WO2022019218A1 - 吸水性樹脂組成物、吸水性樹脂組成物の製造方法、及び吸水性樹脂粒子の吸水速度低速化方法 - Google Patents

吸水性樹脂組成物、吸水性樹脂組成物の製造方法、及び吸水性樹脂粒子の吸水速度低速化方法 Download PDF

Info

Publication number
WO2022019218A1
WO2022019218A1 PCT/JP2021/026699 JP2021026699W WO2022019218A1 WO 2022019218 A1 WO2022019218 A1 WO 2022019218A1 JP 2021026699 W JP2021026699 W JP 2021026699W WO 2022019218 A1 WO2022019218 A1 WO 2022019218A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
absorbent resin
resin composition
mass
resin particles
Prior art date
Application number
PCT/JP2021/026699
Other languages
English (en)
French (fr)
Inventor
真啓 村上
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to EP21846781.9A priority Critical patent/EP4186948A4/en
Priority to JP2022537967A priority patent/JPWO2022019218A1/ja
Priority to US18/006,025 priority patent/US20230285936A1/en
Priority to KR1020237002676A priority patent/KR20230042281A/ko
Priority to CN202180059844.1A priority patent/CN116209414A/zh
Publication of WO2022019218A1 publication Critical patent/WO2022019218A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/04Acids; Metal salts or ammonium salts thereof
    • C08F120/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/14Organic medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/20Aqueous medium with the aid of macromolecular dispersing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530481Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/44Materials comprising a mixture of organic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a water-absorbent resin composition, a method for producing a water-absorbent resin composition, and a method for reducing the water absorption rate of water-absorbent resin particles.
  • the present invention relates to a water-absorbent resin composition constituting a preferably used absorber, a method for producing the water-absorbent resin composition, and a method for reducing the water absorption rate of the water-absorbent resin particles.
  • water-absorbent resins have been widely used in the field of sanitary materials such as disposable diapers, sanitary napkins, and incontinence pads.
  • the crosslinked product of the partially neutralized salt polymer of acrylic acid has excellent water-absorbing ability, and the acrylic acid as a raw material thereof is easily industrially available, so that the quality is constant. Moreover, it is considered to be a preferable water-absorbent resin because it can be manufactured at low cost and has many advantages such as resistance to decay and deterioration (see, for example, Patent Document 1).
  • absorbent articles such as paper omelets, sanitary napkins, and incontinence pads are mainly placed in the center of the body as an absorber that absorbs and retains body fluids such as urine and menstrual blood excreted from the body. It is composed of a liquid-permeable front sheet (top sheet) arranged on the side in contact with the body and a liquid-impermeable back sheet (back sheet) arranged on the opposite side in contact with the body. Further, the absorber is usually composed of hydrophilic fibers such as pulp and a water-absorbent resin.
  • the water absorption rate of the water-absorbent resin particles contained in the absorber is required to be high, but if the water absorption rate is too high, the liquid is charged when the liquid is charged into the absorber. At some points, the water-absorbent resin particles quickly absorb the liquid, making it difficult for the liquid to spread over the entire absorber, and a wide range of the absorber may not be effectively utilized. In such a case, the liquid charged into the absorber multiple times stays around the water-absorbent resin particles around the charging portion and reaches local saturation, and the liquid that has not been absorbed returns from the absorber (that is, from the absorber). It is a return phenomenon of the liquid, and there is a problem that the absorber feels wet when touched by hand).
  • the present inventor has diligently studied to solve the above problems.
  • the water-absorbent resin composition containing the water-absorbent resin particles having a medium particle size of 200 to 600 ⁇ m and the acidic compound having a medium particle size of 20 to 600 ⁇ m is not a large particle having a particle size of 600 ⁇ m or less. Nevertheless, it was found that the water absorption rate was slowed down.
  • the present invention is an invention that has been completed through further diligent studies based on such findings.
  • Item 1 A water-absorbent resin composition containing water-absorbent resin particles having a medium particle size of 200 to 600 ⁇ m and an acidic compound having a medium particle size of 20 to 600 ⁇ m.
