WO2021187773A1 - 카메라 엑추에이터 및 이를 포함하는 카메라 장치 - Google Patents

카메라 엑추에이터 및 이를 포함하는 카메라 장치 Download PDF

Info

Publication number
WO2021187773A1
WO2021187773A1 PCT/KR2021/002552 KR2021002552W WO2021187773A1 WO 2021187773 A1 WO2021187773 A1 WO 2021187773A1 KR 2021002552 W KR2021002552 W KR 2021002552W WO 2021187773 A1 WO2021187773 A1 WO 2021187773A1
Authority
WO
WIPO (PCT)
Prior art keywords
disposed
unit
sensor unit
coil
sensor
Prior art date
Application number
PCT/KR2021/002552
Other languages
English (en)
French (fr)
Inventor
방정환
오준석
이동연
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to EP21771998.8A priority Critical patent/EP4123366A4/en
Priority to CN202180022460.2A priority patent/CN115335767A/zh
Priority to US17/905,308 priority patent/US20230359108A1/en
Publication of WO2021187773A1 publication Critical patent/WO2021187773A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Definitions

  • the present invention relates to a camera actuator and a camera device including the same.
  • a camera is a device that takes a picture or video of a subject, and is mounted on a portable device, a drone, a vehicle, or the like.
  • the camera device has an image stabilization (IS) function that corrects or prevents image shake caused by user movement in order to improve image quality, and automatically adjusts the distance between the image sensor and the lens to align the focal length of the lens. It may have a zooming function of increasing or decreasing the magnification of a distant subject through an auto-focusing (AF) function and a zoom lens.
  • IS image stabilization
  • AF auto-focusing
  • the resolution of the image sensor increases as the pixel becomes higher and the size of the pixel becomes smaller.
  • the amount of light received for the same time decreases. Therefore, the higher the pixel camera, the more severe the image shake caused by hand shake that occurs when the shutter speed is slowed in a dark environment.
  • ISO image stabilization
  • OIS optical image stabilizer
  • the movement of the camera is detected through a gyrosensor, etc., and the lens is tilted or moved based on the detected movement, or the camera module including the lens and the image sensor can be tilted or moved.
  • the lens or a camera module including a lens and an image sensor is tilted or moved for OIS, it is necessary to additionally secure a space for tilting or moving around the lens or camera module.
  • an actuator for OIS may be disposed around the lens.
  • the actuator for OIS may include an actuator in charge of tilting two axes perpendicular to the optical axis Z-axis, that is, an actuator in charge of tilting the X-axis and an actuator in charge of tilting the Y-axis.
  • the technical problem to be solved by the present invention is to provide a camera actuator applicable to an ultra-slim, ultra-miniature and high-resolution camera.
  • a camera actuator includes a housing; a mover disposed in the housing and including an optical member; and a driving unit disposed in the housing and configured to drive the mover, wherein the driving unit includes a driving magnet, a driving coil positioned to face the driving magnet, a sensor unit sensing the position of the mover, and the sensor unit and a substrate portion that is formed, wherein the sensor unit includes a first sensor unit and a second sensor unit that faces the first sensor unit and is connected in series.
  • the substrate portion includes a first substrate region; a second substrate region spaced apart from and corresponding to the first substrate region; and a third substrate region disposed between the first substrate region and the second substrate region, wherein the first sensor unit is disposed in the first substrate region, and the second sensor unit is disposed in the second substrate region can be placed in the area.
  • It may further include; a control unit for outputting a driving signal for moving the optical member to a target position based on the position information of the optical member detected from the first sensor unit and the second sensor unit.
  • the control unit may be disposed in any one of the first substrate region and the second substrate region.
  • the first sensor unit may include a 1-1 detection signal output terminal having a positive polarity and a 2-1 detection signal output terminal having a negative polarity.
  • the second sensor unit may include a first-second detection signal output terminal having a positive polarity and a second-second detection signal output terminal having a negative polarity.
  • the substrate unit may include: a first path connecting the 1-1 detection signal output terminal and the control unit; a second path connecting the 2-1 detection signal output terminal and the 1-2 detection signal output terminal; and a third path connecting the 2-2 detection signal output terminal and the control unit.
  • the second path may pass through the first substrate region, the second substrate region, and the third substrate region.
  • the first path and the third path may have different lengths.
  • the housing may include: a first housing side; and a second housing side portion disposed to correspond to the first housing side portion.
  • the first housing side includes a first housing hole
  • the second housing side includes a second housing hole
  • the driving magnet includes a first magnet and a second magnet disposed to correspond to the first magnet.
  • the driving coil includes a first coil and a second coil disposed to correspond to the first coil, and any one of the first coil and the first magnet is disposed in the first housing hole, Any one of the second coil and the second magnet is disposed in the second housing hole.
  • the first substrate area may be in contact with the side of the first housing, and the second substrate area may be in contact with the side of the second housing.
  • the actuator for OIS can be efficiently disposed without increasing the overall size of the camera device.
  • tilting in the X-axis direction and tilting in the Y-axis direction do not cause magnetic field interference with each other, and tilting in the X-axis direction and tilting in the Y-axis direction can be implemented with a stable structure, and for AF or Even with the actuator for zooming, it does not cause magnetic field interference, so precise OIS function can be realized.
  • FIG. 1 is a perspective view of a camera module according to an embodiment
  • FIG. 2 is an exploded perspective view of a camera module according to an embodiment
  • FIG. 3 is a cross-sectional view taken along line AA' in FIG. 1,
  • FIG. 4 is an exploded perspective view of a first camera actuator according to an embodiment
  • FIG. 5 is a perspective view of a first camera actuator according to an embodiment in which a shield can and a substrate are removed;
  • FIG. 6 is a cross-sectional view taken along line BB' in FIG. 5;
  • FIG. 7 is a cross-sectional view taken along CC' in FIG. 5;
  • FIG. 8 is a perspective view of a second camera actuator according to the embodiment.
  • FIG. 9 is an exploded perspective view of a second camera actuator according to the embodiment.
  • FIG. 10 is a cross-sectional view taken along DD' in FIG. 8;
  • FIG. 11 is a cross-sectional view taken along line EE' in FIG. 8;
  • FIG. 12 is a block diagram showing the configuration of a camera module according to an embodiment of the present invention.
  • FIG. 13 is a block diagram showing the detailed configuration of the position sensor unit of FIG. 12;
  • 16 is a view for explaining a connection relationship between sensor units according to an embodiment of the present invention.
  • 17 is a view for explaining a connection relationship between sensor units according to another embodiment of the present invention.
  • FIG. 18 is a perspective view of a holder according to an embodiment
  • 19 is a bottom view of the holder according to the embodiment.
  • FIG. 20 is a perspective view of a first camera actuator according to an embodiment
  • FIG. 21 is a cross-sectional view taken along FF' in FIG. 20;
  • FIG. 22 is a cross-sectional view taken along GG' in FIG. 20;
  • FIG. 23 is a view viewed from the other direction in FIG. 22;
  • FIG. 24 is a view of a first substrate part according to an embodiment
  • 26 is an enlarged view of part K2 in FIG. 24,
  • FIGS. 27 and 28 are views for explaining the structure of the Hall sensor unit according to the embodiment.
  • 29 is a perspective view of a mobile terminal to which a camera module according to an embodiment is applied;
  • FIG. 30 is a perspective view of a vehicle to which a camera module according to an embodiment is applied.
  • Terms including an ordinal number such as second, first, etc. may be used to describe various elements, but the elements are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component. and/or includes a combination of a plurality of related listed items or any of a plurality of related listed items.
  • FIG. 1 is a perspective view of a camera module according to an embodiment
  • FIG. 2 is an exploded perspective view of a camera module according to an embodiment
  • FIG. 3 is a cross-sectional view taken along line AA′ in FIG. 1 .
  • the camera module 1000 may include a cover CV, a first camera actuator 1100 , a second camera actuator 1200 , and a circuit board 1300 .
  • the first camera actuator 1100 may be used as a first actuator
  • the second camera actuator 1200 may be used as a second actuator.
  • the cover CV may cover the first camera actuator 1100 and the second camera actuator 1200 .
  • the coupling force between the first camera actuator 1100 and the second camera actuator 1200 may be improved by the cover CV.
  • the cover CV may be made of a material that blocks electromagnetic waves. Accordingly, the first camera actuator 1100 and the second camera actuator 1200 in the cover CV can be easily protected.
  • the first camera actuator 1100 may be an OP1tical Image Stabilizer (OIS) actuator.
  • OIS OP1tical Image Stabilizer
  • the first camera actuator 1100 may include fixed focal length les disposed on a predetermined barrel (not shown). Fixed focal length les may also be referred to as “single focal length lenses” or “single focal length lenses”.
  • the first camera actuator 1100 may change the path of the light.
  • the first camera actuator 1100 may change the optical path vertically through an optical member (eg, a mirror) therein.
  • an optical member eg, a mirror
  • the second camera actuator 1200 may be disposed at a rear end of the first camera actuator 1100 .
  • the second camera actuator 1200 may be coupled to the first camera actuator 1100 . And the mutual coupling may be made by various methods.
  • the second camera actuator 1200 may be a zoom actuator or an auto focus (AF) actuator.
  • the second camera actuator 1200 may support one or a plurality of lenses and may perform an auto-focusing function or a zoom function by moving the lenses according to a control signal of a predetermined control unit.
  • the circuit board 1300 may be disposed behind the second camera actuator 1200 .
  • the circuit board 1300 may be electrically connected to the second camera actuator 1200 and the first camera actuator 1100 . Also, there may be a plurality of circuit boards 1300 .
  • the camera module according to the embodiment may be formed of a single or a plurality of camera modules.
  • the plurality of camera modules may include a first camera module and a second camera module.
  • the first camera module may include a single or a plurality of actuators.
  • the first camera module may include a first camera actuator 1100 and a second camera actuator 1200 .
  • the second camera module is disposed in a predetermined housing (not shown) and may include an actuator (not shown) capable of driving the lens unit.
  • the actuator may be a voice coil motor, a micro actuator, a silicon actuator, etc., and may be applied in various ways such as an electrostatic method, a thermal method, a bimorph method, an electrostatic force method, and the like, but is not limited thereto.
  • the camera actuator may be referred to as an actuator or the like.
  • a camera module including a plurality of camera modules may be mounted in various electronic devices such as a mobile terminal.
  • the camera module may include a first camera actuator 1100 performing an OIS function and a second camera actuator 1200 performing a zooming function and an AF function.
  • Light may be incident into the camera module through the opening area located on the upper surface of the first camera actuator 1100 . That is, the light may be incident into the interior of the first camera actuator 1100 along the optical axis direction (eg, the X-axis direction), and the optical path may be changed in the vertical direction (eg, the Z-axis direction) through the optical member. In addition, the light may pass through the second camera actuator 1200 and be incident to the image sensor IS located at one end of the second camera actuator 1200 (PATH).
  • the optical axis direction eg, the X-axis direction
  • the optical path may be changed in the vertical direction (eg, the Z-axis direction) through the optical member.
  • the light may pass through the second camera actuator 1200 and be incident to the image sensor IS located at one end of the second camera actuator 1200 (PATH).
  • the bottom means one side in the first direction.
  • the first direction is the X-axis direction in the drawing, and may be used interchangeably with the second axis direction.
  • the second direction is the Y-axis direction in the drawing and may be used interchangeably with the first axis direction.
  • the second direction is a direction perpendicular to the first direction.
  • the third direction is the Z-axis direction in the drawing, and may be used interchangeably with the third axis direction. The direction is perpendicular to both the first direction and the second direction.
  • the third direction (Z-axis direction) corresponds to the direction of the optical axis
  • the first direction (X-axis direction) and the second direction (Y-axis direction) are directions perpendicular to the optical axis and tilted by the second camera actuator.
  • the optical axis direction is the third direction (Z axis direction), and will be described below based on this.
  • the camera module according to the embodiment may improve the spatial limitation of the first camera actuator and the second camera actuator by changing the path of light. That is, the camera module according to the embodiment may extend the optical path while minimizing the thickness of the camera module in response to the change in the path of the light. Furthermore, it should be understood that the second camera actuator may provide a high range of magnification by controlling a focus or the like in the extended optical path.
  • the camera module according to the embodiment can implement OIS through control of the optical path through the first camera actuator, thereby minimizing the occurrence of a decent or tilt phenomenon, and providing the best optical characteristics. can pay
  • the second camera actuator 1200 may include an optical system and a lens driver.
  • a lens driver for example, at least one of a first lens assembly, a second lens assembly, a third lens assembly, and a guide pin may be disposed.
  • the second camera actuator 1200 may include a coil and a magnet to perform a high-magnification zooming function.
  • the first lens assembly and the second lens assembly may be a moving lens that moves through a coil, a magnet, and a guide pin, and the third lens assembly may be a fixed lens, but is not limited thereto.
  • the third lens assembly may function as a concentrator to image light at a specific position, and the first lens assembly may re-image an image formed by the third lens assembly, which is a concentrator, to another location. It can perform the function of a variable (variator).
  • the first lens assembly the distance to the subject or the image distance is changed a lot, so the magnification change may be large, and the first lens assembly, which is the variable magnification, may play an important role in the change of the focal length or the magnification of the optical system.
  • the image formed in the first lens assembly which is a variable changer
  • the second lens assembly may perform a position compensation function for the image formed by the variable magnifier.
  • the second lens assembly may perform a compensator function that accurately forms an image formed by the first lens assembly, which is a variable changer, at an actual image sensor position.
  • the first lens assembly and the second lens assembly may be driven by electromagnetic force due to an interaction between a coil and a magnet. The above description may be applied to a lens assembly to be described later.
  • the actuator for OIS and the actuator for AF or zoom are disposed according to an embodiment of the present invention
  • magnetic field interference with the magnet for AF or zoom can be prevented when OIS is driven. Since the first driving magnet of the first camera actuator 1100 is disposed separately from the second camera actuator 1200, magnetic field interference between the first camera actuator 1100 and the second camera actuator 1200 can be prevented.
  • OIS may be used interchangeably with terms such as hand shake correction, optical image stabilization, optical image correction, and image stabilization.
  • FIG. 4 is an exploded perspective view of a second camera actuator according to an embodiment.
  • the second camera actuator 1100 includes a first shield can (not shown), a first housing 1120 , a mover 1130 , a rotating unit 1140 , and a first driving unit 1150 . ) is included.
  • the mover 1130 may include a holder 1131 and an optical member 1132 seated on the holder 1131 .
  • the rotating unit 1140 includes a rotating plate 1141 , a first magnetic body 1142 having a coupling force with the rotating plate 1141 , and a second magnetic body 1143 positioned in the rotating plate 1141 .
  • the first driving unit 1150 includes a driving magnet 1151 , a driving coil 1152 , a Hall sensor unit 1153 , and a first substrate unit 1154 .
  • the first shield can (not shown) may be positioned at the outermost side of the second camera actuator 1100 to surround the rotating part 1140 and the first driving part 1150 to be described later.
  • the first shield can (not shown) may block or reduce electromagnetic waves generated from the outside. Accordingly, the occurrence of a malfunction in the rotating unit 1140 or the first driving unit 1150 may be reduced.
  • the first housing 1120 may be located inside the first shield can (not shown). In addition, the first housing 1120 may be located inside the first substrate unit 1154 to be described later. The first housing 1120 may be coupled to or fitted to a first shield can (not shown).
  • the first housing 1120 may include a plurality of housing sides. a first housing side 1121 , a second housing side 1122 , a third housing side 1123 , and a fourth housing side 1124 .
  • the first housing side 1121 and the second housing side 1122 may be disposed to face each other. Also, the third housing side 1123 and the fourth housing side 1124 may be disposed between the first housing side 1121 and the second housing side 1122 .
  • the third housing side 1123 may abut the first housing side 1121 , the second housing side 1122 , and the fourth housing side 1124 .
  • the third housing side portion 1123 may include a bottom surface as a lower portion from the first housing 1120 .
  • first housing side 1121 may include a first housing hole 1121a.
  • a first coil 1152a to be described later may be positioned in the first housing hole 1121a.
  • the second housing side 1122 may include a second housing hole 1122a.
  • a second coil 1152b to be described later may be positioned in the second housing hole 1122a.
  • the first coil 1152a and the second coil 1152b may be coupled to the first substrate unit 1154 .
  • the first coil 1152a and the second coil 1152b may be electrically connected to the first substrate unit 1154 so that current may flow. This current is a component of the electromagnetic force that the second camera actuator can tilt with respect to the X-axis.
  • the third housing side portion 1123 may include a third housing hole 1123a.
  • a third coil 1152c to be described later may be positioned in the third housing hole 1123a.
  • the third coil 1152c may be coupled to the first substrate unit 1154 .
  • the third coil 1152c may be electrically connected to the first substrate unit 1154 so that a current may flow. This current is a component of electromagnetic force that allows the second camera actuator to tilt with respect to the Y-axis.
  • the fourth housing side 1124 may include a first housing groove 1124a.
  • a first magnetic body 1142 to be described later may be disposed in a region facing the first housing groove 1124a. Accordingly, the first housing 1120 may be coupled to the rotation plate 1141 by magnetic force or the like.
  • first housing groove 1124a may be located on the inner surface or the outer surface of the fourth housing side 1124 . Accordingly, the first magnetic body 1142 may also be disposed to correspond to the position of the first housing groove 1124a.
  • the first housing 1120 may include a receiving portion 1125 formed by the first to fourth housing sides 1121 to 1224 .
  • a mover 1130 may be positioned in the receiving part 1125 .
  • the mover 1130 includes a holder 1131 and an optical member 1132 mounted on the holder 1131 .
  • the holder 1131 may be seated in the receiving part 1125 of the first housing 1120 .
  • the holder 1131 includes the first housing side 1121, the second housing side 1122, the third housing side 1123, and the first prism outer surface corresponding to the fourth housing side 1124 to the fourth prism, respectively. side may be included.
  • a seating groove in which the second magnetic body 1143 can be seated may be disposed on an outer surface of the fourth prism facing the fourth housing side 1124 .
  • the optical member 1132 may be seated on the holder 1131 .
  • the holder 1131 may have a seating surface, and the seating surface may be formed by a receiving groove.
  • the optical member 1132 may include a reflector disposed therein.
  • the optical member 1132 may reflect light reflected from the outside (eg, an object) into the camera module.
  • the optical member 1132 may improve the spatial limit of the first camera actuator and the second camera actuator by changing the path of the reflected light.
  • the camera module may extend the optical path while minimizing thickness to provide a high range of magnifications.
  • the rotating unit 1140 includes a rotating plate 1141 , a first magnetic body 1142 having a coupling force with the rotating plate 1141 , and a second magnetic body 1143 positioned in the rotating plate 1141 .
  • the rotation plate 1141 may be coupled to the above-described mover 1130 and the first housing 1120 .
  • the rotation plate 1141 may maintain its position between the mover 113! and the first housing 1120 by magnetic force (eg, attractive force, repulsive force) between the first magnetic body 1142 and the second magnetic body 1143 .
  • the rotation plate 1141 may include an additional magnetic material (not shown) positioned therein.
  • the rotation plate 1141 may be disposed adjacent to the optical axis. Accordingly, the actuator according to the embodiment can easily change the optical path according to the first and second axis tilt to be described later.
  • the rotation plate 1141 may include a first protrusion spaced apart in a first direction (X-axis direction) and a second protrusion spaced apart in a second direction (Y-axis direction). Also, the first protrusion and the second protrusion may protrude in opposite directions. A detailed description thereof will be provided later.
  • the first magnetic body 1142 may include a plurality of yokes, and the plurality of yokes may be positioned to face each other with respect to the rotation plate 1141 .
  • the first magnetic body 1142 may be formed of a plurality of yokes facing each other.
  • the rotation plate 1141 may be located between the plurality of yokes.
  • the first magnetic body 1142 may be located in the first housing 1120 as described above. Also, as described above, the first magnetic body 1142 may be seated on the inner surface or the outer surface of the fourth housing side 1124 . For example, the first magnetic body 1142 may be seated in a groove formed on the outer surface of the fourth housing side 1124 . Alternatively, the first magnetic body 1142 may be seated in the above-described first housing groove 1124a.
  • the second magnetic body 1143 may be located on the outer surface of the mover 1130 , particularly the holder 1131 .
  • the rotation plate 1141 can be easily coupled to the first housing 1120 and the mover 1130 by a coupling force between the internal second magnetic body 1143 and the first magnetic body 1142 by a magnetic force.
  • the positions of the first magnetic body 1142 and the second magnetic body 1143 may be moved to each other.
  • the first driving unit 1150 includes a driving magnet 1151 , a driving coil 1152 , a Hall sensor unit 1153 , and a first substrate unit 1154 .
  • the driving magnet 1151 may include a plurality of magnets.
  • the driving magnet 1151 may include a first magnet 1151a, a second magnet 1151b, and a third magnet 1151c.
  • the first magnet 1151a , the second magnet 1151b , and the third magnet 1151c may be located on the outer surface of the holder 1131 , respectively.
  • the first magnet 1151a and the second magnet 1151b may be positioned to face each other.
  • the third magnet 1151c may be located on the bottom of the outer surface of the holder 1131 . A detailed description thereof will be provided later.
  • the driving coil 1152 may include a plurality of coils.
  • the driving coil 1152 may include a first coil 1152a , a second coil 1152b , and a third coil 1152c .
  • the first coil 1152a may be positioned to face the first magnet 1151a. Accordingly, the first coil 1152a may be located in the first housing hole 1121a of the first housing side 1121 as described above.
  • the second coil 1152b may be positioned to face the second magnet 1151b. Accordingly, the second coil 1152b may be located in the second housing hole 1122a of the second housing side 1122 as described above.
  • the first coil 1152a may be positioned to face the second coil 1152b. That is, the first coil 1152a may be symmetrically positioned with the second coil 1152b in the first direction (X-axis direction). This may be equally applied to the first magnet 1151a and the second magnet 1151b. That is, the first magnet 1151a and the second magnet 1151b may be symmetrically positioned with respect to the first direction (X-axis direction).
  • the first coil 1152a , the second coil 1152b , the first magnet 1151a , and the second magnet 1151b may be disposed to overlap at least partially in the second direction (Y-axis direction). With this configuration, the X-axis tilting can be accurately performed without inclination to one side by the electromagnetic force between the first coil 1152a and the first magnet 1151a and the electromagnetic force between the second coil 1152b and the second magnet 1151b. .
  • the third coil 1152c may be positioned to face the third magnet 1151c. Accordingly, the third coil 1152c may be positioned in the third housing hole 1123a of the third housing side 1123 as described above.
  • the third coil 1152c may perform Y-axis tilting of the mover 1130 and the rotating unit 1140 with respect to the first housing 1120 by generating electromagnetic force with the third magnet 1151c.
  • X-axis tilting means tilting based on the X-axis
  • Y-axis tilting means tilting based on the Y-axis
  • the Hall sensor unit 1153 may include a plurality of Hall sensors.
  • the Hall sensor corresponds to a 'sensor unit', which will be described later, and is used interchangeably therewith.
  • the Hall sensor unit 1153 may include a first Hall sensor 1153a, a second Hall sensor 1153b, and a third Hall sensor 1153c.
  • the first Hall sensor 1153a may be located inside the first coil 1152a.
