first coil 1152a in a clockwise or counterclockwise direction.
  • a current flows in the first direction (X-axis direction) in the first coil 1152a and a magnetic force is generated in the second direction (Y-axis direction)
  • the first coil 1152a moves in the third direction (Z direction).
  • axial may generate electromagnetic force.
  • a force by electromagnetic force
  • the first coil 1152a flows in the third direction ( An electromagnetic force may be generated in a direction opposite to the Z-axis direction). Accordingly, a force (by electromagnetic force) may be generated on the outer surface of the second holder of the holder in the third direction (Z-axis direction). Accordingly, the holder may be tilted based on the first direction. For example, the outer surface of the first holder may be positioned adjacent to the tilting guide, and the outer surface of the second holder may be positioned away from the tilting guide.
  • the tilting guide part 1141 may be seated in the fourth seating groove of the fourth holder outer surface 1131S4.
  • a first protrusion groove is disposed on the outer surface of the fourth holder to accommodate the first protrusion of the tilting guide part.
  • at least a portion of the tilting guide part may overlap the first magnet 1151a and the second magnet 1151b in the second direction (Y-axis direction). Accordingly, driving efficiency for left and right movement by the first magnet 1151a and the second magnet and vertical movement by the 3-1 magnet 1151ca and 3-2 magnet may be improved.
  • the positions of the first and second protrusions of the tilting guide may be changed as described above.
  • the first protrusion may be disposed on the outside and the second protrusion may be disposed on the inside.
  • the second protrusions spaced apart in the second direction may face the outer surface of the fourth holder.
  • FIG. 18 is a perspective view of a second camera actuator according to the embodiment
  • FIG. 19 is an exploded perspective view of the second camera actuator according to the embodiment
  • FIG. 20 is a cross-sectional view taken along DD′ in FIG. 18, and FIG. It is a cross-sectional view viewed from EE'.
  • the second camera actuator 1200 includes a lens unit 1220 , a second housing 1230 , a second driving unit 1250 , a base unit (not shown), and a second camera actuator 1200 .
  • Two substrate units 1270 may be included.
  • the second camera actuator 1200 may further include a second shield can (not shown), an elastic part (not shown), and a bonding member (not shown).
  • the second camera actuator 1200 according to the embodiment may further include an image sensor IS.
  • the second shield can (not shown) is located in an area (eg, the outermost side) of the second camera actuator 1200 and includes components (the lens unit 1220 , the second housing 1230 , and the elastic unit to be described later). (not shown), the second driving unit 1250, the base unit (not shown), the second substrate unit 1270, and the image sensor IS).
  • the second shield can (not shown) may block or reduce electromagnetic waves generated from the outside. Accordingly, the occurrence of a malfunction in the second driving unit 1250 may be reduced.
  • the lens unit 1220 may be located in a second shield can (not shown).
  • the lens unit 1220 may move in a third direction (Z-axis direction). Accordingly, the above-described AF function may be performed.
  • the lens unit 1220 may include a lens assembly 1221 and a bobbin 1222 .
  • the lens assembly 1221 may include at least one lens. In addition, there may be a plurality of lens assemblies 1221 , but hereinafter, one lens assembly will be used as a reference.
  • the lens assembly 1221 is coupled to the bobbin 1222 and may move in the third direction (Z-axis direction) by electromagnetic force generated from the fourth magnet 1252a and the second magnet 1252b coupled to the bobbin 1222 . .
  • the bobbin 1222 may include an opening area surrounding the lens assembly 1221 .
  • the bobbin 1222 may be coupled to the lens assembly 1221 by various methods.
  • the bobbin 1222 may include a groove in the side thereof, and may be coupled to the fourth magnet 1252a and the second magnet 1252b through the groove. A bonding member or the like may be applied to the groove.
  • the bobbin 1222 may be coupled to an elastic part (not shown) at the upper end and the rear end. Accordingly, the bobbin 1222 may be supported by an elastic part (not shown) to move in the third direction (Z-axis direction). That is, the position of the bobbin 1222 may be maintained while being maintained in the third direction (Z-axis direction).
  • the elastic part (not shown) may be formed of a leaf spring.
  • the second housing 1230 may be disposed between the lens unit 1220 and the second shield can (not shown). In addition, the second housing 1230 may be disposed to surround the lens unit 1220 .
  • a hole may be formed in a side of the second housing 1230 .
  • a fourth coil 1251a and a fifth coil 1251b may be disposed in the hole.
  • the hole may be positioned to correspond to the groove of the bobbin 1222 described above.
  • the fourth magnet 1252a may be positioned to face the fourth coil 1251a. Also, the second magnet 1252b may be positioned to face the fifth coil 1251b.
  • the elastic part (not shown) may include a first elastic member (not shown) and a second elastic member (not shown).
  • the first elastic member (not shown) may be coupled to the upper surface of the bobbin 1222 .
  • the second elastic member (not shown) may be coupled to the lower surface of the bobbin 1222 .
  • the first elastic member (not shown) and the second elastic member (not shown) may be formed of a leaf spring as described above.
  • the first elastic member (not shown) and the second elastic member (not shown) may provide elasticity with respect to the movement of the bobbin 1222 .
  • the second driving unit 1250 may provide driving forces F3 and F4 for moving the lens unit 1220 in the third direction (Z-axis direction).
  • the second driving unit 1250 may include a second driving coil 1251 and a second driving magnet 1252 .
  • the lens unit 1220 may move in the third direction (Z-axis direction) by the electromagnetic force formed between the second driving coil 1251 and the second driving magnet 1252 .
  • the second driving coil 1251 may include a fourth coil 1251a and a fifth coil 1251b.
  • the fourth coil 1251a and the fifth coil 1251b may be disposed in a hole formed in the side of the second housing 1230 .
  • the fourth coil 1251a and the fifth coil 1251b may be electrically connected to the second substrate unit 1270 . Accordingly, the fourth coil 1251a and the fifth coil 1251b may receive current or the like through the second substrate unit 1270 .
  • the second driving magnet 1252 may include a fourth magnet 1252a and a fifth magnet 1252b.
  • the fourth magnet 1252a and the fifth magnet 1252b may be disposed in the aforementioned groove of the bobbin 1222 , and may be positioned to correspond to the fourth coil 1251a and the fifth coil 1251b.
  • the base unit (not shown) may be positioned between the lens unit 1220 and the image sensor IS.
  • a component such as a filter may be fixed to the base portion (not shown).
  • the base part (not shown) may be disposed to surround the image sensor IS.
  • the second camera actuator may be a zoom actuator or an auto focus (AF) actuator.
  • the second camera actuator may support one or a plurality of lenses and may perform an autofocusing function or a zooming function by moving the lenses according to a control signal of a predetermined control unit.
  • the second camera actuator may be a fixed zoom or a continuous zoom.
  • the second camera actuator may provide movement of the lens assembly 1221 .
  • the second camera actuator may be formed of a plurality of lens assemblies.
  • the second camera actuator may include at least one of a first lens assembly (not shown), a second lens assembly (not shown), a third lens assembly (not shown), and a guide pin (not shown). can be placed.
  • the second camera actuator may perform a high-magnification zooming function through the driving unit.
  • the first lens assembly (not shown) and the second lens assembly (not shown) may be a moving lens that moves through a driving unit and a guide pin (not shown), and the third lens The assembly (not shown) may be a fixed lens, but is not limited thereto.
  • the third lens assembly may perform a function of a concentrator to image light at a specific location, and the first lens assembly (not shown) may serve as a concentrator. (not shown) may perform a variator function to reimage the image formed in another place.
  • the magnification change may be large due to the large change in the distance or image distance from the subject, and the first lens assembly (not shown), which is the variable magnification, may change the focal length or magnification of the optical system. can play an important role in
  • the image formed in the first lens assembly (not shown), which is a variable changer may be slightly different depending on the location.
  • the second lens assembly may perform a position compensation function for the image formed by the variable changer.
  • the second lens assembly functions as a compensator to accurately image the image formed by the first lens assembly (not shown), which is a variable magnifier, at the actual image sensor position. can be done
  • the image sensor IS may be located inside or outside the second camera actuator. In an embodiment, as shown, the image sensor IS may be located inside the second camera actuator.
  • the image sensor IS may receive light and convert the received light into an electrical signal.
  • the image sensor IS may have a plurality of pixels in the form of an array. And the image sensor IS may be located on the optical axis.
  • FIG. 22 is a perspective view of a mobile terminal to which a camera module according to an embodiment is applied.
  • the mobile terminal 1500 of the embodiment may include a camera module 1000 , a flash module 1530 , and an autofocus device 1510 provided on the rear side.
  • the camera module 1000 may include an image capturing function and an auto focus function.
  • the camera module 1000 may include an auto-focus function using an image.
  • the camera module 1000 processes an image frame of a still image or a moving image obtained by an image sensor in a shooting mode or a video call mode.
  • the processed image frame may be displayed on a predetermined display unit and stored in a memory.
  • a camera (not shown) may also be disposed on the front of the mobile terminal body.
  • the camera module 1000 may include a first camera module 1000A and a second camera module 1000B, and OIS may be implemented together with an AF or zoom function by the first camera module 1000A.
  • OIS may be implemented together with an AF or zoom function by the first camera module 1000A.
  • AF, zoom, and OIS functions may be performed by the second camera module 1000b.
  • the first camera module 1000A includes both the above-described first camera actuator and the second camera actuator, it is possible to easily reduce the size of the camera device or the camera module by changing the optical path.
  • the flash module 1530 may include a light emitting device that emits light therein.
  • the flash module 1530 may be operated by a camera operation of a mobile terminal or a user's control.
  • the autofocus device 1510 may include one of the packages of the surface light emitting laser device as a light emitting part.
  • the auto-focusing device 1510 may include an auto-focusing function using a laser.
  • the auto focus device 1510 may be mainly used in a condition in which the auto focus function using the image of the camera module 1000 is deteriorated, for example, close to 10 m or less or in a dark environment.
  • the autofocus device 1510 may include a light emitting unit including a vertical cavity surface emitting laser (VCSEL) semiconductor device and a light receiving unit that converts light energy such as a photodiode into electrical energy.
  • a light emitting unit including a vertical cavity surface emitting laser (VCSEL) semiconductor device and a light receiving unit that converts light energy such as a photodiode into electrical energy.
  • VCSEL vertical cavity surface emitting laser
  • FIG. 23 is a perspective view of a vehicle to which a camera module according to an embodiment is applied.
  • FIG. 23 is an external view of a vehicle including a vehicle driving assistance device to which the camera module 1000 according to an embodiment is applied.
  • the vehicle 700 may include wheels 13FL and 13FR that rotate by a power source and a predetermined sensor.
  • the sensor may be the camera sensor 2000, but is not limited thereto.
  • the camera 2000 may be a camera sensor to which the camera module 1000 according to the embodiment is applied.
  • the vehicle 700 of the embodiment may acquire image information through a camera sensor 2000 that captures a front image or a surrounding image, and determines a lane unidentified situation using the image information and generates a virtual lane when unidentified can do.
  • the camera sensor 2000 may acquire a front image by photographing the front of the vehicle 700 , and a processor (not shown) may obtain image information by analyzing an object included in the front image.
  • the processor detects the object to be included in the video information.
  • the processor may further supplement the image information by acquiring distance information from the object detected through the camera sensor 2000 .
  • the image information may be information about an object photographed in an image.
  • the camera sensor 2000 may include an image sensor and an image processing module.
  • the camera sensor 2000 may process a still image or a moving image obtained by an image sensor (eg, CMOS or CCD).
  • an image sensor eg, CMOS or CCD
  • the image processing module may process a still image or a moving image obtained through the image sensor, extract necessary information, and transmit the extracted information to the processor.
  • the camera sensor 2000 may include a stereo camera to improve the measurement accuracy of the object and further secure information such as the distance between the vehicle 700 and the object, but is not limited thereto.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)

Abstract

본 발명의 실시예는 하우징; 하우징 내에 배치되고 광학 부재를 포함하는 무버; 상기 무버의 틸팅을 가이드하는 틸팅 가이드부; 및 상기 하우징 내에 배치되며 상기 무버를 구동시키는 구동부;를 포함하고, 상기 구동부는 상기 무버의 일면에 배치되는 제1 마그넷과 제3-1 마그넷 및 상기 일면에 마주보는 타면에 배치되는 제2 마그넷과 제3-2 마그넷;을 포함하는 구동 마그넷을 포함하고, 상기 제1 마그넷 및 상기 제2 마그넷은 상기 제3-1 마그넷 및 상기 제3-2 마그넷 대비 상기 틸팅 가이드부에 인접하고 면적이 작은 카메라 엑추에이터를 개시한다.

