WO2023096286A1 - 렌즈 구동장치 및 이를 포함하는 카메라 장치 - Google Patents

렌즈 구동장치 및 이를 포함하는 카메라 장치 Download PDF

Info

Publication number
WO2023096286A1
WO2023096286A1 PCT/KR2022/018413 KR2022018413W WO2023096286A1 WO 2023096286 A1 WO2023096286 A1 WO 2023096286A1 KR 2022018413 W KR2022018413 W KR 2022018413W WO 2023096286 A1 WO2023096286 A1 WO 2023096286A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
sub
axis direction
protrusion
coil
Prior art date
Application number
PCT/KR2022/018413
Other languages
English (en)
French (fr)
Inventor
이성국
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Publication of WO2023096286A1 publication Critical patent/WO2023096286A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur

Definitions

  • the present invention relates to a lens driving device and a camera device including the same.
  • a camera is a device that takes a picture or video of a subject and is mounted on a portable device, a drone, or a vehicle.
  • the camera device has an Image Stabilization (IS) function that corrects or prevents image shake caused by user movement in order to improve image quality, and an image stabilization (IS) function that automatically adjusts the distance between the image sensor and the lens to align the focal length of the lens. It may have an auto focusing (AF) function and a zooming function that increases or decreases the magnification of a distant subject through a zoom lens.
  • IS Image Stabilization
  • IS image stabilization
  • It may have an auto focusing (AF) function and a zooming function that increases or decreases the magnification of a distant subject through a zoom lens.
  • the resolution of the image sensor increases as it goes to higher pixels, so the size of the pixels decreases. As the pixels become smaller, the amount of light received during the same period of time decreases. Accordingly, in a high-pixel camera, image shaking caused by hand shaking caused by a slower shutter speed in a dark environment may be more severe.
  • image stabilization (IS) technology there is an optical image stabilizer (OIS) technology, which is a technology for correcting motion by changing a path of light.
  • the movement of the camera is detected through a gyro sensor, etc., and based on the detected movement, a lens may be tilted or moved, or a camera device including a lens and an image sensor may be tilted or moved.
  • a lens or a camera device including a lens and an image sensor is tilted or moved for OIS, a space for tilting or moved around the lens or camera device needs to be additionally secured.
  • an actuator for OIS may be disposed around the lens.
  • the actuator for OIS may include two axes perpendicular to the optical axis Z, that is, an actuator responsible for X-axis tilting and an actuator responsible for Y-axis tilting.
  • a technical problem to be solved by the present invention is to provide a lens driving device and a camera device capable of easily tilting with respect to an optical axis by dividing a housing and through protrusions and grooves.
  • the present invention can provide a lens driving device and a camera device that provide improved optical performance as tilting is easily performed when the divided housings are combined.
  • the present invention may provide a lens driving device and a camera device in which divided housings are tilted based on an optical axis.
  • the present invention is to provide a lens driving device and a camera device applicable to ultra-slim, subminiature, and high-resolution cameras.
  • a lens driving device includes a first housing member; and a second housing member including a first sub-housing and a second sub-housing coupled to the first housing member; a first lens assembly coupled to the first sub-housing and moving in an optical axis direction and a second lens assembly coupled to the second sub-housing and moving in an optical axis direction; and a driving unit for moving the first lens assembly and the second lens assembly.
  • At least one of the first sub-housing and the second sub-housing may be inclined at a predetermined angle relative to the optical axis direction or the first housing member.
  • a distance between the first sub-housing and the second sub-housing may increase or decrease along the optical axis direction.
  • One of the first sub-housing and the second sub-housing includes a coupling protrusion extending in a horizontal direction, and the other includes a coupling groove in which the coupling protrusion is received, and the maximum width of the coupling protrusion is It may be smaller than the minimum width of the coupling groove.
  • An outer surface of the coupling protrusion and an inner surface of the coupling groove may be spaced apart from each other.
  • the coupling protrusion may include an upper coupling protrusion and a lower coupling protrusion, and the upper coupling protrusion may be in plural and at least partially overlap each other in the optical axis direction.
  • An upper surface of the upper coupling protrusion and a lower surface of the coupling groove corresponding to the upper coupling protrusion may be spaced apart from each other in the horizontal direction.
  • the upper coupling protrusion may include a first upper protrusion and a second upper protrusion spaced apart in an optical axis direction, and a length of the first upper protrusion may be the same as a length of the second upper protrusion.
  • the distance between the top surface of the first upper protrusion and the bottom surface of the coupling groove corresponding to the first upper protrusion may be different from the distance between the top surface of the second upper protrusion and the bottom surface of the coupling groove corresponding to the second upper protrusion.
  • At least one of the first sub-housing and the second sub-housing may include a junction groove disposed on a surface facing the other or an inner surface thereof.
  • the present invention implements a lens driving device and a camera device capable of easily tilting with respect to an optical axis by dividing a housing and using protrusions and grooves.
  • the present invention can implement a lens driving device and a camera device that provide improved optical performance as tilting is easily performed when the divided housings are combined.
  • any one of the second lens assembly and the third lens assembly may be tilted based on the first lens assembly, and at least two of the first lens assembly, the second lens assembly, and the third lens assembly are spaced apart from each other It can be.
  • the present invention may implement a lens driving device and a camera device in which divided housings are tilted based on an optical axis.
  • the present invention can implement a lens driving device and a camera device applicable to ultra-slim, subminiature, and high-resolution cameras.
  • FIG. 1 is a perspective view of a camera device according to an embodiment
  • FIG. 2 is an exploded perspective view of a camera device according to an embodiment
  • FIG. 3 is a cross-sectional view taken along line AA' in FIG. 1;
  • FIG. 4 is an exploded perspective view of a first camera actuator according to an embodiment
  • FIG. 5 is a perspective view of a first camera actuator according to an embodiment in which a shield can and a substrate are removed;
  • 6A is a cross-sectional view taken along line BB' in FIG. 5;
  • 6B is a cross-sectional view taken along line CC′ in FIG. 5;
  • FIG. 7A is an exploded perspective view of a first camera actuator according to another embodiment
  • FIG. 7B is a cross-sectional view of a first camera actuator according to another embodiment
  • FIG. 7C is another cross-sectional view of a first camera actuator according to another embodiment
  • FIG. 8 is a perspective view of a second camera actuator according to an embodiment
  • FIG. 9 is an exploded perspective view of a second camera actuator according to an embodiment
  • FIG. 10 is a cross-sectional view taken along line DD' in FIG. 8;
  • 11 and 12 are diagrams for explaining each drive of a lens assembly according to an embodiment
  • FIG. 13 is a diagram illustrating driving of a second camera actuator according to an embodiment
  • FIG. 14 is a schematic diagram showing a circuit board according to an embodiment
  • 15A is a perspective view of a first housing member according to an embodiment
  • 15B is another perspective view of a first housing member according to an embodiment
  • 16A is a perspective view of a second housing member according to an embodiment
  • 16B is an exploded perspective view of a second housing member according to an embodiment
  • 16C is a perspective view of a first sub-housing of a second housing member according to an embodiment
  • 16D is a perspective view of a second sub-housing of a second housing member according to an embodiment
  • 16E is a side view of a second sub-housing of a second housing member according to an embodiment
  • FIG. 17 is a view cut along EE′ in FIG. 11,
  • FIG. 23 is a cross-sectional view of a second camera actuator according to an embodiment
  • FIG. 24 is a cross-sectional view of an aspect of a second camera actuator according to an embodiment
  • 25 is a cross-sectional view of another aspect of a second camera actuator according to an embodiment
  • 26 is a cross-sectional view of another aspect of a second camera actuator according to an embodiment
  • FIG. 27 is a perspective view of a mobile terminal to which a camera device according to an embodiment is applied;
  • FIG. 28 is a perspective view of a vehicle to which a camera device according to an embodiment is applied.
  • FIG. 1 is a perspective view of a camera device according to an embodiment
  • FIG. 2 is an exploded perspective view of a camera device according to an embodiment
  • FIG. 3 is a cross-sectional view taken along line AA′ in FIG. 1 .
  • a camera device 1000 may include a cover CV, a first camera actuator 1100, a second camera actuator 1200, and a circuit board 1300.
  • the first camera actuator 1100 may be used as a first actuator
  • the second camera actuator 1200 may be used as a second actuator.
  • the second camera actuator 1200 may be used interchangeably with a 'lens driving device', a 'lens driving unit', a 'lens driving module', a 'lens moving device', a 'lens moving device', and the like.
  • the camera device 1000 may also be called a 'camera module', 'camera unit', 'imaging device', 'imaging module', 'imaging unit', and the like.
  • the cover CV may cover the first camera actuator 1100 and the second camera actuator 1200 . Coupling force between the first camera actuator 1100 and the second camera actuator 1200 may be improved by the cover CV.
  • the cover CV may be made of a material that blocks electromagnetic waves.
  • the first camera actuator 1100 and the second camera actuator 1200 in the cover CV can be easily protected.
  • the first camera actuator 1100 may be an Optical Image Stabilizer (OIS) actuator.
  • OIS Optical Image Stabilizer
  • the first camera actuator 1100 may include a fixed focal length lens disposed in a predetermined lens barrel (not shown).
  • Fixed focal length lenses may also be referred to as “single focal length lenses” or “short lenses”.
  • the first camera actuator 1100 may change a path of light.
  • the first camera actuator 1100 may vertically change a light path through an internal optical member (eg, a mirror or a prism).
  • an internal optical member eg, a mirror or a prism.
  • the second camera actuator 1200 may be disposed behind the first camera actuator 1100 .
  • the second camera actuator 1200 may be coupled to the first camera actuator 1100 . And mutual coupling can be made by various methods.
  • the second camera actuator 1200 may be a zoom actuator or an auto focus (AF) actuator.
  • the second camera actuator 1200 may support one or a plurality of lenses and perform an auto focusing function or a zoom function by moving the lens according to a control signal from a predetermined control unit.
  • the circuit board 1300 may be disposed behind the second camera actuator 1200 .
  • the circuit board 1300 may be electrically connected to the second camera actuator 1200 and the first camera actuator 1100 . Also, the number of circuit boards 1300 may be plural.
  • a camera device may include a single camera device or a plurality of camera devices.
  • the plurality of camera devices may include a first camera device and a second camera device.
  • the first camera device may include a single actuator or a plurality of actuators.
  • the first camera device may include a first camera actuator 1100 and a second camera actuator 1200 .
  • the second camera device may include an actuator (not shown) disposed in a predetermined housing (not shown) and capable of driving a lens unit. Although described based on this, it may also be described as a concept in which a lens unit is included in an actuator.
  • the actuator may be a voice coil motor, a micro actuator, a silicon actuator, and the like, and may be applied in various ways such as an electrostatic method, a thermal method, a bimorph method, and an electrostatic force method, but is not limited thereto.
  • a camera actuator may be referred to as an actuator or the like.
  • a camera device composed of a plurality of camera devices may be mounted in various electronic devices such as mobile terminals.
  • the camera device may include a first camera actuator 1100 that functions as an OIS and a second camera actuator 1200 that functions as a zooming function and an AF function.
  • Light may be incident into the camera device through an opening area located on the upper surface of the first camera actuator 1100 . That is, light may be incident into the first camera actuator 1100 along an optical axis direction (eg, an X-axis direction), and an optical path may be changed in a vertical direction (eg, a Z-axis direction) through an optical member. The light may pass through the second camera actuator 1200 and be incident to the image sensor IS located at one end of the second camera actuator 1200 (PATH).
  • an optical axis direction eg, an X-axis direction
  • an optical path may be changed in a vertical direction (eg, a Z-axis direction) through an optical member.
  • the light may pass through the second camera actuator 1200 and be incident to the image sensor IS located at one end of the second camera actuator 1200 (PATH).
  • the bottom surface means one side in the first direction.
  • the first direction is the X-axis direction in the drawing and may be used interchangeably with the second axis direction.
  • the second direction is the Y-axis direction in the drawing and may be used interchangeably with the first-axis direction.
  • the second direction is a direction perpendicular to the first direction.
  • the third direction is the Z-axis direction in the drawing, and may be used interchangeably with the third-axis direction. It is a direction perpendicular to both the first direction and the second direction.
  • the third direction (Z-axis direction) corresponds to the direction of the optical axis
  • the first direction (X-axis direction) and the second direction (Y-axis direction) are perpendicular to the optical axis and are tilted by the second camera actuator.
  • the first direction (X-axis direction) may be used interchangeably with a 'vertical direction'.
  • the second direction (Y-axis direction) may be used interchangeably as a 'horizontal direction'.
  • the third direction (Z-axis direction) may be used interchangeably as an 'optical axis direction'.
  • the optical axis direction is the third direction (Z-axis direction), and will be described below based on this direction.
  • the camera device according to the embodiment may improve spatial limitations of the first camera actuator and the second camera actuator by changing the light path. That is, the camera device according to the embodiment may expand the light path while minimizing the thickness of the camera device in response to the light path change. Furthermore, it should be understood that the second camera actuator may provide a high range of magnification by controlling a focus or the like in an extended light path.
  • the camera device may implement OIS through control of an optical path through a first camera actuator, thereby minimizing the occurrence of a descent or tilt phenomenon and producing the best optical characteristics.
  • the second camera actuator 1200 may include an optical system (lens unit) and a lens driving unit.
  • the second camera actuator 1200 may include at least one of a first lens assembly, a second lens assembly, a third lens assembly, and a guide pin.
  • the second camera actuator 1200 includes a coil and a magnet to perform a zooming function with high magnification.
  • the first lens assembly and the second lens assembly may be moving lenses that move through a coil, a magnet, and a guide pin, and the third lens assembly may be a fixed lens, but is not limited thereto.
  • the third lens assembly may perform the function of a focator that forms light at a specific location, and the first lens assembly re-images an image formed by the third lens assembly, which is a concentrator, at another location. It can perform a variator function.
  • a change in magnification may be large because the distance to the subject or the image distance is greatly changed, and the first lens assembly, which is a variable magnification, may play an important role in changing the focal length or magnification of the optical system.
  • the image formed by the first lens assembly which is a variable magnifier
  • the second lens assembly may perform a position compensation function for an image formed by the variable magnifier.
  • the second lens assembly may perform a compensator function that serves to accurately form an image formed by the first lens assembly, which is a variable magnifier, at an actual image sensor position.
  • the first lens assembly and the second lens assembly may be driven by electromagnetic force due to an interaction between a coil and a magnet. The above information may be applied to a lens assembly to be described later.
  • an additional lens assembly eg, a fourth lens assembly
  • the actuator for OIS and the actuator for AF or Zoom are arranged according to an embodiment of the present invention
  • magnetic field interference with the magnet for AF or Zoom can be prevented during OIS operation. Since the driving magnet of the first camera actuator 1100 is disposed separately from the second camera actuator 1200, magnetic field interference between the first camera actuator 1100 and the second camera actuator 1200 can be prevented.
  • OIS may be used interchangeably with terms such as hand shake correction, optical image stabilization, optical image correction, and shake correction.
  • FIG 3 is a perspective view of a camera device according to another embodiment.
  • a lens driving device described later may be mounted in a camera device 1000A that performs zoom or auto focusing without changing a light path as well as a camera device that changes a light path through an optical member as described above. .
  • FIG. 4 is an exploded perspective view of a first camera actuator according to an embodiment.
  • the first camera actuator 1100 includes a first shield can (not shown), a first housing 1120, a mover 1130, a rotating part 1140, and a first driving part 1150. ).
  • the mover 1130 may include a holder 1131 and an optical member 1132 seated on the holder 1131 .
  • the rotating unit 1140 includes a tilting guide unit 1141, a first magnetic body 1142 having a coupling force with the tilting guide unit 1141, and a second magnetic body 1143 positioned within the tilting guide unit 1141.
  • the first driving unit 1150 includes a driving magnet 1151 , a driving coil 1152 , a Hall sensor unit 1153 and a first substrate unit 1154 .
  • the first shield can (not shown) may be located at the outermost side of the first camera actuator 1100 to surround the rotating unit 1140 and the first driving unit 1150 to be described later.
  • the first shield can (not shown) may block or reduce electromagnetic waves generated from the outside. Accordingly, the occurrence of malfunctions in the rotating unit 1140 or the first driving unit 1150 may be reduced.
  • the first housing 1120 may be located inside a first shield can (not shown). In addition, the first housing 1120 may be located inside the first substrate unit 1154 to be described later. The first housing 1120 may be coupled to or fitted with a first shield can (not shown).
  • the first housing 1120 may include a plurality of housing side parts.
  • a first housing side part 1121 , a second housing side part 1122 , a third housing side part 1123 , and a fourth housing side part 1124 may be included.
  • the first housing side part 1121 and the second housing side part 1122 may be disposed to face each other. Also, the third housing side part 1123 and the fourth housing side part 1124 may be disposed between the first housing side part 1121 and the second housing side part 1122 .
  • the third housing side part 1123 may contact the first housing side part 1121 , the second housing side part 1122 , and the fourth housing side part 1124 . Also, the third housing side part 1123 may include a bottom surface from the first housing 1120 to the lower part.
  • the first housing side portion 1121 may include a first housing hole 1121a.
  • a third coil 1152a to be described later may be positioned in the first housing hole 1121a.
  • the second housing side portion 1122 may include a second housing hole 1122a.
  • a fourth coil 1152b to be described later may be positioned in the second housing hole 1122a.
  • the third coil 1152a and the fourth coil 1152b may be coupled to the first substrate portion 1154 .
  • the third coil 1152a and the fourth coil 1152b may be electrically connected to the first substrate 1154 to allow current to flow therethrough. This current is a component of the electromagnetic force that the first camera actuator can tilt with respect to the X-axis.
  • the third housing side portion 1123 may include a third housing hole 1123a.
  • a fifth coil 1152c to be described later may be positioned in the third housing hole 1123a.
  • the fifth coil 1152c may be coupled to the first substrate portion 1154 .
  • the fifth coil 1152c is electrically connected to the first substrate portion 1154 so that current may flow therethrough. This current is a component of the electromagnetic force that the first camera actuator can tilt with respect to the Y-axis.
  • the fourth housing side portion 1124 may include a first housing groove 1124a.
  • a first magnetic body 1142 to be described below may be disposed in an area facing the first housing groove 1124a. Accordingly, the first housing 1120 may be coupled to the tilting guide 1141 by magnetic force or the like.
  • first housing groove 1124a may be located on an inner surface or an outer surface of the fourth housing side part 1124 . Accordingly, the first magnetic material 1142 may also be disposed to correspond to the position of the first housing groove 1124a.
  • first housing 1120 may include an accommodating portion 1125 formed by the first to fourth housing side parts 1121 to 1224 .
  • a mover 1130 may be located in the accommodating part 1125 .
  • the mover 1130 includes a holder 1131 and an optical member 1132 seated on the holder 1131 .
  • the holder 1131 may be seated in the accommodating portion 1125 of the first housing 1120 .
  • the holder 1131 is formed outside the outer surface of the first prism to the fourth prism corresponding to the first housing side part 1121, the second housing side part 1122, the third housing side part 1123, and the fourth housing side part 1124, respectively. side may be included.
  • a seating groove in which the second magnetic material 1143 can be seated may be disposed on an outer surface of the fourth prism facing the side part 1124 of the fourth housing.
  • the optical member 1132 may be seated on the holder 1131 .
  • the holder 1131 may have a seating surface, and the seating surface may be formed by a receiving groove.
  • the optical member 1132 may include a reflector disposed therein. However, it is not limited thereto.
  • the optical member 1132 may reflect light reflected from the outside (eg, an object) into the camera device. In other words, the optical member 1132 may improve spatial limitations of the first camera actuator and the second camera actuator by changing the path of the reflected light. As such, it should be understood that the camera device may provide a high range of magnification by extending an optical path while minimizing the thickness.
  • the rotation unit 1140 includes a tilting guide unit 1141, a first magnetic body 1142 having a coupling force with the tilting guide unit 1141, and a second magnetic body 1143 positioned within the tilting guide unit 1141.
  • the tilting guide part 1141 may be combined with the mover 1130 and the first housing 1120 described above.
  • the tilting guide part 1141 may include an additional magnetic body (not shown) located therein.
  • the tilting guide part 1141 may be disposed adjacent to the optical axis.
  • the actuator according to the embodiment can easily change the light path according to the tilt of the first and second axes, which will be described later.
  • the tilting guide part 1141 may include a first protrusion spaced apart from each other in a first direction (X-axis direction) and a second protrusion spaced apart from each other in a second direction (Y-axis direction). Also, the first protrusion and the second protrusion may protrude in opposite directions. A detailed description of this will be given later.
  • the first magnetic body 1142 includes a plurality of yokes, and the plurality of yokes may be positioned to face each other with respect to the tilting guide part 1141 .
  • the first magnetic body 1142 may include a plurality of facing yokes.
  • the tilting guide part 1141 may be located between a plurality of yokes.
  • the first magnetic body 1142 may be located in the first housing 1120 . Also, as described above, the first magnetic material 1142 may be seated on the inner or outer surface of the fourth housing side part 1124 . For example, the first magnetic material 1142 may be seated in a groove formed on an outer surface of the fourth housing side part 1124 . Alternatively, the first magnetic material 1142 may be seated in the aforementioned first housing groove 1124a.
  • the second magnetic material 1143 may be located on the outer surface of the mover 1130, particularly the holder 1131.
  • the tilting guide part 1141 can be easily combined with the first housing 1120 and the mover 1130 by the coupling force generated by the magnetic force between the second magnetic body 1143 and the first magnetic body 1142 inside. there is.
  • the positions of the first magnetic body 1142 and the second magnetic body 1143 may be moved relative to each other.
  • attractive or repulsive force may occur between the first magnetic body and the second magnetic body according to polarity.
  • an attractive force acts between the first magnetic body and the second magnetic body, whereby the mover can maintain its position in the housing.
  • the first driving unit 1150 includes a driving magnet 1151 , a driving coil 1152 , a Hall sensor unit 1153 and a first substrate unit 1154 .
  • the driving magnet 1151 may include a plurality of magnets.
  • the driving magnet 1151 may include a third magnet 1151a, a fourth magnet 1151b, and a fifth magnet 1151c.
  • the third magnet 1151a, the fourth magnet 1151b, and the fifth magnet 1151c may be positioned on an outer surface of the holder 1131, respectively. Also, the third magnet 1151a and the fourth magnet 1151b may be positioned to face each other. Also, the fifth magnet 1151c may be located on a bottom surface among outer surfaces of the holder 1131 . A detailed description of this will be given later.
  • the driving coil 1152 may include a plurality of coils.
  • the driving coil 1152 may include a third coil 1152a, a fourth coil 1152b, and a fifth coil 1152c.
  • the third coil 1152a may be positioned opposite to the third magnet 1151a. Accordingly, the third coil 1152a may be positioned in the first housing hole 1121a of the first housing side part 1121 as described above.
  • the fourth coil 1152b may be positioned opposite to the fourth magnet 1151b. Accordingly, the fourth coil 1152b may be positioned in the second housing hole 1122a of the second housing side portion 1122 as described above.
  • the third coil 1152a may be positioned to face the fourth coil 1152b. That is, the third coil 1152a may be positioned symmetrically with respect to the fourth coil 1152b in the first direction (X-axis direction). This may be equally applied to the third magnet 1151a and the fourth magnet 1151b. That is, the third magnet 1151a and the fourth magnet 1151b may be symmetrically positioned with respect to the first direction (X-axis direction).
  • the third coil 1152a, the fourth coil 1152b, the third magnet 1151a, and the fourth magnet 1151b may be arranged to overlap at least partially in the second direction (Y-axis direction). With this configuration, the X-axis tilting can be accurately performed without tilting to one side by the electromagnetic force between the third coil 1152a and the third magnet 1151a and the electromagnetic force between the fourth coil 1152b and the fourth magnet 1151b. .
  • the fifth coil 1152c may be positioned opposite to the fifth magnet 1151c. Accordingly, the fifth coil 1152c may be positioned in the third housing hole 1123a of the third housing side portion 1123 as described above.
  • the fifth coil 1152c generates electromagnetic force with the fifth magnet 1151c to perform Y-axis tilting of the mover 1130 and the rotating part 1140 with respect to the first housing 1120.
  • X-axis tilting means tilting based on the X-axis
  • Y-axis tilting means tilting based on the Y-axis
  • the Hall sensor unit 1153 may include a plurality of Hall sensors.
  • the hall sensor unit 1153 may include a first sub sensor 1153a, a second sub sensor 1153b, and a third sub sensor 1153c.
  • Each sub-sensor may be at least one.
  • the first sub sensor 1153a may be located inside the third coil 1152a.
  • the second sub-sensor 1153b may be disposed symmetrically with the first sub-sensor 1153a in the first direction (X-axis direction) and in the third direction (Z-axis direction). Also, the second sub sensor 1153b may be located inside the fourth coil 1152b.
  • the first sub-sensor 1153a may detect a magnetic flux change inside the third coil 1152a. Also, the second sub-sensor 1153b may detect a magnetic flux change in the fourth coil 1152b. Accordingly, position sensing between the third and fourth magnets 1151a and 1151b and the first and second sub-sensors 1153a and 1153b may be performed. For example, the first and second sub-sensors 1153a and 1153b may control the X-axis tilt through the first camera actuator according to the embodiment.
  • the third sub-sensor 1153c may be located inside the fifth coil 1152c.
  • the third sub-sensor 1153c may detect a magnetic flux change inside the fifth coil 1152c. Accordingly, position sensing between the fifth magnet 1151c and the third sub sensor 1153bc may be performed.
  • the first camera actuator according to the embodiment may control Y-axis tilt through this.
  • the first substrate unit 1154 may be located below the first driving unit 1150 .
  • the first substrate unit 1154 may be electrically connected to the driving coil 1152 and the hall sensor unit 1153 .
  • the first substrate unit 1154 may be coupled to the driving coil 1152 and the hall sensor unit 1153 through SMT. However, it is not limited to this method.
  • the first substrate portion 1154 may be positioned between a first shield can (not shown) and the first housing 1120 and coupled to the shield can 1101 and the first housing 1120 .
  • the coupling method may be variously made as described above.
  • the driving coil 1152 and the Hall sensor unit 1153 may be positioned within the outer surface of the first housing 1120 .
  • the first board unit 1154 is a circuit board having a wiring pattern that can be electrically connected, such as a rigid printed circuit board (Rigid PCB), a flexible printed circuit board (Flexible PCB), a rigid-flexible printed circuit board (Rigid-Flexible PCB), and the like. can include However, it is not limited to these types.
  • FIG. 5 is a perspective view of a first camera actuator according to an embodiment in which a shield can and a substrate are removed
  • FIG. 6A is a cross-sectional view taken along line BB′ in FIG. 5
  • FIG. 6B is a cross-sectional view taken along line CC′ in FIG. 5 .
  • the third coil 1152a may be located on the side part 1121 of the first housing.
  • the third coil 1152a and the third magnet 1151a may be positioned to face each other.
  • the third magnet 1151a may at least partially overlap the third coil 1152a in the second direction (Y-axis direction).
  • the fourth coil 1152b and the fourth magnet 1151b may be positioned to face each other.
  • the fourth magnet 1151b may at least partially overlap the fourth coil 1152b in the second direction (Y-axis direction).
  • the third coil 1152a and the fourth coil 1152b overlap in the second direction (Y-axis direction), and the third magnet 1151a and the fourth magnet 1151b overlap in the second direction (Y-axis direction).
  • the electromagnetic force applied to the outer surfaces of the holder is located on a parallel axis in the second direction (Y-axis direction), so that the X-axis tilt is accurate and precise. can be performed
  • first accommodating groove (not shown) may be located on an outer surface of the fourth holder.
  • first protrusions PR1a and PR1b may be disposed in the first accommodating groove. Accordingly, when the X-axis tilt is performed, the first protrusions PR1a and PR1b may be reference axes (or rotation axes) of the tilt. Accordingly, the tilting guide unit 1141 and the mover 1130 may move left and right.
  • the second protrusion PR2 may be seated in the groove of the inner surface of the fourth housing side part 1124 . Also, when the Y-axis tilt is performed, the rotation plate and the mover may rotate with the second protrusion PR2 as a reference axis of the Y-axis tilt.
  • OIS may be performed by the first protrusion and the second protrusion.
  • Y-axis tilt may be performed. That is, OIS can be implemented by rotating in the first direction (X-axis direction).
  • the fifth magnet 1151c disposed below the holder 1131 forms an electromagnetic force with the fifth coil 1152c to tilt or rotate the mover 1130 in the first direction (X-axis direction). there is.
  • the tilting guide part 1141 is coupled to the first housing 1120 and the mover 1130 by the first magnetic body 1142 in the first housing 1120 and the second magnetic body 1143 in the mover 1130. It can be. Also, the first protrusions PR1 may be spaced apart in a first direction (X-axis direction) and supported by the first housing 1120 .
  • the tilting guide part 1141 may rotate or tilt the second protrusion PR2 protruding toward the mover 1130 with respect to a reference axis (or rotation axis). That is, the tilting guide part 1141 may perform a Y-axis tilt with the second protrusion PR2 as a reference axis.
  • the mover 1130 is moved along the X-axis by the first electromagnetic forces F1A and F1B between the fifth magnet 1151c disposed in the third seating groove and the fifth coil 1152c disposed on the side of the third substrate.
  • OIS implementation may be performed while rotating (X1->X1a or X1bb) at a first angle ⁇ 1 in the direction.
  • the first angle ⁇ 1 may be ⁇ 1° to ⁇ 3°. However, it is not limited thereto.
  • the electromagnetic force may generate force in the described direction to move the mover, or may generate force in another direction to move the mover in the described direction. That is, the direction of the described electromagnetic force means the direction of the force generated by the magnet and the coil to move the mover.
  • X-axis tilt may be performed. That is, OIS can be implemented by rotating in the second direction (Y-axis direction).
  • OIS can be implemented while the mover 1130 tilts or rotates (or tilts the X axis) in the Y-axis direction.
  • the third magnet 1151a and the fourth magnet 1151b disposed on the holder 1131 form electromagnetic force with the third coil 1152a and the fourth coil 1152b, respectively, in the second direction (Y). axial direction), the tilting guide part 1141 and the mover 1130 may be tilted or rotated.
  • the tilting guide part 1141 may rotate or tilt (X-axis tilt) the first protrusion PR1 in the second direction about a reference axis (or rotation axis).
  • the second electromagnetic force (F2A, F2B) between the third and fourth magnets 1151a and 1151b disposed in the first seating groove and the third and fourth coils 1152a and 1152b disposed on the side surfaces of the first and second substrates ), OIS can be implemented while rotating the mover 1130 by a second angle ( ⁇ 2) in the Y-axis direction (Y1->Y1a or Y1b).
  • the second angle ⁇ 2 may be ⁇ 1° to ⁇ 3°. However, it is not limited thereto.
  • the electromagnetic force by the third and fourth magnets 1151a and 1151b and the third and fourth coils 1152a and 1152b may act in the third direction or in a direction opposite to the third direction.
  • the electromagnetic force may be generated in the third direction (Z-axis direction) from the left side of the mover 1130 and act in the opposite direction to the third direction (Z-axis direction) from the right side of the mover 1130.
  • the mover 1130 may rotate based on the first direction. Alternatively, it may move along the second direction.
  • the second actuator moves the tilting guide part 1141 and the mover 1130 in the first direction (X-axis direction) or the second direction by the electromagnetic force between the driving magnet in the holder and the driving coil disposed in the housing.
  • the rotation in the (Y-axis direction) it is possible to minimize the occurrence of a decentral or tilt phenomenon when implementing OIS and to provide the best optical characteristics.
  • 'Y-axis tilt' corresponds to rotation or tilt in the first direction (X-axis direction)
  • 'X-axis tilt' corresponds to rotation or tilt in the second direction (Y-axis direction) do.
