WO2022019314A1 - リチウムバナジウム酸化物粒子群、リチウムバナジウム酸化物の造粒体及び蓄電デバイス - Google Patents

リチウムバナジウム酸化物粒子群、リチウムバナジウム酸化物の造粒体及び蓄電デバイス Download PDF

Info

Publication number
WO2022019314A1
WO2022019314A1 PCT/JP2021/027229 JP2021027229W WO2022019314A1 WO 2022019314 A1 WO2022019314 A1 WO 2022019314A1 JP 2021027229 W JP2021027229 W JP 2021027229W WO 2022019314 A1 WO2022019314 A1 WO 2022019314A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium oxide
lithium vanadium
particles
carbon
lithium
Prior art date
Application number
PCT/JP2021/027229
Other languages
English (en)
French (fr)
Inventor
勝彦 直井
和子 直井
悦郎 岩間
圭祐 松村
竜也 近藤
健治 町田
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Publication of WO2022019314A1 publication Critical patent/WO2022019314A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a group of lithium vanadium oxide particles, a granulated body of lithium vanadium oxide, and a power storage device using the group of particles or the granulated body as a positive electrode or a negative electrode.
  • a positive electrode in which a positive electrode material capable of inserting and removing lithium ions is fixed to the surface of the current collector, and a negative electrode in which a negative electrode material capable of removing and inserting lithium ions is fixed to the surface of the current collector are used.
  • a positive electrode in which an active material having an electric double layer action such as activated carbon is formed on the surface of the current collector, and a negative electrode in which a negative electrode material capable of inserting and removing lithium ions is fixed to the surface of the current collector are used.
  • These energy storage devices have advantages such as high working voltage, high energy density, light weight, and long service life, and are being actively developed as the best choice.
  • an electrode material capable of inserting and removing lithium ions for example, lithium cobalt oxide, lithium iron phosphate, lithium titanate, lithium manganese phosphate, lithium vanadium and the like are known.
  • lithium vanadium oxide represented by lithium vanadate having the chemical formula Li 3 VO 4 has a charge / discharge potential (vs Li / Li +) of lithium titanate (Li 4 Ti 5). It is lower than O 12 ) and B-type titanium oxide (TIM 2 (B)). Therefore, when lithium vanadium oxide is used as a negative electrode material for a power storage device, the power storage device achieves a high energy density.
  • this lithium vanadium oxide has a higher charge / discharge potential (vs Li / Li +) than graphite. Therefore, when lithium vanadium oxide is used as a negative electrode material for a power storage device, the power storage device can be expected to have high safety.
  • lithium vanadium oxide also has the disadvantage of low electrical conductivity in power storage devices. Therefore, carbon as a conductive auxiliary agent is compounded with lithium vanadium oxide, and the composite of lithium vanadium oxide and carbon is often used as an electrode active material.
  • An object of the present invention is to provide a group of lithium vanadium oxide particles having high input / output and a large capacity, a granulation using the particles, and a power storage device using the particles or the granulation in order to solve the above problems. That is.
  • the lithium vanadium oxide particle group according to the present invention contains lithium vanadium oxide particles, and the lithium vanadium oxide particles have a chemical formula V n O 2n-1 (3 ⁇ n) on the particle surface. It is characterized by having a magnetic phase represented by ⁇ 8).
  • the magnetic phase may be, for example, any simple substance selected from the compounds represented by V 4 O 7 or the general formula V n O 2n-1 (3 ⁇ n ⁇ 8), or a mixed phase of two or more.
  • V 4 O 7 is about 10 to 100 times the electrical conductivity of conductive carbon black. That is, this lithium vanadium oxide particle group has a characteristic that high electrical conductivity due to the magnery phase is further imparted while maintaining the performance of the active material of insertion and removal of lithium ions as lithium vanadium oxide. Therefore, the carbon content in the lithium vanadium oxide particle group can be reduced, and a large capacity can be developed while maintaining high input / output.
  • It may have carbon that is interposed between the lithium vanadium oxide particles and connects both particles.
  • carbon that is interposed between the lithium vanadium oxide particles and connects both particles.
  • the carbon interposed between the lithium vanadium oxide particles is an amorphous carbon, and may further have a graphic carbon covering the surface of the lithium vanadium oxide particles.
  • Amorphous carbon can create electron paths between lithium vanadium oxide particles. Moreover, electrons are present from amorphous carbon on the surface of lithium vanadium oxide particles, which are graphic carbon having a higher degree of graphitization and higher electrical conductivity than amorphous carbon, and are inherited by the magnery phase having the highest electrical conductivity. Therefore, the electrons are smoothly transferred to the lithium vanadium oxide particles. Moreover, the graphic carbon formed on the surface of the lithium vanadium oxide particles does not reduce the contact ratio of the lithium vanadium oxide particles or create an electron path between the lithium vanadium oxide particles. A high ion diffusion coefficient can be realized without enlarging the complex of oxide particles and carbon.
  • the carbon may be carbonized sucrose or glucose. Carbonized sucrose or glucose develops a good volume and has good output characteristics.
  • the lithium vanadium oxide may include Li 3 VO 4 doped with a tetravalent metal species. Further, the tetravalent metal species may be Si.
  • a granulated body composed of this lithium vanadium oxide particle group is also one of the embodiments of the present invention.
  • the granulated body has a capsule structure in which the inner layer is wrapped with the outer layer shell.
  • a plurality of particles of lithium vanadium oxide are present in the inner layer while retaining nanoparticles without agglomeration. Since the nanoparticles in the inner layer are not aggregated, they contribute to high input / output of the power storage device.
  • the nanoparticles in the inner layer are wrapped in an outer shell in which a plurality of particles of lithium vanadium oxide are aggregated and do not fall apart, and the moldability and shape retention of the electrode active material layer are improved.
  • the non-aggregated state in the inner layer means a state in which a plurality of particles of lithium vanadium oxide are present while maintaining grain boundaries, and the agglomerated state in the outer layer shell means that at least a part of the lithium vanadium oxide particles are present. A state in which they are connected without a grain boundary.
  • Amorphous carbon may be contained in a proportion of 3.0 or more and 8.0 wt% or less with respect to the entire granulated body. Within this range, the granulated material develops a good capacity and has good output characteristics.
  • the outer layer shell may be opened at 50 nm or more and 150 nm or less, and may have a gap portion for communicating the inner layer and the outside of the granulated body.
  • the gaps opened at 50 nm or more and 150 nm or less can allow the electrolytic solution to permeate into the inner layer. That is, even if the granulated body has a capsule structure due to the outer layer shell, lithium ions can reach the nanoparticles in the inner layer, resulting in higher input / output of the power storage device and formability and shape retention of the electrode active material layer. Is more highly compatible.
  • At least a part of the outer layer particles which are the particles of the lithium vanadium oxide in the outer layer shell may be hollow inside. Since the outer layer shell is also shaped by the electrode active material, it contributes to the development of capacity. Unlike the particles in the inner layer, the outer layer particles in the outer layer shell have a surface that is connected to other particles and is difficult to touch the electrolytic solution. The surface area that comes into contact with the particles is large, and the distance to the inside of the outer layer particles is short, so that lithium ions can be easily inserted and removed.
  • a power storage device in which the lithium vanadium oxide particle group or the granulated body is contained in the positive electrode or the negative electrode is also one of the embodiments of the present invention.
  • the granulated body When the granulated body is included, the granulated body may be included in which a part of the outer layer shell is collapsed and a part or the whole of the inner layer is exposed.
  • the inner layer particles can be exposed more to the electrolytic solution without significantly impairing the shape retention and moldability of the electrode active material layer, the capacity of the power storage device can be improved, and further high input / output can be realized.
  • input / output can be enhanced even if the amount of carbon to be composited is reduced, and a group of lithium vanadium oxide particles having high input / output and a large capacity can be obtained.
  • FIG. 3 is a selected area diffraction diagram of the edge region of the inner layer particles of the granulated body. It is an SEM photograph which shows the cross section of the electrode active material layer. It is a graph which shows the output characteristic of Example 1 and Comparative Example 1. It is a graph which shows the amount of graffiti carbon and amorphous carbon in the granulation body of Examples 1 to 3 and Comparative Example 2. It is a graph which shows the relationship between the discharge current density and the discharge capacity of the half cell of Comparative Example 2 and Examples 1 to 3. It is a graph which shows the relationship between the discharge current density and the discharge capacity of the half cell of Examples 1 and 4 to 6.
  • each lithium vanadium oxide particle 31 of the lithium vanadium oxide particle group is composited with carbon.
  • the lithium vanadium oxide is typically lithium vanadate represented by the chemical formula Li 3 VO 4.
  • Preferred is Li 3 VO 4 doped with a tetravalent metal species M, represented by the chemical formula Li 3 + x V 1-x M x O 4 , which is a solid solution of Li 3 VO 4 and Li 4 MO 4.
  • the tetravalent metal species M include Si, Ti, Ge and the like.
  • the lithium vanadium oxide doped with the tetravalent metal species M has Li 3 VO 4 as a matrix structure, and V 5+ is partially replaced with M 4+ to introduce interstitial Li.
  • the coefficient x of the metal species M is preferably 0.2 or more and 0.4 or less.
  • the lithium vanadium oxide has a single crystal structure of only the ⁇ phase in the temperature range of at least ⁇ 40 to 60 ° C. including normal temperature.
  • the crystal structure of the ⁇ phase in the lithium vanadium oxide is a so-called LISION (Lithium Super Ionic CONductor) type, and has a Pnma crystal structure. That is, the crystal of lithium vanadium oxide having a ⁇ -phase crystal structure has a tetrahedral LiO 4- coordination structure and a tetrahedral VO 4- coordination structure as basic skeletons, and an octahedral LiO 6-coordination structure. Has a structure. Since the lithium vanadium oxide crystal has a ⁇ -phase crystal structure, the mass diffusivity of lithium ions is improved. That is, in the log-log graph of the diffusion coefficient, there is no range in which the diffusion coefficient drops sharply as the capacity increases.
  • LISION Lithium Super Ionic CONductor
  • the lithium vanadium oxide particles 31 are primary particles, and a part of the particle surface is transformed into a magnery phase 34.
  • the magnety phase 34 is a vanadium oxide represented by the general formula V n O 2n-1 (3 ⁇ n ⁇ 8).
  • the magnety phase 34 is, for example, any simple substance selected from compounds represented by V 4 O 7 or the general formula V n O 2n-1 (3 ⁇ n ⁇ 8), or a mixed phase of two or more.
  • the Magneli phase 34 electrical conductivity is high, particularly V 4 O 7 is about 10 to 100 times the electrical conductivity of conductive carbon black. That is, this lithium vanadium oxide particle group has a characteristic that high electrical conductivity is further imparted by the magneri phase 34 while maintaining the performance of the active material of insertion and removal of lithium ions as lithium vanadium oxide.
  • the size of the lithium vanadium oxide particles 31 is not limited, but it is preferable that the lithium vanadium oxide particles 31 are distributed in a range of 10 nm or more and 50 nm or less.
  • Graffiti carbon 32 adheres to the surface of the lithium vanadium oxide particles 31.
  • amorphous carbon 33 exists between the lithium vanadium oxide particles 31. That is, the particle group of the lithium vanadium oxide particles 31 is composed of particles in which the lithium vanadium oxide particles 31 and carbon are composited and carbon connecting the particles.
  • Amorphous carbon 33 is also called amorphous carbon and is an amorphous carbon material. Amorphous carbon 33 generally burns in a temperature range of 200 ° C. or higher.
  • the graphic carbon 32 is a carbon having a high degree of graphitization, and carbon atoms are regularly arranged as compared with the amorphous carbon 33. The graphic carbon 32 generally burns in a temperature range of 600 ° C. or higher.
  • the graphic carbon 32 and the amorphous carbon 33 form an electron path between the lithium vanadium oxide particles 31 and improve the electrical conductivity. Further, the amorphous carbon 33 is interposed between the lithium vanadium oxide particles 31 to maintain a state in which aggregation of the lithium vanadium oxide particles 31 is suppressed.
  • the state in which aggregation is suppressed means a state in which the lithium vanadium oxide particles 31 are separated from each other, or even if the lithium vanadium oxide particles 31 are in contact with each other, the crystals are not bonded and the grain boundaries are maintained. .. In other words, the grain boundaries of the lithium vanadium oxide particles 31 can be observed with a scanning electron microscope or the like.
  • the graphic carbon 32 may be thickly adhered and the lithium vanadium oxide particles 31 may be electrically connected only by the graphic carbon 32, but the graphic carbon 32 and the lithium vanadium oxide particles 31 are combined.
  • the converted particles become huge, and the distance between the surface of the particles and the inside of the lithium vanadium oxide particles 31 becomes long.
  • the lithium vanadium oxide particles 31 are connected by the amorphous carbon 33, the diameter of the lithium vanadium oxide particles 31 covered with the graphic carbon 32 does not need to be large, and a high ion mass diffusivity can be realized.
  • the amorphous carbon 33 it is preferable to adjust the amorphous carbon 33 so that it is contained in the granulation body in a range of 3.0 wt% or more and 8.0 wt% or less with respect to the granulation body described later.
  • the content of the amorphous carbon 33 is 0.2 wt% or less with respect to the granulated body, the capacity is difficult to develop even if the current density is lowered.
  • the content of the amorphous carbon 33 is 16.2 wt% or more with respect to the granulated body, the proportion of the amorphous carbon 33 having a lower electric resistance than that of the graphic carbon 32 increases, and the output characteristics deteriorate.
  • the amorphous carbon 33 is contained in the granulated body in the range of 3.0 wt% or more and 8.0 wt% or less with respect to the granulated body, the amorphous carbon 33 is 16.2 wt% with respect to the granulated body. Compared with the case where the above is included, the capacity that can be output is high for the same current density, and the decrease in the capacity that can be output is suppressed even if the current density is high.
  • the carbon existing between the lithium vanadium oxide particles 31 does not have to be amorphous carbon 33, and a part of the carbon may be other graphitized carbon or glassy carbon. Further, the surface of the lithium vanadium oxide particles 31 may be at least partially covered with the graphic carbon 32, but it is more preferable that the entire surface is covered.
  • the amorphous carbon 33 which is amorphous and has a relatively high electric resistance, and the carbon electrons are regularly arranged between the lithium vanadium oxide particles 31 to provide electrical conductivity. Is connected so that the electric conductivity increases as it approaches the lithium vanadium oxide particles 31, such as the relatively high graphic carbon 32 and the magnetic phase 34 having high electric conductivity. Therefore, electrons can be smoothly introduced and derived into the lithium vanadium oxide particles 31.
  • the particle group of the lithium vanadium oxide particles 31 can be used as a granulator.
  • the particle group of the lithium vanadium oxide particles 31 By using the particle group of the lithium vanadium oxide particles 31 as a granule, the formability and shape retention of the electrode active material layer containing the particle group of the lithium vanadium oxide particles 31 are improved.
  • This granulation body is a true sphere and has a double structure of an outer layer shell 2 and an inner layer 3.
  • the inner layer 3 is a spherical nucleus including the center of a true sphere, and is composed of a particle group of lithium vanadium oxide particles 31.
  • the outer layer shell 2 is a shell that encloses the inner layer 3. That is, this granulated body has a capsule structure in which the inner layer 3 is surrounded by the outer layer shell 2. Both the outer layer shell 2 and the inner layer 3 are composed of particles of lithium vanadium oxide.
  • the radius of the granulated body is from the center of the inner layer 3 to the outer surface of the outer layer shell 2, and the diameter of the granulated body is preferably 1 ⁇ m or more and 10 ⁇ m or less. When the diameter of the granulated body is 1 ⁇ m or more, the moldability and shape retention of the electrode active material layer containing the granulated body are good.
  • the thickness of the outer layer shell 2 is preferably 100 nm or more and 200 nm or less.
  • the thickness exceeds 200 nm, it is possible to achieve both high input / output of the power storage device and formability and shape retention of the electrode active material layer, but the ratio of the outer layer shell 2 to the granulated body becomes large, and the ions of the granulated body become large.
  • the diffusion coefficient drops below the peak, limiting the increase in input / output of the power storage device.
  • the thickness of the outer layer shell 2 is 100 nm or more, it becomes robust enough to maintain the shape of at least a part of the outer layer shell 2 in the process of forming the electrode active material layer, and it becomes easy to form the electrode active material layer.
  • the thickness of the outer layer shell 2 is 200 nm or less, the shape of the other part can be maintained while the outer layer shell 2 is partially broken by applying pressure in the process of forming the electrode active material layer. Since the shape of a part of the outer layer shell 2 is maintained, the moldability and shape retention of the electrode active material layer can be maintained without being extremely deteriorated.