Description

카메라 엑추에이터 및 이를 포함하는 카메라 모듈
본 발명은 카메라 엑추에이터 및 이를 포함하는 카메라 모듈에 관한 것이다.
카메라는 피사체를 사진이나 동영상으로 촬영하는 장치이며, 휴대용 디바이스, 드론, 차량 등에 장착되고 있다. 카메라 모듈은 영상의 품질을 높이기 위하여 사용자의 움직임에 의한 이미지의 흔들림을 보정하거나 방지하는 영상 안정화(Image Stabilization, IS) 기능, 이미지 센서와 렌즈 사이의 간격을 자동 조절하여 렌즈의 초점거리를 정렬하는 오토포커싱(Auto Focusing, AF) 기능, 줌 렌즈(zoom lens)를 통해 원거리의 피사체의 배율을 증가 또는 감소시켜 촬영하는 주밍(zooming) 기능을 가질 수 있다.
한편, 이미지센서는 고화소로 갈수록 해상도가 높아져 화소(Pixel)의 크기가 작아지게 되는데, 화소가 작아질수록 동일한 시간 동안 받아들이는 빛의 양이 감소하게 된다. 따라서, 고화소 카메라일수록 어두운 환경에서 셔터속도가 느려지면서 나타나는 손떨림에 의한 이미지의 흔들림 현상이 더욱 심하게 나타날 수 있다. 영상 안정화(IS) 기술 중 대표적인 것으로 빛의 경로를 변화시킴으로써 움직임을 보정하는 기술인 광학식 영상 안정화(optical image stabilizer, OIS) 기술이 있다.
일반적인 OIS 기술에 따르면, 자이로 센서(gyro sensor) 등을 통해 카메라의 움직임을 감지하고, 감지된 움직임을 바탕으로 렌즈를 틸팅 또는 이동시키거나 렌즈와 이미지센서를 포함하는 카메라 모듈을 틸팅 또는 이동시킬 수 있다. 렌즈 또는 렌즈와 이미지센서를 포함하는 카메라 모듈이 OIS를 위하여 틸팅 또는 이동할 경우, 렌즈 또는 카메라 모듈 주변에 틸팅 또는 이동을 위한 공간이 추가적으로 확보될 필요가 있다.
한편, OIS를 위한 엑추에이터는 렌즈 주변에 배치될 수 있다. 이때, OIS를 위한 엑추에이터는 광축 Z에 대하여 수직하는 두 축, 즉 X축 틸팅을 담당하는 엑추에이터와 Y축 틸팅을 담당하는 엑추에이터를 포함할 수 있다.
다만, 초슬림 및 초소형의 카메라 모듈의 니즈에 따라 OIS를 위한 엑추에이터를 배치하기 위한 공간 상의 제약이 크며, 렌즈 또는 렌즈와 이미지센서를 포함하는 카메라 모듈 자체가 OIS를 위하여 틸팅 또는 이동할 수 있는 충분한 공간이 보장되기 어려울 수 있다. 또한, 고화소 카메라일수록 수광되는 빛의 양을 늘리기 위해 렌즈의 사이즈가 커지는 것이 바람직한데, OIS를 위한 엑추에이터가 차지하는 공간으로 인하여 렌즈의 사이즈를 키우는데 한계가 있을 수 있다.
또한, 카메라 모듈 내에 주밍 기능, AF 기능 및 OIS 기능이 모두 포함되는 경우, OIS용 마그넷과 AF용 또는 Zoom용 마그넷이 서로 근접하게 배치되어 자계 간섭을 일으키는 문제도 있다.
또한, OIS 기능을 위한 정확도와 구동 속도에 대한 문제점이 존재한다.
본 발명이 해결하고자 하는 기술적 과제는 측면에 각각 배치된 마그넷/코일에 의해 2축 틸트를 정확하게 수행하는 카메라 엑추에이터를 제공할 수 있다.
또한, 틸팅 가이드부의 위치 조절로 구동 효율이 개선된 카메라 엑추에이터를 제공할 수 있다.
또한, 초슬림, 초소형 및 고해상 카메라에 적용 가능한 카메라 엑추에이터를 제공하는 것이다.
실시 예에서 해결하고자 하는 과제는 이에 한정되는 것은 아니며, 아래에서 설명하는 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 포함된다고 할 것이다.
본 발명의 실시예에 따른 카메라 엑추에이터는 하우징; 하우징 내에 배치되고 광학 부재를 포함하는 무버; 상기 무버의 틸팅을 가이드하는 틸팅 가이드부; 및 상기 하우징 내에 배치되며 상기 무버를 구동시키는 구동부;를 포함하고, 상기 구동부는 상기 무버의 일면에 배치되는 제1 마그넷과 제3-1 마그넷 및 상기 일면에 마주보는 타면에 배치되는 제2 마그넷과 제3-2 마그넷;을 포함하는 구동 마그넷을 포함하고, 상기 제1 마그넷 및 상기 제2 마그넷은 상기 제3-1 마그넷 및 상기 제3-2 마그넷 대비 상기 틸팅 가이드부에 인접하고 면적이 작다.
상기 제1 마그넷과 상기 제2 마그넷은 서로 대응하고, 상기 제3-1 마그넷과 상기 제3-2 마그넷은 서로 대응할 수 있다.
상기 제1 마그넷은 서로 다른 극성의 제1-1 마그넷 영역 및 제1-2 마그넷 영역을 포함하고, 상기 제2 마그넷은 서로 다른 극성의 제2-1 마그넷 영역 및 제2-2 마그넷 영역을 포함하고, 상기 제3-1 마그넷은 서로 다른 극성의 제3-1 마그넷 영역 및 제3-2 마그넷 영역을 포함하고, 상기 제3-2 마그넷은 서로 다른 극성의 제3-3 마그넷 영역 및 제3-4 마그넷 영역을 포함할 수 있다.
제1 극성 방향은 제2 극성 방향과 상이하고, 상기 제1 극성 방향은 상기 제3-1 마그넷 영역에서 상기 제3-2 마그넷 영역을 향한 방향 또는 상기 제3-3 마그넷 영역에서 상기 제3-4 마그넷 영역을 향한 방향이고, 상기 제2 극성 방향은 상기 제1-1 마그넷 영역에서 상기 제1-2 마그넷 영역을 향한 방향 또는 상기 제2-1 마그넷 영역에서 상기 제2-2 마그넷 영역을 향한 방향일 수 있다.
상기 제1-1 마그넷 영역은 상기 제2-1 마그넷 영역 및 상기 제2-2 마그넷 영역 중 어느 하나의 극성과 동일한 극성을 갖고, 상기 제1-2 마그넷 영역은 상기 제2-1 마그넷 영역 및 상기 제2-2 마그넷 영역 중 다른 하나의 극성과 동일한 극성을 가질 수 있다.
상기 제1 마그넷의 광축 방향으로 길이는 상기 제3-1 마그넷 또는 상기 제3-2 마그넷의 광축 방향으로 길이와 상이할 수 있다.
상기 제1 마그넷의 광축 방향으로 길이는 상기 제2 마그넷의 광축 방향으로 길이와 동일할 수 있다.
상기 구동부는 상기 제1 마그넷에 마주하는 제1 코일; 상기 제2 마그넷에 마주하는 제2 코일; 상기 제3-1 마그넷에 마주하는 제3-1 코일 및 상기 제3-2 마그넷에 마주하는 제3-2 코일;을 포함하는 구동 코일을 포함할 수 있다.
상기 제1 코일은 광축 방향으로 길이가 수직 방향으로 길이와 상이할 수 있다.
상기 제3-1 코일은 광축 방향으로 길이가 수직 방향으로 길이와 상이할 수 있다.
상기 제1 코일의 광축 방향으로 길이는 상기 제3-1 코일의 광축 방향으로 길이보다 작을 수 있다.
상기 제1 코일과 상기 제3-1 코일은 광축 방향으로 적어도 일부 중첩되고, 상기 제2 코일과 상기 제3-2 코일은 광축 방향으로 적어도 일부 중첩될 수 있다.
상기 제1 코일의 일단 및 상기 제2 코일의 일단은 동일 노드를 갖고, 상기 제1 코일의 타단 및 상기 제2 코일의 타단은 동일 노드를 가질 수 있다.
상기 제1 코일과 상기 제3-1 코일은 광축 방향으로 적어도 일부 중첩되고, 상기 제2 코일과 상기 제3-2 코일은 상기 광축 방향으로 적어도 일부 중첩될 수 있다.
상기 틸팅 가이드부는 상기 제1 코일 또는 상기 제2 코일 사이에서 수평 방향으로 적어도 일부 중첩될 수 있다.
상기 구동부는 상기 제1 코일 내에 배치되는 제1 홀 센서; 상기 제2 코일 내에 배치되는 제2 홀 센서; 상기 제3-1 코일 내에 배치되는 제3-1 홀 센서; 및 상기 제3-2 코일 내에 배치되는 제3-2 홀 센서;를 포함하는 홀 센서부를 포함할 수 있다.
상기 제1 홀 센서 및 상기 제2 홀 센서의 광축 방향으로 길이는 상기 제3-1 홀 센서 및 상기 제3-2 홀 센서의 광축 방향으로 길이와 상이할 수 있다.
상기 제1 홀 센서와 상기 제3-1 홀 센서는 광축 방향으로 적어도 일부 중첩될 수 있다.
본 발명의 실시예에 따르면, 측면에 각각 배치된 마그넷/코일에 의해 2축 틸트를 정확하게 수행하는 카메라 엑추에이터를 구현할 수 잇다.
또한, 틸팅 가이드부의 위치 조절로 구동 효율이 개선된 카메라 엑추에이터를 구현할 수 있다.
또한, 초슬림, 초소형 및 고해상 카메라에 적용 가능한 카메라 엑추에이터를 제공할 수 있다. 특히, 카메라 모듈의 전체적인 사이즈를 늘리지 않으면서도 OIS용 엑추에이터를 효율적으로 배치할 수 있다.
또한, X축 방향의 틸팅 및 Y축 방향의 틸팅이 서로 자계 간섭을 일으키지 않으며, 안정적인 구조로 X축 방향의 틸팅 및 Y축 방향의 틸팅이 구현될 수 있고, AF용 또는 주밍용 엑추에이터와도 서로 자계 간섭을 일으키지 않아 정밀한 OIS 기능을 실현할 수 있다.
본 발명의 실시예에 따르면, 렌즈의 사이즈 제한을 해소하여 충분한 광량 확보가 가능하며, 저소비 전력의 OIS 구현이 가능하다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 실시예에 따른 카메라 모듈의 사시도이고,
도 2는 실시예에 따른 카메라 모듈의 분해 사시도이고,
도 3는 도 1에서 AA'로 바라본 단면도이고,
도 4는 실시에에 따른 제1 카메라 엑추에이터의 사시도이고,
도 5는 실시예에 따른 제1 카메라 엑추에이터의 분해 사시도이고,
도 6a는 실시예에 따른 제1 카메라 엑추에이터의 제1 하우징의 사시도이고,
도 6b는 도 6a와 상이한 방향의 사시도이고,
도 6c는 실시예에 따른 제1 카메라 엑추에이터의 제1 하우징의 정면도이고,
도 7은 실시예에 따른 제1 카메라 엑추에이터의 광학 부재의 사시도이고,
도 8a는 실시예에 따른 제1 카메라 엑추에이터의 홀더의 사시도이고,
도 8b는 실시예에 따른 제1 카메라 엑추에이터의 홀더의 저면도이고,
도 8c는 실시예에 따른 제1 카메라 엑추에이터의 홀더의 정면도이고,
도 8d는 실시예에 따른 제1 카메라 엑추에이터의 체결부재의 후면도이고,
도 8e는 실시예에 따른 제1 카메라 엑추에이터의 체결부재의 저면도이고,
도 9a는 실시예에 따른 제1 카메라 엑추에이터의 틸팅 가이드부의 사시도이고,
도 9b는 도 9a와 상이한 방향의 사시도이고,
도 9c는 도 9a에서 FF'로 바라본 단면도이고,
도 10은 실시예에 따른 제1 카메라 엑추에이터의 제1 구동부를 도시한 도면이고,
도 11a는 실시예에 따른 제1 카메라 엑추에이터의 사시도이고,
도 11b는 도 11a에서 PP'로 바라본 단면도이고,
도 11c는 도 11b에서 K1부분의 확대도이고,
도 11d는 도 11b에서 K2부분의 확대도이고,
도 11e는 도 11a에서 QQ'로 바라본 단면도이고,
도 12a는 실시예에 따른 제1 카메라 엑추에이터의 사시도이고,
도 12b는 도 12a에서 SS'로 바라본 단면도이고,
도 12c는 도 12b에 도시된 제1 카메라 엑추에이터의 이동의 예시도이다.
도 13a는 도 12a에서 RR'로 바라본 단면도이고,
도 13b는 도 13a에 도시된 제1 카메라 엑추에이터의 이동의 예시도이고,
도 14a는 실시예에 따른 홀더 및 구동부의 일 측면도이고,
도 14b는 실시예에 따른 홀더 및 구동부의 다른 측면도이고,
도 14c는 실시예에 따른 홀더, 틸팅 가이드부 및 구동부의 다른 예이고,
도 15a는 다른 실시예에 따른 홀더, 틸팅 가이드부 및 구동부의 사시도이고,
도 15b는 다른 실시예에 따른 홀더, 틸팅 가이드부 및 구동부의 다른 사시도이고,
도 15c는 다른 실시예에 따른 홀더, 틸팅 가이드부 및 구동부의 다른 예이고,
도 16a는 또 다른 실시예에 따른 홀더, 틸팅 가이드부 및 구동부의 사시도이고,
도 16b는 또 다른 실시예에 따른 홀더, 틸팅 가이드부 및 구동부의 다른 사시도이고,
도 16c는 또 다른 실시예에 따른 홀더, 틸팅 가이드부 및 구동부의 다른 예이고,
도 17a는 변형예에 따른 홀더, 틸팅 가이드부 및 구동부의 사시도이고,
도 17b는 변형예에 따른 홀더, 틸팅 가이드부 및 구동부의 다른 사시도이고,
도 17c는 변형예에 따른 홀더, 틸팅 가이드부 및 구동부의 다른 예이고,
도 18는 실시예에 따른 제2 카메라 엑추에이터의 사시도이고,
도 19는 실시예에 따른 제2 카메라 엑추에이터의 분해 사시도이고,
도 20은 도 18에서 DD'로 바라본 단면도이고,
도 21는 도 18에서 EE'로 바라본 단면도이고,
도 22는 실시예에 따른 카메라 모듈이 적용된 이동 단말기의 사시도이고,
도 23은 실시예에 따른 카메라 모듈이 적용된 차량의 사시도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되지는 않는다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 실시예에 따른 카메라 모듈의 사시도이고, 도 2는 실시예에 따른 카메라 모듈의 분해 사시도이고, 도 3는 도 1에서 AA'로 바라본 단면도이다.
도 1 및 도 2를 참조하면, 실시예에 따른 카메라 모듈(1000)은 커버(CV), 제1 카메라 엑추에이터(1100), 제2 카메라 엑추에이터(1200), 및 회로 기판(1300)으로 이루어질 수 있다. 여기서, 제1 카메라 엑추에이터(1100)는 제1 엑추에이터로, 제2 카메라 엑추에이터(1200)는 제2 엑추에이터로 혼용될 수 있다.
커버(CV)는 제1 카메라 엑추에이터(1100) 및 제2 카메라 엑추에이터(1200)를 덮을 수 있다. 커버(CV)에 의해 제1 카메라 엑추에이터(1100)와 제2 카메라 엑추에이터(1200) 간의 결합력이 개선될 수 있다.
나아가, 커버(CV)는 전자파 차단을 수행하는 재질로 이루어질 수 있다. 이에, 커버(CV) 내의 제1 카메라 엑추에이터(1100)와 제2 카메라 엑추에이터(1200)를 용이하게 보호할 수 있다.
그리고 제1 카메라 엑추에이터(1100)는 OIS(Optical Image Stabilizer) 엑추에이터일 수 있다. 예컨대, 제1 카메라 엑추에이터(1100)는 광축에 대해 수직한 방향으로 광학 부재를 이동시킬 수 있다.
제1 카메라 엑추에이터(1100)는 소정의 경통(미도시)에 배치된 고정 초점거리 렌즈(fixed focal length les)를 포함할 수 있다. 고정 초점거리 렌즈(fixed focal length les)는“단일 초점거리 렌즈” 또는 “단(單) 렌즈”로 칭해질 수도 있다.
제1 카메라 엑추에이터(1100)는 광의 경로를 변경할 수 있다. 실시예로, 제1 카메라 엑추에이터(1100)는 내부의 광학 부재(예컨대, 프리즘 또는 미러)를 통해 광 경로를 수직으로 변경할 수 있다. 이러한 구성에 의하여, 이동 단말기의 두께가 감소하더라도 광 경로의 변경을 통해 이동 단말기의 두께보다 큰 렌즈 구성이 이동 단말기 내에 배치되어 배율, 오토 포커싱(AF) 및 손떨림보정(OIS) 기능이 수행될 수 있다.
다만, 이에 한정되는 것은 아니며 제1 카메라 엑추에이터(1100)는 광 경로를 복수 회 수직 또는 소정의 각도로 변경할 수 있다.
제2 카메라 엑추에이터(1200)는 제1 카메라 엑추에이터(1100) 후단에 배치될 수 있다. 제2 카메라 엑추에이터(1200)는 제1 카메라 엑추에이터(1100)와 결합할 수 있다. 그리고 상호 간의 결합은 다양한 방식에 의해 이루어질 수 있다.
또한, 제2 카메라 엑추에이터(1200)는 줌(Zoom) 엑추에이터 또는 AF(Auto Focus) 엑추에이터일 수 있다. 예를 들어, 제2 카메라 엑추에이터(1200)는 하나 또는 복수의 렌즈를 지지하며 소정의 제어부의 제어신호에 따라 렌즈를 움직여 오토 포커싱 기능 또는 줌 기능을 수행할 수 있다.
그리고 하나 또는 복수의 렌즈는 독립 또는 개별적으로 광축 방향을 따라 이동하여
회로 기판(1300)은 제2 카메라 엑추에이터(1200) 후단에 배치될 수 있다. 회로 기판(1300)은 제2 카메라 엑추에이터(1200) 및 제1 카메라 엑추에이터(1100)와 전기적으로 연결될 수 있다. 또한, 회로 기판(1300)은 복수 개일 수 있다. 회로 기판(1300)은 이미지 센서 등을 포함하고, 외부의 다른 카메라 모듈 또는 단말기의 프로세스와 전기적으로 연결되는 커넥터를 포함할 수 있다.
또한, 회로 기판(1300)은 이미지 센서를 보호하는 보호부재(예, 글라스) 및 필터를 더 포함할 수 있다.
실시예에 따른 카메라 모듈은 단일 또는 복수의 카메라 모듈로 이루어질 수도 있다. 예컨대, 복수의 카메라 모듈은 제1 카메라 모듈과 제2 카메라 모듈을 포함할 수 있다.
그리고 제1 카메라 모듈은 단일 또는 복수의 엑추에이터를 포함할 수 있다. 예를 들어, 제1 카메라 모듈은 제1 카메라 엑추에이터(1100)와 제2 카메라 엑추에이터(1200)를 포함할 수 있다.
그리고 제2 카메라 모듈은 소정의 하우징(미도시)에 배치되고, 렌즈부를 구동할 수 있는 엑추에이터(미도시)를 포함할 수 있다. 엑추에이터는 보이스 코일 모터, 마이크로 엑추에이터, 실리콘 엑추에이터 등일 수 있고, 정전방식, 써멀 방식, 바이 모프 방식, 정전기력 방식 등 여러 가지로 응용될 수 있으며 이에 한정되는 것은 아니다. 또한, 본 명세서에서 카메라 엑추에이터는 엑추에이터 등으로 언급할 수 있다. 또한, 복수 개의 카메라 모듈로 이루어진 카메라 모듈은 이동 단말기 등 다양한 전자 기기 내에 실장될 수 있다. 예컨대, 전자 기기는 스마트폰, 이동단말기(예, 폰), 모바일 단말기 등을 모두 포함할 수 있다.
도 3을 참조하면, 실시예에 따른 카메라 모듈은 OIS 기능을 하는 제1 카메라 엑추에이터(1100) 및 주밍(zooming) 기능 및 AF 기능을 하는 제2 카메라 엑추에이터(1200)를 포함할 수 있다.
광은 제1 카메라 엑추에이터(1100)의 상면에 위치한 개구 영역을 통해 카메라 모듈 또는 제1 카메라 엑추에이터 내로 입사될 수 있다. 즉, 광은 광축 방향(예컨대, X축 방향)을 따라 제1 카메라 엑추에이터(1100)의 내부로 입사되고, 광학 부재를 통해 광경로가 수직 방향으로 변경(예컨대, Z축 방향)될 수 있다. 그리고 광축 방향(Z축 방향)은 후술하는 광학 부재에 의해 반사된 광의 이동 방향에 대응할 수 있으며, 이를 기준으로 설명한다.그리고 광은 제2 카메라 엑추에이터(1200)를 통과하고, 제2 카메라 엑추에이터(1200)의 일단에 위치하는 이미지 센서(IS)로 입사될 수 있다(PATH).즉, 광축이 광학 부재에 의해 변경될 수 있다.
본 명세서에서, 저면은 제1 방향에서 일측을 의미한다. 그리고 제1 방향은 도면 상 X축 방향이고 제2 축 방향 등과 혼용될 수 있다. 제2 방향은 도면 상 Y축 방향이며 제1 축 방향 등과 혼용될 수 있다. 제2 방향은 제1 방향과 수직한 방향이다. 또한, 제3 방향은 도면 상 Z축 방향이고, 제3 축 방향 등과 혼용될 수 있다. 그리고 제3 방향은 제1 방향 및 제2 방향에 모두 수직한 방향이다. 여기서, 제3 방향(Z축 방향)은 광축의 방향에 대응하며, 제1 방향(X축 방향)과 제2 방향(Y축 방향)은 광축에 수직한 방향이며 제2 카메라 엑추에이터에 의해 틸팅될 수 있다. 또한, 이하에서 제1 카메라 엑추에이터(1100)에 대한 설명에서 광축 방향은 제3 방향(Z축 방향)이며 이를 기준으로 이하 설명한다.
또한, 본 명세서에서 내측은 커버(CV)에서 제1 카메라 엑추에이터를 향한 방향일 수 있고, 외측은 내측의 반대 방향일 수 있다. 즉, 제1 카메라 엑추에이터, 제2 카메라 엑추에이터는 커버(CV) 내측에 위치하고, 커버(CV)는 제1 카메라 엑추에이터 또는 제2 카메라 엑추에이터의 외측에 위치할 수 있다.
그리고 이러한 구성에 의하여, 실시예에 따른 카메라 모듈은 광의 경로를 변경하여 제1 카메라 엑추에이터 및 제2 카메라 엑추에이터의 공간적 한계를 개선할 수 있다. 즉, 실시예에 따른 카메라 모듈은 광의 경로 변경에 대응하여 카메라 모듈의 두께가 최소화하면서 광 경로를 확장할 수 있다. 나아가, 제2 카메라 엑추에이터는 확장된 광 경로에서 초점 등을 제어하여 높은 범위의 배율을 제공할 수도 있음을 이해해야 한다.
또한, 실시예에 따른 카메라 모듈은 제1 카메라 엑추에이터를 통해 광경로의 제어를 통해 OIS를 구현할 수 있으며, 이에 따라 디센터(decenter)나 틸트(tilt) 현상의 발생을 최소화하고, 최상의 광학적 특성을 낼 수 있다.
나아가, 제2 카메라 엑추에이터(1200)는 광학계와 렌즈 구동부를 포함할 수 있다. 예를 들어, 제2 카메라 엑추에이터(1200)는 제1 렌즈 어셈블리, 제2 렌즈 어셈블리, 제3 렌즈 어셈블리 및 가이드 핀 중 적어도 하나 이상이 배치될 수 있다.
또한. 제2 카메라 엑추에이터(1200)는 코일과 마그넷을 구비하여 고배율 주밍 기능을 수행할 수 있다.
예를 들어, 제1 렌즈 어셈블리와 제2 렌즈 어셈블리는 코일, 마그넷과 가이드 핀을 통해 이동하는 이동 렌즈(moving lens)일 수 있으며, 제3 렌즈 어셈블리는 고정 렌즈일 수 있으나 이에 한정되는 것은 아니다. 예를 들어, 제3 렌즈 어셈블리는 광을 특정 위치에 결상하는 집광자(focator)의 기능을 수행할 수 있고, 제1 렌즈 어셈블리는 집광자인 제3 렌즈 어셈블리에서 결상된 상을 다른 곳에 재결상시키는 변배자(variator) 기능을 수행할 수 있다. 한편, 제1 렌즈 어셈블리에서는 피사체와의 거리 또는 상 거리가 많이 바뀌어서 배율변화가 큰 상태일 수 있으며, 변배자인 제1 렌즈 어셈블리는 광학계의 초점거리 또는 배율변화에 중요한 역할을 할 수 있다. 한편, 변배자인 제1 렌즈 어셈블리에서 결상되는 상점은 위치에 따라 약간 차이가 있을 수 있다. 이에 제2 렌즈 어셈블리는 변배자에 의해 결상된 상에 대한 위치 보상 기능을 할 수 있다. 예를 들어, 제2 렌즈 어셈블리는 변배자인 제1 렌즈 어셈블리에서 결상된 상점을 실제 이미지 센서 위치에 정확히 결상시키는 역할을 수행하는 보상자(compensator) 기능을 수행할 수 있다. 예를 들어, 제1 렌즈 어셈블리와 제2 렌즈 어셈블리는 코일과 마그넷의 상호작용에 의한 전자기력으로 구동될 수 있다. 상술한 내용은 후술하는 렌즈 어셈블리에 적용될 수 있다. 또한, 제1 렌즈 어셈블리 내지 제3 렌즈 어셈블리는 광축 방향 즉, 제3 방향을 따라 이동할 수 있다. 그리고 제1 렌즈 어셈블리 내지 제3 렌즈 어셈블리는 서로 독립 또는 종속하여 제3 방향으로 이동할 수 있다.
한편, 본 발명의 실시예에 따라 OIS용 엑추에이터와 AF 또는 Zoom용 엑추에이터가 배치될 경우, OIS 구동 시 AF 또는 Zoom용 마그넷과의 자계 간섭이 방지될 수 있다. 제1 카메라 엑추에이터(1100)의 제1 구동 마그넷이 제2 카메라 엑추에이터(1200)와 분리되어 배치되므로, 제1 카메라 엑추에이터(1100)와 제2 카메라 엑추에이터(1200) 간 자계 간섭이 방지될 수 있다. 본 명세서에서, OIS는 손떨림 보정, 광학식 이미지 안정화, 광학식 이미지 보정, 떨림 보정 등의 용어와 혼용될 수 있다.
도 4는 실시에에 따른 제1 카메라 엑추에이터의 사시도이고, 도 5는 실시예에 따른 제1 카메라 엑추에이터의 분해 사시도이다.
도 4 및 도 5를 참조하면, 실시예에 따른 제1 카메라 엑추에이터(1100)는 제1 하우징(1120), 무버(1130), 회전부(1140), 제1 구동부(1150), 및 체결부재(1131a)를 포함한다.
무버(1130)는 홀더(1131) 및 홀더(1131)에 안착하는 광학 부재(1132)를 포함할 수 있다. 나아가, 무버(1130)는 상술한 체결부재(1131a)를 포함할 수도 있으며, 체결부재(1131a)와 결합되어 일체로 회동할 수 있다.
그리고 회전부(1140)는 틸팅 가이드부(1141), 틸팅 가이드부(1141)를 가압하도록 서로 다른 극성을 갖는 제1 자성체(1142) 및 제2 자성체(1143)를 포함할 수 있다.
또한, 제1 구동부(1150)는 제1 구동 마그넷(1151), 제1 구동 코일(1152), 홀 센서부(1153), 제1 기판부(1154) 및 요크부(미도시됨)를 포함한다.
먼저, 제1 카메라 엑추에이터(1100)는 쉴드 캔(미도시됨)을 포함할 수 있다. 쉴드 캔(미도시됨)은 제1 카메라 엑추에이터(1100)의 최외측에 위치하여 후술하는 회전부(1140)와 제1 구동부(1150)를 감싸도록 위치할 수 있다.
이러한 쉴드 캔(미도시됨)은 외부에서 발생한 전자기파를 차단 또는 저감할 수 있다. 즉, 쉴드 캔(미도시됨)은 회전부(1140) 또는 제1 구동부(1150)에서 오작동의 발생을 감소시킬 수 있다.
제1 하우징(1120)은 쉴드 캔(미도시됨) 내부에 위치할 수 있다. 쉴드 캔이 없는 경우, 제1 하우징(1120)은 제1 카메라 엑추에이터의 최외측에 위치할 수 있다.
또한, 제1 하우징(1120)은 후술하는 제1 기판부(1154) 내측에 위치할 수 있다. 제1 하우징(1120)은 쉴드 캔(미도시됨)과 서로 끼워지거나 맞춰져 체결될 수 있다.
제1 하우징(1120)은 제1 하우징 측부(1121), 제2 하우징 측부(1122), 제3 하우징 측부(1123), 제4 하우징 측부(1124) 및 제5 하우징 측부(1126)를 포함할 수 있다. 이에 대한 자세한 설명은 후술한다.
특히, 제5 하우징 측부(1126)는 제1 하우징(1120)과 일체로 또는 분리되어 이루어질 수 있다. 본 명세서에는 일체로 이루어짐을 기준으로 설명한다. 또한, 제5 하우징 측부(1126)는 체결부재(1131a)에 의해 관통될 수 있다. 이에 대한 설명은 후술한다.
무버(1130)는 홀더(1131) 및 홀더(1131)에 안착하는 광학 부재(1132)를 포함한다.
홀더(1131)는 제1 하우징(1120)의 수용부(1125)에 안착할 수 있다. 홀더(1131)는 제1 하우징 측부(1121), 제2 하우징 측부(1122), 제3 하우징 측부(1123), 제5 하우징 측부(1126)에 각각 대응하는 제1 홀더 외측면 내지 제4 홀더 외측면을 포함할 수 있다. 예컨대, 제1 홀더 외측면 내지 제4 홀더 외측면은 제1 하우징 측부(1121), 제2 하우징 측부(1122), 제3 하우징 측부(1123), 제5 하우징 측부(1126) 각각의 내측면과 대응하는 또는 마주할 수 있다.
또한, 홀더(1131)는 제4 안착홈에 배치되는 체결부재(1131a)를 포함할 수 있다. 이에 대한 자세한 설명은 후술한다.
광학 부재(1132)는 홀더(1131)에 안착할 수 있다. 이를 위해, 홀더(1131)는 안착면을 가질 수 있으며, 안착면은 수용홈에 의해 형성될 수 있다. 실시예로 광학 부재(1132)는 다양한 반사부재로 이루어질 수 있다. 예컨대, 광학 부재(1132)는 미러(mirror) 또는 프리즘(prism)으로 이루어질 수 있다. 이하에서는 프리즘을 기준으로 도시하나, 상술한 실시예에서와 같이 복수 개의 렌즈로 이루어질 수도 있다. 또는 광학 부재(1132)는 복수의 렌즈와 프리즘 또는 미러로 이루어질 수 있다. 그리고 광학 부재(1132)는 내부에 배치되는 반사부를 포함할 수 있다. 다만, 이에 한정되는 것은 아니다.
또한, 광학 부재(1132)는 외부(예컨대, 물체)로부터 반사된 광을 카메라 모듈 내부로 반사할 수 있다. 다시 말해, 광학 부재(1132)는 반사된 광의 경로를 변경하여 제1 카메라 엑추에이터 및 제2 카메라 엑추에이터의 공간적 한계를 개선할 수 있다. 이로써, 카메라 모듈은 두께가 최소화하면서 광 경로를 확장하여 높은 범위의 배율을 제공할 수도 있음을 이해해야 한다.