  • FIG. 7A is an exploded perspective view of a first camera actuator according to another embodiment
  • FIG. 7B is a cross-sectional view of the first camera actuator according to another embodiment
  • FIG. 7C is another cross-sectional view of the first camera actuator according to another embodiment. .
  • a first camera actuator 1100 includes a first housing 1120, a mover 1130, a rotating part 1140, a first driving part 1150, and a first member ( 1126) and a second member 1131a.
  • the mover 1130 may include a holder 1131 and an optical member 1132 seated on the holder 1131 . Also, the mover 1130 may be disposed within the housing 1120.
  • the rotation unit 1140 may include a tilting guide unit 1141 , and second magnetic bodies 1142 and first magnetic bodies 1143 having different polarities to press the tilting guide unit 1141 .
  • the first magnetic body 1143 and the second magnetic body 1142 may have different sizes. As an example, the first magnetic body 1143 may be larger in size than the second magnetic body 1142 .
  • the first magnetic body 1143 and the second magnetic body 1142 may have the same length in an optical axis direction or a third direction (Z-axis direction), and may have different areas in the first and second directions.
  • the area of the first magnetic body 1143 may be larger than that of the second magnetic body 1142 .
  • the first driving unit 1150 includes a driving magnet 1151, a driving coil 1152, a Hall sensor unit 1153, a first substrate unit 1154, and a yoke unit 1155.
  • the first camera actuator 1100 may include a shield can (not shown).
  • a shield can (not shown) may be located at the outermost side of the first camera actuator 1100 to surround the rotation unit 1140 and the first driving unit 1150 to be described later.
  • Such a shield can may block or reduce electromagnetic waves generated from the outside. That is, the shield can (not shown) may reduce the occurrence of malfunction in the rotation unit 1140 or the first driving unit 1150 .
  • the first housing 1120 may be located inside a shield can (not shown). When there is no shield can, the first housing 1120 may be located on the outermost side of the first camera actuator.
  • first housing 1120 may be located inside the first substrate unit 1154 to be described later.
  • the first housing 1120 may be fastened by being fitted or aligned with a shield can (not shown).
  • the first housing 1120 may include a first housing side part 1121 , a second housing side part 1122 , a third housing side part 1123 , and a fourth housing side part 1124 . A detailed description of this will be given later.
  • the first member 1126 may be disposed in the first housing 1120 .
  • the first member 1126 may be disposed between the second member 1131a and the housing.
  • the first member 1126 may be disposed within the housing or located on one side of the housing. A description of this will be given later.
  • the mover 1130 includes a holder 1131 and an optical member 1132 seated in the holder 1131 .
  • the holder 1131 may be seated in the accommodating portion 1125 of the first housing 1120 .
  • the holder 1131 is a first to fourth holder outer surface corresponding to the first housing side part 1121, the second housing side part 1122, the third housing side part 1123, and the first member 1126, respectively.
  • the outer surface of the first holder to the outer surface of the fourth holder correspond to the inner surfaces of the first housing side 1121, the second housing side 1122, the third housing side 1123, and the first member 1126, respectively. to do or to face.
  • the holder 1131 may include a second member 1131a disposed in the fourth seating groove. A detailed description of this will be given later.
  • the optical member 1132 may be seated on the holder 1131 .
  • the holder 1131 may have a seating surface, and the seating surface may be formed by a receiving groove.
  • the optical member 1132 may be formed of a mirror or a prism.
  • a prism is shown as a reference, it may be composed of a plurality of lenses as in the above-described embodiment.
  • the optical member 1132 may include a plurality of lenses and prisms or mirrors.
  • the optical member 1132 may include a reflector disposed therein. However, it is not limited thereto.
  • the optical member 1132 may reflect light reflected from the outside (eg, an object) into the camera module.
  • the optical member 1132 may improve spatial limitations of the first camera actuator and the second camera actuator by changing the path of the reflected light.
  • the camera module may provide a high range of magnification by extending the optical path while minimizing the thickness.
  • the second member 1131a may be coupled to the holder 1131 .
  • the second member 1131a may be disposed outside the holder 1131 and inside the housing.
  • the second member 1131a may be seated in an additional groove located in an area other than the fourth seating groove on the outer surface of the fourth holder of the holder 1131 .
  • the second member 1131a may be coupled to the holder 1131, and at least a portion of the first member 1126 may be positioned between the second member 1131a and the holder 1131.
  • at least a portion of the first member 1126 may pass through a space formed between the second member 1131a and the holder 1131 .
  • the second member 1131a may have a structure separated from the holder 1131 . With this configuration, assembly of the first camera actuator can be easily performed as will be described later.
  • the second member 1131a may be integrally formed with the holder 1131, but will be described below as a separate structure.
  • the rotation unit 1140 includes a tilting guide unit 1141 , and second magnetic bodies 1142 and first magnetic bodies 1143 having different polarities to press the tilting guide unit 1141 .
  • the tilting guide part 1141 may be combined with the mover 1130 and the first housing 1120 described above. Specifically, the tilting guide part 1141 may be disposed between the holder 1131 and the first member 1126 . Accordingly, the tilting guide part 1141 may be coupled to the mover 1130 of the holder 1131 and the first housing 1120 . However, unlike the above, in this embodiment, the tilting guide part 1141 may be disposed between the first member 1126 and the holder 1131. Specifically, the tilting guide part 1141 may be located between the first member 1126 and the fourth seating groove of the holder 1131 .
  • the second magnetic body 1142 and the first magnetic body 1143 may be seated in the first groove gr1 formed in the second member 1131a and the second groove gr2 formed in the first member 1126, respectively.
  • the first and second grooves gr1 and gr2 may have different positions from the first and second grooves described in the above-described other embodiments.
  • the first groove gr1 is located in the second member 1131a and moves integrally with the holder
  • the second groove gr2 is located on the first member 1126 corresponding to the first groove gr1. and coupled to the first housing 1120. Therefore, these terms will be used interchangeably.
  • the tilting guide part 1141 may be disposed adjacent to the optical axis.
  • the actuator according to another embodiment can easily change the light path according to the tilt of the first and second axes, which will be described later.
  • the tilting guide part 1141 may include a first protrusion spaced apart from each other in a first direction (X-axis direction) and a second protrusion spaced apart from each other in a second direction (Y-axis direction). Also, the first protrusion and the second protrusion may protrude in opposite directions. A detailed description of this will be given later.
  • the first protrusion may protrude toward the mover. Also, the first protrusion may extend from the base in an optical axis direction or a third direction (Z-axis direction).
  • the second protrusion may protrude in an opposite direction to the first protrusion. That is, the second protrusion may extend in a direction opposite to the optical axis direction or in a direction opposite to the third direction (Z-axis direction). Also, the second protrusion may extend toward the first member 1126 or the housing 1120 .
  • the second magnetic body 1142 may be positioned within the second member 1131a.
  • the first magnetic material 1143 may be positioned within the first member 1126 .
  • the second magnetic body 1142 and the first magnetic body 1143 may have the same polarity.
  • the second magnetic body 1142 may be a magnet having an N pole
  • the first magnetic body 1143 may be a magnet having an N pole.
  • the second magnetic body 1142 may be a magnet having an S pole
  • the first magnetic body 1143 may be a magnet having an S pole.
  • first pole surface of the first magnetic body 1143 and the second pole surface of the second magnetic body 1142 facing the first pole surface may have the same polarity.
  • the second magnetic body 1142 and the first magnetic body 1143 may generate a repulsive force between each other due to the polarity described above.
  • the above-described repulsive force is applied to the second member 1131a or holder 1131 coupled to the second magnetic body 1142 and the first member 1126 coupled to the first magnetic body 1143 or the first housing ( 1120) may be applied.
  • the repulsive force applied to the second member 1131a may be transferred to the holder 1131 coupled with the second member 1131a. Accordingly, the tilting guide part 1141 disposed between the second member 1131a and the first member 1126 may be pressed by the repulsive force.
  • the repulsive force may maintain the position of the tilting guide 1141 between the holder 1131 and the first housing 1120 (or the first member 1126).
  • the tilting guide unit may come into close contact with the first member 1126 and the holder 1131 due to repulsive force between the first magnetic body 1143 and the second magnetic body 1142 .
  • the tilting guide part 1141 may guide the tilting of the mover 1130.
  • the first driving unit 1150 includes a driving magnet 1151 , a driving coil 1152 , a Hall sensor unit 1153 , a first substrate unit 1154 and a yoke unit 1155 . Except for the contents described in this embodiment, the above-described contents may be equally applied.
  • the third coil 1152a may be located on the side part 1121 of the first housing, and the third magnet 1151a may be located on the outer surface 1131S1 of the holder 1131. Accordingly, the third coil 1152a and the third magnet 1151a may be positioned to face each other. The third magnet 1151a may at least partially overlap the third coil 1152a in the second direction (Y-axis direction).
  • the fourth coil 1152b may be located on the side part 1122 of the second housing, and the fourth magnet 1151b may be located on the outer surface 1131S2 of the second holder 1131. Accordingly, the fourth coil 1152b and the fourth magnet 1151b may be positioned to face each other. The fourth magnet 1151b may at least partially overlap the fourth coil 1152b in the second direction (Y-axis direction).
  • the third coil 1152a and the fourth coil 1152b overlap in the second direction (Y-axis direction), and the third magnet 1151a and the fourth magnet 1151b overlap in the second direction (Y-axis direction). can be nested with
  • the electromagnetic force applied to the outer surfaces of the holder (the outer surface of the first holder and the outer surface of the second holder) is located on a parallel axis in the second direction (Y-axis direction), so that the X-axis tilt is accurate and precise. can be performed
  • the second protrusions PR2a and PR2b of the tilting guide part 1141 may come into contact with the first member 1126 of the first housing 1120 .
  • the second protrusion PR2 may be seated in the second protruding groove PH2 formed on one side of the first member 1126 .
  • the second protrusions PR2a and PR2b may be reference axes (or rotational axes) of the tilt. Accordingly, the tilting guide unit 1141 and the mover 1130 may move along the second direction.
  • the first hall sensor 1153a may be located outside for electrical connection and coupling with the first substrate 1154. However, it is not limited to these locations.
  • the fifth coil 1152c may be located on the third housing side part 1123, and the fifth magnet 1151c may be located on the third holder outer surface 1131S3 of the holder 1131.
  • the fifth coil 1152c and the fifth magnet 1151c may overlap at least partially in the first direction (X-axis direction). Accordingly, the strength of the electromagnetic force between the fifth coil 1152c and the fifth magnet 1151c can be easily controlled.
  • the tilting guide part 1141 may be located on the outer surface 1131S4 of the fourth holder of the holder 1131 .
  • the tilting guide part 1141 may be seated in the fourth seating groove 1131S4a on the outer surface of the fourth holder.
  • the fourth seating groove 1131S4a may include a first area, a second area, and a third area.
  • the second member 1131a may be positioned in the first region. That is, the first region may overlap the second member 1131a in the first direction (X-axis direction).
  • the first region may be a region where the member base portion of the second member 1131a is located.
  • the first area may be located on the outer surface 1131S4 of the fourth holder. That is, the first area may correspond to an area located above the fourth seating groove 1131S4a. In this case, the first area may not be one area within the fourth seating groove 1131S4a.
  • the first member 1126 may be located in the second region. That is, the second region may overlap the first member 1126 in the first direction (X-axis direction).
  • the second area may be located on the outer surface 1131S4 of the fourth holder like the first area. That is, the second area may correspond to the area located above the fourth seating groove 1131S4a.
  • a tilting guide unit may be located in the third area.
  • the base of the tilting guide unit may be located in the third area. That is, the third area may overlap the tilting guide part (eg, the base) in the first direction (X-axis direction).
  • a second member 1131a is disposed in the first region, and the second member 1131a may include a first groove gr1 formed on an inner surface.
  • the second magnetic body 1142 is disposed in the first groove gr1 as described above, and the repulsive force RF2 generated from the second magnetic body 1142 is applied to the fourth part of the holder 1131 through the second member 1131a. It may be transferred to the seating groove 1131S4a (RF2'). Accordingly, the holder 1131 may apply force to the tilting guide 1141 in the same direction as the repulsive force RF2 generated by the second magnetic material 1142 .
  • a first member 1126 may be disposed in the second area.
  • the first member 1126 may include a second groove gr2 facing the first groove gr1.
  • the first member 1126 may include a second protrusion groove PH2 disposed on a surface corresponding to the second groove gr2.
  • the repulsive force RF1 generated by the first magnetic body 1143 may be applied to the first member 1126 . Accordingly, the first member 1126 and the second member 1131a press the tilting guide part 1141 disposed between the first member 1126 and the holder 1131 through the generated repulsive forces RF1 and RF2'. can do.
  • the distance between the holder 1131, the first housing 1120, and the tilting guide 1141 bonding can be maintained.
  • a tilting guide part 1141 may be disposed in the third region.
  • the tilting guide part 1141 may include the first protrusion PR1 and the second protrusion PR2.
  • the first protrusion PR1 and the second protrusion PR2 may be disposed on the second surface 1141b and the first surface 1141a of the base, respectively.
  • the first protrusion PR1 and the second protrusion PR2 may be variously positioned on the facing surfaces of the base.
  • the first protruding groove PH1 may be located in the fourth seating groove 1131S4a. Also, the first protruding part PR1 of the tilting guide part 1141 may be accommodated in the first protruding groove PH1. Accordingly, the first protrusion PR1 may contact the first protruding groove PH1.
  • the maximum diameter of the first protrusion groove PH1 may correspond to the maximum diameter of the first protrusion PR1. This may be equally applied to the second protrusion groove PH2 and the second protrusion PR2. That is, the maximum diameter of the second protrusion groove PH2 may correspond to the maximum diameter of the second protrusion PR2. Also, as a result, the second protrusion PR2 may contact the second protruding groove PH2. With this configuration, the first axis tilt based on the first protrusion PR1 and the second axis tilt based on the second protrusion PR2 can easily occur, and the tilt radius can be improved.
  • the tilting guide part 1141 is arranged side by side with the second member 1131a and the first member 1126 in the third direction (Z-axis direction), so that the tilting guide part 1141 is aligned with the optical member 1132. It can be overlapped in one direction (X-axis direction). More specifically, in the embodiment, the first protrusion PR1 may overlap the optical member 1132 in the first direction (X-axis direction). Furthermore, at least a portion of the first protrusion PR1 may overlap the fifth coil 1152c or the fifth magnet 1151c in the first direction (X-axis direction). That is, in the camera actuator according to the embodiment, each protrusion, which is a central axis of tilt, may be located adjacent to the center of gravity of the mover 1130.
  • the tilting guide unit may be located adjacent to the center of gravity of the holder.
  • the camera actuator according to the embodiment can minimize the moment value for tilting the holder and minimize the consumption of current applied to the coil unit to tilt the holder, thereby improving power consumption and reliability of the device. .
  • the second magnetic body 1142 and the first magnetic body 1143 may not overlap the fifth coil 1152c or the optical member 1132 in the first direction (X-axis direction).
  • the second magnetic body 1142 and the first magnetic body 1143 may be spaced apart from the fifth coil 1152c or the optical member 1132 in a third direction (Z-axis direction). Accordingly, the magnetic force transmitted from the second magnetic body 1142 and the first magnetic body 1143 to the fifth coil 1152c can be minimized.
  • the camera actuator according to the embodiment can easily perform up and down driving (Y-axis tilt) and can minimize power consumption.
  • the second Hall sensor 1153b located inside the fifth coil 1152c detects a change in magnetic flux, thereby sensing the position between the fifth magnet 1151c and the second Hall sensor 1153b.
  • the offset voltage of the second Hall sensor 1153b may be changed according to the influence of the magnetic field formed from the second magnetic body 1142 and the first magnetic body 1143 .
  • the first camera actuator includes a second member 1131a, a second magnetic body 1142, a first magnetic body 1143, a first member 1126, a tilting guide unit 1141, and a holder ( 1131) can be arranged in order.
  • the second magnetic body is located in the second member and the first magnetic body is located in the first member, the second member, the first member, the tilting guide unit, and the holder may be disposed in that order.
  • the distance between the second magnetic body 1142 and the first magnetic body 1143 in the third direction from the holder 1131 (or the optical member 1132) may be greater than the distance between the tilting guide parts 1141.
  • the second Hall sensor 1153b under the holder 1131 may also be spaced apart from the second magnetic body 1142 and the first magnetic body 1143 by a predetermined distance. Accordingly, the influence of the magnetic field formed by the second magnetic body 1142 and the first magnetic body 1143 is minimized in the second Hall sensor 1153b, so that the hall voltage is concentrated in a positive or negative direction and can be prevented from being saturated. That is, this configuration allows the hall electrode to have a range in which Hall Calibration can be performed.
  • the temperature is also affected by the electrode of the Hall sensor, and the resolving power of the camera lens varies according to the temperature. This can easily prevent deterioration of resolution.
  • a portion of the tilting guide part 1141 relative to the outer surface of the fourth holder of the holder 1131 may be located outside the outer surface of the fourth holder.
  • the tilting guide part 1141 may be seated in the fourth seating groove 1131S4a based on the base, excluding the first protrusion PR1 and the second protrusion PR2.
  • the length of the base in the third direction (Z-axis direction) may be smaller than the length of the fourth seating groove 1131S4a in the third direction (Z-axis direction).
  • the maximum length of the tilting guide part 1141 in the third direction (Z-axis direction) may be greater than the length of the fourth seating groove 1131S4a in the third direction (Z-axis direction). Therefore, as described above, the end of the second protrusion PR2 may be positioned between the outer surface of the fourth holder and the first member 1126 . That is, at least a portion of the second protrusion PR2 may be positioned in a direction opposite to the third direction (Z-axis direction) of the holder 1131 . In other words, the holder 1131 may be spaced a predetermined distance from the end of the second protrusion PR2 (the portion in contact with the second protrusion groove) in the third direction (Z-axis direction).
  • the second member 1131a is positioned inside or surrounded by the first member 1126, space efficiency can be improved and miniaturization can be realized. Furthermore, even when driving (tilting or rotating the mover 1130) by electromagnetic force is performed, the second member 1131a does not protrude outside the first member 1126, so that contact with surrounding elements can be blocked. Thus, reliability can be improved.
  • a predetermined separation space may exist between the second magnetic body 1142 and the first magnetic body 1143 .
  • the second magnetic body 1142 and the first magnetic body 1143 may face each other with the same polarity.
  • FIG. 8 is a perspective view of a second camera actuator according to an embodiment
  • FIG. 9 is an exploded perspective view of the second camera actuator according to an embodiment
  • FIG. 10 is a cross-sectional view taken along line DD′ in FIG. 8
  • FIGS. 11 and 12 is a diagram illustrating each driving of a lens assembly according to an embodiment
  • FIG. 13 is a diagram illustrating driving of a second camera actuator according to an embodiment.
  • the second camera actuator 1200 includes a lens unit 1220, a second housing 1230, a second driving unit 1250, a base unit 1260, and a second substrate. A portion 1270 and a bonding member 1280 may be included. Furthermore, the second camera actuator 1200 may further include a second shield can (not shown), an elastic part (not shown), and a bonding member (not shown).
  • the second shield can (not shown) is located in one area (eg, the outermost side) of the second camera actuator 1200, and the following components (lens unit 1220, second housing 1230, second The driving unit 1250, the base unit 1260, the second substrate unit 1270, and the image sensor (IS) may be positioned to surround it.
  • the second shield can (not shown) may block or reduce electromagnetic waves generated from the outside. Accordingly, the occurrence of malfunction in the second driving unit 1250 may be reduced.
  • the lens unit 1220 may be located in a second shield can (not shown).
  • the lens unit 1220 may move along the third direction (Z-axis direction or optical axis direction). Accordingly, the aforementioned AF function or zoom function may be performed.
  • the lens unit 1220 may be positioned within the second housing 1230 . Accordingly, at least a portion of the lens unit 1220 may move along the optical axis direction or the third direction (Z-axis direction) within the second housing 1230 .
  • the lens unit 1220 may include a lens group 1221 and a moving assembly 1222 .
  • the lens group 1221 may include at least one lens.
  • the number of lens groups 1221 may be plural, hereinafter, only one will be described.
  • the lens group 1221 is coupled to the moving assembly 1222 and moves in a third direction (Z-axis direction) by electromagnetic force generated from the first magnet 1252a and the second magnet 1252b coupled to the moving assembly 1222.
  • the lens group 1221 may include a first lens group 1221a, a second lens group 1221b, and a third lens group 1221c.
  • the first lens group 1221a, the second lens group 1221b, and the third lens group 1221c may be sequentially disposed along the optical axis direction.
  • the lens group 1221 may further include a fourth lens group 1221d.
  • the fourth lens group 1221d may be disposed at the rear end of the third lens group 1221c.
  • the first lens group 1221a may be coupled to and fixed to the 2-1 housing. In other words, the first lens group 1221a may not move along the optical axis direction.
  • the second lens group 1221b may be coupled with the first lens assembly 1222a to move in the third direction or the optical axis direction. Magnification adjustment may be performed by moving the first lens assembly 1222a and the second lens group 1221b.
  • the third lens group 1221c may be combined with the second lens assembly 1222b to move in the third direction or the optical axis direction. Focus adjustment or auto focusing may be performed by moving the third lens group 1221 .
  • the moving assembly 1222 may include an opening area surrounding the lens group 1221 .
  • the moving assembly 1222 is used interchangeably with the lens assembly.
  • the moving assembly 1222 may be combined with the lens group 1221 by various methods.
  • the moving assembly 1222 may include a groove on a side surface, and may be coupled to the first magnet 1252a and the second magnet 1252b through the groove. A coupling member or the like may be applied to the groove.
  • the moving assembly 1222 may be coupled with elastic parts (not shown) at the top and rear ends. Accordingly, the moving assembly 1222 may be supported by an elastic part (not shown) while moving in the third direction (Z-axis direction). That is, while the position of the moving assembly 1222 is maintained, it may be maintained in the third direction (Z-axis direction).
  • the elastic part (not shown) may be formed of various elastic elements such as leaf springs.
  • the moving assembly 1222 may be located in the second housing 1230 and include a first lens assembly 1222a and a second lens assembly 1222b.
  • An area where the third lens group is seated in the second lens assembly 1222b may be located at the rear end of the first lens assembly 1222a.
  • the area where the third lens group 1221c is seated in the second lens assembly 1222b may be located between the area where the second lens group 1221b is seated in the first lens assembly 1222a and the image sensor. there is.
  • the first lens assembly 1222a and the second lens assembly 1222b may face the first guide part G1 and the second guide part G2, respectively.
  • the first guide part G1 and the second guide part G2 may be located on the first side and the second side of the second housing 1230 to be described later. A detailed description of this will be given later.
  • a second driving magnet may be seated on outer surfaces of the first lens assembly 1222a and the second lens assembly 1222b.
  • a second magnet 1252b may be seated on an outer surface of the second lens assembly 1222b.
  • a first magnet 1252a may be seated on an outer surface of the first lens assembly 1222a.
  • the second housing 1230 may be disposed between the lens unit 1220 and a second shield can (not shown). Also, the second housing 1230 may be disposed to surround the lens unit 1220 .
  • the second housing 1230 may include a 2-1 housing 1231 and a 2-2 housing 1232 .
  • the 2-1 housing 1231 may be coupled to the first lens group 1221a and may also be coupled to the above-described first camera actuator.
  • the 2-1 housing 1231 may be located in front of the 2-2 housing 1232 .
  • the 2-1 housing 1231 may be referred to as a 'front housing member' or a 'first housing member'
  • the 2-2 housing 1232 may be referred to as a 'rear housing member' or a 'second housing member'.
  • the 2-2 housing 1232 may include a first sub-housing 1232a and a second sub-housing 1232b as will be described later.
  • the 2-2 housing 1232 may be located at the rear end of the 2-1 housing 1231 .
  • a lens assembly may be seated inside the 2-2 housing 1232 .
  • a hole may be formed at a side of the second housing 1230 (or the 2-2 housing 1232).
  • a first coil 1251a and a second coil 1251b may be disposed in the hole.
  • the hole may be positioned to correspond to the groove of the moving assembly 1222 described above.
  • the second housing 1230 may include a first side portion 1232a and a second side portion 1232b.
  • the first side portion 1232a and the second side portion 1232b may be positioned to correspond to each other.
  • the first side portion 1232a and the second side portion 1232b may be symmetrically disposed with respect to the third direction.
  • a second driving coil 1251 may be positioned on the first side portion 1232a and the second side portion 1232b.
  • the second substrate portion 1270 may be seated on outer surfaces of the first side portion 1232a and the second side portion 1232b.
  • the first substrate 1271 may be positioned on an outer surface of the first side portion 1232a
  • the second substrate 1272 may be positioned on an outer surface of the second side portion 1232b.
  • first guide part G1 and the second guide part G2 are the first side part 1232a and the second side part 1232b of the second housing 1230 (in particular, the 2-2 housing 1232). can be located in
  • the first guide part G1 and the second guide part G2 may be positioned to correspond to each other.
  • the first guide part (G1) and the second guide part (G2) may be located opposite to each other based on the third direction (Z-axis direction).
  • at least a portion of the first guide portion G1 and the second guide portion G2 may overlap each other in the second direction (Y-axis direction).
  • the first guide part G1 and the second guide part G2 may include at least one groove (eg, a guide groove) or a recess. Also, the first ball B1 or the second ball B2 may be seated in the groove or the recess. Thus, the first ball (B1) or the second ball (B2) can move in the third direction (Z-axis direction) in the guide groove of the first guide portion (G1) or the guide groove of the second guide portion (G2). there is.
  • the first ball B1 or the second ball B2 is formed inside the rail formed inside the first side part 1232a of the second housing 1230 or inside the second side part 1232b of the second housing 1230. It can move in a third direction along the rail.
  • the first lens assembly 1222a and the second lens assembly 1222b may move in the third direction.
  • the first ball B1 may be disposed on the upper side of the first lens assembly 1222a or the second lens assembly 1222b.
  • the second ball B2 may be disposed on the lower side of the first lens assembly 1222a or the second lens assembly 1222b.
  • the first ball (B1) may be located on top of the second ball (B2). Therefore, depending on the location, the first ball B1 may overlap at least a portion of the second ball B2 along the first direction (X-axis direction).
  • first guide part G1 and the second guide part G2 may include first guide grooves GG1a and GG2a facing the first recess RS1.
  • first guide part G1 and the second guide part G2 may include second guide grooves GG1b and GG2b facing the second recess RS2.
  • the first guide grooves GG1a and GG2a and the second guide grooves GG1b and GG2b may be grooves extending in a third direction (Z-axis direction).
  • the first guide grooves GG1a and GG2a and the second guide grooves GG1b and GG2b may have different shapes.
  • the first guide grooves GG1a and GG2a may have inclined side surfaces
  • the second guide grooves GG1b and GG2b may have side surfaces perpendicular to the bottom surface.
  • the second magnet 1252b may be positioned to face the second coil 1251b. Also, the first magnet 1252a may be positioned to face the first coil 1251a.
  • the elastic part may include a first elastic member (not shown) and a second elastic member (not shown).
  • a first elastic member (not shown) may be coupled to the upper surface of the moving assembly 1222 .
  • the second elastic member (not shown) may be coupled to the lower surface of the moving assembly 1222 .
  • the first elastic member (not shown) and the second elastic member (not shown) may be formed as leaf springs as described above.
  • the first elastic member (not shown) and the second elastic member (not shown) may provide elasticity for the movement of the moving assembly 1222 .
  • the second driving unit 1250 may provide a driving force for moving the lens unit 1220 in a third direction (Z-axis direction).
  • the second driving unit 1250 may include a second driving coil 1251 and a second driving magnet 1252 .
  • the second driving unit 1250 may further include a second hall sensor unit.
  • the second hall sensor unit 1253 includes at least one fourth hall sensor 1253a and may be located inside or outside the second driving coil 1251 .
  • the moving assembly may move in the third direction (Z-axis direction) by the electromagnetic force formed between the second driving coil 1251 and the second driving magnet 1252 .
  • the second driving coil 1251 may include a first coil 1251a and a second coil 1251b.
  • the first coil 1251a and the second coil 1251b may be disposed in a hole formed at a side of the second housing 1230 .
  • the first coil 1251a and the second coil 1251b may be electrically connected to the second substrate 1270 . Accordingly, the first coil 1251a and the second coil 1251b may receive current or the like through the second substrate 1270 .
  • the second driving magnet 1252 may include a first magnet 1252a and a second magnet 1252b.
  • the first magnet 1252a and the second magnet 1252b may be disposed in the aforementioned groove of the moving assembly 1222 and may be positioned to correspond to the first coil 1251a and the second coil 1251b.
  • the base part 1260 may be positioned between the lens part 1220 and the image sensor IS.
  • a component such as a filter may be fixed to the base part 1260 .
  • the base part 1260 may be disposed to surround the image sensor described above. With this configuration, since the image sensor is freed from foreign substances and the like, the reliability of the device can be improved. However, in some drawings below, it is removed and described.
  • the second camera actuator 1200 may be a zoom actuator or an auto focus (AF) actuator.
  • the second camera actuator may support one or a plurality of lenses and perform an auto focusing function or a zoom function by moving the lens according to a control signal from a predetermined control unit.
  • the second camera actuator may be a fixed zoom or continuous zoom.
  • the second camera actuator may provide movement of the lens group 1221 .
  • the second camera actuator may include a plurality of lens assemblies.
  • the second camera actuator may include at least one of a third lens assembly (not shown) and a guide pin (not shown) in addition to the first lens assembly 1222a and the second lens assembly 1222b.
  • the above information may be applied.
  • the second camera actuator may perform a high-magnification zooming function through the second driving unit.
  • the first lens assembly 1222a and the second lens assembly 1222b may be moving lenses that move through a second driving unit and a guide pin (not shown), and the third lens assembly ( Not shown) may be a fixed lens, but is not limited thereto.
  • the third lens assembly may perform the function of a focator that forms light at a specific location
  • the first lens assembly is a third lens assembly (not shown) that is a concentrator. It can perform the function of a variator that re-images the image formed in another place.
  • a change in magnification may be large because the distance or image distance to the subject is greatly changed, and the first lens assembly, which is a variable magnification, may play an important role in changing the focal length or magnification of the optical system.
  • the image formed by the first lens assembly which is a variable magnifier, may be slightly different depending on the location.
  • the second lens assembly may perform a position compensation function for an image formed by the variable magnifier.
  • the second lens assembly may perform a compensator function to accurately form an image formed by the second lens assembly 1222b, which is a variable magnification, at an actual image sensor position.
  • the configuration of this embodiment will be described with reference to the following drawings.
  • the image sensor may be located inside or outside the second camera actuator. As an embodiment, as shown, the image sensor may be located outside the second camera actuator. For example, the image sensor may be located on a circuit board. The image sensor may receive light and convert the received light into an electrical signal. Also, the image sensor may include a plurality of pixels in an array form. And the image sensor may be located on the optical axis.
  • the second substrate unit 1270 may contact the side of the second housing.
  • the second substrate unit 1270 is located on the outer surface (first side) and the outer surface (second side) of the second side of the second housing, in particular, the first side of the 2-2 housing, It may contact the first side and the second side.
  • electromagnetic force DEM1 between the first magnet 1252a and the first coil 1251a is generated so that the first lens assembly 1222a is horizontal to the optical axis, that is, It can move along the rail located on the inner surface of the housing through the first ball (B1) in the third direction (Z-axis direction) or in a direction opposite to the third direction.