  • the inner layer 3 can be exposed by collapsing a part of the outer layer shell 2. Due to the exposure of the inner layer 3, the lithium vanadium oxide particles 31 of the inner layer 3 can be easily in contact with the electrolytic solution, and the ion diffusion coefficient is further improved.
  • the outer layer shell 2 is composed of primary particles of lithium vanadium oxide aggregated. Further, the outer layer shell 2 contains carbon in the same amount as the inner layer 3.
  • the primary particles of lithium vanadium oxide constituting the outer layer shell 2 are referred to as outer layer particles 21.
  • the lithium vanadium oxide particles 31 constituting the inner layer 3 are also hereinafter referred to as inner layer particles 31.
  • agglomeration means a state in which a part or all of the outer layer particles 21 are integrated at the crystal level and can be observed as if they are connected without grain boundaries. You just have to check the surface of. However, a gap 22 remains between some of the outer layer particles 21.
  • the gap portion 22 is a pore penetrating the outer layer shell 2 and communicates the outer side of the granulated body with the inner layer 3.
  • the gap portion 22 has a maximum opening width of 50 nm or more and 150 nm or less so that the electrolytic solution of the power storage device can pass through the outer layer shell 2.
  • the electrolytic solution can pass through the gap portion 22 having an opening of 50 nm or more, but on the other hand, when a gap of more than 150 nm is opened, the robustness of the outer layer shell 2 decreases from the peak.
  • the outer layer particles 21 have a hollow portion 23 inside. That is, the inside of the outer layer particles 21 is hollow. In the power storage device, the hollow portion 23 of the outer layer particles 21 is filled with the electrolytic solution, and the surface area of the outer layer particles 21 in contact with the electrolytic solution becomes large, so that the capacity developed in the outer layer shell 2 becomes large, and the outer layer particles 21 aggregate. Even if it is done, the ion diffusion coefficient can be improved.
  • the diameter of the internal space is preferably 5 nm or more and 30 nm or less. When the diameter of the internal space is within this range, the outer layer particles 21 are less likely to collapse, and the formability and retention of the electrode active material layer are improved.
  • the particle size of the outer layer particles 21 is preferably distributed in the range of 50 nm or more and 100 nm or less.
  • the gap portion 22 having an opening width of 50 nm or more and 150 nm or less has little influence on the robustness of the granulated body, but easily allows the electrolytic solution to pass through.
  • the particle size of the outer layer particles 21 exceeds 100 nm, the gap portion 22 becomes larger, and when the opening width of the gap portion 22 exceeds 150 nm, the robustness of the granulated body drops from the peak.
  • Carbon is contained not only in the inner layer 3 but also in the outer layer shell 2.
  • the outer layer shell 2 is also composed of a complex of outer layer particles 21 and carbon.
  • Examples of carbon in the outer layer shell 2 and the inner layer 3 include carbonized polyhydric alcohols, polymers, sugars and amino acids.
  • Examples of the polyhydric alcohol include ethylene glycol and the like
  • examples of the polymer include polyvinyl alcohol, polyalkylene oxide, polyvinylpyrrolidone and polyacrylic acid
  • examples of the saccharide include monosaccharides such as galactose, mannose or fructose, lactose, sucrose or the like.
  • Examples include small sugars such as maltose, polysaccharides such as glycogen, starch or cellulose, or derivatives thereof, and examples of amino acids include glutamate.
  • the carbon in the outer layer shell 2 and the inner layer 3 is a carbonized saccharide, and sucrose, glucose or a mixture thereof is more preferable.
  • Granulations containing carbon formed by carbonizing saccharides such as sucrose and glucose have good output characteristics. That is, the granulation body containing carbon obtained by carbonizing sucrose or glucose has a large capacity that can be output for a wide range of current densities, and can draw out a large capacity even if it is output at a high current density.
  • the particle size of this granulated product can be increased to, for example, 1 ⁇ m or more, and the moldability and shape retention of the active material slurry containing the granulated product can be improved.
  • the inner layer 3 contains a large amount of nanoparticles, the capacity of the power storage device is improved and the input / output is high.
  • the inner layer particles 31 are gathered together while maintaining grain boundaries and are not aggregated. Therefore, each particle of the inner layer particles 31 can come into contact with the electrolytic solution on the entire surface or many surfaces, the capacity of the power storage device is further improved, and the input / output is further increased.
  • at least a part of the outer layer particles 21 is connected without grain boundaries to create a robust outer layer shell 2.
  • the robust outer layer shell 2 can maintain at least a part of the shape when forming the electrode active material layer, and maintains the moldability and shape retention of the electrode active material layer without breaking the nanoparticles of the inner layer 3 into pieces. can.
  • the outer layer shell 2 has a gap portion 22 that allows the inner layer 3 and the outside of the granulated body to communicate with each other even if the outer layer particles 21 are connected without grain boundaries and become dense, electrolysis is performed from the gap portion 22 to the inner layer 3.
  • the liquid can be supplied more efficiently.
  • the outer layer shell 2 is also composed of composite particles of lithium vanadium oxide and carbon, it contributes as an electrode active material.
  • the outer layer particles 21 are hollow inside and the electrolytic solution can penetrate into the inside, the surface area of the outer layer particles 21 in contact with the electrolytic solution becomes large, and the distance to the inside of the outer layer particles 21 becomes short.
  • the capacity of the outer layer shell 2 portion can also be greatly expressed, and the movement of lithium ions in the outer layer shell 2 portion also speeds up.
  • the granulated body of this lithium vanadium oxide may be produced, for example, as follows. That is, as shown in FIG. 4, a lithium vanadium oxide is synthesized (step S01), and the obtained particles of the lithium vanadium oxide are pulverized as necessary to form nanoparticles (step S02), and the lithium vanadium oxide is formed. A carbon source is adhered to the surface of the nanoparticles of the above, and a composite of a lithium vanadium oxide and a carbon source is granulated (step S03), and the carbon source is carbonized by heating (step S04).
  • each material source is uniformly dispersed.
  • a mixing method of each material source for example, a solid phase method can be used using a mixer.
  • a physical force may be applied to the mixture of each material source by a bead mill, a rod mill, a roller mill, a stirring mill, a planetary mill, a vibration mill, a ball mill, a homogenizer, a homomixer or the like.
  • lithium vanadium oxide may be added to water and stirred well with a mixer or the like to disperse the particles.
  • the mixing ratio of each material source may be according to the stoichiometric ratio of lithium vanadium oxide.
  • the lithium source a lithium-containing compound such as lithium hydroxide, lithium hydroxide hydrate, lithium acetate, lithium nitrate, lithium carbonate, lithium chloride and lithium lactate can be used.
  • vanadium sources examples include metavanadate (NH 4 VO 3 , NaVO 3, KVO 3, etc.), vanadium oxide (V 2 O 5 , V 2 O 4 , V 2 O 3 , V 3 O 4 ), vanadium (III). Acetylacetonate, vanadium (IV) oxyacetylacetonate, vanadium oxytrichloride, vanadium tetrachloride, vanadium trichloride, polyvanazinate and the like can be used.
  • the metal type M source when the metal type M is Si, a silicon oxide such as SiO 2 or Li 2 SiO 3 , powder Si, amorphous Si, or the like can be used.
  • a heat treatment process is performed after the mixing process.
  • the heat treatment step is preferably divided into a preheating step and a firing step.
  • a lithium vanadium oxide having a ⁇ -phase crystal structure can be synthesized by a preheating step, and the metal species M can be solid-dissolved by a firing step to undergo a phase transition to the present lithium vanadium oxide having a ⁇ -phase crystal structure.
  • the mixture of each material source is heated at a temperature lower than the temperature at which the structural phase transitions from the ⁇ phase to the ⁇ phase.
  • heating is performed for about 5 hours in an atmosphere of 600 or more and 800 ° C. or less and in the air.
  • the mixture of the ⁇ -phase lithium vanadium oxide crystal synthesized by the preheating step and the material source of the tetravalent metal species M is heated at a temperature higher than the temperature at which the structural phase is transferred to the ⁇ phase. ..
  • heating is performed for about 8 hours in an atmosphere of 800 or more and 1000 ° C. or less and in the air.
  • a wet pulverization treatment may be performed using a mixer.
  • a mixer for example, lithium vanadium oxide is added to an organic solvent such as ethanol, and physical force is applied by a bead mill, rod mill, roller mill, stirring mill, planetary mill, vibration mill, ball mill, homogenizer, homomixer, etc. Just add it.
  • a spray-drying process can be used in the coating and granulation steps of step S03.
  • nanoparticles of lithium vanadium oxide are dispersed in a solution of a carbon source, and hot air is brought into contact with the dispersion to evaporate the solvent.
  • the surface of the nanoparticles of the lithium vanadium oxide is coated with a carbon source, and a granulated body of the nanoparticles of the lithium vanadium oxide whose surface is coated with the carbon source is produced.
  • the carbon source may be any material that can become carbon by heat treatment, and examples thereof include polyhydric alcohols, polymers, sugars and amino acids.
  • polyhydric alcohol include ethylene glycol and the like
  • polymer include polyvinyl alcohol, polyalkylene oxide, polyvinylpyrrolidone and polyacrylic acid
  • saccharide include monosaccharides such as galactose, mannose or fructose, lactose, sucrose or the like.
  • examples thereof include small sugars such as maltose, polysaccharides such as glycogen, starch or cellulose, or derivatives thereof
  • amino acids include glutamate.
  • any liquid that does not adversely affect the reaction can be used without particular limitation.
  • water, methanol, ethanol, isopropyl alcohol and the like can be used, and it is particularly preferable to use water.
  • Two or more kinds of solvents may be mixed and used.
  • the method for dispersing the carbon source and the nanoparticles of the lithium vanadium oxide with respect to the solvent include ultracentrifugal treatment (treatment of applying shear stress and centrifugal force to the powder in a solution), a bead mill, a homogenizer, and the like.
  • the treatment may be performed at a pressure of about 0.1 MPa at a temperature at which the carbon source is not burnt down.
  • step S04 carbon is produced by carbonizing a carbon source coated with nanoparticles of lithium vanadium oxide.
  • graphic carbon 32 is generated on the surface of the inner layer particles 31 by carbonization of the carbon source, and amorphous carbon 33 is generated between the inner layer particles 31 by carbonization of the carbon source.
  • amorphous carbon 33 is generated between the inner layer particles 31 by carbonization of the carbon source.
  • the granulated material is heated in an oxygen-free or hypoxic atmosphere so that the carbon source does not burn.
  • the oxygen-free or low-oxygen atmosphere includes an inert atmosphere and a saturated steam atmosphere, typically in vacuum, nitrogen or argon atmosphere.
  • the temperature in the atmosphere is preferably 650 or more and 750 ° C. or less, and is preferably maintained in this temperature range for 5 hours. Within this range, a granulated body having a double structure having a good outer layer shell 2 and an inner layer 3 can be obtained, and good input / output characteristics can be obtained.
  • the lithium vanadium oxide is doped with nitrogen to increase the conductivity, which is more preferable.
  • the above-mentioned granulated body of lithium vanadium oxide is a material in which lithium ions can be reversibly inserted and removed.
  • Lithium vanadium oxide has a lower charge / discharge potential (vs Li / Li +) than lithium titanate (Li 4 Ti 5 O 12 ) and B-type titanium oxide (TIO 2 (B)), and has a charge / discharge potential (vs Li /).
  • Li + is higher than graphite. Therefore, this lithium vanadium oxide granule is suitable for use as an electrode material for a power storage device.
  • a power storage device that uses lithium vanadium oxide as the negative electrode material achieves both high energy density and high safety. Further, the theoretical capacity of the capacitor using the lithium vanadium oxide crystal as the negative electrode material is higher than that of lithium titanate, and the capacitor using the lithium vanadium oxide as the negative electrode material maintains a high capacity in terms of cycle characteristics. Maintain rate and high charge / discharge efficiency.
  • Examples of power storage devices include lithium ion secondary batteries and hybrid capacitors.
  • the positive electrode has an electrode active material layer containing a lithium metal compound
  • the negative electrode has an electrode active material layer containing a granule of the present lithium vanadium oxide.
  • the hybrid capacitor the positive electrode has, for example, activated carbon
  • the negative electrode has an electrode active material layer containing granulations of the present lithium vanadium oxide.
  • the granulated body of this lithium vanadium oxide is contained in the active material slurry by being kneaded together with the binder. After the active material slurry is molded into a predetermined shape and dried, it is pressure-bonded to a current collector and rolled to produce an electrode active material layer on the negative electrode. Alternatively, the active material slurry may be applied to the current collector by a doctor blade method or the like, dried, and then rolled.
  • the granulated body has a capsule structure in which the inner layer 3 composed of nanoparticles is surrounded by the outer layer shell 2, and the particle size is 1 ⁇ m or more. Demonstrates excellent formability and retention. That is, the molded body does not easily collapse, and the applied active material slurry does not easily drip.
  • conductive materials such as aluminum, copper, iron, nickel, titanium, steel, and carbon are preferable for both the positive electrode and the negative electrode.
  • aluminum or copper having high thermal conductivity and electron conductivity is preferable.
  • shape of the current collector any shape such as a film shape, a foil shape, a plate shape, a net shape, an expanded metal shape, and a cylindrical shape can be adopted.
  • binder known binders such as polytetrafluoroethylene, polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer, polyvinyl fluoride, carboxymethyl cellulose, and spirene butadiene rubber (SBR) are used.
  • the content of the binder is preferably 1 or more and 30% by mass or less with respect to the total amount of the electrode material.
  • a press pressure of 10 to 500 MPa is applied to obtain a high-density electrode.
  • a part of the outer layer shell 2 of the granulation body is broken while maintaining the shape of the other part of the outer layer shell 2 of the granulation body by the pressing pressure. Since a part of the shape of the outer layer shell 2 remains, the inner layer particles 31 can be exposed to the electrolytic solution while maintaining the shape retention of the electrode, and the ion diffusion coefficient becomes good.
  • Examples of active materials used for the positive electrode of a secondary battery include, first, layered rock salt type LiMO 2 , layered Li 2 MnO 3- LiMO 2 solid solution, and spinel type LiM 2 O 4 (M in the formula is Mn, Fe). , Co, Ni or a combination thereof). Specific examples of these include LiCoO 2 , LiNiO 2 , LiNi 4/5 Co 1/5 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 1/2 Mn 1/2 O.
  • composite oxides such as 3.
  • Carbon may be added to the active material layer of the positive electrode as a conductive auxiliary agent.
  • the carbon can be used without particular limitation as long as it has conductivity.
  • carbon black such as Ketjen black, acetylene black, channel black, fullerene, carbon nanotube, carbon nanofiber, amorphous carbon, carbon fiber, etc.
  • Examples thereof include natural graphite, artificial graphite, graphitized Ketjen black, mesoporous carbon, and vapor phase carbon fiber.
  • Activated carbon used for the active material layer of the positive electrode of the hybrid capacitor is made from natural plant tissues such as palm shavings, synthetic resins such as phenol, and fossil fuels such as coal, coke, and pitch.
  • this active material layer includes carbon black such as ketjen black, acetylene black, and channel black, carbon nanohorns, amorphous carbon, natural graphite, artificial graphite, graphitized ketchen black, mesoporous carbon, and carbon nanotubes. , Carbon nanofibers and the like may be used.
  • the specific surface area of these carbon materials may be improved by activation treatment such as steam activation, alkali activation, zinc chloride activation, electric field activation, and opening treatment.
  • the electrolyte arranged between the positive electrode and the negative electrode in the power storage device may be an electrolytic solution held in the separator, a solid electrolyte, or a gel-like electrolyte, and may be a conventional power storage device.
  • the electrolyte used in the above can be used without particular limitation.
  • lithium such as LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 is used in a solvent such as ethylene carbonate, propylene carbonate, butylene carbonate, and dimethyl carbonate.
  • the electrolytic solution in which the salt is dissolved is used in a state of being held by a separator such as a polyolefin fiber non-woven fabric or a glass fiber non-woven fabric.
  • inorganic solid electrolytes such as Li 5 La 3 Nb 2 O 12 , Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 , Li 7 La 3 Zr 2 O 12 , Li 7 P 3 S 11, etc.
  • An organic solid electrolyte composed of a composite of a lithium salt and a polymer compound such as polyethylene oxide, polymethacrylate, and polyacrylate, and a gel-like electrolyte in which an electrolytic solution is absorbed by polyvinylidene fluoride, polyacrylonitrile, or the like are also used.
  • an electrolytic solution in which a lithium salt is dissolved in propylene carbonate or the like or an electrolytic solution in which a quaternary ammonium salt is dissolved in propylene carbonate or the like is used for the hybrid capacitor.