  • the second Hall sensor 1153b may be symmetrically disposed with the first Hall sensor 1153a in the first direction (X-axis direction) and the third direction (Z-axis direction).
  • the second Hall sensor 1153b may be located inside the second coil 1152b.
  • the first Hall sensor 1153a may detect a change in magnetic flux inside the first coil 1152a.
  • the second Hall sensor 1153b may detect a change in magnetic flux in the second coil 1152b. Accordingly, position sensing between the first and second magnets 1151a and 1151b and the first and second Hall sensors 1153a and 1153b may be performed.
  • the first and second Hall sensors 1153a and 1153b may control the X-axis tilt through the second camera actuator according to the embodiment.
  • the third Hall sensor 1153c may be located inside the third coil 1152c.
  • the third Hall sensor 1153c may detect a change in magnetic flux inside the third coil 1152c. Accordingly, position sensing between the third magnet 1151c and the third Hall sensor 1153bc may be performed.
  • the second camera actuator according to the embodiment may control the Y-axis tilt through this.
  • the first substrate unit 1154 may be located under the first driving unit 1150 .
  • the first substrate unit 1154 may be electrically connected to the driving coil 1152 and the Hall sensor unit 1153 .
  • the first substrate unit 1154 may be coupled to the driving coil 1152 and the Hall sensor unit 1153 by SMT. However, it is not limited to this method.
  • the first substrate unit 1154 may be positioned between the first shield can (not shown) and the first housing 1120 to be coupled to the first shield can (not shown) and the first housing 1120 .
  • the coupling method may be variously made as described above.
  • the driving coil 1152 and the Hall sensor unit 1153 may be located in the outer surface of the first housing 1120 through the coupling.
  • the first board unit 1154 includes a circuit board having a wiring pattern that can be electrically connected, such as a rigid printed circuit board (Rigid PCB), a flexible printed circuit board (Flexible PCB), and a rigid flexible printed circuit board (RigidFlexible PCB). can do. However, it is not limited to this type.
  • FIG. 5 is a perspective view of the first camera actuator according to the embodiment in which the shield can and the substrate are removed
  • FIG. 6 is a cross-sectional view taken along line BB′ in FIG. 5
  • FIG. 7 is a cross-sectional view taken along line CC′ in FIG. 5 .
  • the first coil 1152a may be located on the first housing side 1121 .
  • first coil 1152a and the first magnet 1151a may be positioned to face each other.
  • the first magnet 1151a may at least partially overlap the first coil 1152a in the second direction (Y-axis direction).
  • the second coil 1152b and the second magnet 1151b may be positioned to face each other.
  • the second magnet 1151b may at least partially overlap the second coil 1152b in the second direction (Y-axis direction).
  • first coil 1152a and the second coil 1152b overlap in the second direction (Y-axis direction), and the first magnet 1151a and the second magnet 1151b are disposed in the second direction (Y-axis direction).
  • the electromagnetic force applied to the outer surface of the holder is located on the parallel axis in the second direction (Y-axis direction) so that the X-axis tilt is accurate and precise. can be performed.
  • first receiving groove (not shown) may be located on the outer surface of the fourth holder.
  • first protrusions PR1a and PR1b may be disposed in the first receiving groove. Accordingly, when performing X-axis tilt, the first protrusions PR1a and PR1b may be the reference axis (or rotation axis) of the tilt. Accordingly, the rotation plate 1141 and the mover 1130 may move left and right.
  • the second protrusion PR2 may be seated in the groove of the inner surface of the fourth housing side 1124 as described above.
  • the rotation plate and the mover may rotate with the second protrusion PR2 as the reference axis of the Y-axis tilt.
  • OIS may be performed by the first protrusion and the second protrusion.
  • a Y-axis tilt may be performed. That is, the OIS may be implemented by rotating in the first direction (X-axis direction).
  • the third magnet 1151c disposed under the holder 1131 may form an electromagnetic force with the third coil 1152c to tilt or rotate the mover 1130 in the first direction (X-axis direction). have.
  • the rotation plate 1141 is to be coupled to the first housing 1120 and the mover 1130 by the first magnetic body 1142 in the first housing 1120 and the second magnetic body 1143 in the mover 1130 .
  • the first protrusions PR1a and PR1b may be spaced apart from each other in the first direction (X-axis direction) and supported by the first housing 1120 .
  • the rotation plate 1141 may rotate or tilt the second protrusion PR2 protruding toward the mover 1130 about a reference axis (or rotation axis). That is, the rotation plate 1141 may perform Y-axis tilt with respect to the second protrusion PR2 as a reference axis.
  • the mover 1130 is moved along the X-axis by the first electromagnetic forces F1A and F1B between the third magnet 1151c disposed in the third seating groove and the third coil 1152c disposed on the side of the third substrate.
  • the OIS may be implemented while rotating (X1->X1b) at a first angle ⁇ 1 in the direction.
  • the first angle ⁇ 1 may be ⁇ 1° to ⁇ 3°.
  • the present invention is not limited thereto.
  • an X-axis tilt may be performed. That is, the OIS may be implemented by rotating in the second direction (Y-axis direction).
  • the OIS may be implemented while the mover 1130 tilts or rotates (or tilts the X-axis) in the Y-axis direction.
  • the first magnet 1151a and the second magnet 1151b disposed in the holder 1131 form an electromagnetic force with the first coil 1152a and the second coil 1152b, respectively, in the second direction Y axial direction) by tilting or rotating the rotation plate 1141 and the mover 1130 .
  • the rotation plate 1141 may rotate or tilt the first protrusion PR1 in the second direction with respect to the reference axis (or rotation axis) (X-axis tilt).
  • the second electromagnetic force F2A between the first and second magnets 1151a and 1151b disposed in the first seating groove and the first and second coil units 1152a and 1152b disposed on the side of the first and second substrates; F2B), while rotating the mover 1130 at a second angle ⁇ 2 in the Y-axis direction (Y1->Y1a), the OIS may be implemented.
  • the second angle ⁇ 2 may be ⁇ 1° to ⁇ 3°.
  • the present invention is not limited thereto.
  • the second actuator moves the rotation plate 1141 and the mover 1130 in the first direction (X-axis direction) or the second direction ( By controlling the rotation in the Y-axis direction), it is possible to minimize the occurrence of a decent or tilt phenomenon and provide the best optical characteristics when implementing OIS.
  • 'Y-axis tilt' corresponds to rotation or tilt in the first direction (X-axis direction)
  • 'X-axis tilt' corresponds to rotation or tilt in the second direction (Y-axis direction). do.
  • FIG. 8 is a perspective view of a second camera actuator according to the embodiment
  • FIG. 9 is an exploded perspective view of the second camera actuator according to the embodiment
  • FIG. 10 is a cross-sectional view taken along line DD′ in FIG. 8
  • FIG. 11 is FIG. It is a cross-sectional view cut from EE'.
  • the second camera actuator 1200 includes a lens unit 1220 , a second housing 1230 , a second driving unit 1250 , a base unit (not shown), and a second camera actuator 1200 .
  • Two substrate units 1270 may be included.
  • the second camera actuator 1200 may further include a second shield can (not shown), an elastic part (not shown), and a bonding member (not shown).
  • the second camera actuator 1200 according to the embodiment may further include an image sensor IS.
  • the second shield can (not shown) is located in one region (eg, the outermost side) of the second camera actuator 1200 and includes components (the lens unit 1220 , the second housing 1230 , and the elastic unit to be described later). (not shown), the second driving unit 1250, the base unit (not shown), the second substrate unit 1270, and the image sensor IS).
  • the second shield can (not shown) may block or reduce electromagnetic waves generated from the outside. Accordingly, the occurrence of a malfunction in the second driving unit 1250 may be reduced.
  • the lens unit 1220 may be located in the second shield can (not shown).
  • the lens unit 1220 may move in a third direction (Z-axis direction). Accordingly, the above-described AF function may be performed.
  • the lens unit 1220 may include a lens assembly 1221 and a bobbin 1222 .
  • the lens assembly 1221 may include at least one lens. In addition, there may be a plurality of lens assemblies 1221 , but one of them will be described below.
  • the lens assembly 1221 is coupled to the bobbin 1222 and can move in the third direction (Z-axis direction) by electromagnetic force generated from the fourth magnet 1252a and the second magnet 1252b coupled to the bobbin 1222 . .
  • the bobbin 1222 may include an opening area surrounding the lens assembly 1221 .
  • the bobbin 1222 may be coupled to the lens assembly 1221 by various methods.
  • the bobbin 1222 may include a groove in the side thereof, and may be coupled to the fourth magnet 1252a and the second magnet 1252b through the groove. A bonding member or the like may be applied to the groove.
  • the bobbin 1222 may be coupled to an elastic part (not shown) at the upper end and the rear end. Accordingly, the bobbin 1222 may be supported by an elastic part (not shown) to move in the third direction (Z-axis direction). That is, the position of the bobbin 1222 may be maintained while being maintained in the third direction (Z-axis direction).
  • the elastic part (not shown) may be formed of a leaf spring.
  • the second housing 1230 may be disposed between the lens unit 1220 and the second shield can (not shown). In addition, the second housing 1230 may be disposed to surround the lens unit 1220 .
  • a hole may be formed in a side of the second housing 1230 .
  • a fourth coil 1251a and a fifth coil 1251b may be disposed in the hole.
  • the hole may be positioned to correspond to the groove of the bobbin 1222 described above.
  • the fourth magnet 1252a may be positioned to face the fourth coil 1251a. Also, the second magnet 1252b may be positioned to face the fifth coil 1251b.
  • the elastic part (not shown) may include a first elastic member (not shown) and a second elastic member (not shown).
  • the first elastic member (not shown) may be coupled to the upper surface of the bobbin 1222 .
  • the second elastic member (not shown) may be coupled to the lower surface of the bobbin 1222 .
  • the first elastic member (not shown) and the second elastic member (not shown) may be formed of a leaf spring as described above.
  • the first elastic member (not shown) and the second elastic member (not shown) may provide elasticity with respect to the movement of the bobbin 1222 .
  • the second driving unit 1250 may provide driving forces F3 and F4 for moving the lens unit 1220 in the third direction (Z-axis direction).
  • the second driving unit 1250 may include a driving coil 1251 and a driving magnet 1252 .
  • the lens unit 1220 may move in the third direction (Z-axis direction) by the electromagnetic force formed between the driving coil 1251 and the driving magnet 1252 .
  • the driving coil 1251 may include a fourth coil 1251a and a fifth coil 1251b.
  • the fourth coil 1251a and the fifth coil 1251b may be disposed in a hole formed in the side of the second housing 1230 .
  • the fourth coil 1251a and the fifth coil 1251b may be electrically connected to the second substrate unit 1270 . Accordingly, the fourth coil 1251a and the fifth coil 1251b may receive current or the like through the second substrate unit 1270 .
  • the driving magnet 1252 may include a fourth magnet 1252a and a fifth magnet 1252b.
  • the fourth magnet 1252a and the fifth magnet 1252b may be disposed in the aforementioned groove of the bobbin 1222 and may be positioned to correspond to the fourth coil 1251a and the fifth coil 1251b.
  • the second driving unit 1250 may include a Hall sensor unit 1253 .
  • the second driving unit 1250 may include a fourth Hall sensor 1253a and a fifth Hall sensor 1253b.
  • the fourth Hall sensor 1253a and the fifth Hall sensor 1253b are As described above, there may be a plurality of them, and they may be connected in series with each other as will be described later.
  • the base unit (not shown) may be positioned between the lens unit 1220 and the image sensor IS.
  • a component such as a filter may be fixed to the base portion (not shown).
  • the base part (not shown) may be disposed to surround the image sensor IS.
  • the second camera actuator may be a zoom actuator or an auto focus (AF) actuator.
  • the second camera actuator may support one or a plurality of lenses and may perform an autofocusing function or a zooming function by moving the lenses according to a control signal of a predetermined control unit.
  • the second camera actuator may be a fixed zoom or a continuous zoom.
  • the second camera actuator may provide movement of the lens assembly 1221 .
  • the second camera actuator may be formed of a plurality of lens assemblies.
  • the second camera actuator may include at least one of a first lens assembly (not shown), a second lens assembly (not shown), a third lens assembly (not shown), and a guide pin (not shown). can be placed.
  • the second camera actuator may perform a high-magnification zooming function through the driving unit.
  • the first lens assembly (not shown) and the second lens assembly (not shown) may be a moving lens that moves through a driving unit and a guide pin (not shown), and the third lens The assembly (not shown) may be a fixed lens, but is not limited thereto.
  • the third lens assembly may perform a function of a concentrator to image light at a specific location, and the first lens assembly (not shown) may serve as a concentrator. (not shown) may perform a variator function to reimage the image formed in another place.
  • the distance to the subject or the image distance changes a lot, so the magnification change may be large, and the first lens assembly (not shown), which is the variable magnification, may change the focal length or the magnification of the optical system.
  • the image formed in the first lens assembly (not shown), which is a variable changer may be slightly different depending on the location.
  • the second lens assembly may perform a position compensation function for the image formed by the variable changer.
  • the second lens assembly functions as a compensator to accurately image the image formed by the first lens assembly (not shown), which is a variable changer, at the actual image sensor position.
  • the image sensor IS may be located inside or outside the second camera actuator. In an embodiment, as shown, the image sensor IS may be located inside the second camera actuator.
  • the image sensor IS may receive light and convert the received light into an electrical signal.
  • the image sensor IS may have a plurality of pixels in the form of an array. And the image sensor IS may be located on the optical axis.
  • FIG. 12 is a block diagram showing the configuration of a camera module according to an embodiment of the present invention
  • FIG. 13 is a block diagram showing a detailed configuration of the position sensor unit of FIG. 12
  • FIGS. 14 and 15 are the connection of the sensor unit of FIG. 13 It is a diagram for explaining a relationship
  • FIG. 16 is a diagram for explaining a connection relationship between sensor units according to an embodiment of the present invention.
  • the camera module includes an image sensor 110 , an image signal processing unit 120 , a display unit 130 , a first lens driving unit 140 , a second lens driving unit 150 , and a first position sensor unit. 160 , a second position sensor unit 170 , a storage unit 180 , and a control unit 190 may be included.
  • the image sensor 110 processes the optical image of the subject formed through the lens. To this end, the image sensor 110 may pre-process the image acquired through the lens. Also, the image sensor 110 may convert the pre-processed image into electrical data and output the converted image.
  • This image sensor 110 corresponds to the above-described image sensor IS.
  • the image sensor 110 has a form in which a plurality of photodetectors are integrated as each pixel, and converts image information of a subject into electrical data (eg, an image signal) and outputs the converted image information.
  • the image sensor 110 accumulates the amount of input light, and outputs an image photographed by the lens according to the accumulated light amount according to the vertical synchronization signal.
  • the image acquisition is performed by the image sensor 110 that converts light reflected from the subject into an electrical signal.
  • a color filter is required to obtain a color image using the image sensor 110 , and for example, a color filter array (CFA) filter may be employed.
  • the CFA passes only light representing one color per pixel, has a regularly arranged structure, and has various shapes depending on the arrangement structure.
  • the image signal processing unit 120 processes the image output through the image sensor 110 in units of frames.
  • the image signal processing unit 120 may also be referred to as an ISP (Image Signal Processor).
  • the image signal processing unit 120 may include a lens shading compensator (not shown).
  • the lens shading compensator is a block for compensating for a lens shading phenomenon that appears differently in the amount of light in the center and edge of the image, and receives a lens shading setting value from the control unit 190 to be described later, and adjusts the color of the center and edge of the image. compensate
  • the lens shading compensator may receive a shading variable set differently according to the type of illumination, and process the lens shading of the image according to the received variable. Accordingly, the lens shading compensator may perform the lens shading process by applying a different shading degree according to the type of illumination.
  • the lens shading compensator may receive a shading variable set differently according to an automatic exposure weight applied to a specific area of the image to prevent a saturation phenomenon occurring in the image, and process the lens shading of the image according to the received variable. . More specifically, the lens shading compensator compensates for the brightness change occurring in the edge region of the image signal as the automatic exposure weight is applied to the central region of the image signal. That is, when the image signal is saturated due to lighting, the intensity of light decreases from the center to the outside in the form of concentric circles, so the lens shading compensator amplifies the edge signal of the image signal to compensate for the brightness compared to the center.
  • the image signal processing unit 120 may measure the sharpness of an image obtained through the image sensor 110 . That is, the image signal processing unit 120 may measure the sharpness of the image in order to check the focus accuracy of the image acquired through the image sensor 110 . Sharpness may be measured for each image obtained according to the position of the focus lens.
  • the display unit 130 displays the captured image under the control of the controller 190, which will be described later, and displays a setting screen necessary for taking a picture or a screen for selecting a user's operation.
  • the first lens driving unit 140 may correspond to the above-described first driving unit 1140 (refer to FIG. 4 ). That is, the first lens driver 140 may perform electromagnetic interaction between the first to third coils and the first to third magnets in response to the control signal received from the controller 190 . And OIS can be performed by this interaction.
  • the second lens driving unit 150 may correspond to the above-described second driving unit 1250 (refer to FIG. 8 ). That is, the second lens driver 150 may perform electromagnetic interaction between the fourth to fifth coils and the fourth to fifth magnets in response to the control signal received from the controller 190 . And zooming or AF may be performed by this interaction.
  • the focus lens may be moved in the optical axis direction.
  • the first position sensor unit 160 includes a plurality of Hall sensors of the described first camera actuator, and thus detects a position of a mover or an optical member. That is, the first position sensor unit 160 may detect the position of the first driving unit disposed on the mover. This is to control the position of the first mover or prism. And the first position sensor unit 160 provides position data for moving the mover or the prism.
  • the second position sensor unit 170 includes a plurality of Hall sensors of the described second camera actuator, and thus detects the position of the lens unit 1220 (refer to FIG. 9 ). That is, the second position sensor unit 170 may detect the position of the second driver adjacent to the lens unit 1220 . This is to control the position of the lens unit. And the second position sensor unit 170 provides position data for moving the lens unit.
  • the storage unit 180 stores data necessary for the camera module to operate.
  • information on a zoom position and a focus position may be stored in the storage unit 180 for each distance from the subject. That is, the focus position may be a position of the focus lens for accurately focusing the subject.
  • the focus position may change according to the zoom position with respect to the zoom lens and the distance from the subject. Accordingly, the storage unit 180 stores the zoom position according to the distance and data on the focus position corresponding to the zoom position.
  • the controller 190 controls the overall operation of the camera module.
  • the controller 190 may control the first position sensor unit 160 and the second position sensor unit 170 to provide an auto-focus function.
  • control unit 190 detects the position of the mover or the optical member through the first position sensor unit 160 .
  • control unit 190 detects the current position of the mover or the optical member through the first position sensor unit 160 in order to move the mover or the optical member to the target position.
  • the controller 190 is a control signal for moving the mover or the optical member to the target position based on the current position of the mover or the optical member. is supplied to the first lens driving unit 140 .
  • control unit 190 detects the position of the lens unit through the second position sensor unit 170 .
  • the control unit 190 detects the current position of the lens unit through the second position sensor unit 170 in order to move the lens unit to the target position.
  • control unit 190 sends a control signal for moving the lens unit to the target position based on the current position of the lens unit to the second lens driving unit 150 .
  • a differential signal of detection signals detected by a plurality of sensor units constituting each sensor unit may be input to the control unit 190 through the first position sensor unit 160 and the second position sensor unit 170 .
  • each of the first position sensor unit 160 and the second position sensor unit 170 includes a plurality of sensor units (corresponding to the above-described 'Hall sensor'). And, the plurality of sensor units perform a detection operation at each installation position. That is, the plurality of sensor units may detect the position of the mover, the position of the lens unit, and the like. At this time, in the present invention, the positions of the mover or the optical member and the lens unit may be respectively detected by using the differential signals of the detection signals obtained through the plurality of sensor units.
  • the signals detected by the plurality of sensor units are respectively input to the controller 190 , and accordingly, the positions of the mover or the optical member or the second lens assembly may be detected based on the differential signals.
  • control unit 190 may be provided with a plurality of connection terminals connected to the analog-to-digital converter connected to each sensor unit.
  • the digital data for the differential signal is acquired from the front-end stage, and accordingly, the acquired digital data can be input to the controller 190 .
  • digital data can be acquired from the first position sensor unit 160 and the second position sensor unit 170 , and accordingly, only the acquired digital data is input to the control unit 190 .
  • first position sensor unit 160 and the second position sensor unit 170 will be described in detail.
  • the first position sensor unit 160 and the second position sensor unit 170 may have the same configuration as each other, and thus may be respectively connected to the control unit 190 .
  • each of the first position sensor unit 160 and the second position sensor unit 170 includes a plurality of sensor units 210 , an amplifier 220 , and an analog-to-digital converter 230 . do.
  • the plurality of sensor units 210 include sensors for position detection.
  • the plurality of sensor units 210 may be a plurality of hall sensors, and the hall sensors may correspond to the hall sensors described in the first camera actuator and the second camera actuator.
  • the plurality of sensor units 210 may include a plurality of induction coils.
  • the plurality of sensor units 210 may be connected to each other between sensors for the same axis movement or axis tilt in each actuator, and the sensors may be connected to the amplifier 220 (AMP).
  • AMP amplifier 220
  • a plurality of sensor units 210 may be interconnected, and an output terminal that is at least one terminal of the sensor unit may be connected to the amplifier 220 .
  • the sensor unit 210 connected to the outermost or outermost side may be connected to the amplifier 220 . Accordingly, a signal of the sum of the detection signals detected by each sensor unit may be input to the amplifier 220 . It is expressed as the sum of the sensing ranges of each sensor unit, and accordingly, the sensing ranges for the plurality of sensor units 210 input to the amplifier 220 may be extended compared to a single sensor unit.
  • the amplifier 220 may include a non-inverting terminal (+) and an inverting terminal (-).
  • the amplifier 220 differentially amplifies the signal input to the non-inverting terminal (+) and the signal input to the inverting terminal (-) and outputs the amplified signal to the analog-to-digital converter 230 . That is, the output signals for the plurality of sensor units 210 have a magnitude of several mV, which may have a magnitude that does not match the input range of the analog-to-digital converter 230 and the ratio. Therefore, the amplifier 220 differentially amplifies and outputs the signal input through the non-inverting terminal (+) and the inverting terminal (-) in order to match the input range of the analog-to-digital converter 230 .
  • the analog-to-digital converter 230 may receive an analog signal from the amplifier 220 , and accordingly convert the received analog signal into a digital signal and output the converted analog signal.
  • the analog-to-digital converter 230 may receive an analog signal from the amplifier 220 and output it as a multi-bit digital signal.
  • the output signal of the analog-to-digital converter 230 may be expressed as values of 0 and 1.
  • the plurality of sensor units 210 in the embodiment of the present invention may be configured with a plurality of Hall sensors.
  • the Hall sensor constituting the plurality of sensor units 210 includes four terminals. In this case, two terminals among the four terminals are input terminals, and the remaining terminals are output terminals.
  • the two input terminals are power input terminals
  • the two output terminals are output terminals of the detection signal.