  • the first magnet 1252a may be provided on the first lens assembly 1222a by, for example, a vertical magnetization method.
  • both the N pole and the S pole of the first magnet 1252a may be positioned to face the first coil 1251a. Accordingly, the N pole and the S pole of the first magnet 1252a may be respectively disposed to correspond to regions in which current flows in the X-axis direction or the opposite direction in the first coil 1251a.
  • magnetic force is applied from the N pole of the first magnet 1252a in the opposite direction to the second direction (Y axis direction), and in the first direction (X axis direction) from the first coil 1251a corresponding to the N pole
  • the electromagnetic force DEM1 may act in the third direction (Z-axis direction) according to the interaction of the electromagnetic force (eg, Fleming's left hand rule).
  • magnetic force is applied in the second direction (Y-axis direction) from the S pole of the first magnet 1252a, and in the first direction (X-axis direction) from the first coil 1251a corresponding to the S pole
  • the electromagnetic force DEM1 may act in the Z-axis direction according to the interaction of the electromagnetic force.
  • the first lens assembly 1222a on which the first magnet 1252a is disposed is Z by the electromagnetic force DEM1 according to the current direction. It can move in the opposite direction to the axial direction. That is, the second driving magnet may move in an opposite direction to the electromagnetic force applied to the second driving coil. In addition, the direction of the electromagnetic force may be changed according to the current of the coil and the magnetic force of the magnet.
  • the first lens assembly 1222a may move along the rail located on the inner surface of the housing through the first ball B1 in a third direction or a direction (both directions) parallel to the optical axis direction.
  • the electromagnetic force DEM1 may be controlled in proportion to the current DE1 applied to the first coil 1251a.
  • the first lens assembly 1222a or the second lens assembly 1222b may include a first recess RS1 in which the first ball B1 is seated. Also, the first lens assembly 1222a or the second lens assembly 1222b may include a second recess RS2 in which the second ball B2 is seated.
  • the length of the first recess RS1 may be preset in the optical axis direction (Z-axis direction). Also, the length of the second recess RS2 may be preset in the optical axis direction (Z axis direction). Accordingly, the moving distance of the first ball B1 and the second ball B2 in the optical axis direction within each recess may be adjusted.
  • the first recess RS1 or the second recess Rs2 may be a stopper for the first and second balls B1 and B2.
  • the second magnet 1252b may be provided on the second lens assembly 1222b by, for example, a vertical magnetization method.
  • both the N pole and the S pole of the second magnet 1252b may be positioned to face the second coil 1251b. Accordingly, the N pole and the S pole of the second magnet 1252b may be respectively disposed to correspond to a region in which current flows in the X-axis direction or the opposite direction in the second coil 1251b.
  • magnetic force DM2 is applied from the N pole of the second magnet 1252b in the second direction (Y-axis direction), and in the second coil 1251b corresponding to the N-pole in the first direction (X-axis direction)
  • the electromagnetic force DEM2 may act.
  • magnetic force is applied in the opposite direction to the second direction (Y-axis direction) from the S pole of the second magnet 1252b, and the second coil 1251b corresponding to the S pole in the first direction (X-axis direction ), when the current DE2 flows in the opposite direction, the electromagnetic force DEM2 may act in the Z-axis direction according to the interaction of the electromagnetic force.
  • the second lens assembly 1222b on which the second magnet 1252b is disposed is Z by the electromagnetic force DEM2 in the current direction. It can move in the opposite direction to the axial direction.
  • the direction of the electromagnetic force may be changed according to the current of the coil and the magnetic force of the magnet.
  • the second lens assembly 1222b may move along the rail located on the inner surface of the second housing through the second ball B2 in a direction parallel to the third direction (Z-axis direction).
  • the electromagnetic force DEM2 may be controlled in proportion to the current DE2 applied to the second coil 1251b.
  • the second driver moves the first lens assembly 1222a and the second lens assembly 1222b of the lens unit 1220 along a third direction (Z-axis direction).
  • driving force F3A, F3B, F4A, F4B
  • the second driving unit may include the second driving coil 1251 and the second driving magnet 1252 .
  • the lens unit 1220 may move along the third direction (Z-axis direction) by the electromagnetic force formed between the second driving coil 1251 and the second driving magnet 1252 .
  • the first coil 1251a and the second coil 1251b may be disposed in holes formed in the side portions (eg, the first side portion and the second side portion) of the second housing 1230 .
  • the second coil 1251b may be electrically connected to the first substrate 1271 .
  • the first coil 1251a may be electrically connected to the second substrate 1272 .
  • the first coil 1251a and the second coil 1251b may receive a driving signal (eg, current) from a driving driver on the circuit board of the circuit board 1300 through the second substrate 1270 .
  • the first lens assembly 1222a on which the first magnet 1252a is seated moves in the third direction (Z-axis direction) by the electromagnetic force (F3A, F3B) between the first coil 1251a and the first magnet 1252a.
  • the electromagnetic force (F3A, F3B) between the first coil 1251a and the first magnet 1252a can move along
  • the second lens group 1221b seated on the first lens assembly 1222a may also move along the third direction.
  • the second lens assembly 1222b on which the second magnet 1252b is seated moves in the third direction (Z-axis direction) by the electromagnetic force (F4A, F4B) between the second coil 1251b and the second magnet 1252b. can move along.
  • the third lens group 1221c seated on the second lens assembly 1222b may also move along the third direction.
  • the focal length or magnification of the optical system may be changed by moving the second lens group 1221b and the third lens group 1221c.
  • the magnification may be changed by moving the second lens group 1221b.
  • zooming may be performed.
  • the focus may be adjusted by moving the third lens group 1221c.
  • auto focusing may be achieved.
  • the second camera actuator may be a fixed zoom or continuous zoom.
  • FIG. 14 is a schematic diagram showing a circuit board according to an embodiment.
  • the circuit board 1300 may include a first circuit board part 1310 and a second circuit board part 1320.
  • the first circuit board unit 1310 is located below the base and can be coupled to the base.
  • an image sensor IS may be disposed on the first circuit board unit 1310 .
  • the first circuit board unit 1310 and the image sensor Is may be electrically connected.
  • the second circuit board unit 1320 may be located on the side of the base.
  • the second circuit board unit 1320 may be located on the first side of the base. Accordingly, the second circuit board unit 1320 is located adjacent to the first coil located adjacent to the first side, so that electrical connection can be easily made.
  • the circuit board 1300 may further include a fixed board (not shown) located on a side surface.
  • a fixed board not shown located on a side surface.
  • the second circuit board part 1320 of the circuit board 1300 may be located on the side of the second driving part 1250 .
  • the circuit board 1300 may be electrically connected to the first driving unit and the second driving unit.
  • electrical connection may be made by SMT. However, it is not limited to this method.
  • the circuit board 1300 may include a circuit board having wiring patterns that can be electrically connected, such as a rigid printed circuit board (Rigid PCB), a flexible printed circuit board (Flexible PCB), and a rigid flexible printed circuit board (Rigid Flexible PCB).
  • a rigid printed circuit board Rigid PCB
  • a flexible printed circuit board Flexible PCB
  • Rigid Flexible PCB rigid flexible printed circuit board
  • the circuit board 1300 may be electrically connected to another camera module in the terminal or a processor of the terminal.
  • the above-described camera actuator and a camera device including the camera actuator may transmit and receive various signals within the terminal.
  • FIG. 15A is a perspective view of a first housing member according to an embodiment
  • FIG. 15B is another perspective view of the first housing member according to an embodiment.
  • the second housing includes the first housing member 1231 and the second housing member 1232 (see FIG. 9). And, the first housing member 1231 is located at the front end of the second housing member. Alternatively, the first housing member 1231 may be located on the side of the first camera actuator with respect to the second housing member. Alternatively, the second housing member may be positioned adjacent to the image sensor relative to the first housing member 1231 .
  • the first housing member 1231 may include a first member hole 1231a.
  • the aforementioned first lens group 1221a (see FIG. 9) may be inserted into the first member hole 1231a.
  • first housing member 1231 may include an upper surface 1231a and a lower surface 1231b.
  • the upper surface 1231a of the first housing member 1231 may face the first camera actuator side.
  • the lower surface 1231b of the first housing member 1231 may face the image sensor side.
  • a top surface 1231a of the first housing member 1231 may have a shape coupled to the first camera actuator at the front end.
  • the shape may include various structures such as protrusions and grooves.
  • a member for coupling with the second housing member may be formed on the lower surface 1231b of the first housing member 1231 .
  • the lower surface 1231b of the first housing member 1231 may include a member groove 1231bh.
  • a plurality of member grooves 1231bh may be disposed along the edge of the lower surface 1231b of the first housing member 1231 .
  • the plurality of member grooves 1231bh may be spaced apart from each other in the second or horizontal direction.
  • FIG. 16A is a perspective view of a second housing member according to an embodiment
  • FIG. 16B is an exploded perspective view of the second housing member according to an embodiment
  • FIG. 16C is a perspective view of a first sub-housing of the second housing member according to an embodiment
  • 16D is a perspective view of the second sub-housing of the second housing member according to the embodiment
  • FIG. 16E is a side view of the second sub-housing of the second housing member according to the embodiment.
  • the first lens assembly and the second lens assembly moving along the optical axis direction may be disposed in the second housing member 1232 as described above.
  • the second housing member 1232 may include a second member hole 1232h.
  • a first lens assembly and a second lens assembly may be positioned in the second member hole 1232h.
  • the second housing member 1232 may include a first sub-housing 1232a and a second sub-housing 1232b.
  • the first sub-housing 1232a may accommodate the first lens assembly or may be combined with the first lens assembly.
  • the second sub-housing 1232b may accommodate the second lens assembly or may be combined with the second lens assembly.
  • the first sub-housing 1232a and the second sub-housing 1232b may be coupled to each other.
  • the first sub-housing 1232a and the second sub-housing 1232b may be disposed side by side along the second or horizontal direction.
  • the first sub-housing 1232a and the second sub-housing 1232b may be spaced apart from each other in some areas in the horizontal direction.
  • the first sub-housing 1232a may include a first sub-protrusion 1232ap protruding toward the first camera actuator.
  • the second sub-housing 1232b may include a second sub-protrusion 1232bp protruding toward the first camera actuator.
  • the first sub-protrusion 1232ap and the second sub-protrusion 1232bp may be accommodated in the above-described member groove of the first housing member. Accordingly, the first housing member and the second housing member 1232 may be coupled to each other. Furthermore, a bonding member or the like may be applied to the member groove of the first housing member. Accordingly, bonding force between the first housing member and the second housing member may be improved.
  • first sub-housing 1232a and the second sub-housing 1232b may include a coupling protrusion extending in a horizontal direction.
  • One of the first sub-housing 1232a and the second sub-housing 1232b may include a coupling groove in which a coupling protrusion is received.
  • the first sub-housing 1232a includes the coupling protrusions UP and BP
  • the second sub-housing 1232b includes the coupling grooves UH and BH.
  • At least one of the first sub-housing 1232a and the second sub-housing 1232b may include a surface 1232af facing the other or a junction groove 1232afh disposed on an outer surface.
  • the first sub-housing 1232a may include a surface facing the second sub-housing 1232b or an inner surface 1232af.
  • the second sub-housing 1232b may include a surface facing the first sub-housing 1232a or an inner surface 1232bf.
  • the inner surface 1232af of the first sub-housing 1232a may face the inner surface 1232bf of the second sub-housing 1232b.
  • a coupling protrusion may extend toward the second direction or toward the second sub-housing 1232b on the inner surface 1232af of the first sub-housing 1232a. That is, the first sub-housing 1232a may include coupling protrusions UP and BP extending in the second direction.
  • a junction groove 1232afg may be disposed on an inner surface 1232af of the first sub-housing 1232a.
  • the junction groove 1232afh may be disposed adjacent to the coupling protrusions UP and BP.
  • the bonding member can be easily moved to the bonding groove 1232afh and the coupling protrusions UP and BP.
  • the bonding member may not be excessively applied to the coupling protrusions UP and BP.
  • the bonding groove 1232afh may have a protrusion or a groove added so that a bonding member such as epoxy may not overflow.
  • the coupling protrusions UP and BP may include an upper coupling protrusion UP and a lower coupling protrusion BP. There may be a plurality of upper coupling protrusions UP and lower coupling protrusions PB.
  • the plurality of upper coupling protrusions UP may be spaced apart from each other in the optical axis direction.
  • the plurality of upper coupling protrusions UP may overlap each other at least partially in the optical axis direction (Z-axis direction).
  • the number of lower coupling protrusions BP may be plural and may be spaced apart from each other in the optical axis direction.
  • the plurality of lower coupling protrusions BP may at least partially overlap each other in the optical axis direction (Z-axis direction).
  • the upper coupling protrusion UP may include a first upper protrusion UP1 and a second upper protrusion UP2 spaced apart in the optical axis direction.
  • the first upper protrusion UP1 and the second upper protrusion UP2 may at least partially overlap each other in the optical axis direction (Z-axis direction).
  • portions of the first upper projection UP1 and the second upper projection UP2 may be offset from each other (do not overlap) in the optical axis direction (Z-axis direction). Accordingly, coupling between the first sub-housing 1232a and the second sub-housing 1232b can be easily performed.
  • the length L1 of the first upper projection UP1 in the second direction may be the same as the length K2 of the second upper projection UP2 in the second direction (Y-axis direction).
  • the length L1 of the first upper projection UP1 in the second direction (Y-axis direction) is equal to the length L2 of the second upper projection UP2 in the second direction (Y-axis direction).
  • the bonding force may be adjusted.
  • the lower coupling protrusion BP may include a first lower protrusion BP1 and a second lower protrusion BP2 spaced apart in the optical axis direction.
  • the first lower protrusion BP1 and the second lower protrusion BP2 may at least partially overlap each other in the optical axis direction (Z-axis direction).
  • portions of the first lower protrusion BP1 and the second lower protrusion BP2 may be offset from each other in the optical axis direction (Z-axis direction).
  • the length of the first lower protrusion BP1 in the second direction may be the same as the length of the second lower protrusion BP2 in the second direction.
  • a coupling groove corresponding to the coupling protrusion may be located on the inner surface 1232bf of the second sub-housing 1232b.
  • the coupling grooves UH and BH may include an upper groove UH and a lower groove BH.
  • the upper groove UH may include a first upper groove UH1 and a second upper groove UH2 spaced apart along the optical axis direction.
  • the lower groove (BH) may be spaced apart from the upper groove (UH) in a vertical direction (X-axis direction).
  • the lower groove (BH) may overlap with the upper groove (UH) in a vertical direction.
  • the lower groove BH may include a first lower groove BH1 and a second lower groove BH2 spaced apart along the optical axis direction.
  • the first upper groove UH1 and the second upper groove UH2 may overlap at least partially along the optical axis direction. In addition, some areas of the first upper groove UH1 and the second upper groove UH2 may be offset from each other along the optical axis direction.
  • the first upper groove UH1 may be positioned to correspond to the first upper protrusion UP1. That is, the first upper groove UH1 may be positioned to face the first upper projection UP1. Furthermore, the first upper protrusion UP1 may be inserted into the first upper groove UH1.
  • the second upper groove UH2 may be positioned to correspond to the second upper protrusion UP2. That is, the second upper groove UH2 may face the second upper protrusion UP2. Furthermore, the second upper protrusion UP2 may be inserted into the second upper groove UH2.
  • the first lower groove BH1 may be positioned to correspond to the first lower protrusion BP1. That is, the first lower groove BH1 may be positioned to face the first lower protrusion BP1. Furthermore, the first lower protrusion BP1 may be inserted into the first lower groove BH1.
  • the second lower groove BH2 may be positioned to correspond to the second lower protrusion BP2. That is, the second lower groove BH2 may be positioned to face the second lower protrusion BP2. Furthermore, the second lower protrusion BP2 may be inserted into the second lower groove BH2.
  • top surfaces of the coupling protrusions UP and BP and the bottom surfaces of the coupling grooves UH and BH corresponding to the coupling protrusions may be spaced apart from each other in a horizontal direction (Y-axis direction). That is, a predetermined space or gap may exist between the top surfaces of the coupling protrusions UP and BP and the bottom surfaces of the coupling grooves UH and BH corresponding to the coupling protrusions. A detailed description of this will be given later.
  • FIG. 17 is a view cut along EE' in FIG. 11
  • FIG. 18 is a view taken along FF' in FIG. 11
  • FIG. 19 is a view taken along GG' in FIG. 11
  • FIG. 21 is a view cut at line II' in FIG. 11
  • FIG. 22 is a view cut at line JJ' in FIG.
  • the first sub-protrusion 1232ap and the second sub-protrusion 1232bp may be accommodated in the member groove of the first housing member 1231 .
  • at least one of the first sub-protrusion 1232ap and the second sub-protrusion 1232bp may be spaced apart from the bottom surface of the member groove of the first housing member 1231 by a predetermined distance in the optical axis direction (Z-axis direction).
  • Z-axis direction optical axis direction
  • there are a plurality of first sub-protrusions 1232ap there are a plurality of first sub-protrusions 1232ap, and at least one of the plurality may be spaced apart from a bottom surface of a corresponding member groove by a predetermined distance in an optical axis direction (GP1).
  • first sub-housing and the second sub-housing can be easily tilted with respect to the first housing member.
  • upper surfaces of the coupling protrusions UP and BP and bottom surfaces of the coupling grooves UH and BH corresponding to the coupling protrusions may be spaced apart from each other in a horizontal direction (Y-axis direction).
  • the coupling protrusions UP and BP and the coupling grooves Uh and BG are in at least one direction of a first direction (X-axis direction), a second direction (Y-axis direction), and a third direction (Z-axis direction) may be separated from each other.
  • a predetermined space or gap exists between the top surfaces of the coupling protrusions UP and BP and the bottom surfaces of the coupling grooves UH and BH corresponding to the coupling protrusions. That is, the maximum width of the coupling protrusions UP and BP may be smaller than the minimum width of the coupling grooves UH and BH. In other words, the diameter (size) of the coupling protrusions UP and BP may be smaller than the diameter (size) of the inner surfaces of the coupling grooves UH and BH. In addition, outer surfaces of the coupling protrusions UP and BP and inner surfaces of the coupling grooves UH and BH may be spaced apart from each other.
  • the first upper protrusion UP1 may be accommodated in the first upper groove UH1.
  • the top surface UP1H of the first upper protrusion UP1 may be spaced apart from the front surface UH1L of the first upper groove UH1 in a horizontal direction (Y-axis direction).
  • a gap gap1 may exist between the top surface UP1H of the first upper protrusion UP1 and the front surface UH1L of the first upper groove UH1.
  • the maximum width of the first upper protrusion UP1 may be smaller than the minimum width of the first upper groove UH1.
  • the outer surface of the first upper protrusion UP1 and the inner surface of the first upper groove UH1 may be spaced apart from each other by a predetermined distance W1.
  • the predetermined distance W1 may be 0.4 mm to 0.6 mm. If it is less than 0.4 mm, it may be difficult to tilt the first sub-housing or the second sub-housing, and if it is greater than 0.6 mm, the coupling force between the first sub-housing and the second sub-housing may decrease.
  • the second upper protrusion UP2 may be accommodated in the second upper groove UH2.
  • the top surface UP2H of the second upper protrusion UP2 may be spaced apart from the front surface UH2L of the second upper groove UH2 in a horizontal direction (Y-axis direction).
  • a gap gap2 may exist between the upper surface UP2H of the second upper protrusion UP2 and the front surface UH2L of the second upper groove UH2.
  • the maximum width of the second upper protrusion UP2 may be smaller than the minimum width of the second upper groove UH2. Accordingly, the outer surface of the second upper protrusion UP2 and the inner surface of the second upper groove UH2 may be spaced apart from each other by a predetermined distance W2. At this time, the predetermined distance W2 may be 0.4 mm to 0.6 mm. If it is less than 0.4 mm, it may be difficult to tilt the first sub-housing or the second sub-housing, and if it is greater than 0.6 mm, the coupling force between the first sub-housing and the second sub-housing may decrease.
  • the first lower protrusion BP1 may be accommodated in the first lower groove BH1. Also, the top surface BP1H of the first lower protrusion BP1 may be spaced apart from the front surface BH1L of the first lower groove BH1 in a horizontal direction (Y-axis direction). Accordingly, a gap gap3 may exist between the top surface BP1H of the first lower protrusion BP1 and the front surface BH1L of the first lower groove BH1.
  • the maximum width of the first lower protrusion BP1 may be smaller than the minimum width of the first lower groove BH1. Accordingly, the outer surface of the first lower protrusion BP1 and the inner surface of the first lower groove BH1 may be spaced apart from each other by a predetermined distance W3. At this time, the predetermined distance W3 may be 0.4 mm to 0.6 mm. If it is less than 0.4 mm, it may be difficult to tilt the first sub-housing or the second sub-housing, and if it is greater than 0.6 mm, the coupling force between the first sub-housing and the second sub-housing may decrease.
  • the second lower protrusion BP2 may be accommodated in the second lower groove BH2.
  • the top surface BP2H of the second lower protrusion BP2 may be spaced apart from the front surface BH2L of the second lower groove BH2 in a horizontal direction (Y-axis direction).
  • a gap gap3 may exist between the top surface BP2H of the second lower protrusion BP2 and the front surface BH2L of the second lower groove BH2.
  • the maximum width of the second lower protrusion BP2 may be smaller than the minimum width of the second lower groove BH2. Accordingly, the outer surface of the second lower protrusion BP2 and the inner surface of the second lower groove BH2 may be spaced apart from each other by a predetermined distance W4. At this time, the predetermined distance W3 may be 0.4 mm to 0.6 mm. If it is less than 0.4 mm, it may be difficult to tilt the first sub-housing or the second sub-housing, and if it is greater than 0.6 mm, the coupling force between the first sub-housing and the second sub-housing may decrease.
  • the separation distance or gap in the second direction or horizontal direction between the upper surface of the coupling protrusion (UP, BP) and the lower surface of the coupling groove (UH, BH) corresponding to or receiving the coupling protrusion (UP, BP) is the same or may differ from each other.
  • the distance gap1 between the top surface UP1H of the first upper protrusion UP1 and the bottom surface UH1L of the first upper groove UH1 is the distance between the top surface UP2H of the second upper protrusion UP2 and the second upper surface UH1L. It may be different from the distance gap2 between the bottom surfaces UH2L of the grooves UH2.
  • the first sub-housing 1232a and the second sub-housing 1232a do not need to adjust the size of a moving member (eg, a ball) for moving the second lens group and the third lens group.
  • a moving member eg, a ball
  • Simply tilting 1232b relative to the optical axis direction can provide improved optical performance.
  • one of the second lens assembly 1222b and the third lens assembly 1222c may be tilted based on the first lens assembly 1222a. Also, at least two of the first lens assembly 1222a, the second lens assembly 1222b, and the third lens assembly 1222c may be spaced apart from each other.
  • the second magnet 1252b coupled to the second lens assembly 1222b may be positioned closer to the image sensor than the first magnet. That is, when the first lens assembly 1222a and the second lens assembly 1222b are moved to the maximum distance to the image sensor, the second magnet 1252b is located at the rear end of the first magnet, that is, adjacent to the image sensor. can Accordingly, the first lens assembly 1222a may have a greater moving distance along the optical axis than the second lens assembly 1222b.
  • first sub-housing 1232a and the first guide part G1 may be separated or integrally formed.
  • second sub-housing 1232b and the second guide part G2 may be separated or integrally formed as shown.
  • each of the first sub-housing 1232a and the second sub-housing 1232b may be tilted at a predetermined angle with respect to the optical axis. Accordingly, the first lens assembly and the second lens group coupled to the first sub-housing 1232a may be tilted or moved. Also, the second lens assembly and the third lens group coupled to the second sub-housing 1232b may be tilted or moved. With this configuration, the second lens group and the third lens group can be moved to a position that provides improved optical performance. Therefore, the lens driving device or camera actuator according to the present embodiment can provide easy assembly and improved optical performance.
  • FIG. 23 is a cross-sectional view of a second camera actuator according to an embodiment
  • FIG. 24 is a cross-sectional view of one aspect of the second camera actuator according to an embodiment
  • FIG. 25 is a cross-sectional view of another aspect of the second camera actuator according to an embodiment
  • 26 is a cross-sectional view of another aspect of the second camera actuator according to the embodiment.
  • the first sub-housing 1232a may include a surface facing the second sub-housing 1232b or an inner surface 1232af.
  • the second sub-housing 1232b may include a surface facing the first sub-housing 1232a or an inner surface 1232bf.
  • the inner surface 1232af of the first sub-housing 1232a and the inner surface 1232bf of the second sub-housing 1232b may be in contact with each other or separated from each other by a predetermined distance. That is, the first sub-housing 1232a and the second sub-housing 1232b may have a predetermined gap.
  • the first sub-housing 1232a and the second sub-housing 1232b may be coupled to each other at a position providing optimal optical performance (MTF) by tilting. Accordingly, the second camera actuator or lens driving device may provide improved optical performance.
  • the first housing member 1231, the first sub-housing 1232a, and the second sub-housing 1232a are firstly coupled using a coupling member or a bonding member (eg, epoxy).
  • Housings 1232b may be coupled to each other.
  • the first sub-housing and the second sub-housing may be coupled by secondly applying a bonding member to the coupling groove and the coupling protrusion.
  • the first sub-housing and the second sub-housing may be tilted with respect to the optical axis to be cured.
  • first sub-housing may be tilted.
  • both the first sub-housing and the second sub-housing may be tilted. Accordingly, when the first and second lens assemblies move along the optical axis through the ball, straightness may deteriorate depending on the flatness of the guide part or the recess. Furthermore, there is also a decrease in straightness due to assembly tolerance.
  • At least one of the first sub-housing 1232a and the second sub-housing 1232b is predetermined based on an optical axis (or an axis parallel to the optical axis direction) or the first housing member 1231. can be tilted at an angle of
  • the second sub-housing 1232b may not be parallel to the optical axis OX or the central axis bisecting the first housing member 1231 . That is, the inner surface 1232bf of the second sub-housing 1232b may be inclined by a predetermined angle ⁇ a with respect to the optical axis OX.
  • the first sub-housing 1232a may be parallel to the optical axis OX. That is, the inner surface 1232af of the first sub-housing 1232a may be positioned parallel to the optical axis OX.
  • the separation distance W5 between the inner surface 1232af of the first sub-housing 1232a and the inner surface 1232bf of the second sub-housing 1232b may increase or decrease along the optical axis direction.
  • the separation distance W5 may gradually increase along the optical axis direction.
  • the distance between the first sub-housing 1232a and the second sub-housing 1232b may increase or decrease along the optical axis direction.
  • the separation distance W5 between the inner surface 1232af of the first sub-housing 1232a and the inner surface 1232bf of the second sub-housing 1232b may be different at different points along the optical axis direction.
  • the separation distance in an area adjacent to the first camera actuator may be greater than the separation distance in an area adjacent to the image sensor.
  • the separation distance in an area adjacent to the first camera actuator may be smaller than the separation distance in an area adjacent to the image sensor.
  • the first sub-housing 1232a may not be parallel to the optical axis OX or the central axis bisecting the first housing member 1231 . That is, the inner surface 1232af of the first sub-housing 1232a may be inclined by a predetermined angle ⁇ b with respect to the optical axis OX.
  • the second sub-housing 1232b may be parallel to the optical axis OX. That is, the inner surface 1232bf of the second sub-housing 1232b may be positioned parallel to the optical axis OX.
  • the separation distance W6 between the inner surface 1232bf of the second sub-housing 1232b and the inner surface 1232af of the first sub-housing 1232a may also increase or decrease along the optical axis direction.
  • the separation distance W6 may gradually increase along the optical axis direction.
  • the distance between the first sub-housing 1232a and the second sub-housing 1232b may increase or decrease along the optical axis direction.
  • the first sub-housing 1232a may not be parallel to the optical axis OX or the central axis bisecting the first housing member 1231 . That is, the inner surface 1232af of the first sub-housing 1232a may be inclined by a predetermined angle ⁇ d with respect to the optical axis OX.
  • the second sub-housing 1232b may not be parallel to the optical axis OX or the central axis bisecting the first housing member 1231 . That is, the inner surface 1232bf of the second sub-housing 1232b may be inclined by a predetermined angle ⁇ c with respect to the optical axis OX.
  • the separation distance W7 between the inner surface 1232bf of the second sub-housing 1232b and the inner surface 1232af of the first sub-housing 1232a may increase or decrease along the optical axis direction.
  • the separation distance W7 may gradually increase along the optical axis direction.
  • the distance between the first sub-housing 1232a and the second sub-housing 1232b may increase or decrease along the optical axis direction.
  • FIG. 27 is a perspective view of a mobile terminal to which a camera device according to an embodiment is applied.
  • a mobile terminal 1500 may include a camera device 1000, a flash module 1530, and an autofocus device 1510 provided on the rear side.
  • the camera device 1000 may include an image capturing function and an auto focus function.
  • the camera device 1000 may include an auto focus function using an image.
  • the camera device 1000 processes an image frame of a still image or a moving image obtained by an image sensor in a photographing mode or a video call mode.
  • the processed image frame may be displayed on a predetermined display unit and may be stored in a memory.
  • a camera (not shown) may also be disposed on the front of the mobile terminal body.
  • the camera device 1000 may include a first camera device 1000 and a second camera device 1000, and the first camera device 1000A may implement OIS along with an AF or zoom function.
  • the flash module 1530 may include a light emitting element emitting light therein.
  • the flash module 1530 may be operated by camera operation of the mobile terminal or user's control.
  • the autofocus device 1510 may include one of the packages of a surface light emitting laser device as a light emitting unit.
  • the autofocus device 1510 may include an autofocus function using a laser.
  • the auto-focus device 1510 may be mainly used in a condition in which an auto-focus function using an image of the camera device 1000 is degraded, for example, a proximity of 10 m or less or a dark environment.
  • the autofocus device 1510 may include a light emitting unit including a vertical cavity surface emitting laser (VCSEL) semiconductor device and a light receiving unit such as a photodiode that converts light energy into electrical energy.
  • a light emitting unit including a vertical cavity surface emitting laser (VCSEL) semiconductor device and a light receiving unit such as a photodiode that converts light energy into electrical energy.
  • VCSEL vertical cavity surface emitting laser
  • FIG. 28 is a perspective view of a vehicle to which a camera device according to an embodiment is applied.
  • FIG. 28 is an external view of a vehicle equipped with a vehicle driving assistance device to which the camera device 1000 according to the embodiment is applied.
  • a vehicle 700 may include wheels 13FL and 13FR rotating by a power source and a predetermined sensor.
  • the sensor may be the camera sensor 2000, but is not limited thereto.
  • the camera 2000 may be a camera sensor to which the camera device 1000 according to the embodiment is applied.
  • the vehicle 700 of the embodiment may obtain image information through the camera sensor 2000 that captures a front image or a surrounding image, determines a lane unidentified situation using the image information, and generates a virtual lane when the lane is not identified. can do.
  • the camera sensor 2000 may obtain a front image by capturing the front of the vehicle 700, and a processor (not shown) may obtain image information by analyzing an object included in the front image.
  • the processor detects these objects. and can be included in the image information. At this time, the processor may acquire distance information with the object detected through the camera sensor 2000 to further supplement the image information.
  • the image information may be information about an object photographed in an image.
  • the camera sensor 2000 may include an image sensor and an image processing module.
  • the camera sensor 2000 may process a still image or moving image obtained by an image sensor (eg, CMOS or CCD).
  • an image sensor eg, CMOS or CCD
  • the image processing module may process a still image or moving image obtained through an image sensor, extract necessary information, and deliver the extracted information to a processor.
  • the camera sensor 2000 may include a stereo camera to improve object measurement accuracy and further secure information such as a distance between the vehicle 700 and the object, but is not limited thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lens Barrels (AREA)