  • the power storage device may be so-called separatorless as long as the solid electrolyte has a thickness sufficient to prevent contact between the positive and negative electrodes and has a hardness capable of maintaining its shape by itself.
  • a carbon coat layer containing a conductive agent such as graphite may be provided between the current collector and the active material layer.
  • a carbon coat layer can be formed by applying a slurry containing a conductive agent such as graphite, a binder, or the like to the surface of the current collector and drying the slurry.
  • Example 1 a granulated body of lithium vanadium oxide represented by the chemical formula Li 3.2 V 0.8 Si 0.2 O 4 having a Si coefficient x of 0.2 was prepared as Example 1. ..
  • Powder lithium carbonate as a lithium source (Li 2 CO 3) (trade name: 3N5, Kanto Chemical Co., Inc., 24121-08) using a powder of vanadium pentoxide as a vanadium source (V 2 O 5) (trade name: Oxidation Vanadium (V), Kanto Chemical Co., Ltd., 44017-00) was used, and silicon dioxide (SiO 2 ) powder (trade name: silicon dioxide, 99.9%, Wako Pure Chemical Industries, Ltd., 192) was used as the metal type M source. -09071) was used.
  • the lithium source, vanadium source and metal species M source were mixed according to stoichiometric ratios and the mixture was calcined.
  • the dried collection was added to water together with sucrose and the solution was stirred. To the water, 33 wt% sucrose was added to the collection. Then, coating and granulation were performed using a spray dryer (BUCHI, mini spray dryer B-290 (spray dryer)). The inlet temperature was set to 160 ° C., the aspirator operating speed was set to 100% of the maximum value, the pump output was set to 25% of the maximum value, and the solution prepared using the compressed gas of nitrogen was sprayed. After coating and granulation by the spray-drying method, the obtained granulated product was exposed to a nitrogen environment at 700 ° C. for 5 hours to carbonize sucrose.
  • BUCHI mini spray dryer B-290
  • FIG. 5 (a) and 5 (b) are photographs showing a surface SEM image
  • FIG. 5 (a) is a photograph magnified at a magnification of 2,000 times
  • FIG. 5 (b) is a photograph at a magnification of 20,000 times.
  • FIG. 5 it can be confirmed that a true spherical granule having a particle size distributed in the range of 0.51 ⁇ m or more and 15 ⁇ m or less is obtained.
  • FIG. 6 is a photograph showing a cross-sectional SEM image
  • (a) is a photograph showing the entire granulated body at a magnification of 70,000
  • (b) is an outer layer shell 2 and an inner layer 3. It is a photograph with a magnification of 100,000 times that shows the vicinity of the boundary of.
  • the granulated body has an outer layer shell 2 in which at least a part of particles are connected without grain boundaries when observed in a cross-sectional SEM image, and an inner layer 3 in which the grain boundaries of the particles are visible.
  • the outer layer shell 2 had a thickness of 100 nm or more and 300 nm or less when visually measured, and the inner layer particles 31 had a particle size of 30 nm or more and 50 nm or less when visually measured.
  • FIG. 7A is a color mapping image showing the distribution of carbon atom C
  • FIG. 7B is a color mapping image showing the distribution of oxygen atom O
  • FIG. 7C is a color mapping image. It is a color mapping image which shows the distribution of a silicon atom Si
  • (d) of FIG. 7 is a color mapping image which shows the distribution of vanadium atom V.
  • carbon atoms, oxygen atoms, silicon atoms and vanadium atoms are uniformly distributed over the entire area of the outer layer shell 2 and the inner layer 3 of the granulated body without distinction. Can be confirmed. That is, it can be confirmed that the outer layer shell 2 and the inner layer 3 are composed of carbon-composite lithium vanadium oxide particles.
  • FIG. 8A is a dark-field photograph having a magnification of 40,000 times
  • FIG. 8B is a bright-field photograph having a magnification of 40,000 times.
  • a dark-field photograph shows a dark gap 22 and a light field 22 can be seen around a heavy element that is dark in the bright-field.
  • the outer layer shell 2 of the granulated body was observed with a scanning transmission electron microscope (STEM) to obtain a STEM image at a magnification of 40,000 times shown in FIG. As shown in FIG. 9, it was confirmed that the outer layer particles 21 are hollow inside and the inner space has a width of 20 nm.
  • STEM scanning transmission electron microscope
  • FIG. 10 is a TEM image of the inner layer particles 31 of the granulated body at a magnification of 500,000 times.
  • FIG. 11 is a TEM image of the inner layer 3 of the granulated body having a magnification of 400,000 times, and the edging of the inner layer particles 31 is added.
  • FIG. 10 it can be confirmed that carbon crystals are attached to the surface of the inner layer particles 31. That is, it can be confirmed that the graphic carbon 32 is attached to the surface of the inner layer particles 31.
  • FIG. 10 is a TEM image of the inner layer particles 31 of the granulated body at a magnification of 500,000 times.
  • FIG. 11 is a TEM image of the inner layer 3 of the granulated body having a magnification of 400,000 times, and the edging of the inner layer particles 31 is added.
  • FIG. 10 it can be confirmed that carbon crystals are attached to the surface of the inner layer particles 31. That is, it can be confirmed that the graphic carbon 32 is attached to the
  • the inner layer particles 31 were observed with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • a TEM image with a magnification of 200,000 times obtained as a result is shown in FIG.
  • the edge 31a of the inner layer particles 31 appears dark.
  • the darkened part is a crystal region composed of vanadium atoms and oxygen atoms by removing lithium atoms and silicon atoms from the lithium vanadium oxide.
  • FIG. 13 shows a selected area ED diagram. Obtains the actual measurement values based on the selected area ED view, results obtained by converting the measured value from the origin of the incident angle 2 ⁇ based on the distance to the diffraction point, to contain many V 4 O 7 in this crystal region I understand. That is, the magnetic phase 34 was confirmed on the surface of the inner layer particles 31.
  • the incident angle 2 ⁇ based on the distance from the origin to each diffraction point is 21.14 ° for the 103rd surface on the innermost circumference, and 26.76 ° for the 1-2-3 surface on the central side.
  • the granulated body of Example 1 contains lithium vanadium oxide and carbon, has a double structure of an outer layer shell 2 and an inner layer 3, and the inner layer 3 is composed of a plurality of particles of lithium vanadium oxide.
  • the outer layer shell 2 is formed by gathering together while maintaining the boundary, the outer layer shell 2 is formed by connecting at least a part of the particles of the lithium vanadium oxide without a grain boundary, and the outer layer shell 2 is opened at 50 nm or more and 150 nm or less and is formed with the inner layer 3. It has a gap 22 that communicates with the outside of the particles, at least a part of the outer layer particles 21 is hollow inside, the amorphous carbon 33 is interposed between the inner layer particles 31, and the graphic carbon 32 is the inner layer particles. It was confirmed that the particles were attached to the surface of 31 and that a part of the surface of the inner layer particles 31 was altered to the magnety phase 34.
  • the granulation body of Comparative Example 1 was produced in correspondence with the granulation body of Example 1.
  • a lithium vanadium oxide having a Si coefficient x of 0.2 and represented by the chemical formula Li 3.2 V 0.8 Si 0.2 O 4 was used as in Example 1.
  • it differs in that it is formed by granulating particles of a complex with multiwall carbon nanotubes (MWCNT).
  • MWCNT multiwall carbon nanotubes
  • the granulated body of Comparative Example 1 was prepared as follows. That is, the material source and the mixing ratio were the same as in Example 1, and the mixture and firing were carried out under the same method and conditions as in Example 1. After calcination, multiwall carbon nanotubes (MWCNT) were added to the collection vacuum dried at 80 ° C. overnight at a ratio of 20 wt% with respect to the collection. Then, the granulated product of Comparative Example 1 was obtained by mixing with a dry ball mill (Fritsch, Premium line P-7 (PL-7)) at a rotation speed of 300 rpm for 12 hours.
  • a dry ball mill Fritsch, Premium line P-7 (PL-7)
  • the granulation body of Comparative Example 1 was subjected to the addition of sucrose, coating and granulation by the spray dry method, and carbonization of sucrose by heating, whereas the granulation body of Example 1 was added with MWCNT and dried. It differs from the method for producing a granulated product of Example 1 in that there is no coating and granulation by a ball mill and no final heat treatment. It was
  • the granulated body of Comparative Example 1 has a structure in which MWCNT is attached to the surface of a lithium vanadium oxide represented by Li 3.2 V 0.8 Si 0.2 O 4 having a particle size of 50 or more and 500 nm or less. .. There is no magnety phase 34 on the surface.
  • the lithium vanadium oxide particles of Comparative Example 1 aggregate at various places to form many secondary particles, and MWCNTs intervene between the secondary particles.
  • most of the inner layer particles 31 which are primary particles do not aggregate, and the amorphous carbon 33 is interposed between the inner layer particles 31 which are primary particles.
  • the surface of the lithium vanadium oxide particles of Comparative Example 1 is not covered with the graphic carbon 32, and most of the surfaces of the lithium vanadium oxide particles of Comparative Example 1 are exposed. Further, the granulated body of Comparative Example 1 does not have an outer layer shell 2, and is formed only by a structure in which MWCNT is interposed between secondary particles.
  • thermogravimetric analysis (TG) of the granulated bodies of Example 1 and Comparative Example 1 was performed. That is, the granulated body was allowed to stand in an atmosphere where the temperature changed up to 1000 ° C., and the weight was measured. As a result, the granulated body of Example 1 contained 10.2 wt% of carbon with respect to the total amount of the granulated body. The granulated body of Comparative Example 1 contained 20 wt% of carbon with respect to the total amount of the granulated body.
  • Half cells were prepared using the granulated bodies of Example 1 and Comparative Example 1.
  • the half cell was a 2032 type coin cell. Specifically, polyvinylidene fluoride (PVDF) is selected as the binder, and the granulated body and the binder are stirred together to form a slurry, which is then applied to a copper foil current collector to form an electrode on the current collector. After forming the active material layer, a rolling process was performed. In the rolling process, a press pressure of 30 MPa was applied. This electrode is referred to as the working electrode W. E. And said.
  • PVDF polyvinylidene fluoride
  • the counter electrode was made of lithium metal and attached to the lower lid of the 2032 type coin cell. Opposite pole C. On E, a glass fiber separator, a gasket, and a working electrode W. E, spacer, spring, and top lid were placed in this order and crimped to prepare a cell.
  • FIG. 14 is an SEM photograph showing a cross section of the electrode active material layer of Example 1. As shown in FIG. 14, it can be confirmed that a part of the outer layer shell 2 of some of the granulated bodies collapses due to the rolling process and the inner layer 3 is exposed. Therefore, the inner layer 3 of the granulated body in which a part of the outer layer shell 2 is collapsed is filled with the electrolytic solution without passing through the gap portion 22 of the outer layer shell 2.
  • FIG. 15 is a graph showing the output characteristics of Example 1 and Comparative Example 1 obtained as a result of the measurement.
  • the half cell of Example 1 has a larger capacity than the half cell of Comparative Example 1 in the entire range of the discharge current density from 0.05 to 15 Ag -1.
  • the discharge capacity of the half cell of Comparative Example 1 is 134 mAhg -1, while that of the half cell of Example 1 is 154 mAhg -1 , and the capacity of Example 1 is higher than that of Comparative Example 1.
  • the ratio of the discharge capacity in the case of the discharge current density of 15 Ag -1 to the discharge capacity in the case where the discharge current density is as close to zero as possible is 50% in the half cell of Comparative Example 1 and 68 in the half cell of Example 1. %
  • the capacity of Example 1 is improved by 18% as compared with Comparative Example 1.
  • the half cell of Example 1 has a carbon amount reduced by 49% as compared with the half cell of Comparative Example 1, and has higher input / output than that of Comparative Example 1. That is, it can be confirmed that the granulated body of Example 1 has a higher capacity and higher input / output than Comparative Example 1 even though the inner layer 3 is wrapped in the outer layer shell 2. rice field.
  • Example 2 the granulated bodies of Examples 2 and 3 and the granulated bodies of Comparative Example 2 were prepared.
  • the granulated products of Examples 2 and 3 and the granulated products of Comparative Example 2 differ in the amount of sucrose added during the spray-drying treatment as compared with Example 1.
  • Example 1 33 wt% sucrose was added to the lithium vanadium oxide, whereas in Example 2, 20 wt% sucrose was added to the lithium vanadium oxide, and in Example 3, lithium vanadium was added.
  • 50 wt% sucrose was added to the oxide, and in Comparative Example 2, 11 wt% sucrose was added to the lithium vanadium oxide.
  • the production method and conditions other than the amount of sucrose added are common to Examples 1 to 3 and Comparative Example 2.
  • FIG. 16 is a graph showing the amounts of graphic carbon 32 and amorphous carbon 33 in the granulated bodies of Examples 1 to 3 and Comparative Example 2.
  • the amounts of graffiti carbon 32 and amorphous carbon 33 are based on thermogravimetric analysis (TG). That is, the weight of the amorphous carbon 33 is defined as the weight of the granulated bodies of Examples 1 to 3 and Comparative Example 2 reduced in the temperature range of 200 ° C. or higher and 400 ° C. or lower, and the atmospheric temperature is 600 ° C. or higher. The weight reduced in the temperature range of 800 ° C. or lower was defined as the weight of the graphic carbon 32. The amount of reduction was based on the result of thermogravimetric measurement of the granulated product produced by the same production method and the same conditions as in Example 1 except that carbon was not added.
  • TG thermogravimetric analysis
  • the amount of adhering graphic carbon 32 was almost constant regardless of the amount of sucrose added.
  • the granulated body of Comparative Example 2 contained 0.2 wt% of amorphous carbon 33.
  • the granulated body of Comparative Example 2 contained 2.2 wt% in total with the graphic carbon 32.
  • the granulated body of Example 2 contained 3.8 wt% of amorphous carbon 33.
  • the granulated body of Example 2 contained 7.0 wt% in total with the graphic carbon 32.
  • the granulated body of Example 1 contained 7.3 wt% of amorphous carbon 33.
  • the granulated body of Example 1 contained 10.2 wt% in total with the graphic carbon 32.
  • the granulated body of Example 3 contained 16.2 wt% of amorphous carbon 33.
  • the granulated body of Example 3 contained 18.3 wt% in total with the graphic carbon 32.
  • Half cells were prepared using the granulated bodies of Comparative Example 2 and Examples 1 to 3.
  • the half cell was produced by the same manufacturing method and under the same conditions as in Example 1 and Comparative Example 1.
  • the relationship between the discharge current density and the discharge capacity was measured for the half cells of Comparative Example 2 and Examples 1 to 3.
  • the measurement results are shown in FIG.
  • the half cell of Comparative Example 2 in which the amorphous carbon 33 was 0.2 wt% with respect to the entire granulated body did not develop the capacity in the entire range of the discharge current density.
  • the half cells of Examples 1 to 3 in which the amorphous carbon 33 was 3.8 wt% or more with respect to the entire granulated body the capacity was developed in the entire range of the discharge current density.
  • the amorphous carbon 33 is interposed between the inner layer particles 31 to suppress the aggregation of the inner layer particles 31, and if the electron path between the inner layer particles 31 is constructed, the inner layer 3 is wrapped by the outer layer shell 2.
  • the input / output characteristics of the power storage device using the granulated material were good.
  • the amorphous carbon 33 having a higher electric resistance than the graphic carbon 32 was 16.2 wt% with respect to the entire granulated body, so that the capacity is proportionally drawn out when the discharge current density becomes high. Has decreased.
  • the half cells of Examples 1 and 2 in which the amorphous carbon 33 is 3.8 wt% or more and 7.3 wt% or less with respect to the entire granulated body have a capacity to be drawn up to a discharge current density of about 10 Ag -1. The amount of decrease was suppressed.
  • the amount of decrease in the drawn capacity was particularly suppressed until the discharge current density was about 10 Ag -1.
  • the amorphous carbon 33 is 3.8 wt% or more and 7.3 wt% or less with respect to the entire granulated body, the balance between the suppression of aggregation of the inner layer particles 31 and the electrical resistance between the inner layer particles 31 becomes good. It was confirmed that the input / output characteristics of the power storage device using the granulated material were further improved.
  • Example 4 sucrose during the spray-drying treatment was added in Example 1, whereas glucose was added in the same weight as in Example 1.
  • Polyvinyl alcohol (PVA) was added to the granulated product of Example 5 by the same weight as that of Example 1.
  • Histidine was added to the granulated product of Example 6 by the same weight as that of Example 1.
  • the production method and conditions other than the type of carbon source are common to Examples 1 and 4 to 6.
  • Example 4 a half cell was prepared using the granulated bodies of Examples 4 to 6.
  • the half cell was produced by the same manufacturing method and under the same conditions as in Example 1.
  • the relationship between the discharge current density and the discharge capacity was measured.
  • the measurement results are shown in FIG. 18 together with the results of Example 1. As shown in FIG. 18, it can be confirmed that the capacity develops from a low current density to a high current density regardless of the type of carbon source, and in particular, Examples 1 and Implementation using the saccharides sucrose and glucose as carbon sources.
  • the half cell of Example 4 develops a large capacity in the entire range of the discharge current density as compared with Examples 5 and 6, and the half cell of Example 1 using sucrose as a carbon source has a large capacity in the entire range of the discharge current density. It was confirmed that the capacity was maintained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