  • the Hall sensor includes a first power terminal 211 , a second power terminal 212 , a first detection signal output terminal 213 , and a second detection signal output terminal 214 .
  • the first power terminal 211 is a terminal to which power of the + polarity is input
  • the second power terminal 212 is a terminal to which power of the - polarity is input.
  • the first detection signal output terminal 213 is a terminal to which a detection signal of + polarity is output
  • the second detection signal output terminal 214 is a terminal from which a detection signal of - polarity is output.
  • connection relationship between the two output terminals of the plurality of Hall sensors constituting the plurality of sensor units 210 is different depending on the location on the camera module.
  • each of the first power terminals 211 of the plurality of Hall sensors may be connected to a power supply having a + polarity
  • the second power terminal 212 may be connected to a power supply having a ⁇ polarity (or ground).
  • each of the detection signal output terminals of the plurality of Hall sensors may have a different connection relationship according to the arrangement position.
  • the plurality of Hall sensors is configured by at least two or more.
  • the plurality of sensor units may include at least two sensor units.
  • the first detection signal output terminal 213 and the second detection signal output terminal 214 are output terminals of the two Hall sensors disposed at the outside, respectively. is connected with
  • the plurality of sensor units are configured with three Hall sensors.
  • the plurality of sensor units are configured with three Hall sensors, two Hall sensors among them will be disposed outside, and the other Hall sensor will be disposed between the two Hall sensors disposed outside the plurality of sensor units.
  • the first detection signal output terminal 213 and the second detection signal output terminal 214 of the one Hall sensor disposed between the two hall sensors disposed on the outside are the two halls disposed on the outside, respectively. It is connected to the output terminal of the sensor.
  • one output terminal of the two output terminals is connected to the amplifier 220 and the other output terminal is connected to a neighboring Hall sensor.
  • the plurality of sensor units are composed of two Hall sensors.
  • it may be connected between the first detection signal output terminal of one Hall sensor and the second detection signal output terminal of the other Hall sensor.
  • the second detection signal output terminal of any one Hall sensor may be connected to the amplifier 220
  • the first detection signal output terminal of the other Hall sensor may also be connected to the amplifier 220 .
  • the sensor unit may include a first Hall sensor 210A and a second Hall sensor 210B connected in series with each other.
  • the first Hall sensor 210A and the second Hall sensor 210B may correspond to the above-described first Hall sensor 1153a and the second Hall sensor 1153b.
  • the first Hall sensor 210A and the second Hall sensor 210B may correspond to a plurality of third Hall sensors 1153c.
  • the first Hall sensor 210A and the second Hall sensor 210B may correspond to a Hall sensor of the second camera actuator.
  • the first Hall sensor 210A and the second Hall sensor 210B will be described on the basis that they respectively correspond to any one of the first Hall sensor 1153a and the second Hall sensor 1153b.
  • the first Hall sensor 210A may include a first detection signal output terminal 213 and a second detection signal output terminal 214 .
  • the first detection signal output terminal 213 is connected to the non-inverting terminal (+) of the amplifier 220
  • the second detection signal output terminal 214 is a second serially connected to the first Hall sensor 210A. It is connected to the first detection signal output terminal 213' of the Hall sensor 210B.
  • the second detection signal output terminal 214 of the first Hall sensor 210A may be connected to the first detection signal output terminal 213 ′ of the second Hall sensor 210B.
  • the second Hall sensor 210B may also include a first detection signal output terminal 213' and a second detection signal output terminal 214'.
  • the first detection signal output terminal 213' of the second Hall sensor 210B is connected to the second detection signal output terminal 214 of the first Hall sensor 210A, and the second detection signal output terminal 214' may be connected to the inverting terminal (-) of the amplifier 220 .
  • a plurality of Hall sensors that perform position detection for the same axis tilt may have output terminals connected to each other in series.
  • a signal corresponding to the sum of the sensing ranges of the plurality of Hall sensors may be input to the amplifier 220 .
  • the amplifier 220 may differentially amplify and output a signal corresponding to the sum of the input sensing ranges.
  • the present invention it is possible to provide a differential sensing method having a wider detection range compared to a single sensing method.
  • a differential signal according to the combination of the plurality of position sensors it is possible to minimize exposure of the output signal of the position sensor to the offset noise in the path to the control unit.
  • the differential signals for the plurality of position sensors are output in the sensing unit composed of a plurality of position sensors, amplifiers, and analog-to-digital converters, so that the number of patterns/pins connected from the driving unit to the printed circuit board is determined. can be minimized, and thus the space of the printed circuit board can be saved.
  • differential values for the plurality of position sensors are obtained with respect to common mode noise, so that it can have excellent characteristics not only in internal noise but also in external noise.
  • the detection signal of a specific position sensor is transmitted to the amplifier stage or differential signals for a plurality of position sensors are transmitted according to the usage environment of the camera module. Accordingly, in the present invention, it is possible to obtain an optimal detection signal in an environment in which the sensing sensitivity must be high and an environment in which the sensing range must be large.
  • one of the two output terminals of the Hall sensors (the aforementioned first and second Hall sensors) connected to the outside among the plurality of Hall sensors is a non-inverting terminal (+) of the amplifier 220 . ) and the inverting terminal (-), respectively, and the output terminals including the remaining Hall sensors were connected to the output terminals of the neighboring Hall sensors. Accordingly, in the present invention, the number of input pins required by the control unit 190 can be minimized, and the problem that the detection signal is exposed to offset noise on the path moving to the control unit 190 can be minimized.
  • 17 is a view for explaining a connection relationship between sensor units according to another embodiment of the present invention.
  • the plurality of sensor units includes a plurality of induction coils 210C. And, each of the plurality of induction coils includes two output terminals. At this time, one of the two output terminals may be one end of the induction coil, and the other one of the two output terminals may be the other end of the induction coil.
  • ends of the plurality of induction coils may be connected to the ends of the neighboring induction coils or connected to the non-inverting terminal (+) or the inverting terminal (-) of the amplifier 220 to correspond to the connection relationship of the Hall sensor. .
  • the first output terminal of the first arranged induction coil may be connected to the non-inverting terminal (+) of the amplifier 220 .
  • the second output terminal of the first arranged induction coil may be connected to the first output terminal of the next adjacent induction coil.
  • first output end of the second arrangement induction coil may be connected to the second output end of the previously arranged induction coil, the second output end of the second arrangement induction coil to be connected to the first output end of the next induction coil can
  • first output terminal of the induction coil disposed last may be connected to the second output terminal of the previously disposed induction coil, and the second output terminal of the induction coil disposed last is the inverting terminal (-) of the amplifier 220. can be connected
  • FIG. 18 is a perspective view of a holder according to the embodiment
  • FIG. 19 is a bottom view of the holder according to the embodiment.
  • the holder 1131 may include a seating surface 1131k on which the optical member 1132 is seated.
  • the seating surface 1131k may be an inclined surface.
  • the holder 1131 may include a jaw portion 1131b on the seating surface 1131k. And in the holder 1131 , the jaw portion 1131b may be coupled to the projection 1132a of the optical member 1132 .
  • the holder 1131 may include a plurality of outer surfaces.
  • the holder 1131 may include a first prism outer surface 1131S1 , a second prism outer surface 1131S2 , a third prism outer surface 1131S3 , and a fourth prism outer surface 1131S4 .
  • the first prism outer surface 1131S1 may be positioned to face the second prism outer surface 1131S2 . That is, the first prism outer surface 1131S1 may be symmetrically disposed with respect to the second prism outer surface 1131S2 and the first direction (X-axis direction).
  • the first prism outer surface 1131S1 may be adjacent to the first housing side portion 1121 and positioned to face each other.
  • the second prism outer surface 1131S2 may be adjacent to the second housing side 1122 and positioned to face each other.
  • first prism outer surface 1131S1 may include a first seating groove 1131S1a.
  • second prism outer surface 1131S2 may include a second seating groove 1131S2a.
  • the first seating groove 1131S1a and the second seating groove 1131S2a may be symmetrically disposed with respect to the first direction (X-axis direction).
  • a first magnet 1151a may be disposed in the first seating groove 1131S1a
  • a second magnet 1151b may be disposed in the second seating groove 1131S2a
  • the first magnet 1151a and the second magnet 1151b may also be disposed symmetrically with respect to the first direction (X-axis direction).
  • the electromagnetic force induced by each magnet is coaxial to the first prism outer surface S1231S1 and the second prism outer surface 1131S2.
  • a region eg, a portion having the strongest electromagnetic force
  • a region applied to the second prism outer surface S1231S1 eg, a portion having the strongest electromagnetic force
  • It may be positioned on an axis parallel to the second direction (Y-axis direction).
  • a first magnet 1151a may be disposed in the first seating groove 1131S1a, and a second magnet 1151b may be disposed in the second seating groove 1131S2a.
  • the third prism outer surface 1131S3 is in contact with the first prism outer surface 1131S1 and the second prism outer surface 1131S2, and from one side of the first prism outer surface 1131S1 and the second prism outer surface 1131S2 It may be an outer surface extending in two directions (Y-axis direction). In addition, the third prism outer surface 1131S3 may be positioned between the first prism outer surface 1131S1 and the second prism outer surface 1131S2 . The third prism outer surface 1131S3 may be a bottom surface of the holder 1131 .
  • the third prism outer surface 1131S3 may include a third seating groove 1131S3a.
  • a third magnet 1151c may be disposed in the third seating groove 1131S3a.
  • the third prism outer surface 1131S3 may be positioned to face the third housing side portion 1123 .
  • the third housing hole 1123a may at least partially overlap the third seating groove 1131S3a in the first direction (X-axis direction). Accordingly, the third magnet 1151c in the third seating groove 1131S3a and the third coil 1152c in the third housing hole 1123a may be positioned to face each other.
  • the third magnet 1151c and the third coil 1152c generate electromagnetic force so that the second camera actuator can tilt the Y-axis.
  • the Y-axis tilt can be performed only by the third magnet 1151c.
  • the third seating groove 1131S3a may have a larger width than the first seating hole 1131S1a or the second seating hole 1131S2a.
  • the fourth prism outer surface 1131S4 is in contact with the first prism outer surface 1131S1 and the second prism outer surface 1131S2, and in the first direction from the first prism outer surface 1131S1 and the second prism outer surface 1131S2 It may be an outer surface extending in the (X-axis direction). In addition, the fourth prism outer surface 1131S4 may be positioned between the first prism outer surface 1131S1 and the second prism outer surface 1131S2 .
  • the fourth prism outer surface 1131S4 may include a fourth seating groove 1131S4a.
  • a rotation plate 1141 may be positioned in the fourth seating groove 1131S4a.
  • the fourth seating groove 1131S4a may be positioned to face the first surface of the rotation plate.
  • FIG. 20 is a perspective view of a first camera actuator according to the embodiment
  • FIG. 21 is a cross-sectional view taken along FF' in FIG. 20
  • FIG. 22 is a cross-sectional view taken along GG' in FIG. 20, and FIG. This is the view from the direction.
  • the first substrate part 1154 may contact the first housing side part 1121 , the second housing side part 1122 , and the third housing side part 1123 .
  • a first Hall sensor 1153a , a second Hall sensor 1153b , and a third Hall sensor 1153c may be seated on the first substrate unit 1154 .
  • a first Hall sensor 1153a and a second Hall sensor 1153b that face each other and provide positional data on the movement of the mover or optical member according to the X-axis tilt are provided. explained on the basis of
  • the first Hall sensor 1153a and the second Hall sensor 1153b may be seated in the first housing groove and the second housing groove, respectively.
  • the first Hall sensor 1153a and the second Hall sensor 1153b may be symmetrically disposed with respect to the first direction (X-axis direction) and the third direction (Z-axis direction).
  • the first Hall sensor 1153a and the second Hall sensor 1153b may have the same height in the first direction (X-axis direction) from the third housing side 1123 .
  • the separation distance between the first Hall sensor 1153a and the second Hall sensor 1153b in the third direction (Z-axis direction) may be the same between the fourth housing side part 1124 .
  • positions in which the first Hall sensor 1153a and the second Hall sensor 1153b are disposed on the first substrate unit 1154 may also correspond to each other.
  • FIG. 24 is a view of a first substrate part according to an embodiment
  • FIG. 25 is an enlarged view of part K1 in FIG. 24
  • FIG. 26 is an enlarged view of part K2 in FIG. 24
  • FIGS. 27 and 28 are views according to the embodiment It is a figure explaining the structure of the hall sensor part.
  • the first substrate part 1154 may include a first substrate region P1 , a second substrate region P2 , and a third substrate region P3 .
  • the first substrate region P1 may be disposed on one side of the first substrate unit 1154 . More specifically, the first substrate area P1 may be disposed to contact the side of the first housing described above. Accordingly, the first Hall sensor and the first coil may be disposed on the first substrate area P1 . In other words, the first sensor unit 210A may be disposed on the first substrate area P1 . In addition, the first sensor unit 210A may be surrounded by the first coil in the first substrate area P1 . Hereinafter, the first sensor unit will be described.
  • the second substrate region P2 may be disposed on the other side of the first substrate unit 1154 .
  • the second substrate region P2 may be disposed to contact the side of the second housing described above. Accordingly, the above-described second Hall sensor and the second coil may be disposed on the second substrate region P2 .
  • the second sensor unit 210B may be disposed on the second substrate area P2 .
  • the second substrate region P2 may be disposed to correspond to the first substrate region P1 in the first direction (X-axis direction). Accordingly, the second substrate region P2 may be disposed to at least partially overlap the first substrate region P1 in the second direction (Y-axis direction).
  • the second sensor unit 210B may be surrounded by the second coil in the second substrate area P2 .
  • each of the first sensor unit 210A and the second sensor unit 210B may be disposed in a space formed on inner surfaces of the first coil and the second coil, and may not come into contact with the inner surface of the coil.
  • a virtual straight line connecting the first sensor unit 210A and the second sensor unit 210B may be orthogonal to the optical axis direction.
  • the virtual straight line may be orthogonal to a first direction (X-axis direction) and a third direction (Z-axis direction).
  • the first Hall sensor may overlap the second Hall sensor in the second direction (Y-axis direction), and may be symmetrically disposed with respect to the first direction (X-axis direction).
  • the first coil may overlap the second coil in the second direction (Y-axis direction) and may be symmetrically disposed with respect to the first direction (X-axis direction).
  • the third substrate region P3 may be disposed between the first substrate region P1 and the second substrate region P2 .
  • the third substrate region P3 may be disposed to be in contact with the third housing side.
  • a third Hall sensor and a third coil may be disposed on the third substrate area P3 .
  • the controller 190 may be electrically connected to the first sensor unit 210A and the second sensor unit 210B as described above.
  • the first sensor unit 210A includes a 1-1 power supply terminal 211A, a 2-1 power supply terminal 212A, a 1-1 detection signal output terminal 213A, and a 2-1 detection signal It may include an output terminal 214A.
  • the second sensor unit 210B includes a 1-2 power supply terminal 211B, a 2-2 power supply terminal 212B, a 1-2 detection signal output terminal 213B, and a 2-2 detection signal output terminal ( 214B).
  • first power terminal second power terminal
  • first detection signal output terminal first detection signal output terminal
  • second detection signal output terminal second detection signal output terminal
  • the 1-1 power supply terminal 211A, the 2-1 power supply terminal 212A, the 1-1 detection signal output terminal 213A, and the 2-1 detection signal output terminal 214A of the first sensor unit 210A ) is a 1-2 power supply terminal 211B, a 2-2 power supply terminal 212B, a 1-2 detection signal output terminal 213B, and a 2-2 detection signal output terminal of the second sensor unit 210B (214B) and each may be arranged to correspond to each other. That is, they may be symmetrically disposed with each other in the first direction (X-axis direction).
  • first-first power terminal 211A of the first sensor unit 210A may be connected to a power terminal in the first substrate unit 1154 .
  • the power terminal may be located inside or outside the control unit.
  • the 1-2 power supply terminal 211B of the second sensor unit 210B may be connected to the power supply terminal in the first substrate unit 1154 .
  • the power terminal may be located inside or outside the control unit.
  • the second-first power terminal 212A of the first sensor unit 210A and the second-second power terminal 212B of the second sensor unit 210B may be connected to each other.
  • the second-first power terminal 212A of the first sensor unit 210A and the second-second power terminal 212B of the second sensor unit 210B may be connected to a common ground.
  • the 1-1 detection signal output terminal 213A of the first sensor unit 210A may be electrically connected to the control unit 190 .
  • the controller 190 may be disposed in any one of the first substrate region P1 and the second substrate region P2 .
  • the controller 190 may be disposed on the second substrate area P2, and description will be made based on this.
  • the first-first detection signal output terminal 213A of the first sensor unit 210A may extend to the second substrate area P2 and may be connected to the control unit 190 .
  • a first path PT1 may be formed between the control unit 190 and the first-first detection signal output terminal 213A of the first sensor unit 210A.
  • the first path PT1 may be an electrical pattern.
  • the first path PT1 may extend from the second substrate region P2 to the first substrate region P1 via the third substrate region P3 . That is, the first path PT1 may pass through the first substrate region P1 , the second substrate region P2 , and the third substrate region P3 .
  • the first sensor unit 210A may be connected to any one of an inverting terminal (-) and a non-inverting terminal (+) of the amplifier in the controller 190 through the first path PT1 .
  • the 2-1 detection signal output terminal 214A of the first sensor unit 210A may be electrically connected to the 1-2 detection signal output terminal 213B of the second sensor unit 210B.
  • the 2-1 detection signal output terminal 214A of the first sensor unit 210A and the 1-2 detection signal output terminal 213B of the second sensor unit 210B are used.
  • a second path PT2 may be formed therebetween. That is, the second path PT2 may extend from the first substrate region P1 to the second substrate region P2 . Alternatively, the second path PT2 may pass through the first substrate region P1 , the second substrate region P2 , and the third substrate region P3 . Also, the second path PT2 may pass through the third substrate region P3 . Also, the second path PT2 may be an electrical pattern.
  • the second-second detection signal output terminal 214B of the second sensor unit 210A may be connected to the controller 190 .
  • a third path PT3 may be formed between the 2-2 detection signal output terminal 214B of the second sensor unit 210A and the controller 190 .
  • the third path PT3 may be an electrical pattern.
  • the third path PT3 may be disposed on the second substrate region P2 .
  • the second sensor unit 210B may be connected to the other of the inverting terminal (-) and the non-inverting terminal (+) of the amplifier in the controller 190 through the third path PT3 .
  • the third path PT3 may have a different electrical length from the first path PT1 .
  • the electrical length of the third path PT3 may be smaller than the electrical length of the first path PT1 .
  • the 1-1 detection signal output terminal 213A of the first sensor unit 210A is connected to the non-inverting terminal (+) of the amplifier in the control unit 190, and the second sensor unit 210B
  • the 2-2 detection signal output terminal 214B may be connected to the inverting terminal (-) of the amplifier in the controller 190 .
  • both the first path PT1 and the second path PT2 may overlap the first substrate region P1 , the second substrate region P2 , and the third substrate region P3 .
  • the first path PT1 and the second path PT2 pass from the first substrate region P1 to the second substrate region P2 or the second substrate region P2 via the third substrate region P3 . ) to the first substrate region P1 .
  • the second path PT and the first path PT have similar electrical lengths, and the third path PT3 exists only on the second substrate region P2, so that the electrical length can be minimized.
  • the first sensor unit 210A and the second sensor unit 210B are electrically connected in series, and at the same time, an electrical length for connection to the controller 190 or an amplification unit in the controller may be reduced. Accordingly, the first substrate unit according to the embodiment may provide resistance reduction and noise reduction. In addition, as described above, the differential signal signal may be output to provide space saving of the first substrate unit.
  • a plurality of third Hall sensors may be disposed in series in the third substrate area P3 .
  • 29 is a perspective view of a mobile terminal to which a camera module according to an embodiment is applied;
  • the mobile terminal 1500 may include a camera module 1000 , a flash module 1530 , and an auto-focus device 1510 provided on the rear side.
  • the camera module 1000 may include an image capturing function and an auto focus function.
  • the camera module 1000 may include an auto-focus function using an image.
  • the camera module 1000 processes an image frame of a still image or a moving image obtained by an image sensor in a shooting mode or a video call mode.
  • the processed image frame may be displayed on a predetermined display unit and stored in a memory.
  • a camera (not shown) may also be disposed on the front of the mobile terminal body.
  • the camera module 1000 may include a first camera module and a second camera module, and OIS may be implemented together with an AF or zoom function by the first camera module and the second camera module.
  • the flash module 1530 may include a light emitting device that emits light therein.
  • the flash module 1530 may be operated by a camera operation of a mobile terminal or a user's control.
  • the autofocus device 1510 may include one of the packages of the surface light emitting laser device as a light emitting part.
  • the auto-focusing device 1510 may include an auto-focusing function using a laser.
  • the auto focus device 1510 may be mainly used in a condition in which the auto focus function using the image of the camera module 1000 is deteriorated, for example, close to 10 m or less or in a dark environment.
  • the autofocus device 1510 may include a light emitting unit including a vertical cavity surface emitting laser (VCSEL) semiconductor device and a light receiving unit that converts light energy such as a photodiode into electrical energy.
  • a light emitting unit including a vertical cavity surface emitting laser (VCSEL) semiconductor device and a light receiving unit that converts light energy such as a photodiode into electrical energy.
  • VCSEL vertical cavity surface emitting laser
  • FIG. 30 is a perspective view of a vehicle to which a camera module according to an embodiment is applied.
  • FIG. 30 is an external view of a vehicle including a vehicle driving assistance device to which the camera module 1000 according to an embodiment is applied.
  • the vehicle 700 may include wheels 13FL and 13FR that rotate by a power source and a predetermined sensor.
  • the sensor may be the camera sensor 2000, but is not limited thereto.
  • the camera 2000 may be a camera sensor to which the camera module 1000 according to the embodiment is applied.
  • the vehicle 700 of the embodiment may acquire image information through a camera sensor 2000 that captures a front image or a surrounding image, and determines a lane unidentified situation using the image information and generates a virtual lane when unidentified can do.
  • the camera sensor 2000 may acquire a front image by photographing the front of the vehicle 700 , and a processor (not shown) may obtain image information by analyzing an object included in the front image.
  • the processor detects the object to be included in the video information.
  • the processor may further supplement the image information by acquiring distance information from the object detected through the camera sensor 2000 .
  • the image information may be information about an object photographed in an image.
  • the camera sensor 2000 may include an image sensor and an image processing module.
  • the camera sensor 2000 may process a still image or a moving image obtained by an image sensor (eg, CMOS or CCD).
  • an image sensor eg, CMOS or CCD
  • the image processing module may process a still image or a moving image obtained through the image sensor, extract necessary information, and transmit the extracted information to the processor.
  • the camera sensor 2000 may include a stereo camera to improve the measurement accuracy of the object and further secure information such as the distance between the vehicle 700 and the object, but is not limited thereto.