  • Item 2. Item 2. The water-absorbent resin composition according to Item 1, wherein the difference (BA) between the water absorption rate A of the water-absorbent resin particles and the water absorption rate B of the water-absorbent resin composition is 1 second or more.
  • Item 3. Item 2. The water-absorbent resin composition according to Item 1 or 2, wherein the water-absorbent resin composition has a water absorption rate B of 4 to 130 seconds.
  • Item 6. Item 6.
  • the water-absorbent resin composition according to any one of Items 1 to 3, wherein the first acid dissociation constant of the acidic compound is 0.1 to 5.0.
  • Item 5. An absorber containing water-absorbent resin particles having a medium particle size of 200 to 600 ⁇ m and an acidic compound having a medium particle size of 20 to 600 ⁇ m.
  • Item 6. An absorbent article comprising the absorber according to Item 5.
  • Item 7. A method for producing a water-absorbent resin composition, comprising a step of mixing a water-absorbent resin particle having a medium particle size of 200 to 600 ⁇ m and an acidic compound having a medium particle size of 20 to 600 ⁇ m.
  • Item 8. Item 2.
  • Item 9. Item 2. The method for producing a water-absorbent resin composition according to Item 7 or 8, wherein the amount of the acidic compound is 0.05 to 30 parts by mass with respect to 100 parts by mass of the water-absorbent resin particles.
  • Item 11 A method for reducing the water absorption rate of water-absorbent resin particles, comprising a step of mixing an acidic compound having a medium particle size of 20 to 600 ⁇ m with a water-absorbent resin particle having a medium particle size of 200 to 600 ⁇ m.
  • the present invention it is possible to provide a water-absorbent resin composition in which the water absorption rate is reduced without increasing the particle size. Further, according to the present invention, it is also possible to provide a method for producing the water-absorbent resin composition and a method for reducing the water absorption rate of the water-absorbent resin particles.
  • the water-absorbent resin composition of the present invention is characterized by containing water-absorbent resin particles having a medium particle size of 200 to 600 ⁇ m and an acidic compound having a medium particle size of 20 to 600 ⁇ m.
  • the water-absorbent resin composition of the present invention having such characteristics has a small particle size of 600 ⁇ m or less, yet the water absorption rate is slowed down. This mechanism can be thought of as follows.
  • the water-absorbing behavior of the water-absorbent resin particles is the permeation that occurs between the water-absorbent resin particles having a high ion concentration (including, for example, a partially neutralized product of sodium polyacrylate) and the liquid to be absorbed having a relatively low ion concentration. It is caused by pressure. Therefore, when the ion concentration in the liquid to be absorbed becomes high, the osmotic pressure becomes small, the water absorption capacity also weakens, and the water absorption characteristics such as the amount of water absorption and the water absorption rate deteriorate.
  • a high ion concentration including, for example, a partially neutralized product of sodium polyacrylate
  • the acidic compound in the vicinity of the water-absorbent resin particles is locally dissolved during water absorption, and the ion concentration near the surface of the water-absorbent resin particles increases.
  • the water absorption characteristics, especially the water absorption rate, are preferably reduced. Therefore, the water absorption rate can be reduced without increasing the particle size of the water-absorbent resin composition.
  • the water-absorbent resin composition of the present invention will be described in detail.
  • the acidic compound is preferably a solid in a normal temperature (25 ° C.) and atmospheric pressure (1 atm) environment. From the same viewpoint, the acidic compound is preferably water-soluble.
  • water-soluble in the present invention means that it exhibits a solubility in water of 0.5% by mass or more in a normal temperature and normal pressure environment.
  • the first acid dissociation constant of the acidic compound at 25 ° C. is preferably 0.1 to 5.0, more preferably 0.5 to 4.5, still more preferably 1.0 to 4.0. be.
  • the second acid dissociation constant is preferably 2.0 to 7.0, more preferably 2.5 to 6.5, and even more preferably 3.0 to 6. It is 0.0.