체결부재(1131a)는 홀더(1131)와 결합할 수 있다. 체결부재(1131a)는 홀더(1131)의 외측 및 적어도 일부가 하우징 내측에 배치될 수 있다. 그리고 체결부재(1131a)는 홀더(1131)의 제4 홀더 외측면에서 제4 안착홈 이외의 영역에 위치한 추가 홈 내에 안착할 수 있다. 이 때, 접합부재를 통해 체결부재(1131a)와 홀더(1131)가 서로 결합할 수 있다. 예컨대, 접합부재는 에폭시 등의 재질로 이루어질 수 있다. 이를 통해, 체결부재(1131a)는 홀더(1131)와 결합하고, 체결부재(1131a)와 홀더(1131) 사이에는 제5 하우징 측부(1126)의 적어도 일부가 위치할 수 있다. 예컨대, 제5 하우징 측부(1126)의 적어도 일부는 체결부재(1131a)와 홀더(1131) 간에 형성된 공간을 관통할 수 있다.
또한, 체결부재(1131a)는 홀더(1131)와 분리된 구조로 이루어질 수 있다. 이러한 구성에 의하여, 후술하는 바와 같이 제1 카메라 엑추에이터의 조립이 용이하게 수행될 수 있다. 또는 체결부재(1131a)는 홀더(1131)와 일체로 형성될 수 있으나, 이하에서는 분리된 구조로 설명한다.
회전부(1140)는 틸팅 가이드부(1141), 틸팅 가이드부(1141)를 가압하도록 서로 다른 극성을 갖는 제1 자성체(1142) 및 제2 자성체(1143)를 포함한다.
틸팅 가이드부(1141)는 상술한 무버(1130) 및 제1 하우징(1120)과 결합할 수 있다. 구체적으로, 틸팅 가이드부(1141)는 홀더(1131)와 제5 하우징 측부(1126) 사이에 배치될 수 있다. 이에, 틸팅 가이드부(1141)는 홀더(1131)의 무버(1130) 및 제1 하우징(1120)과 결합할 수 있다. 다만, 상술한 내용과 달리, 본 실시예에서 틸팅 가이드부(1141)는 제5 하우징 측부(1126)와 홀더(1131) 사이에 배치될 수 있다. 구체적으로, 틸팅 가이드부(1141)는 제5 하우징 측부(1126)와 홀더(1131)의 제4 안착홈 사이에 위치할 수 있다.
제3 방향(Z축 방향)으로, 체결부재(1131a), 제5 하우징 측부(1126), 틸팅 가이드부(1141) 및 홀더(1131) 순으로 배치될 수 있다(최외측면 기준). 또한, 제1 자성체(1142)와 제2 자성체(1143)는 각각 체결부재(1131a)에 형성된 제1 홈과 제5 하우징 측부(1126)에 형성된 제2 홈에 안착할 수 있다. 본 실시예에서, 제1 홈과 제2 홈은 다른 실시예에서 제1,2 홈의 위치와 상이할 수 있다. 다만, 제1 홈은 체결부재(1131a) 내에 위치하며 홀더와 일체로 이동하며, 제2 홈은 제1 홈에 대응하여 제5 하우징 측부(1126) 상에 위치하여 제1 하우징(1120)과 결합한다. 이에, 본 용어를 혼용하여 설명한다. 그리고 제1 홈과 틸팅 가이드부(1141) 사이에 제2 홈이 위치할 수 있다.
또한, 틸팅 가이드부(1141)는 광축과 인접하게 배치될 수 있다. 이로써, 실시예에 따른 엑추에이터는 후술하는 제1,2 축 틸트에 따라 광 경로의 변경을 용이하게 수행할 수 있다.
틸팅 가이드부(1141)는 제1 방향(X축 방향)으로 이격 배치되는 제1 돌출부와 제2 방향(Y축 방향)으로 이격 배치되는 제2 돌출부를 포함할 수 있다. 또한, 제1 돌출부와 제2 돌출부는 서로 반대 방향으로 돌출될 수 있다. 이에 대한 자세한 설명은 후술한다.
또한, 상술한 바와 같이 제1 자성체(1142)는 체결부재(1131a) 내에 위치할 수 있다. 또한, 제2 자성체(1143)는 제5 하우징 측부(1126) 내에 위치할 수 있다.
제1 자성체(1142)와 제2 자성체(1143)는 서로 동일한 극성을 가질 수 있다. 예를 들어, 제1 자성체(1142)는 N극을 갖는 마그넷일 수 있고, 제2 자성체(1143)는 N극을 갖는 마그넷일 수 있다. 또는 반대로 제1 자성체(1142)는 S극을 갖는 마그넷일 수 있고, 제2 자성체(1143)는 S극을 갖는 마그넷일 수 있다.
예컨대, 제2 자성체(1143)의 제2 극면과 상기 제2 극면과 마주보는 제1 자성체(1142)의 제1 극면은 서로 동일 극성을 가질 수 있다. 즉, 제1 자성체(1142)와 제2 자성체(1143)는 서로 밀어내는 힘을 생성할 수 있으며, 이를 위해서는 다양한 재질, 기능 등을 가질 수 있다.
예컨대, 제1 자성체(1142)와 제2 자성체(1143)는 상술한 극성에 의해 서로 간에 척력(repulsive force)을 생성할 수 있다. 이러한 구성에 의하여, 상술한 척력은 제1 자성체(1142)에 결합된 체결부재(1131a) 또는 홀더(1131)와 제2 자성체(1143)에 결합된 제5 하우징 측부(1126) 또는 제1 하우징(1120)에 가해질 수 있다. 이 때, 체결부재(1131a)에 가해지는 척력은 체결부재(1131a)와 결합한 홀더(1131)에 전달될 수 있다. 이로써, 체결부재(1131a)와 제5 하우징 측부(1126) 사이에 배치되는 틸팅 가이드부(1141)가 척력에 의해 밀착 가압될 수 있다. 즉, 척력은 틸팅 가이드부(1141)가 홀더(1131)와 제1 하우징(1120)(또는 제5 하우징 측부(1126)) 사이에서 위치하는 것을 유지할 수 있다. 이러한 구성에 의하여, X축 틸트 또는 Y축 틸트 시에도 무버(1130)와 제1 하우징(1120) 간의 위치를 유지할 수 있다. 또한, 틸팅 가이드부는 제2 자성체(1143)와 제1 자성체(1142) 간의 척력에 의해 제5 하우징 측부(1126)와 홀더(1131)에 밀착될 수 있다.
제1 구동부(1150)는 제1 구동 마그넷(1151), 제1 구동 코일(1152), 홀 센서부(1153)(또는 제1 홀 센서부), 제1 기판부(1154) 및 요크부(미도시됨)를 포함한다. 이에 대한 내용은 후술한다.
도 6a는 실시예에 따른 제1 카메라 엑추에이터의 제1 하우징의 사시도이고, 도 6b는 도 6a와 상이한 방향의 사시도이고, 도 6c는 실시예에 따른 제1 카메라 엑추에이터의 제1 하우징의 정면도이다.
도 6a 내지 도 6c를 참조하면, 실시예에 따른 제1 하우징(1120)은 제1 하우징 측부(1121) 내지 제5 하우징 측부(1126)를 포함 수 있다. 제1 하우징 측부(1121)와 제2 하우징 측부(1122)는 서로 마주보도록 배치될 수 있다. 또한, 제3 하우징 측부(1123)와 제4 하우징 측부(1124)는 서로 마주보도록 배치될 수 있다.
그리고 제3 하우징 측부(1123)와 제4 하우징 측부(1124)는 제1 하우징 측부(1121)와 제2 하우징 측부(1122) 사이에 배치될 수 있다.
제3 하우징 측부(1123) 및 제4 하우징 측부(1124)는 제1 하우징 측부(1121), 제2 하우징 측부(1122) 및 제4 하우징 측부(1124)와 접할 수 있다. 그리고 제3 하우징 측부(1123)는 제1 하우징(1120)에서 저면일 수 있다. 그리고 제4 하우징 측부(1124)는 제1 하우징(1120)에서 상부면일 수 있다. 또한, 방향에 대한 설명도 상술한 내용이 동일하게 적용될 수 있다.
그리고 제1 하우징 측부(1121)는 제1 하우징 홀(1121a)을 포함할 수 있다. 제1 하우징 홀(1121a)에는 후술하는 제1 코일이 위치할 수 있다. 또한, 제1 하우징 측부(1121)는 제3-1 하우징 홀(1121b)을 포함할 수 있다. 제3-1 하우징 홀(1121b)에는 제3-1 코일이 위치할 수 있다. 제3-1 하우징 홀(1121b)은 제1 하우징 홀(1121a)과 이격 배치될 수 있다.
또한, 제2 하우징 측부(1122)는 제2 하우징 홀(1122a)을 포함할 수 있다. 그리고 제2 하우징 홀(1122a)에는 후술하는 제2 코일이 위치할 수 있다. 또한, 제2 하우징 측부(1122)는 제3-2 하우징 홀(1122b)을 포함할 수 있다. 제3-2 하우징 홀(1122b)에는 제3-2 코일이 위치할 수 있다. 제3-2 하우징 홀(1122b)은 제2 하우징 홀(1122a)과 이격 배치될 수 있다.
또한, 제1 하우징 측부(1121)와 제2 하우징 측부(1122)는 제1 하우징(1120)의 측면일 수 있다.
제1 코일과 제2 코일은 제1 기판부와 결합할 수 있다. 실시예로, 제1 코일과 제2 코일은 제1 기판부와 전기적으로 연결되어 전류가 흐를 수 있다. 이러한 전류는 제1 카메라 엑추에이터가 X축 또는 Y축을 기준으로(실시예에서는 X축) 틸팅할 수 있는 전자기력의 요소이다. 또한, 제3-1 코일과 제3-2 코일은 제1 기판부와 결합할 수 있다. 실시예로, 제3-1 코일과 제3-2 코일은 제1 기판부와 전기적으로 연결되어 전류가 흐를 수 있다. 이러한 전류는 제1 카메라 엑추에이터 X축 또는 Y축을 기준으로(실시예에서는 Y축) 틸팅할 수 있는 전자기력의 요소이다.
또한, 제3 하우징 측부(1123)는 제1 하우징 측부(1121)와 제2 하우징 측부(1122) 사이에 위치할 수 있다.
제1 하우징 측부(1121) 내지 제4 하우징 측부(1124) 사이에는 제5 하우징 측부(1126)가 안착할 수 있다. 이에 따라, 제5 하우징 측부(1126)는 제3 하우징 측부(1123) 상에 위치할 수 있다. 예컨대, 제5 하우징 측부(1126)는 일측에 위치할 수 있다. 제3 방향을 기준으로, 제5 하우징 측부(1126)와 홀더는 순차로 위치할 수 있다.
제4 하우징 측부(1124)는 제1 하우징 측부(1121), 제2 하우징 측부(1122) 사이에 배치되고, 제1 하우징 측부(1121), 제2 하우징 측부(1122) 및 제3 하우징 측부(1123)와 접할 수 있다.
또한, 제4 하우징 측부(1124)는 제4 하우징 홀(1124a)을 포함할 수 있다. 제4 하우징 홀(1124a)은 광학 부재 상부에 위치할 수 있다. 이에, 광이 제4 하우징 홀(1124a)을 통과하여 광학 부재로 입사될 수 있다.
또한, 제1 하우징(1120)은 제1 하우징 측부(1121) 내지 제5 하우징 측부(1126)에 의해 형성되는 수용부(1125)를 포함할 수 있다. 수용부(1125)에는 구성요소로 체결부재, 틸팅 가이드부 및 무버 등이 위치할 수 있다.
실시예로, 제5 하우징 측부(1126)는 제1 하우징 측부(1121)와 제2 하우징 측부(1122) 사이에 위치할 수 있다. 또한, 제5 하우징 측부(1126)는 제3 하우징 측부(1123)와 제4 하우징 측부(1124) 사이에 위치할 수 있다.
그리고 제5 하우징 측부(1126)는 제3 하우징 측부(1123) 상에 위치하며, 제1 하우징 측부(1121) 내지 제3 하우징 측부(1123)와 접합 수 있다.
또한, 제5 하우징 측부(1126)는 틸팅 가이드부의 제2 돌출부가 안착하는 제2 돌기홈을 포함한다. 제2 돌기홈(PH2)은 제5 하우징 측부(1126)의 내측면(1126S1)에 위치할 수 있다. 제5 하우징 측부(1126)의 내측면(1126S1)은 제5 하우징 측부(1126)의 관통홀(1126a, 1126b) 사이에서 내측으로 돌출될 수 있다. 이에 따라, 제5 하우징 측부(1126)는 틸팅 가이드부의 돌출부(예컨대, 제2 돌출부)가 제4 안착홈 내에서 프리즘에 인접하게 배치하여 틸트의 기준축인 돌출부가 무버(1130)의 무게중심에 가까이 배치되게 한다. 이로써, 홀더가 틸트하는 경우 틸트를 위해 무버(1130)를 이동시키는 모멘트가 최소화될 수 있다. 이에, 코일을 구동하는 전류 소모도 최소화되므로, 카메라 엑추에이터의 전력 소모가 감소될 수 있다.
또한, 제5 하우징 측부(1126)는 관통홀(1126a, 1126b)을 포함할 수 있다. 관통홀은 복수 개로 제1 관통홀(1126a)과 제2 관통홀(1126b)로 이루어질 수 있다.
제1 관통홀(1126a)과 제2 관통홀(1126b)로는 후술하는 체결부재의 제1,2 연장부가 각각 관통할 수 있다. 이를 통해, 체결부재와 제5 하우징 측부가 결합할 수 있다. 다시 말해, 제1 하우징과 무버가 서로 결합할 수 있다.
제1 관통홀(1126a)과 제2 관통홀(1126b) 사이에는 제2 돌기홈(PH2)이 위치할 수 있다. 이러한 구성에 의하여, 틸팅 가이드부와 제5 하우징 측부(1126) 간의 결합력이 향상되어 틸팅 가이드부가 제1 하우징 내에서 이동하여 발생하는 틸트의 정확도 저하가 차단될 수 있다.
또한, 제5 하우징 측부(1126)의 외측면(1126s2)에는 제2 홈(gr2)이 위치할 수 있다. 제2 홈(gr2)에는 제2 자성체가 안착할 수 있다. 그리고 제5 하우징 측부(1126)의 외측면(1126S2)은 체결부재 또는 부재 베이스부의 내측면과 마주할 수 있다. 나아가, 체결부재에 안착한 제1 자성체와 제5 하우징 측부(1126)의 제2 자성체는 서로 마주하고 상술한 척력을 생성할 수 있다. 이에, 제5 하우징 측부(1126)가 척력에 의해 틸팅 가이드부를 내측으로 또는 홀더를 가압하므로, 코일로의 전류 주입이 없더라도 무버가 제1 하우징 내에서 제3 하우징 측부와 소정 거리 이격될 수 있다. 다시 말해, 무버와 하우징 및 틸팅 가이드부 간의 결합력이 유지될 수 있다.
또한, 제5 하우징 측부(1126)의 외측면(1126S2)에는 다른 복수의 홈이 존재할 수 있다. 이는 공정상 제1 하우징의 제조를 용이하게 수행하기 위함이다.
또한, 제5 하우징 측부(1126)는 제1 하우징(1120)과 일체로 이루어진 경우 제5 하우징 측부(1126)와 제1 하우징(1120)의 결합력이 향상되어 카메라 엑추에이터의 신뢰성이 개선될 수 있다. 또한, 분리되어 이루어진 경우 제5 하우징 측부(1126)와 제1 하우징(1120)의 조립 및 제작의 용이성이 향상될 수 있다.
그리고 실시예로 제5 하우징 측부(1126)는 제1 관통홀(1126a)과 제2 관통홀(1126b)을 포함할 수 있다. 그리고 제1 관통홀(1126a)과 제2 관통홀(1126b)은 제2 방향(Y축 방향)으로 나란히 배치되어 서로 중첩될 수 있다.
그리고 제5 하우징 측부(1126)는 제1 관통홀(1126a) 및 제2 관통홀(1126b)의 상부에 위치한 상부부재(UA), 제1 관통홀(1126a) 및 제2 관통홀(1126b)의 하부에 위치한 하부부재(BA)를 포함할 수 있다. 이에, 제1 관통홀(1126a) 및 제2 관통홀(1126b)은 제5 하우징 측부(1126)의 중간에 위치할 수 있다. 즉, 제5 하우징 측부(1126)는 제1 관통홀(1126a) 및 제2 관통홀(1126b)의 측부에 위치한 연결부재(MA)를 포함할 수 있다. 즉, 상부부재(UA)와 하부부재(BA)는 연결부재(MA)를 통해 서로 연결될 수 있다. 그리고 하부부재(BA)는 제1,2 관통홀을 형성하기 위해 복수 개일 수 있으며, 제2 방향(Y축 방향)으로 서로 이격 배치될 수 있다.
이로써, 제5 하우징 측부(1126)는 상부부재(UA)를 가짐으로써 강성이 향상될 수 있다. 예컨대, 상부부재(UA)가 없는 경우 대비 제5 하우징 측부(1126)의 강성이 증가할 수 있다. 예를 들어, 본 실시예에서 강성은 단위가 N/㎛일 수 있다. 이에 따라, 실시예에 따른 제1 카메라 엑추에이터의 신뢰성이 개선될 수 있다.
또한, 제5 하우징 측부(1126)는 제1 돌기부와 제2 돌기부를 더 포함할 수 있다. 제1 돌기부는 제1 하우징 측부와 접하고, 제2 돌기부는 제2 하우징 측부와 접할 수 있다. 제1 돌기부는 제5 하우징 측부의 외측면(1126s2)의 일단부에서 제3 방향(Z축 방향) 연장될 수 있다. 제2 돌기부는 제5 하우징 측부의 외측면(1126s2)의 타단부에서 제3 방향(Z축 방향)으로 연장될 수 있다. 즉, 제1 돌기부와 제2 돌기부는 홀더를 향해 연장될 수 있다.
나아가, 제5 하우징 측부(1126)는 내측의 두께(Id1)가 외측의 두께(Id2)보다 클 수 있다. 두께는 제3 방향(Z축 방향)으로 길이일 수 있다. 이러한 구성에 의하여, 제5 하우징 측부(1126)의 내측면(1126s1)에 형성된 제2 돌기홈(PH2)에 틸팅 가이드부의 제2 돌출부가 안착하더라도 제5 하우징 측부(1126)의 파손이 억제될 수 있다. 즉, 카메라 엑추에이터의 신뢰성이 개선될 수 있다.
도 7은 실시예에 따른 제1 카메라 엑추에이터의 광학 부재의 사시도이다.
광학 부재(1132)는 홀더 상에 안착할 수 있다. 이러한 광학 부재(1132)는 반사부로서 일예로 프리즘일 수 있으나, 상술한 바와 같이 이에 한정하는 것은 아니다.
실시예로, 광학 부재(1132)는 외측면 일부에 돌기부(미도시됨)를 가질 수 있다. 광학 부재(1132)는 돌기부(미도시됨)를 통해 홀더와 용이하게 결합할 수 있다. 또한, 홀더가 홈 또는 돌기를 가짐으로써, 광학 부재(1132)와 결합될 수도 있다.
또한, 광학 부재(1132)는 저면(1132b)이 홀더의 안착면 상에 안착할 수 있다. 이에, 광학 부재(1132)는 저면(1132b)이 홀더의 안착면과 대응할 수 있다. 실시예로, 저면(1132b)은 홀더의 안착과 동일하게 경사면으로 이루어질 수 있다. 이에 따라, 홀더의 이동에 따라 프리즘이 이동함과 동시에 이동에 따라 광학 부재(1132)가 홀더로부터 분리되는 것을 방지할 수 있다.
또한, 광학 부재(1132)의 저면(1132b)에 홈이 형성되고 접합 부재가 도포되어, 광학 부재(1132)는 홀더와 결합할 수 있다. 또는, 홀더의 홈 또는 돌기에 접합 부재가 도포되어 홀더가 광학 부재(1132)와 결합될 수도 있다.
또한, 상술한 바와 같이, 광학 부재(1132)는 외부(예컨대, 물체)로부터 반사된 광을 카메라 모듈 내부로 반사할 수 있는 구조로 이루어질 수 있다. 실시예와 같이, 광학 부재(1132)는 단일의 미러로 이루어질 수도 있다. 또한, 광학 부재(1132)는 반사된 광의 경로를 변경하여 제1 카메라 엑추에이터 및 제2 카메라 엑추에이터의 공간적 한계를 개선할 수 있다. 이로써, 카메라 모듈은 두께가 최소화하면서 광 경로를 확장하여 높은 범위의 배율을 제공할 수도 있음을 이해해야 한다. 또한, 실시예에 따른 카메라 엑추에이터를 포함하는 카메라 모듈은 두께가 최소화하면서 광 경로를 확장하여 높은 범위의 배율을 제공할 수도 있음을 이해해야 한다.
도 8a는 실시예에 따른 제1 카메라 엑추에이터의 홀더의 사시도이고, 도 8b는 실시예에 따른 제1 카메라 엑추에이터의 홀더의 저면도이고, 도 8c는 실시예에 따른 제1 카메라 엑추에이터의 홀더의 정면도이고, 도 8d는 실시예에 따른 제1 카메라 엑추에이터의 체결부재의 후면도이고, 도 8e는 실시예에 따른 제1 카메라 엑추에이터의 체결부재의 저면도이다.
도 8a 내지 도 8e를 참조하면, 홀더(1131)는 광학 부재(1132)가 안착하는 안착면(1131k)을 포함할 수 있다. 안착면(1131k)은 경사면일 수 있다. 또한, 홀더(1131)는 안착면(1131k) 상부에 턱부를 포함할 수 있다. 그리고 홀더(1131)에서 턱부는 광학 부재(1132)의 돌기부(미도시됨)와 결합할 수 있다.
홀더(1131)는 복수 개의 외측면을 포함할 수 있다. 예컨대, 홀더(1131)는 제1 홀더 외측면(1131S1), 제2 홀더 외측면(1131S2), 제3 홀더 외측면(1131S3) 및 제4 홀더 외측면(1131S4)을 포함할 수 있다.
제1 홀더 외측면(1131S1)은 제2 홀더 외측면(1131S2)과 마주보도록 위치할 수 있다. 즉, 제1 홀더 외측면(1131S1)은 제2 홀더 외측면(1131S2)과 제1 방향(X축 방향)을 기준으로 대칭으로 배치될 수 있다.
제1 홀더 외측면(1131S1)은 제1 하우징 측부와 대응하게 위치할 수 있다. 즉, 제1 홀더 외측면(1131S1)은 제1 하우징 측부와 마주보게 위치할 수 있다. 그리고 제2 홀더 외측면(1131S2)은 제2 하우징 측부와 대응하게 위치할 수 있다. 즉, 제2 홀더 외측면(1131S2)은 제2 하우징 측부와 마주보게 위치할 수 있다.
또한, 제1 홀더 외측면(1131S1)은 제1 안착홈(1131S1a)을 포함할 수 있다. 또한, 제1 홀더 외측면(1131S1)은 제3-1 안착홈(1131S1b)을 포함할 수 있다.
그리고 제2 홀더 외측면(1131S2)은 제2 안착홈(1131S2a)을 포함할 수 있다. 또한, 제2 홀더 외측면(1131S2)은 제3-2 안착홈(1131S2b)을 포함할 수 있다.
실시예로, 제1 안착홈(1131S1a)과 제2 안착홈(1131S2a)은 제1 방향(X축 방향)을 기준으로 서로 대칭으로 배치될 수 있다. 또한, 제3-1 안착홈(1131S1b)과 제3-2 안착홈(1131S2b)은 제1 방향(X축 방향)을 기준으로 서로 대칭으로 배치될 수 있다.
또한, 제1 안착홈(1131S1a)과 제2 안착홈(1131S2a)은 제2 방향(Y축 방향)으로 중첩되도록 배치될 수 있다. 또한, 제3-1 안착홈(1131S1b)과 제3-2 안착홈(1131S2b)은 제2 방향(Y축 방향)으로 중첩되도록 배치될 수 있다.
일예로, 제1 안착홈(1131S1a)과 제3-1 안착홈(1131S1b)은 분리 또는 일체로 이루어질 수 있다. 예컨대, 제1 안착홈(1131S1a)과 제3-1 안착홈(1131S1b) 사이에는 격벽, 부재, 날개 등이 위치하여, 제1 안착홈(1131S1a)과 제3-1 안착홈(1131S1b)이 서로 분리될 수 있다.
또한, 제1 안착홈(1131S1a)과 제3-1 안착홈(1131S1b)은 하나의 홈으로 이루어질 수 있다. 그리고 일측(제1 안착홈에 대응하는 영역)에는 제1 마그넷이 안착할 수 있다. 또한, 타측(제3-1 안착홈에 대응하는 영역)에는 제3-1 마그넷이 안착할 수 있다.
또한, 제2 안착홈(1131S2a)과 제3-2 안착홈(1131S2b)도 분리 또는 일체로 이루어질 수 있다. 예컨대, 제2 안착홈(1131S2a)과 제3-2 안착홈(1131S2b) 사이에는 격벽, 부재, 날개 등이 위치하여, 제2 안착홈(1131S2a)과 제3-2 안착홈(1131S2b)이 서로 분리될 수 있다. 또한, 제2 안착홈(1131S2a)과 제3-2 안착홈(1131S2b)은 하나의 홈으로 이루어질 수 있다. 이에, 일측(제2 안착홈에 대응하는 영역)에는 제2 마그넷이 안착할 수 있다. 또한, 타측(제3-2 안착홈에 대응하는 영역)에는 제3-2 마그넷이 안착할 수 있다. 그리고 제1 안착홈(1131S1a)에는 제1 마그넷이 배치될 수 있고, 제2 안착홈(1131S2a)에는 제2 마그넷이 배치될 수 있다. 제1 마그넷과 제2 마그넷도 제1 방향(X축 방향)을 기준으로 서로 대칭으로 배치될 수 있다.
또한, 제3-1 안착홈(1131S1b)에는 제3-1 마그넷이 배치될 수 있다. 그리고 제3-2 안착홈(1132S1b)에는 제3-2 마그넷이 배치될 수 있다. 제3-1 마그넷과 제3-2 마그넷도 제1 방향(X축 방향)을 기준으로 서로 대칭으로 배치될 수 있다.
본 명세서에서, 제1 마그넷 내지 제3-2 마그넷은 요크 또는 접합 부재를 통해 하우징과 결합될 수 있음을 이해해야 한다.
상술한 바와 같이, 제1, 2 안착홈과 제1, 2 마그넷의 위치에 의하여, 각 마그넷에 의해 유발된 전자기력이 제1 홀더 외측면(S1231S1)과 제2 홀더 외측면(1131S2)으로 동일 축 상에 제공될 수 있다. 마찬가지로, 제3-1 안착홈과 제3-2 안착홈의 위치(제3-1 마그넷과 제3-2 마그넷)에 의하여 각 마그넷에 의해 유발된 전자기력이 제1 홀더 외측면(S1231S1)과 제2 홀더 외측면(1131S2)으로 동일 축 상에 제공될 수 있다.
예를 들어, 제1 홀더 외측면(S1231S1) 상에 가해지는 영역(예컨대, 전자기력이 가장 강한 부분)과 제2 홀더 외측면(S1231S1) 상에 가해지는 영역(예컨대, 전자기력이 가장 강한 부분)은 제2 방향(Y축 방향)과 평행한 축 상에 위치할 수 있다. 이로써, X축 틸팅이 정확하게 이루어질 수 있다.
또한, 제1 홀더 외측면(S1231S1) 상에 가해지는 영역(예컨대, 전자기력이 가장 강한 부분)과 제2 홀더 외측면(S1231S1) 상에 가해지는 영역(예컨대, 전자기력이 가장 강한 부분)은 제2 방향(Y축 방향)과 평행한 축 상에 위치할 수 있다. 이로써, Y축 틸팅이 정확하게 이루어질 수 있다.
제1 안착홈(1131S1a)에는 제1 마그넷(1151a)이 배치될 수 있고, 제2 안착홈(1131S2a)에는 제2 마그넷(1151b)이 배치될 수 있다.
그리고 제3-1 안착홈(1131S1b)에는 제3-1 마그넷(1151ca)이 배치될 수 있다. 또한, 제3-2 안착홈(1131S2b)에는 제3-2 마그넷(1151cb)이 배치될 수 있다.
제3 홀더 외측면(1131S3)은 제1 홀더 외측면(1131S1)과 제2 홀더 외측면(1131S2)과 접하고, 제1 홀더 외측면(1131S1)과 제2 홀더 외측면(1131S2)의 일측에서 제2 방향(Y축 방향)으로 연장된 외측면일 수 있다. 또한, 제3 홀더 외측면(1131S3)은 제1 홀더 외측면(1131S1)과 제2 홀더 외측면(1131S2) 사이에 위치할 수 있다. 제3 홀더 외측면(1131S3)은 홀더(1131)에서 저면일 수 있다. 즉, 제3 홀더 외측면(1131S3)은 제3 하우징 측부와 마주보게 위치할 수 있다.
또한, 제3 홀더 외측면(1131S3)은 제3 하우징 측부(1123)와 마주보게 위치할 수 있다.
실시예로, 제3-1 안착홈(1131S1b) 및 제3-2 안착홈(1131S2b)은 제1 안착홈(1131S1a) 또는 제2 안착홈(1131S2a)보다 넓이가 클 수 있다. 이러한 구성에 의하여, Y축 틸트를 X축 틸트와 유사한 전류 제어로 수행할 수 있다. 나아가, 틸팅 가이드부와 이격 거리 큰 제3-1 안착홈(1131S1b) 및 제3-2 안착홈(1131S2b)에 의해 Y축 틸트가 용이하게 이루어질 수 있다.
나아가, 후술하는 제1 마그넷(1151a), 제2 마그넷(1151b), 제3-1 마그넷(1151ca) 및 제3-2 마그넷(1151cb)에 대응하여, 제1 안착홈(1131S1a), 제2 안착홈(1131S2a), 제3-1 안착홈(1131S1b) 및 제3-2 안착홈(1131S2b) 중 적어도 하나는 틸팅 가이드와 제1 방향(X축 방향) 또는 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다. 예컨대, 틸팅 가이드부의 제1 돌출부는 제1 안착홈(1131S1a) 및 제2 안착홈(1131S2a)과 제2 방향(Y축 방향)으로 중첩될 수 있다. 또한, 틸팅 가이드부의 베이스의 일부는 제1 안착홈(1131S1a) 및 제2 안착홈(1131S2a)과 제2 방향(Y축 방향)으로 중첩될 수 있다.
제4 홀더 외측면(1131S4)은 제1 홀더 외측면(1131S1)과 제2 홀더 외측면(1131S2)과 접하고, 제1 홀더 외측면(1131S1)과 제2 홀더 외측면(1131S2)에서 제1 방향(X축 방향)으로 연장된 외측면일 수 있다. 또한, 제4 홀더 외측면(1131S4)은 제1 홀더 외측면(1131S1)과 제2 홀더 외측면(1131S2) 사이에 위치할 수 있다. 즉, 제4 홀더 외측면(1131S4)은 제5 하우징 측부와 마주보게 위치할 수 있다.
제4 홀더 외측면(1131S4)은 제4 안착홈(1131S4a)을 포함할 수 있다. 제4 안착홈(1131S4a)에는 틸팅 가이드부(1141)가 위치할 수 있다. 또한, 제4 안착홈(1131S4a)에는 체결부재(1131a)와 제5 하우징 측부(1126)가 위치할 수 있다. 그리고 제4 안착홈(1131S4a)은 복수 개의 영역을 포함할 수 있다. 제1 영역(AR1)과 제2 영역(AR2) 그리고 제3 영역(AR3)을 포함할 수 있다.
제1 영역(AR1)에는 체결부재(1131a)가 위치할 수 있다. 특히, 제1 영역(AR1)에는 체결부재(1131a)의 부재 베이스부가 위치할 수 있다. 즉, 제1 영역(AR1)은 체결부재(1131a)와 제1 방향(X축 방향)으로 중첩될 수 있다. 이 때, 제1 영역(AR1)은 제4 홀더 외측면(1131S4) 상에 위치할 수 있다. 즉, 제1 영역(AR1)은 제4 안착홈(1131S4a)의 상부에 위치한 영역에 대응할 수 있다. 이 경우, 제1 영역(AR1)은 제4 안착홈(1131S4a) 내의 일 영역이 아닐 수도 있다.