Abstract

본 발명의 실시예는 하우징; 상기 하우징 내에 배치되고 광학부재를 포함하는 무버; 및 상기 하우징 내에 배치되며 상기 무버를 구동시키는 구동부;를 포함하며, 상기 구동부는, 구동 마그넷, 상기 구동 마그넷과 마주보게 위치하는 구동 코일, 상기 무버의 위치를 감지하는 센서 유닛 및 상기 센서 유닛과 연결되는 기판부;를 포함하고, 상기 센서 유닛은 제1 센서 유닛 및 상기 제1 센서 유닛과 대향하고 직렬 연결되는 제2 센서 유닛을 포함하는 카메라 엑추에이터를 개시한다.

Description

카메라 엑추에이터 및 이를 포함하는 카메라 장치
본 발명은 카메라 엑추에이터 및 이를 포함하는 카메라 장치에 관한 것이다.
카메라는 피사체를 사진이나 동영상으로 촬영하는 장치이며, 휴대용 디바이스, 드론, 차량 등에 장착되고 있다. 카메라 장치는 영상의 품질을 높이기 위하여 사용자의 움직임에 의한 이미지의 흔들림을 보정하거나 방지하는 영상 안정화(Image Stabilization, IS) 기능, 이미지 센서와 렌즈 사이의 간격을 자동 조절하여 렌즈의 초점거리를 정렬하는 오토포커싱(Auto Focusing, AF) 기능, 줌 렌즈(zoom lens)를 통해 원거리의 피사체의 배율을 증가 또는 감소시켜 촬영하는 주밍(zooming) 기능을 가질 수 있다.
한편, 이미지센서는 고화소로 갈수록 해상도가 높아져 화소(Pixel)의 크기가 작아지게 되는데, 화소가 작아질수록 동일한 시간 동안 받아들이는 빛의 양이 감소하게 된다. 따라서, 고화소 카메라일수록 어두운 환경에서 셔터속도가 느려지면서 나타나는 손떨림에 의한 이미지의 흔들림 현상이 더욱 심하게 나타날 수 있다. 영상 안정화(IS) 기술 중 대표적인 것으로 빛의 경로를 변화시킴으로써 움직임을 보정하는 기술인 광학식 영상 안정화(optical image stabilizer, OIS) 기술이 있다.
일반적인 OIS 기술에 따르면, 자이로 센서(gyrosensor) 등을 통해 카메라의 움직임을 감지하고, 감지된 움직임을 바탕으로 렌즈를 틸팅 또는 이동시키거나 렌즈와 이미지센서를 포함하는 카메라 모듈을 틸팅 또는 이동시킬 수 있다. 렌즈 또는 렌즈와 이미지센서를 포함하는 카메라 모듈이 OIS를 위하여 틸팅 또는 이동할 경우, 렌즈 또는 카메라 모듈 주변에 틸팅 또는 이동을 위한 공간이 추가적으로 확보될 필요가 있다.
한편, OIS를 위한 엑추에이터는 렌즈 주변에 배치될 수 있다. 이 때, OIS를 위한 엑추에이터는 광축 Z축에 대하여 수직하는 두 축, 즉 X축 틸팅을 담당하는 엑추에이터와 Y축 틸팅을 담당하는 엑추에이터를 포함할 수 있다.
다만, 초슬림 및 초소형의 카메라 장치의 니즈에 따라 OIS를 위한 엑추에이터를 배치하기 위한 공간 상의 제약이 크며, 렌즈 또는 렌즈와 이미지센서를 포함하는 카메라 모듈 자체가 OIS를 위하여 틸팅 또는 이동할 수 있는 충분한 공간이 보장되기 어려울 수 있다. 또한, 고화소 카메라일수록 수광되는 빛의 양을 늘리기 위해 렌즈의 사이즈가 커지는 것이 바람직한데, OIS를 위한 엑추에이터가 차지하는 공간으로 인하여 렌즈의 사이즈를 키우는데 한계가 있을 수 있다.
또한, 카메라 장치 내에 주밍 기능, AF 기능 및 OIS 기능이 모두 포함되는 경우, OIS용 마그넷과 AF용 또는 Zoom용 마그넷이 서로 근접하게 배치되어 자계 간섭을 일으키는 문제도 있다.
또한, 위치 감지를 위한 홀 센서 등위 위치 센서에 의한 노이즈 발생 등의 문제가 존재한다.
본 발명이 해결하고자 하는 기술적 과제는 초슬림, 초소형 및 고해상 카메라에 적용 가능한 카메라 엑추에이터를 제공하는 것이다.
또한, 실시예에 따르면 요구되는 입력 핀의 수를 최소화한 카메라 엑추에이터를 제공할 수 있다.
또한. 오프셋 노이즈에 노출되는 문제를 최소화한 카메라 엑추에이터를 제공할 수 있다.
본 발명의 실시예에 따른 카메라 엑추에이터는 하우징; 상기 하우징 내에 배치되고 광학부재를 포함하는 무버; 및 상기 하우징 내에 배치되며 상기 무버를 구동시키는 구동부;를 포함하며, 상기 구동부는, 구동 마그넷, 상기 구동 마그넷과 마주보게 위치하는 구동 코일, 상기 무버의 위치를 감지하는 센서 유닛 및 상기 센서 유닛과 연결되는 기판부;를 포함하고, 상기 센서 유닛은 제1 센서 유닛 및 상기 제1 센서 유닛과 대향하고 직렬 연결되는 제2 센서 유닛을 포함한다.
상기 기판부는 제1 기판 영역; 상기 제1 기판 영역과 이격되고 대응하게 배치되는 제2 기판 영역; 및 상기 제1 기판 영역과 상기 제2 기판 영역 사이에 배치되는 제3 기판 영역;을 포함하고, 상기 제1 센서 유닛은 상기 제1 기판 영역에 배치되고, 상기 제2 센서 유닛은 상기 제2 기판 영역에 배치될 수 있다.
상기 제1 센서 유닛과 상기 제2 센서 유닛으로부터 검출된 상기 광학부재의 위치 정보로 상기 광학부재를 목표 위치로 이동시키는 구동 신호를 출력하는 제어부;를 더 포함할 수 있다.
상기 제어부는 상기 제1 기판 영역 및 상기 제2 기판 영역 중 어느 하나에 배치될 수 있다.
상기 제1 센서 유닛은 +극성의 제1-1 검출신호 출력단자 및 -극성의 제2-1 검출신호 출력단자를 포함할 수 있다.
상기 제2 센서 유닛은 +극성의 제1-2 검출신호 출력단자 및 -극성의 제2-2 검출신호 출력단자를 포함할 수 있다.
상기 기판부는, 상기 제1-1 검출신호 출력단자와 상기 제어부 사이를 연결하는 제1 경로; 상기 제2-1 검출신호 출력단자와 상기 제1-2 검출신호 출력단자 사이를 연결하는 제2 경로; 및 상기 제2-2 검출신호 출력단자와 상기 제어부 사이를 연결하는 제3 경로;를 포함할 수 있다.
상기 제2 경로는 상기 제1 기판 영역, 상기 제2 기판 영역 및 상기 제3 기판 영역을 통과할 수 있다.
상기 제1 경로와 상기 제3 경로는 길이가 서로 상이할 수 있다.
상기 하우징은, 제1 하우징 측부; 및 상기 제1 하우징 측부에 대응하게 배치되는 제2 하우징 측부;를 포함할 수 있다.
상기 제1 하우징 측부는 제1 하우징 홀;을 포함하고, 상기 제2 하우징 측부는 제2 하우징 홀;을 포함하고, 상기 구동 마그넷은 제1 마그넷 및 상기 제1 마그넷에 대응하여 배치되는 제2 마그넷을 포함하고, 상기 구동 코일은 제1 코일 및 상기 제1 코일에 대응하여 배치되는 제2 코일을 포함하고, 상기 제1 코일 및 상기 제1 마그넷 중 어느 하나는 상기 제1 하우징 홀에 배치되고, 상기 제2 코일 및 상기 제2 마그넷 중 어느 하나는 상기 제2 하우징 홀에 배치되는 카메라 엑추에이터.
상기 제1 기판 영역은 상기 제1 하우징 측부와 접하고, 상기 제2 기판 영역은 상기 제2 하우징 측부와 접할 수 있다.
본 발명의 실시예에 따르면, 초슬림, 초소형 및 고해상 카메라에 적용 가능한 카메라 엑추에이터를 제공할 수 있다. 특히, 카메라 장치의 전체적인 사이즈를 늘리지 않으면서도 OIS용 엑추에이터를 효율적으로 배치할 수 있다.
본 발명의 실시예에 따르면, X축 방향의 틸팅 및 Y축 방향의 틸팅이 서로 자계 간섭을 일으키지 않으며, 안정적인 구조로 X축 방향의 틸팅 및 Y축 방향의 틸팅이 구현될 수 있고, AF용 또는 주밍용 엑추에이터와도 서로 자계 간섭을 일으키지 않아 정밀한 OIS 기능을 실현할 수 있다.
본 발명의 실시예에 따르면, 렌즈의 사이즈 제한을 해소하여 충분한 광량 확보가 가능하며, 저소비 전력의 OIS 구현이 가능하다.
또한, 실시예에 따르면 요구되는 입력 핀의 수를 최소화한 카메라 엑추에이터 구현이 가능하다.
또한. 오프셋 노이즈에 노출되는 문제를 최소화한 카메라 엑추에이터 구현이 가능하다.
도 1은 실시예에 따른 카메라 모듈의 사시도이고,
도 2는 실시예에 따른 카메라 모듈의 분해 사시도이고,
도 3는 도 1에서 AA'로 절단된 단면도이고,
도 4는 실시예에 따른 제1 카메라 엑추에이터의 분해 사시도이고,
도 5는 쉴드 캔 및 기판이 제거된 실시예에 따른 제1 카메라 엑추에이터의 사시도이고,
도 6은 도 5에서 BB'로 절단된 단면도이고,
도 7은 도 5에 CC'로 절단된 단면도이고,
도 8은 실시예에 따른 제2 카메라 엑추에이터의 사시도이고,
도 9는 실시예에 따른 제2 카메라 엑추에이터의 분해 사시도이고,
도 10은 도 8에서 DD'로 절단된 단면도이고,
도 11는 도 8에서 EE'로 절단된 단면도이고,
도 12는 본 발명의 실시 예에 따른 카메라 모듈의 구성을 나타낸 블록도이고,
도 13은 도 12의 위치 센서부의 상세 구성을 나타낸 블록도이고,
도 14 및 도 15는 도 13의 센서 유닛의 연결 관계를 설명하기 위한 도면이고,
도 16은 본 발명의 실시 예에 따른 센서 유닛의 연결 관계를 설명하기 위한 도면이고,
도 17은 본 발명의 다른 실시 예에 따른 센서 유닛의 연결 관계를 설명하기 위한 도면이고,
도 18은 실시예에 따른 홀더의 사시도이고,
도 19는 실시예에 따른 홀더의 저면도이고,
도 20은 실시예에 따른 제1 카메라 엑추에이터의 사시도이고,
도 21은 도 20에서 FF'로 절단된 단면도이고,
도 22는 도 20에서 GG'로 절단된 단면도이고,
도 23은 도 22에서 다른 방향에서 바라본 도면이고,
도 24는 실시예에 따른 제1 기판부의 도면이고,
도 25는 도 24에서 K1부분의 확대도이고,
도 26은 도 24에서 K2부분의 확대도이고,
도 27 및 도 28은 실시예에 따른 홀 센서부의 구조를 설명하는 도면이고,
도 29는 실시예에 따른 카메라 모듈이 적용된 이동 단말기의 사시도이고,
도 30은 실시예에 따른 카메라 모듈이 적용된 차량의 사시도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한
실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되지는 않는다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 실시예에 따른 카메라 모듈의 사시도이고, 도 2는 실시예에 따른 카메라 모듈의 분해 사시도이고, 도 3는 도 1에서 AA'로 절단된 단면도이다.
도 1 및 도 2를 참조하면, 실시예에 따른 카메라 모듈(1000)은 커버(CV), 제1 카메라 엑추에이터(1100), 제2 카메라 엑추에이터(1200), 및 회로 기판(1300)으로 이루어질 수 있다. 여기서, 제1 카메라 엑추에이터(1100)는 제1 엑추에이터로, 제2 카메라 엑추에이터(1200)는 제2 엑추에이터로 혼용될 수 있다.
커버(CV)는 제1 카메라 엑추에이터(1100) 및 제2 카메라 엑추에이터(1200)를 덮을 수 있다. 커버(CV)에 의해 제1 카메라 엑추에이터(1100)와 제2 카메라 엑추에이터(1200) 간의 결합력이 개선될 수 있다.
나아가, 커버(CV)는 전자파 차단을 수행하는 재질로 이루어질 수 있다. 이에, 커버(CV) 내의 제1 카메라 엑추에이터(1100)와 제2 카메라 엑추에이터(1200)를 용이하게 보호할 수 있다.
그리고 제1 카메라 엑추에이터(1100)는 OIS(OP1tical Image Stabilizer) 엑추에이터일 수 있다.
제1 카메라 엑추에이터(1100)는 소정의 경통(미도시)에 배치된 고정 초점거리 렌즈(fixed focal length les)를 포함할 수 있다. 고정 초점거리 렌즈(fixed focal length les)는“단일 초점거리 렌즈” 또는 “단(單) 렌즈”로 칭해질 수도 있다.
제1 카메라 엑추에이터(1100)는 광의 경로를 변경할 수 있다. 실시예로, 제1 카메라 엑추에이터(1100)는 내부의 광학 부재(예컨대, 미러)를 통해 광 경로를 수직으로 변경할 수 있다. 이러한 구성에 의하여, 이동 단말기의 두께가 감소하더라도 광 경로의 변경을 통해 이동 단말기의 두께보다 큰 렌즈 구성이 이동 단말기 내에 배치되어 배율, 오토 포커싱(AF) 및 OIS 기능이 수행될 수 있다.
제2 카메라 엑추에이터(1200)는 제1 카메라 엑추에이터(1100) 후단에 배치될 수 있다. 제2 카메라 엑추에이터(1200)는 제1 카메라 엑추에이터(1100)와 결합할 수 있다. 그리고 상호 간의 결합은 다양한 방식에 의해 이루어질 수 있다.
또한, 제2 카메라 엑추에이터(1200)는 줌(Zoom) 엑추에이터 또는 AF(Auto Focus) 엑추에이터일 수 있다. 예를 들어, 제2 카메라 엑추에이터(1200)는 하나 또는 복수의 렌즈를 지지하며 소정의 제어부의 제어신호에 따라 렌즈를 움직여 오토 포커싱 기능 또는 줌 기능을 수행할 수 있다.
회로 기판(1300)은 제2 카메라 엑추에이터(1200) 후단에 배치될 수 있다. 회로 기판(1300)은 제2 카메라 엑추에이터(1200) 및 제1 카메라 엑추에이터(1100)와 전기적으로 연결될 수 있다. 또한, 회로 기판(1300)은 복수 개일 수 있다.
실시예에 따른 카메라 모듈은 단일 또는 복수의 카메라 모듈로 이루어질 수도 있다. 예컨대, 복수의 카메라 모듈은 제1 카메라 모듈과 제2 카메라 모듈을 포함할 수 있다.
그리고 제1 카메라 모듈은 단일 또는 복수의 엑추에이터를 포함할 수 있다. 예를 들어, 제1 카메라 모듈은 제1 카메라 엑추에이터(1100)와 제2 카메라 엑추에이터(1200)를 포함할 수 있다.
그리고 제2 카메라 모듈은 소정의 하우징(미도시)에 배치되고, 렌즈부를 구동할 수 있는 엑추에이터(미도시)를 포함할 수 있다. 엑추에이터는 보이스 코일 모터, 마이크로 엑추에이터, 실리콘 엑추에이터 등일 수 있고, 정전방식, 써멀 방식, 바이 모프 방식, 정전기력방식 등 여러 가지로 응용될 수 있으며 이에 한정되는 것은 아니다. 또한, 본 명세서에서 카메라 엑추에이터는 엑추에이터 등으로 언급할 수 있다. 또한, 복수 개의 카메라 모듈로 이루어진 카메라 모듈은 이동 단말기 등 다양한 전자 기기 내에 실장될 수 있다.
도 3을 참조하면, 실시예에 따른 카메라 모듈은 OIS 기능을 하는 제1 카메라 엑추에이터(1100) 및 주밍(zooming) 기능 및 AF 기능을 하는 제2 카메라 엑추에이터(1200)를 포함할 수 있다.
광은 제1 카메라 엑추에이터(1100)의 상면에 위치한 개구 영역을 통해 카메라 모듈 내로 입사될 수 있다. 즉, 광은 광축 방향(예컨대, X축 방향)을 따라 제1 카메라 엑추에이터(1100)의 내부로 입사되고, 광학 부재를 통해 광경로가 수직 방향(예컨대, Z축 방향)으로 변경될 수 있다. 그리고 광은 제2 카메라 엑추에이터(1200)를 통과하고, 제2 카메라 엑추에이터(1200)의 일단에 위치하는 이미지 센서(IS)로 입사될 수 있다(PATH).
본 명세서에서, 저면은 제1 방향에서 일측을 의미한다. 그리고 제1 방향은 도면 상 X축 방향이고 제2 축 방향 등과 혼용될 수 있다. 제2 방향은 도면 상 Y축 방향이며 제1 축 방향 등과 혼용될 수 있다. 제2 방향은 제1 방향과 수직한 방향이다. 또한, 제3 방향은 도면 상 Z축 방향이고, 제3 축 방향 등과 혼용될 수 있다. 제1 방향 및 제2 방향에 모두 수직한 방향이다. 여기서, 제3 방향(Z축 방향)은 광축의 방향에 대응하며, 제1 방향(X축 방향)과 제2 방향(Y축 방향)은 광축에 수직한 방향이며 제2 카메라 엑추에이터에 의해 틸팅될 수 있다. 이에 대한 자세한 설명은 후술한다.
또한, 이하에서 제2 카메라 엑추에이터(1200)에 대한 설명에서 광축 방향은 제3 방향(Z축 방향)이며 이를 기준으로 이하 설명한다.
그리고 이러한 구성에 의하여, 실시예에 따른 카메라 모듈은 광의 경로를 변경하여 제1 카메라 엑추에이터 및 제2 카메라 엑추에이터의 공간적 한계를 개선할 수 있다. 즉, 실시예에 따른 카메라 모듈은 광의 경로 변경에 대응하여 카메라 모듈의 두께가 최소화하면서 광 경로를 확장할 수 있다. 나아가, 제2 카메라 엑추에이터는 확장된 광 경로에서 초점 등을 제어하여 높은 범위의 배율을 제공할 수도 있음을 이해해야 한다.
또한, 실시예에 따른 카메라 모듈은 제1 카메라 엑추에이터를 통해 광경로의 제어를 통해 OIS를 구현할 수 있으며, 이에 따라 디센터(decent)나 틸트(tilt) 현상의 발생을 최소화하고, 최상의 광학적 특성을 낼 수 있다.
나아가, 제2 카메라 엑추에이터(1200)는 광학계와 렌즈 구동부를 포함할 수 있다. 예를 들어, 제2 카메라 엑추에이터(1200)는 제1 렌즈 어셈블리, 제2 렌즈 어셈블리, 제3 렌즈 어셈블리 및 가이드 핀 중 적어도 하나 이상이 배치될 수 있다.
또한. 제2 카메라 엑추에이터(1200)는 코일과 마그넷을 구비하여 고배율 주밍 기능을 수행할 수 있다.
예를 들어, 제1 렌즈 어셈블리와 제2 렌즈 어셈블리는 코일, 마그넷과 가이드 핀을 통해 이동하는 이동 렌즈(moving lens)일 수 있으며, 제3 렌즈 어셈블리는 고정 렌즈일 수 있으나 이에 한정되는 것은 아니다. 예를 들어, 제3 렌즈 어셈블리는 광을 특정 위치에 결상하는 집광자(focator)의 기능을 수행할 수 있고, 제1 렌즈 어셈블리는 집광자인 제3 렌즈 어셈블리에서 결상된 상을 다른 곳에 재결상시키는 변배자(variator) 기능을 수행할 수 있다. 한편, 제1 렌즈 어셈블리에서는 피사체와의 거리 또는 상 거리가 많이 바뀌어서 배율변화가 큰 상태일 수 있으며, 변배자인 제1 렌즈 어셈블리는 광학계의 초점거리 또는 배율변화에 중요한 역할을 할 수 있다. 한편, 변배자인 제1 렌즈 어셈블리에서 결상되는 상점은 위치에 따라 약간 차이가 있을 수 있다. 이에 제2 렌즈 어셈블리는 변배자에 의해 결상된 상에 대한 위치 보상 기능을 할 수 있다. 예를 들어, 제2 렌즈 어셈블리는 변배자인 제1 렌즈 어셈블리에서 결상된 상점을 실제 이미지 센서 위치에 정확히 결상시키는 역할을 수행하는 보상자(compensator) 기능을 수행할 수 있다. 예를 들어, 제1 렌즈 어셈블리와 제2 렌즈 어셈블리는 코일과 마그넷의 상호작용에 의한 전자기력으로 구동될 수 있다. 상술한 내용은 후술하는 렌즈 어셈블리에 적용될 수 있다.
한편, 본 발명의 실시예에 따라 OIS용 엑추에이터와 AF 또는 Zoom용 엑추에이터가 배치될 경우, OIS 구동 시 AF 또는 Zoom용 마그넷과의 자계 간섭이 방지될 수 있다. 제1 카메라 엑추에이터(1100)의 제1 구동 마그넷이 제2 카메라 엑추에이터(1200)와 분리되어 배치되므로, 제1 카메라 엑추에이터(1100)와 제2 카메라 엑추에이터(1200) 간 자계 간섭이 방지될 수 있다. 본 명세서에서, OIS는 손떨림 보정, 광학식 이미지 안정화, 광학식 이미지 보정, 떨림 보정 등의 용어와 혼용될 수 있다.
도 4는 실시예에 따른 제2 카메라 엑추에이터의 분해 사시도이다.
도 4를 참조하면, 실시예에 따른 제2 카메라 엑추에이터(1100)는 제1 쉴드 캔(미도시됨), 제1 하우징(1120), 무버(1130), 회전부(1140), 제1 구동부(1150)를 포함한다.
무버(1130)는 홀더(1131)와 홀더(1131)에 안착하는 광학부재(1132)를 포함할 수 있다. 그리고 회전부(1140)는 회전 플레이트(1141), 회전 플레이트(1141)와 서로 결합력을 갖는 제1 자성체(1142), 회전 플레이트(1141) 내에 위치하는 제2 자성체(1143)를 포함한다. 또한, 제1 구동부(1150)는 구동 마그넷(1151), 구동 코일(1152), 홀 센서부(1153) 및 제1 기판부(1154)를 포함한다.
제1 쉴드 캔(미도시됨)은 제2 카메라 엑추에이터(1100)의 최외측에 위치하여 후술하는 회전부(1140)와 제1 구동부(1150)를 감싸도록 위치할 수 있다.
이러한 제1 쉴드 캔(미도시됨)은 외부에서 발생한 전자기파를 차단 또는 저감할 수 있다. 이에 따라, 회전부(1140) 또는 제1 구동부(1150)에서 오작동의 발생이 감소할 수 있다.
제1 하우징(1120)은 제1 쉴드 캔(미도시됨) 내부에 위치할 수 있다. 또한, 제1 하우징(1120)은 후술하는 제1 기판부(1154) 내측에 위치할 수 있다. 제1 하우징(1120)은 제1 쉴드 캔(미도시됨)과 서로 끼워지거나 맞춰져 체결될 수 있다.
제1 하우징(1120)은 복수 개의 하우징 측부로 이루어질 수 있다. 제1 하우징 측부(1121), 제2 하우징 측부(1122), 제3 하우징 측부(1123), 제4 하우징 측부(1124)를 포함할 수 있다.
제1 하우징 측부(1121)와 제2 하우징 측부(1122)는 서로 마주보도록 배치될 수 있다. 또한, 제3 하우징 측부(1123)와 제4 하우징 측부(1124)는 제1 하우징 측부(1121)와 제2 하우징 측부(1122) 사이에 배치될 수 있다.
제3 하우징 측부(1123)는 제1 하우징 측부(1121), 제2 하우징 측부(1122) 및 제4 하우징 측부(1124)와 접할 수 있다. 그리고 제3 하우징 측부(1123)는 제1 하우징(1120)에서 하측부로 저면을 포함할 수 있다.
그리고 제1 하우징 측부(1121)는 제1 하우징 홀(1121a)을 포함할 수 있다. 제1 하우징 홀(1121a)에는 후술하는 제1 코일(1152a)이 위치할 수 있다.
또한, 제2 하우징 측부(1122)는 제2 하우징 홀(1122a)을 포함할 수 있다. 그리고 제2 하우징 홀(1122a)에는 후술하는 제2 코일(1152b)이 위치할 수 있다.
제1 코일(1152a)과 제2 코일(1152b)은 제1 기판부(1154)와 결합할 수 있다. 실시예로, 제1 코일(1152a)과 제2 코일(1152b)은 제1 기판부(1154)와 전기적으로 연결되어 전류가 흐를 수 있다. 이러한 전류는 제2 카메라 엑추에이터가 X축을 기준으로 틸팅할 수 있는 전자기력의 요소이다.
또한, 제3 하우징 측부(1123)는 제3 하우징 홀(1123a)을 포함할 수 있다. 제3 하우징 홀(1123a)에는 후술하는 제3 코일(1152c)이 위치할 수 있다. 제3 코일(1152c)은 제1 기판부(1154)와 결합할 수 있다. 그리고 제3 코일(1152c)은 제1 기판부(1154)와 전기적으로 연결되어 전류가 흐를 수 있다. 이러한 전류는 제2 카메라 엑추에이터가 Y축을 기준으로 틸팅할 수 있는 전자기력의 요소이다.
제4 하우징 측부(1124)는 제1 하우징 홈(1124a)을 포함할 수 있다. 제1 하우징 홈(1124a)에 마주하는 영역에 후술하는 제1 자성체(1142)가 배치될 수 있다. 이에 따라, 제1 하우징(1120)은 회전 플레이트(1141)와 자기력 등에 의해 결합할 수 있다.
또한, 실시예에 따른 제1 하우징 홈(1124a)은 제4 하우징 측부(1124)의 내측면 또는 외측면에 위치할 수 있다. 이에 따라, 제1 자성체(1142)도 제1 하우징 홈(1124a)의 위치에 대응하도록 배치될 수 있다.
또한, 제1 하우징(1120)은 제1 내지 제4 하우징 측부(1121 내지 1224)에 의해 형성되는 수용부(1125)를 포함할 수 있다. 수용부(1125)에는 무버(1130)가 위치할 수 있다.
무버(1130)는 홀더(1131)와 홀더(1131)에 안착하는 광학부재(1132)를 포함한다.
홀더(1131)는 제1 하우징(1120)의 수용부(1125)에 안착할 수 있다. 홀더(1131)는 제1 하우징 측부(1121), 제2 하우징 측부(1122), 제3 하우징 측부(1123), 제4 하우징 측부(1124)에 각각 대응하는 제1 프리즘 외측면 내지 제4 프리즘 외측면을 포함할 수 있다.