Abstract

본 발명의 실시예는 제1 하우징 부재; 및 상기 제1 하우징 부재와 결합하는 제1 서브 하우징과 제2 서브 하우징을 포함하는 제2 하우징 부재;를 포함하는 하우징; 상기 제1 서브 하우징과 결합하고 광축 방향으로 이동하는 제1 렌즈 어셈블리 및 상기 제2 서브 하우징과 결합하고 상기 광축 방향으로 이동하는 제2 렌즈 어셈블리; 및 상기 제1 렌즈 어셈블리 및 상기 제2 렌즈 어셈블리를 이동시키는 구동부;를 포함하는 렌즈 구동장치를 개시한다.

Description

렌즈 구동장치 및 이를 포함하는 카메라 장치
본 발명은 렌즈 구동장치 및 이를 포함하는 카메라 장치에 관한 것이다.
카메라는 피사체를 사진이나 동영상으로 촬영하는 장치이며, 휴대용 디바이스, 드론, 차량 등에 장착되고 있다. 카메라 장치는 영상의 품질을 높이기 위하여 사용자의 움직임에 의한 이미지의 흔들림을 보정하거나 방지하는 영상 안정화(Image Stabilization, IS) 기능, 이미지 센서와 렌즈 사이의 간격을 자동 조절하여 렌즈의 초점거리를 정렬하는 오토 포커싱(Auto Focusing, AF) 기능, 줌 렌즈(zoom lens)를 통해 원거리의 피사체의 배율을 증가 또는 감소시켜 촬영하는 주밍(zooming) 기능을 가질 수 있다.
한편, 이미지 센서는 고화소로 갈수록 해상도가 높아져 화소(Pixel)의 크기가 작아지게 되는데, 화소가 작아질수록 동일한 시간 동안 받아들이는 빛의 양이 감소하게 된다. 따라서, 고화소 카메라일수록 어두운 환경에서 셔터속도가 느려지면서 나타나는 손 떨림에 의한 이미지의 흔들림 현상이 더욱 심하게 나타날 수 있다. 영상 안정화(IS) 기술 중 대표적인 것으로 빛의 경로를 변화시킴으로써 움직임을 보정하는 기술인 광학식 영상 안정화(optical image stabilizer, OIS) 기술이 있다.
일반적인 OIS 기술에 따르면, 자이로 센서(gyro sensor) 등을 통해 카메라의 움직임을 감지하고, 감지된 움직임을 바탕으로 렌즈를 틸팅 또는 이동시키거나 렌즈와 이미지 센서를 포함하는 카메라 장치를 틸팅 또는 이동시킬 수 있다. 렌즈 또는 렌즈와 이미지 센서를 포함하는 카메라 장치가 OIS를 위하여 틸팅 또는 이동할 경우, 렌즈 또는 카메라 장치 주변에 틸팅 또는 이동을 위한 공간이 추가적으로 확보될 필요가 있다.
한편, OIS를 위한 엑추에이터는 렌즈 주변에 배치될 수 있다. 이 때, OIS를 위한 엑추에이터는 광축 Z에 대하여 수직하는 두 축, 즉 X축 틸팅을 담당하는 엑추에이터와 Y축 틸팅을 담당하는 엑추에이터를 포함할 수 있다.
다만, 초슬림 및 초소형의 카메라 장치의 니즈에 따라 OIS를 위한 엑추에이터를 배치하기 위한 공간 상의 제약이 크며, 렌즈 또는 렌즈와 이미지 센서를 포함하는 카메라 장치 자체가 OIS를 위하여 틸팅 또는 이동할 수 있는 충분한 공간이 보장되기 어려울 수 있다. 또한, 고화소 카메라일수록 수광되는 빛의 양을 늘리기 위해 렌즈의 사이즈가 커지는 것이 바람직한데, OIS를 위한 엑추에이터가 차지하는 공간으로 인하여 렌즈의 사이즈를 키우는데 한계가 있을 수 있다.
또한, 카메라 장치 내에 주밍 기능, AF 기능 및 OIS 기능이 모두 포함되는 경우, OIS용 마그넷과 AF용 또는 Zoom용 마그넷이 서로 근접하게 배치되어 자계 간섭을 일으키는 문제도 있다.
또한, 이미지 센서 위에 렌즈를 정확하게 올리는 액티브 얼라인(active align)이 수행함에 있어서 공정이 복잡해지는 문제가 존재한다.
본 발명이 해결하고자 하는 기술적 과제는 하우징을 분할하고 돌기 및 홈을 통해 광축에 대해 용이하게 틸팅 가능한 렌즈 구동장치 및 카메라 장치를 제공하는 것 이다.
또한, 본 발명은 분할된 하우징의 결합 시, 틸팅이 용이하게 이루어짐에 따라 개선된 광학 성능을 제공하는 렌즈 구동장치 및 카메라 장치를 제공할 수 있다.
또한, 본 발명은 광축을 기준으로 분할된 하우징이 기울어진 렌즈 구동장치 및 카메라 장치를 제공할 수 있다.
또한, 본 발명은 초슬림, 초소형 및 고해상 카메라에 적용 가능한 렌즈 구동장치 및 카메라 장치를 제공하는 것이다.
실시예에서 해결하고자 하는 과제는 이에 한정되는 것은 아니며, 아래에서 설명하는 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 포함된다고 할 것이다.
본 발명의 실시예에 따른 렌즈 구동장치는 제1 하우징 부재; 및 상기 제1 하우징 부재와 결합하는 제1 서브 하우징과 제2 서브 하우징을 포함하는 제2 하우징 부재;를 포함하는 하우징; 상기 제1 서브 하우징과 결합하고 광축 방향으로 이동하는 제1 렌즈 어셈블리 및 상기 제2 서브 하우징과 결합하고 상기 광축 방향으로 이동하는 제2 렌즈 어셈블리; 및 상기 제1 렌즈 어셈블리 및 상기 제2 렌즈 어셈블리를 이동시키는 구동부;를 포함한다.
상기 제1 서브 하우징 및 상기 제2 서브 하우징 중 적어도 하나는 상기 광축 방향 또는 상기 제1 하우징 부재를 기준으로 소정의 각도로 기울어질 수 있다.
상기 제1 서브 하우징과 상기 제2 서브 하우징 사이의 간격은 상기 광축 방향을 따라 증가 또는 감소할 수 있다.
상기 제1 서브 하우징 및 상기 제2 서브 하우징 중 어느 하나는 수평 방향으로 연장된 결합 돌기;를 포함하고, 다른 하나는 상기 결합 돌기가 수용되는 결합홈;을 포함하고, 상기 결합 돌기의 최대폭은 상기 결합홈의 최소폭보다 작을 수 있다.
상기 결합 돌기의 외측면과 상기 결합홈의 내측면은 서로 이격될 수 있다.
상기 결합 돌기는 상부 결합 돌기 및 하부 결합 돌기를 포함하고, 상기 상부 결합 돌기는 복수 개이고 서로 상기 광축 방향으로 적어도 일부 중첩될 수 있다.
상기 상부 결합 돌기의 상면과 상기 상부 결합 돌기에 대응하는 결합홈의 저면은 상기 수평 방향으로 서로 이격될 수 있다.
상기 상부 결합 돌기는 광축 방향으로 이격된 제1 상부 돌기와 제2 상부 돌기를 포함하고, 상기 제1 상부 돌기의 길이는 상기 제2 상부 돌기의 길이와 동일할 수 있다.
상기 제1 상부 돌기의 상면과 상기 제1 상부 돌기에 대응하는 결합홈의 저면 간의 거리는 상기 제2 상부 돌기의 상면과 상기 제2 상부 돌기에 대응하는 결합홈의 저면 간의 거리와 상이할 수 있다.
상기 제1 서브 하우징 및 상기 제2 서브 하우징 중 적어도 어느 하나는 다른 하나와 마주하는 면 또는 내측면에 배치된 접합홈을 포함할 수 있다.
실시예에 따른 본 발명은 하우징을 분할하고 돌기 및 홈을 통해 광축에 대해 용이하게 틸팅 가능한 렌즈 구동장치 및 카메라 장치를 구현한다.
또한, 본 발명은 분할된 하우징의 결합 시, 틸팅이 용이하게 이루어짐에 따라 개선된 광학 성능을 제공하는 렌즈 구동장치 및 카메라 장치를 구현할 수 있다.
즉, 본 발명은 제1 렌즈 어셈블리를 기준으로 제2 렌즈 어셈블리 및 제3 렌즈 어셈블리 중 어느 하나가 틸팅될 수 있고, 제1 렌즈 어셈블리, 제2 렌즈 어셈블리 및 제3 렌즈 어셈블리 중 적어도 둘은 서로 이격될 수 있다.
또한, 본 발명은 광축을 기준으로 분할된 하우징이 기울어진 렌즈 구동장치 및 카메라 장치를 구현할 수 있다.
또한, 본 발명은 초슬림, 초소형 및 고해상 카메라에 적용 가능한 렌즈 구동장치 및 카메라 장치를 구현할 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 실시예에 따른 카메라 장치의 사시도이고,
도 2는 실시예에 따른 카메라 장치의 분해 사시도이고,
도 3은 도 1에서 AA'로 절단된 단면도이고,
도 4는 실시예에 따른 제1 카메라 엑추에이터의 분해 사시도이고,
도 5는 쉴드 캔 및 기판이 제거된 실시예에 따른 제1 카메라 엑추에이터의 사시도이고,
도 6a는 도 5에서 BB'로 절단된 단면도이고,
도 6b는 도 5에 CC'로 절단된 단면도이고,
도 7a은 다른 실시예에 따른 제1 카메라 엑추에이터의 분해 사시도이고,
도 7b는 다른 실시예에 따른 제1 카메라 엑추에이터의 일 단면도이고,
도 7c는 다른 실시예에 따른 제1 카메라 엑추에이터의 다른 단면도이고,
도 8은 실시예에 따른 제2 카메라 엑추에이터의 사시도이고,
도 9는 실시예에 따른 제2 카메라 엑추에이터의 분해 사시도이고,
도 10은 도 8에서 DD'로 절단된 단면도이고,
도 11 및 도 12는 실시예에 따른 렌즈 어셈블리의 각 구동을 설명하는 도면이고,
도 13은 실시예에 따른 제2 카메라 엑추에이터의 구동을 설명하는 도면이고,
도 14는 실시예에 따른 회로 기판을 도시한 개략도이고,
도 15a는 실시예에 따른 제1 하우징 부재의 일 사시도이고,
도 15b는 실시예에 따른 제1 하우징 부재의 다른 사시도이고,
도 16a는 실시예에 따른 제2 하우징 부재의 사시도이고,
도 16b는 실시예에 따른 제2 하우징 부재의 분해 사시도이고,
도 16c는 실시예에 따른 제2 하우징 부재의 제1 서브 하우징의 사시도이고,
도 16d는 실시예에 따른 제2 하우징 부재의 제2 서브 하우징의 사시도이고,
도 16e는 실시예에 따른 제2 하우징 부재의 제2 서브 하우징의 측면도이고,
도 17은 도 11에서 EE'로 절단하여 바라본 도면이고,
도 18은 도 11에서 FF'로 절단하여 바라본 도면이고,
도 19은 도 11에서 GG'로 절단하여 바라본 도면이고,
도 20은 도 11에서 HH'로 절단하여 바라본 도면이고,
도 21은 도 11에서 II'로 절단하여 바라본 도면이고,
도 22은 도 11에서 JJ'로 절단하여 바라본 도면이고,
도 23은 실시예에 따른 제2 카메라 엑추에이터의 단면도이고,
도 24는 실시예에 따른 제2 카메라 엑추에이터의 일 양태에 대한 단면도이고,
도 25는 실시예에 따른 제2 카메라 엑추에이터의 다른 양태에 대한 단면도이고,
도 26는 실시예에 따른 제2 카메라 엑추에이터의 또 다른 양태에 대한 단면도이고,
도 27는 실시예에 따른 카메라 장치가 적용된 이동 단말기의 사시도이고,
도 28은 실시예에 따른 카메라 장치가 적용된 차량의 사시도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한
실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되지는 않는다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 실시예에 따른 카메라 장치의 사시도이고, 도 2는 실시예에 따른 카메라 장치의 분해 사시도이고, 도 3은 도 1에서 AA'로 절단된 단면도이다.
도 1 및 도 2를 참조하면, 실시예에 따른 카메라 장치(1000)는 커버(CV), 제1 카메라 엑추에이터(1100), 제2 카메라 엑추에이터(1200), 및 회로 기판(1300)으로 이루어질 수 있다. 여기서, 제1 카메라 엑추에이터(1100)는 제1 엑추에이터로, 제2 카메라 엑추에이터(1200)는 제2 엑추에이터로 혼용될 수 있다. 또한, 제2 카메라 엑추에이터(1200)는 '렌즈 구동장치', '렌즈 구동유닛', '렌즈 구동모듈', '렌즈 이송장치', '렌즈 이동장치' 등과 혼용될 수 있다. 나아가, 카메라 장치(1000)도 '카메라 모듈', '카메라 유닛', '촬상 장치', '촬상 모듈', '촬상 유닛'등으로 불릴 수 있다.
커버(CV)는 제1 카메라 엑추에이터(1100) 및 제2 카메라 엑추에이터(1200)를 덮을 수 있다. 커버(CV)에 의해 제1 카메라 엑추에이터(1100)와 제2 카메라 엑추에이터(1200) 간의 결합력이 개선될 수 있다.
나아가, 커버(CV)는 전자파 차단을 수행하는 재질로 이루어질 수 있다. 이에, 커버(CV) 내의 제1 카메라 엑추에이터(1100)와 제2 카메라 엑추에이터(1200)를 용이하게 보호할 수 있다.
그리고 제1 카메라 엑추에이터(1100)는 OIS(Optical Image Stabilizer) 엑추에이터일 수 있다.
제1 카메라 엑추에이터(1100)는 소정의 경통(미도시)에 배치된 고정 초점거리 렌즈(fixed focal length les)를 포함할 수 있다. 고정 초점거리 렌즈(fixed focal length les)는“단일 초점거리 렌즈” 또는 “단(單) 렌즈”로 칭해질 수도 있다.
제1 카메라 엑추에이터(1100)는 광의 경로를 변경할 수 있다. 실시예로, 제1 카메라 엑추에이터(1100)는 내부의 광학 부재(예컨대, 미러 또는 프리즘)를 통해 광 경로를 수직으로 변경할 수 있다. 이러한 구성에 의하여, 이동 단말기의 두께가 감소하더라도 광 경로의 변경을 통해 이동 단말기의 두께보다 큰 렌즈 구성이 이동 단말기 내에 배치되어 배율, 오토 포커싱(AF) 및 OIS 기능이 수행될 수 있다.
제2 카메라 엑추에이터(1200)는 제1 카메라 엑추에이터(1100) 후단에 배치될 수 있다. 제2 카메라 엑추에이터(1200)는 제1 카메라 엑추에이터(1100)와 결합할 수 있다. 그리고 상호 간의 결합은 다양한 방식에 의해 이루어질 수 있다.
또한, 제2 카메라 엑추에이터(1200)는 줌(Zoom) 엑추에이터 또는 AF(Auto Focus) 엑추에이터일 수 있다. 예를 들어, 제2 카메라 엑추에이터(1200)는 하나 또는 복수의 렌즈를 지지하며 소정의 제어부의 제어신호에 따라 렌즈를 움직여 오토 포커싱 기능 또는 줌 기능을 수행할 수 있다.
회로 기판(1300)은 제2 카메라 엑추에이터(1200) 후단에 배치될 수 있다. 회로 기판(1300)은 제2 카메라 엑추에이터(1200) 및 제1 카메라 엑추에이터(1100)와 전기적으로 연결될 수 있다. 또한, 회로 기판(1300)은 복수 개일 수 있다.
실시예에 따른 카메라 장치는 단일 또는 복수의 카메라 장치로 이루어질 수도 있다. 예컨대, 복수의 카메라 장치는 제1 카메라 장치와 제2 카메라 장치를 포함할 수 있다.
그리고 제1 카메라 장치는 단일 또는 복수의 엑추에이터를 포함할 수 있다. 예를 들어, 제1 카메라 장치는 제1 카메라 엑추에이터(1100)와 제2 카메라 엑추에이터(1200)를 포함할 수 있다.
그리고 제2 카메라 장치는 소정의 하우징(미도시)에 배치되고, 렌즈부를 구동할 수 있는 엑추에이터(미도시)를 포함할 수 있다. 이를 기준으로 설명하나, 엑추에이터에 렌즈부가 포함되는 개념으로 설명할 수도 있다. 그리고 엑추에이터는 보이스 코일 모터, 마이크로 엑추에이터, 실리콘 엑추에이터 등일 수 있고, 정전방식, 써멀 방식, 바이 모프 방식, 정전기력 방식 등 여러 가지로 응용될 수 있으며 이에 한정되는 것은 아니다. 또한, 본 명세서에서 카메라 엑추에이터는 엑추에이터 등으로 언급할 수 있다. 또한, 복수 개의 카메라 장치로 이루어진 카메라 장치는 이동 단말기 등 다양한 전자 기기 내에 실장될 수 있다.
도 3을 참조하면, 실시예에 따른 카메라 장치는 OIS 기능을 하는 제1 카메라 엑추에이터(1100) 및 주밍(zooming) 기능 및 AF 기능을 하는 제2 카메라 엑추에이터(1200)를 포함할 수 있다.
광은 제1 카메라 엑추에이터(1100)의 상면에 위치한 개구 영역을 통해 카메라 장치 내로 입사될 수 있다. 즉, 광은 광축 방향(예컨대, X축 방향)을 따라 제1 카메라 엑추에이터(1100)의 내부로 입사되고, 광학 부재를 통해 광경로가 수직 방향(예컨대, Z축 방향)으로 변경될 수 있다. 그리고 광은 제2 카메라 엑추에이터(1200)를 통과하고, 제2 카메라 엑추에이터(1200)의 일단에 위치하는 이미지 센서(IS)로 입사될 수 있다(PATH).
본 명세서에서, 저면은 제1 방향에서 일측을 의미한다. 그리고 제1 방향은 도면 상 X축 방향이고 제2 축 방향 등과 혼용될 수 있다. 제2 방향은 도면 상 Y축 방향이며 제1 축 방향 등과 혼용될 수 있다. 제2 방향은 제1 방향과 수직한 방향이다. 또한, 제3 방향은 도면 상 Z축 방향이고, 제3 축 방향 등과 혼용될 수 있다. 제1 방향 및 제2 방향에 모두 수직한 방향이다. 여기서, 제3 방향(Z축 방향)은 광축의 방향에 대응하며, 제1 방향(X축 방향)과 제2 방향(Y축 방향)은 광축에 수직한 방향이며 제2 카메라 엑추에이터에 의해 틸팅될 수 있다. 이에 대한 자세한 설명은 후술한다. 또한, 제1 방향(X축 방향)은 이하 '수직 방향'으로 혼용될 수 있다. 또한, 제2 방향(Y축 방향)은 이하 '수평 방향'으로 혼용될 수 있다. 또한, 제3 방향(Z축 방향)은 이하 '광축 방향'으로 혼용될 수 있다.
또한, 이하에서 제1 카메라 엑추에이터(1100) 및 제2 카메라 엑추에이터(1200)에 대한 설명에서 광축 방향은 제3 방향(Z축 방향)이며 이를 기준으로 이하 설명한다.
그리고 이러한 구성에 의하여, 실시예에 따른 카메라 장치는 광의 경로를 변경하여 제1 카메라 엑추에이터 및 제2 카메라 엑추에이터의 공간적 한계를 개선할 수 있다. 즉, 실시예에 따른 카메라 장치는 광의 경로 변경에 대응하여 카메라 장치의 두께가 최소화하면서 광 경로를 확장할 수 있다. 나아가, 제2 카메라 엑추에이터는 확장된 광 경로에서 초점 등을 제어하여 높은 범위의 배율을 제공할 수도 있음을 이해해야 한다.
또한, 실시예에 따른 카메라 장치는 제1 카메라 엑추에이터를 통해 광경로의 제어를 통해 OIS를 구현할 수 있으며, 이에 따라 디센트(decent)나 틸트(tilt) 현상의 발생을 최소화하고, 최상의 광학적 특성을 낼 수 있다.
나아가, 제2 카메라 엑추에이터(1200)는 광학계(렌즈부)와 렌즈 구동부를 포함할 수 있다. 예를 들어, 제2 카메라 엑추에이터(1200)는 제1 렌즈 어셈블리, 제2 렌즈 어셈블리, 제3 렌즈 어셈블리 및 가이드 핀 중 적어도 하나 이상이 배치될 수 있다.
또한. 제2 카메라 엑추에이터(1200)는 코일과 마그넷을 구비하여 고배율 주밍 기능을 수행할 수 있다.
예를 들어, 제1 렌즈 어셈블리와 제2 렌즈 어셈블리는 코일, 마그넷과 가이드 핀을 통해 이동하는 이동 렌즈(moving lens)일 수 있으며, 제3 렌즈 어셈블리는 고정 렌즈일 수 있으나 이에 한정되는 것은 아니다. 예를 들어, 제3 렌즈 어셈블리는 광을 특정 위치에 결상하는 집광자(focator)의 기능을 수행할 수 있고, 제1 렌즈 어셈블리는 집광자인 제3 렌즈 어셈블리에서 결상된 상을 다른 곳에 재결상시키는 변배자(variator) 기능을 수행할 수 있다. 한편, 제1 렌즈 어셈블리에서는 피사체와의 거리 또는 상 거리가 많이 바뀌어서 배율변화가 큰 상태일 수 있으며, 변배자인 제1 렌즈 어셈블리는 광학계의 초점거리 또는 배율변화에 중요한 역할을 할 수 있다. 한편, 변배자인 제1 렌즈 어셈블리에서 결상되는 상점은 위치에 따라 약간 차이가 있을 수 있다. 이에 제2 렌즈 어셈블리는 변배자에 의해 결상된 상에 대한 위치 보상 기능을 할 수 있다. 예를 들어, 제2 렌즈 어셈블리는 변배자인 제1 렌즈 어셈블리에서 결상된 상점을 실제 이미지 센서 위치에 정확히 결상시키는 역할을 수행하는 보상자(compensator) 기능을 수행할 수 있다. 예를 들어, 제1 렌즈 어셈블리와 제2 렌즈 어셈블리는 코일과 마그넷의 상호작용에 의한 전자기력으로 구동될 수 있다. 상술한 내용은 후술하는 렌즈 어셈블리에 적용될 수 있다. 또한, 추가적인 렌즈 어셈블리(예, 제4 렌즈 어셈블리)가 더 존재할 수도 있다.
한편, 본 발명의 실시예에 따라 OIS용 엑추에이터와 AF 또는 Zoom용 엑추에이터가 배치될 경우, OIS 구동 시 AF 또는 Zoom용 마그넷과의 자계 간섭이 방지될 수 있다. 제1 카메라 엑추에이터(1100)의 구동 마그넷이 제2 카메라 엑추에이터(1200)와 분리되어 배치되므로, 제1 카메라 엑추에이터(1100)와 제2 카메라 엑추에이터(1200) 간 자계 간섭이 방지될 수 있다. 본 명세서에서, OIS는 손떨림 보정, 광학식 이미지 안정화, 광학식 이미지 보정, 떨림 보정 등의 용어와 혼용될 수 있다.
도 3은 다른 실시예에 따른 카메라 장치의 사시도이다.
도 3을 참조하면, 상술한 바와 같이 광학 부재를 통해 광의 경로를 바꾸는 카메라 장치뿐만 아니라 광 경로 변경 없이 줌 또는 오토 포커싱 등을 수행하는 카메라 장치(1000A)에도 후술하는 렌즈 구동 장치가 실장될 수 있다.
도 4는 실시예에 따른 제1 카메라 엑추에이터의 분해 사시도이다.
도 4를 참조하면, 실시예에 따른 제1 카메라 엑추에이터(1100)는 제1 쉴드 캔(미도시됨), 제1 하우징(1120), 무버(1130), 회전부(1140), 제1 구동부(1150)를 포함한다.
무버(1130)는 홀더(1131)와 홀더(1131)에 안착하는 광학 부재(1132)를 포함할 수 있다. 그리고 회전부(1140)는 틸팅 가이드부(1141), 틸팅 가이드부(1141)와 서로 결합력을 갖는 제1 자성체(1142), 틸팅 가이드부(1141) 내에 위치하는 제2 자성체(1143)를 포함한다. 또한, 제1 구동부(1150)는 구동 마그넷(1151), 구동 코일(1152), 홀 센서부(1153) 및 제1 기판부(1154)를 포함한다.
제1 쉴드 캔(미도시됨)은 제1 카메라 엑추에이터(1100)의 최외측에 위치하여 후술하는 회전부(1140)와 제1 구동부(1150)를 감싸도록 위치할 수 있다.
이러한 제1 쉴드 캔(미도시됨)은 외부에서 발생한 전자기파를 차단 또는 저감할 수 있다. 이에 따라, 회전부(1140) 또는 제1 구동부(1150)에서 오작동의 발생이 감소할 수 있다.
제1 하우징(1120)은 제1 쉴드 캔(미도시됨) 내부에 위치할 수 있다. 또한, 제1 하우징(1120)은 후술하는 제1 기판부(1154) 내측에 위치할 수 있다. 제1 하우징(1120)은 제1 쉴드 캔(미도시됨)과 서로 끼워지거나 맞춰져 체결될 수 있다.
제1 하우징(1120)은 복수 개의 하우징 측부로 이루어질 수 있다. 제1 하우징 측부(1121), 제2 하우징 측부(1122), 제3 하우징 측부(1123), 제4 하우징 측부(1124)를 포함할 수 있다.
제1 하우징 측부(1121)와 제2 하우징 측부(1122)는 서로 마주보도록 배치될 수 있다. 또한, 제3 하우징 측부(1123)와 제4 하우징 측부(1124)는 제1 하우징 측부(1121)와 제2 하우징 측부(1122) 사이에 배치될 수 있다.
제3 하우징 측부(1123)는 제1 하우징 측부(1121), 제2 하우징 측부(1122) 및 제4 하우징 측부(1124)와 접할 수 있다. 그리고 제3 하우징 측부(1123)는 제1 하우징(1120)에서 하측부로 저면을 포함할 수 있다.
그리고 제1 하우징 측부(1121)는 제1 하우징 홀(1121a)을 포함할 수 있다. 제1 하우징 홀(1121a)에는 후술하는 제3 코일(1152a)이 위치할 수 있다.
또한, 제2 하우징 측부(1122)는 제2 하우징 홀(1122a)을 포함할 수 있다. 그리고 제2 하우징 홀(1122a)에는 후술하는 제4 코일(1152b)이 위치할 수 있다.
제3 코일(1152a)과 제4 코일(1152b)은 제1 기판부(1154)와 결합할 수 있다. 실시예로, 제3 코일(1152a)과 제4 코일(1152b)은 제1 기판부(1154)와 전기적으로 연결되어 전류가 흐를 수 있다. 이러한 전류는 제1 카메라 엑추에이터가 X축을 기준으로 틸팅할 수 있는 전자기력의 요소이다.
또한, 제3 하우징 측부(1123)는 제3 하우징 홀(1123a)을 포함할 수 있다. 제3 하우징 홀(1123a)에는 후술하는 제5 코일(1152c)이 위치할 수 있다. 제5 코일(1152c)은 제1 기판부(1154)와 결합할 수 있다. 그리고 제5 코일(1152c)은 제1 기판부(1154)와 전기적으로 연결되어 전류가 흐를 수 있다. 이러한 전류는 제1 카메라 엑추에이터가 Y축을 기준으로 틸팅할 수 있는 전자기력의 요소이다.
제4 하우징 측부(1124)는 제1 하우징 홈(1124a)을 포함할 수 있다. 제1 하우징 홈(1124a)에 마주하는 영역에 후술하는 제1 자성체(1142)가 배치될 수 있다. 이에 따라, 제1 하우징(1120)은 틸팅 가이드부(1141)와 자기력 등에 의해 결합할 수 있다.
또한, 실시예에 따른 제1 하우징 홈(1124a)은 제4 하우징 측부(1124)의 내측면 또는 외측면에 위치할 수 있다. 이에 따라, 제1 자성체(1142)도 제1 하우징 홈(1124a)의 위치에 대응하도록 배치될 수 있다.
또한, 제1 하우징(1120)은 제1 내지 제4 하우징 측부(1121 내지 1224)에 의해 형성되는 수용부(1125)를 포함할 수 있다. 수용부(1125)에는 무버(1130)가 위치할 수 있다.
무버(1130)는 홀더(1131)와 홀더(1131)에 안착하는 광학 부재(1132)를 포함한다.
홀더(1131)는 제1 하우징(1120)의 수용부(1125)에 안착할 수 있다. 홀더(1131)는 제1 하우징 측부(1121), 제2 하우징 측부(1122), 제3 하우징 측부(1123), 제4 하우징 측부(1124)에 각각 대응하는 제1 프리즘 외측면 내지 제4 프리즘 외측면을 포함할 수 있다.
제4 하우징 측부(1124)와 마주하는 제4 프리즘 외측면에는 제2 자성체(1143)가 안착할 수 있는 안착홈이 배치될 수 있다.
광학 부재(1132)는 홀더(1131)에 안착할 수 있다. 이를 위해, 홀더(1131)는 안착면을 가질 수 있으며, 안착면은 수용홈에 의해 형성될 수 있다. 광학 부재(1132)는 내부에 배치되는 반사부를 포함할 수 있다. 다만, 이에 한정되는 것은 아니다. 그리고 광학 부재(1132)는 외부(예컨대, 물체)로부터 반사된 광을 카메라 장치 내부로 반사할 수 있다. 다시 말해, 광학 부재(1132)는 반사된 광의 경로를 변경하여 제1 카메라 엑추에이터 및 제2 카메라 엑추에이터의 공간적 한계를 개선할 수 있다. 이로써, 카메라 장치는 두께가 최소화하면서 광 경로를 확장하여 높은 범위의 배율을 제공할 수도 있음을 이해해야 한다.
회전부(1140)는 틸팅 가이드부(1141), 틸팅 가이드부(1141)와 서로 결합력을 갖는 제1 자성체(1142), 틸팅 가이드부(1141)내에 위치하는 제2 자성체(1143)를 포함한다.
틸팅 가이드부(1141)는 상술한 무버(1130) 및 제1 하우징(1120)과 결합할 수 있다. 틸팅 가이드부(1141)는 내부에 위치하는 추가적인 자성체(미도시됨)를 포함할 수 있다.
또한, 틸팅 가이드부(1141)는 광축과 인접하게 배치될 수 있다. 이로써, 실시예에 따른 엑추에이터는 후술하는 제1,2 축 틸트에 따라 광 경로의 변경을 용이하게 수행할 수 있다.
틸팅 가이드부(1141)는 제1 방향(X축 방향)으로 이격 배치되는 제1 돌출부와 제2 방향(Y축 방향)으로 이격 배치되는 제2 돌출부를 포함할 수 있다. 또한, 제1 돌출부와 제2 돌출부는 서로 반대 방향으로 돌출될 수 있다. 이에 대한 자세한 설명은 후술한다.
또한, 제1 자성체(1142)는 복수 개의 요크를 포함하며, 복수 개의 요크는 틸팅 가이드부(1141)를 기준으로 마주보게 위치할 수 있다. 실시예로, 제1 자성체(1142)는 마주보는 복수 개의 요크로 이루어질 수 있다. 그리고 틸팅 가이드부(1141)는 복수 개의 요크 사이에 위치할 수 있다.
제1 자성체(1142)는 상술한 바와 같이 제1 하우징(1120) 내에 위치할 수 있다. 또한, 상술한 바와 같이 제1 자성체(1142)는 제4 하우징 측부(1124)의 내측면 또는 외측면에 안착할 수 있다. 예컨대, 제1 자성체(1142)는 제4 하우징 측부(1124)의 외측면에 형성된 홈에 안착할 수 있다. 또는 제1 자성체(1142)는 상술한 제1 하우징 홈(1124a)에 안착할 수 있다.
그리고 제2 자성체(1143)는 무버(1130) 특히 홀더(1131)의 외측면에 위치할 수 있다. 이러한 구성에 의하여, 틸팅 가이드부(1141)는 내부의 제2 자성체(1143)와 제1 자성체(1142)간의 자기력에 의한 결합력으로 제1 하우징(1120) 및 무버(1130)와 용이하게 결합할 수 있다. 본 발명에서, 제1 자성체(1142)와 제2 자성체(1143)의 위치는 서로 이동될 수 있다. 또한, 제1 자성체와 제2 자성체 간에는 극성에 따라 인력 또는 척력이 발생할 수 있다. 본 실시예에서는 제1 자성체와 제2 자성체 간에 인력이 작용하고, 이에 의해 무버가 하우징 내에서 위치를 유지할 수 있다.
제1 구동부(1150)는 구동 마그넷(1151), 구동 코일(1152), 홀 센서부(1153) 및 제1 기판부(1154)를 포함한다.
구동 마그넷(1151)은 복수 개의 마그넷을 포함할 수 있다. 실시예로, 구동 마그넷(1151)은 제3 마그넷(1151a), 제4 마그넷(1151b) 및 제5 마그넷(1151c)을 포함할 수 있다.
제3 마그넷(1151a), 제4 마그넷(1151b) 및 제5 마그넷(1151c)은 각각 홀더(1131)의 외측면에 위치할 수 있다. 그리고 제3 마그넷(1151a)과 제4 마그넷(1151b)은 서로 마주보도록 위치할 수 있다. 또한, 제5 마그넷(1151c)은 홀더(1131)의 외측면 중 저면 상에 위치할 수 있다. 이에 대한 자세한 설명은 후술한다.
구동 코일(1152)은 복수 개의 코일을 포함할 수 있다. 실시예로, 구동 코일(1152)은 제3 코일(1152a), 제4 코일(1152b) 및 제5 코일(1152c)을 포함할 수 있다.
제3 코일(1152a)은 제3 마그넷(1151a)과 대향하게 위치할 수 있다. 이에, 제3 코일(1152a)은 상술한 바와 같이 제1 하우징 측부(1121)의 제1 하우징 홀(1121a)에 위치할 수 있다.
또한, 제4 코일(1152b)은 제4 마그넷(1151b)과 대향하게 위치할 수 있다. 이에, 제4 코일(1152b)은 상술한 바와 같이 제2 하우징 측부(1122)의 제2 하우징 홀(1122a)에 위치할 수 있다.
제3 코일(1152a)은 제4 코일(1152b)과 마주보도록 위치할 수 있다. 즉, 제3 코일(1152a)은 제4 코일(1152b)과 제1 방향(X축 방향)을 기준으로 대칭으로 위치할 수 있다. 이는 제3 마그넷(1151a)과 제4 마그넷(1151b)에도 동일하게 적용될 수 있다. 즉, 제3 마그넷(1151a)과 제4 마그넷(1151b)은 제1 방향(X축 방향)을 기준으로 대칭으로 위치할 수 있다. 또한, 제3 코일(1152a), 제4 코일(1152b), 제3 마그넷(1151a) 및 제4 마그넷(1151b)은 제2 방향(Y축 방향)으로 적어도 일부 중첩되도록 배치될 수 있다. 이러한 구성에 의하여, 제3 코일(1152a)과 제3 마그넷(1151a) 간의 전자기력과 제4 코일(1152b)과 제4 마그넷(1151b) 간의 전자기력으로 X축 틸팅이 일측으로 기울어짐 없이 정확하게 이루어질 수 있다.