高入出力及び大容量のリチウムバナジウム酸化物粒子群及びこの粒子を用いた造粒体並びにこの粒子又は造粒体を用いた蓄電デバイスを提供する。リチウムバナジウム酸化物粒子が含まれ、前記リチウムバナジウム酸化物粒子は、粒子表面に化学式V2n-1(3≦n≦8)で表されるマグネリ相を有すること、を特徴とする。マグネリ相は、例えばV若しくは一般式V2n-1(3≦n≦8)で表される化合物から選ばれる何れか単体又は2以上の混相であってもよい。

Description

リチウムバナジウム酸化物粒子群、リチウムバナジウム酸化物の造粒体及び蓄電デバイス
 本発明は、リチウムバナジウム酸化物粒子群、リチウムバナジウム酸化物の造粒体及びこの粒子群や造粒体を正極又は負極に用いた蓄電デバイスに関する。
 デジタルカメラやスマートフォンや携帯型PCの急速な普及、燃料の高騰や環境負荷に対する意識の高まり、更には自動車の動力用又はスマートグリッドの蓄電用への応用の期待により、二次電池やハイブリッドキャパシタといった蓄電デバイスの開発が活発になっている。
 二次電池には、リチウムイオンの脱挿入可能な正極材料を集電体の表面に固着させた正極、及びリチウムイオンの脱挿入可能な負極材料を集電体の表面に固着させた負極が使用されている。また、ハイブリッドキャパシタには、活性炭等の電気二重層作用を奏する活物質を集電体表面に形成した正極、リチウムイオンの脱挿入可能な負極材料を集電体の表面に固着させた負極が使用されている。これら蓄電デバイスは、高い使用電圧、高いエネルギー密度、軽量、長耐用年数などの利点を有しており、最良の選択として活発な開発が続いている。リチウムイオンの脱挿入可能な電極材料の候補としては、例えばコバルト酸リチウム、リン酸鉄リチウム、チタン酸リチウム、リン酸マンガンリチウム、バナジウム酸リチウム等が知られている。
 これらリチウムイオンの脱挿入可能な電極材料の中でも、化学式LiVOのバナジン酸リチウムに代表されるリチウムバナジウム酸化物は、充放電電位(vs Li/Li+)がチタン酸リチウム(LiTi12)及びB型酸化チタン(TiO(B))よりも低い。そのため、リチウムバナジウム酸化物を蓄電デバイスの負極材料として用いると、その蓄電デバイスは高エネルギー密度を達成する。
 一方、このリチウムバナジウム酸化物は、充放電電位(vs Li/Li+)がグラファイトよりも高い。そのため、リチウムバナジウム酸化物を蓄電デバイスの負極材料として用いると、その蓄電デバイスは高い安全性が期待できる。
 更に、リチウムバナジウム酸化物を負極材料として用いたキャパシタの理論容量は、チタン酸リチウムと比べると2倍以上であるとの報告がある。サイクル特性においても、リチウムバナジウム酸化物結晶体を負極材料として用いたキャパシタは、高い容量維持率及び高い充放電効率を維持するものである。
 但し、リチウムバナジウム酸化物は電気伝導性が低いという蓄電デバイスにおけるデメリットも有する。そこで、リチウムバナジウム酸化物に対して導電助剤としてのカーボンを複合化させ、リチウムバナジウム酸化物とカーボンの複合体を電極活物質として用いることが多い。
特開2008-77847号公報
 しかしながら、カーボン等の導電助剤を用いることで電気伝導性が改善するものの、容量を発現しないカーボンの存在によりエネルギー密度が低下してしまう問題が新たに生じる。そこで、カーボンの添加量を削減しても高入出力を維持でき、容量を向上できるリチウムバナジウム酸化物の粒子が望まれる。
 本発明の目的は、上記課題を解決すべく、高入出力及び大容量のリチウムバナジウム酸化物粒子群及びこの粒子を用いた造粒体並びにこの粒子又は造粒体を用いた蓄電デバイスを提供することである。
 上記目的を達成するため、本発明に係るリチウムバナジウム酸化物粒子群は、リチウムバナジウム酸化物粒子が含まれ、前記リチウムバナジウム酸化物粒子は、粒子表面に化学式V2n-1(3≦n≦8)で表されるマグネリ相を有すること、を特徴とする。マグネリ相は、例えばV若しくは一般式V2n-1(3≦n≦8)で表される化合物から選ばれる何れか単体又は2以上の混相であってもよい。
 マグネリ相は電気伝導性が高く、特にVは電気伝導性が導電性カーボンブラックの約10~100倍である。すなわち、このリチウムバナジウム酸化物粒子群は、リチウムバナジウム酸化物としてリチウムイオンの挿脱という活物質の性能を維持しながら、マグネリ相による高電気伝導性が更に付与された特性を有する。そのため、リチウムバナジウム酸化物粒子群に対するカーボンの含有量を少なくすることでき、高入出力を維持しながら大容量を発現させることができる。
 リチウムバナジウム酸化物粒子間に介在し両粒子を繋ぐカーボンを有するようにしてもよい。チウムバナジウム酸化物粒子の間にカーボンが介在することにより、チウムバナジウム酸化物粒子同士の接触割合を低下させて凝集を抑止し、更なる高入出力化と大容量化が達成される。
 前記リチウムバナジウム酸化物粒子間に介在する前記カーボンは、アモルファスカーボンであり、前記リチウムバナジウム酸化物粒子の表面を覆うグラフィティックカーボンを更に有するようにしてもよい。
 アモルファスカーボンによってリチウムバナジウム酸化物粒子間に電子パスを作り出すことができる。しかも、電子は、アモルファスカーボンから、アモルファスカーボンより黒鉛化度の高く電気伝導性が高いグラフィティックカーボン、リチウムバナジウム酸化物粒子の表面に存在し最も電気伝導性が高くマグネリ相に受け継がれる。従って、電子がリチウムバナジウム酸化物粒子に円滑に受け渡される。しかも、リチウムバナジウム酸化物粒子の表面に形成されるグラフィティックカーボンによってリチウムバナジウム酸化物粒子の接触割合を低下させたり、リチウムバナジウム酸化物粒子間に電子パスを作りだしたりするものではないので、リチウムバナジウム酸化物粒子とカーボンの複合体が巨大化せず、高いイオン拡散係数を実現できる。
 前記カーボンは、炭化したスクロース又はグルコースであるようにしてもよい。炭化したスクロース又はグルコースは、良好な容量を発現し、また出力特性が良好となる。
 前記リチウムバナジウム酸化物は、4価の金属種がドープされたLiVOを含むようにしてもよい。また、前記4価の金属種は、Siであるようにしてもよい。
 このリチウムバナジウム酸化物粒子群で構成される造粒体も本発明の態様の1つである。この造粒体は、リチウムバナジウム酸化物粒子群の各粒子が粒界を保ちながら集まって成る内層と、リチウムバナジウム酸化物粒子の少なくとも一部が粒界無く繋がって成り、前記内層を包み込む外層殻と、を有すること、を特徴とする。
 即ち、造粒体は、外層殻で内層を包み込んだカプセル構造を有する。内層には、リチウムバナジウム酸化物の複数の粒子が凝集せずにナノ粒子を保って存在する。内層のナノ粒子は、凝集していないので蓄電デバイスの高入出力化に寄与する。一方、これら内層のナノ粒子は、リチウムバナジウム酸化物の複数の粒子が凝集した外層殻で包み込まれておりバラバラにならず、電極活物質層の成形性及び保形性は良好となる。内層において凝集していない状態とは、リチウムバナジウム酸化物の複数の粒子が粒界を保って存在する状態をいい、外層殻において凝集した状態とは、リチウムバナジウム酸化物の粒子の少なくとも一部が粒界無く繋がっている状態をいう。
 アモルファスカーボンは、造粒体全体に対して3.0以上8.0wt%以下の割合で含まれるようにしてもよい。この範囲であると、造粒体は良好な容量を発現し、また出力特性が良好となる。
 前記外層殻は、50nm以上150nm以下で開口し、前記内層と造粒体外部とを連通させる隙間部を有するようにしてもよい。50nm以上150nm以下で開口した隙間部は、電解液を内層へ浸透させることができる。即ち、外層殻によって造粒体がカプセル構造になっていても、内層のナノ粒子にリチウムイオンを届かせることができ、蓄電デバイスの高入出力化と電極活物質層の成形性及び保形性が更に高度に両立する。
 前記外層殻の前記リチウムバナジウム酸化物の粒子である外層粒子の少なくとも一部は、内部中空であるようにしてもよい。外層殻についても電極活物質で形性されているため、容量の発現に寄与する。外層殻の外層粒子は、内層の粒子と異なり表面が他の粒子と繋がって電解液に触れ難くなっているが、一方で電解液が貯留されるように内部中空になっているので、電解液に触れる表面積は大きく、また外層粒子の内部への距離も短く、リチウムイオンの挿脱が容易である。
 このリチウムバナジウム酸化物粒子群又は造粒体が正極又は負極に含まれる蓄電デバイスも本発明の態様の1つである。造粒体を含む場合、前記外層殻の一部が崩れて前記内層の一部又は全部が露出した前記造粒体が含まれるようにしてもよい。これにより、電極活物質層の保形成及び成形性を大きく損なうことなく、内層粒子を電解液により多く晒すことができ、蓄電デバイスの容量を向上させ、更なる高入出力化を実現できる。
 本発明によれば、複合化するカーボンの量を減らしても入出力を高めることができ、高入出力及び大容量のリチウムバナジウム酸化物粒子群を得ることができる。
リチウムバナジウム酸化物群を示す模式図である。 リチウムバナジウム酸化物の造粒体の断面図である。 外層殻の拡大図であり、外層粒子の一部は断面が描かれている。 リチウムバナジウム酸化物の造粒体の製法を示すフロチャートである。 リチウムバナジウム酸化物の造粒体の表面SEM像を示す写真である。 リチウムバナジウム酸化物の造粒体の断面SEM像を示す写真である。 SEM-EDXに基づき造粒体における各元素の分布をマッピングした写真であり、(a)は炭素原子C、(b)は酸素原子O、(c)は珪素原子Si、(d)はバナジウム原子Vの分布を示す。 造粒体の外層殻をSTEMで観察した写真であり、(a)は暗視野写真、(b)は明視野写真である。 造粒体の外層殻のSTEM像である。 造粒体の内層粒子のTEM像である。 造粒体の内層のTEM像である。 造粒体の内層粒子のTEM像である。 造粒体の内層粒子の縁領域の制限視野ED図である。 電極活物質層の断面を示すSEM写真である。 実施例1と比較例1の出力特性を示すグラフである。 実施例1乃至3及び比較例2の造粒体中のグラフィティックカーボンとアモルファスカーボンの量を示すグラフである。 比較例2並びに実施例1乃至3のハーフセルの放電電流密度と放電容量との関係を示すグラフである。 実施例1並びに実施例4乃至6のハーフセルの放電電流密度と放電容量との関係を示すグラフである。
 本発明を実施する形態について説明するが、本願発明は以下の実施形態に限定されるものでない。
 (リチウムバナジウム酸化物粒子)
 図1に示すように、リチウムバナジウム酸化物粒子群の各リチウムバナジウム酸化物粒子31はカーボンと複合化されている。リチウムバナジウム酸化物は、代表的には化学式LiVOで表されるバナジン酸リチウムである。好ましくは、4価の金属種MがドープされたLiVOであり、化学式Li3+x1-xで表され、LiVOとLiMOの固溶体である。4価の金属種Mとしては、Si、Ti又はGe等が挙げられる。
 4価の金属種Mがドープされたリチウムバナジウム酸化物は、LiVOを母構造にして、V5+がM4+と部分置換して格子間Liが導入されている。化学式Li3+x1-x中、金属種Mの係数xは好ましくは0.2以上0.4以下である。金属種Mの係数xが0.2以上0.4以下であると、常温を含む少なくとも-40~60℃の温度範囲で、本リチウムバナジウム酸化物はγ相のみの単一結晶構造を有する。
 リチウムバナジウム酸化物におけるγ相の結晶構造とは、所謂LISICON(Lithium Super Ionic CONductor)型であり、Pnma結晶構造である。即ち、γ相の結晶構造を有しているリチウムバナジウム酸化物の結晶体は、四面体のLiO配位構造及び四面体のVO配位構造を基本骨格とし、八面体のLiO配位構造を有する。リチウムバナジウム酸化物結晶体がγ相の結晶構造を有することによって、リチウムイオンの拡散係数が向上する。即ち、拡散係数の対数グラフにおいて容量の増加に伴って拡散係数が急激に落ち込む範囲が無くなる。
 図1に示すように、リチウムバナジウム酸化物粒子31は一次粒子であり、粒子表面の一部はマグネリ相34に変質している。マグネリ相34は、一般式V2n-1(3≦n≦8)で表されるバナジウム酸化物である。このマグネリ相34は、例えばV若しくは一般式V2n-1(3≦n≦8)で表される化合物から選ばれる何れか単体又は2以上の混相である。
 このマグネリ相34は、電気伝導性が高く、特にVは電気伝導性が導電性カーボンブラックの約10~100倍である。すなわち、このリチウムバナジウム酸化物粒子群は、リチウムバナジウム酸化物としてリチウムイオンの挿脱という活物質の性能を維持しながら、マグネリ相34による高電気伝導性が更に付与された特性を有する。
 このリチウムバナジウム酸化物粒子31は、大きさに限定はないが粒径が10nm以上50nm以下の範囲に分布することが好ましい。リチウムバナジウム酸化物粒子31の表面にはグラフィティックカーボン32が付着する。また、リチウムバナジウム酸化物粒子31間にはアモルファスカーボン33が存在する。即ち、リチウムバナジウム酸化物粒子31の粒子群は、リチウムバナジウム酸化物粒子31とカーボンとが複合化された粒子と、当該粒子を繋ぐカーボンとにより成り立っている。
 アモルファスカーボン33は、無定形炭素とも呼ばれ、非晶質の炭素材である。アモルファスカーボン33は、一般的に200℃以上の温度範囲で燃焼する。グラフィティックカーボン32は、黒鉛化度の高いカーボンであり、アモルファスカーボン33と比べて炭素原子が規則的に配列している。グラフィティックカーボン32は、一般的に600℃以上の温度範囲で燃焼する。