제4 하우징 측부(1124)와 마주하는 제4 프리즘 외측면에는 제2 자성체(1143)가 안착할 수 있는 안착홈이 배치될 수 있다.
광학부재(1132)는 홀더(1131)에 안착할 수 있다. 이를 위해, 홀더(1131)는 안착면을 가질 수 있으며, 안착면은 수용홈에 의해 형성될 수 있다. 광학부재(1132)는 내부에 배치되는 반사부를 포함할 수 있다. 다만, 이에 한정되는 것은 아니다. 그리고 광학부재(1132)는 외부(예컨대, 물체)로부터 반사된 광을 카메라 모듈 내부로 반사할 수 있다. 다시 말해, 광학부재(1132)는 반사된 광의 경로를 변경하여 제1 카메라 엑추에이터 및 제2 카메라 엑추에이터의 공간적 한계를 개선할 수 있다. 이로써, 카메라 모듈은 두께가 최소화하면서 광 경로를 확장하여 높은 범위의 배율을 제공할 수도 있음을 이해해야 한다.
회전부(1140)는 회전 플레이트(1141), 회전 플레이트(1141)와 서로 결합력을 갖는 제1 자성체(1142), 회전 플레이트(1141)내에 위치하는 제2 자성체(1143)를 포함한다.
회전 플레이트(1141)는 상술한 무버(1130) 및 제1 하우징(1120)과 결합할 수 있다. 예컨대, 회전 플레이트(1141)는 무버(113!)와 제1 하우징(1120) 사이에서 제1 자성체(1142)와 제2 자성체(1143) 간의 자력(예, 인력, 척력)에 의해 위치를 유지할 수 있다. 회전 플레이트(1141)는 내부에 위치하는 추가적인 자성체(미도시됨)를 포함할 수 있다.
또한, 회전 플레이트(1141)는 광축과 인접하게 배치될 수 있다. 이로써, 실시예에 따른 엑추에이터는 후술하는 제1,2 축 틸트에 따라 광 경로의 변경을 용이하게 수행할 수 있다.
회전 플레이트(1141)는 제1 방향(X축 방향)으로 이격 배치되는 제1 돌출부와 제2 방향(Y축 방향)으로 이격 배치되는 제2 돌출부를 포함할 수 있다. 또한, 제1 돌출부와 제2 돌출부는 서로 반대 방향으로 돌출될 수 있다. 이에 대한 자세한 설명은 후술한다.
또한, 제1 자성체(1142)는 복수 개의 요크를 포함하며, 복수 개의 요크는 회전 플레이트(1141)를 기준으로 마주보게 위치할 수 있다. 실시예로, 제1 자성체(1142)는 마주보는 복수 개의 요크로 이루어질 수 있다. 그리고 회전 플레이트(1141)는 복수 개의 요크 사이에 위치할 수 있다.
제1 자성체(1142)는 상술한 바와 같이 제1 하우징(1120) 내에 위치할 수 있다. 또한, 상술한 바와 같이 제1 자성체(1142)는 제4 하우징 측부(1124)의 내측면 또는 외측면에 안착할 수 있다. 예컨대, 제1 자성체(1142)는 제4 하우징 측부(1124)의 외측면에 형성된 홈에 안착할 수 있다. 또는 제1 자성체(1142)는 상술한 제1 하우징 홈(1124a)에 안착할 수 있다.
그리고 제2 자성체(1143)는 무버(1130) 특히 홀더(1131)의 외측면에 위치할 수 있다. 이러한 구성에 의하여, 회전 플레이트(1141)는 내부의 제2 자성체(1143)와 제1 자성체(1142)간의 자기력에 의한 결합력으로 제1 하우징(1120) 및 무버(1130)와 용이하게 결합할 수 있다. 본 발명에서, 제1 자성체(1142)와 제2 자성체(1143)의 위치는 서로 이동될 수 있다.
제1 구동부(1150)는 구동 마그넷(1151), 구동 코일(1152), 홀 센서부(1153) 및 제1 기판부(1154)를 포함한다.
구동 마그넷(1151)은 복수 개의 마그넷을 포함할 수 있다. 실시예로, 구동 마그넷(1151)은 제1 마그넷(1151a), 제2 마그넷(1151b) 및 제3 마그넷(1151c)을 포함할 수 있다.
제1 마그넷(1151a), 제2 마그넷(1151b) 및 제3 마그넷(1151c)은 각각 홀더(1131)의 외측면에 위치할 수 있다. 그리고 제1 마그넷(1151a)과 제2 마그넷(1151b)은 서로 마주보도록 위치할 수 있다. 또한, 제3 마그넷(1151c)은 홀더(1131)의 외측면 중 저면 상에 위치할 수 있다. 이에 대한 자세한 설명은 후술한다.
구동 코일(1152)은 복수 개의 코일을 포함할 수 있다. 실시예로, 구동 코일(1152)은 제1 코일(1152a), 제2 코일(1152b) 및 제3 코일(1152c)을 포함할 수 있다.
제1 코일(1152a)은 제1 마그넷(1151a)과 대향하게 위치할 수 있다. 이에, 제1 코일(1152a)은 상술한 바와 같이 제1 하우징 측부(1121)의 제1 하우징 홀(1121a)에 위치할 수 있다.
또한, 제2 코일(1152b)은 제2 마그넷(1151b)과 대향하게 위치할 수 있다. 이에, 제2 코일(1152b)은 상술한 바와 같이 제2 하우징 측부(1122)의 제2 하우징 홀(1122a)에 위치할 수 있다.
제1 코일(1152a)은 제2 코일(1152b)과 마주보도록 위치할 수 있다. 즉, 제1 코일(1152a)은 제2 코일(1152b)과 제1 방향(X축 방향)을 기준으로 대칭으로 위치할 수 있다. 이는 제1 마그넷(1151a)과 제2 마그넷(1151b)에도 동일하게 적용될 수 있다. 즉, 제1 마그넷(1151a)과 제2 마그넷(1151b)은 제1 방향(X축 방향)을 기준으로 대칭으로 위치할 수 있다. 또한, 제1 코일(1152a), 제2 코일(1152b), 제1 마그넷(1151a) 및 제2 마그넷(1151b)은 제2 방향(Y축 방향)으로 적어도 일부 중첩되도록 배치될 수 있다. 이러한 구성에 의하여, 제1 코일(1152a)과 제1 마그넷(1151a) 간의 전자기력과 제2 코일(1152b)과 제2 마그넷(1151b) 간의 전자기력으로 X축 틸팅이 일측으로 기울어짐 없이 정확하게 이루어질 수 있다.
제3 코일(1152c)은 제3 마그넷(1151c)과 대향하게 위치할 수 있다. 이에, 제3 코일(1152c)은 상술한 바와 같이 제3 하우징 측부(1123)의 제3 하우징 홀(1123a)에 위치할 수 있다. 제3 코일(1152c)은 제3 마그넷(1151c)과 전자기력을 발생시킴으로써, 무버(1130) 및 회전부(1140)를 제1 하우징(1120)을 기준으로 Y축 틸팅을 수행할 수 있다.
여기서, X축 틸팅은 X축을 기준으로 틸트되는 것을 의미하며, Y축 틸팅은 Y축을 기준으로 틸트되는 것을 의미한다.
홀 센서부(1153)는 복수 개의 홀 센서를 포함할 수 있다. 홀 센서는 후술하는 '센서 유닛'에 대응하며 이와 혼용한다. 실시예로, 홀 센서부(1153)는 제1 홀 센서(1153a), 제2 홀 센서(1153b) 및 제3 홀 센서(1153c)를 포함할 수 있다.
제1 홀 센서(1153a)는 제1 코일(1152a) 내측에 위치할 수 있다. 그리고 제2 홀 센서(1153b)는 제1 홀 센서(1153a)와 제1 방향(X축 방향) 및 제3 방향(Z축 방향)으로 대칭으로 배치될 수 있다. 또한, 제2 홀 센서(1153b)는 제2 코일(1152b) 내측에 위치할 수 있다.
제1 홀 센서(1153a)는 제1 코일(1152a) 내측에서 자속 변화를 감지할 수 있다. 그리고 제2 홀 센서(1153b)는 제2 코일(1152b)에서 자속 변화를 감지할 수 있다. 이로써, 제1, 2 마그넷(1151a, 1151b)과 제1,2 홀 센서(1153a, 1153b) 간의 위치 센싱이 수행될 수 있다. 예컨대, 제1,2 홀 센서(1153a, 1153b)는 실시예에 따른 제2 카메라 엑추에이터는 이를 통해 X축 틸트를 제어할 수 있다.
또한, 제3 홀 센서(1153c)는 제3 코일(1152c) 내측에 위치할 수 있다. 제3 홀 센서(1153c)는 제3 코일(1152c) 내측에서 자속 변화를 감지할 수 있다. 이로써, 제3 마그넷(1151c)과 제3 홀 센서(1153bc) 간의 위치 센싱이 수행될 수 있다. 실시예에 따른 제2 카메라 엑추에이터는 이를 통해 Y축 틸트를 제어할 수 있다.
제1 기판부(1154)는 제1 구동부(1150)의 하부에 위치할 수 있다. 제1 기판부(1154)는 구동 코일(1152), 홀 센서부(1153)와 전기적으로 연결될 수 있다. 예를 들어, 제1 기판부(1154)는 구동 코일(1152), 홀 센서부(1153)와 SMT로 결합될 수 있다. 다만, 이러한 방식에 한정되는 것은 아니다.
제1 기판부(1154)는 제1 쉴드 캔(미도시됨)과 제1 하우징(1120) 사이에 위치하여, 제1 쉴드 캔(미도시됨) 및 제1 하우징(1120)과 결합할 수 있다. 결합 방식은 상술한 바와 같이 다양하게 이루어질 수 있다. 그리고 상기 결합을 통해 구동 코일(1152)과 홀 센서부(1153)가 제1 하우징(1120)의 외측면 내에 위치할 수 있다.
이러한 제1 기판부(1154)는 경성 인쇄 회로 기판(Rigid PCB), 연성 인쇄 회로 기판(Flexible PCB), 경연성 인쇄 회로 기판(RigidFlexible PCB) 등 전기적으로 연결될 수 있는 배선 패턴이 있는 회로 기판을 포함할 수 있다. 다만, 이러한 종류에 한정되는 것은 아니다.
이러한 홀 센서부(1153)와 후술하는 제1 기판부(1154) 간의 구체적인 내용은 후술한다.
도 5는 쉴드 캔 및 기판이 제거된 실시예에 따른 제1 카메라 엑추에이터의 사시도이고, 도 6은 도 5에서 BB'로 절단된 단면도이고, 도 7은 도 5에 CC'로 절단된 단면도이다.
도 5 내지 도 7을 참조하면, 제1 코일(1152a)은 제1 하우징 측부(1121)에 위치할 수 있다.
그리고 제1 코일(1152a)과 제1 마그넷(1151a)은 서로 대향하여 위치할 수 있다. 제1 마그넷(1151a)은 제1 코일(1152a)과 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다.
또한, 제2 코일(1152b)의 제2 하우징 측부(1122)에 위치할 수 있다. 이에, 제2 코일(1152b)과 제2 마그넷(1151b)은 서로 대향하여 위치할 수 있다. 제2 마그넷(1151b)은 제2 코일(1152b)과 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다.
또한, 제1 코일(1152a)과 제2 코일(1152b)은 제2 방향(Y축 방향)으로 중첩되고, 제1 마그넷(1151a)과 제2 마그넷(1151b)은 제2 방향(Y축 방향)으로 중첩될 수 있다. 이러한 구성에 의하여, 홀더의 외측면(제1 홀더 외측면 및 제2 홀더 외측면)에 가해지는 전자기력이 제2 방향(Y축 방향)으로 평행 축 상에 위치하여 X축 틸트가 정확하고 정밀하게 수행될 수 있다.
또한, 제4 홀더 외측면에는 제1 수용홈(미도시됨)이 위치할 수 있다. 그리고 제1 수용홈에는 제1 돌출부(PR1a, PR1b)가 배치될 수 있다. 이에 따라, X축 틸트를 수행하는 경우, 제1 돌출부(PR1a, PR1b)가 틸트의 기준축(또는 회전축)일 수 있다. 이에, 회전 플레이트(1141), 무버(1130)가 좌우로 이동할 수 있다.
제2 돌출부(PR2)는 상술한 바와 같이 제4 하우징 측부(1124)의 내측면의 홈에 안착할 수 있다. 그리고 Y축 틸트를 수행하는 경우, 제2 돌출부(PR2)를 Y축 틸트의 기준축으로 회전 플레이트 및 무버가 회전할 수 있다.
실시예에 따르면, 이러한 제1 돌출부와 제2 돌출부에 의해, OIS가 수행될 수 있다.
도 6을 참조하면, Y축 틸트가 수행될 수 있다. 즉, 제1 방향(X축 방향)으로 회전하여 OIS 구현이 이루어질 수 있다.
실시예로, 홀더(1131)의 하부에 배치되는 제3 마그넷(1151c)은 제3 코일(1152c)과 전자기력을 형성하여 제1 방향(X축 방향)으로 무버(1130)를 틸팅 또는 회전시킬 수 있다.
구체적으로, 회전 플레이트(1141)는 제1 하우징(1120) 내의 제1 자성체(1142)와 무버(1130) 내의 제2 자성체(1143)에 의해 제1 하우징(1120) 및 무버(1130)와 결합될 수 있다. 그리고 제1 돌출부(PR1a, PR1b)는 제1 방향(X축 방향)으로 이격되어 제1 하우징(1120)에 의해 지지될 수 있다.
그리고 회전 플레이트(1141)는 무버(1130)를 향해 돌출된 제2 돌출부(PR2)를 기준축(또는 회전축)으로 회전 또는 틸팅할 수 있다. 즉, 회전 플레이트(1141)는 제2 돌출부(PR2)를 기준축으로 Y축 틸트를 수행할 수 있다.
예를 들어, 제3 안착홈에 배치된 제3 마그넷(1151c)과 제3 기판 측부 상에 배치된 제3 코일(1152c) 간의 제1 전자기력(F1A, F1B)에 의해 무버(1130)를 X축 방향으로 제1 각도(θ1)로 회전(X1->X1b)하면서 OIS 구현이 이루어질 수 있다. 제1 각도(θ 1)는 ±1° 내지 ±3°일 수 있다. 다만, 이에 한정되는 것은 아니다.
도 7를 참조하면, X축 틸트가 수행될 수 있다. 즉, 제2 방향(Y축 방향)으로 회전하여 OIS 구현이 이루어질 수 있다.
Y축 방향으로 무버(1130)가 틸팅 또는 회전(또는 X축 틸트)하면서 OIS 구현이 이루어질 수 있다.
실시예로, 홀더(1131)에 배치되는 제1 마그넷(1151a) 및 제2 마그넷(1151b)은 각각이 제1 코일(1152a)및 제2 코일(1152b)과 전자기력을 형성하여 제2 방향(Y축 방향)으로 회전 플레이트(1141) 및 무버(1130)를 틸팅 또는 회전시킬 수 있다.
회전 플레이트(1141)는 제1 돌출부(PR1)를 기준축(또는 회전축)으로 제2 방향으로 회전 또는 틸팅(X축 틸트)할 수 있다.
예를 들어, 제1 안착홈에 배치된 제1, 2 마그넷(1151a, 1151b)과 제1, 2 기판 측부 상에 배치된 제1, 2 코일부(1152a, 1152b) 간의 제2 전자기력(F2A, F2B)에 의해 무버(1130)를 Y축 방향으로 제2 각도(θ2) 회전(Y1->Y1a)하면서 OIS 구현이 이루어질 수 있다. 제2 각도(θ2)는 ±1° 내지 ±3°일 수 있다. 다만, 이에 한정되는 것은 아니다.
이와 같이, 실시예에 따른 제2 엑추에이터는 홀더 내의 구동 마그넷과 하우징에 배치되는 구동 코일 간의 전자기력에 의해 회전 플레이트(1141) 및 무버(1130)를 제1 방향(X축 방향) 또는 제2 방향(Y축 방향)으로 회전 제어함으로써, OIS 구현 시 디센터(decent)나 틸트(tilt) 현상의 발생을 최소화하고 최상의 광학적 특성을 제공할 수 있다. 또한, 상술한 바와 같이 'Y축 틸트'는 제1 방향(X축 방향)으로 회전 또는 틸트하는 것에 대응하고, 'X축 틸트'는 제2 방향(Y축 방향)으로 회전 또는 틸트하는 것에 대응한다.
도 8은 실시예에 따른 제2 카메라 엑추에이터의 사시도이고, 도 9는 실시예에 따른 제2 카메라 엑추에이터의 분해 사시도이고, 도 10은 도 8에서 DD'로 절단된 단면도이고, 도 11는 도 8에서 EE'로 절단된 단면도이다.
도 8 내지 도 11을 참조하면, 실시예에 따른 제2 카메라 엑추에이터(1200)는 렌즈부(1220), 제2 하우징(1230), 제2 구동부(1250), 베이스부(미도시됨) 및 제2 기판부(1270)를 포함할 수 있다. 나아가, 제2 카메라 엑추에이터(1200)는 제2 쉴드 캔(미도시됨), 탄성부(미도시됨) 및 접합 부재(미도시됨)를 더 포함할 수 있다. 나아가, 실시예에 따른 제2 카메라 엑추에이터(1200)는 이미지 센서(IS)를 더 포함할 수 있다.
제2 쉴드 캔(미도시됨)은 제2 카메라 엑추에이터(1200)의 일 영역(예컨대, 최외측)에 위치하여, 후술하는 구성요소(렌즈부(1220), 제2 하우징(1230), 탄성부(미도시됨), 제2 구동부(1250), 베이스부(미도시됨), 제2 기판부(1270) 및 이미지 센서(IS))를 감싸도록 위치할 수 있다.
이러한 제2 쉴드 캔(미도시됨)은 외부에서 발생한 전자기파를 차단 또는 저감할 수 있다. 이에 따라, 제2 구동부(1250)에서 오작동의 발생이 감소할 수 있다.
렌즈부(1220)는 제2 쉴드 캔(미도시됨) 내에 위치할 수 있다. 렌즈부(1220)는 제3 방향(Z축 방향)으로 이동할 수 있다. 이에 따라 상술한 AF 기능이 수행될 수 있다.
구체적으로, 렌즈부(1220)는 렌즈 어셈블리(1221) 및 보빈(1222)을 포함할 수 있다.
렌즈 어셈블리(1221)는 적어도 하나 이상의 렌즈를 포함할 수 있다. 또한, 렌즈 어셈블리(1221)는 복수 개일 수 있으나, 이하에서는 하나를 기준으로 설명한다.
렌즈 어셈블리(1221)는 보빈(1222)과 결합되어 보빈(1222)에 결합된 제4 마그넷(1252a) 및 제2 마그넷(1252b)에서 발생한 전자기력에 의해 제3 방향(Z축 방향)으로 이동할 수 있다.
보빈(1222)은 렌즈 어셈블리(1221)를 감싸는 개구 영역을 포함할 수 있다. 그리고 보빈(1222)은 렌즈 어셈블리(1221)와 다양한 방법에 의해 결합될 수 있다. 또한, 보빈(1222)은 측면에 홈을 포함할 수 있으며, 상기 홈을 통해 제4 마그넷(1252a) 및 제2 마그넷(1252b)과 결합할 수 있다. 상기 홈에는 접합 부재 등이 도포될 수 있다.
또한, 보빈(1222)은 상단 및 후단에 탄성부(미도시됨)와 결합될 수 있다. 이에, 보빈(1222)은 제3 방향(Z축 방향)으로 이동하는데 탄성부(미도시됨)로부터 지지될 수 있다. 즉, 보빈(1222)의 위치가 유지되면서 제3 방향(Z축 방향)으로 유지될 수 있다. 탄성부(미도시됨)는 판스프링으로 이루어질 수 있다.
제2 하우징(1230)은 렌즈부(1220)와 제2 쉴드 캔(미도시됨) 사이에 배치될 수 있다. 그리고 제2 하우징(1230)은 렌즈부(1220)를 둘러싸도록 배치될 수 있다.
제2 하우징(1230)은 측부에 홀이 형성될 수 있다. 상기 홀에는 제4 코일(1251a) 및 제5 코일(1251b)이 배치될 수 있다. 상기 홀은 상술한 보빈(1222)의 홈에 대응하도록 위치할 수 있다.
제4 마그넷(1252a)은 제4 코일(1251a)과 마주보게 위치할 수 있다. 또한, 제2 마그넷(1252b)은 제5 코일(1251b)과 마주보게 위치할 수 있다.
탄성부(미도시됨)는 제1 탄성부재(미도시됨) 및 제2 탄성부재(미도시됨)를 포함할 수 있다. 제1 탄성부재(미도시됨)는 보빈(1222)의 상면과 결합될 수 있다. 제2 탄성부재(미도시됨)는 보빈(1222)의 하면과 결합할 수 있다. 또한, 제1 탄성부재(미도시됨)와 제2 탄성부재(미도시됨)는 상술한 바와 같이 판 스프링으로 형성될 수 있다. 또한, 제1 탄성부재(미도시됨)와 제2 탄성부재(미도시됨)는 보빈(1222)의 이동에 대한 탄성을 제공할 수 있다.
제2 구동부(1250)는 렌즈부(1220)를 제3 방향(Z축 방향)으로 이동시키는 구동력(F3, F4)을 제공할 수 있다. 이러한 제2 구동부(1250)는 구동 코일(1251) 및 구동 마그넷(1252)을 포함할 수 있다.
구동 코일(1251)및 구동 마그넷(1252) 간에 형성된 전자기력으로 렌즈부(1220)가 제3 방향(Z축 방향)으로 이동할 수 있다.
구동 코일(1251)은 제4 코일(1251a) 및 제5 코일(1251b)을 포함할 수 있다. 제4 코일(1251a) 및 제5 코일(1251b)은 제2 하우징(1230)의 측부에 형성된 홀 내에 배치될 수 있다. 그리고 제4 코일(1251a) 및 제5 코일(1251b)은 제2 기판부(1270)와 전기적으로 연결될 수 있다. 이에, 제4 코일(1251a) 및 제5 코일(1251b)은 제2 기판부(1270)를 통해 전류 등을 공급받을 수 있다.
구동 마그넷(1252)은 제4 마그넷(1252a) 및 제5 마그넷(1252b)을 포함할 수 있다. 제4 마그넷(1252a) 및 제5 마그넷(1252b)은 보빈(1222)의 상술한 홈에 배치될 수 있으며, 제4 코일(1251a) 및 제5 코일(1251b)에 대응하도록 위치할 수 있다.
또한, 제2 구동부(1250)는 홀 센서부(1253)를 포함할 수 있다. 실시예로, 제2 구동부(1250)는 제4 홀 센서(1253a)와 제5 홀 센서(1253b)를 포함할 수 있다.제4 홀 센서(1253a)와 제5 홀 센서(1253b)는 상술한 바와 같이 복수 개일 수 있으며, 서로 후술하는 바와 같이 서로 직렬로 연결될 수 있다.
베이스부(미도시됨)는 렌즈부(1220)와 이미지 센서(IS) 사이에 위치할 수 있다. 베이스부(미도시됨)는 필터 등의 구성요소가 고정될 수 있다. 또한, 베이스부(미도시됨)는 이미지 센서(IS)를 둘러싸도록 배치될 수 있다. 이러한 구성에 의하여, 이미지 센서(IS)는 이물질 등으로부터 자유로워지므로, 소자의 신뢰성이 개선될 수 있다.
또한, 제2 카메라 엑추에이터는 줌(Zoom) 엑추에이터 또는 AF(Auto Focus) 엑추에이터일 수 있다. 예를 들어, 제2 카메라 엑추에이터는 하나 또는 복수의 렌즈를 지지하며 소정의 제어부의 제어신호에 따라 렌즈를 움직여 오토포커싱 기능 또는 줌 기능을 수행할 수 있다.
그리고 제2 카메라 엑추에이터는 고정줌 또는 연속줌일 수 있다. 예컨대, 제2 카메라 엑추에이터는 렌즈 어셈블리(1221)의 이동을 제공할 수 있다.
뿐만 아니라, 제2 카메라 엑추에이터는 복수 개의 렌즈 어셈블리로 이루어질 수 있다. 예컨대, 제2 카메라 엑추에이터는 제1 렌즈 어셈블리(미도시됨), 제2 렌즈 어셈블리(미도시됨), 제3 렌즈 어셈블리(미도시됨), 및 가이드 핀(미도시됨) 중 적어도 하나 이상이 배치될 수 있다. 이에 대해서는 상술한 내용이 적용될 수 있다. 이에, 제2 카메라 엑추에이터는 구동부를 통해 고배율 주밍 기능을 수행할 수 있다. 예를 들어, 제1 렌즈 어셈블리(미도시됨)와 제2 렌즈 어셈블리(미도시됨)는 구동부와 가이드 핀(미도시됨)을 통해 이동하는 이동 렌즈(moving lens)일 수 있으며, 제3 렌즈 어셈블리(미도시됨)는 고정 렌즈일 수 있으나 이에 한정되는 것은 아니다. 예를 들어, 제3 렌즈 어셈블리(미도시됨)는 광을 특정 위치에 결상하는 집광자(focator)의 기능을 수행할 수 있고, 제1 렌즈 어셈블리(미도시됨)는 집광자인 제3 렌즈 어셈블리(미도시됨)에서 결상된 상을 다른 곳에 재결상시키는 변배자(variator) 기능을 수행할 수 있다. 한편, 제1 렌즈 어셈블리(미도시됨)에서는 피사체와의 거리 또는 상거리가 많이 바뀌어서 배율변화가 큰 상태일 수 있으며, 변배자인 제1 렌즈 어셈블리(미도시됨)는 광학계의 초점거리 또는 배율변화에 중요한 역할을 할 수 있다. 한편, 변배자인 제1 렌즈 어셈블리(미도시됨)에서 결상되는 상점은 위치에 따라 약간 차이가 있을 수 있다. 이에 제2 렌즈 어셈블리(미도시됨)는 변배자에 의해 결상된 상에 대한 위치 보상 기능을 할 수 있다. 예를 들어, 제2 렌즈 어셈블리(미도시됨)는 변배자인 제1 렌즈 어셈블리(미도시됨)에서 결상된 상점을 실제 이미지 센서 위치에 정확히 결상시키는 역할을 수행하는 보상자(compensator) 기능을 수행할 수 있다.
이미지 센서(IS)는 제2 카메라 엑추에이터의 내측에 또는 외측에 위치할 수 있다. 실시예로는, 도시한 바와 같이 이미지 센서(IS)가 제2 카메라 엑추에이터의 내측에 위치할 수 있다. 이미지 센서(IS)는 광을 수신하고, 수광된 광을 전기신호로 변환할 수 있다. 또한, 이미지 센서(IS)는 복수 개의 픽셀이 어레이 형태로 이루어질 수 있다. 그리고 이미지 센서(IS)는 광축 상에 위치할 수 있다.