제5 코일(1152c)은 제5 마그넷(1151c)과 대향하게 위치할 수 있다. 이에, 제5 코일(1152c)은 상술한 바와 같이 제3 하우징 측부(1123)의 제3 하우징 홀(1123a)에 위치할 수 있다. 제5 코일(1152c)은 제5 마그넷(1151c)과 전자기력을 발생시킴으로써, 무버(1130) 및 회전부(1140)를 제1 하우징(1120)을 기준으로 Y축 틸팅을 수행할 수 있다.
여기서, X축 틸팅은 X축을 기준으로 틸트되는 것을 의미하며, Y축 틸팅은 Y축을 기준으로 틸트되는 것을 의미한다.
홀 센서부(1153)는 복수 개의 홀 센서를 포함할 수 있다. 실시예로, 홀 센서부(1153)는 제1 서브 센서(1153a), 제2 서브 센서(1153b) 및 제3 서브 센서(1153c)를 포함할 수 있다. 각 서브 센서는 적어도 하나 이상일 수 있다.
제1 서브 센서(1153a)는 제3 코일(1152a) 내측에 위치할 수 있다. 그리고 제2 서브 센서(1153b)는 제1 서브 센서(1153a)와 제1 방향(X축 방향) 및 제3 방향(Z축 방향)으로 대칭으로 배치될 수 있다. 또한, 제2 서브 센서(1153b)는 제4 코일(1152b) 내측에 위치할 수 있다.
제1 서브 센서(1153a)는 제3 코일(1152a) 내측에서 자속 변화를 감지할 수 있다. 그리고 제2 서브 센서(1153b)는 제4 코일(1152b)에서 자속 변화를 감지할 수 있다. 이로써, 제3,4 마그넷(1151a, 1151b)과 제1,2 서브 센서(1153a, 1153b) 간의 위치 센싱이 수행될 수 있다. 예컨대, 제1,2 서브 센서(1153a, 1153b)는 실시예에 따른 제1 카메라 엑추에이터는 이를 통해 X축 틸트를 제어할 수 있다.
또한, 제3 서브 센서(1153c)는 제5 코일(1152c) 내측에 위치할 수 있다. 제3 서브 센서(1153c)는 제5 코일(1152c) 내측에서 자속 변화를 감지할 수 있다. 이로써, 제5 마그넷(1151c)과 제3 서브 센서(1153bc) 간의 위치 센싱이 수행될 수 있다. 실시예에 따른 제1 카메라 엑추에이터는 이를 통해 Y축 틸트를 제어할 수 있다.
제1 기판부(1154)는 제1 구동부(1150)의 하부에 위치할 수 있다. 제1 기판부(1154)는 구동 코일(1152), 홀 센서부(1153)와 전기적으로 연결될 수 있다. 예를 들어, 제1 기판부(1154)는 구동 코일(1152), 홀 센서부(1153)와 SMT로 결합될 수 있다. 다만, 이러한 방식에 한정되는 것은 아니다.
제1 기판부(1154)는 제1 쉴드 캔(미도시됨)과 제1 하우징(1120) 사이에 위치하여, 쉴드 캔(1101) 및 제1 하우징(1120)과 결합할 수 있다. 결합 방식은 상술한 바와 같이 다양하게 이루어질 수 있다. 그리고 상기 결합을 통해 구동 코일(1152)과 홀 센서부(1153)가 제1 하우징(1120)의 외측면 내에 위치할 수 있다.
이러한 제1 기판부(1154)는 경성 인쇄 회로 기판(Rigid PCB), 연성 인쇄 회로 기판(Flexible PCB), 경연성 인쇄 회로 기판(Rigid-Flexible PCB) 등 전기적으로 연결될 수 있는 배선 패턴이 있는 회로 기판을 포함할 수 있다. 다만, 이러한 종류에 한정되는 것은 아니다.
이러한 홀 센서부(1153)와 후술하는 제1 기판부(1154) 간의 구체적인 내용은 후술한다.
도 5는 쉴드 캔 및 기판이 제거된 실시예에 따른 제1 카메라 엑추에이터의 사시도이고, 도 6a는 도 5에서 BB'로 절단된 단면도이고, 도 6b는 도 5에 CC'로 절단된 단면도이다.
도 5 내지 도 6b을 참조하면, 제3 코일(1152a)은 제1 하우징 측부(1121)에 위치할 수 있다.
그리고 제3 코일(1152a)과 제3 마그넷(1151a)은 서로 대향하여 위치할 수 있다. 제3 마그넷(1151a)은 제3 코일(1152a)과 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다.
또한, 제4 코일(1152b)의 제2 하우징 측부(1122)에 위치할 수 있다. 이에, 제4 코일(1152b)과 제4 마그넷(1151b)은 서로 대향하여 위치할 수 있다. 제4 마그넷(1151b)은 제4 코일(1152b)과 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다.
또한, 제3 코일(1152a)과 제4 코일(1152b)은 제2 방향(Y축 방향)으로 중첩되고, 제3 마그넷(1151a)과 제4 마그넷(1151b)은 제2 방향(Y축 방향)으로 중첩될 수 있다. 이러한 구성에 의하여, 홀더의 외측면(제1 홀더 외측면 및 제2 홀더 외측면)에 가해지는 전자기력이 제2 방향(Y축 방향)으로 평행 축 상에 위치하여 X축 틸트가 정확하고 정밀하게 수행될 수 있다.
또한, 제4 홀더 외측면에는 제1 수용홈(미도시됨)이 위치할 수 있다. 그리고 제1 수용홈에는 제1 돌출부(PR1a, PR1b)가 배치될 수 있다. 이에 따라, X축 틸트를 수행하는 경우, 제1 돌출부(PR1a, PR1b)가 틸트의 기준축(또는 회전축)일 수 있다. 이에, 틸팅 가이드부(1141), 무버(1130)가 좌우로 이동할 수 있다.
제2 돌출부(PR2)는 상술한 바와 같이 제4 하우징 측부(1124)의 내측면의 홈에 안착할 수 있다. 그리고 Y축 틸트를 수행하는 경우, 제2 돌출부(PR2)를 Y축 틸트의 기준축으로 회전 플레이트 및 무버가 회전할 수 있다.
실시예에 따르면, 이러한 제1 돌출부와 제2 돌출부에 의해, OIS가 수행될 수 있다.
도 6a을 참조하면, Y축 틸트가 수행될 수 있다. 즉, 제1 방향(X축 방향)으로 회전하여 OIS 구현이 이루어질 수 있다.
실시예로, 홀더(1131)의 하부에 배치되는 제5 마그넷(1151c)은 제5 코일(1152c)과 전자기력을 형성하여 제1 방향(X축 방향)으로 무버(1130)를 틸팅 또는 회전시킬 수 있다.
구체적으로, 틸팅 가이드부(1141)는 제1 하우징(1120) 내의 제1 자성체(1142)와 무버(1130) 내의 제2 자성체(1143)에 의해 제1 하우징(1120) 및 무버(1130)와 결합될 수 있다. 그리고 제1 돌출부(PR1)는 제1 방향(X축 방향)으로 이격되어 제1 하우징(1120)에 의해 지지될 수 있다.
그리고 틸팅 가이드부(1141)는 무버(1130)를 향해 돌출된 제2 돌출부(PR2)를 기준축(또는 회전축)으로 회전 또는 틸팅할 수 있다. 즉, 틸팅 가이드부(1141)는 제2 돌출부(PR2)를 기준축으로 Y축 틸트를 수행할 수 있다.
예를 들어, 제3 안착홈에 배치된 제5 마그넷(1151c)과 제3 기판 측부 상에 배치된 제5 코일(1152c) 간의 제1 전자기력(F1A, F1B)에 의해 무버(1130)를 X축 방향으로 제1 각도(θ1)로 회전(X1->X1a 또는 X1bb)하면서 OIS 구현이 이루어질 수 있다. 제1 각도(θ1)는 ±1° 내지 ±3°일 수 있다. 다만, 이에 한정되는 것은 아니다.
이하 여러 실시예에 따른 제1 카메라 엑추에이터에서 전자기력은 기재된 방향으로 힘을 생성하여 무버를 움직이거나, 다른 방향으로 힘을 생성하더라도 기재된 방향으로 무버를 움직일 수 있다. 즉, 기재된 전자기력의 방향은 마그넷과 코일에 의해 발생되어 무버를 움직이는 힘의 방향을 의미한다.
도 6b를 참조하면, X축 틸트가 수행될 수 있다. 즉, 제2 방향(Y축 방향)으로 회전하여 OIS 구현이 이루어질 수 있다.
Y축 방향으로 무버(1130)가 틸팅 또는 회전(또는 X축 틸트)하면서 OIS 구현이 이루어질 수 있다.
실시예로, 홀더(1131)에 배치되는 제3 마그넷(1151a) 및 제4 마그넷(1151b)은 각각이 제3 코일(1152a)및 제4 코일(1152b)과 전자기력을 형성하여 제2 방향(Y축 방향)으로 틸팅 가이드부(1141) 및 무버(1130)를 틸팅 또는 회전시킬 수 있다.
틸팅 가이드부(1141)는 제1 돌출부(PR1)를 기준축(또는 회전축)으로 제2 방향으로 회전 또는 틸팅(X축 틸트)할 수 있다.
예를 들어, 제1 안착홈에 배치된 제3,4 마그넷(1151a, 1151b)과 제1, 2 기판 측부 상에 배치된 제3, 4 코일(1152a, 1152b) 간의 제2 전자기력(F2A, F2B)에 의해 무버(1130)를 Y축 방향으로 제2 각도(θ2) 회전(Y1->Y1a 또는 Y1b)하면서 OIS 구현이 이루어질 수 있다. 제2 각도(θ2)는 ±1° 내지 ±3°일 수 있다. 다만, 이에 한정되는 것은 아니다.
또한, 상술한 바와 같이 제3,4 마그넷(1151a, 1151b)과 제3, 4 코일(1152a, 1152b)에 의한 전자기력은 제3 방향 또는 제3 방향의 반대 방향으로 작용할 수 있다. 예컨대, 전자기력은 무버(1130)의 좌측부에서 제3 방향(Z축 방향)으로 발생하고, 무버(1130)의 우측부에서 제3 방향(Z축 방향)의 반대 방향으로 작용할 수 있다. 이에, 무버(1130)는 제1 방향을 기준으로 회전할 수 있다. 또는 제2 방향을 따라 이동할 수 있다.
이와 같이, 실시예에 따른 제2 엑추에이터는 홀더 내의 구동 마그넷과 하우징에 배치되는 구동 코일 간의 전자기력에 의해 틸팅 가이드부(1141) 및 무버(1130)를 제1 방향(X축 방향) 또는 제2 방향(Y축 방향)으로 회전 제어함으로써, OIS 구현 시 디센터(decent)나 틸트(tilt) 현상의 발생을 최소화하고 최상의 광학적 특성을 제공할 수 있다. 또한, 상술한 바와 같이 'Y축 틸트'는 제1 방향(X축 방향)으로 회전 또는 틸트하는 것에 대응하고, 'X축 틸트'는 제2 방향(Y축 방향)으로 회전 또는 틸트하는 것에 대응한다.
도 7a은 다른 실시예에 따른 제1 카메라 엑추에이터의 분해 사시도이고, 도 7b는 다른 실시예에 따른 제1 카메라 엑추에이터의 일 단면도이고, 도 7c는 다른 실시예에 따른 제1 카메라 엑추에이터의 다른 단면도이다.
도 7a 내지 도 7c를 참조하면, 다른 실시예에 따른 제1 카메라 엑추에이터(1100)는 제1 하우징(1120), 무버(1130), 회전부(1140), 제1 구동부(1150), 제1 부재(1126) 및 제2 부재(1131a)를 포함한다.
무버(1130)는 홀더(1131) 및 홀더(1131)에 안착하는 광학 부재(1132)를 포함할 수 있다. 또한, 무버(1130)는 하우징(1120) 내에 배치될 수 있다. 그리고 회전부(1140)는 틸팅 가이드부(1141), 틸팅 가이드부(1141)를 가압하도록 서로 다른 극성을 갖는 제2 자성체(1142) 및 제1 자성체(1143)를 포함할 수 있다. 제1 자성체(1143) 및 제2 자성체(1142)는 서로 크기가 상이할 수 있다. 실시예로, 제1 자성체(1143)는 상기 제2 자성체(1142)보다 크기가 클 수 있다. 예컨대, 제1 자성체(1143)와 제2 자성체(1142)는 광축 방향 또는 제3 방향(Z축 방향)으로 길이는 동일하고, 제1 방향 및 제2 방향으로 면적이 상이할 수 있다. 이 때, 제1 자성체(1143)의 면적은 제2 자성체(1142)의 면적보다 클 수 있다. 또한, 제1 구동부(1150)는 구동 마그넷(1151), 구동 코일(1152), 홀 센서부(1153), 제1 기판부(1154) 및 요크부(1155)를 포함한다.
먼저, 제1 카메라 엑추에이터(1100)는 쉴드 캔(미도시됨)을 포함할 수 있다. 쉴드 캔(미도시됨)은 제1 카메라 엑추에이터(1100)의 최외측에 위치하여 후술하는 회전부(1140)와 제1 구동부(1150)를 감싸도록 위치할 수 있다.
이러한 쉴드 캔(미도시됨)은 외부에서 발생한 전자기파를 차단 또는 저감할 수 있다. 즉, 쉴드 캔(미도시됨)은 회전부(1140) 또는 제1 구동부(1150)에서 오작동의 발생을 감소시킬 수 있다.
제1 하우징(1120)은 쉴드 캔(미도시됨) 내부에 위치할 수 있다. 쉴드 캔이 없는 경우, 제1 하우징(1120)은 제1 카메라 엑추에이터의 최외측에 위치할 수 있다.
또한, 제1 하우징(1120)은 후술하는 제1 기판부(1154) 내측에 위치할 수 있다. 제1 하우징(1120)은 쉴드 캔(미도시됨)과 서로 끼워지거나 맞춰져 체결될 수 있다.
제1 하우징(1120)은 제1 하우징 측부(1121), 제2 하우징 측부(1122), 제3 하우징 측부(1123) 및 제4 하우징 측부(1124)를 포함할 수 있다. 이에 대한 자세한 설명은 후술한다.
제1 부재(1126)는 제1 하우징(1120)에 배치될 수 있다. 제1 부재(1126)는 제2 부재(1131a)와 하우징 사이에 배치될 수 있다. 제1 부재(1126)는 하우징 내 배치 또는 하우징 일측에 위치할 수 있다. 이에 대한 설명은 후술한다.
무버(1130)는 홀더(1131) 및 홀더(1131)에 안착하는 광학 부재(1132)를 포함한다.
홀더(1131)는 제1 하우징(1120)의 수용부(1125)에 안착할 수 있다. 홀더(1131)는 제1 하우징 측부(1121), 제2 하우징 측부(1122), 제3 하우징 측부(1123), 제1 부재(1126)에 각각 대응하는 제1 홀더 외측면 내지 제4 홀더 외측면을 포함할 수 있다. 예컨대, 제1 홀더 외측면 내지 제4 홀더 외측면은 제1 하우징 측부(1121), 제2 하우징 측부(1122), 제3 하우징 측부(1123), 제1 부재(1126) 각각의 내측면과 대응하는 또는 마주할 수 있다.
또한, 홀더(1131)는 제4 안착홈에 배치되는 제2 부재(1131a)를 포함할 수 있다. 이에 대한 자세한 설명은 후술한다.
광학 부재(1132)는 홀더(1131)에 안착할 수 있다. 이를 위해, 홀더(1131)는 안착면을 가질 수 있으며, 안착면은 수용홈에 의해 형성될 수 있다. 실시예로 광학 부재(1132)는 미러(mirror) 또는 프리즘으로 이루어질 수 있다. 이하에서는 프리즘을 기준으로 도시하나, 상술한 실시예에서와 같이 복수 개의 렌즈로 이루어질 수도 있다. 또는 광학 부재(1132)는 복수의 렌즈와 프리즘 또는 미러로 이루어질 수 있다. 그리고 광학 부재(1132)는 내부에 배치되는 반사부를 포함할 수 있다. 다만, 이에 한정되는 것은 아니다.
또한, 광학 부재(1132)는 외부(예컨대, 물체)로부터 반사된 광을 카메라 모듈 내부로 반사할 수 있다. 다시 말해, 광학 부재(1132)는 반사된 광의 경로를 변경하여 제1 카메라 엑추에이터 및 제2 카메라 엑추에이터의 공간적 한계를 개선할 수 있다. 이로써, 카메라 모듈은 두께가 최소화하면서 광 경로를 확장하여 높은 범위의 배율을 제공할 수도 있음을 이해해야 한다.
추가적으로, 제2 부재(1131a)는 홀더(1131)와 결합할 수 있다. 제2 부재(1131a)는 홀더(1131)의 외측 및 하우징 내측에 배치될 수 있다. 그리고 제2 부재(1131a)는 홀더(1131)에서 제4 홀더 외측면에서 제4 안착홈 이외의 영역에 위치한 추가 홈 내에 안착할 수 있다. 이를 통해, 제2 부재(1131a)는 홀더(1131)와 결합하고, 제2 부재(1131a)와 홀더(1131) 사이에는 제1 부재(1126)의 적어도 일부가 위치할 수 있다. 예컨대, 제1 부재(1126)의 적어도 일부는 제2 부재(1131a)와 홀더(1131) 간에 형성된 공간을 관통할 수 있다.
또한, 제2 부재(1131a)는 홀더(1131)와 분리된 구조로 이루어질 수 있다. 이러한 구성에 의하여, 후술하는 바와 같이 제1 카메라 엑추에이터의 조립이 용이하게 수행될 수 있다. 또는 제2 부재(1131a)는 홀더(1131)와 일체로 형성될 수 있으나, 이하에서는 분리된 구조로 설명한다.
회전부(1140)는 틸팅 가이드부(1141), 틸팅 가이드부(1141)를 가압하도록 서로 다른 극성을 갖는 제2 자성체(1142) 및 제1 자성체(1143)를 포함한다.
틸팅 가이드부(1141)는 상술한 무버(1130) 및 제1 하우징(1120)과 결합할 수 있다. 구체적으로, 틸팅 가이드부(1141)는 홀더(1131)와 제1 부재(1126) 사이에 배치될 수 있다. 이에, 틸팅 가이드부(1141)는 홀더(1131)의 무버(1130) 및 제1 하우징(1120)과 결합할 수 있다. 다만, 상술한 내용과 달리, 본 실시예에서 틸팅 가이드부(1141)는 제1 부재(1126)와 홀더(1131) 사이에 배치될 수 있다. 구체적으로, 틸팅 가이드부(1141)는 제1 부재(1126)와 홀더(1131)의 제4 안착홈 사이에 위치할 수 있다.
또한, 제2 자성체(1142)와 제1 자성체(1143)는 각각 제2 부재(1131a)에 형성된 제1 홈(gr1)과 제1 부재(1126)에 형성된 제2 홈(gr2)에 안착할 수 있다. 본 실시예에서, 제1 홈(gr1)과 제2 홈(gr2)은 상술한 다른 실시예에서 설명한 제1,2 홈과 위치가 상이할 수 있다. 다만, 제1 홈(gr1)은 제2 부재(1131a) 내에 위치하며 홀더와 일체로 이동하며, 제2 홈(gr2)은 제1 홈(gr1)에 대응하여 제1 부재(1126) 상에 위치하여 제1 하우징(1120)과 결합한다. 이에, 본 용어를 혼용하여 설명한다.
또한, 틸팅 가이드부(1141)는 광축과 인접하게 배치될 수 있다. 이로써, 다른 실시예에 따른 엑추에이터는 후술하는 제1,2 축 틸트에 따라 광 경로의 변경을 용이하게 수행할 수 있다.
틸팅 가이드부(1141)는 제1 방향(X축 방향)으로 이격 배치되는 제1 돌출부와 제2 방향(Y축 방향)으로 이격 배치되는 제2 돌출부를 포함할 수 있다. 또한, 제1 돌출부와 제2 돌출부는 서로 반대 방향으로 돌출될 수 있다. 이에 대한 자세한 설명은 후술한다. 제1 돌출부는 무버를 향해 돌출될 수 있다. 또한, 제1 돌출부는 베이스에서 광축 방향 또는 제3 방향(Z축 방향)으로 연장될 수 있다. 그리고 제2 돌출부는 제1 돌출부와 반대 방향으로 돌출될 수 있다. 즉, 제2 돌출부는 광축 방향의 반대 방향 또는 제3 방향(Z축 방향)의 반대 방향으로 연장될 수 있다. 또한, 제2 돌출부는 제1 부재(1126) 또는 하우징(1120)을 향해 연장될 수 있다.
또한, 상술한 바와 같이 제2 자성체(1142)는 제2 부재(1131a) 내에 위치할 수 있다. 또한, 제1 자성체(1143)는 제1 부재(1126) 내에 위치할 수 있다.
제2 자성체(1142)와 제1 자성체(1143)는 서로 동일한 극성을 가질 수 있다. 예를 들어, 제2 자성체(1142)는 N극을 갖는 마그넷일 수 있고, 제1 자성체(1143)는 N극을 갖는 마그넷일 수 있다. 또는 반대로 제2 자성체(1142)는 S극을 갖는 마그넷일 수 있고, 제1 자성체(1143)는 S극을 갖는 마그넷일 수 있다
예컨대, 제1 자성체(1143)의 제1 극면과 상기 제1 극면과 마주보는 제2 자성체(1142)의 제2 극면은 서로 동일 극성을 가질 수 있다.
제2 자성체(1142)와 제1 자성체(1143)는 상술한 극성에 의해 서로 간에 척력(repulsive force)을 생성할 수 있다. 이러한 구성에 의하여, 상술한 척력은 제2 자성체(1142)에 결합된 제2 부재(1131a) 또는 홀더(1131)와 제1 자성체(1143)에 결합된 제1 부재(1126) 또는 제1 하우징(1120)에 가해질 수 있다. 이 때, 제2 부재(1131a)에 가해지는 척력은 제2 부재(1131a)와 결합한 홀더(1131)에 전달될 수 있다. 이로써, 제2 부재(1131a)와 제1 부재(1126) 사이에 배치되는 틸팅 가이드부(1141)가 척력에 의해 가압될 수 있다. 즉, 척력은 틸팅 가이드부(1141)가 홀더(1131)와 제1 하우징(1120)(또는 제1 부재(1126)) 사이에서 위치하는 것을 유지할 수 있다. 이러한 구성에 의하여, X축 틸트 또는 Y축 틸트 시에도 무버(1130)와 제1 하우징(1120) 간의 위치를 유지할 수 있다. 또한, 틸팅 가이드부는 제1 자성체(1143)와 제2 자성체(1142) 간의 척력에 의해 제1 부재(1126)와 홀더(1131)에 밀착될 수 있다. 틸팅 가이드부(1141)는 무버(1130)의 틸팅을 가이드할 수 있다.
제1 구동부(1150)는 구동 마그넷(1151), 구동 코일(1152), 홀 센서부(1153), 제1 기판부(1154) 및 요크부(1155)를 포함한다. 이에 대한 내용은 본 실시예에서 설명한 내용을 제외하고 상술한 내용이 동일하게 적용될 수 있다.
제3 코일(1152a)은 제1 하우징 측부(1121)에 위치하고, 제3 마그넷(1151a)은 홀더(1131)의 제1 홀더 외측면(1131S1)에 위치할 수 있다. 이에, 제3 코일(1152a)과 제3 마그넷(1151a)은 서로 대향하여 위치할 수 있다. 제3 마그넷(1151a)은 제3 코일(1152a)과 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다.
또한, 제4 코일(1152b)은 제2 하우징 측부(1122)에 위치하고, 제4 마그넷(1151b)은 홀더(1131)의 제2 홀더 외측면(1131S2)에 위치할 수 있다. 이에, 제4 코일(1152b)과 제4 마그넷(1151b)은 서로 대향하여 위치할 수 있다. 제4 마그넷(1151b)은 제4 코일(1152b)과 제2 방향(Y축 방향)으로 적어도 일부 중첩될 수 있다.
또한, 제3 코일(1152a)과 제4 코일(1152b)은 제2 방향(Y축 방향)으로 중첩되고, 제3 마그넷(1151a)과 제4 마그넷(1151b)은 제2 방향(Y축 방향)으로 중첩될 수 있다.
이러한 구성에 의하여, 홀더의 외측면(제1 홀더 외측면 및 제2 홀더 외측면)에 가해지는 전자기력이 제2 방향(Y축 방향)으로 평행 축 상에 위치하여 X축 틸트가 정확하고 정밀하게 수행될 수 있다.
또한, 틸팅 가이드부(1141)의 제2 돌출부(PR2a, PR2b)는 제1 하우징(1120)의 제1 부재(1126)와 접할 수 있다. 제2 돌출부(PR2)는 제1 부재(1126)의 일측면에 형성된 제2 돌기홈(PH2) 내에 안착할 수 있다. 그리고 X축 틸트를 수행하는 경우, 제2 돌출부(PR2a, PR2b)가 틸트의 기준축(또는 회전축)일 수 있다. 이에, 틸팅 가이드부(1141), 무버(1130)가 제2 방향을 따라 이동할 수 있다.
또한, 제1 홀 센서(1153a)는 상술한 바와 같이 제1 기판부(1154)와 전기적 연결 및 결합을 위해 외측에 위치할 수 있다. 다만, 이러한 위치에 한정되는 것은 아니다.
또한, 제5 코일(1152c)은 제3 하우징 측부(1123)에 위치하고, 제5 마그넷(1151c)은 홀더(1131)의 제3 홀더 외측면(1131S3)에 위치할 수 있다. 제5 코일(1152c)과 제5 마그넷(1151c)은 제1 방향(X축 방향)으로 적어도 일부 중첩될 수 있다. 이에 따라, 제5 코일(1152c)과 제5 마그넷(1151c) 간의 전자기력의 세기가 용이하게 제어될 수 있다.
틸팅 가이드부(1141)는 상술한 바와 같이 홀더(1131)의 제4 홀더 외측면(1131S4) 상에 위치할 수 있다. 또한, 틸팅 가이드부(1141)는 제4 홀더 외측면의 제4 안착홈(1131S4a) 내에 안착할 수 있다. 상술한 바와 같이 제4 안착홈(1131S4a)은 제1 영역, 제2 영역 및 제3 영역을 포함할 수 있다.
제1 영역에는 제2 부재(1131a)가 위치할 수 있다. 즉, 제1 영역은 제2 부재(1131a)와 제1 방향(X축 방향)으로 중첩될 수 있다. 특히, 제1 영역은 제2 부재(1131a)의 부재 베이스부가 위치하는 영역일 수 있다. 이 때, 제1 영역은 제4 홀더 외측면(1131S4) 상에 위치할 수 있다. 즉, 제1 영역은 제4 안착홈(1131S4a)의 상부에 위치한 영역에 대응할 수 있다. 이 경우, 제1 영역은 제4 안착홈(1131S4a) 내의 일 영역이 아닐 수도 있다.
제2 영역에는 제1 부재(1126)가 위치할 수 있다. 즉, 제2 영역은 제1 부재(1126)와 제1 방향(X축 방향)으로 중첩될 수 있다.
또한, 제2 영역은 제1 영역과 같이 제4 홀더 외측면(1131S4) 상에 위치할 수 있다. 즉, 제2 영역은 제4 안착홈(1131S4a)의 상부에 위치한 영역에 대응할 수 있다
제3 영역에는 틸팅 가이드부가 위치할 수 있다. 특히, 제3 영역에는 틸팅 가이드부의 베이스가 위치할 수 있다. 즉, 제3 영역은 틸팅 가이드부(예로, 베이스)와 제1 방향(X축 방향)으로 중첩될 수 있다.
제1 영역에는 제2 부재(1131a)가 배치되고, 제2 부재(1131a)는 내측면에 형성된 제1 홈(gr1)을 포함할 수 있다. 그리고 제1 홈(gr1)에는 상술한 바와 같이 제2 자성체(1142)가 배치되며, 제2 자성체(1142)에서 발생한 척력(RF2)이 제2 부재(1131a)를 통해 홀더(1131)의 제4 안착홈(1131S4a)으로 전달될 수 있다(RF2'). 이에, 홀더(1131)는 제2 자성체(1142)에서 발생한 척력(RF2)과 동일한 방향으로 틸팅 가이드부(1141)로 힘을 가할 수 있다.
제2 영역에는 제1 부재(1126)가 배치될 수 있다. 제1 부재(1126)는 제1 홈(gr1)과 마주하는 제2 홈(gr2)을 포함할 수 있다. 또한, 제1 부재(1126)는 제2 홈(gr2)과 대응하는 면에 배치되는 제2 돌기홈(PH2)을 포함할 수 있다. 그리고 제1 자성체(1143)에서 발생한 척력(RF1)이 제1 부재(1126)에 가해질 수 있다. 이에 따라, 제1 부재(1126)와 제2 부재(1131a)는 발생한 척력(RF1, RF2')을 통해 제1 부재(1126)와 홀더(1131) 사이에 배치된 틸팅 가이드부(1141)를 가압할 수 있다. 이에, 제3,4 코일 또는 제5 코일(1152c)로 인가되는 전류에 의해 홀더가 X축 틸트 또는 Y축 틸트된 이후에도 홀더(1131), 제1 하우징(1120) 및 틸팅 가이드부(1141) 간의 결합이 유지될 수 있다.
제3 영역에는 틸팅 가이드부(1141)가 배치될 수 있다. 틸팅 가이드부(1141)는 상술한 바와 같이 제1 돌출부(PR1)와 제2 돌출부(PR2)를 포함할 수 있다. 이 때, 제1 돌출부(PR1)와 제2 돌출부(PR2)는 베이스의 제2 면(1141b)과 제1 면(1141a)에 각각 배치될 수도 있다. 이와 같이, 이하 설명하는 다른 실시예에서도 제1 돌출부(PR1)와 제2 돌출부(PR2)는 베이스의 마주보는 면 상에 다양하게 위치할 수 있다.
제1 돌기홈(PH1)은 제4 안착홈(1131S4a)에 위치할 수 있다. 그리고 제1 돌기홈(PH1)에는 틸팅 가이드부(1141)의 제1 돌출부(PR1)가 수용될 수 있다. 이에, 제1 돌출부(PR1)는 제1 돌기홈(PH1)과 접할 수 있다. 제1 돌기홈(PH1)은 최대 직경이 제1 돌출부(PR1)의 최대 직경에 대응할 수 있다. 이는 제2 돌기홈(PH2)과 제2 돌출부(PR2)에도 동일하게 적용될 수 있다. 즉, 제2 돌기홈(PH2)은 최대 직경이 제2 돌출부(PR2)의 최대 직경에 대응할 수 있다. 또한, 이에, 제2 돌출부(PR2)는 제2 돌기홈(PH2)과 접할 수 있다. 이러한 구성에 의하여, 제1 돌출부(PR1)를 기준으로 제1 축 틸트와 제2 돌출부(PR2)를 기준으로 제2 축 틸트가 용이하게 일어날 수 있으며, 틸트의 반경이 향상될 수 있다.
또한, 틸팅 가이드부(1141)가 제3 방향(Z축 방향)으로 제2 부재(1131a) 및 제1 부재(1126)와 나란히 배치되어, 틸팅 가이드부(1141)가 광학 부재(1132)와 제1 방향(X축 방향)으로 중첩될 수 있다. 보다 구체적으로, 실시예에서 제1 돌출부(PR1)가 제1 방향(X축 방향)으로 광학 부재(1132)와 중첩될 수 있다. 나아가, 제1 돌출부(PR1)는 적어도 일부가 제5 코일(1152c) 또는 제5 마그넷(1151c)과 제1 방향(X축 방향)으로 중첩될 수 있다. 즉, 실시예에 따른 카메라 엑추에이터에서 틸트의 중심축인 각 돌출부가 무버(1130)의 무게 중심에 인접하게 위치할 수 있다. 이로써, 틸팅 가이드부가 홀더의 무게 중심에 인접하게 위치할 수 있다. 이로써, 실시예에 따른 카메라 엑추에이터는 홀더를 틸트시키는 모멘트 값을 최소화할 수 있고, 홀더를 틸트시키기 위해 코일부 등에 인가되는 전류의 소모량도 최소화할 수 있어 전력 소모량 및 소자의 신뢰도를 개선할 수 있다.
뿐만 아니라, 제2 자성체(1142) 및 제1 자성체(1143)는 제5 코일(1152c) 또는 광학 부재(1132)와 제1 방향(X축 방향)으로 중첩되지 않을 수 있다. 다시 말해, 실시예에서 제2 자성체(1142) 및 제1 자성체(1143)는 제5 코일(1152c) 또는 광학 부재(1132)와 제3 방향(Z축 방향)으로 이격 배치될 수 있다. 이로써, 제5 코일(1152c)은 제2 자성체(1142)와 제1 자성체(1143)로부터 전달받는 자력이 최소화될 수 있다. 이에, 실시예에 따른 카메라 엑추에이터는 상하 구동(Y축 틸트)을 용이하게 수행할 수 있으며, 소비전력을 최소화할 수 있다.
나아가, 상술한 바와 같이 제5 코일(1152c) 내측에 위치하는 제2 홀 센서(1153b)는 자속 변화를 감지하고, 이에 의해 제5 마그넷(1151c)과 제2 홀 센서(1153b) 간의 위치 센싱이 수행될 수 있다. 이 때, 제2 홀 센서(1153b)는 제2 자성체(1142) 및 제1 자성체(1143)로부터 형성된 자기장의 영향에 따라 오프셋 전압이 변경될 수 있다.
실시예에 따른 제1 카메라 엑추에이터는 제3 방향으로 제2 부재(1131a), 제2 자성체(1142), 제1 자성체(1143), 제1 부재(1126), 틸팅 가이드부(1141) 및 홀더(1131) 순으로 배치될 수 있다. 다만, 제2 자성체는 제2 부재 내에 위치하고, 제1 자성체는 제1 부재 내에 위치하는 바, 제2 부재, 제1 부재, 틸팅 가이드부, 홀더 순으로 배치될 수 있다.
그리고 실시예로 제2 자성체(1142) 및 제1 자성체(1143)는 홀더(1131)(또는 광학 부재(1132))로부터 제3 방향으로 이격 거리가 틸팅 가이드부(1141) 간의 이격 거리 대비 클 수 있다. 이로써, 홀더(1131) 하부의 제2 홀 센서(1153b)도 제2 자성체(1142) 및 제1 자성체(1143)와 소정 거리만큼 이격 배치될 수 있다. 이에, 제2 홀 센서(1153b)는 제2 자성체(1142) 및 제1 자성체(1143)로부터 형성된 자기장의 영향이 최소화되어, 홀 전압이 양 또는 음으로 집중되어 포화되는 것을 방지할 수 있다. 즉, 이러한 구성은 홀 전극이 홀 캘리브레이션(Hall Calibration)이 수행될 수 있는 범위를 가질 수 있게 한다. 나아가, 온도도 홀 센서의 전극에 영향을 받고, 온도에 따라 카메라 렌즈의 해상력이 가변하나, 실시예에서는 홀 전압이 양 또는 음으로 집중되는 경우를 방지하여 렌즈의 해상력에 대한 보상도 이에 대응하여 이루어져 해상력 저하를 용이하게 방지할 수 있다.