 グラフィティックカーボン32とアモルファスカーボン33はリチウムバナジウム酸化物粒子31間の電子パスとなっており、電気伝導性を向上させている。また、アモルファスカーボン33はリチウムバナジウム酸化物粒子31間に介在することにより、リチウムバナジウム酸化物粒子31の凝集が抑えられた状態を維持している。凝集が抑えられている状態とは、リチウムバナジウム酸化物粒子31同士が離間し、又はリチウムバナジウム酸化物粒子31が接触していても結晶は結合しておらず粒界を保っている状態をいう。換言すればリチウムバナジウム酸化物粒子31の粒界は走査電子顕微鏡等により観察可能である。
 ここで、グラフィティックカーボン32を厚く付着させて、リチウムバナジウム酸化物粒子31をグラフィティックカーボン32のみによって電気的に接続してもよいが、グラフィティックカーボン32とリチウムバナジウム酸化物粒子31とが複合化した粒子が巨大化してしまうし、当該粒子表面とリチウムバナジウム酸化物粒子31の内部との距離が長くなってしまう。一方、アモルファスカーボン33によってリチウムバナジウム酸化物粒子31間を接続すれば、グラフィティックカーボン32で覆われたリチウムバナジウム酸化物粒子31の径が大きくならずに済み、高いイオン拡散係数を実現できる。
 但し、アモルファスカーボン33は、後述の造粒体に対して3.0wt%以上8.0wt%以下の範囲で造粒体に含まれるように調整することが好ましい。アモルファスカーボン33の含有量が造粒体に対して0.2wt%以下であると、電流密度を下げても容量が発現しにくい。アモルファスカーボン33の含有量が造粒体に対して16.2wt%以上であると、グラフィティックカーボン32と比べて電気抵抗が低いアモルファスカーボン33の割合が増加し、出力特性が低下する。
 即ち、アモルファスカーボン33が造粒体に対して3.0wt%以上8.0wt%以下の範囲で造粒体に含まれていることで、アモルファスカーボン33が造粒体に対して16.2wt%以上含まれている場合と比べて、同一電流密度に対して出力できる容量が高く、電流密度が高くなっても出力できる容量の低下が抑制される。
 尚、リチウムバナジウム酸化物粒子31の間に存在するカーボンの全てがアモルファスカーボン33でなくともよく、一部が他の黒鉛化されたカーボンであっても、ガラス状のカーボンであってもよい。また、リチウムバナジウム酸化物粒子31の表面は少なくとも一部がグラフィティックカーボン32で覆われていればよいが、全表面が覆われていることがより好ましい。
 このように、リチウムバナジウム酸化物粒子31の粒子群では、リチウムバナジウム酸化物粒子31間は、非晶質で電気抵抗が比較的高いアモルファスカーボン33、炭素電子が規則的に配列して電気伝導性が比較的高いグラフィティックカーボン32、そして電気伝導性が高いマグネリ相34というように、リチウムバナジウム酸化物粒子31に近づくにつれて電気伝導性が高くなるように接続されている。従って、電子をリチウムバナジウム酸化物粒子31に円滑に導入及び導出することができる。
 図2に示すように、このリチウムバナジウム酸化物粒子31の粒子群を造粒体として用いることができる。リチウムバナジウム酸化物粒子31の粒子群を造粒体とすることで、リチウムバナジウム酸化物粒子31の粒子群を含有させた電極活物質層の成形性及び保形性が向上する。
 この造粒体は真球体であり、外層殻2と内層3の二重構造になっている。内層3は、真球体の中心を含む球状の核であり、リチウムバナジウム酸化物粒子31の粒子群によって構成されている。外層殻2は内層3を包み込む殻である。即ち、この造粒体は、外層殻2で内層3を包み込んだカプセル構造を有する。外層殻2も内層3もリチウムバナジウム酸化物の粒子を含んで構成されている。
 内層3の中心から外層殻2の外表面までを造粒体の半径とし、造粒体の直径は好ましくは1μm以上10μm以下である。造粒体の直径が1μm以上であると、造粒体を含む電極活物質層の成形性及び保形性が良好となる。外層殻2の厚みは好ましくは100nm以上200nm以下である。200nm超の厚みがあると、蓄電デバイスの高入出力化と電極活物質層の成形性及び保形性を両立できるが、造粒体に対する外層殻2の割合が大きくなり、造粒体のイオン拡散係数がピークよりも落ち、蓄電デバイスの高入出力化が限定的になってしまう。
 外層殻2の厚みは100nm以上あれば、電極活物質層を形成する過程で外層殻2の少なくとも一部の形状が維持される程度に堅牢となり、電極活物質層を形成し易くなる。そして、外層殻2の厚みが200nm以下であると、電極活物質層の形成過程において加圧する等して、外層殻2の一部の崩しつつ、他の部分の形状を維持できる。外層殻2の一部の形状が維持されているので、電極活物質層の成形性及び保形性は極度に落ち込むことなく維持できる。一方、外層殻2の一部が崩れることにより、内層3を露出させることができる。内層3の露出により、内層3のリチウムバナジウム酸化物粒子31は容易に電解液に接することができ、イオン拡散係数が更に向上する。
 この外層殻2は、図3に示すように、リチウムバナジウム酸化物の一次粒子が凝集して構成されている。また、外層殻2にはカーボンが内層3と同量程度に含まれている。外層殻2を構成するリチウムバナジウム酸化物の一次粒子を外層粒子21という。一方、内層3を構成するリチウムバナジウム酸化物粒子31を、以下、内層粒子31ともいう。
 外層殻2において凝集とは、外層粒子21の一部又は全部が結晶レベルで一体化し、粒界無く繋がっているように観察できる状態をいい、走査電子顕微鏡にて倍率10万倍で造粒体の表面を確認すればよい。但し、一部の外層粒子21間には隙間部22が残っている。隙間部22は、外層殻2を貫通する細孔であり、造粒体の外部と内層3とを連通させる。隙間部22は、最大開口幅が50nm以上150nm以下に拡がり、蓄電デバイスの電解液が外層殻2を通り抜け可能になっている。50nm以上の開口を有する隙間部22であれば電解液を通過させることができるが、一方、150nm超の隙間が開くと、外層殻2の堅牢性がピークから低下していく。
 外層粒子21は内部に中空部23を有する。即ち、外層粒子21の内部は空洞である。蓄電デバイスにおいて外層粒子21の中空部23は電解液で満たされており、外層粒子21が電解液に接する表面積が大きくなるため、外層殻2に発現する容量は大きくなり、また外層粒子21が凝集していてもイオン拡散係数を向上させることができる。内部空間の直径は5nm以上30nm以下が好ましい。内部空間の直径がこの範囲であると、外層粒子21が崩れ難くなり、電極活物質層の成形性及び保形成が向上する。
 外層粒子21の粒径は、50nm以上100nm以下の範囲に分布することが好ましい。外層粒子21の粒径が50nm以上であると、50nm以上150nm以下の開口幅を有する隙間部22が外層粒子21間に発生し易くなる。50nm以上150nm以下の開口幅を有する隙間部22は、造粒体の堅牢性に影響が少ない一方、電解液を通り抜けさせ易い。一方、外層粒子21の粒径が100nm超になると、隙間部22が大きくなっていき、隙間部22の開口幅が150nm超になると、造粒体の堅牢性がピークから落ちていく。
 カーボンは内層3のみならず、外層殻2にも含まれる。外層殻2についても外層粒子21とカーボンとの複合体を含んで構成される。外層殻2及び内層3のカーボンは、炭化した多価アルコール、ポリマー、糖類及びアミノ酸が挙げられる。多価アルコールとしてはエチレングリコール等が挙げられ、ポリマーとしてはポリビニルアルコール、ポリアルキレンオキシド、ポリビニルピロリドン又はポリアクリル酸等が挙げられ、糖類としてはガラクトース、マンノース若しくはフルクトース等の単糖類、ラクトース、スクロース若しくはマルトース等の小糖類、グリコーゲン、デンプン若しくはセルロースなどの多糖類、又はこれらの誘導体が挙げられ、アミノ酸としてはグルタミン酸等が挙げられる
 好ましくは、外層殻2及び内層3のカーボンは炭化した糖類であり、なかでもスクロース、グルコース又はこれらの混合がより好ましい。スクロースやグルコース等の糖類を炭化させて成るカーボンを含む造粒体は、出力特性が良好となる。即ち、スクロースやグルコースを炭化させて成るカーボンを含む造粒体は、幅広い範囲の電流密度に対して出力できる容量が大きく、高い電流密度で出力しても大きな容量を引き出すことができる。
 この造粒体は粒径が例えば1μm以上のように大きくすることができ、造粒体を含む活物質スラリーの成形性及び保形性を向上させることができる。一方、内層3にはナノ粒子が多く含まれているため、蓄電デバイスの容量が向上し、また高入出力となる。
 内層粒子31は、粒界を保ちながら集まって成り、凝集していない。従って、内層粒子31の一粒一粒が電解液と全表面又は多くの表面で触れることができ、蓄電デバイスの容量は更に向上し、また更に高入出力となる。これに対し、外層粒子21は少なくとも一部が粒界無く繋がって堅牢な外層殻2を作出する。堅牢な外層殻2は、電極活物質層を形成する際に少なくとも一部の形状を維持でき、内層3のナノ粒子をバラバラにすることなく、電極活物質層の成形性及び保形性を維持できる。
 尚、外層殻2は、外層粒子21が粒界無く繋がって密になっていても、内層3と造粒体外部とを連通させる隙間部22を有するため、この隙間部22から内層3へ電解液をより効率的に供給することができる。
 しかも、外層殻2もリチウムバナジウム酸化物とカーボンの複合体粒子により構成されているから、電極活物質として寄与する。その上、外層粒子21は内部中空であり、内部に電解液を浸透させることができるため、外層粒子21も電解液と接する表面積が大きくなり、また外層粒子21の内部までの距離も短くなるから、外層殻2の部分の容量も大きく発現させることができ、外層殻2の部分もリチウムイオンの移動が高速化する。
 (本リチウムバナジウム酸化物の造粒体の製法)
 本リチウムバナジウム酸化物の造粒体は例えば次の通り作製すればよい。即ち、図4に示すように、リチウムバナジウム酸化物を合成し(ステップS01)、得られたリチウムバナジウム酸化物の粒子を必要に応じて粉砕してナノ粒子化し(ステップS02)、リチウムバナジウム酸化物のナノ粒子の表面にカーボン源を付着させ、またリチウムバナジウム酸化物とカーボン源の複合体を造粒し(ステップS03)、加熱によりカーボン源を炭化処理する(ステップS04)。
 ステップS01のリチウムバナジウム酸化物の合成では、まず、リチウム源、バナジウム源、又はこれに加えて4価の金属種M源を混合する。この混合工程では、各材料源を均一に分散させる。各材料源の混合方法としては、例えばミキサーを用いて固相法を用いることができる。ミキサーによる混合方法では、各材料源の混合物に対して、ビーズミル、ロッドミル、ローラミル、攪拌ミル、遊星ミル、振動ミル、ボールミル、ホモジナイザー、ホモミキサーなどにより、物理的な力を加えればよい。また、これらミキサーを用いた湿式での粉砕処理以外にも、例えば、水にリチウムバナジウム酸化物を添加し、ミキサー等にて良く攪拌して粒子を分散させても良い。
 混合工程において、各材料源の混合割合は、リチウムバナジウム酸化物の化学量論比に従えばよい。例えば、Li3.20.80.2の場合、モル比でLi:V:M=3.2:0.8:0.2となるように、各材料源を混合すればよい。リチウム源としては、水酸化リチウム、水酸化リチウム水和物、酢酸リチウム、硝酸リチウム、炭酸リチウム、塩化リチウム、乳酸リチウム等のリチウム含有化合物を用いることができる。バナジウム源としては、メタバナジン酸塩(NHVO、NaVO3、KVO等)、酸化バナジウム(V、V、V、V)、バナジウム(III)アセチルアセトナート、バナジウム(IV)オキシアセチルアセトナート、オキシ三塩化バナジウム、四塩化バナジウム、三塩化バナジウム、ポリバナジン酸塩等を用いることができる。金属種M源としては、金属種MがSiである場合、SiO又はLiSiO等のケイ素の酸化物、粉末Si、又はアモルファスSi等を用いることができる。
 リチウムバナジウム酸化物の合成では混合工程の後に熱処理工程を経る。熱処理工程は、予備加熱工程と焼成工程とに分けることが好ましい。予備加熱工程によってβ相の結晶構造を有するリチウムバナジウム酸化物を合成し、焼成工程によって金属種Mを固溶させてγ相の結晶構造を有する本リチウムバナジウム酸化物に相転移させることができる。
 予備加熱工程では、β相からγ相へ構造相転移する温度よりも低い温度で、各材料源の混合物を加熱する。例えば、予備加熱工程では、600以上800℃以下及び空気中の雰囲気下で、5時間程度に亘って加熱する。焼成工程では、γ相へ構造相転移する温度以上の温度で、予備加熱工程により合成されたβ相のリチウムバナジウム酸化物の結晶体と4価の金属種Mの材料源との混合物を加熱する。焼成工程では、800以上1000℃以下及び空気中の雰囲気下で、8時間程度に亘って加熱する。これにより、γ相の結晶構造のみを有するリチウムバナジウム酸化物の結晶体が合成され、このリチウムバナジウム酸化物の結晶体は、自然冷却過程においてもγ相の結晶構造を維持する。
 ステップS02のナノ粒子化の工程では、例えばミキサーを用いて湿式で粉砕処理すればよい。ミキサーによる混合方法では、例えばエタノール等の有機溶媒にリチウムバナジウム酸化物を添加し、ビーズミル、ロッドミル、ローラミル、攪拌ミル、遊星ミル、振動ミル、ボールミル、ホモジナイザー、ホモミキサーなどにより、物理的な力を加えればよい。
 ステップS03のコーティング及び造粒の工程では、スプレードライ処理を用いることができる。スプレードライ処理では、カーボン源の溶液中にナノ粒子化したリチウムバナジウム酸化物を分散させ、分散液に対して熱風を接触させることで溶媒を蒸発させる。このスプレードライ処理により、リチウムバナジウム酸化物のナノ粒子の表面がカーボン源によってコーティングされ、カーボン源によって表面がコーティングされたリチウムバナジウム酸化物のナノ粒子による造粒体が生成される。