도 12는 본 발명의 실시 예에 따른 카메라 모듈의 구성을 나타낸 블록도이고, 도 13은 도 12의 위치 센서부의 상세 구성을 나타낸 블록도이고, 도 14 및 도 15는 도 13의 센서 유닛의 연결 관계를 설명하기 위한 도면이고, 도 16은 본 발명의 실시 예에 따른 센서 유닛의 연결 관계를 설명하기 위한 도면이다.
도 12을 참조하면, 카메라 모듈은, 이미지 센서(110), 이미지 신호 처리부(120), 디스플레이부(130), 제1 렌즈 구동부(140), 제2 렌즈 구동부(150), 제1 위치 센서부(160), 제2 위치 센서부(170), 저장부(180) 및 제어부(190)를 포함할 수 있다.
이미지 센서(110)는 상기 설명한 바와 같이, 렌즈에 통해 맺힌 피사체의 광학 상을 처리한다. 이를 위해, 이미지 센서(110)는 렌즈를 통해 획득된 이미지를 선처리할 수 있다. 또한, 이미지 센서(110)는 선처리된 이미지를 전기적 데이터로 변환시켜 출력할 수 있다.
이러한 이미지 센서(110)는 상술한 이미지 센서(IS)에 대응된다. 그리고 이미지 센서(110)는 다수의 광 검출기들이 각각의 화소로서 집적된 형태이며, 피사체의 이미지 정보를 전기적 데이터(예, 이미지 신호)로 변환시켜 출력한다. 이미지 센서(110)는 입력되는 광량을 축적하고, 그 축적된 광량에 따라 렌즈에서 촬영된 이미지를 수직 동기신호에 맞추어 출력한다. 이 때, 이미지 획득은 피사체로부터 반사되어 나오는 빛을 전기적인 신호로 변환시켜주는 이미지 센서(110)에 의해 이루어진다. 한편, 이미지 센서(110)를 이용하여 컬러 영상을 얻기 위해서는 컬러 필터가 필요하며, 예를 들어, CFA(Color Filter Array) 필터가 채용될 수 있다. CFA는 한 픽셀마다 한 가지 컬러를 나타내는 빛만을 통과시키며, 규칙적으로 배열된 구조를 가지며, 배열 구조에 따라 여러 가지 형태를 가진다.
이미지 신호 처리부(120)는 이미지 센서(110)를 통해 출력되는 이미지를 프레임 단위로 처리한다. 이 때, 이미지 신호 처리부(120)는 ISP(Image Signal Processor)라고도 칭할 수 있다.
이 때, 이미지 신호 처리부(120)는 렌즈 쉐이딩 보상부(도시하지 않음)를 포함할 수 있다. 렌즈 쉐이딩 보상부는, 이미지의 중심과 가장자리 영역의 광량에 다르게 나타나는 렌즈 쉐이딩 현상을 보상하기 위한 블록으로써, 후술할 제어부(190)로부터 렌즈 쉐이딩 설정 값을 입력받아, 이미지의 중심과 가장자리 영역의 색상을 보상한다.
나아가, 렌즈 쉐이딩 보상부는 조명의 종류에 따라 다르게 설정된 쉐이딩 변수를 수신하고, 수신된 변수에 맞게 이미지의 렌즈 쉐이딩을 처리할 수도 있다. 이에 따라, 렌즈 쉐이딩 보상부는 조명 종류에 따라 쉐이딩 정도를 다르게 적용하여 렌즈 쉐이딩 처리를 수행할 수 있다. 한편, 렌즈 쉐이딩 보상부는 이미지에 발생하는 포화 현상을 방지하기 위해 이미지의 특정 영역에 적용되는 자동 노출 가중치에 따라 다르게 설정된 쉐이딩 변수를 수신하고, 수신된 변수에 맞게 이미지의 렌즈 쉐이딩을 처리할 수도 있다. 더욱 명확하게는, 렌즈 쉐이딩 보상부는, 영상신호의 중심 영역에 대해 자동 노출 가중치가 적용됨에 따라 영상신호의 가장자리 영역에 발생하는 밝기 변화를 보상한다. 즉, 조명에 의해 영상신호의 포화가 발생하는 경우, 동심원 형태로 빛의 세기가 중앙에서 외곽으로 갈수록 감소함으로, 렌즈 쉐이딩 보상부는 영상 신호의 가장자리 신호를 증폭하여 중심 대비 밝기를 보상하도록 한다.
한편, 이미지 신호 처리부(120)는 이미지 센서(110)를 통해 획득되는 이미지의 선명도를 측정할 수 있다. 즉, 이미지 신호 처리부(120)는 이미지 센서(110)를 통해 획득되는 이미지의 초점 정확도를 체크하기 위하여, 이미지의 선명도를 측정할 수 있다. 선명도는, 포커스 렌즈의 위치에 따라 획득되는 이미지에 대해 각각 측정될 수 있다.
디스플레이부(130)는 후술할 제어부(190)의 제어에 따라 촬영된 이미지를 표시하며, 사진 촬영 시 필요한 설정 화면이나, 사용자의 동작 선택을 위한 화면을 표시한다.
제1 렌즈 구동부(140)는 상술한 제1 구동부(1140, 도 4 참조)에 대응할 수 있다. 즉, 제1 렌즈 구동부(140)는 제어부(190)로부터 수신한 제어 신호에 대응하여 제1 내지 제3 코일 및 제1 내지 제3 마그넷 간에 전자기적 상호 작용이 이루어질 수 있다. 그리고 이러한 상호 작용에 의해 OIS가 수행될 수 있다.
제2 렌즈 구동부(150)는 상술한 제2 구동부(1250, 도 8 참조)에 대응할 수 있다. 즉, 제2 렌즈 구동부(150)는 제어부(190)로부터 수신한 제어 신호에 대응하여 제4 내지 제5 코일 및 제4 내지 제5 마그넷 간에 전자기적 상호 작용이 이루어질 수 있다. 그리고 이러한 상호 작용에 의해 주밍 또는 AF가 수행될 수 있다.
예컨대, 포커스 렌즈를 광축 방향으로 이동시킬 수 있다.
제1 위치 센서부(160)는 설명한 제1 카메라 엑추에이터의 복수 개의 홀 센서를 포함하며, 그에 따라 무버 또는 광학부재의 위치를 검출한다. 즉, 제1 위치 센서부(160)는 무버에 배치된 제1 구동부의 위치를 감지할 수 있다. 이는 제1 무버 또는 프리즘의 위치를 제어하기 위함이다. 그리고 제1 위치 센서부(160)는 무버 또는 프리즘을 이동시키기 위한 위치 데이터를 제공한다.
제2 위치 센서부(170)는 설명한 제2 카메라 엑추에이터의 복수 개의 홀 센서를 포함하며, 그에 따라 렌즈부(1220, 도 9 참조)의 위치를 검출한다. 즉, 제2 위치 센서부(170)는 렌즈부(1220)에 인접한 제2 구동부의 위치를 감지할 수 있다. 이는 렌즈부의 위치를 제어하기 위함이다. 그리고 제2 위치 센서부(170)는 렌즈부를 이동시키기 위한 위치 데이터를 제공한다.
저장부(180)는 카메라 모듈이 동작하는데 필요한 데이터를 저장한다. 특히, 저장부(180)에는 피사체와의 거리 별로 줌 위치 및 포커스 위치에 대한 정보가 저장될 수 있다. 즉, 포커스 위치는, 피사체의 초점을 정확히 맞추기 위한 포커스 렌즈의 위치일 수 있다. 그리고, 포커스 위치는 줌 렌즈에 대한 줌 위치 및 피사체와의 거리에 따라 변화할 수 있다. 따라서, 저장부(180)는 거리에 따라 줌 위치 및 줌 위치에 대응하는 포커스 위치에 대한 데이터를 저장한다.
제어부(190)는 카메라 모듈의 전반적인 동작을 제어한다. 특히, 제어부(190)는 자동 초점 기능을 제공하기 위하여, 제1 위치 센서부(160) 및 제2 위치 센서부(170)를 제어할 수 있다.
다시 말해서, 제어부(190)는 제1 위치 센서부(160)를 통해 무버 또는 광학부재의 위치가 검출되도록 한다. 바람직하게, 제어부(190)는 무버 또는 광학부재를 목표 위치로 이동시키기 위하여, 제1 위치 센서부(160)를 통해 무버 또는 광학부재의 현재 위치가 검출되도록 한다.
그리고 제어부(190)는 제1 위치 센서부(160)를 통해 무버 또는 광학부재의 현재 위치가 검출되면, 무버 또는 광학부재의 현재 위치를 기준으로 무버 또는 광학부재를 목표 위치로 이동시키기 위한 제어 신호를 상기 제1 렌즈 구동부(140)에 공급한다.
또한, 제어부(190)는 제2 위치 센서부(170)를 통해 렌즈부의 위치가 검출되도록 한다. 제어부(190)는 렌즈부를 목표 위치로 이동시키기 위하여, 제2 위치 센서부(170)를 통해 렌즈부의 현재 위치가 검출되도록 한다.
그리고 제어부(190)는 제2 위치 센서부(170)를 통해 렌즈부의 현재 위치가 검출되면, 렌즈부의 현재 위치를 기준으로 렌즈부를 목표 위치로 이동시키기 위한 제어 신호를 제2 렌즈 구동부(150)에 공급할 수 있다.
이 때, 제어부(190)에는 제1 위치 센서부(160) 및 제2 위치 센서부(170)를 통해 각각의 센서부를 구성하는 복수의 센서 유닛에서 검출된 검출신호의 차동 신호가 입력될 수 있다.
다시 말해서, 본 발명에서는 제1 위치 센서부(160) 및 제2 위치 센서부(170) 각각은 복수의 센서 유닛(상술한 '홀 센서'에 대응)을 포함한다. 그리고, 복수의 센서 유닛은 각각의 설치 위치에서 검출 동작을 수행한다. 즉, 복수의 센서 유닛은 무버의 위치, 렌즈부의 위치 등을 검출할 수 있다. 이 때, 본 발명에서는 복수의 센서 유닛을 통해 획득된 검출신호의 차동 신호를 이용하여, 무버 또는 광학부재 및 렌즈부의 위치를 각각 검출할 수 있다.
이 때, 제어부(190)에는 복수의 센서 유닛에서 검출된 신호가 각각 입력되고, 그에 따라 이에 대한 차동 신호를 기반으로 무버 또는 광학부재나 제2 렌즈 어셈블리의 위치가 검출되도록 할 수 있다.
그러나, 상기와 같은 구조의 경우, 각각의 센서 유닛에 증폭기 및 아날로그-디지털 변환기가 배치되어야만 한다. 또한, 제어부(190)에는 각각의 센서 유닛과 연결된 아날로그-디지털 변환기와 연결되는 다수의 연결 단자가 구비될 수 있다.
본 발명에서는 프론트-엔드 단에서 상기 차동 신호에 대한 디지털 데이터가 획득되도록 하고, 그에 따라 상기 제어부(190)에는 상기 획득된 디지털 데이터가 입력될 수 있도록 한다.
다시 말해서, 본 발명에서는 제1 위치 센서부(160) 및 제2 위치 센서부(170)에서 디지털 데이터가 획득될 수 있도록 하고, 그에 따라 상기 제어부(190)에는 상기 획득된 디지털 데이터만이 입력될 수 있다.
이하에서는, 상기 제1 위치 센서부(160) 및 제2 위치 센서부(170)에 대해 구체적으로 설명하기로 한다.
제1 위치 센서부(160) 및 제2 위치 센서부(170)는 서로 동일한 구성을 포함할 수 있으며, 그에 따라 상기 제어부(190)에 각각 연결될 수 있다.
도 13를 참조하면, 제1 위치 센서부(160) 및 제2 위치 센서부(170) 각각은, 복수의 센서 유닛(210)과, 증폭기(220)와, 아날로그-디지털 변환기(230)를 포함한다.
복수의 센서 유닛(210)은 위치 검출을 위한 센서를 포함한다. 바람직하게, 복수의 센서 유닛(210)은 복수의 홀(hall) 센서일 수 있으며, 홀 센서는 제1 카메라 엑추에이터 및 제2 카메라 엑추에이터에서 설명한 홀 센서에 대응할 수 있다. 변형예로, 복수의 센서 유닛(210)은 복수의 유도 코일을 포함할 수 있다.
복수의 센서 유닛(210)은 각 엑추에이터에서 동일한 축 이동 또는 축 틸트에 대한 센서 간에 서로 연결되고, 또한 상기 센서는 증폭기(220, AMP)와 연결될 수 있다. 복수의 센서 유닛(210)의 연결 구조에 대해서는 이하에서 더욱 상세히 설명하기로 한다.
본 발명에서는 복수의 센서 유닛(210)을 상호 연결하고, 센서 유닛의 적어도 하나의 단자인 출력단자를 증폭기(220)에 연결할 수 있다. 복수 개의 경우, 최외측 또는 최외측에 연결된 센서 유닛(210)이 증폭기(220)에 연결될 수 있다. 이에 따라, 증폭기(220)에는 각각의 센서 유닛에서 검출한 검출신호에 대한 합의 신호가 입력될 수 있단. 각각의 센서 유닛이 가지는 센싱 범위의 합으로 표현되며, 이에 따라 증폭기(220)에 입력되는 복수의 센서 유닛(210)에 대한 센싱 범위는 단일 센서 유닛 대비 확장될 수 있다.
증폭기(220)는 비반전 단자(+) 및 반전 단자(-)를 포함할 수 있다. 그리고 증폭기(220)는 비반전 단자(+)로 입력되는 신호와, 반전 단자(-)로 입력되는 신호를 차동 증폭하여 아날로그-디지털 변환기(230)로 출력한다. 즉, 복수의 센서 유닛(210)에 대한 출력 신호는 수mV의 크기를 가지며, 이는 아날로그-디지털 변환기(230)의 입력 범위와 비율이 맞지 않는 크기일 수 이다. 따라서 증폭기(220)는 아날로그-디지털 변환기(230)의 입력 범위에 맞추기 위해, 비반전 단자(+) 및 반전 단자(-)를 통해 입력되는 신호를 차동 증폭하여 출력한다.
아날로그-디지털 변환기(230)는 증폭기(220)로부터 아날로그 신호를 수신하고, 그에 따라 상기 수신한 아날로그 신호를 디지털 신호로 변환하여 출력할 수 있다. 바람직하게, 아날로그-디지털 변환기(230)는 증폭기(220)로부터 아날로그 신호를 입력받아 이를 다수 비트의 디지털 신호로 출력할 수 있다. 이 때, 아날로그-디지털 변환기(230)의 출력 신호는 0과 1의 값으로 표현될 수 있다.
이 때, 본 발명의 실시 예에서의 복수의 센서 유닛(210)은 복수의 홀 센서로 구성될 수 있다.
이하에서는, 복수의 센서 유닛(210)이 홀 센서로 구성되는 경우, 각각의 홀 센서의 상호 연결 관계에 대해 설명하기로 한다.
도 14를 참조하면, 복수의 센서 유닛(210)을 구성하는 홀 센서는 4개의 단자를 포함한다. 이 때, 상기 4개의 단자 중 2개의 단자는 입력 단자이고, 나머지 개의 단자는 출력단자다.
그리고, 2개의 입력 단자는 전원 입력 단자이고, 2개의 출력단자는 검출신호의 출력단자다.
실시예로, 홀 센서는 제1 전원 단자(211), 제2 전원 단자(212), 제1 검출신호 출력단자(213) 및 제2 검출신호 출력단자(214)를 포함한다. 그리고, 제1 전원 단자(211)는 + 극성의 전원이 입력되는 단자이고, 제2 전원 단자(212)는 - 극성의 전원이 입력되는 단자이다. 또한, 상기 제1 검출신호 출력단자(213)는 + 극성의 검출신호가 출력되는 단자이고, 상기 제2 검출신호 출력단자(214)는 - 극성의 검출신호가 출력되는 단자이다.
이 때, 복수의 센서 유닛(210)을 구성하는 복수의 홀 센서는 상기 카메라 모듈 상에서 배치되는 위치에 따라 상기 2개의 출력단자의 연결 관계가 다르게 나타난다.
즉, 상기 복수의 홀 센서의 각각의 제1 전원 단자(211)는 + 극성의 전원과 연결되고, 상기 제2 전원 단자(212)는 - 극성의 전원(또는 접지)과 연결될 수 있다.
그리고, 상기 복수의 홀 센서의 각각의 검출신호 출력단자는 상기 배치 위치에 따라 서로 다른 연결 관계를 가질 수 있다. 이 때, 상기 복수의 홀 센서는 적어도 2개 이상으로 구성된다. 다시 말해서, 복수의 센서 유닛은 적어도 2개의 센서 유닛을 포함할 수 있다.
먼저, 복수의 센서 유닛이 3개의 홀 센서로 구성되는 경우에 대해 설명하기로 한다.
실시예로, 2개의 홀 센서 사이에서 어느 하나의 홀 센서는 상기 제1 검출신호 출력단자(213) 및 제2 검출신호 출력단자(214)는 각각 상기 외곽에 배치된 2개의 홀 센서의 출력단자와 연결된다.
이 때, 복수의 센서 유닛이 3개의 홀 센서로 구성되는 경우에 대해 설명하기로 한다. 복수의 센서 유닛이 3개의 홀 센서로 구성된 경우, 이 중 2개의 홀 센서는 외곽에 배치될 것이고, 나머지 1개의 홀 센서는 상기 외곽에 배치된 2개의 홀 센서 사이에 배치될 것이다. 그리고, 상기 외곽에 배치된 2개의 홀 센서 사이에 배치된 1개의 홀 센서는 상기 제1 검출신호 출력단자(213) 및 제2 검출신호 출력단자(214)는 각각 상기 외곽에 배치된 2개의 홀 센서의 출력단자와 연결된다. 그리고, 상기 외곽에 배치된 2개의 홀 센서 각각은, 상기 2개의 출력단자 중 1개의 출력단자가 증폭기(220)와 연결되고, 다른 하나의 출력단자가 이웃하는 홀 센서와 연결된다.
그리고 복수의 센서 유닛이 2개의 홀 센서로 구성되는 경우에 대해 설명하기로 한다. 실시예로, 2개의 홀 센서 사이에서 어느 하나의 홀 센서의 제1 검출신호 출력단자와 다른 하나의 홀 센서의 제2 검출신호 출력단자 간에 연결될 수 있다. 그리고 어느 하나의 홀 센서의 제2 검출신호 출력단자는 증폭기(220)와 연결되고, 다른 하나의 홀 센서의 제1 검출신호 출력단자도 증폭기(220)와 연결될 수 있다. 이하에서 이를 기준으로 설명한다.
예를 들어, 도 14 및 도 15를 참조하면, 센서 유닛은 서로 직렬 연결된 제1 홀 센서(210A) 및 제2 홀 센서(210B)를 포함할 수 있다. 이 때, 제1 홀 센서(210A) 및 제2 홀 센서(210B)는 상술한 제1 홀 센서(1153a)와 제2 홀 센서(1153b)에 대응할 수 있다. 또는 제1 홀 센서(210A) 및 제2 홀 센서(210B)는 복수 개의 제3 홀 센서(1153c)에 대응할 수 있다. 또한, 제1 홀 센서(210A) 및 제2 홀 센서(210B)는 제2 카메라 엑추에이터의 홀 센서에 대응할 수 있다. 이하에서 제1 홀 센서(210A) 및 제2 홀 센서(210B)는 제1 홀 센서(1153a)와 제2 홀 센서(1153b) 중 어느 하나에 각각 대응하는 것을 기준으로 설명한다.
제1 홀 센서(210A)는 제1 검출신호 출력단자(213) 및 제2 검출신호 출력단자(214)를 포함할 수 있다. 이 때, 제1 검출신호 출력단자(213)는 증폭기(220)의 비반전 단자(+)와 연결되고, 제2 검출신호 출력단자(214)는 제1 홀 센서(210A)에 직렬 연결된 제2 홀 센서(210B)의 제1 검출신호 출력단자(213')와 연결된다. 다시 말해서, 제1 홀 센서(210A)의 제2 검출신호 출력단자(214)는 제2 홀 센서(210B)의 제1 검출신호 출력단자(213')와 연결될 수 있다.
제2 홀 센서(210B)도 제1 검출신호 출력단자(213') 및 제2 검출신호 출력단자(214')를 포함할 수 있다. 제2 홀 센서(210B)의 제1 검출신호 출력단자(213')는 제1 홀 센서(210A)의 제2 검출신호 출력단자(214)와 연결되고, 제2 검출신호 출력단자(214')는 증폭기(220)의 반전 단자(-)와 연결될 수 있다.
상술한 바와 같이, 실시예에 따른 카메라 엑추에이터에서 동일한 축 틸트에 대한 위치 감지를 수행하는 복수 개의 홀 센서는 서로 출력단자가 직렬 연결될 수 있다. 이러한 연결 구조의 경우, 복수의 홀 센서들이 가지는 센싱 범위의 합에 대응하는 신호가 증폭기(220)에 입력될 수 있다. 그리고 증폭기(220)는 입력된 센싱 범위의 합에 대응하는 신호를 차동 증폭하여 출력할 수 있다.
이에 따라, 본 발명에서는 단일 센싱 방식에 비해 검출 범위가 넓어진 차동 센싱 방식을 제공할 수 있다. 또한, 본 발명에서는 증폭기의 입력 단자로 상기 복수의 위치 센서의 결합에 따른 차동 신호가 입력되도록 함으로써, 상기 위치 센서의 출력신호가 상기 제어부까지 가는 경로에서 오프셋 노이즈에 노출되는 것을 최소화할 수 있다.
또한, 본 발명에서는 복수의 위치 센서, 증폭기 및 아날로그-디지털 변환기로 구성되는 센싱부 내에서 상기 복수의 위치 센서에 대한 차동 신호가 출력되도록 하여, 구동부에서 인쇄회로기판으로 연결되는 패턴/핀 수를 최소화할 수 있으며, 이에 따른 인쇄회로기판의 공간을 절약할 수 있다.
또한, 본 발명에서는 공통모드 노이즈에 대해서 상기 복수의 위치 센서에 대한 차동 값을 구하도록 하여, 내부 노이즈뿐 아니라 외부 노이즈에도 우수한 특성을 가질 수 있다.
또한, 본 발명에서는 카메라 모듈의 사용 환경에 따라 증폭기 단으로 특정 위치 센서의 검출신호만이 전달되도록 하거나, 복수의 위치 센서에 대한 차동 신호가 전달되도록 한다. 이에 따라, 본 발명에서는 센싱 감도가 커야 하는 환경 및 센싱 범위가 커야 하는 환경 내에서 각각 최적의 검출신호를 획득할 수 있다.
도 16을 참조하면, 복수의 홀 센서 중 외측에 연결된 홀 센서(상술한 제1 홀 센서와 제2 홀 센서)가 가지는 2개의 출력단자 중 1개의 출력단자가 증폭기(220)의 비반전 단자(+) 및 반전 단자(-)에 각각 연결되도록 하고, 나머지 홀 센서를 포함한 출력단자는 상호 이웃하는 홀 센서의 출력단자와 연결되도록 하였다. 이에 따라, 본 발명에서는 제어부(190)에서 필요로 하는 입력 핀의 수를 최소화할 수 있으며, 제어부(190)까지 이동하는 경로 상에서 상기 검출신호가 오프셋 노이즈에 노출되는 문제를 최소화할 수 있다.
도 17은 본 발명의 다른 실시 예에 따른 센서 유닛의 연결 관계를 설명하기 위한 도면이다.
도 17을 참조하면, 복수의 센서 유닛은 복수의 유도 코일(210C)을 포함한다. 그리고, 복수의 유도 코일 각각은 2개의 출력단자를 포함한다. 이 때, 2개의 출력단자 중 하나는 유도 코일의 일단일 수 있으며, 2개의 출력단자 중 다른 하나는 유도 코일의 타단일 수 있다.
그리고, 복수의 유도 코일의 단부는 홀 센서가 가지는 연결 관계에 대응되게, 이웃하는 유도 코일의 단부와 연결되거나, 증폭기(220)의 비반전 단자(+) 또는 반전 단자(-)에 연결될 수 있다.
즉, 첫 번째 배치된 유도 코일의 제1 출력단은 증폭기(220)의 비반전 단자(+)에 연결될 수 있다. 그리고, 첫 번째 배치된 유도 코일의 제2 출력단은 이웃하는 다음 번째의 유도 코일의 제1 출력단과 연결될 수 있다.
그리고, 두 번째 배치된 유도 코일의 제1 출력단은 이전에 배치된 유도 코일의 제2 출력단과 연결될 수 있고, 두 번째 배치된 유도 코일의 제2 출력단은 다음 번째의 유도 코일의 제1 출력단과 연결될 수 있다.
또한, 마지막에 배치된 유도 코일의 제1 출력단은 이전에 배치된 유도 코일의 제2 출력단과 연결될 수 있고, 마지막에 배치된 유도 코일의 제2 출력단은 증폭기(220)의 반전 단자(-)에 연결될 수 있다.
도 18은 실시예에 따른 홀더의 사시도이고, 도 19는 실시예에 따른 홀더의 저면도이다.
도 18 내지 도 19를 참조하면, 홀더(1131)는 광학부재(1132)가 안착하는 안착면(1131k)을 포함할 수 있다. 안착면(1131k)은 경사면일 수 있다. 또한, 홀더(1131)는 안착면(1131k) 상부에 턱부(1131b)를 포함할 수 있다. 그리고 홀더(1131)에서 턱부(1131b)는 광학부재(1132)의 돌기부(1132a)와 결합할 수 있다.
홀더(1131)는 복수 개의 외측면을 포함할 수 있다. 예컨대, 홀더(1131)는 제1 프리즘 외측면(1131S1), 제2 프리즘 외측면(1131S2), 제3 프리즘 외측면(1131S3), 제4 프리즘 외측면(1131S4)을 포함할 수 있다.
제1 프리즘 외측면(1131S1)은 제2 프리즘 외측면(1131S2)과 마주보도록 위치할 수 있다. 즉, 제1 프리즘 외측면(1131S1)은 제2 프리즘 외측면(1131S2)과 제1 방향(X축 방향)을 기준으로 대칭으로 배치될 수 있다.
제1 프리즘 외측면(1131S1)은 제1 하우징 측부(1121)와 인접하며 서로 마주보게 위치할 수 있다. 그리고 제2 프리즘 외측면(1131S2)은 제2 하우징 측부(1122)와 인접하며 서로 마주보게 위치할 수 있다.
또한, 제1 프리즘 외측면(1131S1)은 제1 안착홈(1131S1a)을 포함할 수 있다. 그리고 제2 프리즘 외측면(1131S2)은 제2 안착홈(1131S2a)을 포함할 수 있다. 제1 안착홈(1131S1a)과 제2 안착홈(1131S2a)은 제1 방향(X축 방향)을 기준으로 서로 대칭으로 배치될 수 있다.
그리고 제1 안착홈(1131S1a)에는 제1 마그넷(1151a)이 배치될 수 있고, 제2 안착홈(1131S2a)에는 제2 마그넷(1151b)이 배치될 수 있다. 제1 마그넷(1151a)과 제2 마그넷(1151b)도 제1 방향(X축 방향)을 기준으로 서로 대칭으로 배치될 수 있다.