또한, 제2 홀 센서(1153b)의 출력(즉, 홀 전압)에 대한 오프셋(offset)을 보상하기 위한 회로 설계도 용이하게 이루어질 수 있다.
또한, 실시예에 따르면, 틸팅 가이드부(1141)는 홀더(1131)의 제4 홀더 외측면 대비 일부 영역이 제4 홀더 외측면의 외측에 위치할 수 있다.
틸팅 가이드부(1141)는 제1 돌출부(PR1) 및 제2 돌출부(PR2)를 제외하고, 베이스를 기준으로 제4 안착홈(1131S4a) 내에 안착할 수 있다. 다시 말해, 베이스의 제3 방향(Z축 방향)으로 길이는 제4 안착홈(1131S4a)의 제3 방향(Z축 방향)으로 길이보다 작을 수 있다. 이러한 구성에 의하여, 소형화를 용이하게 도모할 수 있다.
또한, 틸팅 가이드부(1141)는 제3 방향(Z축 방향)으로 최대길이가 제4 안착홈(1131S4a)의 제3 방향(Z축 방향)으로 길이보다 클 수 있다. 이에, 상술한 바와 같이, 제2 돌출부(PR2)의 끝단이 제4 홀더 외측면과 제1 부재(1126) 사이에 위치할 수 있다. 즉, 제2 돌출부(PR2)는 적어도 일부가 홀더(1131)보다 제3 방향(Z축 방향)의 반대 방향에 위치할 수 있다. 다시 말해, 홀더(1131)는 제2 돌출부(PR2)의 끝단 (제2 돌기홈과 접하는 부분)에서 제3 방향(Z축 방향)으로 소정 거리 이격될 수 있다.
이러한 구성에 의하여, 제2 부재(1131a)가 제1 부재(1126) 내측 또는 둘러싸게 위치함으로써, 공간 효율을 향상시키고 소형화가 구현될 수 있다. 나아가, 전자기력에 의한 구동(무버(1130)의 틸팅 또는 회전)이 수행되더라도 제2 부재(1131a)가 제1 부재(1126) 외측으로 돌출되지 않아 주위의 소자와의 접촉이 차단될 수 있다. 이에, 신뢰성이 개선될 수 있다.
또한, 제2 자성체(1142) 와 제1 자성체(1143) 사이에는 소정의 이격 공간이 존재할 수 있다. 다시 말해, 제2 자성체(1142)와 제1 자성체(1143)는 동일 극성으로 서로 대향할 수 있다.
도 8은 실시예에 따른 제2 카메라 엑추에이터의 사시도이고, 도 9는 실시예에 따른 제2 카메라 엑추에이터의 분해 사시도이고, 도 10은 도 8에서 DD'로 절단된 단면도이고, 도 11 및 도 12는 실시예에 따른 렌즈 어셈블리의 각 구동을 설명하는 도면이고, 도 13은 실시예에 따른 제2 카메라 엑추에이터의 구동을 설명하는 도면이다.
도 8 내지 도 10을 참조하면, 실시예에 따른 제2 카메라 엑추에이터(1200)는 렌즈부(1220), 제2 하우징(1230), 제2 구동부(1250), 베이스부(1260), 제2 기판부(1270) 및 접합부재(1280)를 포함할 수 있다. 나아가, 제2 카메라 엑추에이터(1200)는 제2 쉴드 캔(미도시됨), 탄성부(미도시됨) 및 접합부재(미도시됨)를 더 포함할 수 있다.
제2 쉴드 캔(미도시됨)은 제2 카메라 엑추에이터(1200)의 일 영역(예컨대, 최외측)에 위치하여, 후술하는 구성요소(렌즈부(1220), 제2 하우징(1230), 제2 구동부(1250), 베이스부(1260), 제2 기판부(1270) 및 이미지 센서(IS))를 감싸도록 위치할 수 있다.
이러한 제2 쉴드 캔(미도시됨)은 외부에서 발생한 전자기파를 차단 또는 저감할 수 있다. 이에 따라, 제2 구동부(1250)에서 오작동의 발생이 감소할 수 있다.
렌즈부(1220)는 제2 쉴드 캔(미도시됨) 내에 위치할 수 있다. 렌즈부(1220)는 제3 방향(Z축 방향 또는 광축 방향)을 따라 이동할 수 있다. 이에 따라 상술한 AF 기능 또는 줌 기능이 수행될 수 있다.
또한, 렌즈부(1220)는 제2 하우징(1230) 내에 위치할 수 있다. 이에, 렌즈부(1220)는 적어도 일부가 제2 하우징(1230) 내에서 광축 방향 또는 제3 방향(Z축 방향)을 따라 이동할 수 있다.
구체적으로, 렌즈부(1220)는 렌즈군(1221) 및 이동 어셈블리(1222)를 포함할 수 있다.
먼저, 렌즈군(1221)은 적어도 하나 이상의 렌즈를 포함할 수 있다. 또한, 렌즈군(1221)은 복수 개일 수 있으나, 이하에서는 하나를 기준으로 설명한다.
렌즈군(1221)은 이동 어셈블리(1222)와 결합되어 이동 어셈블리(1222)에 결합된 제1 마그넷(1252a) 및 제2 마그넷(1252b)에서 발생한 전자기력에 의해 제3 방향(Z축 방향)으로 이동할 수 있다.
실시예로, 렌즈군(1221)은 제1 렌즈군(1221a), 제2 렌즈군(1221b) 및 제3 렌즈군(1221c)을 포함할 수 있다. 제1 렌즈군(1221a), 제2 렌즈군(1221b) 및 제3 렌즈군(1221c)은 광축 방향을 따라 순차로 배치될 수 있다. 나아가, 렌즈군(1221)은 제4 렌즈군(1221d)을 더 포함할 수 있다. 제4 렌즈군(1221d)은 제3 렌즈군(1221c) 후단에 배치될 수 있다.
제1 렌즈군(1221a)은 제2-1 하우징과 결합하여 고정될 수 있다. 다시 말해, 제1 렌즈군(1221a)은 광축 방향을 따라 이동하지 않을 수 있다.
제2 렌즈군(1221b)은 제1 렌즈 어셈블리(1222a)와 결합하여 제3 방향 또는 광축 방향으로 이동할 수 있다. 제1 렌즈 어셈블리(1222a) 및 제2 렌즈군(1221b)의 이동으로 배율 조정이 수행될 수 있다.
제3 렌즈군(1221c)은 제2 렌즈 어셈블리(1222b)와 결합하여 제3 방향 또는 광축 방향으로 이동할 수 있다. 제3 렌즈군(1221)의 이동으로 초점 조정 또는 오토 포커싱이 수행될 수 있다.
다만, 이러한 렌즈군의 개수에 한정되는 것은 아니며 상술한 제4 렌즈군(1221d)이 없거나, 또는 제4 렌즈군(1121d) 이외의 추가 렌즈군 등이 더 배치될 수 있다.
이동 어셈블리(1222)는 렌즈군(1221)을 감싸는 개구 영역을 포함할 수 있다. 이러한 이동 어셈블리(1222)는 렌즈 어셈블리와 혼용하여 사용한다. 그리고 이동 어셈블리(1222)는 렌즈군(1221)과 다양한 방법에 의해 결합될 수 있다. 또한, 이동 어셈블리(1222)는 측면에 홈을 포함할 수 있으며, 상기 홈을 통해 제1 마그넷(1252a) 및 제2 마그넷(1252b)과 결합할 수 있다. 상기 홈에는 결합부재 등이 도포될 수 있다.
또한, 이동 어셈블리(1222)는 상단 및 후단에 탄성부(미도시됨)와 결합될 수 있다. 이에, 이동 어셈블리(1222)는 제3 방향(Z축 방향)으로 이동하는데 탄성부(미도시됨)로부터 지지될 수 있다. 즉, 이동 어셈블리(1222)의 위치가 유지되면서 제3 방향(Z축 방향)으로 유지될 수 있다. 탄성부(미도시됨)는 판스프링 등 다양한 탄성 소자로 이루어질 수 있다.
이동 어셈블리(1222)는 제2 하우징(1230) 내에 위치하여, 제1 렌즈 어셈블리(1222a)와 제2 렌즈 어셈블리(1222b)를 포함할 수 있다.
제2 렌즈 어셈블리(1222b)에서 제3 렌즈군이 안착하는 영역은 제1 렌즈 어셈블리(1222a)의 후단에 위치할 수 있다. 다시 말해, 제2 렌즈 어셈블리(1222b)에서 제3 렌즈군(1221c)이 안착하는 영역은 제1 렌즈 어셈블리(1222a)에서 제2 렌즈군(1221b)이 안착하는 영역과 이미지 센서 사이에 위치할 수 있다.
제1 렌즈 어셈블리(1222a)와 제2 렌즈 어셈블리(1222b)에는 각각 제1 가이드부(G1)와 제2 가이드부(G2)와 마주할 수 있다. 제1 가이드부(G1)와 제2 가이드부(G2)는 후술하는 제2 하우징(1230)의 제1 측부와 제2 측부에 위치할 수 있다. 이에 대한 자세한 설명은 후술한다.
그리고 제1 렌즈 어셈블리(1222a)와 제2 렌즈 어셈블리(1222b)의 외측면에는 제2 구동 마그넷이 안착할 수 있다. 예컨대, 제2 렌즈 어셈블리(1222b)의 외측면에는 제2 마그넷(1252b)이 안착할 수 있다. 제1 렌즈 어셈블리(1222a)의 외측면에는 제1 마그넷(1252a)이 안착할 수 있다.
제2 하우징(1230)은 렌즈부(1220)와 제2 쉴드 캔(미도시됨) 사이에 배치될 수 있다. 그리고 제2 하우징(1230)은 렌즈부(1220)를 둘러싸도록 배치될 수 있다.
제2 하우징(1230)은 제2-1 하우징(1231) 및 제2-2 하우징(1232)을 포함할 수 있다. 제2-1 하우징(1231)은 제1 렌즈군(1221a)과 결합하고, 상술한 제1 카메라 엑추에이터와도 결합할 수 있다. 제2-1 하우징(1231)은 제2-2 하우징(1232)의 전방에 위치할 수 있다. 제2-1 하우징(1231)은 '전방 하우징 부재' 또는 '제1 하우징 부재'로 칭하고, 제2-2 하우징(1232)은 '후방 하우징 부재' 또는 '제2 하우징 부재'로 칭할 수 있다. 나아가, 제2-2 하우징(1232)은 후술하는 바와 같이 제1 서브 하우징(1232a)과 제2 서브 하우징(1232b)을 포함할 수 있다.
그리고 제2-2 하우징(1232)은 제2-1 하우징(1231)의 후단에 위치할 수 있다. 제2-2 하우징(1232)의 내부에 렌즈 어셈블리가 안착할 수 있다.
제2 하우징(1230)(또는 제2-2 하우징(1232))은 측부에 홀이 형성될 수 있다. 상기 홀에는 제1 코일(1251a) 및 제2 코일(1251b)이 배치될 수 있다. 상기 홀은 상술한 이동 어셈블리(1222)의 홈에 대응하도록 위치할 수 있다.
실시예로, 제2 하우징(1230)(특히, 제2-2 하우징(1232))은 제1 측부(1232a)와 제2 측부(1232b)를 포함할 수 있다. 제1 측부(1232a)와 제2 측부(1232b)는 서로 대응하여 위치할 수 있다. 예컨대, 제1 측부(1232a)와 제2 측부(1232b)는 제3 방향을 기준으로 대칭으로 배치될 수 있다. 제1 측부(1232a)와 제2 측부(1232b)에는 제2 구동 코일(1251)이 위치할 수 있다. 그리고 제1 측부(1232a)와 제2 측부(1232b)의 외측면에는 제2 기판부(1270)가 안착할 수 있다. 다시 말해, 제1 측부(1232a)의 외측면에는 제1 기판(1271)이 위치하고, 제2 측부(1232b)의 외측면에는 제2 기판(1272)이 위치할 수 있다.
나아가, 제1 가이드부(G1)와 제2 가이드부(G2)는 제2 하우징(1230)(특히, 제2-2 하우징(1232))의 제1 측부(1232a)와 제2 측부(1232b)에 위치할 수 있다.
제1 가이드부(G1)와 제2 가이드부(G2)는 서로 대응하여 위치할 수 있다. 예컨대, 제1 가이드부(G1)와 제2 가이드부(G2)는 제3 방향(Z축 방향)을 기준으로 대향하여 위치할 수 있다. 또한 제1 가이드부(G1)와 제2 가이드부(G2)는 제2 방향(Y축 방향)으로 적어도 일부가 서로 중첩될 수 있다.
제1 가이드부(G1)와 제2 가이드부(G2)는 적어도 하나의 홈(예, 가이드홈) 또는 리세스를 포함할 수 있다. 그리고 홈 또는 리세스에는 제1 볼(B1) 또는 제2 볼(B2)이 안착할 수 있다. 이에, 제1 볼(B1) 또는 제2 볼(B2)은 제1 가이드부(G1)의 가이드홈 또는 제2 가이드부(G2)의 가이드홈 내에서 제3 방향(Z축 방향)으로 이동할 수 있다.
또는 제1 볼(B1) 또는 제2 볼(B2)이 제2 하우징(1230)의 제1 측부(1232a) 내측에 형성된 레일 또는 제2 하우징(1230)의 제2 측부(1232b)의 내측에 형성된 레일을 따라 제3 방향으로 이동할 수 있다.
이로써, 제1 렌즈 어셈블리(1222a)와 제2 렌즈 어셈블리(1222b)는 제3 방향으로 이동할 수 있다.
실시예에 따르면, 제1 볼(B1)은 제1 렌즈 어셈블리(1222a) 또는 제2 렌즈 어셈블리(1222b)의 상측부에 배치될 수 있다. 그리고 제2 볼(B2)은 제1 렌즈 어셈블리(1222a) 또는 제2 렌즈 어셈블리(1222b)의 하측부에 배치될 수 있다. 예컨대, 제1 볼(B1)은 제2 볼(B2)의 상부에 위치할 수 있다. 따라서, 위치에 따라, 제1 볼(B1)은 제1 방향(X축 방향)을 따라 제2 볼(B2)과 적어도 일부 중첩될 수 있다.
또한, 제1 가이드부(G1)와 제2 가이드부(G2)는 제1 리세스(RS1)와 마주하는 제1 가이드홈(GG1a, GG2a)를 포함할 수 있다. 또한, 제1 가이드부(G1)와 제2 가이드부(G2)는 제2 리세스(RS2)와 마주하는 제2 가이드홈(GG1b, GG2b)를 포함할 수 있다. 제1 가이드홈(GG1a, GG2a)와 제2 가이드홈(GG1b, GG2b)은 제3 방향(Z축 방향)으로 연장된 홈일 수 있다. 그리고 제1 가이드홈(GG1a, GG2a)와 제2 가이드홈(GG1b, GG2b)은 서로 다른 형상의 홈일 수 있다. 예컨대, 제1 가이드홈(GG1a, GG2a)은 측면이 경사진 홈이고, 제2 가이드홈(GG1b, GG2b)은 측면이 저면에 수직인 홈일 수 있다.
제2 마그넷(1252b)은 제2 코일(1251b)과 마주보게 위치할 수 있다. 또한, 제1 마그넷(1252a)은 제1 코일(1251a)과 마주보게 위치할 수 있다.
탄성부(미도시됨)는 제1 탄성부재(미도시됨) 및 제2 탄성부재(미도시됨)를 포함할 수 있다. 제1 탄성부재(미도시됨)는 이동 어셈블리(1222)의 상면과 결합될 수 있다. 제2 탄성부재(미도시됨)는 이동 어셈블리(1222)의 하면과 결합할 수 있다. 또한, 제1 탄성부재(미도시됨)와 제2 탄성부재(미도시됨)는 상술한 바와 같이 판 스프링으로 형성될 수 있다. 또한, 제1 탄성부재(미도시됨)와 제2 탄성부재(미도시됨)는 이동 어셈블리(1222)의 이동에 대한 탄성을 제공할 수 있다. 다만, 상술한 위치에 한정되는 것은 아니며, 탄성부는 다양한 위치에 배치될 수 있다.
그리고 제2 구동부(1250)는 렌즈부(1220)를 제3 방향(Z축 방향)으로 이동시키는 구동력을 제공할 수 있다. 이러한 제2 구동부(1250)는 제2 구동 코일(1251) 및 제2 구동 마그넷(1252)을 포함할 수 있다. 나아가, 제2 구동부(1250)는 제2 홀 센서부를 더 포함할 수 있다. 제2 홀 센서부(1253)는 적어도 하나의 제4 홀 센서(1253a)를 포함하고, 제2 구동 코일(1251)의 내측 또는 외측에 위치할 수 있다.
제2 구동 코일(1251) 및 제2 구동 마그넷(1252) 간에 형성된 전자기력으로 이동 어셈블리가 제3 방향(Z축 방향)으로 이동할 수 있다.
제2 구동 코일(1251)은 제1 코일(1251a) 및 제2 코일(1251b)을 포함할 수 있다. 제1 코일(1251a) 및 제2 코일(1251b)은 제2 하우징(1230)의 측부에 형성된 홀 내에 배치될 수 있다. 그리고 제1 코일(1251a) 및 제2 코일(1251b)은 제2 기판부(1270)와 전기적으로 연결될 수 있다. 이에, 제1 코일(1251a) 및 제2 코일(1251b)은 제2 기판부(1270)를 통해 전류 등을 공급받을 수 있다.
제2 구동 마그넷(1252)은 제1 마그넷(1252a) 및 제2 마그넷(1252b)을 포함할 수 있다. 제1 마그넷(1252a) 및 제2 마그넷(1252b)은 이동 어셈블리(1222)의 상술한 홈에 배치될 수 있으며, 제1 코일(1251a) 및 제2 코일(1251b)에 대응하도록 위치할 수 있다.
베이스부(1260)는 렌즈부(1220)와 이미지 센서(IS) 사이에 위치할 수 있다. 베이스부(1260)는 필터 등의 구성요소가 고정될 수 있다. 또한, 베이스부(1260)는 상술한 이미지 센서를 둘러싸도록 배치될 수 있다. 이러한 구성에 의하여, 이미지 센서는 이물질 등으로부터 자유로워지므로, 소자의 신뢰성이 개선될 수 있다. 다만 이하 일부 도면에서는 이를 제거하고 설명한다.
또한, 제2 카메라 엑추에이터(1200)는 줌(Zoom) 엑추에이터 또는 AF(Auto Focus) 엑추에이터일 수 있다. 예를 들어, 제2 카메라 엑추에이터는 하나 또는 복수의 렌즈를 지지하며 소정의 제어부의 제어신호에 따라 렌즈를 움직여 오토 포커싱 기능 또는 줌 기능을 수행할 수 있다.
그리고 제2 카메라 엑추에이터는 고정줌 또는 연속줌일 수 있다. 예컨대, 제2 카메라 엑추에이터는 렌즈군(1221)의 이동을 제공할 수 있다.
뿐만 아니라, 제2 카메라 엑추에이터는 복수 개의 렌즈 어셈블리로 이루어질 수 있다. 예컨대, 제2 카메라 엑추에이터는 제1 렌즈 어셈블리(1222a), 제2 렌즈 어셈블리(1222b) 이외에 제3 렌즈 어셈블리(미도시됨), 및 가이드 핀(미도시됨) 중 적어도 하나 이상이 배치될 수 있다. 이에 대해서는 상술한 내용이 적용될 수 있다. 이에, 제2 카메라 엑추에이터는 제2 구동부를 통해 고배율 주밍 기능을 수행할 수 있다. 예를 들어, 제1 렌즈 어셈블리(1222a)와 제2 렌즈 어셈블리(1222b)는 제2 구동부와 가이드 핀(미도시됨)을 통해 이동하는 이동 렌즈(moving lens)일 수 있으며, 제3 렌즈 어셈블리(미도시됨)는 고정 렌즈일 수 있으나 이에 한정되는 것은 아니다. 예를 들어, 제3 렌즈 어셈블리(미도시됨)는 광을 특정 위치에 결상하는 집광자(focator)의 기능을 수행할 수 있고, 제1 렌즈 어셈블리는 집광자인 제3 렌즈 어셈블리(미도시됨)에서 결상된 상을 다른 곳에 재결상시키는 변배자(variator) 기능을 수행할 수 있다. 한편, 제1 렌즈 어셈블리에서는 피사체와의 거리 또는 상거리가 많이 바뀌어서 배율변화가 큰 상태일 수 있으며, 변배자인 제1 렌즈 어셈블리는 광학계의 초점거리 또는 배율변화에 중요한 역할을 할 수 있다. 한편, 변배자인 제1 렌즈 어셈블리에서 결상되는 상점은 위치에 따라 약간 차이가 있을 수 있다. 이에 제2 렌즈 어셈블리는 변배자에 의해 결상된 상에 대한 위치 보상 기능을 할 수 있다. 예를 들어, 제2 렌즈 어셈블리는 변배자인 제2 렌즈 어셈블리(1222b)에서 결상된 상점을 실제 이미지 센서 위치에 정확히 결상시키는 역할을 수행하는 보상자(compensator) 기능을 수행할 수 있다. 다만, 이하의 도면을 기준으로 본 실시예의 구성에 대해 설명한다.
이미지 센서는 제2 카메라 엑추에이터의 내측에 또는 외측에 위치할 수 있다. 실시예로는, 도시한 바와 같이 이미지 센서가 제2 카메라 엑추에이터의 외측에 위치할 수 있다. 예컨대, 이미지 센서는 회로 기판 상에 위치할 수 있다. 이미지 센서는 광을 수신하고, 수광된 광을 전기신호로 변환할 수 있다. 또한, 이미지 센서는 복수 개의 픽셀이 어레이 형태로 이루어질 수 있다. 그리고 이미지 센서는 광축 상에 위치할 수 있다.
제2 기판부(1270)는 제2 하우징의 측부와 접할 수 있다. 예로, 제2 기판부(1270)는 제2 하우징 특히, 제2-2 하우징의 제1 측부의 외측면(제1 측면) 및 제2 측부의 외측면(제2 측면) 상에 위치하며, 제1 측면 및 제2 측면과 접할 수 있다.
도 11 및 도 12를 참조하면, 실시예에 따른 카메라 장치에서 제1 마그넷(1252a)과 제1 코일(1251a)간의 전자기력(DEM1)이 발생하여 제1 렌즈 어셈블리(1222a)가 광축에 수평하게 즉 제3 방향(Z축 방향) 또는 제3 방향에 반대 방향으로 제1 볼(B1)을 통해 하우징 내측면에 위치한 레일을 따라 이동할 수 있다.
구체적으로, 실시예에 따른 카메라 장치에서 제1 마그넷(1252a)은 예컨대, 수직 착자 방식에 의해 제1 렌즈 어셈블리(1222a)에 마련될 수 있다. 예를 들어, 실시예에서 제1 마그넷(1252a)의 N극과 S극은 모두 제1 코일(1251a)과 마주보도록 위치할 수 있다. 이에 따라 제1 코일(1251a)에서 전류가 X축 방향 또는 이의 반대 방향으로 흐르는 영역에 대응하도록 제1 마그넷(1252a)의 N극과 S극이 각각 배치될 수 있다.
실시예에서 제1 마그넷(1252a)의 N극에서 제2 방향(Y축 방향)의 반대 방향으로 자력이 가해지고, N극에 대응하는 제1 코일(1251a)에서 제1 방향(X축 방향)에 반대 방향으로 전류(DE1)가 흐르면 전자기력의 상호 작용(예로, 플레밍의 왼손법칙)에 따라 제3 방향(Z축 방향)으로 전자기력(DEM1)이 작용할 수 있다.
또한, 실시예에서 제1 마그넷(1252a)의 S극에서 제2 방향(Y축 방향)으로 자력이 가해지고, S극에 대응하는 제1 코일(1251a)에서 제1 방향(X축 방향)으로 전류(DE1)가 흐르면 전자기력의 상호 작용에 따라 Z축 방향으로 전자기력(DEM1)이 작용할 수 있다.
이 때, 제1 코일(1251a)은 제2 하우징의 측부에 고정된 상태이므로, 제1 마그넷(1252a)이 배치된 제1 렌즈 어셈블리(1222a)가 전류 방향에 따라 전 자기력(DEM1)에 의해 Z축 방향의 반대 방향으로 이동할 수 있다. 즉, 제2 구동 마그넷은 제2 구동 코일에 가해지는 전자기력의 반대 방향으로 이동할 수 있다. 또한, 전자기력의 방향은 코일의 전류 및 마그넷의 자기력에 따라 변경될 수 있다.
이에, 제1 렌즈 어셈블리(1222a)는 제3 방향 또는 광축 방향에 평행한 방향(양 방향)으로 제1 볼(B1)을 통해 하우징의 내측면에 위치한 레일을 따라 이동할 수 있다. 이 때, 전자기력(DEM1)은 제1 코일(1251a)에 가해지는 전류(DE1)에 비례하여 제어될 수 있다.
제1 렌즈 어셈블리(1222a) 또는 제2 렌즈 어셈블리(1222b)는 제1 볼(B1)이 안착하는 제1 리세스(RS1)를 포함할 수 있다. 또한, 제1 렌즈 어셈블리(1222a) 또는 제2 렌즈 어셈블리(1222b)는 제2 볼(B2)이 안착하는 제2 리세스(RS2)를 포함할 수 있다. 제1 리세스(RS1)는 광축 방향(Z축 방향)으로 길이가 기설정될 수 있다. 또한, 제2 리세스(RS2)는 광축 방향(Z축 방향)으로 길이가 기설정될 수 있다. 이에 따라, 제1 볼(B1)과 제2 볼(B2)은 각 리세스 내에서 광축 방향으로 이동거리가 조절될 수 있다. 다시 말해, 제1 리세스(RS1) 또는 제2 리세스(Rs2)는 제1,2 볼(B1, B2)에 대한 스토퍼일 수 있다.
그리고 실시예에 따른 카메라 장치에서 제2 마그넷(1252b)은 예컨대, 수직 착자 방식 등에 의해 제2 렌즈 어셈블리(1222b)에 마련될 수 있다. 예를 들어, 실시예에서 제2 마그넷(1252b)의 N 극과 S극은 모두 제2 코일(1251b)과 마주보도록 위치할 수 있다. 이에 따라 제2 코일(1251b)에서 전류가 X축 방향 또는 그 반대 방향으로 흐르는 영역에 대응하도록 제2 마그넷(1252b)의 N극과 S극이 각각 배치될 수 있다.
실시예에서 제2 마그넷(1252b)의 N극에서 제2 방향(Y축 방향)으로 자력(DM2)이 가해지고, N극에 대응하는 제2 코일(1251b)에서 제1 방향(X축 방향)으로 전류(DE2)가 흐르면 전자기력의 상호 작용(예로, 플레밍의 왼손법칙)에 따라 제3 방향(Z축 방향)으로 전자기력(DEM2)이 작용할 수 있다.
또한 실시예에서 제2 마그넷(1252b)의 S극에서 제2 방향(Y축 방향)에 반대 방향으로 자력이 가해지고, S극에 대응하는 제2 코일(1251b)에서 제1 방향(X축 방향)에 반대 방향으로 전류(DE2)가 흐르면 전자기력의 상호 작용에 따라 Z축 방향으로 전자기력(DEM2)이 작용할 수 있다.
이 때, 제2 코일(1251b)은 제2 하우징의 측부에 고정된 상태이므로, 제2 마그넷(1252b)이 배치된 제2 렌즈 어셈블리(1222b)가 전류 방향에 따라 전 자기력(DEM2)에 의해 Z축 방향의 반대 방향으로 이동할 수 있다. 예컨대, 상술한 바와 같이 전자기력의 방향은 코일의 전류 및 마그넷의 자기력에 따라 변경될 수 있다. 이에, 제2 렌즈 어셈블리(1222b)는 제3 방향(Z축 방향)에 평행한 방향으로 제2 볼(B2)을 통해 제2 하우징의 내측면에 위치한 레일을 따라 이동할 수 있다. 이 때, 전자기력(DEM2)은 제2 코일(1251b)에 가해지는 전류(DE2)에 비례하여 제어될 수 있다.
도 13을 참조하면, 실시예에 따른 카메라 장치에서 제2 구동부는 렌즈부(1220)의 제1 렌즈 어셈블리(1222a)와 제2 렌즈 어셈블리(1222b)를 제3 방향(Z축 방향)을 따라 이동시키는 구동력(F3A, F3B, F4A, F4B)을 제공할 수 있다. 이러한 제2 구동부는 상술한 바와 같이 제2 구동 코일(1251) 및 제2 구동 마그넷(1252)을 포함할 수 있다. 그리고 제2 구동 코일(1251) 및 제2 구동 마그넷(1252) 간에 형성된 전자기력으로 렌즈부(1220)가 제3 방향(Z축 방향)을 따라 이동할 수 있다.
이 때, 제1 코일(1251a) 및 제2 코일(1251b)은 제2 하우징(1230)의 측부(예로, 제1 측부와 제2 측부)에 형성된 홀 내에 배치될 수 있다. 그리고 제2 코일(1251b)은 제1 기판(1271)과 전기적으로 연결될 수 있다. 제1 코일(1251a)은 제2 기판(1272)과 전기적으로 연결될 수 있다. 이에, 제1 코일(1251a) 및 제2 코일(1251b)은 제2 기판부(1270)를 통해 회로 기판(1300)의 회로 기판 상의 구동 드라이버로부터 구동 신호(예로, 전류)를 공급받을 수 있다.
이 때, 제1 코일(1251a)과 제1 마그넷(1252a) 간의 전자기력(F3A, F3B)에 의해 제1 마그넷(1252a)이 안착된 제1 렌즈 어셈블리(1222a)가 제3 방향(Z축 방향)을 따라 이동할 수 있다. 또한, 제1 렌즈 어셈블리(1222a)에 안착된 제2 렌즈군(1221b)도 제3 방향을 따라 이동할 수 있다.
그리고 제2 코일(1251b)과 제2 마그넷(1252b) 간의 전자기력(F4A, F4B)에 의해, 제2 마그넷(1252b)이 안착된 제2 렌즈 어셈블리(1222b)가 제3 방향(Z축 방향)을 따라 이동할 수 있다. 또한, 제2 렌즈 어셈블리(1222b)에 안착된 제3 렌즈군(1221c)도 제3 방향을 따라 이동할 수 있다.
이에 따라, 상술한 내용과 같이 제2 렌즈군(1221b)과 제3 렌즈군(1221c)의 이동으로 광학계의 초점거리 또는 배율변화가 이루어질 수 있다. 실시예로, 제2 렌즈군(1221b)의 이동으로 배율 변화가 이루어질 수 있다. 다시 말해, 주밍(zooming)이 이루어질 수 있다. 또한, 제3 렌즈군(1221c)의 이동으로 초점이 조정될 수 있다. 다시 말해, 오토 포커싱(auto focusing)이 이루어질 수 있다. 이러한 구성에 의해, 제2 카메라 엑추에이터는 고정줌 또는 연속줌일 수 있다.
도 14는 실시예에 따른 회로 기판을 도시한 개략도이다.
도 14를 참조하면, 상술한 바와 같이 실시예에 따른 회로기판(1300)은 제1 회로기판부(1310) 및 제2 회로기판부(1320)를 포함할 수 있다. 제1 회로기판부(1310)는 베이스의 하부에 위치하며, 베이스와 결합할 수 있다. 또한, 제1 회로기판부(1310)에는 이미지 센서(IS)가 배치될 수 있다. 그리고 제1 회로기판부(1310)와 이미지 센서(Is)는 전기적으로 연결될 수 있다.
또한, 제2 회로기판부(1320)는 베이스의 측부에 위치할 수 있다. 특히, 제2 회로기판부(1320)는 베이스의 제1 측부에 위치할 수 있다. 이에, 제2 회로기판부(1320)는 제1 측부에 인접하게 위치한 제1 코일과 인접하게 위치하여 전기적 연결이 용이하게 이루어질 수 있다.
나아가, 회로기판(1300)은 측면에 위치한 고정기판(미도시됨)을 추가로 포함할 수 있다. 이에, 회로기판(1300)이 유연 재질로 이루어지더라도 고정기판에 의해 강성을 유지하면서 베이스와 결합할 수 있다.
회로기판(1300)의 제2 회로기판부(1320)는 제2 구동부(1250)의 측부에 위치할 수 있다. 회로기판(1300)은 제1 구동부 및 제2 구동부와 전기적으로 연결될 수 있다. 예컨대, 전기적 연결은 SMT로 이루어질 수 있다. 다만, 이러한 방식에 한정되는 것은 아니다.
이러한 회로기판(1300)은 경성 인쇄 회로 기판(Rigid PCB), 연성 인쇄 회로 기판(Flexible PCB), 경연성 인쇄 회로 기판(Rigid Flexible PCB) 등 전기적으로 연결될 수 있는 배선 패턴이 있는 회로 기판을 포함할 수 있다. 다만, 이러한 종류에 한정되는 것은 아니다.
또한, 회로기판(1300)은 단말기 내의 다른 카메라 모듈 또는 단말기의 프로세서와 전기적으로 연결될 수 있다. 이를 통해, 상술한 카메라 엑추에이터 및 이를 포함하는 카메라 장치는 단말기 내에서 다양한 신호를 송수신할 수 있다.
도 15a는 실시예에 따른 제1 하우징 부재의 일 사시도이고, 도 15b는 실시예에 따른 제1 하우징 부재의 다른 사시도이다.
먼저, 상술한 바와 같이 제2 하우징은 제1 하우징 부재(1231)와 제2 하우징 부재(1232, 도 9 참조)를 포함한다. 그리고 제1 하우징 부재(1231)는 제2 하우징 부재의 전단에 위치한다. 또는, 제1 하우징 부재(1231)는 제2 하우징 부재를 기준으로 제1 카메라 엑추에이터 측에 위치할 수 있다. 또는 제2 하우징 부재는 제1 하우징 부재(1231) 대비 이미지 센서에 인접하게 위치할 수 있다.
제1 하우징 부재(1231)는 제1 부재홀(1231a)을 포함할 수 있다. 제1 부재홀(1231a)에는 상술한 제1 렌즈군(1221a, 도 9 참조)가 삽입될 수 있다.
또한, 제1 하우징 부재(1231)는 상면(1231a)과 하면(1231b)을 포함할 수 있다. 제1 하우징 부재(1231)의 상면(1231a)은 제1 카메라 엑추에이터 측과 마주할 수 있다. 제1 하우징 부재(1231)의 하면(1231b)은 이미지 센서 측과 마주할 수 있다.
제1 하우징 부재(1231)의 상면(1231a)에는 전단의 제1 카메라 엑추에이터와 결합하는 형상이 형성될 수 있다. 예컨대, 형상은 돌기, 홈 등 다양한 구조를 포함할 수 있다.
제1 하우징 부재(1231)의 하면(1231b)에는 제2 하우징 부재와 결합하기 위한 부재가 형성될 수 있다. 예컨대, 제1 하우징 부재(1231)의 하면(1231b)은 부재홈(1231bh)을 포함할 수 있다. 부재홈(1231bh)은 복수 개로, 제1 하우징 부재(1231)의 하면(1231b)의 가장자리를 따라 배치될 수 있다. 나아가, 복수 개의 부재홈(1231bh)은 제2 방향 또는 수평 방향으로 서로 이격 배치될 수 있다.
도 16a는 실시예에 따른 제2 하우징 부재의 사시도이고, 도 16b는 실시예에 따른 제2 하우징 부재의 분해 사시도이고, 도 16c는 실시예에 따른 제2 하우징 부재의 제1 서브 하우징의 사시도이고, 도 16d는 실시예에 따른 제2 하우징 부재의 제2 서브 하우징의 사시도이고, 도 16e는 실시예에 따른 제2 하우징 부재의 제2 서브 하우징의 측면도이다.
도 16a 내지 도 16e를 참조하면, 제2 하우징 부재(1232) 내에는 상술한 바와 같이 광축 방향(Z축 방향)을 따라 이동하는 제1 렌즈 어셈블리와 제2 렌즈 어셈블리가 배치될 수 있다. 이를 위해, 제2 하우징 부재(1232)는 제2 부재홀(1232h)을 포함할 수 있다. 그리고 제2 부재홀(1232h)에는 제1 렌즈 어셈블리와 제2 렌즈 어셈블리가 위치할 수 있다.