 カーボン源は、熱処理によってカーボンとなり得る材料であればよく、例えば多価アルコール、ポリマー、糖類及びアミノ酸が挙げられる。多価アルコールとしてはエチレングリコール等が挙げられ、ポリマーとしてはポリビニルアルコール、ポリアルキレンオキシド、ポリビニルピロリドン又はポリアクリル酸等が挙げられ、糖類としてはガラクトース、マンノース若しくはフルクトース等の単糖類、ラクトース、スクロース若しくはマルトース等の小糖類、グリコーゲン、デンプン若しくはセルロースなどの多糖類、又はこれらの誘導体が挙げられ、アミノ酸としてはグルタミン酸等が挙げられる。
 溶媒としては、反応に悪影響を及ぼさない液であれば特に限定なく使用することができ、例えば水、メタノール、エタノール、イソプロピルアルコールなどを使用することができ、特に水を使用することが好ましい。2種以上の溶媒を混合して使用しても良い。溶媒に対するカーボン源とリチウムバナジウム酸化物のナノ粒子の分散手法としては、超遠心処理(溶液中で粉体にずり応力と遠心力を加える処理)、ビーズミル、ホモジナイザー等が挙げられる。スプレードライ処理では、0.1Mpa程度の圧力でカーボン源が焼失しない温度で処理すればよい。
 ステップS04の炭化処理では、リチウムバナジウム酸化物のナノ粒子をコーティングしたカーボン源を炭化させてカーボンを生成する。内層3において内層粒子31の表面にはグラフィティックカーボン32がカーボン源の炭化により生成され、内層粒子31間にはアモルファスカーボン33がカーボン源の炭化により生成される。更に、カーボン源の炭化の際に一部の酸素原子がリチウムバナジウム酸化物から引き抜かれ、内層粒子31の表面がマグネリ相34に変質すると考えられる。
 炭化処理では、カーボン源が燃焼しないように、造粒体を無酸素又は低酸素雰囲気下で加熱する。無酸素又は低酸素雰囲気下には、不活性雰囲気と飽和水蒸気雰囲気が含まれ、典型的には真空中、窒素もしくはアルゴン雰囲気である。炭化処理では、雰囲気中の温度を650以上750℃以下とし、この温度範囲で5時間保持されるのが好ましい。この範囲であると良好な外層殻2と内層3とを有する二重構造の造粒体が得られ、良好な入出力特性が得られる。尚、窒素雰囲気下であると、リチウムバナジウム酸化物に窒素がドープされて導電性が高まるので、更に好ましい。
 (蓄電デバイス)
 以上のリチウムバナジウム酸化物の造粒体は、リチウムイオンが可逆的に挿入及び脱離可能な材料である。リチウムバナジウム酸化物は、充放電電位(vs Li/Li+)がチタン酸リチウム(LiTi12)及びB型酸化チタン(TiO(B))よりも低く、充放電電位(vs Li/Li+)がグラファイトよりも高い。従って、このリチウムバナジウム酸化物の造粒体は蓄電デバイスの電極材料としての用途に好適である。
 リチウムバナジウム酸化物を負極材料に用いた蓄電デバイスは、高いエネルギー密度と高い安全性を両立する。更に、リチウムバナジウム酸化物結晶体を負極材料として用いたキャパシタの理論容量は、チタン酸リチウムと比べても高く、サイクル特性においても、リチウムバナジウム酸化物を負極材料として用いたキャパシタは、高い容量維持率及び高い充放電効率を維持する。
 蓄電デバイスとしてはリチウムイオン二次電池やハイブリッドキャパシタが挙げられる。リチウムイオン二次電池において、正極はリチウム金属化合物を含む電極活物質層を有し、負極は本リチウムバナジウム酸化物の造粒体を含む電極活物質層を有する。ハイブリッドキャパシタにおいて、正極は例えば活性炭を有し、負極は本リチウムバナジウム酸化物の造粒体を含む電極活物質層を有する。
 本リチウムバナジウム酸化物の造粒体は、バインダーと共に混練されることで活物質スラリーに含まれる。活物質スラリーを所定形状に成型して乾燥した後、集電体に圧着し、圧延処理することで、負極に電極活物質層が作製される。または、活物質スラリーを集電体にドクターブレード法等によって塗布し、乾燥させた後に圧延処理を施してもよい。造粒体は、ナノ粒子で構成される内層3を外層殻2で包み込むカプセル構造を有し、粒径が1μm以上であるため、電極活物質層の成型時及び集電体への塗布時に良好な成形性及び保形成を発揮する。即ち、成型体が崩れにくく、塗布した活物質スラリーが垂れにくい。
 集電体としては、正極及び負極共に、アルミニウム、銅、鉄、ニッケル、チタン、鋼、カーボン等の導電材料が好ましい。特に、高い熱伝導性と電子伝導性とを有しているアルミニウム又は銅が好ましい。集電体の形状は、膜状、箔状、板状、網状、エキスパンドメタル状、円筒状等の任意の形状を採用することができる。バインダーとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレンコポリマー、ポリフッ化ビニル、カルボキシメチルセルロース、スピレンブタジエンゴム(SBR)などの公知のバインダーが使用される。バインダーの含有量は、電極材料の総量に対して1以上30質量%以下であるのが好ましい。
 圧延処理では、例えば、10~500MPaのプレス圧をかけて高密度の電極を得る。このとき、プレス圧によって造粒体の外層殻2の他の部分の形状を維持しつつ、造粒体の外層殻2の一部を崩す。外層殻2の形状の一部が残ることで電極の保形性を維持しつつ、内層粒子31を電解液に晒すことができ、イオン拡散係数が良好になる。
 二次電池の正極に用いられる活物質の例としては、まず、層状岩塩型LiMO、層状LiMnO-LiMO固溶体、及びスピネル型LiM(式中のMは、Mn、Fe、Co、Ni又はこれらの組み合わせを意味する)が挙げられる。これらの具体的な例としては、LiCoO、LiNiO、LiNi4/5Co1/5、LiNi1/3Co1/3Mn1/3、LiNi1/2Mn1/2、LiFeO、LiMnO、LiMnO-LiCoO、LiMnO-LiNiO、LiMnO-LiNi1/3Co1/3Mn1/3、LiMnO-LiNi1/2Mn1/2、LiMnO-LiNi1/2Mn1/2-LiNi1/3Co1/3Mn1/3、LiMn、LiMn3/2Ni1/2が挙げられる。また、イオウ及びLiS、TiS、MoS、FeS、VS、Cr1/21/2などの硫化物、NbSe、VSe、NbSeなどのセレン化物、Cr、Cr、VO、V、V、V13などの酸化物の他、LiNi0.8Co0.15Al0.05、LiVOPO、LiV、LiV、MoV、LiFeSiO、LiMnSiO、LiFePO、LiFe1/2Mn1/2PO、LiMnPO、Li(POなどの複合酸化物が挙げられる。
 正極の活物質層には導電助剤としてカーボンを添加してもよい。カーボンとしては、導電性を有するものであれば特に限定なく使用でき、例えば、ケッチェンブラック、アセチレンブラック、チャネルブラック等のカーボンブラック、フラーレン、カーボンナノチューブ、カーボンナノファイバ、無定形炭素、炭素繊維、天然黒鉛、人造黒鉛、黒鉛化ケッチェンブラック、メソポーラス炭素、気相法炭素繊維等を挙げることができる。
 ハイブリッドキャパシタの正極の活物質層に用いられる活性炭は、やしがら等の天然植物組織、フェノール等の合成樹脂、石炭、コークス、ピッチ等の化石燃料由来のものを原料とする。また、この活物質層には活性炭の他、ケッチェンブラック、アセチレンブラック、チャネルブラックなどのカーボンブラック、カーボンナノホーン、無定形炭素、天然黒鉛、人造黒鉛、黒鉛化ケッチェンブラック、メソポーラス炭素、カーボンナノチューブ、カーボンナノファイバなどが用いられてもよい。これら炭素材料は、水蒸気賦活、アルカリ賦活、塩化亜鉛賦活又は電界賦活等の賦活処理並びに開口処理によって比表面積を向上させてもよい。
 蓄電デバイスにおいて正極と負極との間に配置される電解質は、セパレータに保持された電解液であっても良く、固体電解質であっても良く、ゲル状電解質であっても良く、従来の蓄電デバイスにおいて使用されている電解質を特に限定なく使用することができる。例えば、リチウムイオン二次電池のためには、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート等の溶媒に、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を溶解させた電解液が、ポリオレフィン繊維不織布、ガラス繊維不織布などのセパレータに保持された状態で使用される。その他、LiLaNb12、Li1.5Al0.5Ti1.5(PO、LiLaZr12、Li11等の無機固体電解質、リチウム塩とポリエチレンオキサイド、ポリメタクリレート、ポリアクリレート等の高分子化合物との複合体からなる有機固体電解質、電解液をポリフッ化ビニリデン、ポリアクリロニトリル等に吸収させたゲル状電解質も使用される。ハイブリッドキャパシタのためには、リチウム塩をプロピレンカーボネート等に溶解させた電解液や、第4級アンモニウム塩をプロピレンカーボネート等に溶解させた電解液が使用される。
 尚、蓄電デバイスは、固体電解質が正負の電極の接触を防止可能な程度の厚みを有し、また単独で形態保持可能な硬度を備えるようにすれば、所謂セパレータレスであってもよい。また、集電体と活物質層の間には、黒鉛等の導電剤を含むカーボンコート層を設けてもよい。集電体の表面に黒鉛等の導電剤、バインダー等を含むスラリーを塗布、乾燥することで、カーボンコート層を形成することができる。
 以下、本発明の実施例を示すが、本発明は実施例に限定されるものではない。次の通りにして、Siの係数xが0.2となり、化学式Li3.20.8Si0.2で表されるリチウムバナジウム酸化物の造粒体を実施例1として作製した。
 リチウム源として炭酸リチウム(LiCO)の粉末(商品名:3N5,関東化学株式会社,24121-08)を用い、バナジウム源として五酸化バナジウム(V)の粉末(商品名:酸化バナジウム(V),関東化学株式会社、44017-00)を用い、金属種M源として二酸化ケイ素(SiO)の粉末(商品名:二酸化珪素、99.9%,和光純薬工業株式会社,192-09071)を用いた。リチウム源とバナジウム源と金属種M源は化学量論比に従って混合され、混合物は焼成された。
 乾式ボールミル(Fritsch, Premium line P-7 (PL-7))を用いて、これらリチウム源とバナジウム源と金属種M源は混合された。混合の際は、ミキサーを300rpmで2分間稼働させ、ミキサーを1分間停止させ、これを10回繰り返した。焼成工程では、混合物を600℃の空気環境下に5時間晒した。この加熱の後、更に混合物を900℃の空気環境下で8時間晒した。焼成により得られた粉末をエタノールに添加し、800rpmの回転数で2分間、ボールミル(Fritsch, Premium line P-7 (PL-7))により粉砕させ、ミキサーを3分間停止させ、これら回転と停止により成る1サイクルを5回繰り返すことでナノ粒子化した。ナノ粒子化した後は、80℃で一晩真空乾燥させた。
 乾燥させた収集物をスクロースと共に水に添加し、溶液を攪拌した。水には、収集物に対して33wt%のスクロースを添加した。そして、スプレードライヤ(BUCHI、ミニスプレードライヤー B-290(噴霧乾燥器))を用いてコーティング及び造粒を行った。入口温度は160℃、アスピレータ動作速度は最大値の100%、ポンプ出力は最大値の25%に設定し、窒素の圧縮ガスを用いて作成した溶液を噴霧した。スプレードライ法によるコーティング及び造粒の後、得られた造粒体を700℃の窒素環境下に5時間晒し、スクロースを炭化させた。
 得られたリチウムバナジウム酸化物の造粒体の表面を走査電子顕微鏡で観察した。図5の(a)及び(b)は、表面SEM像を示す写真であり、図5(a)は倍率2千倍、図5(b)は倍率2万倍で拡大した写真である。図5に示すように、0.51μm以上15μm以下の範囲に粒径が分布する真球体の造粒体が得られていることが確認できる。
 また、得られた造粒体の断面試料を作製し、走査電子顕微鏡で造粒体の断面を観察した。図6の(a)及び(b)は、断面SEM像を示す写真であり、(a)は造粒体全体を写す倍率7万倍の写真であり、(b)は外層殻2と内層3の境界付近を写す倍率10万倍の写真である。図6に示すように、造粒体は、断面SEM像で観察した場合に粒子の少なくとも一部が粒界無く繋がった外層殻2と、粒子の粒界が視認可能の状態で存在する内層3との二重構造になっていることが確認できる。外層殻2は、目視にて計測したところ、厚みが100nm以上300nm以下であり、内層粒子31は、目視にて計測したところ、粒径が30nm以上50nm以下であった。
 図6の(a)に示す断面試料をエネルギー分散型X線分光法(SEM-EDX)で解析し、各元素の分布をマッピングした写真を得た。図7の(a)は、炭素原子Cの分布を示すカラーマッピング画像であり、図7の(b)は、酸素原子Oの分布を示すカラーマッピング画像であり、図7の(c)は、珪素原子Siの分布を示すカラーマッピング画像であり、図7の(d)は、バナジウム原子Vの分布を示すカラーマッピング画像である。図7の(a)乃至(d)に示すように、造粒体の外層殻2及び内層3の区別なく全域に、炭素原子、酸素原子、珪素原子及びバナジウム原子が均一に分布していることが確認できる。即ち、外層殻2及び内層3は、カーボンで複合化されたリチウムバナジウム酸化物の粒子により構成されていることが確認できる。
 造粒体の外層殻2を走査型透過電子顕微鏡(STEM)で観察し、DF(暗視野)検出器及びBF(明視野)検出器で結像させ、暗視野像と明視野像の写真を得た。図8の(a)は倍率4万倍の暗視野写真であり、(b)は倍率4万倍の明視野写真である。図8の(a)及び(b)に示すように、暗視野写真では濃く写る隙間部22が確認でき、明視野では濃く写る重い元素の周りに、薄く写る隙間部22が確認できる。図8の(a)及び(b)の写真に基づき、隙間部22の大きさを目視で確認したところ、直径が50nm以上150nm以下であった。