제2 영역(AR2)에는 제5 하우징 측부(1126)가 위치할 수 있다. 나아가, 제2 영역(AR2)에는 체결부재(1131a)의 일부가 위치할 수 있다. 즉, 제2 영역(AR2)은 제5 하우징 측부(1126)와 제1 방향(X축 방향)으로 중첩될 수 있다.
또한, 제2 영역(AR2)은 제1 영역(AR1)과 같이 제4 홀더 외측면(1131S4) 상에 위치할 수 있다. 즉, 제2 영역(AR2)은 제4 안착홈(1131S4a)의 상부에 위치한 영역에 대응할 수 있다
제3 영역(AR3)에는 틸팅 가이드부가 위치할 수 있다. 특히, 제3 영역(AR3)에는 틸팅 가이드부의 베이스가 위치할 수 있다. 즉, 제3 영역(AR3)은 틸팅 가이드부(예로, 베이스)와 제1 방향(X축 방향)으로 중첩될 수 있다.
또한, 제2 영역(AR2)은 제1 영역(AR1)과 제3 영역(AR3) 사이에 위치할 수 있다.
그리고 제1 영역(AR1)에는 체결부재가 배치되고, 체결부재(1131a)는 제1 홈(gr1)이 위치할 수 있다. 실시예로, 체결부재(1131a)는 내측면에 형성된 제1 홈(gr1)을 포함할 수 있다. 그리고 제1 홈(gr1)에는 상술한 바와 같이 제1 자성체가 배치될 수 있다. 즉, 제1 영역(AR1)에는 제1 자성체도 위치할 수 있다.
그리고 상술한 바와 같이 제2 영역(AR2)에는 제5 하우징 측부가 배치될 수 있다. 제1 홈(gr1)은 제2 홈(gr2)과 마주보게 위치할 수 있다. 예컨대, 제1 홈(gr1)은 제2 홈(gr2)과 제3 방향(Z축 방향)으로 적어도 일부 중첩될 수 있다.
그리고 제2 자성체에서 발생한 척력이 체결부재를 통해 홀더(1131)의 제4 안착홈(1131S4a)으로 전달될 수 있다. 이에, 홀더는 제2 자성체에서 발생한 척력과 동일한 방향으로 틸팅 가이드부로 힘을 가할 수 있다.
제5 하우징 측부는 외측면에 형성된 제1 홈(gr1)과 마주하는 제2 홈(gr2)을 포함할 수 있다. 또한, 제5 하우징 측부는 상술한 바와 같이 내측면에 형성된 제2 돌기홈을 포함할 수 있다. 그리고 제2 돌기홈에는 제2 돌출부가 안착할 수 있다.
또한, 제2 자성체와 마찬가지로, 제1 자성체와 제2 자성체에 의해 발생한 척력이 제5 하우징 측부에 가해질 수 있다. 이에 따라, 제5 하우징 측부와 체결부재는 척력을 통해 제5 하우징 측부와 홀더(1131) 사이에 배치된 틸팅 가이드부를 가압할 수 있다.
제3 영역(AR3)에는 틸팅 가이드부(1141)가 배치될 수 있다.
그리고 제1 돌기홈(PH1)은 제4 안착홈(1131S4a)에 위치할 수 있다. 또한, 제1 돌기홈(PH1)에는 틸팅 가이드부(1141)의 제1 돌출부가 수용될 수 있다. 이에, 제1 돌출부(PR1)는 제1 돌기홈과 접할 수 있다. 제1 돌기홈(PH1)은 최대 직경이 제1 돌출부(PR1)의 최대 직경에 대응할 수 있다. 이는 제2 돌기홈과 제2 돌출부(PR2)에도 동일하게 적용될 수 있다. 즉, 제2 돌기홈은 최대 직경이 제2 돌출부(PR2)의 최대 직경에 대응할 수 있다. 이에, 제2 돌출부는 제2 돌기홈과 접할 수 있다. 이러한 구성에 의하여, 제1 돌출부를 기준으로 제1 축 틸트와 제2 돌출부를 기준으로 제2 축 틸트가 용이하게 일어날 수 있으며, 틸트의 반경이 향상될 수 있다.
또한, 실시예로, 제1 돌기홈(PH1)은 복수 개일 수 있다. 예컨대, 제1 돌기홈(PH1) 및 제2 돌기홈(PH2) 중 어느 하나는 제1-1 돌기홈(PH1a)과 제1-2 돌기홈(PH1b)을 포함할 수 있다. 이하에서, 제1 돌기홈(PH1)이 제1-1 돌기홈(PH1a)과 제1-2 돌기홈(PH1b)을 포함하는 것으로 설명한다. 그리고 이하의 설명은 제2 돌기홈(PH2)에도 동일하게 적용될 수 있다. 예컨대, 제2 돌기홈(PH2)은 제2-1 돌기홈 및 제2-2 돌기홈을 포함하고, 제2-1 돌기홈은 제1-1 돌기홈의 설명이 적용되고, 제2-2 돌기홈은 제1-2 돌기홈의 설명이 적용될 수 있다.
제1-1 돌기홈(PH1a)과 제1-2 돌기홈(PH1b)은 제1 방향(X축 방향)으로 나란히 배치될 수 있다. 제1-1 돌기홈(PH1a)과 제1-2 돌기홈(PH1b)은 최대 넓이가 서로 동일할 수 있다.
복수 개의 제1 돌기홈(PH1)은 경사면의 개수가 서로 상이할 수 있다. 예컨대, 제1 돌기홈(PH1)은 홈저면 및 경사면을 포함할 수 있다. 이 때, 복수 개의 돌기홈은 경사면의 개수가 서로 상이할 수 있다. 또한, 돌기 홈에서 저면의 넓이도 상이할 수 있다.
예컨대, 제1-1 돌기홈(PH1a)은 제1 홈저면(LS1)과 제1 경사면(CS1)을 포함할 수 있다. 제1-2 돌기홈(PH1b)은 제2 홈저면(LS2)과 제2 경사면(CS2)을 포함할 수 있다.
이 때, 제1 홈저면(LS1)과 제2 홈저면(LS2)은 넓이가 서로 상이할 수 있다. 제1 홈저면(LS1)의 넓이는 제2 홈저면(LS2)의 넓이보다 작을 수 있다.
또한, 제1 홈저면(LS1)과 접하는 제1 경사면(CS1)의 개수는 제2 경사면(CS2)의 개수와 상이할 수 있다. 예컨대, 제1 경사면(CS1)의 개수는 제2 경사면(CS2)의 개수보다 클 수 있다.
이러한 구성에 의하여, 제1 돌기홈(PH1)에 안착하는 제1 돌출부의 조립 공차를 용이하게 보완할 수 있다. 예컨대, 제1 경사면(CS1)의 개수가 제2 경사면(CS2)의 개수보다 많으므로 제1 돌출부가 보다 많은 경사면과 접하여, 제1-1 돌기홈(PH1a)에서 제1 돌출부의 위치를 보다 정확하게 유지할 수 있다.
이와 달리, 제1-2 돌기홈(PH1b)에서는 제1 돌출부와 접하는 경사면의 개수가 제1-1 돌기홈(PH1b) 대비 작은 바, 제1 돌출부의 위치 조정이 수월하게 이루어질 수 있다.
실시예로, 제2 경사면(CS2)은 제2 방향(Y축 방향)으로 서로 이격 배치될 수 있다. 그리고 제2 홈저면(LS2)은 제1 방향(X축 방향)으로 연장되어 제1 돌출부가 제2 경사면(CS2)과 접한 상태에서 제1 방향(X축 방향)으로 용이하게 이동할 수 있다. 즉, 제1-2 돌기홈(PH1b)에서는 제1 돌출부가 용이하게 위치 조정될 수 있다.
또한, 본 실시예에서, 제1 영역(AR1), 제2 영역(AR2) 및 제3 영역(AR3)은 제1 방향(X축 방향)으로 높이가 상이할 수 있다. 실시예로, 제1 영역(AR1)은 제2 영역(AR2) 및 제3 영역(AR3)보다 제1 방향(X축 방향)으로 높이가 더 클 수 있다. 이에, 제1 영역(AR1)과 제2 영역(AR2) 사이에 단차가 위치할 수 있다.
또한, 체결부재(1131a)는 제1 홈(gr1)을 포함할 수 있다. 다시 말해, 부재 베이스부(1131aa)의 내측면에는 제1 홈(gr1)이 위치할 수 있다. 그리고 제1 홈(gr1)에는 상술한 제1 자성체가 안착할 수 있다. 또한, 제1 홈(gr1)은 제1 자성체의 개수에 따라 복수 개일 수 있다. 즉, 제1 홈(gr1)은 제1 자성체의 개수에 대응한 개수로 이루어질 수 있다.
나아가, 제1 홈(gr1)의 면적은 제2 홈의 면적과 상이할 수 있다. 예컨대, 제1 홈(gr1)의 면적은 제2 홈의 면적보다 클 수 있다. 이에 따라, 무게 중심을 틸팅 가이드부에 인접하게 이동시킬 수 있다. 이로써, 자세차에 의한 구동력 차이를 줄이고 회전에 대한 전류 소모를 최소화할 수 있다.
또한, 체결부재(1131a)는 부재 베이스부(1131aa), 제1 연장부(1131ab) 및 제2 연장부(1131ac)를 포함할 수 있다.
부재 베이스부(1131aa)는 제1 카메라 엑추에이터의 최외측에 위치할 수 있다. 부재 베이스부(1131aa)는 제5 하우징 측부의 외측에 위치할 수 있다. 즉, 제5 하우징 측부는 부재 베이스부(1131aa)와 틸팅 가이드부 사이에 위치할 수 있다.
제1 연장부(1131ab)는 부재 베이스부(1131aa)의 가장자리에서 제3 방향(Z축 방향)으로 연장될 수 있다. 나아가, 제1 연장부(1131ab)는 절곡후 제2 방향(Y축 방향)을 따라 연장될 수 있다. 예컨대, 제1 연장부(1131ab)는 제1 홈(gr1)을 향한 방향의 반대 방향으로 연장될 수 있다. 즉, 제1 연장부(1131ab)는 부재 베이스부(1131aa)에서 홀더(1131)를 향해 연장될 수 있다. 이는 제2 연장부(1131ac)도 마찬가지이다. 또한, 제2 연장부(1131ac)는 부재 베이스부(1131aa)의 가장자리에서 제3 방향(Z축 방향)을 연장될 수 있다. 실시예로, 제1 연장부(1131ab)와 제2 연장부(1131ac)는 부재 베이스부(1131aa)의 제2 방향(Y축 방향)으로 가장자리에 위치할 수 있다. 그리고 제1 연장부(1131ab)와 제2 연장부(1131ac)는 상부부재와 하부부재 사이에 배치될 수 있다.
이에, 체결부재(1131a)는 제1 연장부(1131ab)와 제2 연장부(1131ac)에 의해 형성된 그루브(groove)를 가질 수 있다. 즉, 그루브(groove)는 제1 연장부(1131ab)와 제2 연장부(1131ac) 사이에 위치할 수 있다. 이에, 제1 연장부(1131ab)와 제2 연장부(1131ac)는 부재 베이스부(1131aa)에 의해서만 서로 연결될 수 있다. 이러한 구성에 의하여, 체결부재(1131a)는 부재 베이스부(1131aa)의 중앙 특히, 제1 홈(gr1)에 안착한 제1 자성체에 의한 척력을 지속적으로 받을 수 있다.
그리고 체결부재(1131a)는 홀더와 결합하여 X축 틸트 및 Y축 틸트 시 이동하는 바, 체결부재(1131a)의 강성이 제5 하우징 측부의 강성보다 더 클 수 있다.
나아가, 상술한 바와 같이 실시예에 따른 제5 하우징 측부는 상부부재와 하부부재를 가짐으로써 강성이 증가할 수 있다. 이러한 구성에 의하여, 체결부재와 제5 하우징 측부 간의 강성 차이가 줄어들 수 있다. 이로써, 체결부재(1131a)와 체결부재(1131a)에 결합된 홀더(1131)가 함께 X축 틸트 또는 Y축 틸트되는 경우, 체결부재(1131a)는 제5 하우징 측부와의 인접거리가 작아지고, 제5 하우징 측부와 접촉할 수 있다. 이에, 제5 하우징 측부가 상술한 바와 같이 향상된 강성을 가짐으로써 스토퍼로서 동작을 용이하게 수행할 수 있다. 즉, 카메라 엑추에이터의 신뢰성이 개선될 수 있다.
또한, 제1 연장부(1131ab)는 제2 연장부(1131ac)와 제2 방향(Y축 방향)으로 이격되어 이격 공간을 형성할 수 있다. 이러한 이격 공간에는 제5 하우징 측부와 틸팅 가이드부가 안착할 수 있다. 또한, 이격 공간에는 제2 자성체와 제1 자성체가 위치할 수 있다.
또한, 제1 연장부(1131ab)와 제2 연장부(1131ac)는 제3 방향(Z축 방향)으로 길이가 동일할 수 있다. 이에, 결합력 및 무게 등이 균형있게 형성되어 홀더의 틸트가 일측으로 기울어지지 않고 정확하게 이루어질 수 있다.
그리고 제1 연장부(1131ab)와 제2 연장부(1131ac)는 홀더와 결합할 수 있다. 본 명세서에서 결합은 상술한 돌기 및 홈 구조 이외에 접합 부재를 통해 서로 결합될 수 있음을 이해해야 한다. 실시예로, 제1 연장부(1131ab)와 제2 연장부(1131ac)는 외측으로 개구된 결합홈(1131L)을 포함할 수 있다. 결합홈(113L)을 통해 접합부재(예로, 에폭시)가 도포되어, 제1 연장부(1131ab)와 제2 연장부(1131ac)는 홀더 또는 제4 홀더 외측면과 용이하게 결합할 수 있다. 다만, 본 명세서에서 결합을 위한 돌기 및 홈 구조는 서로 위치가 바뀔 수도 있음을 이해해야 한다.
도 9a는 실시예에 따른 제1 카메라 엑추에이터의 틸팅 가이드부의 사시도이고, 도 9b는 도 9a와 상이한 방향의 사시도이고, 도 9c는 도 9a에서 FF'로 바라본 단면도이다.
실시예에 따른 틸팅 가이드부(1141)는 베이스(BS), 베이스(BS)의 제1 면(1141a)으로부터 돌출되는 제1 돌출부(PR1), 베이스(BS)의 제2 면(1141b)으로부터 돌출되는 제2 돌출부(PR2)를 포함할 수 있다. 또한, 구조에 따라 제1 돌출부와 제2 돌출부는 형성된 면이 반대일 수 있으나, 도면을 기준으로 이하 설명한다. 또한, 제1 돌출부(PR1)와 제2 돌출부(PR2)는 베이스(BS)와 일체로 형성될 수 있으며, 도면과 같이 제1 돌출부(PR1)와 제2 돌출부(PR2)는 볼과 같이 구 형상을 가질 수 있음을 이해해야 한다. 예컨대, 틸팅 가이드부(1141)에서 베이스(BS)는 제1 돌출부(PR1)와 제2 돌출부(PR2)에 대응하는 위치에 홈을 포함할 수 있다. 그리고 베이스(BS)의 홈에는 볼이 삽입될 수 있다. 또한, 틸팅 가이드부(1141)는 상술한 돌출부(제1 돌출부 또는 제2 돌출부)와 베이스(BS)의 홈 및 홈에 삽입된 볼이 다양한 방식으로 조합된 구조일 수도 있다.
먼저, 베이스(BS)는 제1 면(1141a) 및 제1 면(1141a)에 대향하는 제2 면(1141b)을 포함할 수 있다. 즉, 제1 면(1141a)은 제2 면(1141b)과 제3 방향(Z축 방향)으로 이격될 수 있고, 틸팅 가이드부(1141) 내에서 서로 대향하는 또는 서로 마주보는 외측면일 수 있다. 예컨대, 제1 면(1141a)은 홀더에 인접한 면이고, 제2 면(1141b)은 제5 하우징 측부에 인접한 면이다.
틸팅 가이드부(1141)는 제1 면(1141a) 상에서 일측으로 연장된 제1 돌출부(PR1)를 포함할 수 있다. 실시예에 따르면, 제1 돌출부(PR1)는 제1 면(1141a)에서 홀더를 향해 돌출될 수 있다. 제1 돌출부(PR1)는 복수 개로, 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)를 포함할 수 있다.
제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)는 제2 방향(Y축 방향)으로 나란히 위치할 수 있다. 다시 말해, 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)는 제2 방향(Y축 방향)으로 중첩될 수 있다. 또한, 실시예에서 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)는 제1 방향(X축 방향) 또는 제2 방향(Y축 방향)으로 연장된 가상선(VL1, VL2) 또는 면에 의해 이등분될 수 있다.
또한, 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)는 곡률을 가지며, 예를 들어 반구 형상일 수 있다. 이에, 제1 돌출부(PR1)의 중심은 제1 면(1141a) 상에 위치할 수 있다. 이에, 틸팅 가이드부의 회전(Y축 틸트)가 제1 면(1141a)을 기준으로 발생할 수 있다.
또한, 제1 면(1141a)에는 얼라인 홈이 위치할 수 있다. 얼라인 홈은 제1 면(1141a)에서 일측에 배치되어, 조립 공정시 틸팅 가이드부(1141)의 조립 위치 또는 조립 방향을 제공할 수 있다.
또한, 틸팅 가이드부(1141)는 제2 면(1141a) 상에서 일측으로 연장된 제2 돌출부(PR2)를 포함할 수 있다. 실시예에 따르면, 제2 돌출부(PR2)는 제2 면(1141b)에서 하우징을 향해 돌출될 수 있다. 그리고 제2 돌출부(PR2)는 복수 개이며, 실시예에서 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)를 포함할 수 있다. 마찬가지로, 제2 돌출부(PR2)의 중심은 제2 면(1141b) 상에 존재하여, 틸팅 가이드부의 회전(X축 틸트)가 제2 면(1141b)을 기준으로 발생할 수 있다.
제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)는 제1 방향(X축 방향)으로 나란히 위치할 수 있다. 즉, 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)는 제1 방향(X축 방향)으로 중첩될 수 있다. 또한, 실시예에서 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)는 제1 방향(X축 방향) 또는 제2 방향(Y축 방향)으로 연장된 가상선(VL1', VL2') 또는 면에 의해 이등분될 수 있다.
제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)는 곡률을 가질 수 있으며, 예를 들어 반구 형상일 수 있다. 그리고 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)는 베이스(BS)의 제2 면(1141b)로부터 이격된 지점에서 체결부재(1131a)와 접할 수 있다.
제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)는 제2 방향으로 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b) 사이 영역에 위치할 수 있다. 실시예에 따르면, 제1 방향으로 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b) 간의 이격 공간의 중앙에 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)가 위치할 수 있다. 이러한 구성에 의하여, 실시예에 따른 엑추에이터는 X축을 기준으로 X축 틸트의 각도가 동일 범위를 가지게 할 수 있다. 다시 말해, 틸팅 가이드부(1141)는 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)를 기준으로 홀더가 Y축 틸트가 가능한 범위(예컨대, 양/음의 범위)를 Y축을 기준으로 동일하게 제공할 수 있다.
또한, 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)는 제2 방향으로 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b) 사이 영역에 위치할 수 있다. 실시예에 따르면, 제1 방향으로 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b) 간의 이격 공간의 중앙에 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)가 위치할 수 있다. 이러한 구성에 의하여, 실시예에 따른 엑추에이터는 X축을 기준으로 X축 틸트의 각도가 동일 범위를 가지게 할 수 있다. 다시 말해, 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)를 기준으로 틸팅 가이드부(1141) 및 홀더는 X축 틸트가 가능한 범위(예컨대, 양/음의 범위)를 X축을 기준으로 동일하게 제공할 수 있다.
구체적으로, 제1 면(1141a)은 제1 외측선(M1), 제2 외측선(M2), 제3 외측선(M3) 및 제4 외측선(M4)을 포함할 수 있다. 제1 외측선(M1)과 제2 외측선(M2)은 서로 마주보고, 제3 외측선(M3)과 제4 외측선(M4)은 서로 마주볼 수 있다. 그리고 제1 외측선(M1)과 제2 외측선(M2) 사이에 제3 외측선(M3) 및 제4 외측선(M4)이 위치할 수 있다. 그리고 제1 외측선(M1)과 제2 외측선(M2)은 제1 방향(X축 방향)과 수직하나, 제3 외측선(M3)과 제4 외측선(M4)은 제1 방향(X축 방향)과 평행할 수 있다.
이 때, 제1 돌출부(PR1)는 제2 가상선(VL2) 상에 위치할 수 있다. 여기서, 제1 가상선(LV1)은 제1 외측선(M1)과 제2 외측선(M2)을 이등분하는 선이다. 또는 제1,3 가상선(LV1, LV1')은 베이스(BS)를 제2 방향(Y축 방향)으로 이등분하는 선이다. 이에 따라, 제1 돌출부(PR1)를 통해 틸팅 가이드부(1141)가 Y축 틸트를 용이하게 수행할 수 있다. 뿐만 아니라, 틸팅 가이드부(1141)가 Y축 틸트를 제2 가상선(VL2)을 기준으로 수행하므로 회전력이 틸팅 가이드부(1141)에 균일하게 가해질 수 있다. 이에, X축 틸트가 정교하게 이루어지고 소자의 신뢰성이 개선될 수 있다.
또한, 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)는 제1 가상선(VL1) 및 제2 가상선(VL2)을 기준으로 대칭으로 배치될 수 있다. 또는 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)는 제1 중심점(C1)을 기준으로 대칭으로 위치할 수 있다. 이러한 구성에 의하여, Y축 틸트 시 제1 돌출부(PR1)에 의해 지지되는 지지력이 제2 가상선(VL2)을 기준으로 상측과 하측에 동일하게 가해질 수 있다. 이에, 틸팅 가이드부의 신뢰성이 개선될 수 있다. 여기서, 제2 가상선(VL2)은 제3 외측선(M3)과 제4 외측선(M4)을 이등분하는 선이다. 또는 제2,4 가상선(LV2, LV2')은 베이스(BS)를 제1 방향(X축 방향)으로 이등분하는 선이다.
그리고 제1 중심점(C1)은 제1 가상선(VL1)과 제2 가상선(VL2)의 교점일 수 있다. 또는, 제1 중심점(C1)은 틸팅 가이드부(1141)의 형상에 따라 무게 중심과 제3 방향으로 대응하는 지점(예컨대 중첩)에 배치될 수 있다.
또한, 제2 면(1141b)은 제5 외측선(M1'), 제6 외측선(M2’), 제7 외측선(M3') 및 제8 외측선(M4')을 포함할 수 있다. 제5 외측선(M1')과 제6 외측선(M2')은 서로 마주보고, 제7 외측선(M3')과 제8 외측선(M4')은 서로 마주볼 수 있다. 그리고 제5 외측선(M1')과 제6 외측선(M2') 사이에 제7 외측선(M3') 및 제8 외측선(M4')이 위치할 수 있다. 그리고 제5 외측선(M1')과 제6 외측선(M2')은 제1 방향(X축 방향)과 수직하나, 제7 외측선(M3')과 제8 외측선(M4')은 제1 방향(X축 방향)과 평행할 수 있다.
뿐만 아니라, 틸팅 가이드부(1141)가 X축 틸트를 제3 가상선(VL1')을 기준으로 수행하므로 회전력이 틸팅 가이드부(1141)에 균일하게 가해질 수 있다. 이에, X축 틸트가 정교하게 이루어지고 소자의 신뢰성이 개선될 수 있다.
또한, 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)는 제3 가상선(VL1') 상에서 제4 가상선(VL2')에 대칭으로 배치될 수 있다. 또는 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b)는 제2 중심점(C1')을 기준으로 대칭으로 위치할 수 있다. 이러한 구성에 의하여, X축 틸트 시 제2 돌출부(PR2)에 의해 지지되는 지지력이 제3 가상선(VL1')을 기준으로 틸팅 가이드부의 좌측과 우측에 동일하게 가해질 수 있다. 이에, 틸팅 가이드부의 신뢰성이 개선될 수 있다. 여기서, 제3 가상선(LV1')은 제5 외측선(M1')과 제6 외측선(M2')을 이등분하는 선이다. 그리고 제2 중심점(C1')은 제3 가상선(VL1')과 제4 가상선(VL2')의 교점일 수 있다. 또는, 틸팅 가이드부(1141)의 형상에 따라 무게 중심에 대응하는 지점일 수도 있다.
또한, 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b) 사이의 제2 방향(Y축 방향)으로 간격은 제2 돌출부(PR2)의 제2 방향(Y축 방향)으로 길이보다 클 수 있다. 이에, 제1-1 돌출부(PR1a) 및 제1-2 돌출부(PR1b)를 기준으로 Y축 틸트 수행 시, 제2 돌출부(PR2)에 의한 저항을 최소화할 수 있다.
이와 대응하여, 제2-1 돌출부(PR2a)와 제2-2 돌출부(PR2b) 사이의 제1 방향(X축 방향)으로 간격은 제1 돌출부(PR1)의 제1 방향(X축 방향)으로 길이보다 클 수 있다. 이에, 제2-1 돌출부(PR2a) 및 제2-2 돌출부(PR2b)를 기준으로 X축 틸트 수행 시, 제1 돌출부(PR1)에 의한 저항을 최소화할 수 있다.
도 10은 실시예에 따른 제1 카메라 엑추에이터의 제1 구동부를 도시한 도면이다.
도 10을 참조하면, 제1 구동부(1150)는 제1 구동 마그넷(1151), 제1 구동 코일(1152), 홀 센서부(1153), 제1 기판부(1154) 및 요크부(미도시됨)를 포함한다.
또한, 상술한 바와 같이 제1 구동 마그넷(1151)은 전자기력에 의한 구동력을 제공하는 제1 마그넷(1151a), 제2 마그넷(1151b), 제3-1 마그넷(1151ca) 및 제3-2 마그넷(1151cb)을 포함할 수 있다. 제1 마그넷(1151a), 제2 마그넷(1151b), 제3-1 마그넷(1151ca) 및 제3-2 마그넷(1151cb)은 각각 홀더(1131)의 외측면에 인접하게 위치할 수 있다. 예컨대, 제1 마그넷(1151a), 제2 마그넷(1151b), 제3-1 마그넷(1151ca) 및 제3-2 마그넷(1151cb)은 각각 홀더(1131)의 외측면의 홈에 위치할 수 있다.
또한, 제1 구동 코일(1152)은 복수 개의 코일을 포함할 수 있다. 실시예로, 제1 구동 코일(1152)은 적어도 하나의 코일을 포함하고, 적어도 하나의 코일은 상술한 제1 구동 마그넷의 적어도 하나의 마그넷에 대응하여 위치할 수 있다. 예컨대, 제1 구동 코일(1152)은 제1 코일(1152a), 제2 코일(1152b), 제3-1 코일(1152ca) 및 제3-2 코일(1152cb)을 포함할 수 있다.
제1 코일(1152a)은 제1 마그넷(1151a)과 대향하게 위치할 수 있다. 이에, 제1 코일(1152a)은 상술한 바와 같이 제1 하우징 측부(1121)의 제1 하우징 홀(1121a)에 위치할 수 있다. 또한, 제2 코일(1152b)은 제2 마그넷(1151b)과 대향하게 위치할 수 있다. 이에, 제2 코일(1152b)은 상술한 바와 같이 제2 하우징 측부(1122)의 제2 하우징 홀(1122a)에 위치할 수 있다.
제3-1 코일(1152ca)은 제3-1 마그넷(1151ca)과 대향하게 위치할 수 있다. 제3-2 코일(1152cb)은 제3-2 마그넷(1151cb)과 대향하게 위치할 수 있다.
실시예에 따른 제1 카메라 엑추에이터는 제1 구동 마그넷(1151)과 제1 구동 코일(1152) 간의 전자기력에 의해 무버(1130)를 제1 축(X축 방향) 또는 제2 축(Y축 방향)으로 회전 제어함으로써 OIS 구현 시 디센터(decent)나 틸트(tilt) 현상의 발생을 최소화하여 최상의 광학적 특성을 제공할 수 있다.
또한, 실시예에 의하면 제1 하우징(1120)과 무버(1130) 사이에 배치되는 회전부(1140)의 틸팅 가이드부(1141)를 통해, OIS 구현함으로써 엑추에이터의 사이즈 제한을 해소하여 초슬림, 초소형의 카메라 엑추에이터 및 이를 포함하는 카메라 모듈을 제공할 수 있다.
또한, 제1 코일(1152a) 및 제3-1 코일(1152ca)은 제3 방향(Z축 방향)으로 적어도 일부 중첩될 수 있다. 제2 코일(1152b) 및 제3-2 코일(1152cb)은 제3 방향(Z축 방향)으로 적어도 일부 중첩될 수 있다. 또한, 제1 코일(1152a) 및 제3-1 코일(1152ca)은 제3 방향(Z축 방향)으로 서로 이격 배치될 수 있다. 그리고 제2 코일(1152b) 및 제3-2 코일(1152cb)은 제3 방향(Z축 방향)으로 서로 이격 배치될 수 있다.
제1 기판부(1154)는 제1 기판 측부(1154a), 제2 기판 측부(1154b) 및 제3 기판 측부(1154c)를 포함할 수 있다.