상술한 바와 같이, 제1, 2 안착홈과 제1, 2 마그넷의 위치에 의하여, 각 마그넷에 의해 유발된 전자기력이 제1 프리즘 외측면(S1231S1)과 제2 프리즘 외측면(1131S2)으로 동일 축 상에 제공될 수 있다. 예를 들어, 제1 프리즘 외측면(S1231S1) 상에 가해지는 영역(예컨대, 전자기력이 가장 강한 부분)과 제2 프리즘 외측면(S1231S1) 상에 가해지는 영역(예컨대, 전자기력이 가장 강한 부분)은 제2 방향(Y축 방향)과 평행한 축 상에 위치할 수 있다. 이로써, X축 틸팅이 정확하게 이루어질 수 있다.
제1 안착홈(1131S1a)에는 제1 마그넷(1151a)이 배치될 수 있고, 제2 안착홈(1131S2a)에는 제2 마그넷(1151b)이 배치될 수 있다.
제3 프리즘 외측면(1131S3)은 제1 프리즘 외측면(1131S1)과 제2 프리즘 외측면(1131S2)과 접하고, 제1 프리즘 외측면(1131S1)과 제2 프리즘 외측면(1131S2)의 일측에서 제2 방향(Y축 방향)으로 연장된 외측면일 수 있다. 또한, 제3 프리즘 외측면(1131S3)은 제1 프리즘 외측면(1131S1)과 제2 프리즘 외측면(1131S2) 사이에 위치할 수 있다. 제3 프리즘 외측면(1131S3)은 홀더(1131)에서 저면일 수 있다.
또한, 제3 프리즘 외측면(1131S3)은 제3 안착홈(1131S3a)을 포함할 수 있다. 제3 안착홈(1131S3a)에는 제3 마그넷(1151c)이 배치될 수 있다. 제3 프리즘 외측면(1131S3)은 제3 하우징 측부(1123)와 마주보게 위치할 수 있다. 또한, 제3 하우징 홀(1123a)은 제3 안착홈(1131S3a)은 제1 방향(X축 방향)으로 적어도 일부 중첩될 수 있다. 이에 따라, 제3 안착홈(1131S3a) 내의 제3 마그넷(1151c)과 제3 하우징 홀(1123a) 내의 제3 코일(1152c)이 서로 마주보게 위치할 수 있다. 그리고 제3 마그넷(1151c)과 제3 코일(1152c)은 전자기력을 발생시킴으로써 제2 카메라 엑추에이터가 Y축 틸팅할 수 있다.
또한, X축 틸트가 복수의 마그넷(제1, 2 마그넷(1151a, 1151b))에 의해 이루어지는 반면, Y축 틸트는 제3 마그넷(1151c)에 의해서만 이루어질 수 있다. 실시예로, 제3 안착홈(1131S3a)은 제1 안착홀(1131S1a) 또는 제2 안착홀(1131S2a)보다 넓이가 클 수 있다. 이러한 구성에 의하여, Y축 틸트를 X축 틸트와 유사한 전류 제어로 수행할 수 있다.
제4 프리즘 외측면(1131S4)은 제1 프리즘 외측면(1131S1)과 제2 프리즘 외측면(1131S2)과 접하고, 제1 프리즘 외측면(1131S1)과 제2 프리즘 외측면(1131S2)에서 제1 방향(X축 방향)으로 연장된 외측면일 수 있다. 또한, 제4 프리즘 외측면(1131S4)은 제1 프리즘 외측면(1131S1)과 제2 프리즘 외측면(1131S2) 사이에 위치할 수 있다.
제4 프리즘 외측면(1131S4)은 제4 안착홈(1131S4a)을 포함할 수 있다. 제4 안착홈(1131S4a)에는 회전 플레이트(1141)가 위치할 수 있다.
제4 안착홈(1131S4a)은 회전 플레이트의 제1 면과 마주보게 위치할 수 있다.
도 20은 실시예에 따른 제1 카메라 엑추에이터의 사시도이고, 도 21은 도 20에서 FF'로 절단된 단면도이고, 도 22는 도 20에서 GG'로 절단된 단면도이고, 도 23은 도 22에서 다른 방향에서 바라본 도면이다.
도 20 내지 도 23을 참조하면, 제1 기판부(1154)는 제1 하우징 측부(1121), 제2 하우징 측부(1122) 및 제3 하우징 측부(1123)와 접할 수 있다. 제1 기판부(1154)에는 제1 홀 센서(1153a), 제2 홀 센서(1153b) 및 제3 홀 센서(1153c)가 안착할 수 있다. 이하에서는 상술한 센서 유닛에 대한 설명을 바탕으로, 서로 마주보고 X축 틸트에 따른 무버 또는 광학 부재의 이동에 대한 위치 데이터를 제공하는 제1 홀 센서(1153a)와 제2 홀 센서(1153b)를 기준으로 설명한다.
제1 홀 센서(1153a)와 제2 홀 센서(1153b)는 제1 하우징 홈과 제2 하우징 홈에 각각 안착할 수 있다. 실시예로, 제1 홀 센서(1153a)와 제2 홀 센서(1153b)는 제1 방향(X축 방향) 및 제3 방향(Z축 방향)을 기준으로 대칭으로 배치될 수 있다. 다시 말해, 제1 홀 센서(1153a)와 제2 홀 센서(1153b)는 제3 하우징 측부(1123)에서 제1 방향(X축 방향)으로의 높이가 서로 같을 수 있다. 또한, 제1 홀 센서(1153a)와 제2 홀 센서(1153b)는 제3 방향(Z축 방향)으로 제4 하우징 측부(1124) 간의 이격 거리도 서로 동일할 수 있다.
또한, 제1 기판부(1154) 상에서 제1 홀 센서(1153a)와 제2 홀 센서(1153b)가 배치된 위치도 서로 대응될 수 있다.
도 24는 실시예에 따른 제1 기판부의 도면이고, 도 25는 도 24에서 K1부분의 확대도이고, 도 26은 도 24에서 K2부분의 확대도이고, 도 27 및 도 28은 실시예에 따른 홀 센서부의 구조를 설명하는 도면이다.
도 24 내지 도 26를 참조하면, 실시예에 따른 제1 기판부(1154)는 제1 기판 영역(P1), 제2 기판 영역(P2) 및 제3 기판 영역(P3)을 포함할 수 있다.
제1 기판 영역(P1)은 제1 기판부(1154)의 일측에 배치될 수 있다. 보다 구체적으로, 제1 기판 영역(P1)은 상술한 제1 하우징 측부와 접하도록 배치될 수 있다. 이에, 제1 기판 영역(P1) 상에 제1 홀 센서와 제1 코일이 배치될 수 있다. 다시 말해, 제1 센서 유닛(210A)이 제1 기판 영역(P1)에 배치될 수 있다. 그리고 제1 센서 유닛(210A)은 제1 기판 영역(P1)에서 제1 코일로부터 둘러싸일 수 있다. 이하에서, 제1 센서 유닛으로 설명한다.
또한, 제2 기판 영역(P2)은 제1 기판부(1154)의 타측에 배치될 수 있다. 제2 기판 영역(P2)은 상술한 제2 하우징 측부와 접하도록 배치될 수 있다. 이에, 제2 기판 영역(P2) 상에 상술한 제2 홀 센서와 제2 코일이 배치될 수 있다. 다시 말해, 제2 센서 유닛(210B)이 제2 기판 영역(P2)에 배치될 수 있다. 이하에서 제2 센서 유닛으로 설명한다. 또한, 제2 기판 영역(P2)은 제1 기판 영역(P1)과 제1 방향(X축 방향)을 기준으로 대응하여 배치될 수 있다. 이에, 제2 기판 영역(P2)은 제1 기판 영역(P1)과 제2 방향(Y축 방향)으로 적어도 일부 중첩되도록 배치될 수 있다.
그리고 제2 센서 유닛(210B)은 제2 기판 영역(P2)에서 제2 코일로부터 둘러싸일 수 있다. 이 때, 제1 센서 유닛(210A) 및 제2 센서 유닛(210B) 각각은 제1 코일과 제2 코일의 내측면에 형성되는 공간에 배치되며, 코일의 내측면과 접촉하지 않을 수 있다.
또한, 제1 센서 유닛(210A)과 제2 센서 유닛(210B)을 연결한 가상의 직선은 광축 방향과 직교할 수 있다. 실시예로, 상기 가상의 직선은 제1 방향(X축 방향) 및 제3 방향(Z축 방향)과 직교할 수 있다.
이에 대응하여, 제1 홀 센서는 제2 홀 센서와 제2 방향(Y축 방향)으로 중첩되고, 제1 방향(X축 방향)을 기준으로 대칭으로 배치될 수 있다.
또한, 제1 코일은 제2 코일과 제2 방향(Y축 방향)으로 중첩되고 제1 방향(X축 방향)을 기준으로 대칭으로 배치될 수 있다.
제3 기판 영역(P3)은 제1 기판 영역(P1)과 제2 기판 영역(P2) 사이에 배치될 수 있다. 제3 기판 영역(P3)은 제3 하우징 측부와 접하도록 배치될 수 있다. 이에, 제3 기판 영역(P3) 상에 제3 홀 센서와 제3 코일이 배치될 수 있다. 상술한 바와 같이, 제3 홀 센서는 복수 개일 수 있으며, 복수 개의 제3 홀 센서는 서로 직렬 연결될 수 있다.
제어부(190)는 상술한 바와 같이 제1 센서 유닛(210A)과 제2 센서 유닛(210B) 전기적으로 연결될 수 있다.
실시예로, 제1 센서 유닛(210A)은 제1-1 전원단자(211A), 제2-1 전원단자(212A), 제1-1 검출신호 출력단자(213A) 및 제2-1 검출신호 출력단자(214A)를 포함할 수 있다.
그리고 제2 센서 유닛(210B)은 제1-2 전원단자(211B), 제2-2 전원단자(212B), 제1-2 검출신호 출력단자(213B) 및 제2-2 검출신호 출력단자(214B)를 포함할 수 있다.
이러한 구성에 대해서는 상술한 제1 전원단자, 제2 전원단자, 제1 검출신호 출력단자 및 제2 검출신호 출력단자에서 설명한 내용이 동일하게 적용될 수 있다.
제1 센서 유닛(210A)의 제1-1 전원단자(211A), 제2-1 전원단자(212A), 제1-1 검출신호 출력단자(213A) 및 제2-1 검출신호 출력단자(214A)는 제2 센서 유닛(210B)의 제1-2 전원단자(211B), 제2-2 전원단자(212B), 제1-2 검출신호 출력단자(213B) 및 제2-2 검출신호 출력단자(214B)와 각각이 서로 대응되도록 배치될 수 있다. 즉, 서로 제1 방향(X축 방향)으로 대칭으로 배치될 수 있다.
그리고 제1 센서 유닛(210A)의 제1-1 전원단자(211A)는 제1 기판부(1154) 내의 전원 단자와 연결될 수 있다. 전원 단자는 제어부 내 또는 외부에 위치할 수 있다. 마찬가지로, 제2 센서 유닛(210B)의 제1-2 전원단자(211B)는 제1 기판부(1154) 내의 전원 단자와 연결될 수 있다. 전원 단자는 제어부 내 또는 외부에 위치할 수 있다.
제1 센서 유닛(210A)의 제2-1 전원 단자(212A)와 제2 센서 유닛(210B)의 제2-2 전원단자(212B)는 서로 연결 될 수 있다. 실시예로, 제1 센서 유닛(210A)의 제2-1 전원 단자(212A)와 제2 센서 유닛(210B)의 제2-2 전원단자(212B)는 공통 접지에 연결될 수 있다.
제1 센서 유닛(210A)의 제1-1 검출신호 출력단자(213A)는 제어부(190)와 전기적으로 연결될 수 있다. 이 때, 제어부(190)는 제1 기판 영역(P1) 및 제2 기판 영역(P2) 중 어느 하나에 배치될 수 있다. 실시예로, 도면과 같이 제어부(190)는 제2 기판 영역(P2) 상에 배치될 수 있으며, 이를 기준으로 설명한다.
제1 센서 유닛(210A)의 제1-1 검출신호 출력단자(213A)는 제2 기판 영역(P2)으로 연장되어 제어부(190)와 연결될 수 있다. 제1 기판부(1154)에서 제어부(190)와 제1 센서 유닛(210A)의 제1-1 검출신호 출력단자(213A) 사이에는 제1 경로(PT1)가 형성될 수 있다. 이러한 제1 경로(PT1)는 전기적 패턴일 수 있다. 그리고 제1 경로(PT1)는 제3 기판 영역(P3)을 경유하며 제2 기판 영역(P2)에서 제1 기판 영역(P1)으로 연장될 수 있다. 즉, 제1 경로(PT1)는 제1 기판 영역(P1), 제2 기판 영역(P2) 및 제3 기판 영역(P3)을 지나갈 수 있다. 그리고 제1 경로(PT1)를 통해 제1 센서 유닛(210A)은 제어부(190) 내의 증폭기의 반전단자(-) 및 비반전단자(+) 중 어느 하나와 연결될 수 있다.
제1 센서 유닛(210A)의 제2-1 검출신호 출력단자(214A)는 제2 센서 유닛(210B)의 제1-2 검출신호 출력단자(213B)와 전기적으로 연결될 수 있다. 이 때, 제1 기판부(1154)에서 제1 센서 유닛(210A)의 제2-1 검출신호 출력단자(214A)와 제2 센서 유닛(210B)의 제1-2 검출신호 출력단자(213B) 사이에는 제2 경로(PT2)가 형성될 수 있다. 즉, 제2 경로(PT2)는 제1 기판 영역(P1)에서 제2 기판 영역(P2)으로 연장될 수 있다. 또는 제2 경로(PT2)는 제1 기판 영역(P1), 제2 기판 영역(P2) 및 제3 기판 영역(P3)을 지나갈 수 있다. 또한, 제2 경로(PT2)는 제3 기판 영역(P3)을 경유할 수 있다. 또한, 이러한 제2 경로(PT2)는 전기적 패턴일 수 있다.
제2 센서 유닛(210A)의 제2-2 검출신호 출력단자(214B)는 제어부(190)와 연결될 수 있다. 제2 센서 유닛(210A)의 제2-2 검출신호 출력단자(214B)와 제어부(190) 사이에는 제3 경로(PT3)가 형성될 수 있다. 이러한 제3 경로(PT3)는 전기적 패턴일 수 있다. 그리고 제3 경로(PT3)는 제2 기판 영역(P2) 상에 배치될 수 있다. 그리고 제3 경로(PT3)를 통해 제2 센서 유닛(210B)은 제어부(190) 내의 증폭기의 반전단자(-) 및 비반전단자(+) 중 다른 하나와 연결될 수 있다.
실시예로, 제3 경로(PT3)는 제1 경로(PT1)와 전기적 길이가 상이할 수 있다. 예컨대, 제3 경로(PT3)는 전기적 길이가 제1 경로(PT1)의 전기적 길이보다 작을 수 있다.
실시예로, 제1 센서 유닛(210A)의 제1-1 검출신호 출력단자(213A)가 제어부(190) 내의 증폭기의 비반전단자(+)와 연결되며, 제2 센서 유닛(210B)의 제2-2 검출신호 출력단자(214B)는 제어부(190) 내의 증폭기의 반전단자(-)와 연결될 수 있다.
이에 따라, 검출신호와 관련하여, 제1 경로(PT1)와 제2 경로(PT2)가 모두 제1 기판 영역(P1), 제2 기판 영역(P2) 및 제3 기판 영역(P3)과 중첩될 수 있다. 다시 말해, 제1 경로(PT1)와 제2 경로(PT2)는 제3 기판 영역(P3)을 경유하여 제1 기판 영역(P1)에서 제2 기판 영역(P2)으로 또는 제2 기판 영역(P2)에서 제1 기판 영역(P1)으로 연장될 수 있다. 이에, 제2 경로(PT)와 제1 경로(PT)는 전기적 길이가 유사하고, 제3 경로(PT3)는 제2 기판 영역(P2) 상에서만 존재하여 전기적 길이가 최소화될 수 있다.
이에 따라, 제1 센서 유닛(210A)과 제2 센서 유닛(210B) 간의 직렬로 전기적 연결이 됨과 동시에, 제어부(190) 또는 제어부 내의 증폭부와의 연결을 위한 전기적 길이가 감소할 수 있다. 이에, 실시예에 따른 제1 기판부는 저항 감소 및 노이즈 감소를 제공할 수 있다. 뿐만 아니라, 상술한 바와 같이 차동 신호 신호가 출력되어 제1 기판부의 공간 절약을 제공할 수 있다.
나아가, 제3 기판 영역(P3)에는 복수 개의 제3 홀 센서가 직렬로 연결되어 배치될 수 있다.
도 29는 실시예에 따른 카메라 모듈이 적용된 이동 단말기의 사시도이고,
도 29를 참조하면, 실시예의 이동단말기(1500)는 후면에 제공된 카메라 모듈(1000), 플래쉬모듈(1530), 자동초점장치(1510)를 포함할 수 있다.
카메라 모듈(1000)은 이미지 촬영 기능 및 자동 초점 기능을 포함할 수 있다. 예컨대, 카메라 모듈(1000)은 이미지를 이용한 자동 초점 기능을 포함할 수 있다.
카메라 모듈(1000)은 촬영 모드 또는 화상 통화 모드에서 이미지 센서에 의해 얻어지는 정지 영상 또는 동영상의 화상 프레임을 처리한다.
처리된 화상 프레임은 소정의 디스플레이부에 표시될 수 있으며, 메모리에 저장될 수 있다. 이동단말기 바디의 전면에도 카메라(미도시)가 배치될 수 있다.
예를 들어, 카메라 모듈(1000)은 제1 카메라 모듈과 제2 카메라 모듈을 포함할 수 있고, 제1 카메라 모듈, 제2 카메라 모듈에 의해 AF 또는 줌 기능과 함께 OIS 구현이 가능할 수 있다.
플래쉬모듈(1530)은 내부에 광을 발광하는 발광 소자를 포함할 수 있다. 플래쉬모듈(1530)은 이동단말기의 카메라 작동 또는 사용자의 제어에 의해 작동될 수 있다.
자동초점장치(1510)는 발광부로서 표면 광 방출 레이저 소자의 패키지 중의 하나를 포함할 수 있다.
자동초점장치(1510)는 레이저를 이용한 자동 초점 기능을 포함할 수 있다. 자동초점장치(1510)는 카메라 모듈(1000)의 이미지를 이용한 자동 초점 기능이 저하되는 조건, 예컨대 10m 이하의 근접 또는 어두운 환경에서 주로 사용될 수 있다.
자동초점장치(1510)는 수직 캐비티 표면 방출 레이저(VCSEL) 반도체 소자를 포함하는 발광부와, 포토 다이오드와 같은 빛 에너지를 전기 에너지로 변환하는 수광부를 포함할 수 있다.
도 30은 실시예에 따른 카메라 모듈이 적용된 차량의 사시도이다.
예를들어, 도 30는 실시예에 따른 카메라 모듈(1000)이 적용된 차량 운전 보조 장치를 구비하는 차량의 외관도이다.
도 30를 참조하면, 실시예의 차량(700)은, 동력원에 의해 회전하는 바퀴(13FL, 13FR), 소정의 센서를 구비할 수 있다. 센서는 카메라센서(2000)일 수 있으나 이에 한정되는 것은 아니다.
카메라(2000)는 실시예에 따른 카메라 모듈(1000)이 적용된 카메라 센서일 수 있다. 실시예의 차량(700)은, 전방 영상 또는 주변 영상을 촬영하는 카메라센서(2000)를 통해 영상 정보를 획득할 수 있고, 영상 정보를 이용하여 차선 미식별 상황을 판단하고 미식별시 가상 차선을 생성할 수 있다.
예를 들어, 카메라센서(2000)는 차량(700)의 전방을 촬영하여 전방 영상을 획득하고, 프로세서(미도시)는 이러한 전방 영상에 포함된 오브젝트를 분석하여 영상 정보를 획득할 수 있다.
예를 들어, 카메라센서(2000)가 촬영한 영상에 차선, 인접차량, 주행방해물, 및 간접 도로 표시물에 해당하는 중앙 분리대, 연석, 가로수 등의 오브젝트가 촬영된 경우, 프로세서는 이러한 오브젝트를 검출하여 영상 정보에 포함시킬 수 있다. 이 때, 프로세서는 카메라센서(2000)를 통해 검출된 오브젝트와의 거리 정보를 획득하여, 영상 정보를 더 보완할 수 있다.
영상 정보는 영상에 촬영된 오브젝트에 관한 정보일 수 있다. 이러한 카메라센서(2000)는 이미지 센서와 영상 처리 모듈을 포함할 수 있다.
카메라센서(2000)는 이미지 센서(예를 들면, CMOS 또는 CCD)에 의해 얻어지는 정지 영상 또는 동영상을 처리할 수 있다.
영상 처리 모듈은 이미지센서를 통해 획득된 정지 영상 또는 동영상을 가공하여, 필요한 정보를 추출하고, 추출된 정보를 프로세서에 전달할 수 있다.
이 때, 카메라센서(2000)는 오브젝트의 측정 정확도를 향상시키고, 차량(700)과 오브젝트와의 거리 등의 정보를 더 확보할 수 있도록 스테레오 카메라를 포함할 수 있으나 이에 한정되는 것은 아니다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 하우징;
    상기 하우징 내에 배치되고 광학부재를 포함하는 무버; 및
    상기 하우징 내에 배치되며 상기 무버를 구동시키는 구동부;를 포함하며,
    상기 구동부는, 구동 마그넷, 상기 구동 마그넷과 마주보게 위치하는 구동 코일, 상기 무버의 위치를 감지하는 센서 유닛 및 상기 센서 유닛과 연결되는 기판부;를 포함하고,
    상기 센서 유닛은 제1 센서 유닛 및 상기 제1 센서 유닛과 대향하고 직렬 연결되는 제2 센서 유닛을 포함하는 카메라 엑추에이터.
  2. 제1항에 있어서,
    상기 기판부는,
    제1 기판 영역;
    상기 제1 기판 영역과 이격되고 대응하게 배치되는 제2 기판 영역; 및
    상기 제1 기판 영역과 상기 제2 기판 영역 사이에 배치되는 제3 기판 영역;을 포함하고,
    상기 제1 센서 유닛은 상기 제1 기판 영역에 배치되고,
    상기 제2 센서 유닛은 상기 제2 기판 영역에 배치되는 카메라 엑추에이터.
  3. 제2항에 있어서,
    상기 제1 센서 유닛과 상기 제2 센서 유닛으로부터 검출된 상기 광학부재의 위치 정보로 상기 광학부재를 목표 위치로 이동시키는 구동 신호를 출력하는 제어부;를 더 포함하는 카메라 엑추에이터.
  4. 제3항에 있어서,
    상기 제어부는 상기 제1 기판 영역 및 상기 제2 기판 영역 중 어느 하나에 배치되는 카메라 엑추에이터.
  5. 제3항에 있어서,
    상기 제1 센서 유닛은 +극성의 제1-1 검출신호 출력단자 및 -극성의 제2-1 검출신호 출력단자를 포함하고,
    상기 제2 센서 유닛은 +극성의 제1-2 검출신호 출력단자 및 -극성의 제2-2 검출신호 출력단자를 포함하는 카메라 엑추에이터.
  6. 제5항에 있어서,
    상기 기판부는,
    상기 제1-1 검출신호 출력단자와 상기 제어부 사이를 연결하는 제1 경로;
    상기 제2-1 검출신호 출력단자와 상기 제1-2 검출신호 출력단자 사이를 연결하는 제2 경로; 및
    상기 제2-2 검출신호 출력단자와 상기 제어부 사이를 연결하는 제3 경로;를 포함하는 카메라 엑추에이터.
  7. 제6항에 있어서,
    상기 제2 경로는 상기 제1 기판 영역, 상기 제2 기판 영역 및 상기 제3 기판 영역을 통과하는 카메라 엑추에이터.
  8. 제6항에 있어서,
    상기 제1 경로와 상기 제3 경로는 길이가 서로 상이한 카메라 엑추에이터.
  9. 제2항에 있어서,
    상기 하우징은,
    제1 하우징 측부; 및
    상기 제1 하우징 측부에 대응하게 배치되는 제2 하우징 측부;를 포함하고,
    상기 제1 기판 영역은 상기 제1 하우징 측부와 접하고,
    상기 제2 기판 영역은 상기 제2 하우징 측부와 접하는 카메라 엑추에이터.
  10. 제9항에 있어서,
    상기 제1 하우징 측부는 제1 하우징 홀;을 포함하고,
    상기 제2 하우징 측부는 제2 하우징 홀;을 포함하고,
    상기 구동 마그넷은 제1 마그넷 및 상기 제1 마그넷에 대응하여 배치되는 제2 마그넷을 포함하고,
    상기 구동 코일은 제1 코일 및 상기 제1 코일에 대응하여 배치되는 제2 코일을 포함하고,
    상기 제1 코일 및 상기 제1 마그넷 중 어느 하나는 상기 제1 하우징 홀에 배치되고,
    상기 제2 코일 및 상기 제2 마그넷 중 어느 하나는 상기 제2 하우징 홀에 배치되는 카메라 엑추에이터.
PCT/KR2021/002552 2020-03-18 2021-03-02 카메라 엑추에이터 및 이를 포함하는 카메라 장치 WO2021187773A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21771998.8A EP4123366A4 (en) 2020-03-18 2021-03-02 CAMERA ACTUATOR AND CAMERA DEVICE INCLUDING SAME
CN202180022460.2A CN115335767A (zh) 2020-03-18 2021-03-02 相机致动器和包括该相机致动器的相机装置
US17/905,308 US20230359108A1 (en) 2020-03-18 2021-03-02 Camera actuator and camera device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200033330A KR20210117014A (ko) 2020-03-18 2020-03-18 카메라 엑추에이터 및 이를 포함하는 카메라 장치
KR10-2020-0033330 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021187773A1 true WO2021187773A1 (ko) 2021-09-23