 また、造粒体の外層殻2を走査型透過電子顕微鏡(STEM)で観察し、図9に示す倍率4万倍のSTEM像を得た。図9に示すように、外層粒子21は内部中空であり、内部空間は20nm幅を有することが確認された。
 造粒体の内層3を透過電子顕微鏡(TEM)で観察した。その結果得られたTEM像を図10及び図11に示す。図10は、造粒体の内層粒子31の倍率50万倍のTEM像である。図11は、造粒体の内層3の倍率40万倍のTEM像であり、内層粒子31の縁取りを加えてある。図10に示すように、内層粒子31の表面にはカーボンの結晶体が付着していることが確認できる。即ち、内層粒子31の表面にグラフィティックカーボン32が付着していることが確認できる。一方、図11に示すように、内層粒子31の間には、非晶質のカーボンが介在し、内層粒子31が凝集しないように、内層粒子31同士の距離を確保していることが確認できる。即ち、内層粒子31の間にはアモルファスカーボン33が介在していることが確認できる。
 更に、内層粒子31を透過電子顕微鏡(TEM)で観察した。その結果得られた倍率20万倍のTEM像を図12に示す。図12に示すように、内層粒子31の縁31aが濃く写っていることが確認できる。濃くなった部分は、リチウムバナジウム酸化物からリチウム原子や珪素原子が抜け落ちて、バナジウム原子と酸素原子によって構成される結晶領域となっていることが示唆される。
 そこで、この結晶領域について、制限視野電子回折法により確認した。図13は制限視野ED図を示す。この制限視野ED図に基づいて実測値を求め、実測値を原点から各回折点までの距離に基づく入射角2θに換算した結果、この結晶領域にはVが多く含有していることがわかる。即ち、内層粒子31の表面にマグネリ相34が確認された。尚、図13によると、原点から各回折点までの距離に基づく入射角2θは最内周の103面が21.14°、次に中心側の1-2-3面が26.76°、次に中心側の1-2-4面が30.01°、次に中心側の104面が32.29°、最外周の100面が36.24°であった。Vは入射角2θが21.19°、26.75°、30.06°、32.61°、36.99°にピークが現れる(ICDDカードNo. 01-0577)。
 以上より、実施例1の造粒体は、リチウムバナジウム酸化物とカーボンを含むこと、外層殻2と内層3の二重構造を有すること、内層3は、リチウムバナジウム酸化物の複数の粒子が粒界を保ちながら集まって成ること、外層殻2は、リチウムバナジウム酸化物の粒子の少なくとも一部が粒界無く繋がって成ること、外層殻2は、50nm以上150nm以下で開口し、内層3と造粒体外部とを連通させる隙間部22を有すること、外層粒子21の少なくとも一部は、内部中空であること、アモルファスカーボン33が内層粒子31の間に介在すること、グラフィティックカーボン32が内層粒子31の表面に付着していること、内層粒子31の表面の一部はマグネリ相34に変質していることが確認できた。
 この実施例1の造粒体に対応させて、比較例1の造粒体を作製した。比較例1の造粒体は、実施例1と同じく、Siの係数xが0.2となり、化学式Li3.20.8Si0.2で表されるリチウムバナジウム酸化物を用いているが、マルチウォールカーボンナノチューブ(MWCNT)との複合体の粒子を造粒して成る点で異なる。また、造粒体の構造も実施例1と異なる。
 この比較例1の造粒体は、次の通り作製した。即ち、材料源及び混合比は実施例1と同一にし、実施例1と同一方法及び同一条件で混合及び焼成した。焼成後、80℃で一晩真空乾燥させた収集物にマルチウォールカーボンナノチューブ(MWCNT)を、収集物に対して20wt%の割合で添加した。そして、300rpmの回転数で12時間、乾式ボールミル(Fritsch, Premium line P-7 (PL-7))によって混合することで比較例1の造粒体を得た。
 即ち、この比較例1の造粒体は、実施例1の造粒体がスクロースの添加、スプレードライ法によるコーティング及び造粒、並びに加熱によるスクロースの炭化を経たのに対し、MWCNTの添加、乾式ボールミルによるコーティング及び造粒、並びに最後の加熱処理がない点で、実施例1の造粒体の製法と異なる。 
 この比較例1の造粒体は、粒径が50以上500nm以下のLi3.20.8Si0.2で表されるリチウムバナジウム酸化物の表面にMWCNTが付着した構造を有する。表面にマグネリ相34はない。比較例1のリチウムバナジウム酸化物の粒子は各所で凝集して多くの二次粒子を構成し、二次粒子間にMWCNTが介在する。尚、実施例1では一次粒子である内層粒子31の多くは凝集せず、一次粒子である内層粒子31間にアモルファスカーボン33が介在する。また、比較例1のリチウムバナジウム酸化物の粒子はグラフィティックカーボン32に表面が覆われているわけではなく、比較例1のリチウムバナジウム酸化物の粒子の表面の多くが露出している。更に、比較例1の造粒体には、外層殻2はなく、二次粒子間にMWCNTが介在して成る構造物のみで形作られている。
 実施例1と比較例1の造粒体の熱重量測定(TG)を行った。即ち造粒体を1000℃を上限として温度変化する雰囲気に静置し、重量測定を行った。その結果、実施例1の造粒体は、造粒体全量に対して10.2wt%のカーボンが含まれていた。比較例1の造粒体は、造粒体全量に対して20wt%のカーボンが含まれていた。
 これら実施例1と比較例1の造粒体を用いてハーフセルを作製した。ハーフセルは2032型コインセルとした。具体的には、バインダーとしてポリフッ化ビニリデン(PVDF)を選択し、造粒体とバインダーとを共に攪拌してスラリー状にし、銅箔の集電体に塗布することで当該集電体上に電極活物質層を形成した後、圧延処理を行った。圧延処理では、30MPaのプレス圧をかけた。この電極を作用電極W.E.とした。
 対極はリチウム金属とし、2032型コインセルの下蓋に貼り付けた。対極C.Eの上にガラスファイバーセパレータ、ガスケット、作用電極W.E、スペーサー、スプリング、上蓋の順に載せ、加締めてセルを作製した。電解液は、炭酸エチレン(EC)と炭酸ジメチル(DEC)を溶媒とし、溶質として1.0M六フッ化リン酸リチウム(LiPF)を添加して調整した。体積比率でEC:DEC=1:1とした。この電解液を浸透させてセルとした。
 図14は、実施例1の電極活物質層の断面を示すSEM写真である。図14に示すように、圧延処理によって一部の造粒体は外層殻2の一部が崩れ、内層3が露出していることが確認できる。そのため、外層殻2の一部が崩れた造粒体の内層3は、外層殻2の隙間部22を介さずに電解液に満たされている。
 これら実施例1及び比較例1のハーフセルについて、放電電流密度と放電容量との関係を測定した。図15は、測定の結果得られた実施例1と比較例1の出力特性を示すグラフである。
 図15に示すように、0.05以上15Ag-1以下までの放電電流密度の全範囲において、実施例1のハーフセルは比較例1のハーフセルを上回る容量が引き出されていることが確認できる。放電電流密度が限りなくゼロに近い場合の放電容量は、比較例1のハーフセルが134mAhg-1に対し、実施例1のハーフセルが154mAhg-1であり、実施例1は比較例1と比べて容量が15%向上している。また、放電電流密度が限りなくゼロに近い場合の放電容量に対する15Ag-1の放電電流密度の場合の放電容量の比率は、比較例1のハーフセルが50%に対し、実施例1のハーフセルが68%であり、実施例1は比較例1と比べて容量が18%向上している。
 しかも、実施例1のハーフセルは、比較例1のハーフセルと比べてカーボン量が49%削減された上で、比較例1よりも高入出力となっている。即ち、実施例1の造粒体は、内層3は外層殻2に包まれているにも関わらず、比較例1よりも容量が効率良く引き出され、高入出力となっていることが確認できた。
 更に、実施例2及び3の造粒体と比較例2の造粒体を作製した。実施例2及び3の造粒体と比較例2の造粒体は、実施例1と比べて、スプレードライ処理の際のスクロースの添加量が異なる。実施例1では、リチウムバナジウム酸化物に対して33wt%のスクロースを添加したのに対し、実施例2では、リチウムバナジウム酸化物に対して20wt%のスクロースを添加し、実施例3では、リチウムバナジウム酸化物に対して50wt%のスクロースを添加し、比較例2では、リチウムバナジウム酸化物に対して11wt%のスクロースを添加した。スクロースの添加量以外の製法及び条件については、実施例1乃至3及び比較例2で共通である。
 図16は、実施例1乃至3及び比較例2の造粒体において、造粒体中のグラフィティックカーボン32とアモルファスカーボン33の量を示すグラフである。グラフィティックカーボン32とアモルファスカーボン33の量は、熱重量測定(TG)に基づく。即ち、実施例1乃至3及び比較例2の造粒体を加熱し、雰囲気温度が200℃以上400℃以下の温度範囲で減少した重量分をアモルファスカーボン33の重量とし、雰囲気温度が600℃以上800℃以下の温度範囲で減少した重量分をグラフィティックカーボン32の重量とした。減少量は、カーボンを未添加とした以外は、実施例1と同一製法及び同一条件で作製された造粒体の熱重量測定の結果を基準とした。
 図16に示すように、グラフィティックカーボン32の付着量は、スクロースの添加量に関わらず殆ど一定であった。これに対し、比較例2の造粒体にはアモルファスカーボン33が0.2wt%含まれていた。カーボン全量としては、比較例2の造粒体にはグラフィティックカーボン32と合計して2.2wt%含まれていた。実施例2の造粒体にはアモルファスカーボン33が3.8wt%含まれていた。カーボン全量としては、実施例2の造粒体にはグラフィティックカーボン32と合計して7.0wt%含まれていた。実施例1の造粒体にはアモルファスカーボン33が7.3wt%含まれていた。カーボン全量としては、実施例1の造粒体にはグラフィティックカーボン32と合計して10.2wt%含まれていた。実施例3の造粒体にはアモルファスカーボン33が16.2wt%含まれていた。カーボン全量としては、実施例3の造粒体にはグラフィティックカーボン32と合計して18.3wt%含まれていた。
 これら比較例2並びに実施例1乃至3の造粒体を用いてハーフセルを作製した。ハーフセルは、実施例1及び比較例1と同一製法及び同一条件で作製された。これら比較例2並びに実施例1乃至3のハーフセルについて、放電電流密度と放電容量との関係を測定した。測定結果を図17に示す。図17に示すように、アモルファスカーボン33が造粒体全体に対して0.2wt%であった比較例2のハーフセルは、放電電流密度の全範囲において容量が発現しなかった。これに対し、アモルファスカーボン33が造粒体全体に対して3.8wt%以上であった実施例1乃至3のハーフセルは、放電電流密度の全範囲で容量が発現している。
 従って、内層粒子31間にアモルファスカーボン33が介在することで、内層粒子31の凝集を抑制し、また内層粒子31間の電子パスが構築されていれば、外層殻2によって内層3が包み込まれていても、造粒体を用いた蓄電デバイスの入出力特性は良好となることが確認された。
 実施例3のハーフセルは、グラフィティックカーボン32よりも電気抵抗が高いアモルファスカーボン33が造粒体全体に対して16.2wt%であったため、放電電流密度が高くなると、比例するように引き出される容量が減少した。これに対し、アモルファスカーボン33が造粒体全体に対して3.8wt%以上7.3wt%以下の実施例1及び2のハーフセルは、放電電流密度が10Ag-1程度までは、引き出される容量の減少量が抑制された。アモルファスカーボン33が造粒体全体に対して7.3wt%の実施例1のハーフセルは、放電電流密度が10Ag-1程度までは、引き出される容量の減少量が特に抑制されていた。
 これにより、アモルファスカーボン33が造粒体全体に対して3.8wt%以上7.3wt%以下であると、内層粒子31の凝集抑制と、内層粒子31間の電気抵抗のバランスが良好に成り、造粒体を用いた蓄電デバイスの入出力特性は更に良好となることが確認された。
 更に、実施例4乃至6の造粒体を作製した。実施例4の造粒体は、実施例1においてスプレードライ処理の際のスクロースを添加したのに対し、グルコースを実施例1と同一重量分添加した。実施例5の造粒体は、ポリビニルアルコール(PVA)を実施例1と同一重量分添加した。実施例6の造粒体は、ヒスチジンを実施例1と同一重量分添加した。カーボン源の種類以外の製法及び条件については、実施例1並びに実施例4乃至6で共通である。
 そして、実施例4乃至6の造粒体を用いてハーフセルを作製した。ハーフセルは、実施例1と同一製法及び同一条件で作製された。これら実施例4乃至6のハーフセルについて、放電電流密度と放電容量との関係を測定した。測定結果を実施例1の結果と共に図18に示す。図18に示すように、カーボン源の種類に依らずに低電流密度から高電流密度まで容量が発現することが確認でき、特に、糖類であるスクロースとグルコースをカーボン源とする実施例1及び実施例4のハーフセルは、実施例5及び6と比べて放電電流密度の全範囲で大きな容量が発現し、更に、スクロースをカーボン源とする実施例1のハーフセルは、放電電流密度の全範囲で大きな容量を維持していることが確認された。
2 外層殻
21 外層粒子
22 隙間部
23 中空部
3 内層
31 リチウムバナジウム酸化物粒子,内層粒子
32 グラフィティックカーボン
33 アモルファスカーボン
34 マグネリ相