제1 기판 측부(1154a)와 제2 기판 측부(1154b)는 서로 마주보게 배치될 수 있다. 그리고 제3 기판 측부(1154c)는 제1 기판 측부(1154a)와 제2 기판 측부(1154b) 사이에 위치할 수 있다.
또한, 제1 기판 측부(1154a)는 제1 하우징 측부와 쉴드 캔 사이에 위치할 수 있고, 제2 기판 측부(1154b)는 제2 하우징 측부와 쉴드 캔 사이에 위치할 수 있다. 또한, 제3 기판 측부(1154c)는 제3 하우징 측부와 쉴드 캔 사이에 위치할 수 있고, 제1 기판부(1154)의 저면일 수 있다.
제1 기판 측부(1154a)는 제1 코일(1152a) 및 제3-1 코일(1152ca)과 결합하고, 전기적으로 연결될 수 있다. 또한, 제1 기판 측부(1154a)는 제1 홀 센서(1153a)와 결합하고, 전기적으로 연결될 수 있다.
제2 기판 측부(1154b)는 제2 코일(1152b) 및 제3-2 코일(1152cb)과 결합하고 전기적으로 연결될 수 있다. 또한, 제2 기판 측부(1154b)는 제1 홀 센서와 결합하고 전기적으로 연결될 수도 있음을 이해해야 한다.
제3 기판 측부(1154c)는 제1 기판 측부(1154a) 및 제2 기판 측부(1154b)와 연결될 수 있다.
또한, 홀 센서부(1153)는 제1 홀 센서(1153a), 제2 홀 센서(1153b), 제3-1 홀 센서(1153ca) 및 제3-2 홀 센서(1153cb)를 포함할 수 있다. 제1 홀 센서(1153a)는 제1 코일(1152a) 내에 위치할 수 있다. 제2 홀 센서(1153b)는 제2 코일(1152b) 내에 위치할 수 있다. 제3-1 홀 센서(1153ca)는 제3-1 코일(1153ca) 내에 위치할 수 있다. 제3-2 홀 센서(1153cb)는 제3-2 코일(1153cb) 내에 위치할 수 있다.
요크부(미도시됨)는 제1 요크, 제2 요크 제3-1 요크 및 제3-2 요크를 포함할 수 있다. 제1 요크는 제1 안착홈 내에 위치하고, 제1 마그넷(1151a)과 결합할 수 있다. 또한, 제2 요크는 제2 안착홈 내에 위치하고 제2 마그넷(1151b)과 결합할 수 있다. 또한, 제3-1 요크 및 제3-2 요크는 제3-1 안착홈 및 제3-2 안착홈 내에 위치하고, 제3-1 마그넷 및 제3-2 마그넷과 결합할 수 있다. 이러한 제1 요크 내지 제3-2 요크는 제1 마그넷 내지 제3-2 마그넷이 제1 내지 제3-2 안착홈에 용이하게 안착하여 하우징과 결합하게 한다.
도 11a는 실시예에 따른 제1 카메라 엑추에이터의 사시도이고, 도 11b는 도 11a에서 PP'로 바라본 단면도이고, 도 11c는 도 11b에서 K1부분의 확대도이고, 도 11d는 도 11b에서 K2부분의 확대도이고, 도 11e는 도 11a에서 QQ'로 바라본 단면도이다.
도 11a 내지 도 11e를 참조하면, 제1 코일(1152a)은 제1 하우징 측부(1121)에 위치하고, 제1 마그넷(1151a)은 홀더(1131)의 제1 홀더 외측면(1131S1)에 위치할 수 있다. 이에, 제1 코일(1152a)과 제1 마그넷(1151a)은 서로 대향하여 위치할 수 있다. 제1 마그넷(1151a)은 제1 코일(1152a)과 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다.
제3-1 코일(1152ca)은 제1 하우징 측부(1121)에 위치할 수 있다. 제3-1 마그넷(1151ca)은 제1 홀더 외측면(1131S1)에 위치할 수 있다. 특히, 제3-1 마그넷(1151ca)은 제1 홀더 외측면(1131S1)의 제3-1 안착홈(1131S1b)에 위치할 수 있다. 이에, 제3-1 코일(1152ca)과 제3-1 마그넷(1151ca)은 서로 대향하여 위치할 수 있다. 제3-1 마그넷(1151ca)은 제3-1 코일(1152ca)과 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다.
또한, 제2 코일(1152b)은 제2 하우징 측부(1122)에 위치하고, 제2 마그넷(1151b)은 홀더(1131)의 제2 홀더 외측면(1131S2)에 위치할 수 있다. 이에, 제2 코일(1152b)과 제2 마그넷(1151b)은 서로 대향하여 위치할 수 있다. 제2 마그넷(1151b)은 제2 코일(1152b)과 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다.
또한, 제3-2 코일(1152cb)은 제2 하우징 측부(1122)에 위치할 수 있다. 제3-2 마그넷(1151cb)은 제2 홀더 외측면(1131S2)에 위치할 수 있다. 특히, 제3-2 마그넷(1151cb)은 제2 홀더 외측면(1131S2)의 제3-2 안착홈(1131S2b)에 위치할 수 있다. 이에, 제3-2 코일(1152cb)과 제3-2 마그넷(1151cb)은 서로 대향하여 위치할 수 있다. 제3-2 마그넷(1151cb)은 제3-2 코일(1152cb)과 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다.
또한, 제1 코일(1152a)과 제2 코일(1152b)은 제2 방향(Y축 방향)으로 중첩되고, 제1 마그넷(1151a)과 제2 마그넷(1151b)은 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다.
또한, 제3-1 코일(1152ca)과 제3-2 코일(1152cb)은 제2 방향(Y축 방향)으로 중첩될 수 있다. 제3-1 마그넷(1151ca)과 제3-2 마그넷(1151cb)은 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다.
이러한 구성에 의하여, 홀더의 외측면(제1 홀더 외측면 및 제2 홀더 외측면)에 가해지는 전자기력이 제2 방향(Y축 방향)으로 평행 축 상에 위치하여 X축 틸트가 정확하고 정밀하게 수행될 수 있다.
또한, 틸팅 가이드부(1141)의 제2 돌출부(PR2a, PR2b)는 제1 하우징(1120)의 제5 하우징 측부(1126)와 접할 수 있다. 제2 돌출부(PR2)는 제5 하우징 측부(1126)의 일측면에 형성된 제2 돌기홈(PH2) 내에 안착할 수 있다. 그리고 X축 틸트를 수행하는 경우, 제2 돌출부(PR2a, PR2b)가 틸트의 기준축(또는 회전축)일 수 있다. 이에, 틸팅 가이드부(1141), 무버(1130)가 제2 방향을 따라 이동할 수 있다.
또한, 제1 홀 센서(1153a)는 상술한 바와 같이 제1 기판부(1154)와 전기적 연결 및 결합을 위해 외측에 위치할 수 있다. 다만, 이러한 위치에 한정되는 것은 아니다.
또한, 제3-1 코일(1152ca)과 제3-2 코일(1152cb) 각각은 상술한 바와 같이 제1 하우징 측부와 제2 하우징 측부에 위치할 수 있다.
또한, 제3-1 마그넷(1151ca)과 제3-2 마그넷(1151cb)은 홀더(1131)의 제1 홀더 외측면(1131S1)과 제2 홀더 외측면(1131S2)에 위치할 수 있다. 제3-1 마그넷(1151ca), 제3-2 마그넷(1151cb), 제3-1 코일(1152ca) 및 제3-2 코일(1152cb)은 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다. 이에 따라, 제3-1 마그넷(1151ca)/제3-2 마그넷(1151cb)과 제3-1 코일(1152ca)/제3-2 코일(1152cb)간의 전자기력의 세기가 용이하게 제어될 수 있다.
틸팅 가이드부(1141)는 상술한 바와 같이 홀더(1131)의 제4 홀더 외측면(1131S4) 상에 위치할 수 있다. 또한, 틸팅 가이드부(1141)는 제4 홀더 외측면의 제4 안착홈(1131S4a) 내에 안착할 수 있다. 상술한 바와 같이 제4 안착홈(1131S4a)은 상술한 제1 영역, 제2 영역 및 제3 영역을 포함할 수 있다.
제1 영역에는 체결부재(1131a)가 배치되고, 체결부재(1131a)는 내측면에 형성된 제1 홈(gr1)을 포함할 수 있다. 그리고 제1 홈(gr1)에는 상술한 바와 같이 제1 자성체(1142)가 배치되며, 제1 자성체(1142)에서 발생한 척력(RF2)이 체결부재(1131a)를 통해 홀더(1131)의 제4 안착홈(1131S4a)으로 전달될 수 있다(RF2'). 이에, 홀더(1131)는 제1 자성체(1142)에서 발생한 척력(RF2)과 동일한 방향으로 틸팅 가이드부(1141)로 힘을 가할 수 있다.
제2 영역에는 제5 하우징 측부(1126)가 배치될 수 있다. 제5 하우징 측부(1126)는 제1 홈(gr1)과 마주하는 제2 홈(gr2)을 포함할 수 있다. 또한, 제5 하우징 측부(1126)는 제2 홈(gr2)에 대향하는 면에 배치되는 제2 돌기홈(PH2)을 포함할 수 있다. 그리고 제2 자성체(1143)에서 발생한 척력(RF1)이 제5 하우징 측부(1126)에 가해질 수 있다. 이에 따라, 제5 하우징 측부(1126)와 체결부재(1131a)는 발생한 척력(RF1, RF2')을 통해 제5 하우징 측부(1126)와 홀더(1131) 사이에 배치된 틸팅 가이드부(1141)를 가압할 수 있다. 이에, 제1,2 코일 또는 제3-1 코일(1152ca), 제3-2 코일(1152cb)로 인가되는 전류에 의해 홀더가 X축 틸트 또는 Y축 틸트된 이후에도 홀더(1131), 제1 하우징(1120) 및 틸팅 가이드부(1141) 간의 결합이 유지될 수 있다.
제3 영역에는 틸팅 가이드부(1141)가 배치될 수 있다. 틸팅 가이드부(1141)는 상술한 바와 같이 제1 돌출부(PR1)와 제2 돌출부(PR2)를 포함할 수 있다. 이 때, 제1 돌출부(PR1)와 제2 돌출부(PR2)는 베이스의 제2 면과 제1 면에 각각 배치될 수도 있다. 이와 같이, 이하 설명하는 다른 실시예에서도 제1 돌출부(PR1)와 제2 돌출부(PR2)는 베이스의 마주보는 면 상에 다양하게 위치할 수 있다.
제1 돌기홈(PH1)은 제4 안착홈(1131S4a)에 위치할 수 있다. 그리고 제1 돌기홈(PH1)에는 틸팅 가이드부(1141)의 제1 돌출부(PR1)가 수용될 수 있다. 이에, 제1 돌출부(PR1)는 제1 돌기홈(PH1)과 접할 수 있다. 제1 돌기홈(PH1)은 최대 직경이 제1 돌출부(PR1)의 최대 직경에 대응할 수 있다. 이는 제2 돌기홈(PH2)과 제2 돌출부(PR2)에도 동일하게 적용될 수 있다. 즉, 제2 돌기홈(PH2)은 최대 직경이 제2 돌출부(PR2)의 최대 직경에 대응할 수 있다. 또한, 이에, 제2 돌출부(PR2)는 제2 돌기홈(PH2)과 접할 수 있다. 이러한 구성에 의하여, 제1 돌출부(PR1)를 기준으로 제1 축 틸트와 제2 돌출부(PR2)를 기준으로 제2 축 틸트가 용이하게 일어날 수 있으며, 틸트의 반경이 향상될 수 있다.
또한, 틸팅 가이드부(1141)는 제3 방향(Z축 방향)으로 체결부재(1131a) 및 제5 하우징 측부(1126)와 나란히 배치되어, 틸팅 가이드부(1141)가 광학 부재(1132)와 제1 방향(X축 방향)으로 일부 중첩될 수 있다. 보다 구체적으로, 실시예에서 제1 돌출부(PR1)가 제1 방향(X축 방향)으로 광학 부재(1132)와 중첩될 수 있다. 즉, 실시예에 따른 카메라 엑추에이터에서 틸트의 중심축인 각 돌출부가 무버(1130)의 무게 중심에 인접하게 위치할 수 있다. 이로써, 틸팅 가이드부가 홀더의 무게 중심에 인접하게 위치할 수 있다. 이로써, 실시예에 따른 카메라 엑추에이터는 홀더를 틸트시키는 모멘트 값을 최소화할 수 있고, 홀더를 틸트시키기 위해 코일부 등에 인가되는 전류의 소모량도 최소화할 수 있어 전력 소모량 및 소자의 신뢰도를 개선할 수 있다.
다시 말해, 실시예에서 제1 자성체(1142) 및 제2 자성체(1143)는 제3-1 코일(1152ca), 제3-2 코일(1152cb) 또는 광학 부재(1132)와 제3 방향(Z축 방향)으로 이격 배치될 수 있다. 나아가, 제1 자성체(1142) 및 제2 자성체(1143)는 틸팅 가이드부(1141)로부터 제3 방향의 반대 방향으로 이격 배치될 수 있다. 그리고 제3-1 코일(1152ca) 및 제3-2 코일(1152cb)은 제1 코일(1152a) 및 제2 코일(1152b) 대비 틸팅 가이드부(1141)로부터 제3 방향(Z축 방향)으로 더 이격 배치될 수 있다. 이에, 실시예에 따른 카메라 엑추에이터는 상하 구동(Y축 틸트)을 용이하게 수행할 수 있으며, 소비전력을 최소화할 수 있다.
실시예에 따른 제1 카메라 엑추에이터는 제3 방향으로 체결부재(1131a), 제1 자성체(1142), 제2 자성체(1143), 제5 하우징 측부(1126), 틸팅 가이드부(1141) 및 홀더(1131) 순으로 배치될 수 있다. 다만, 제1 자성체는 체결부재 내에 위치하고, 제2 자성체는 제5 하우징 측부 내에 위치하는 바, 체결부재, 제5 하우징 측부, 틸팅 가이드부, 홀더 순으로 배치될 수 있다.
그리고 실시예로 제1 자성체(1142) 및 제2 자성체(1143)는 홀더(1131)(또는 광학 부재(1132))로부터 제3 방향으로 이격 거리가 틸팅 가이드부(1141) 간의 이격 거리 대비 클 수 있다. 이로써, 홀더(1131)에 배치된 제1 홀 센서(1153a) 내지 3-2 홀 센서(1153cb) 도 제1 자성체(1142) 및 제2 자성체(1143)와 소정 거리만큼 이격 배치될 수 있다. 이에, 제1 홀 센서 내지 제3-2 홀 센서는 제1 자성체(1142) 및 제2 자성체(1143)로부터 형성된 자기장의 영향이 최소화되어, 홀 전압이 양 또는 음으로 집중되어 포화되는 것을 방지할 수 있다. 즉, 이러한 구성은 홀 전극이 홀 캘리브레이션(Hall Calibration)이 수행될 수 있는 범위를 가질 수 있게 한다. 나아가, 온도도 홀 센서의 전극에 영향을 받고, 온도에 따라 카메라 렌즈의 해상력이 가변하나, 실시예에서는 홀 전압이 양 또는 음으로 집중되는 경우를 방지하여 렌즈의 해상력에 대한 보상도 이에 대응하여 이루어져 해상력 저하를 용이하게 방지할 수 있다.
또한, 제2 홀 센서(1153b)의 출력(즉, 홀 전압)에 대한 오프셋(offset)을 보상하기 위한 회로 설계도 용이하게 이루어질 수 있다.
틸팅 가이드부(1141)는 제1 돌출부(PR1) 및 제2 돌출부(PR2)를 제외하고, 베이스를 기준으로 제4 안착홈(1131S4a) 내에 안착할 수 있다. 다시 말해, 베이스(BS)의 제3 방향(Z축 방향)으로 길이는 제4 안착홈(1131S4a)의 제3 방향(Z축 방향)으로 길이보다 작을 수 있다. 이러한 구성에 의하여, 소형화를 용이하게 도모할 수 있다.
또한, 틸팅 가이드부(1141)는 제3 방향(Z축 방향)으로 최대길이가 제4 안착홈(1131S4a)의 제3 방향(Z축 방향)으로 길이보다 클 수 있다. 이에, 상술한 바와 같이, 제2 돌출부(PR2)의 끝단이 제4 홀더 외측면과 제5 하우징 측부(1126) 사이에 위치할 수 있다. 즉, 제2 돌출부(PR2)는 적어도 일부가 홀더(1131)보다 제3 방향(Z축 방향)의 반대 방향에 위치할 수 있다. 다시 말해, 홀더(1131)는 제2 돌출부(PR2)의 끝단 (제2 돌기홈과 접하는 부분)에서 제3 방향(Z축 방향)으로 소정 거리 이격될 수 있다.
제5 하우징 측부(1126)는 내측으로 연장 및 절곡된 구조를 가질 수 있다. 그리고, 체결부재(1131a)는 일부 영역이 상술한 제5 하우징 측부(1126)의 연장 및 절곡된 구조에 의한 홈에 위치할 수 있다. 이러한 구성에 의하여, 체결부재(1131a)가 제5 하우징 측부(1126)의 내측에 위치함으로써, 공간 효율을 향상시키고 소형화가 구현될 수 있다. 나아가, 전자기력에 의한 구동(무버(1130)의 틸팅 또는 회전)이 수행되더라도 체결부재(1131a)가 제5 하우징 측부(1126) 외측으로 돌출되지 않아 주위의 소자와의 접촉이 차단될 수 있다. 이에, 신뢰성이 개선될 수 있다.
또한, 제1 자성체(1142)와 제2 자성체(1143) 사이에는 소정의 이격 공간이 존재할 수 있다. 다시 말해, 제1 자성체(1142)와 제2 자성체(1143)는 동일 극성으로 서로 대향할 수 있다.
또한, 제1 구동부는 상술한 바와 같이 제1 하우징 내에서 무버(1130)를 제1 방향(X축 방향) 또는 제2 방향(Y축 방향)을 기준으로 회전 구동할 수 있다. 이 때, 제1 구동부에서 구동 마그넷은 적어도 하나의 마그넷을 포함하고, 구동 코일도 적어도 하나의 코일을 포함할 수 있다. 이 때, 적어도 하나의 마그넷은 틸팅 가이드부(1141)와 제1 방향(X축 방향) 또는 제2 방향(Y축 방향)으로 적어도 일부가 중첩될 수 있다. 나아가, 적어도 하나의 코일도 틸팅 가이드부(1141)와 제1 방향(X축 방향) 또는 제2 방향(Y축 방향)으로 적어도 일부가 중첩될 수 있다.
제1 마그넷(1151a)과 제2 마그넷(1151b)은 제2 방향(Y축 방향)으로 중첩되고, 제1 마그넷(1151a)과 제2 마그넷(1151b)의 제2 방향(Y축 방향)으로 사이 영역에 틸팅 가이드부(1141)가 위치할 수 있다.
틸팅 가이드부(1141)는 일부가 제1 마그넷(1151a) 및 제2 마그넷(1151b) 사이에 위치하면서, 제2 방향(Y축 방향)으로 제1 마그넷(1151a) 및 제2 마그넷(1151b)과 중첩될 수 있다.
예컨대, 틸팅 가이드부(1141)의 제1 돌출부(PR1)는 제1 마그넷(1151a) 및 제2 마그넷(1151b)과 제2 방향(Y축 방향)으로 중첩될 수 있다. 이 때, 제1 돌출부(PR1)는 무버(1130)와 틸팅 가이드부(1141)의 베이스(BS) 사이에 위치할 수 있다.
이에, 제1 마그넷(1151a) 및 제2 마그넷(1151b)은 틸팅 가이드부(1141)와 제3 방향(Z축 방향)으로 이격 거리가 감소할 수 있다. 다시 말해, 제1 마그넷(1151a) 및 제2 마그넷(1151b)은 틸팅 가이드부(1141)와 인접한 거리에 위치할 수 있다. 이로써, 제1 마그넷(1151a) 및 제2 마그넷(1151b)이 안착된 홀더(1131) 또는 이를 포함하는 무버(1130)는 무게중심이 틸팅 가이드부(1141)에 인접하게 위치할 수 있다. 다시 말해, 홀더(1131) 또는 이를 포함하는 무버(1130)의 무게중심이 회전구등을 위한 회전축 또는 회전면을 갖는 틸팅 가이드부(1141)에 인접하게 됨으로써, 카메라 엑추에이터 또는 카메라 모듈의 자세에 따라 일정 각도 틸트 구동하는데 소모되는 모멘트 또는 에너지(예로, 전류)의 변화량이 감소할 수 있다. 즉, 자세차에 의한 영향을 줄일 수 있다. 이로써, 실시예에 따른 카메라 엑추에이터 및 카메라 모듈은 보다 정확한 틸팅 구동이 수행될 수 있다. 뿐만 아니라, 상술한 무게중심의 이동이 회전축 또는 회전면에 인접해짐으로써 무버(또는 홀더)를 회전시키려고 하는 힘인 전자기력이 감소될 수 있다. 즉, 카메라 엑추에이터 또는 카메라 모듈을 구동하기 위한 에너지 효율이 개선될 수 있다. 다시 말해, 제1 구동부가 틸팅 가이드부(1141)에 인접하게 위치할 수 있다. 이 때, 제1 구동부는 제1 구동 마그넷과 제1 구동 코일을 의미하며, 이하에서는 제1 구동 마그넷, 제1 구동 코일 각각에 대하여 설명한다.
나아가, 틸팅 가이드부(1141)의 베이스(BS)는 제1 마그넷(1151a) 및 제2 마그넷(1151b)과 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다. 이로써, 제1 마그넷(1151a) 및 제2 마그넷(1151b)은 틸팅 가이드부(1141)에 더 인접하게 배치될 수 있다. 다만, 제1 마그넷(1151a) 및 제2 마그넷(1151b)이 회전축 또는 회전면보다 전단에 위치하는 경우 제2 방향(Y축 방향) 틸트에 소요되는 전자기력이 증가하므로, 제1 마그넷(1151a) 및 제2 마그넷(1151b)의 중심(제3 방향으로 이등분 지점)은 제1 돌출부(PR1)와 제2 방향(Y축 방향)으로 중첩되지 않고 제3 방향(Z축 방향)으로 이격 배치될 수 있다. 나아가, 제1 마그넷(1151a) 및 제2 마그넷(1151b)의 중심(제3 방향으로 이등분 지점)은 제1 돌출부(PR1) 후단 즉, 제3 방향(Z축 방향) 측에 위치할 수 있다. 또한, 제3-1 마그넷(1151ca) 및 제3-2 마그넷(1151cb)의 중심은 제1 돌출부(PR1) 후단 즉, 제3 방향(Z축 방향) 측에 위치할 수 있다.
이에 대응하여, 틸팅 가이드부(1141)의 베이스(BS)는 제1 코일(1152a) 및 제2 코일(1152b)과 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다. 이에, 상술한 제1 마그넷 및 제2 마그넷과 같이 제1 코일(1152a)과 제2 코일(1152b)이 틸팅 가이드부(1141)에 더욱 인접하게 배치될 수 있다. 이로써, 틸트에 소요되는 전자기력을 줄이고 자세차에 대한 영향을 줄일 수 있다.
또한, 제3 홀더 외측면에 배치되는 제3-1 마그넷 및 제3-2 마그넷은 제1 돌출부(PR1)와 제1 방향(X축 방향) 및 제3 방향(Z축 방향)으로 이격 배치될 수 있다. 이에 따라, 홀더(1131) 또는 이를 포함하는 무버(1130)의 무게중심이 더욱 틸팅 가이드부(1141) 측으로 이동할 수 있다. 이로써, 상술한 바와 같이 자세차에 의한 영향을 줄일 수 있다.
실시예에 따른 카메라 엑추에이터 및 카메라 모듈은 보다 정확한 틸팅 구동이 수행될 수 있다. 뿐만 아니라, 상술한 무게중심의 이동이 회전축 또는 회전면에 인접해짐으로써 무버(또는 홀더)를 회전시키려고하는 힘인 전자기력이 감소될 수 있다. 즉, 카메라 엑추에이터 또는 카메라 모듈을 구동하기 위한 에너지 효율이 개선될 수 있다. 제3-1 마그넷/제3-2 마그넷에 대한 설명은 제3-1 코일 및 제3-2 코일에도 동일하게 적용될 수 있다.
실시예에 따르면, 홀더(1131) 또는 이를 포함하는 무버(1130)의 무게중심은 제1 돌출부(PR1)와 제3 방향(Z축 방향)으로 중첩되도록 위치할 수 있다. 이로써, 회전 방향 또는 자세차에 따라 전자기력의 변화량이 증가하는 것을 억제할 수 있다. 이로써, 실시예에 따른 카메라 엑추에이터 및 카메라 모듈은 틸팅을 정확하게 수행할 수 있다.
나아가, 상기와 같이 무버(1130)는 하우징의 일 측부(예로, 제5 하우징 측부)를 관통하는 체결부재(1131a)를 포함하고, 체결부재(1131a)에 의해 하우징과 결합할 수 있다. 나아가, 체결부재(1131a)에는 제1 홈(gr1)이 존재하고, 제1 홈(gr1)에는 제1 자성체(1142)가 위치할 수 있다.
그리고 하우징의 일 측부 예컨대, 제5 하우징 측부의 외측면에는 제2 홈(gr2)이 위치할 수 있다. 제2 홈(gr2)은 체결부재(1131a)의 제1 홈(gr1)과 마주하게 위치할 수 있다. 또한, 제2 홈(gr2)에는 제2 자성체(1143)가 위치할 수 있다. 이로 인해, 무버(1130) 및 무버(1130)와 결합되어 일체로 제1,2 축 틸트가 회전하는 체결부재(1131a)는 제1 자성체(1142)와 결합되고, 제1 자성체(1142) 및 제2 자성체(1143)가 틸팅 가이드부(1141)의 전단에 위치함으로써 무버(1130) 및 체결부재(1131a)의 무게중심이 상술한 바와 같이 틸팅 가이드부(1141)에 더욱 인접하게 위치할 수 있다. 이로써, 자세차에 따른 모멘트 변화량을 줄이고 틸트에 따른 필요 전자기력을 최소화할 수 있다. 이 때, 제2 자성체(1143)는 제3 방향으로 제1 자성체(1142)와 무버(1130) 사이에 위치할 수 있다.
또한, 체결부재(1131a)는 비자성체이면서 금속으로 이루어질 수 있다. 나아가, 체결부재(1131a)는 제3 방향(Z축 방향)에 반대 방향으로 돌출된 돌출영역(1131aap)을 가짐으로써 상술한 무게중심이 틸팅 가이드부(1141)에 더욱 인접하게 위치하게 할 수 있다. 나아가, 제1 자성체(1142) 및 제2 자성체(1143)는 제1 돌출부(PR1)와 제3 방향(Z축 방향)으로 적어도 일부 중첩되게 배치되어 자세차에 의한 영향을 최소화할 수 있다.
뿐만 아니라, 제1 자성체(1142)와 제2 자성체(1143)는 제1 방향(X축 방향) 또는 제2 방향(Y축 방향) 길이가 상이하여 자세차에 따른 전자기력 변화량을 더욱 줄일 수 있다.
또한, 실시에에 따른 무버(1130)는 홀더(1131) 및 광학 부재(1132)를 포함할 수 있다. 그리고 홀더(1131)는 상술한 바와 같이 외측면 중 일부에 제1 구동 마그넷과 제1 구동 코일이 배치될 수 있다. 이 때, 홀더(1131)는 제1 측벽 및 제2 측벽을 포함할 수 있다. 여기서, 제1 측벽은 마그넷 또는 코일이 인접하게 위치하는 제1 홀더 외측면 및 제2 홀더 외측면일 수 있다. 그리고 제2 측벽은 틸팅 가이드부(1141)가 위치하는 제4 홀더 외측면일 수 있다.
이를 기준으로, 제1 측벽은 제2 측벽과 수직으로 배치될 수 있다. 나아가, 제2 측벽은 틸팅 가이드부(1141)가 배치되는 캐비티(cavity)를 포함할 수 있다. 이 때, 캐비티(cavity)는 제3 영역(AR3)에 대응할 수 있으며, 틸팅 가이드부(1141)가 배치되는 공간으로 제4 안착홈에 의해 형성된 영역일 수 있다. 그리고 실시예에 따른 캐비티는 적어도 일부가 제1 구동 마그넷 또는 제1 구동 코일의 적어도 일부와 광축에 수직한 방향으로 중첩될 수 있다. 예컨대, 캐비티는 제1 구동 마그넷의 제1 마그넷 및 제2 마그넷의 적어도 일부와 제2 방향으로 중첩될 수 있다.
또한, 캐비티는 제1 구동 코일의 제1 코일 및 제2 코일의 적어도 일부와 제2 방향으로 중첩될 수 있다. 또한, 캐비티는 제1 구동 마그넷의 제3-1, 3-2 마그넷과 제1 방향으로 중첩될 수 있다. 그리고 캐비티는 제1 구동 코일의 제3-1, 3-2 코일과 제1 방향으로 중첩될 수 있다.
도 12a는 실시예에 따른 제1 카메라 엑추에이터의 사시도이고, 도 12b는 도 12a에서 SS'로 바라본 단면도이고, 도 12c는 도 12b에 도시된 제1 카메라 엑추에이터의 이동의 예시도이다.
도 12a 내지 도 12c를 참조하면, 실시예에 따른 제1 카메라 엑추에이터에서 Y축 틸트가 수행될 수 있다. 즉, 제1 방향(X축 방향)으로 회전하여 OIS 구현이 이루어질 수 있다.
구체적으로, 제1 자성체(1142)와 제2 자성체(1143) 간의 척력이 체결부재(1131a) 및 제5 하우징 측부(1126)로 전달되고, 최종적으로 제5 하우징 측부(1126)와 홀더(1131) 사이에 배치되는 틸팅 가이드부(1141)로 전달될 수 있다. 이에 따라, 상술한 바와 같이 틸팅 가이드부(1141)는 상술한 척력에 의해 무버(1130)와 제1 하우징(1120)에 의해 가압될 수 있다.
그리고 제1-1 돌출부(PR1a)와 제1-2 돌출부(PR1b)는 제2 방향(Y축 방향)으로 이격되어 홀더(1131)의 제4 안착홈(1131S4a)에 형성된 제1 돌기홈(PH1)에 의해 지지될 수 있다. 또한, 실시예로 틸팅 가이드부(1141)는 홀더(1131)를 향해(예컨대, 제3 방향을 향해) 돌출된 제1 돌출부(PR1)를 기준축(또는 회전축)으로 즉, 제2 방향(Y축 방향)을 기준으로 회전 또는 틸팅할 수 있다.
예를 들어, 제3-1 안착홈 및 제3-2 안착홈에 배치된 제3-1 마그넷(1151ca) 및 제3-2 마그넷(1151cb)과 제1,2 기판 측부 상에 배치된 제3-1 코일(1152ca) 및 제3-2 코일(1152cb) 간의 제1 전자기력에 의해 무버(1130)를 X축 방향으로 또는 X축 방향에 반대 방향으로 제1 각도 회전하면서 OIS 구현이 이루어질 수 있다. 제1 각도는 ±1° 내지 ±3°일 수 있다. 다만, 이에 한정되는 것은 아니다.