나아가, 제2 하우징 부재(1232)는 제1 서브 하우징(1232a)과 제2 서브 하우징(1232b)을 포함할 수 있다. 제1 서브 하우징(1232a)은 제1 렌즈 어셈블리가 수용되거나, 제1 렌즈 어셈블리와 결합할 수 있다. 제2 서브 하우징(1232b)은 제2 렌즈 어셈블리가 수용되거나, 제2 렌즈 어셈블리와 결합할 수 있다.
제1 서브 하우징(1232a)과 제2 서브 하우징(1232b)은 서로 결합할 수 있다. 제1 서브 하우징(1232a)과 제2 서브 하우징(1232b)은 제2 방향 또는 수평 방향을 따라 나란히 배치될 수 있다. 그리고 제1 서브 하우징(1232a)과 제2 서브 하우징(1232b)은 수평 방향으로 일부 영역에서 서로 이격될 수 있다.
제1 서브 하우징(1232a)은 제1 카메라 엑추에이터를 향해 돌출된 제1 서브 돌기부(1232ap)를 포함할 수 있다. 제2 서브 하우징(1232b)은 제1 카메라 엑추에이터를 향해 돌출된 제2 서브 돌기부(1232bp)를 포함할 수 있다.
제1 서브 돌기부(1232ap)와 제2 서브 돌기부(1232bp)는 상술한 제1 하우징 부재의 부재홈에 수용될 수 있다. 이에, 제1 하우징 부재와 제2 하우징 부재(1232)가 서로 결합할 수 있다. 나아가, 제1 하우징 부재의 부재홈에는 접합 부재 등이 도포될 수 있다. 이에, 제1 하우징 부재와 제2 하우징 부재 간의 결합력이 향상될 수 있다.
그리고 제1 서브 하우징(1232a)과 제2 서브 하우징(1232b)은 어느 하나가 수평 방향으로 연장된 결합 돌기를 포함할 수 있다. 제1 서브 하우징(1232a)과 제2 서브 하우징(1232b)은 다른 하나가 결합 돌기가 수용되는 결합홈을 포함할 수 있다. 이하에서는, 제1 서브 하우징(1232a)이 결합 돌기(UP, BP)를 포함하고, 제2 서브 하우징(1232b)이 결합홈(UH, BH)을 포함하는 것을 기준으로 설명한다.
실시예로, 제1 서브 하우징(1232a) 및 제2 서브 하우징(1232b) 중 적어도 어느 하나는 다른 하나와 마주하는 면(1232af) 또는 외측면에 배치된 접합홈(1232afh)을 포함할 수 있다.
제1 서브 하우징(1232a)은 제2 서브 하우징(1232b)과 마주하는 면 또는 내측면(1232af)을 포함할 수 있다. 마찬가지로, 제2 서브 하우징(1232b)은 제1 서브 하우징(1232a)과 마주하는 면 또는 내측면(1232bf)을 포함할 수 있다.
제1 서브 하우징(1232a)의 내측면(1232af)은 제2 서브 하우징(1232b)의 내측면(1232bf)과 마주할 수 있다. 제1 서브 하우징(1232a)의 내측면(1232af)에는 결합 돌기가 제2 방향 또는 제2 서브 하우징(1232b)을 향해 연장될 수 있다. 즉, 제1 서브 하우징(1232a)은 제2 방향으로 연장된 결합 돌기(UP, BP)를 포함할 수 있다.
그리고 제1 서브 하우징(1232a)의 내측면(1232af)에는 접합홈(1232afg)이 배치될 수 있다. 접합홈(1232afh)은 결합 돌기(UP, BP)와 인접하게 배치될 수 있다. 이러한 구성에 의하여, 도포된 접합 부재가 접합홈(1232afh) 및 결합 돌기(UP, BP)로 용이하게 이동할 수 있다. 나아가, 접합 부재가 결합 돌기(UP, BP)에 넘치게 도포되지 않을 수 있다. 또한, 접합홈(1232afh)은 돌기 또는 그루브가 추가되어 에폭시 등의 접합부재가 넘치지 않을 수 있다.
결합 돌기(UP, BP)는 상부 결합 돌기(UP)와 하부 결합 돌기(BP)를 포함할 수 있다. 상부 결합 돌기(UP)와 하부 결합 돌기(PB)는 복수 개일 수 있다.
또한, 상부 결합 돌기(UP)는 복수 개이고, 광축 방향으로 서로 이격 될 수 있다. 그리고 복수 개의 상부 결합 돌기(UP)는 서로 광축 방향(Z축 방향)으로 적어도 일부 중첩될 수 있다. 하부 결합 돌기(BP)는 복수 개이고 광축 방향으로 서로 이격될 수 있다. 그리고 복수 개의 하부 결합 돌기(BP)는 서로 광축 방향(Z축 방향)으로 적어도 일부 중첩될 수 있다.
실시예로, 상부 결합 돌기(UP)는 광축 방향으로 이격된 제1 상부 돌기(UP1)와 제2 상부 돌기(UP2)를 포함할 수 있다. 제1 상부 돌기(UP1)와 제2 상부 돌기(UP2)는 광축 방향(Z축 방향)으로 서로 적어도 일부 중첩될 수 있다. 또한, 제1 상부 돌기(UP1)와 제2 상부 돌기(UP2)는 일부 영역이 광축 방향(Z축 방향)으로 서로 어긋날 수 있다(중첩되지 않음). 이에 따라, 제1 서브 하우징(1232a)과 제2 서브 하우징(1232b) 간의 결합이 용이하게 이루어질 수 있다.
나아가, 제1 상부 돌기(UP1)의 제2 방향(Y축 방향)으로 길이(L1)는 제2 상부 돌기(UP2)의 제2 방향(Y축 방향)으로 길이(K2)와 동일할 수 있다.
또한, 변형예로, 제1 상부 돌기(UP1)의 제2 방향(Y축 방향)으로 길이(L1)는 제2 상부 돌기(UP2)의 제2 방향(Y축 방향)으로 길이(L2)와 상이할 수 있다. 이에, 결합력이 조절될 수도 있다.
그리고 실시예로, 하부 결합 돌기(BP)는 광축 방향으로 이격된 제1 하부 돌기(BP1)와 제2 하부 돌기(BP2)를 포함할 수 있다. 제1 하부 돌기(BP1)와 제2 하부 돌기(BP2)는 광축 방향(Z축 방향)으로 서로 적어도 일부 중첩될 수 있다. 또한, 제1 하부 돌기(BP1)와 제2 하부 돌기(BP2)는 일부 영역이 광축 방향(Z축 방향)으로 서로 어긋날 수 있다.
또한, 제1 하부 돌기(BP1)의 제2 방향으로 길이는 제2 하부 돌기(BP2)의 제2 방향으로 길이와 동일할 수 있다.
그리고 결합 돌기에 대응하는 결합홈은 제2 서브 하우징(1232b)의 내측면(1232bf)에 위치할 수 있다. 결합홈(UH, BH)는 상부홈(UH)과 하부홈(BH)을 포함할 수 있다. 그리고 상부홈(UH)은 광축 방향을 따라 이격된 제1 상부홈(UH1)과 제2 상부홈(UH2)을 포함할 수 있다. 하부홈(BH)은 상부홈(UH)과 수직 방향(X축 방향)으로 이격될 수 있다. 나아가, 하부홈(BH)은 상부홈(UH)과 수직 방향으로 중첩될 수 있다. 하부홈(BH)은 광축 방향을 따라 이격된 제1 하부홈(BH1)과 제2 하부홈(BH2)을 포함할 수 있다.
제1 상부홈(UH1)과 제2 상부홈(UH2)은 광축 방향으로 따라 적어도 일부 중첩될 수 있다. 또한, 제1 상부홈(UH1)과 제2 상부홈(UH2)은 광축 방향을 따라 일부 영역이 서로 어긋날 수 있다.
제1 상부홈(UH1)은 제1 상부 돌기(UP1)에 대응하게 위치할 수 있다. 즉, 제1 상부홈(UH1)은 제1 상부 돌기(UP1)와 마주보게 위치할 수 있다. 나아가, 제1 상부 돌기(UP1)는 제1 상부홈(UH1) 내에 삽입될 수 있다.
제2 상부홈(UH2)은 제2 상부 돌기(UP2)에 대응하게 위치할 수 있다. 즉, 제2 상부홈(UH2)은 제2 상부 돌기(UP2)와 마주보게 위치할 수 있다. 나아가, 제2 상부 돌기(UP2)는 제2 상부홈(UH2) 내에 삽입될 수 있다.
제1 하부홈(BH1)은 제1 하부 돌기(BP1)에 대응하게 위치할 수 있다. 즉, 제1 하부홈(BH1)은 제1 하부 돌기(BP1)와 마주보게 위치할 수 있다. 나아가, 제1 하부 돌기(BP1)는 제1 하부홈(BH1) 내에 삽입될 수 있다.
제2 하부홈(BH2)은 제2 하부 돌기(BP2)에 대응하게 위치할 수 있다. 즉, 제2 하부홈(BH2)은 제2 하부 돌기(BP2)와 마주보게 위치할 수 있다. 나아가, 제2 하부 돌기(BP2)는 제2 하부홈(BH2) 내에 삽입될 수 있다.
나아가, 결합 돌기(UP, BP)의 상면과 결합 돌기에 대응하는 결합홈(UH, BH)의 저면은 수평 방향(Y축 방향)으로 서로 이격될 수 있다. 즉, 결합 돌기(UP, BP)의 상면과 결합 돌기에 대응하는 결합홈(UH, BH)의 저면 사이에는 소정의 공간 또는 갭(gap)이 존재할 수 있다. 이에 대해서 자세한 설명은 후술한다.
도 17은 도 11에서 EE'로 절단하여 바라본 도면이고, 도 18은 도 11에서 FF'로 절단하여 바라본 도면이고,도 19은 도 11에서 GG'로 절단하여 바라본 도면이고, 도 20은 도 11에서 HH'로 절단하여 바라본 도면이고,도 21은 도 11에서 II'로 절단하여 바라본 도면이고,도 22은 도 11에서 JJ'로 절단하여 바라본 도면이다.
도 17 및 도 18을 참조하면, 제1 서브 돌기부(1232ap)와 제2 서브 돌기부(1232bp)는 제1 하우징 부재(1231)의 부재홈 내에 수용될 수 있다. 그리고 제1 서브 돌기부(1232ap)와 제2 서브 돌기부(1232bp) 중 적어도 하나는 제1 하우징 부재(1231)의 부재홈 내에서 부재홈의 저면과 광축 방향(Z축 방향)으로 소정 거리 이격될 수 있다. 예컨대, 제1 서브 돌기부(1232ap)는 복수 개이며, 복수 개 중 적어도 하나가 대응하는 부재홈의 저면과 광축 방향으로 소정 거리 이격될 수 있다(GP1). 또한, 제2 서브 돌기부(1232bp)는 복수 개이며, 복수 개 중 적어도 하나가 대응하는 부재홈의 저면과 광축 방향으로 소정 거리 이격될 수 있다(GP2). 이러한 구성에 의하여, 제1 서브 하우징과 제2 서브 하우징을 제1 하우징 부재에 대해 틸팅이 용이하게 이루어질 수 있다.
도 19 내지 도 22를 참조하면, 결합 돌기(UP, BP)의 상면과 결합 돌기에 대응하는 결합홈(UH, BH)의 저면은 수평 방향(Y축 방향)으로 서로 이격될 수 있다. 나아가, 결합 돌기(UP, BP)와 결합홈(Uh, BG)은 제1 방향(X축 방향), 제2 방향(Y축 방향) 및 제3 방향(Z축 방향) 중 적어도 하나의 방향으로 서로 이격될 수 있다.
즉, 결합 돌기(UP, BP)의 상면과 결합 돌기에 대응하는 결합홈(UH, BH)의 저면 사이에는 소정의 공간 또는 갭(gap)이 존재한다. 즉, 결합 돌기(UP, BP)의 최대폭은 결합홈(UH, BH)의 최소폭보다 작을 수 있다. 다시 말해, 결합 돌기(UP, BP)의 직경(크기)은 결합홈(UH, BH)의 내측면의 직경(크기)보다 작을 수 있다. 또한, 결합 돌기(UP, BP)의 외측면과 결합홈(UH, BH)의 내측면은 서로 이격될 수 있다.
보다 구체적으로, 제1 상부 돌기(UP1)는 제1 상부홈(UH1) 내에 수용될 수 있다. 그리고 제1 상부 돌기(UP1)의 상면(UP1H)은 제1 상부홈(UH1)의 전면(UH1L)과 수평 방향(Y축 방향)으로 이격될 수 있다. 이에, 제1 상부 돌기(UP1)의 상면(UP1H)과 제1 상부홈(UH1)의 전면(UH1L) 사이에는 갭(gap1)이 존재할 수 있다.
나아가, 제1 상부 돌기(UP1)의 최대 폭은 제1 상부홈(UH1)의 최소 폭보다 작을 수 있다. 이에, 제1 상부 돌기(UP1)의 외측면과 제1 상부홈(UH1)의 내측면은 서로 소정 거리(W1) 이격 배치될 수 있다. 이 때, 소정 거리(W1)는 0.4mm 내지 0.6mm일 수 있다. 0.4mm이하인 경우에는 제1 서브 하우징 또는 제2 서브 하우징의 틸팅이 어려울 수 있고, 0.6mm보다 큰 경우에는 제1 서브 하우징과 제2 서브 하우징 간의 결합력이 저하될 수 있다.
또한, 제2 상부 돌기(UP2)는 제2 상부홈(UH2) 내에 수용될 수 있다. 그리고 제2 상부 돌기(UP2)의 상면(UP2H)은 제2 상부홈(UH2)의 전면(UH2L)과 수평 방향(Y축 방향)으로 이격될 수 있다. 이에, 제2 상부 돌기(UP2)의 상면(UP2H)과 제2 상부홈(UH2)의 전면(UH2L) 사이에는 갭(gap2)이 존재할 수 있다.
나아가, 제2 상부 돌기(UP2)의 최대 폭은 제2 상부홈(UH2)의 최소 폭보다 작을 수 있다. 이에, 제2 상부 돌기(UP2)의 외측면과 제2 상부홈(UH2)의 내측면은 서로 소정 거리(W2) 이격 배치될 수 있다. 이 때, 소정 거리(W2)는 0.4mm 내지 0.6mm일 수 있다. 0.4mm이하인 경우에는 제1 서브 하우징 또는 제2 서브 하우징의 틸팅이 어려울 수 있고, 0.6mm보다 큰 경우에는 제1 서브 하우징과 제2 서브 하우징 간의 결합력이 저하될 수 있다.
제1 하부 돌기(BP1)는 제1 하부홈(BH1) 내에 수용될 수 있다. 그리고 제1 하부 돌기(BP1)의 상면(BP1H)은 제1 하부홈(BH1)의 전면(BH1L)과 수평 방향(Y축 방향)으로 이격될 수 있다. 이에, 제1 하부 돌기(BP1)의 상면(BP1H)과 제1 하부홈(BH1)의 전면(BH1L) 사이에는 갭(gap3)이 존재할 수 있다.
나아가, 제1 하부 돌기(BP1)의 최대 폭은 제1 하부홈(BH1)의 최소 폭보다 작을 수 있다. 이에, 제1 하부 돌기(BP1)의 외측면과 제1 하부홈(BH1)의 내측면은 서로 소정 거리(W3) 이격 배치될 수 있다. 이 때, 소정 거리(W3)는 0.4mm 내지 0.6mm일 수 있다. 0.4mm이하인 경우에는 제1 서브 하우징 또는 제2 서브 하우징의 틸팅이 어려울 수 있고, 0.6mm보다 큰 경우에는 제1 서브 하우징과 제2 서브 하우징 간의 결합력이 저하될 수 있다.
제2 하부 돌기(BP2)는 제2 하부홈(BH2) 내에 수용될 수 있다. 그리고 제2 하부 돌기(BP2)의 상면(BP2H)은 제2 하부홈(BH2)의 전면(BH2L)과 수평 방향(Y축 방향)으로 이격될 수 있다. 이에, 제2 하부 돌기(BP2)의 상면(BP2H)과 제2 하부홈(BH2)의 전면(BH2L) 사이에는 갭(gap3)이 존재할 수 있다.
나아가, 제2 하부 돌기(BP2)의 최대 폭은 제2 하부홈(BH2)의 최소 폭보다 작을 수 있다. 이에, 제2 하부 돌기(BP2)의 외측면과 제2 하부홈(BH2)의 내측면은 서로 소정 거리(W4) 이격 배치될 수 있다. 이 때, 소정 거리(W3)는 0.4mm 내지 0.6mm일 수 있다. 0.4mm이하인 경우에는 제1 서브 하우징 또는 제2 서브 하우징의 틸팅이 어려울 수 있고, 0.6mm보다 큰 경우에는 제1 서브 하우징과 제2 서브 하우징 간의 결합력이 저하될 수 있다.
또한, 결합 돌기(UP, BP)의 상면과 결합 돌기(UP, BP)에 대응하는 또는 이를 수용하는 결합홈(UH, BH)의 저면 간의 제2 방향 또는 수평 방향으로 이격 거리 또는 갭은 동일하거나 서로 상이할 수 있다.
다양한 예로, 제1 상부 돌기(UP1)의 상면(UP1H)과 제1 상부홈(UH1)의 저면(UH1L) 간의 거리(gap1)는 제2 상부 돌기(UP2)의 상면(UP2H)과 제2 상부홈(UH2)의 저면(UH2L) 간의 거리(gap2)와 상이할 수 있다. 이러한 구성에 의하여, 제1 렌즈군을 기준으로 제2 렌즈군 및 제3 렌즈군 간의 위치 조정(예, 광축을 기준으로 틸팅)하여 최적의 광학 성능(예, 광학적 전달 함수(modulation transfer function) 개선)을 제공할 수 있다. 나아가, 개선된 광학 성능을 제공하기 위해 제2 렌즈군과 제3 렌즈군의 이동을 위한 이동 부재(예, 볼)의 크기 등을 조절할 필요 없이, 제1 서브 하우징(1232a)과 제2 서브 하우징(1232b)을 광축 방향을 기준으로 틸팅만으로도 간단하게 개선된 광학 성능을 제공할 수 있다.
또한, 제1 렌즈 어셈블리(1222a)를 기준으로 제2 렌즈 어셈블리(1222b) 및 제3 렌즈 어셈블리(1222c) 중 어느 하나가 틸팅될 수 있다. 또한, 제1 렌즈 어셈블리(1222a), 제2 렌즈 어셈블리(1222b) 및 제3 렌즈 어셈블리(1222c) 중 적어도 둘은 서로 이격될 수 있다.
또한, 제2 렌즈 어셈블리(1222b)에 결합된 제2 마그넷(1252b)이 제1 마그넷보다 이미지 센서에 인접하게 위치할 수 있다. 즉, 제1 렌즈 어셈블리(1222a)와 제2 렌즈 어셈블리(1222b)가 이미지 센서에 인접하게 최대 이동한 경우에, 제2 마그넷(1252b)이 제1 마그넷 대비 후단 즉, 이미지 센서에 인접하게 위치할 수 있다. 이에, 제1 렌즈 어셈블리(1222a)는 제2 렌즈 어셈블리(1222b)보다 광축 방향을 따라 이동 거리가 더 클 수 있다.
나아가, 제1 서브 하우징(1232a)과 제1 가이드부(G1)는 도시된 바와 같이 분리되거나 또는 일체로 이루어질 수 있다. 마찬가지로, 제2 서브 하우징(1232b)과 제2 가이드부(G2)는 도시된 바와 같이 분리되거나 또는 일체로 이루어질 수 있다.
이에, 제1 서브 하우징(1232a)과 제2 서브 하우징(1232b) 각각은 광축에 대해 소정 각도로 틸팅될 수 있다. 이에 의해, 제1 서브 하우징(1232a)에 결합된 제1 렌즈 어셈블리 및 제2 렌즈군도 틸팅 또는 이동할 수 있다. 또한, 제2 서브 하우징(1232b)에 결합된 제2 렌즈 어셈블리 및 제3 렌즈군도 틸팅 또는 이동할 수 있다. 이러한 구성에 의하여, 개선된 광학 성능을 제공하는 위치로 제2 렌즈군과 제3 렌즈군이 이동될 수 있다. 따라서, 본 실시예에 따른 렌즈 구동장치 또는 카메라 엑추에이터는 용이한 조립 및 향상된 광학 성능을 제공할 수 있다.
도 23은 실시예에 따른 제2 카메라 엑추에이터의 단면도이고, 도 24는 실시예에 따른 제2 카메라 엑추에이터의 일 양태에 대한 단면도이고, 도 25는 실시예에 따른 제2 카메라 엑추에이터의 다른 양태에 대한 단면도이고, 도 26는 실시예에 따른 제2 카메라 엑추에이터의 또 다른 양태에 대한 단면도이다.
도 23 내지 도 26을 참조하면, 각 실시예에 따른 제2 카메라 엑추에이터는 후술하는 내용을 제외하고 상술한 내용이 동일하게 적용될 수 있다.
도 23을 참조하면, 상술한 바와 같이 제1 서브 하우징(1232a)은 제2 서브 하우징(1232b)과 마주하는 면 또는 내측면(1232af)을 포함할 수 있다. 마찬가지로, 제2 서브 하우징(1232b)은 제1 서브 하우징(1232a)과 마주하는 면 또는 내측면(1232bf)을 포함할 수 있다.
제1 서브 하우징(1232a)의 내측면(1232af)과 제2 서브 하우징(1232b)의 내측면(1232bf)은 서로 접하거나 소정 거리 이격될 수 있다. 즉, 제1 서브 하우징(1232a)과 제2 서브 하우징(1232b)은 소정의 유격을 가질 수 있다. 이에, 본 실시예에서 설명한 바와 같이 제1 서브 하우징(1232a)과 제2 서브 하우징(1232b)의 틸팅으로 최적의 광학 성능(MTF)을 제공하는 위치에서 서로 결합될 수 있다. 이에, 제2 카메라 엑추에이터 또는 렌즈 구동장치는 향상된 광학 성능을 제공할 수 있다. 예컨대, 최적의 광학 성능을 제공하는 위치를 측정한 이후에, 결합 부재 또는 본딩 부재(예, 에폭시)를 이용하여 1차로 제1 하우징 부재(1231), 제1 서브 하우징(1232a) 및 제2 서브 하우징(1232b)을 서로 결합할 수 있다. 그리고 결합홈과 결합돌기에 대해 접합 부재를 2차로 도포하여, 제1 서브 하우징과 제2 서브 하우징을 결합할 수 있다. 이 때, 접합 부재를 도포하고 경화함에 있어서 제1 서브 하우징과 제 서브 하우징을 광축에 대해 틸팅하여 경화할 수 있다. 예컨대, 제2 렌즈 어셈블리 또는 제3 렌즈군 후단(이미지 센서 측)에 추가 렌즈군 또는 렌즈 어셈블리가 없다면 제1 서브 하우징에 대해서만 틸팅을 수행할 수 있다. 이와 달리, 제2 렌즈 어셈블리 또는 제3 렌즈군 후단(이미지 센서 측)에 추가 렌즈군 또는 렌즈 어셈블리가 존재하는 경우, 제1 서브 하우징 및 제2 서브 하우징 모두에 대해 틸팅을 수행할 수 있다. 이로써, 볼을 통해 제1,2 렌즈 어셈블리가 광축을 따라 이동하는 경우, 가이드부 또는 리세스의 평탄도에 따라 직진도가 저하되는 문제가 발생할 수 있다. 나아가, 조립 공차에 따른 직진도 저하도 존재한다. 이에, 광학 성능 측정 이후에 다양한 크기의 복수개의 볼을 가이드부에 배치하는 경우 조립이 복잡해지나, 상술한 제1,2 서브 하우징의 틸팅 시 단순한 조립이 이루어질 수 있다. 즉, 실시예에 따르면 개선된 조립 공정이 이루어질 수 있다.
도 24 내지 도 26을 참조하면, 제1 서브 하우징(1232a)과 제2 서브 하우징(1232b) 중 적어도 하나는 광축(또는 광축 방향에 평행한 축) 또는 제1 하우징 부재(1231)를 기준으로 소정의 각도로 기울어질 수 있다.
예컨대, 도 24와 같이 제2 서브 하우징(1232b)은 광축(OX) 또는 제1 하우징 부재(1231)를 이등분하는 중심축에 대해 평행하지 않을 수 있다. 즉, 제2 서브 하우징(1232b)의 내측면(1232bf)은 광축(OX)에 대해 소정의 각도(θa)만큼 기울어질 수 있다. 이와 달리, 제1 서브 하우징(1232a)은 광축(OX)에 대해 평행할 수 있다. 즉, 제1 서브 하우징(1232a)의 내측면(1232af)은 광축(OX)과 평행하게 위치할 수 있다.
또한, 제1 서브 하우징(1232a)의 내측면(1232af)과 제2 서브 하우징(1232b)의 내측면(1232bf) 간의 이격 거리(W5)도 광축 방향을 따라 증가하거나 감소할 수 있다. 예컨대, 이격 거리(W5)는 광축 방향을 따라 점진적으로 증가할 수 있다. 다시 말해, 제1 서브 하우징(1232a)과 제2 서브 하우징(1232b) 사이의 간격은 광축 방향을 따라 증가 또는 감소할 수 있다.
예를 들어, 제1 서브 하우징(1232a)의 내측면(1232af)과 제2 서브 하우징(1232b)의 내측면(1232bf) 간의 이격 거리(W5)는 광축 방향을 따라 서로 다른 지점에서 서로 상이할 수 있다. 예컨대, 제1 카메라 엑추에이터에 인접한 영역에서 상기 이격 거리가 이미지 센서에 인접한 영역에서 이격 거리보다 클 수 있다. 또한, 제1 카메라 엑추에이터에 인접한 영역에서 상기 이격 거리가 이미지 센서에 인접한 영역에서 이격 거리보다 작을 수 있다.
도 25를 참조하면, 제1 서브 하우징(1232a)은 광축(OX) 또는 제1 하우징 부재(1231)를 이등분하는 중심축에 대해 평행하지 않을 수 있다. 즉, 제1 서브 하우징(1232a)의 내측면(1232af)은 광축(OX)에 대해 소정의 각도(θb)만큼 기울어질 수 있다. 이와 달리, 제2 서브 하우징(1232b)은 광축(OX)에 대해 평행할 수 있다. 즉, 제2 서브 하우징(1232b)의 내측면(1232bf)은 광축(OX)과 평행하게 위치할 수 있다.
또한, 제2 서브 하우징(1232b)의 내측면(1232bf)과 제1 서브 하우징(1232a)의 내측면(1232af) 간의 이격 거리(W6)도 광축 방향을 따라 증가하거나 감소할 수 있다. 예컨대, 이격 거리(W6)는 광축 방향을 따라 점진적으로 증가할 수 있다. 다시 말해, 제1 서브 하우징(1232a)과 제2 서브 하우징(1232b) 사이의 간격은 광축 방향을 따라 증가 또는 감소할 수 있다.
도 26를 참조하면, 제1 서브 하우징(1232a)은 광축(OX) 또는 제1 하우징 부재(1231)를 이등분하는 중심축에 대해 평행하지 않을 수 있다. 즉, 제1 서브 하우징(1232a)의 내측면(1232af)은 광축(OX)에 대해 소정의 각도(θd)만큼 기울어질 수 있다.
또한, 제2 서브 하우징(1232b)은 광축(OX) 또는 제1 하우징 부재(1231)를 이등분하는 중심축에 대해 평행하지 않을 수 있다. 즉, 제2 서브 하우징(1232b)의 내측면(1232bf)은 광축(OX)에 대해 소정의 각도(θc)만큼 기울어질 수 있다.
또한, 제2 서브 하우징(1232b)의 내측면(1232bf)과 제1 서브 하우징(1232a)의 내측면(1232af) 간의 이격 거리(W7)도 광축 방향을 따라 증가하거나 감소할 수 있다. 예컨대, 이격 거리(W7)는 광축 방향을 따라 점진적으로 증가할 수 있다. 마찬가지로, 제1 서브 하우징(1232a)과 제2 서브 하우징(1232b) 사이의 간격은 광축 방향을 따라 증가 또는 감소할 수 있다.
도 27는 실시예에 따른 카메라 장치가 적용된 이동 단말기의 사시도이다.
도 27를 참조하면, 실시예의 이동단말기(1500)는 후면에 제공된 카메라 장치(1000), 플래쉬모듈(1530), 자동초점장치(1510)를 포함할 수 있다.
카메라 장치(1000)는 이미지 촬영 기능 및 자동 초점 기능을 포함할 수 있다. 예컨대, 카메라 장치(1000)는 이미지를 이용한 자동 초점 기능을 포함할 수 있다.
카메라 장치(1000)는 촬영 모드 또는 화상 통화 모드에서 이미지 센서에 의해 얻어지는 정지 영상 또는 동영상의 화상 프레임을 처리한다.
처리된 화상 프레임은 소정의 디스플레이부에 표시될 수 있으며, 메모리에 저장될 수 있다. 이동단말기 바디의 전면에도 카메라(미도시)가 배치될 수 있다.
예를 들어, 카메라 장치(1000)는 제1 카메라 장치(1000)와 제2 카메라 장치(1000)를 포함할 수 있고, 제1 카메라 장치(1000A)에 의해 AF 또는 줌 기능과 함께 OIS 구현이 가능할 수 있다.
플래쉬모듈(1530)은 내부에 광을 발광하는 발광 소자를 포함할 수 있다. 플래쉬모듈(1530)은 이동단말기의 카메라 작동 또는 사용자의 제어에 의해 작동될 수 있다.
자동초점장치(1510)는 발광부로서 표면 광 방출 레이저 소자의 패키지 중의 하나를 포함할 수 있다.
자동초점장치(1510)는 레이저를 이용한 자동 초점 기능을 포함할 수 있다. 자동초점장치(1510)는 카메라 장치(1000)의 이미지를 이용한 자동 초점 기능이 저하되는 조건, 예컨대 10m 이하의 근접 또는 어두운 환경에서 주로 사용될 수 있다.
자동초점장치(1510)는 수직 캐비티 표면 방출 레이저(VCSEL) 반도체 소자를 포함하는 발광부와, 포토 다이오드와 같은 빛 에너지를 전기 에너지로 변환하는 수광부를 포함할 수 있다.
도 28은 실시예에 따른 카메라 장치가 적용된 차량의 사시도이다.
예를 들어, 도 28는 실시예에 따른 카메라 장치(1000)가 적용된 차량 운전 보조 장치를 구비하는 차량의 외관도이다.
도 28를 참조하면, 실시예의 차량(700)은, 동력원에 의해 회전하는 바퀴(13FL, 13FR), 소정의 센서를 구비할 수 있다. 센서는 카메라센서(2000)일 수 있으나 이에 한정되는 것은 아니다.
카메라(2000)는 실시예에 따른 카메라 장치(1000)가 적용된 카메라 센서일 수 있다. 실시예의 차량(700)은, 전방 영상 또는 주변 영상을 촬영하는 카메라센서(2000)를 통해 영상 정보를 획득할 수 있고, 영상 정보를 이용하여 차선 미식별 상황을 판단하고 미식별시 가상 차선을 생성할 수 있다.
예를 들어, 카메라센서(2000)는 차량(700)의 전방을 촬영하여 전방 영상을 획득하고, 프로세서(미도시)는 이러한 전방 영상에 포함된 오브젝트를 분석하여 영상 정보를 획득할 수 있다.
예를 들어, 카메라센서(2000)가 촬영한 영상에 차선, 인접차량, 주행방해물, 및 간접 도로 표시물에 해당하는 중앙 분리대, 연석, 가로수 등의 오브젝트가 촬영된 경우, 프로세서는 이러한 오브젝트를 검출하여 영상 정보에 포함시킬 수 있다. 이 때, 프로세서는 카메라센서(2000)를 통해 검출된 오브젝트와의 거리 정보를 획득하여, 영상 정보를 더 보완할 수 있다.
영상 정보는 영상에 촬영된 오브젝트에 관한 정보일 수 있다. 이러한 카메라센서(2000)는 이미지 센서와 영상 처리 모듈을 포함할 수 있다.
카메라센서(2000)는 이미지 센서(예를 들면, CMOS 또는 CCD)에 의해 얻어지는 정지 영상 또는 동영상을 처리할 수 있다.
영상 처리 모듈은 이미지 센서를 통해 획득된 정지 영상 또는 동영상을 가공하여, 필요한 정보를 추출하고, 추출된 정보를 프로세서에 전달할 수 있다.
이 때, 카메라센서(2000)는 오브젝트의 측정 정확도를 향상시키고, 차량(700)과 오브젝트와의 거리 등의 정보를 더 확보할 수 있도록 스테레오 카메라를 포함할 수 있으나 이에 한정되는 것은 아니다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 제1 하우징 부재; 및 상기 제1 하우징 부재와 결합하는 제1 서브 하우징과 제2 서브 하우징을 포함하는 제2 하우징 부재;를 포함하는 하우징;
    상기 제1 서브 하우징과 결합하고 광축 방향으로 이동하는 제1 렌즈 어셈블리 및 상기 제2 서브 하우징과 결합하고 상기 광축 방향으로 이동하는 제2 렌즈 어셈블리; 및
    상기 제1 렌즈 어셈블리 및 상기 제2 렌즈 어셈블리를 이동시키는 구동부;를 포함하는 렌즈 구동장치.
  2. 제1항에 있어서,
    상기 제1 서브 하우징 및 상기 제2 서브 하우징 중 적어도 하나는 상기 광축 방향 또는 상기 제1 하우징 부재를 기준으로 소정의 각도로 기울어진 렌즈 구동장치.
  3. 제1항에 있어서,
    상기 제1 서브 하우징과 상기 제2 서브 하우징 사이의 간격은 상기 광축 방향을 따라 증가 또는 감소하는 렌즈 구동장치.
  4. 제1항에 있어서,
    상기 제1 서브 하우징 및 상기 제2 서브 하우징 중 어느 하나는 수평 방향으로 연장된 결합 돌기;를 포함하고, 다른 하나는 상기 결합 돌기가 수용되는 결합홈;을 포함하고,
    상기 결합 돌기의 최대폭은 상기 결합홈의 최소폭보다 작은 렌즈 구동장치.
  5. 제4항에 있어서,
    상기 결합 돌기의 외측면과 상기 결합홈의 내측면은 서로 이격된 렌즈 구동장치.
  6. 제4항에 있어서,
    상기 결합 돌기는 상부 결합 돌기 및 하부 결합 돌기를 포함하고,
    상기 상부 결합 돌기는 복수 개이고 서로 상기 광축 방향으로 적어도 일부 중첩되는 렌즈 구동장치.
  7. 제6항에 있어서,
    상기 상부 결합 돌기의 상면과 상기 상부 결합 돌기에 대응하는 결합홈의 저면은 상기 수평 방향으로 서로 이격된 렌즈 구동장치.
  8. 제6항에 있어서,
    상기 상부 결합 돌기는 광축 방향으로 이격된 제1 상부 돌기와 제2 상부 돌기를 포함하고,
    상기 제1 상부 돌기의 길이는 상기 제2 상부 돌기의 길이와 동일한 렌즈 구동장치.
  9. 제8항에 있어서,
    상기 제1 상부 돌기의 상면과 상기 제1 상부 돌기에 대응하는 결합홈의 저면 간의 거리는 상기 제2 상부 돌기의 상면과 상기 제2 상부 돌기에 대응하는 결합홈의 저면 간의 거리와 상이한 렌즈 구동장치.
  10. 제1항에 있어서,
    상기 제1 서브 하우징 및 상기 제2 서브 하우징 중 적어도 어느 하나는 다른 하나와 마주하는 면 또는 내측면에 배치된 접합홈을 포함하는 렌즈 구동장치.
PCT/KR2022/018413 2021-11-25 2022-11-21 렌즈 구동장치 및 이를 포함하는 카메라 장치 WO2023096286A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0164262 2021-11-25
KR1020210164262A KR20230077225A (ko) 2021-11-25 2021-11-25 렌즈 구동장치 및 이를 포함하는 카메라 장치