Family

ID=77771706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002552 WO2021187773A1 (ko) 2020-03-18 2021-03-02 카메라 엑추에이터 및 이를 포함하는 카메라 장치

Country Status (5)

Country Link
US (1) US20230359108A1 (ko)
EP (1) EP4123366A4 (ko)
KR (1) KR20210117014A (ko)
CN (1) CN115335767A (ko)
WO (1) WO2021187773A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230158195A (ko) * 2022-05-11 2023-11-20 엘지이노텍 주식회사 카메라 모듈 및 이를 포함하는 광학기기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160231528A1 (en) * 2015-02-06 2016-08-11 Apple Inc. Magnetic sensing for auto focus position detection
KR101682178B1 (ko) * 2015-06-12 2016-12-02 주식회사 엠씨넥스 손떨림 보정 기능을 갖는 카메라 모듈
JP2016224262A (ja) * 2015-05-29 2016-12-28 ミツミ電機株式会社 アクチュエーター、カメラモジュール及びカメラ搭載装置
KR20180137277A (ko) * 2017-06-16 2018-12-27 삼성전기주식회사 카메라 모듈
KR20190129432A (ko) * 2018-05-11 2019-11-20 엘지이노텍 주식회사 카메라 모듈 및 이의 동작 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101575630B1 (ko) * 2009-03-17 2015-12-08 삼성전자주식회사 손떨림 보정장치
US10951799B2 (en) * 2016-09-30 2021-03-16 Lg Innotek Co., Ltd. Lens moving apparatus, and camera module and optical device comprising same
US10863094B2 (en) * 2017-07-17 2020-12-08 Apple Inc. Camera with image sensor shifting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160231528A1 (en) * 2015-02-06 2016-08-11 Apple Inc. Magnetic sensing for auto focus position detection
JP2016224262A (ja) * 2015-05-29 2016-12-28 ミツミ電機株式会社 アクチュエーター、カメラモジュール及びカメラ搭載装置
KR101682178B1 (ko) * 2015-06-12 2016-12-02 주식회사 엠씨넥스 손떨림 보정 기능을 갖는 카메라 모듈
KR20180137277A (ko) * 2017-06-16 2018-12-27 삼성전기주식회사 카메라 모듈
KR20190129432A (ko) * 2018-05-11 2019-11-20 엘지이노텍 주식회사 카메라 모듈 및 이의 동작 방법

Also Published As

Publication number Publication date
CN115335767A (zh) 2022-11-11
EP4123366A1 (en) 2023-01-25
EP4123366A4 (en) 2023-09-06
KR20210117014A (ko) 2021-09-28
US20230359108A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
WO2021107524A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2020213994A1 (ko) 카메라 모듈
WO2019216676A1 (ko) 카메라 모듈 및 이의 동작 방법
WO2020076112A1 (ko) 카메라 액추에이터, 및 이를 포함하는 카메라 모듈
WO2021015482A1 (ko) 카메라 액추에이터, 이를 포함하는 카메라 모듈 및 카메라 장치
WO2020209598A1 (ko) 카메라 모듈 및 이를 포함하는 카메라 장치
WO2021015545A1 (ko) 카메라 액추에이터
WO2020071852A1 (ko) 카메라 액추에이터 및 이를 포함하는 카메라 모듈
WO2020101232A1 (ko) 카메라 모듈
WO2021242079A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2021187773A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2023018076A1 (ko) 렌즈 구동장치 및 이를 포함하는 카메라 장치
WO2021025518A1 (ko) 카메라 액추에이터, 및 이를 포함하는 카메라 모듈 및 카메라 장치
WO2021230557A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2021071277A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2021010640A1 (ko) 카메라 액추에이터 및 이를 포함하는 카메라 모듈
WO2021015481A1 (ko) 카메라 액추에이터, 카메라 모듈 및 이를 포함하는 카메라 장치
WO2020231110A1 (ko) 카메라 모듈 및 이를 포함하는 카메라 장치
WO2021225358A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2023121123A1 (ko) 카메라 엑추에이터, 렌즈 이송 장치 및 이를 포함하는 카메라 장치
WO2023096288A1 (ko) 카메라 엑추에이터, 렌즈 이송 장치 및 이를 포함하는 카메라 장치
WO2023096286A1 (ko) 렌즈 구동장치 및 이를 포함하는 카메라 장치
WO2022235109A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2023018143A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2022035192A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021771998

Country of ref document: EP

Effective date: 20221018