이하 여러 실시예에 따른 제1 카메라 엑추에이터에서 전자기력은 기재된 방향으로 힘을 생성하여 무버를 움직이거나, 도시된 방향과 다른 방향으로 힘을 생성하더라도 기재된 방향으로 무버를 움직일 수 있다. 즉, 도면에 도시된 방향은 마그넷과 코일에 의해 발생되어 무버를 움직이는 힘의 방향을 의미한다.
또한, 제1 자성체(1142)와 제2 자성체(1143)는 제1 방향(X축 방향)으로 길이가 서로 상이할 수 있다.
실시예로, 체결부재(1131a)와 결합하여 무버(1130)와 함께 틸트되는 제1 자성체(1142)는 면적이 제2 자성체(1143)의 면적과 상이할 수 있다. 예컨대, 제1 자성체(1142)는 면적이 제2 자성체(1143)의 면적보다 클 수 있다. 예로, 제1 자성체(1142)는 제1 방향(X축 방향)으로의 길이가 제2 자성체(1143)의 제1 방향(X축 방향)으로 길이보다 클 수 있다. 또한, 제1 자성체(1142)는 제2 방향(Y축 방향)으로 길이가 제2 자성체(1143)의 제2 방향(Y축 방향)으로 길이보다 클 수 있다. 또한, 제1 자성체(1142)의 양 끝단을 제3 방향으로 연장하는 가상의 직선 내에 제2 자성체(1143)가 위치할 수 있다.
이러한 구성에 의하여, 틸팅 또는 회전 시, 일측 자성체(예로, 제2 자성체)가 틸트되더라도 틸트에 의해 수직힘이 아닌 다른 힘이 발생하는 것을 용이하게 방지할 수 있다. 즉, 제2 자성체가 무버(1130)와 함께 상하 틸트되더라도 제2 자성체(1143)로부터 틸트에 대향하는 힘(예로, 척력 또는 인력)을 받지 않을 수 있다. 이로써, 구동 효율이 개선될 수 있다.
또한, 본 명세서에서 카메라 엑추에이터는 제1 축 구동 마그넷 및 제2 축 구동 마그넷을 포함할 수 있다. 제1 축 구동 마그넷은 제1 마그넷과 제2 마그넷을 포함할 수 있다. 그리고 제2 축 구동 마그넷은 제3-1 마그넷과 제3-2 마그넷을 포함할 수 있다. 나아가, 제1 축 구동 마그넷은 '제1 서브 구동 마그넷', '제1 축 마그넷', '제1 구동마그넷부' 등으로 표현될 수 있다. 또한, 제2 축 구동 마그넷은 '제2 서브 구동 마그넷', '제2 축 마그넷', '제2 구동마그넷부' 등으로 표현될 수 있다.
도 13a는 도 12a에서 RR'로 바라본 단면도이고, 도 13b는 도 13a에 도시된 제1 카메라 엑추에이터의 이동의 예시도이다.
도 13a 및 도 13b를 참조하면, X축 틸트가 수행될 수 있다. 즉, Y축 방향으로 무버(1130)가 틸팅 또는 회전하면서 OIS 구현이 이루어질 수 있다.
실시예로, 홀더(1131)에 배치되는 제1 마그넷(1151a) 및 제2 마그넷(1151b)은 각각이 제1 코일(1152a) 및 제2 코일(1152b)과 전자기력을 형성하여 제1 방향(X축 방향)을 기준으로 틸팅 가이드부(1141), 무버(1130) 및 체결부재(1131a)를 틸팅 또는 회전시킬 수 있다.
구체적으로, 제1 자성체(1142)와 제2 자성체(1143) 간의 척력이 제5 하우징 측부(1126) 및 홀더(1131)로 전달되며, 최종적으로 홀더(1131)와 제5 하우징 측부(1126) 사이에 배치되는 틸팅 가이드부(1141)로 전달될 수 있다. 이에 따라, 틸팅 가이드부(1141)는 상술한 척력에 의해 무버(1130)와 제1 하우징(1120)에 의해 가압될 수 있다.
또한, 제2 돌출부(PR2)는 제5 하우징 측부(1126)에 의해 지지될 수 있다. 이 때, 실시예로 틸팅 가이드부(1141)는 홀더(1131)를 향해 돌출된 제2 돌출부(PR2)를 기준축(또는 회전축)으로 즉, 제1 방향(X축 방향)을 기준으로 회전 또는 틸팅할 수 있다. 다시 말해, 틸팅 가이드부(1141)는 제5 하우징 측부(1126)를 향해 돌출된 제2 돌출부(PR2)를 기준축(또는 회전축)으로 제2 방향(Y축 방향)으로 회전 또는 틸팅할 수 있다.
예를 들어, 제1 안착홈에 배치된 제1, 2 마그넷(1151a, 1151b)과 제1, 2 기판 측부 상에 배치된 제1, 2 코일부(1152a, 1152b) 간의 제2 전자기력(F2A, F2B)에 의해 무버(1130)를 Y축 방향으로 또는 Y축 방향에 반대 방향으로 제2 각도(θ2) 회전(Y1->Y1a 또는 Y1b)하면서 OIS 구현이 이루어질 수 있다. 제2 각도(θ2)는 ±1° 내지 3°일 수 있다. 다만, 이에 한정되는 것은 아니다.
또한, 상술한 바와 같이 제1,2 마그넷(1151a, 1151b)과 제1,2 코일부(1152a, 1152b)에 의한 전자기력은 제3 방향 또는 제3 방향의 반대 방향으로 작용할 수 있다. 예컨대, 전자기력은 무버(1130)의 좌측부에서 제3 방향(Z축 방향)으로 발생하고, 무버(1130)의 우측부에서 제3 방향(Z축 방향)의 반대 방향으로 작용할 수 있다. 이에, 무버(1130)는 제1 방향을 기준으로 회전할 수 있다. 또는 제2 방향을 따라 이동할 수 있다. 이와 같이, 도시된 방향은 무버의 이동 방향에 대응하며, 실제 마그넷과 코일에 의한 전자기력 방향과 상이하거나 또는 동일할 수 있다.
이와 같이, 실시예에 따른 제1 카메라 엑추에이터는 홀더 내의 제1 구동 마그넷과 제1 하우징에 배치되는 제1 구동 코일 간의 전자기력에 의해 무버(1130)를 제1 방향(X축 방향) 또는 제2 방향(Y축 방향)으로 회전 제어함으로써, OIS 구현 시 디센터(decent)나 틸트(tilt) 현상의 발생을 최소화하고 최상의 광학적 특성을 제공할 수 있다. 또한, 상술한 바와 같이 'Y축 틸트'는 제1 방향(X축 방향)으로 회전 또는 틸트하는 것을 의미하고, 'X축 틸트'는 제2 방향(Y축 방향)으로 회전 또는 틸트하는 것을 의미한다.
도 14a는 실시예에 따른 홀더 및 구동부의 일 측면도이고, 도 14b는 실시예에 따른 홀더 및 구동부의 다른 측면도이고, 도 14c는 실시예에 따른 홀더, 틸팅 가이드부 및 구동부의 다른 예이다.
도 14a 및 도 14b를 참조하면, 제1 마그넷(1151a)과 제3-1 마그넷(1151ca)은 무버(1130)의 일면에 배치될 수 있다. 그리고 제2 마그넷(1151b)과 제3-2 마그넷(1151cb)은 무버(1130)의 타면에 배치될 수 있다. 예컨대, 무버(1130)의 일면은 홀더(1131)의 제1 홀더 외측면일 수 있다. 그리고 1 마그넷(1151a)과 제3-1 마그넷(1151ca) 각각은 제1 안착홈과 제3-1 안착홈에 위치할 수 있다. 또한, 제2 마그넷(1151b)과 제3-2 마그넷(1151cb) 각각은 제2 안착홈과 제3-2 안착홈에 위치할 수 있다.
제1 마그넷(1151a) 및 제2 마그넷(1151b)은 제3-1 마그넷(1151ca) 및 제3-2 마그넷(1151cb) 대비 틸팅 가이드부에 인접할 수 있다. 그리고 제1 마그넷(1151a) 및 제2 마그넷(1151b)의 면적은 제3-1 마그넷(1151ca) 및 제3-2 마그넷(1151cb)의 면적과 상이할 수 있다. 예컨대, 제1 마그넷(1151a) 및 제2 마그넷(1151b)의 면적은 제3-1 마그넷(1151ca) 및 제3-2 마그넷(1151cb)의 면적보다 작을 수 있다. 이러한 구성에 의하여, 제1 카메라 엑추에이터에서 제2 방향(Y축 방향)을 기준으로 회전이 용이하게 이루어질 수 있다.
또한, 제1 마그넷(1151a)과 제2 마그넷(1151b)은 서로 대응할 수 있다. 예컨대, 제1 마그넷(1151a)과 제2 마그넷(1151b)은 상술한 바와 같이 제1 방향(X축 방향)을 기준으로 마주보게 위치할 수 있다. 나아가, 제1 마그넷(1151a)과 제2 마그넷(1151b)은 상술한 바와 같이 제1 방향(X축 방향)을 기준으로 대칭으로 배치될 수 있다.
나아가, 제3-1 마그넷(1151ca)과 제3-2 마그넷(1151cb)은 서로 대응할 수 있다. 제3-1 마그넷(1151ca)과 제3-2 마그넷(1151cb)은 제1 방향(X축 방향)을 기준으로 서로 마주보게 위치할 수 있다. 예컨대, 제3-1 마그넷(1151ca)과 제3-2 마그넷(1151cb)은 제1 방향(X축 방향)을 기준으로 서로 대칭으로 배치될 수 있다.
이에, 제3-1 마그넷(1151ca)과 제3-2 마그넷(1151cb)은 제1 마그넷(1151a)과 제2 마그넷(1151b) 대비 면적이 크므로 틸팅 가이드부로부터 제3 방향(Z축 방향)으로 더 이격된 제3-1 마그넷(1151ca)과 제3-2 마그넷(1151cb) 제3-1 마그넷(1151ca)과 제3-2 마그넷(1151cb)에 의한 틸팅도 용이하게 수행될 수 있다.
제1 마그넷(1151a)은 서로 다른 극성의 제1-1 마그넷 영역(MA1a)과 제1-2 마그넷 영역(MA1b)을 포함할 수 있다. 또한, 제1 마그넷(1151a)은 제1-1 마그넷 영역(MA1a)과 제1-2 마그넷 영역(MA1b) 사이에 배치된 제1 중립 영역(NA1)을 포함할 수 있다. 제1 중립 영역(NA1)은 뉴트럴 영역, 중립 지역, 비극성 영역일 수 있다. 나아가, 제1 중립 영역(NA1)은 비극성의 물질로 이루어지거나 이격된 홈을 형성할 수 있다. 제1-1 마그넷 영역(MA1a)과 제1-2 마그넷 영역(MA1b)은 광축 방향(Z축 방향)을 따라 순차로 배치될 수 있다.
그리고 본 명세서에서 전자기력을 제공하는 극성은 인접한 코일과 마주하는 면의 극성을 의미한다. 예컨대, 극성은 각 마그넷 또는 마그넷 영역의 외측면의 극성을 의미한다.
제1-1 마그넷 영역(MA1a)과 제1-2 마그넷 영역(MA1b)은 제3 방향(Z축 방향)으로 이격될 수 있다. 제1-1 마그넷 영역(MA1a)과 제1-2 마그넷 영역(MA1b)은 제3 방향(Z축 방향)으로 중첩될 수 있다. 그리고 제1-1 마그넷 영역(MA1a)은 N극이고, 제1-2 마그넷 영역(MA1b)은 S극일 수 있다.
제2 마그넷(1151b)은 제2-1 마그넷 영역(MA2a) 및 제2-2 마그넷 영역(MA2b)을 포함할 수 있다. 또한, 제2 마그넷(1151b)은 제2-1 마그넷 영역(MA2a)과 제2-2 마그넷 영역(MA2b) 사이에 배치된 제2 중립 영역(NA2)을 포함할 수 있다. 제2 중립 영역(NA2)은 비극성의 물질로 이루어지거나 이격된 홈을 형성할 수 있다. 제2-1 마그넷 영역(MA2a) 및 제2-2 마그넷 영역(MA2b)은 서로 상하 배치될 수 있다. 예컨대, 제2-1 마그넷 영역(MA2a)은 제2-2 마그넷 영역(MA2b) 상부에 위치할 수 있다. 그리고 제1-2 마그넷 영역(MA1b)은 제2-1 마그넷 영역(MA2a)과 극성이 상이할 수 있다.
제2-1 마그넷 영역(MA2a)과 제2-2 마그넷 영역(MA2b)은 제3 방향(Z축 방향)으로 이격될 수 있다. 제2-1 마그넷 영역(MA2a)과 제2-2 마그넷 영역(MA2b)은 제3 방향(Z축 방향)으로 중첩될 수 있다. 그리고 제2-1 마그넷 영역(MA2a)은 S극이고 제2-2 마그넷 영역(MA2b)은 N극일 수 있다.
제1-1 마그넷 영역(MA1a)과 제2-1 마그넷 영역(MA2a)과 제2 방향(Y축 방향)으로 중첩될 수 있다. 제1-2 마그넷 영역(MA1b)과 제2-2 마그넷 영역(MA2b)과 제2 방향(Y축 방향)으로 중첩될 수 있다.
제1-1 마그넷 영역(MA1a)은 제2-1 마그넷 영역(MA2a) 및 제2-2 마그넷 영역(MA2b) 중 어느 하나의 극성과 동일한 극성을 가질 수 있다. 또한, 제1-2 마그넷 영역(MA1b)은 제2-1 마그넷 영역(MA2a) 및 제2-2 마그넷 영역(MA2b) 중 다른 하나의 극성과 동일한 극성을 가질 수 있다.
예컨대, 제1-1 마그넷 영역(MA1a)과 제2-2 마그넷 영역(MA2b)은 N극일 수 있다. 그리고 제1-2 마그넷 영역(MA1b)과 제2-1 마그넷 영역(MA2a)은 S극일 수 있다. 이에 제2 방향(Y축 방향)으로 중첩되는 마그넷 영역의 극성이 서로 다를 수 있다. 이러한 구성에 의해, 각 코일(예, 제1 코일 또는 제2 코일)에 동일한 방향으로 전류가 인가되면 무버(1130)는 제1 방향(X축 방향)을 기준으로 틸트될 수 있다. 다른 예로, 각 코일에 다른 방향으로 전류가 인가되더라도 무버(1130)는 제1 방향(X축 방향)을 기준으로 틸트될 수 있다.
또한, 제1 마그넷(1151a)과 제3-1 마그넷(1151ca)은 일체의 자석 또는 분리된 자석일 수 있다. 이는 상술한 안착홈의 구조에 따라 상이할 수 있다. 예컨대, 제1 마그넷(1151a)과 제3-1 마그넷(1151ca)은 일체로 이루어지고 제1 마그넷과 제3-1 마그넷 사이에도 중립 영역이 위치할 수 있다. 나아가, 제1 마그넷에서 제1-1 마그넷 영역과 제1-2 마그넷 영역은 양극착자로 이루어질 수 있다. 예컨대, 제1-1 마그넷 영역의 외측면이 N극이면 제1-1 마그넷 영역의 내측면이 S극일 수 있다. 그리고 제1-2 마그넷 영역의 외측면이 S극이면 제1-2 마그넷 영역의 내측면이 N극일 수 있다. 마찬가지로, 제2-1 마그넷 영역의 외측면이 S극이면 제2-1 마그넷 영역의 내측면이 N극일 수 있다. 그리고 제2-2 마그넷 영역의 외측면이 N극이면 제2-2 마그넷 영역의 내측면이 S극일 수 있다.
또한, 제3-1 마그넷 영역의 외측면이 N극이면 제3-1 마그넷 영역의 내측면이 S극일 수 있다. 그리고 제3-2 마그넷 영역의 외측면이 S극이면, 제3-2 마그넷 영역의 내측면이 N극일 수 있다.
그리고 제3-3 마그넷 영역의 외측면이 N극이면 제3-3 마그넷 영역의 내측면이 S극일 수 있다. 그리고 제3-4 마그넷 영역의 외측면이 S극이면, 제3-4 마그넷 영역의 내측면이 N극일 수 있다.
실시예에 따르면, 제1 마그넷(1151a)에 의해 홀더가 좌우 구동할 수 있다. 즉, 제1 마그넷(1151a)과 제2 마그넷(1151b)에 의해 전자기력은 제3 방향(Z축 방향) 또는 제3 방향의 반대 방향으로 발생할 수 있다. 이에, 홀더는 제1 방향(X축 방향)을 기준으로 회전할 수 있다.
예컨대, 제1 마그넷(1151a)에 의해 제2 방향(Y축 방향) 또는 제2 방향(Y축 방향)의 반대 방향으로 자기력이 발생할 수 있다. 그리고 제1 코일(1152a)에 의해 전류는 제1 방향의 반대 방향(제1-1 마그넷 영역), 제1 방향(제1-2 마그넷 영역)으로 흐를 수 있다. 이에, 제1 코일(1152a)은 제3 방향(Z축 방향)의 반대 방향으로 전자기력을 받을 수 있다. 그리고 제1 코일(1152a)은 고정된 구성요소인 바, 홀더가 제3 방향(Z축 방향)으로 이동할 수 있다.
또한, 제2 마그넷(1151b)에 의해 제2 방향(Y축 방향) 또는 제2 방향(Y축 방향)의 반대 방향으로 자기력이 발생할 수 있다. 예컨대, 제2-1 마그넷 영역과 제1-1 마그넷 영역에서 자기력의 방향은 동일할 수 있다. 그리고 제1-2 마그넷 영역에서 자기력의 방향과 제2-2 마그넷 영역에서 자기력의 방향은 동일할 수 있다.
그리고 제2 코일(1152b)에 의해 전류는 제1 방향의 반대 방향(제2-1 마그넷 영역) 및 제1 방향(제2-2 마그넷 영역)으로 흐를 수 있다. 이에, 제2 코일(1152b)은 제3 방향(Z축 방향)으로 전자기력을 받을 수 있다. 또한, 제2 코일(1152b)은 고정된 구성요소인 바, 홀더가 제3 방향(Z축 방향)의 반대 방향으로 이동할 수 있다.
이로써, 제1 홀더 외측면은 제3 방향(Z축 방향)으로 이동할 수 있다. 그리고 제2 홀더 외측면은 제3 방향(Z축 방향)의 반대 방향으로 이동할 수 있다. 즉, 제1 홀더 외측면은 틸팅 가이드부로부터 이격되고, 제2 홀더 외측면은 틸팅 가이드부와 인접해질 수 있다. 홀더는 제1 방향을 기준으로 틸트할 수 있다.
제1 방향(X축 방향) 또는 제1 방향(X축 방향)의 반대 방향으로 발생할 수 있다. 이에, 홀더는 제1 방향(X축 방향) 또는 제1 방향의 반대 방향으로 이동할 수 있다. 다시 말해, 홀더는 제2 방향(Y축 방향)을 기준으로 회전할 수 있다.
예컨대, 제1 마그넷(1151a)에 의해 제2 방향(Y축 방향)으로 자기력이 발생하고, 제1 코일(1152a)에 전류가 시계 방향 또는 반시계 방향으로 흐를 수 있다. 예를 들어, 제1 코일(1152a)에서 제1 방향(X축 방향)으로 전류가 흐르고, 제2 방향(Y축 방향)으로 자기력이 발생하면, 제1 코일(1152a)에 제3 방향(Z축 방향)으로 전자기력이 발생할 수 있다. 이에, 홀더의 제1 홀더 외측면에는 제3 방향(Z축 방향)의 반대 방향으로 힘(전자기력에 의한)이 발생할 수 있다. 또한, 제2 코일(1152b)에서 제1 방향(X축 방향)으로 전류가 흐르고, 제2 방향(Y축 방향)의 반대 방향으로 자기력이 발생하면, 제1 코일(1152a)에 제3 방향(Z축 방향)의 반대 방향으로 전자기력이 발생할 수 있다. 이에, 홀더의 제2 홀더 외측면에는 제3 방향(Z축 방향)으로 힘(전자기력에 의한)이 발생할 수 있다. 이로써, 홀더는 제1 방향을 기준으로 틸트할 수 있다. 예컨대, 제1 홀더 외측면은 틸팅 가이드부에 인접하게 위치하고, 제2 홀더 외측면은 틸팅 가이드부로부터 멀어지게 위치할 수 있다.
또한, 제3-1 마그넷(1151ca)은 서로 다른 극성의 제3-1 마그넷 영역(MA3aa) 및 제3-2 마그넷 영역(MA3ab)을 포함할 수 있다. 제3-1 마그넷 영역(MA3aa) 및 제3-2 마그넷 영역(MA3ab)은 제1 방향(X축 방향)으로 중첩될 수 있다. 그리고 제3-1 마그넷 영역(MA3aa) 및 제3-2 마그넷 영역(MA3ab)은 제1 방향(X축 방향)으로 서로 이격될 수 있다. 나아가, 제3-1 마그넷(1151ca)은 제3-1 마그넷 영역(MA3aa)과 제3-2 마그넷 영역(MA3ab) 사이에 배치된 제3 중립 영역(NA3a)을 포함할 수 있다. 제3-1 마그넷 영역(MA3aa) 및 제3-2 마그넷 영역(MA3ab)은 제3 중립 영역(NA3a)과 제1 방향(X축 방향)으로 중첩될 수 있다.
또한, 제3-2 마그넷(1151cb)은 서로 다른 극성의 제3-3 마그넷 영역(MA3ba) 및 제3-4 마그넷 영역(MA3bb)을 포함할 수 있다. 제3-3 마그넷 영역(MA3ba) 및 제3-4 마그넷 영역(MA3bb)은 제1 방향(X축 방향)으로 중첩될 수 있다. 그리고 제3-3 마그넷 영역(MA3ba) 및 제3-4 마그넷 영역(MA3bb)은 제1 방향(X축 방향)으로 서로 이격될 수 있다. 나아가, 제3-2 마그넷(1151cb)은 제3-3 마그넷 영역(MA3ba)과 제3-4 마그넷 영역(MA3bb) 사이에 배치된 제4 중립 영역(NA3b)을 포함할 수 있다. 제3-3 마그넷 영역(MA3ba) 및 제3-4 마그넷 영역(MA3bb)은 제4 중립 영역(NA3b)과 제1 방향(X축 방향)으로 중첩될 수 있다.
또한, 실시예에 따르면 제1 극성 방향과 제2 극성 방향은 상이할 수 있다. 제1 극성 방향은 제3-1 마그넷 영역(MA3aa)에서 제3-2 마그넷 영역(MA3ab)을 향한 방향 또는 제3-3 마그넷 영역(MA3ba)에서 제3-4 마그넷 영역(MA3bb)을 향한 방향일 수 있다. 그리고 제2 극성 방향은 제1-1 마그넷 영역(MA1a)에서 제1-2 마그넷 영역(MA1b)을 향한 방향 또는 제2-1 마그넷 영역(MA2a)에서 제2-2 마그넷 영역(MA2b)을 향한 방향일 수 있다.
제1 마그넷(1151a)의 광축 방향(Z축 방향)으로 길이(L9)는 제3-1 마그넷(1151ca) 또는 제3-2 마그넷(1151cb)의 광축 방향(Z축 방향)으로 길이(L10)와 상이할 수 있다. 실시예로, 제1 마그넷(1151a)의 광축 방향(Z축 방향)으로 길이(L9)는 제3-1 마그넷(1151ca) 또는 제3-2 마그넷(1151cb)의 광축 방향(Z축 방향)으로 길이(L10)보다 작을 수 있다. 이러한 구성에 의하여, 홀더가 제2 방향(Y축 방향)을 기준으로 용이하게 틸트할 수 있다.
또는 제1 마그넷(1151a)의 광축 방향(Z축 방향)으로 길이(L9)는 제2 마그넷(1151b)의 광축 방향으로 길이(L10)와 동일할 수 있다.
또한, 구동부는 상술한 바와 같이 제1 마그넷(1151a)에 마주하는 제1 코일(1152a), 제2 마그넷(1151b)에 마주하는 제2 코일(1152b), 제3-1 마그넷(1151ca)에 마주하는 제3-1 코일(1152ca) 및 제3-2 마그넷(1151cb)에 마주하는 제3-2 코일(1152cb)을 포함할 수 있다.
제1 코일(1152a)은 광축 방향(Z축 방향)으로 길이(L2)가 수직 방향(X축 방향)으로 길이(L1)와 상이할 수 있다. 또한, 제2 코일(1152b)은 광축 방향(Z축 방향)으로 길이가 수직 방향(X축 방향)으로 길이와 상이할 수 있다.
또한, 제3-1 코일(1152ca)은 광축 방향(Z축 방향)으로 길이(L4)가 수직 방향(X축 방향)으로 길이(L3)와 상이할 수 있다. 또한, 제3-2 코일(1152cb)은 광축 방향(Z축 방향)으로 길이가 수직 방향(X축 방향)으로 길이와 상이할 수 있다. 또는 또한, 제3-1 코일(1152ca)은 광축 방향(Z축 방향)으로 길이(L4)가 수직 방향(X축 방향)으로 길이(L3)와 동일할 수 있다.
제1 코일(1152a)과 제3-1 코일(1152ca)은 광축 방향(Z축 방향)으로 적어도 일부 중첩될 수 있다. 그리고 제2 코일(1152b)과 제3-2 코일(1152cb)은 광축 방향(Z축 방향)으로 적어도 일부 중첩될 수 있다.
그리고 제1 코일(1152a)의 일단 및 제2 코일(1152b)의 일단은 동일 노드를 가질 수 있다. 나아가, 제1 코일(1152a)의 타단 및 제2 코일(1152b)의 타단은 서로 동일 노드를 가질 수 있다. 즉, 제1 코일(1152a)과 제2 코일(1152b)은 서로 동일한 채널로 이루어질 수 있다. 또한, 제1 코일(1152a)과 제2 코일(1152b)은 일단과 타단이 서로 동일한 방향으로 권선될 수 있다. 보다 구체적으로, 제1 코일(1152a)의 일단 및 제2 코일(1152b)의 일단은 제1 기판부(1154)에 형성된 동일한 회로 패턴과 연결될 수 있다. 또는 제1 코일(1152a)의 일단 및 제2 코일(1152b)의 일단은 제1 기판부(1154)에서 서로 전기적으로 연결되는 회로 기판부의 전극 패턴 각각과 연결될 수 있다. 또한, 제3-1 코일(1152ca)의 일단 및 제3-2 코일(1152cb)의 일단은 제1 기판부(1154)에 형성된 동일한 회로 패턴과 연결될 수 있다. 또는 제3-1 코일(1152ca)의 일단 및 제3-2 코일(1152cb)의 일단은 제1 기판부(1154)에서 서로 전기적으로 연결되는 회로 기판부의 전극 패턴 각각과 연결될 수 있다.
이로써, 제1 코일(1152a)과 제2 코일(1152b)에 의해 발생하는 전자기력은 서로 반대 방향을 형성할 수 있다. 예컨대, 제1 코일(1152a)에 의한 전자기력은 제2 방향(Y축 방향)으로 형성될 수 있다. 제2 코일(1152b)에 의한 전자기력은 제2 방향(Y축 방향)의 반대 방향으로 형성될 수 있다.또한, 틸팅 가이드부는 제1 코일(1152a) 또는 제2 코일(11152b) 사이에서 수평 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다. 이러한 구성에 의하여, 틸팅 가이드부에 의한 회전 구동 효율이 개선될 수 있다.
또는, 틸팅 가이드부는 제1 코일(1152a) 또는 제2 코일(11152b) 사이에서 수평 방향(Y축 방향)으로 어긋나게 배치될 수도 있다. 이러한 구성에 의하여, 홀더에 의한 틸트 반경을 증가시킬 수 있다.
나아가, 구동부에서 홀 센서부는 제1 코일(1152a) 내에 배치되는 제1 홀 센서(1153a), 제2 코일(1152b) 내에 배치되는 제2 홀 센서(1153b), 제3-1 코일(1152ca) 내에 배치되는 제3-1 홀 센서(1153ca) 및 제3-2 코일(1152cb) 내에 배치되는 제3-2 홀 센서(1153cb)를 포함할 수 있다.
제1 홀 센서(1153a) 및 제2 홀 센서(1153b)의 광축 방향으로 길이(L5)는 제3-1 홀 센서(1153ca) 및 제3-2 홀 센서(1153cb)의 광축 방향(Z축 방향)으로 길이(L7)와 상이할 수 있다. 예컨대, 제1 홀 센서(1153a) 및 제2 홀 센서(1153b)의 광축 방향으로 길이(L5)는 제3-1 홀 센서(1153ca) 및 제3-2 홀 센서(1153cb)의 광축 방향(Z축 방향)으로 길이(L7)보다 작을 수 있다. 이러한 구성에 의하여, 제1 극성 방향과 제2 극성 방향이 상이한 방향(예컨대, 수직 방향)을 가질 수 있다. 이에, 제1 마그넷(1151a)과 제3-1 마그넷(1151ca)의 상이한 방향으로 이동함에 대응하여 제1 홀 센서(1153a)와 제3-1 홀 센서(1153ca)는 정확한 위치 감지를 수행할 수 있다. 나아가, 제1 홀 센서(1153a)와 제3-1 홀 센서(1153ca)는 광축 방향(Z축 방향)으로 적어도 일부 중첩될 수 있다.
그리고 제1 홀 센서(1153a) 및 제2 홀 센서(1153b)의 광축 방향으로 길이(L5)는 제1 홀 센서(1153a) 및 제2 홀 센서(1153b)의 수직 방향(X축 방향)으로 길이(L6)보다 작을 수 있다.
또한, 제3-1 홀 센서(1153ca) 및 제3-2 홀 센서(1153cb)의 광축 방향(Z축 방향)으로 길이(L7)는 제3-1 홀 센서(1153ca) 및 제3-2 홀 센서(1153cb)의 수직 방향(X축 방향)으로 길이(L8)보다 클 수 있다.
이러한 구성에 의하여, 제1 홀 센서(1153a), 제2 홀 센서(1153b), 3-1 홀 센서(1153ca) 및 제3-2 홀 센서(1153cb)에 의해 대응한 마그넷의 위치에 대한 감지가 정확하게 이루어질 수 있다.
나아가, 도 14c를 참조하면, 틸팅 가이드부는 상술한 바와 같이 제1 돌출부와 제2 돌출부의 위치가 변경될 수 있다. 예컨대 도시된 바와 같이 제1 돌출부가 외측에 배치되고 제2 돌출부가 내측에 배치될 수 있다. 다시 말해, 제2 방향으로 이격된 제2 돌출부가 제4 홀더 외측면과 마주할 수 있다.
도 15a는 다른 실시예에 따른 홀더, 틸팅 가이드부 및 구동부의 사시도이고, 도 15b는 다른 실시예에 따른 홀더, 틸팅 가이드부 및 구동부의 다른 사시도이고, 도 15c는 다른 실시예에 따른 홀더, 틸팅 가이드부 및 구동부의 다른 예이다.
도 15a 및 도 15b를 참조하면, 구동부 또는 제1 구동부(1150)는 제1 구동 마그넷(1151), 제1 구동 코일(1152), 홀 센서부(1153), 제1 기판부(1154) 및 요크부(미도시됨)를 포함한다.
제1 구동부(1150)는 제1 구동 마그넷(1151), 제1 구동 코일(1152), 홀 센서부(1153)(또는 제1 홀 센서부), 제1 기판부(1154) 및 요크부(미도시됨)를 포함한다. 이에 대한 내용은 후술한다.
다른 실시예에 따른 구동부는 제1 구동 마그넷(1151)은 제1 마그넷(1151a), 제2 마그넷(1151b), 제3-1 마그넷(1151ca) 및 제3-2 마그넷(1151cb)을 포함할 수 있다. 제1 구동 코일(1152)은 제1 코일(1152a), 제2 코일(1152b), 제3-1 코일(1152ca) 및 제3-2 코일(1152cb)을 포함할 수 있다. 홀 센서부(1153)는 제1 홀 센서(1153a), 제2 홀 센서(1153b), 제3-1 홀 센서(1153ca) 및 제3-2 홀 센서(1153cb)를 포함할 수 있다. 이에 대한 설명은 후술하는 내용을 제외하고 동일하게 적용될 수 있다.