Claims (12)

  1.  リチウムバナジウム酸化物粒子が含まれ、
     前記リチウムバナジウム酸化物粒子は、粒子表面に化学式V2n-1(3≦n≦8)で表されるマグネリ相を有すること、
     を特徴とするリチウムバナジウム酸化物粒子群。
  2.  前記リチウムバナジウム酸化物粒子間に介在し両粒子を繋ぐカーボンを有すること、
     を特徴とする請求項1記載のリチウムバナジウム酸化物粒子群。
  3.  前記リチウムバナジウム酸化物粒子間に介在する前記カーボンは、アモルファスカーボンであり、
     前記リチウムバナジウム酸化物粒子の表面を覆うグラフィティックカーボンを更に有すること、
     を特徴とする請求項2記載のリチウムバナジウム酸化物粒子群。
  4.  前記カーボンは、炭化したスクロース又はグルコースであること、
     を特徴とする請求項3記載のリチウムバナジウム酸化物粒子群。
  5.  前記リチウムバナジウム酸化物は、4価の金属種がドープされたLiVOであること、
     を特徴とする請求項1乃至4の何れかに記載のリチウムバナジウム酸化物粒子群。
  6.  前記4価の金属種は、Siであること、
     を特徴とする請求項5記載のリチウムバナジウム酸化物粒子群。
  7.  請求項3記載のリチウムバナジウム酸化物粒子群の各粒子が粒界を保ちながら集まって成る内層と、
     リチウムバナジウム酸化物粒子の少なくとも一部が粒界無く繋がって成り、前記内層を包み込む外層殻と、
     を有し、
     前記アモルファスカーボンは、造粒体全体に対して3.0以上8.0wt%以下の割合で含まれること、
     を特徴とするリチウムバナジウム酸化物の造粒体。
  8.  請求項1、2及び4乃至6の何れかに記載のリチウムバナジウム酸化物粒子群の各粒子が粒界を保ちながら集まって成る内層と、
     リチウムバナジウム酸化物粒子の少なくとも一部が粒界無く繋がって成り、前記内層を包み込む外層殻と、
     を有すること、
     を特徴とするリチウムバナジウム酸化物の造粒体。
  9.  前記外層殻は、50nm以上150nm以下で開口し、前記内層と造粒体外部とを連通させる隙間部を有すること、
     を特徴とする請求項7又は8記載のリチウムバナジウム酸化物の造粒体。
  10.  前記外層殻の前記リチウムバナジウム酸化物の粒子は、内部中空であること、
     を特徴とする請求項7又は8記載のリチウムバナジウム酸化物の造粒体。
  11.  請求項1乃至6の何れかに記載のリチウムバナジウム酸化物粒子群が正極又は負極の活物質層に含まれること、
     を特徴とする蓄電デバイス。
  12.  請求項7乃至10の何れかに記載のリチウムバナジウム酸化物の造粒体が正極又は負極に含まれ、
     前記造粒体は、前記外層殻の一部が崩れて前記内層の一部又は全部が露出していること、
     を特徴とする蓄電デバイス。
PCT/JP2021/027229 2020-07-21 2021-07-20 リチウムバナジウム酸化物粒子群、リチウムバナジウム酸化物の造粒体及び蓄電デバイス WO2022019314A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020124698A JP2022021224A (ja) 2020-07-21 2020-07-21 リチウムバナジウム酸化物粒子群、リチウムバナジウム酸化物の造粒体及び蓄電デバイス
JP2020-124698 2020-07-21

Publications (1)

Publication Number Publication Date
WO2022019314A1 true WO2022019314A1 (ja) 2022-01-27

Family

ID=79729185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027229 WO2022019314A1 (ja) 2020-07-21 2021-07-20 リチウムバナジウム酸化物粒子群、リチウムバナジウム酸化物の造粒体及び蓄電デバイス

Country Status (2)

Country Link
JP (1) JP2022021224A (ja)
WO (1) WO2022019314A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238496A1 (ja) * 2022-06-06 2023-12-14 パナソニックIpマネジメント株式会社 バナジウム酸化物およびそれを用いた電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216855A (ja) * 2004-01-26 2005-08-11 Samsung Sdi Co Ltd リチウム二次電池用負極活物質とその製造方法及びそれを含むリチウム二次電池
CN108878788A (zh) * 2017-05-09 2018-11-23 浙江伏打科技有限公司 一种锆钒酸锂-碳锂离子电池负极材料及其制备方法
WO2019093513A1 (ja) * 2017-11-12 2019-05-16 日本ケミコン株式会社 リチウムバナジウム酸化物結晶体、電極材料及び蓄電デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216855A (ja) * 2004-01-26 2005-08-11 Samsung Sdi Co Ltd リチウム二次電池用負極活物質とその製造方法及びそれを含むリチウム二次電池
CN108878788A (zh) * 2017-05-09 2018-11-23 浙江伏打科技有限公司 一种锆钒酸锂-碳锂离子电池负极材料及其制备方法
WO2019093513A1 (ja) * 2017-11-12 2019-05-16 日本ケミコン株式会社 リチウムバナジウム酸化物結晶体、電極材料及び蓄電デバイス

Also Published As

Publication number Publication date
JP2022021224A (ja) 2022-02-02

Similar Documents

Publication Publication Date Title
EP3076461B1 (en) Carbon material for negative electrode of nonaqueous rechargeable battery, negative electrode for nonaqueous rechargeable battery, and nonaqueous rechargeable battery
JP6236006B2 (ja) リチウムイオン二次電池用電極材料、この電極材料の製造方法、及びリチウムイオン二次電池
KR102114044B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
EP2960971A1 (en) Composite active material for lithium secondary battery and method for producing same
WO2012133844A1 (ja) 負極活物質、この負極活物質の製造方法、及びこの負極活物質を用いたリチウムイオン二次電池
WO2012077785A1 (ja) リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
US11043666B2 (en) Composite materials for cathode materials in secondary battery, method of manufacturing the same, and lithium secondary battery including the same
JP2017228439A (ja) リチウムイオン二次電池及びその製造方法
JP7480284B2 (ja) 球状化カーボン系負極活物質、その製造方法、それを含む負極、及びリチウム二次電池
KR20040089514A (ko) 정극 활물질 및 이를 사용하여 제조된 비수성 전해질 2차전지
TW201603368A (zh) 鋰離子二次電池用負極活性物質及其製造方法
JP2015164127A (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
US20230231111A1 (en) Composite carbon particles and use thereof
JP5799500B2 (ja) リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP2015210962A (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6961980B2 (ja) リチウム二次電池用複合活物質およびその製造方法
WO2016125819A1 (ja) リチウム二次電池用複合活物質およびその製造方法
JP2019175851A (ja) リチウムイオン二次電池用負極活物質及びその製造方法
JP2017134937A (ja) リチウム二次電池用複合活物質およびその製造方法
US11515529B2 (en) Core-shell electrochemically active particles with modified microstructure and use for secondary battery electrodes
CN116848660A (zh) 制备碳-硅复合粉末的方法、使用该方法制备的碳-硅复合粉末以及包括其的锂二次电池
CN109768227A (zh) 锂离子电池用电极材料及锂离子电池
JP2016149340A (ja) リチウム二次電池用複合活物質およびその製造方法、リチウム二次電池
JP2017183113A (ja) リチウムイオン二次電池用複合活物質およびその製造方法
JP6584975B2 (ja) リチウムイオン二次電池負極用炭素材料、リチウムイオン二次電池負極およびリチウムイオン二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21847321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21847321

Country of ref document: EP

Kind code of ref document: A1