Publications (1)

Publication Number Publication Date
WO2023096286A1 true WO2023096286A1 (ko) 2023-06-01

Family

ID=86539935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018413 WO2023096286A1 (ko) 2021-11-25 2022-11-21 렌즈 구동장치 및 이를 포함하는 카메라 장치

Country Status (2)

Country Link
KR (1) KR20230077225A (ko)
WO (1) WO2023096286A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036416A (ja) * 2016-08-30 2018-03-08 ミツミ電機株式会社 カメラモジュール
KR20190121950A (ko) * 2018-04-19 2019-10-29 (주) 엠디펄스 렌즈 분할 제어를 위한 카메라 모듈
KR20200012421A (ko) * 2018-07-27 2020-02-05 자화전자(주) 모듈 결합형 카메라용 액추에이터
KR20210030724A (ko) * 2019-09-10 2021-03-18 자화전자(주) 카메라 액추에이터 및 이를 포함하는 소형 카메라
KR20210041948A (ko) * 2019-10-08 2021-04-16 엘지이노텍 주식회사 카메라 액추에이터 및 이를 포함하는 카메라 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036416A (ja) * 2016-08-30 2018-03-08 ミツミ電機株式会社 カメラモジュール
KR20190121950A (ko) * 2018-04-19 2019-10-29 (주) 엠디펄스 렌즈 분할 제어를 위한 카메라 모듈
KR20200012421A (ko) * 2018-07-27 2020-02-05 자화전자(주) 모듈 결합형 카메라용 액추에이터
KR20210030724A (ko) * 2019-09-10 2021-03-18 자화전자(주) 카메라 액추에이터 및 이를 포함하는 소형 카메라
KR20210041948A (ko) * 2019-10-08 2021-04-16 엘지이노텍 주식회사 카메라 액추에이터 및 이를 포함하는 카메라 장치

Also Published As

Publication number Publication date
KR20230077225A (ko) 2023-06-01

Similar Documents

Publication Publication Date Title
WO2021107524A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2020076112A1 (ko) 카메라 액추에이터, 및 이를 포함하는 카메라 모듈
WO2020071852A1 (ko) 카메라 액추에이터 및 이를 포함하는 카메라 모듈
WO2020096257A1 (ko) 카메라 액츄에이터 및 이를 포함하는 카메라 모듈
WO2022203412A1 (ko) 액추에이터 장치
WO2020076111A1 (ko) 카메라 액추에이터 및 이를 포함하는 카메라 모듈
WO2021242079A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2021230557A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2023018076A1 (ko) 렌즈 구동장치 및 이를 포함하는 카메라 장치
WO2021071277A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2021187773A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2021221410A1 (ko) 카메라 액추에이터 및 이를 포함하는 카메라 모듈
WO2021015481A1 (ko) 카메라 액추에이터, 카메라 모듈 및 이를 포함하는 카메라 장치
WO2023096286A1 (ko) 렌즈 구동장치 및 이를 포함하는 카메라 장치
WO2023239112A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2023018145A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2022235109A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2023018143A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2023096287A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2022035192A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2023018144A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2022234958A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2023128536A1 (ko) 카메라 엑추에이터, 렌즈 이송 장치 및 이를 포함하는 카메라 장치
WO2022039463A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2024025342A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898968

Country of ref document: EP

Kind code of ref document: A1