또한, 다른 실시예에 따른 틸팅 가이드부(1141)는 후술하는 내용을 제외하고 상술한 내용이 동일하게 적용될 수 있다.
본 실시예에 따르면, 상술한 바와 같이 제1 마그넷(1151a) 및 제2 마그넷에 의해 홀더는 좌우 구동할 수 있다. 즉, 제1 마그넷 및 제2 마그넷에 의해 제1 방향을 기준으로 틸트할 수 있다. 그리고 제1 마그넷 및 제2 마그넷 대비 틸팅 가이드부로부터 이격 거리가 큰 제3-1 마그넷 및 제3-2 마그넷에 의해 홀더는 상하 구동할 수 있다. 즉, 제3-1 마그넷 및 제3-2 마그넷에 의해 홀더는 제2 방향을 기준으로 틸팅할 수 있다. 가이드부(1141)는 홀더의 제4 홀더 외측면과 제3 방향(Z축 방향)을 따라 소정 거리 이격 배치될 수 있다. 그리고 제4 홀더 외측면에는 제1 돌기홈이 배치되어 틸팅 가이드부의 제1 돌출부가 수용될 수 있다. 구체적으로, 틸팅 가이드부(1141)는 홀더의 제1 마그넷(1151a) 또는 제2 마그넷과 광축 방향(Z축 방향)으로 이격공간(gap1)을 가질 수 있다. 즉, 상술한 바와 달리, 틸팅 가이드부(1141)는 홀더의 제1 마그넷(1151a) 또는 제2 마그넷과 수평 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다. 이러한 구성에 의하여, 홀더의 틸트 각도가 개선될 수 있다.
도 15c를 참조하면, 틸팅 가이드부는 상술한 바와 같이 제1 돌출부와 제2 돌출부의 위치가 변경될 수 있다. 예컨대 도시된 바와 같이 제1 돌출부가 외측에 배치되고 제2 돌출부가 내측에 배치될 수 있다. 다시 말해, 제2 방향으로 이격된 제2 돌출부가 제4 홀더 외측면과 마주할 수 있다.
도 16a는 또 다른 실시예에 따른 홀더, 틸팅 가이드부 및 구동부의 사시도이고, 도 16b는 또 다른 실시예에 따른 홀더, 틸팅 가이드부 및 구동부의 다른 사시도이고, 도 16c는 또 다른 실시예에 따른 홀더, 틸팅 가이드부 및 구동부의 다른 예이다.
도 16a 및 도 16b를 참조하면, 구동부 또는 제1 구동부(1150)는 제1 구동 마그넷(1151), 제1 구동 코일(1152), 홀 센서부(1153), 제1 기판부(1154) 및 요크부(미도시됨)를 포함한다.
제1 구동부(1150)는 제1 구동 마그넷(1151), 제1 구동 코일(1152), 홀 센서부(1153)(또는 제1 홀 센서부), 제1 기판부(1154) 및 요크부(미도시됨)를 포함한다. 이에 대한 내용은 후술한다.
다른 실시예에 따른 구동부는 제1 구동 마그넷(1151)은 제1 마그넷(1151a), 제2 마그넷(1151b), 제3-1 마그넷(1151ca) 및 제3-2 마그넷(1151cb)을 포함할 수 있다. 제1 구동 코일(1152)은 제1 코일(1152a), 제2 코일(1152b), 제3-1 코일(1152ca) 및 제3-2 코일(1152cb)을 포함할 수 있다. 홀 센서부(1153)는 제1 홀 센서(1153a), 제2 홀 센서(1153b), 제3-1 홀 센서(1153ca) 및 제3-2 홀 센서(1153cb)를 포함할 수 있다. 이에 대한 설명은 후술하는 내용을 제외하고 동일하게 적용될 수 있다.
또한, 다른 실시예에 따른 틸팅 가이드부(1141)는 후술하는 내용을 제외하고 상술한 내용이 동일하게 적용될 수 있다.
본 실시예에서는 제1 마그넷(1151a)에 의해 홀더가 상하 구동할 수 있다. 즉, 제1 마그넷(1151a)과 제2 마그넷(1151b)에 의해 전자기력은 제1 방향(X축 방향) 또는 제1 방향(X축 방향)의 반대 방향으로 발생할 수 있다. 이에, 홀더는 제1 방향(X축 방향) 또는 제1 방향의 반대 방향으로 이동할 수 있다. 다시 말해, 홀더는 제2 방향(Y축 방향)을 기준으로 회전할 수 있다.
예컨대, 제1 마그넷(1151a)에 의해 제2 방향(Y축 방향)으로 자기력이 발생하고, 제1 코일(1152a)에 전류가 시계 방향 또는 반시계 방향으로 흐를 수 있다. 예를 들어, 제1 코일(1152a)에서 제1 방향(X축 방향)으로 전류가 흐르고, 제2 방향(Y축 방향)으로 자기력이 발생하면, 제1 코일(1152a)에 제3 방향(Z축 방향)으로 전자기력이 발생할 수 있다. 이에, 홀더의 제1 홀더 외측면에는 제3 방향(Z축 방향)의 반대 방향으로 힘(전자기력에 의한)이 발생할 수 있다. 또한, 제2 코일(1152b)에서 제1 방향(X축 방향)으로 전류가 흐르고, 제2 방향(Y축 방향)의 반대 방향으로 자기력이 발생하면, 제1 코일(1152a)에 제3 방향(Z축 방향)의 반대 방향으로 전자기력이 발생할 수 있다. 이에, 홀더의 제2 홀더 외측면에는 제3 방향(Z축 방향)으로 힘(전자기력에 의한)이 발생할 수 있다. 이로써, 홀더는 제1 방향을 기준으로 틸트할 수 있다. 예컨대, 제1 홀더 외측면은 틸팅 가이드부에 인접하게 위치하고, 제2 홀더 외측면은 틸팅 가이드부로부터 멀어지게 위치할 수 있다.
나아가 본 실시예에 따르면, 틸팅 가이드부(1141)는 홀더의 제4 홀더 외측면과 제3 방향(Z축 방향)을 따라 소정 거리 이격 배치될 수 있다. 그리고 제4 홀더 외측면에는 제1 돌기홈이 배치되어 틸팅 가이드부의 제1 돌출부가 수용될 수 있다. 구체적으로, 틸팅 가이드부(1141)는 홀더의 제1 마그넷(1151a) 또는 제2 마그넷과 광축 방향(Z축 방향)으로 이격공간(gap2)을 가질 수 있다. 즉, 상술한 바와 달리, 틸팅 가이드부(1141)는 홀더의 제1 마그넷(1151a) 또는 제2 마그넷과 수평 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다. 이러한 구성에 의하여, 홀더의 틸트 각도가 개선될 수 있다.
도 16c를 참조하면, 틸팅 가이드부는 상술한 바와 같이 제1 돌출부와 제2 돌출부의 위치가 변경될 수 있다. 예컨대 도시된 바와 같이 제1 돌출부가 외측에 배치되고 제2 돌출부가 내측에 배치될 수 있다. 다시 말해, 제2 방향으로 이격된 제2 돌출부가 제4 홀더 외측면과 마주할 수 있다.
도 17a는 변형예에 따른 홀더, 틸팅 가이드부 및 구동부의 사시도이고, 도 17b는 변형예에 따른 홀더, 틸팅 가이드부 및 구동부의 다른 사시도이고, 도 15c는 변형예에 따른 홀더, 틸팅 가이드부 및 구동부의 다른 예이다.
도 17a 및 도 17b를 참조하면, 구동부 또는 제1 구동부(1150)는 제1 구동 마그넷(1151), 제1 구동 코일(1152), 홀 센서부(1153), 제1 기판부(1154) 및 요크부(미도시됨)를 포함한다.
제1 구동부(1150)는 제1 구동 마그넷(1151), 제1 구동 코일(1152), 홀 센서부(1153)(또는 제1 홀 센서부), 제1 기판부(1154) 및 요크부(미도시됨)를 포함한다. 이에 대한 내용은 후술한다.
다른 실시예에 따른 구동부는 제1 구동 마그넷(1151)은 제1 마그넷(1151a), 제2 마그넷(1151b), 제3-1 마그넷(1151ca) 및 제3-2 마그넷(1151cb)을 포함할 수 있다. 제1 구동 코일(1152)은 제1 코일(1152a), 제2 코일(1152b), 제3-1 코일(1152ca) 및 제3-2 코일(1152cb)을 포함할 수 있다. 홀 센서부(1153)는 제1 홀 센서(1153a), 제2 홀 센서(1153b), 제3-1 홀 센서(1153ca) 및 제3-2 홀 센서(1153cb)를 포함할 수 있다. 이에 대한 설명은 후술하는 내용을 제외하고 동일하게 적용될 수 있다.
또한, 다른 실시예에 따른 틸팅 가이드부(1141)는 후술하는 내용을 제외하고 상술한 내용이 동일하게 적용될 수 있다.
본 실시예에서는 제1 마그넷(1151a)에 의해 홀더가 상하 구동할 수 있다. 즉, 제1 마그넷(1151a)과 제2 마그넷(1151b)에 의해 전자기력은 제1 방향(X축 방향) 또는 제1 방향(X축 방향)의 반대 방향으로 발생할 수 있다. 이에, 홀더는 제1 방향(X축 방향) 또는 제1 방향의 반대 방향으로 이동할 수 있다. 다시 말해, 홀더는 제2 방향(Y축 방향)을 기준으로 회전할 수 있다.
예컨대, 제1 마그넷(1151a)에 의해 제2 방향(Y축 방향)으로 자기력이 발생하고, 제1 코일(1152a)에 전류가 시계 방향 또는 반시계 방향으로 흐를 수 있다. 예를 들어, 제1 코일(1152a)에서 제1 방향(X축 방향)으로 전류가 흐르고, 제2 방향(Y축 방향)으로 자기력이 발생하면, 제1 코일(1152a)에 제3 방향(Z축 방향)으로 전자기력이 발생할 수 있다. 이에, 홀더의 제1 홀더 외측면에는 제3 방향(Z축 방향)의 반대 방향으로 힘(전자기력에 의한)이 발생할 수 있다. 또한, 제2 코일(1152b)에서 제1 방향(X축 방향)으로 전류가 흐르고, 제2 방향(Y축 방향)의 반대 방향으로 자기력이 발생하면, 제1 코일(1152a)에 제3 방향(Z축 방향)의 반대 방향으로 전자기력이 발생할 수 있다. 이에, 홀더의 제2 홀더 외측면에는 제3 방향(Z축 방향)으로 힘(전자기력에 의한)이 발생할 수 있다. 이로써, 홀더는 제1 방향을 기준으로 틸트할 수 있다. 예컨대, 제1 홀더 외측면은 틸팅 가이드부에 인접하게 위치하고, 제2 홀더 외측면은 틸팅 가이드부로부터 멀어지게 위치할 수 있다.
나아가, 실시예에서 설명한 바와 같이 제4 홀더 외측면(1131S4)의 제4 안착홈에 틸팅 가이드부(1141)가 안착할 수 있다. 제4 홀더 외측면에는 제1 돌기홈이 배치되어 틸팅 가이드부의 제1 돌출부가 수용될 수 있다. 나아가, 틸팅 가이드부는 적어도 일부가 제1 마그넷(1151a) 및 제2 마그넷(1151b)과 제2 방향(Y축 방향)으로 중첩될 수 있다. 이로써, 제1 마그넷(1151a) 및 제2 마그넷에 의한 좌우 이동과 제3-1 마그넷(1151ca) 및 제3-2 마그넷에 의한 상하 이동에 대한 구동 효율이 개선될 수 있다.
도 17c를 참조하면, 틸팅 가이드부는 상술한 바와 같이 제1 돌출부와 제2 돌출부의 위치가 변경될 수 있다. 예컨대 도시된 바와 같이 제1 돌출부가 외측에 배치되고 제2 돌출부가 내측에 배치될 수 있다. 다시 말해, 제2 방향으로 이격된 제2 돌출부가 제4 홀더 외측면과 마주할 수 있다.
도 18는 실시예에 따른 제2 카메라 엑추에이터의 사시도이고, 도 19는 실시예에 따른 제2 카메라 엑추에이터의 분해 사시도이고, 도 20은 도 18에서 DD'로 바라본 단면도이고, 도 21는 도 18에서 EE'로 바라본 단면도이다.
도 18 내지 도 21을 참조하면, 실시예에 따른 제2 카메라 엑추에이터(1200)는 렌즈부(1220), 제2 하우징(1230), 제2 구동부(1250), 베이스부(미도시됨) 및 제2 기판부(1270)를 포함할 수 있다. 나아가, 제2 카메라 엑추에이터(1200)는 제2 쉴드 캔(미도시됨), 탄성부(미도시됨) 및 접합 부재(미도시됨)를 더 포함할 수 있다. 나아가, 실시예에 따른 제2 카메라 엑추에이터(1200)는 이미지 센서(IS)를 더 포함할 수 있다.
제2 쉴드 캔(미도시됨)은 제2 카메라 엑추에이터(1200)의 일 영역(예컨대, 최외측)에 위치하여, 후술하는 구성요소(렌즈부(1220), 제2 하우징(1230), 탄성부(미도시됨), 제2 구동부(1250), 베이스부(미도시됨), 제2 기판부(1270) 및 이미지 센서(IS))를 감싸도록 위치할 수 있다.
이러한 제2 쉴드 캔(미도시됨)은 외부에서 발생한 전자기파를 차단 또는 저감할 수 있다. 이에 따라, 제2 구동부(1250)에서 오작동의 발생이 감소할 수 있다.
렌즈부(1220)는 제2 쉴드 캔(미도시됨) 내에 위치할 수 있다. 렌즈부(1220)는 제3 방향(Z축 방향)으로 이동할 수 있다. 이에 따라 상술한 AF 기능이 수행될 수 있다.
구체적으로, 렌즈부(1220)는 렌즈 어셈블리(1221) 및 보빈(1222)을 포함할 수 있다.
렌즈 어셈블리(1221)는 적어도 하나 이상의 렌즈를 포함할 수 있다. 또한, 렌즈 어셈블리(1221)는 복수 개일 수 있으나, 이하에서는 하나를 기준으로 설명한다.
렌즈 어셈블리(1221)는 보빈(1222)과 결합되어 보빈(1222)에 결합된 제4 마그넷(1252a) 및 제2 마그넷(1252b)에서 발생한 전자기력에 의해 제3 방향(Z축 방향)으로 이동할 수 있다.
보빈(1222)은 렌즈 어셈블리(1221)를 감싸는 개구 영역을 포함할 수 있다. 그리고 보빈(1222)은 렌즈 어셈블리(1221)와 다양한 방법에 의해 결합될 수 있다. 또한, 보빈(1222)은 측면에 홈을 포함할 수 있으며, 상기 홈을 통해 제4 마그넷(1252a) 및 제2 마그넷(1252b)과 결합할 수 있다. 상기 홈에는 접합 부재 등이 도포될 수 있다.
또한, 보빈(1222)은 상단 및 후단에 탄성부(미도시됨)와 결합될 수 있다. 이에, 보빈(1222)은 제3 방향(Z축 방향)으로 이동하는데 탄성부(미도시됨)로부터 지지될 수 있다. 즉, 보빈(1222)의 위치가 유지되면서 제3 방향(Z축 방향)으로 유지될 수 있다. 탄성부(미도시됨)는 판스프링으로 이루어질 수 있다.
제2 하우징(1230)은 렌즈부(1220)와 제2 쉴드 캔(미도시됨) 사이에 배치될 수 있다. 그리고 제2 하우징(1230)은 렌즈부(1220)를 둘러싸도록 배치될 수 있다.
제2 하우징(1230)은 측부에 홀이 형성될 수 있다. 상기 홀에는 제4 코일(1251a) 및 제5 코일(1251b)이 배치될 수 있다. 상기 홀은 상술한 보빈(1222)의 홈에 대응하도록 위치할 수 있다.
제4 마그넷(1252a)은 제4 코일(1251a)과 마주보게 위치할 수 있다. 또한, 제2 마그넷(1252b)은 제5 코일(1251b)과 마주보게 위치할 수 있다.
탄성부(미도시됨)는 제1 탄성부재(미도시됨) 및 제2 탄성부재(미도시됨)를 포함할 수 있다. 제1 탄성부재(미도시됨)는 보빈(1222)의 상면과 결합될 수 있다. 제2 탄성부재(미도시됨)는 보빈(1222)의 하면과 결합할 수 있다. 또한, 제1 탄성부재(미도시됨)와 제2 탄성부재(미도시됨)는 상술한 바와 같이 판 스프링으로 형성될 수 있다. 또한, 제1 탄성부재(미도시됨)와 제2 탄성부재(미도시됨)는 보빈(1222)의 이동에 대한 탄성을 제공할 수 있다.
제2 구동부(1250)는 렌즈부(1220)를 제3 방향(Z축 방향)으로 이동시키는 구동력(F3, F4)을 제공할 수 있다. 이러한 제2 구동부(1250)는 제2 구동 코일(1251) 및 제2 구동 마그넷(1252)을 포함할 수 있다.
제2 구동 코일(1251)및 제2 구동 마그넷(1252) 간에 형성된 전자기력으로 렌즈부(1220)가 제3 방향(Z축 방향)으로 이동할 수 있다.
제2 구동 코일(1251)은 제4 코일(1251a) 및 제5 코일(1251b)을 포함할 수 있다. 제4 코일(1251a) 및 제5 코일(1251b)은 제2 하우징(1230)의 측부에 형성된 홀 내에 배치될 수 있다. 그리고 제4 코일(1251a) 및 제5 코일(1251b)은 제2 기판부(1270)와 전기적으로 연결될 수 있다. 이에, 제4 코일(1251a) 및 제5 코일(1251b)은 제2 기판부(1270)를 통해 전류 등을 공급받을 수 있다.
제2 구동 마그넷(1252)은 제4 마그넷(1252a) 및 제5 마그넷(1252b)을 포함할 수 있다. 제4 마그넷(1252a) 및 제5 마그넷(1252b)은 보빈(1222)의 상술한 홈에 배치될 수 있으며, 제4 코일(1251a) 및 제5 코일(1251b)에 대응하도록 위치할 수 있다.
베이스부(미도시됨)는 렌즈부(1220)와 이미지 센서(IS) 사이에 위치할 수 있다. 베이스부(미도시됨)는 필터 등의 구성요소가 고정될 수 있다. 또한, 베이스부(미도시됨)는 이미지 센서(IS)를 둘러싸도록 배치될 수 있다. 이러한 구성에 의하여, 이미지 센서(IS)는 이물질 등으로부터 자유로워지므로, 소자의 신뢰성이 개선될 수 있다.
또한, 제2 카메라 엑추에이터는 줌(Zoom) 엑추에이터 또는 AF(Auto Focus) 엑추에이터일 수 있다. 예를 들어, 제2 카메라 엑추에이터는 하나 또는 복수의 렌즈를 지지하며 소정의 제어부의 제어신호에 따라 렌즈를 움직여 오토포커싱 기능 또는 줌 기능을 수행할 수 있다.
그리고 제2 카메라 엑추에이터는 고정줌 또는 연속줌일 수 있다. 예컨대, 제2 카메라 엑추에이터는 렌즈 어셈블리(1221)의 이동을 제공할 수 있다.
뿐만 아니라, 제2 카메라 엑추에이터는 복수 개의 렌즈 어셈블리로 이루어질 수 있다. 예컨대, 제2 카메라 엑추에이터는 제1 렌즈 어셈블리(미도시됨), 제2 렌즈 어셈블리(미도시됨), 제3 렌즈 어셈블리(미도시됨), 및 가이드 핀(미도시됨) 중 적어도 하나 이상이 배치될 수 있다. 이에 대해서는 상술한 내용이 적용될 수 있다. 이에, 제2 카메라 엑추에이터는 구동부를 통해 고배율 주밍 기능을 수행할 수 있다. 예를 들어, 제1 렌즈 어셈블리(미도시됨)와 제2 렌즈 어셈블리(미도시됨)는 구동부와 가이드 핀(미도시됨)을 통해 이동하는 이동 렌즈(moving lens)일 수 있으며, 제3 렌즈 어셈블리(미도시됨)는 고정 렌즈일 수 있으나 이에 한정되는 것은 아니다. 예를 들어, 제3 렌즈 어셈블리(미도시됨)는 광을 특정 위치에 결상하는 집광자(focator)의 기능을 수행할 수 있고, 제1 렌즈 어셈블리(미도시됨)는 집광자인 제3 렌즈 어셈블리(미도시됨)에서 결상된 상을 다른 곳에 재결상시키는 변배자(variator) 기능을 수행할 수 있다. 한편, 제1 렌즈 어셈블리(미도시됨)에서는 피사체와의 거리 또는 상거리가 많이 바뀌어서 배율변화가 큰 상태일 수 있으며, 변배자인 제1 렌즈 어셈블리(미도시됨)는 광학계의 초점거리 또는 배율변화에 중요한 역할을 할 수 있다. 한편, 변배자인 제1 렌즈 어셈블리(미도시됨)에서 결상되는 상점은 위치에 따라 약간 차이가 있을 수 있다. 이에 제2 렌즈 어셈블리(미도시됨)는 변배자에 의해 결상된 상에 대한 위치 보상 기능을 할 수 있다. 예를 들어, 제2 렌즈 어셈블리(미도시됨)는 변배자인 제1 렌즈 어셈블리(미도시됨)에서 결상된 상점을 실제 이미지 센서 위치에 정확히 결상시키는 역할을 수행하는 보상자(compensator) 기능을 수행할 수 있다.
이미지 센서(IS)는 제2 카메라 엑추에이터의 내측에 또는 외측에 위치할 수 있다. 실시예로는, 도시한 바와 같이 이미지 센서(IS)가 제2 카메라 엑추에이터의 내측에 위치할 수 있다. 이미지 센서(IS)는 광을 수신하고, 수광된 광을 전기신호로 변환할 수 있다. 또한, 이미지 센서(IS)는 복수 개의 픽셀이 어레이 형태로 이루어질 수 있다. 그리고 이미지 센서(IS)는 광축 상에 위치할 수 있다.
도 22는 실시예에 따른 카메라 모듈이 적용된 이동 단말기의 사시도이다.
도 22에 도시된 바와 같이, 실시예의 이동단말기(1500)는 후면에 제공된 카메라 모듈(1000), 플래쉬모듈(1530), 자동초점장치(1510)를 포함할 수 있다.
카메라 모듈(1000)은 이미지 촬영 기능 및 자동 초점 기능을 포함할 수 있다. 예컨대, 카메라 모듈(1000)은 이미지를 이용한 자동 초점 기능을 포함할 수 있다.
카메라 모듈(1000)은 촬영 모드 또는 화상 통화 모드에서 이미지 센서에 의해 얻어지는 정지 영상 또는 동영상의 화상 프레임을 처리한다.
처리된 화상 프레임은 소정의 디스플레이부에 표시될 수 있으며, 메모리에 저장될 수 있다. 이동단말기 바디의 전면에도 카메라(미도시)가 배치될 수 있다.
예를 들어, 카메라 모듈(1000)은 제1 카메라 모듈(1000A)과 제2 카메라 모듈(1000B)을 포함할 수 있고, 제1 카메라 모듈(1000A)에 의해 AF 또는 줌 기능과 함께 OIS 구현이 가능할 수 있다. 또한, 제2 카메라 모듈(1000b)에 의해 AF, 줌 및 OIS 기능이 이루어질 수 있다. 이 때, 제1 카메라 모듈(1000A)은 상술한 제1 카메라 엑추에이터 및 제2 카메라 엑추에이터를 모두 포함하므로, 광 경로 변경을 통해 카메라 장치 또는 카메라 모듈의 소형화가 용이하게 이루어질 수 있다.
플래쉬모듈(1530)은 내부에 광을 발광하는 발광 소자를 포함할 수 있다. 플래쉬모듈(1530)은 이동단말기의 카메라 작동 또는 사용자의 제어에 의해 작동될 수 있다.
자동초점장치(1510)는 발광부로서 표면 광 방출 레이저 소자의 패키지 중의 하나를 포함할 수 있다.
자동초점장치(1510)는 레이저를 이용한 자동 초점 기능을 포함할 수 있다. 자동초점장치(1510)는 카메라 모듈(1000)의 이미지를 이용한 자동 초점 기능이 저하되는 조건, 예컨대 10m 이하의 근접 또는 어두운 환경에서 주로 사용될 수 있다.
자동초점장치(1510)는 수직 캐비티 표면 방출 레이저(VCSEL) 반도체 소자를 포함하는 발광부와, 포토 다이오드와 같은 빛 에너지를 전기 에너지로 변환하는 수광부를 포함할 수 있다.
도 23은 실시예에 따른 카메라 모듈이 적용된 차량의 사시도이다.
예를 들어, 도 23는 실시예에 따른 카메라 모듈(1000)이 적용된 차량 운전 보조 장치를 구비하는 차량의 외관도이다.
도 23를 참조하면, 실시예의 차량(700)은, 동력원에 의해 회전하는 바퀴(13FL, 13FR), 소정의 센서를 구비할 수 있다. 센서는 카메라센서(2000)일 수 있으나 이에 한정되는 것은 아니다.
카메라(2000)는 실시예에 따른 카메라 모듈(1000)이 적용된 카메라 센서일 수 있다. 실시예의 차량(700)은, 전방 영상 또는 주변 영상을 촬영하는 카메라센서(2000)를 통해 영상 정보를 획득할 수 있고, 영상 정보를 이용하여 차선 미식별 상황을 판단하고 미식별시 가상 차선을 생성할 수 있다.
예를 들어, 카메라센서(2000)는 차량(700)의 전방을 촬영하여 전방 영상을 획득하고, 프로세서(미도시)는 이러한 전방 영상에 포함된 오브젝트를 분석하여 영상 정보를 획득할 수 있다.
예를 들어, 카메라센서(2000)가 촬영한 영상에 차선, 인접차량, 주행방해물, 및 간접 도로 표시물에 해당하는 중앙 분리대, 연석, 가로수 등의 오브젝트가 촬영된 경우, 프로세서는 이러한 오브젝트를 검출하여 영상 정보에 포함시킬 수 있다. 이때, 프로세서는 카메라센서(2000)를 통해 검출된 오브젝트와의 거리 정보를 획득하여, 영상 정보를 더 보완할 수 있다.
영상 정보는 영상에 촬영된 오브젝트에 관한 정보일 수 있다. 이러한 카메라센서(2000)는 이미지 센서와 영상 처리 모듈을 포함할 수 있다.
카메라센서(2000)는 이미지 센서(예를 들면, CMOS 또는 CCD)에 의해 얻어지는 정지 영상 또는 동영상을 처리할 수 있다.
영상 처리 모듈은 이미지센서를 통해 획득된 정지 영상 또는 동영상을 가공하여, 필요한 정보를 추출하고, 추출된 정보를 프로세서에 전달할 수 있다.
이때, 카메라센서(2000)는 오브젝트의 측정 정확도를 향상시키고, 차량(700)과 오브젝트와의 거리 등의 정보를 더 확보할 수 있도록 스테레오 카메라를 포함할 수 있으나 이에 한정되는 것은 아니다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 하우징;
    하우징 내에 배치되고 광학 부재를 포함하는 무버;
    상기 무버의 틸팅을 가이드하는 틸팅 가이드부; 및
    상기 하우징 내에 배치되며 상기 무버를 구동시키는 구동부;를 포함하고,
    상기 구동부는 상기 무버의 일면에 배치되는 제1 마그넷과 제3-1 마그넷 및 상기 일면의 반대측에 배치된 타면에 배치되는 제2 마그넷과 제3-2 마그넷;을 포함하는 구동 마그넷을 포함하고,
    상기 제1 마그넷 및 상기 제2 마그넷은 상기 제3-1 마그넷 및 상기 제3-2 마그넷 대비 상기 틸팅 가이드부에 인접하고 면적이 상이한 카메라 엑추에이터.
  2. 제1항에 있어서,
    상기 제1 마그넷과 상기 제2 마그넷은 서로 대응하고,
    상기 제3-1 마그넷과 상기 제3-2 마그넷은 서로 대응하는 카메라 엑추에이터.
  3. 제1항에 있어서,
    상기 제1 마그넷은 서로 다른 극성의 제1-1 마그넷 영역 및 제1-2 마그넷 영역을 포함하고,
    상기 제2 마그넷은 서로 다른 극성의 제2-1 마그넷 영역 및 제2-2 마그넷 영역을 포함하고,
    상기 제3-1 마그넷은 서로 다른 극성의 제3-1 마그넷 영역 및 제3-2 마그넷 영역을 포함하고,
    상기 제3-2 마그넷은 서로 다른 극성의 제3-3 마그넷 영역 및 제3-4 마그넷 영역을 포함하는 카메라 엑추에이터.
  4. 제3항에 있어서,
    제1 극성 방향은 제2 극성 방향과 상이하고,
    상기 제1 극성 방향은 상기 제3-1 마그넷 영역에서 상기 제3-2 마그넷 영역을 향한 방향 또는 상기 제3-3 마그넷 영역에서 상기 제3-4 마그넷 영역을 향한 방향이고,
    상기 제2 극성 방향은 상기 제1-1 마그넷 영역에서 상기 제1-2 마그넷 영역을 향한 방향 또는 상기 제2-1 마그넷 영역에서 상기 제2-2 마그넷 영역을 향한 방향인 카메라 엑추에이터.
  5. 제3항에 있어서,
    상기 제1-1 마그넷 영역은 상기 제2-1 마그넷 영역 및 상기 제2-2 마그넷 영역 중 어느 하나의 극성과 동일한 극성을 갖고,
    상기 제1-2 마그넷 영역은 상기 제2-1 마그넷 영역 및 상기 제2-2 마그넷 영역 중 다른 하나의 극성과 동일한 극성을 갖는 카메라 엑추에이터.
  6. 제5항에 있어서,
    상기 제1-1 마그넷 영역 및 상기 제1-2 마그넷 영역은 순차로 배치되고,
    상기 제2-1 마그넷 영역은 상기 제2-2 마그넷 영역 상부에 배치되고,
    상기 제1-2 마그넷 영역은 상기 제2-1 마그넷 영역과 극성이 상이한 카메라 엑추에이터.
  7. 제3항에 있어서,
    상기 제1 마그넷의 광축 방향으로 길이는 상기 제3-1 마그넷 또는 상기 제3-2 마그넷의 광축 방향으로 길이와 상이하고,
    상기 광축 방향은 상기 광학 부재에 의해 반사된 광의 이동 방향에 대응하는 카메라 엑추에이터.
  8. 제1항에 있어서,
    상기 제1 마그넷의 광축 방향으로 길이는 상기 제2 마그넷의 광축 방향으로 길이와 동일한 카메라 엑추에이터.
  9. 제1항에 있어서,
    상기 구동부는 상기 제1 마그넷에 마주하는 제1 코일; 상기 제2 마그넷에 마주하는 제2 코일; 상기 제3-1 마그넷에 마주하는 제3-1 코일 및 상기 제3-2 마그넷에 마주하는 제3-2 코일;을 포함하는 구동 코일을 포함하는 카메라 엑추에이터.
  10. 제9항에 있어서,
    상기 제1 코일은 광축 방향으로 길이가 수직 방향으로 길이와 상이한 카메라 엑추에이터.
PCT/KR2022/004836 2021-05-06 2022-04-05 카메라 엑추에이터 및 이를 포함하는 카메라 모듈 WO2022234958A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/559,100 US20240231184A1 (en) 2021-05-06 2022-04-05 Camera actuator and camera module comprising same
CN202280033289.XA CN117355792A (zh) 2021-05-06 2022-04-05 相机致动器和包括其的相机模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210058606A KR20220151403A (ko) 2021-05-06 2021-05-06 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
KR10-2021-0058606 2021-05-06

Publications (1)

Publication Number Publication Date
WO2022234958A1 true WO2022234958A1 (ko) 2022-11-10

Family

ID=83932246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004836 WO2022234958A1 (ko) 2021-05-06 2022-04-05 카메라 엑추에이터 및 이를 포함하는 카메라 모듈

Country Status (4)

Country Link
US (1) US20240231184A1 (ko)
KR (1) KR20220151403A (ko)
CN (1) CN117355792A (ko)
WO (1) WO2022234958A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122897A1 (ko) * 2022-12-05 2024-06-13 엘지이노텍 주식회사 렌즈 구동 장치, 카메라 장치 및 광학기기
WO2024155046A1 (ko) * 2023-01-18 2024-07-25 엘지이노텍 주식회사 카메라 엑추에이터 및 이를 포함하는 카메라 모듈

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100202766A1 (en) * 2008-07-24 2010-08-12 Teruyuki Takizawa Camera driver
KR20170128612A (ko) * 2015-09-06 2017-11-22 코어포토닉스 리미티드 소형의 접이식 카메라의 롤 보정에 의한 자동 초점 및 광학식 손떨림 방지
KR20200139581A (ko) * 2019-06-04 2020-12-14 엘지이노텍 주식회사 카메라 모듈 및 이를 포함하는 카메라 장치
KR20210013978A (ko) * 2019-07-29 2021-02-08 엘지이노텍 주식회사 카메라 모듈 및 이를 포함하는 카메라 장치
KR20210017272A (ko) * 2019-08-07 2021-02-17 엘지이노텍 주식회사 카메라 액추에이터, 이를 포함하는 카메라 모듈 및 카메라 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100202766A1 (en) * 2008-07-24 2010-08-12 Teruyuki Takizawa Camera driver
KR20170128612A (ko) * 2015-09-06 2017-11-22 코어포토닉스 리미티드 소형의 접이식 카메라의 롤 보정에 의한 자동 초점 및 광학식 손떨림 방지
KR20200139581A (ko) * 2019-06-04 2020-12-14 엘지이노텍 주식회사 카메라 모듈 및 이를 포함하는 카메라 장치
KR20210013978A (ko) * 2019-07-29 2021-02-08 엘지이노텍 주식회사 카메라 모듈 및 이를 포함하는 카메라 장치
KR20210017272A (ko) * 2019-08-07 2021-02-17 엘지이노텍 주식회사 카메라 액추에이터, 이를 포함하는 카메라 모듈 및 카메라 장치

Also Published As

Publication number Publication date
US20240231184A1 (en) 2024-07-11
KR20220151403A (ko) 2022-11-15
CN117355792A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
WO2021107524A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2020076112A1 (ko) 카메라 액추에이터, 및 이를 포함하는 카메라 모듈
WO2021015482A1 (ko) 카메라 액추에이터, 이를 포함하는 카메라 모듈 및 카메라 장치
WO2020071852A1 (ko) 카메라 액추에이터 및 이를 포함하는 카메라 모듈
WO2021020862A1 (ko) 카메라 액추에이터
WO2021107525A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2022234958A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2022035192A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2020218884A1 (en) Camera module and camera apparatus including same
WO2020101232A1 (ko) 카메라 모듈
WO2022235109A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2020076111A1 (ko) 카메라 액추에이터 및 이를 포함하는 카메라 모듈
WO2021221410A1 (ko) 카메라 액추에이터 및 이를 포함하는 카메라 모듈
WO2021071277A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2021187773A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2021025518A1 (ko) 카메라 액추에이터, 및 이를 포함하는 카메라 모듈 및 카메라 장치
WO2023018143A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2022019632A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2021230557A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2021015481A1 (ko) 카메라 액추에이터, 카메라 모듈 및 이를 포함하는 카메라 장치
WO2022039463A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2021215759A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2023239167A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2022019704A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2023128536A1 (ko) 카메라 엑추에이터, 렌즈 이송 장치 및 이를 포함하는 카메라 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22799004

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280033289.X

Country of ref document: CN

Ref document number: 18559100

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22799004

Country of ref document: EP

Kind code of ref document: A1