  • the tertiary acid dissociation constant is preferably 3.0 to 7.0, more preferably 3.5 to 6.5, and even more preferably 4.0 to 6. It is 0.0.
  • the medium particle size of the acidic compound is 20 ⁇ m or more, preferably 50 ⁇ m or more, 80 ⁇ m or more, 100 ⁇ m or more, or 120 ⁇ m or more.
  • the medium particle size of the acidic compound is 600 ⁇ m or less, preferably 500 ⁇ m or less, 400 ⁇ m or less, 300 ⁇ m or less, or 280 ⁇ m or less. That is, the medium particle size of the acidic compound is 20 to 600 ⁇ m, preferably 50 to 500 ⁇ m, and even more preferably 100 to 300 ⁇ m.
  • the medium particle size of the acidic compound can be measured using a JIS standard sieve, and specifically, is a value measured by the method described in Examples.
  • the ratio (T / S) of the medium particle size T ( ⁇ m) of the water-absorbent resin particles to the medium particle size S ( ⁇ m) of the acidic compound is preferably 0.1 to 30, more preferably. Is 0.5 to 20, more preferably 0.8 to 15, and even more preferably 1.0 to 10.
  • the acidic compound is preferably an organic acid, and among the organic acids, tartrate acid, citric acid, malic acid, fumaric acid, sorbic acid, maleic acid, salicylic acid, succinic acid, adipic acid, glutaric acid, glycolic acid, phthalic acid, Mandelic acid and benzoic acid are preferable, and tartrate acid, citric acid, malic acid and fumaric acid are more preferable.
  • the acidic compound contained in the water-absorbent resin composition of the present invention may be one kind or two or more kinds.
  • the content of the acidic compound in the water-absorbent resin composition of the present invention is preferably 0.05 parts by mass or more with respect to 100 parts by mass of the water-absorbent resin particles. , More preferably 0.1 parts by mass or more, still more preferably 0.5 parts by mass or more, still more preferably 1 part by mass.
  • the upper limit of the content of the acidic compound with respect to 100 parts by mass of the water-absorbent resin is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, still more preferably 15. By mass or less, more preferably 10 parts by mass or less.
  • the content of the acidic compound with respect to 100 parts by mass of the water-absorbent resin is preferably 0.05 to 30 parts by mass, more preferably 0.1 to 20 parts by mass. , More preferably 0.5 to 15 parts by mass, and even more preferably 1 to 10 parts by mass.
  • the water absorption rate A (seconds) of the water-absorbent resin particles and the water absorption rate B (seconds) of the water-absorbent resin composition are used.
  • the difference (BA) is preferably 1 second or longer, more preferably 2 seconds or longer, still more preferably 3 seconds or longer, still more preferably 4 seconds or longer, and particularly preferably 5 seconds or longer.
  • the difference (BA) is preferably 70 seconds or less, more preferably 60 seconds or less, still more preferably 50 seconds or less, still more preferably 40 seconds or less, and particularly preferably 30 seconds or less.
  • the range of the difference (BA) is preferably 1 to 70, more preferably 2 to 60, still more preferably 3 to 50, still more preferably 4 to 40, and particularly preferably 5 to 30.
  • the water absorption rate A (seconds) of the water-absorbent resin particles is preferably 3 seconds or longer, more preferably 5 seconds or longer, still more preferably 10 seconds or longer, still more preferably 13 seconds or longer, particularly preferably. Is 16 seconds or more.
  • the water absorption rate A (seconds) is preferably 60 seconds or less, more preferably 50 seconds or less, still more preferably 40 seconds or less, still more preferably 35 seconds or less, and particularly preferably 30 seconds or less.
  • the range of the water absorption rate A (seconds) is preferably 3 to 60 seconds, more preferably 5 to 50 seconds, still more preferably 10 to 40 seconds, still more preferably 13 to 35 seconds, and particularly preferably 15 to 30 seconds. be.
  • the water absorption rate B (seconds) of the water-absorbent resin composition is preferably 4 seconds or longer, more preferably 7 seconds or longer, still more preferably 13 seconds or longer, still more preferably 17 seconds or longer, particularly. It is preferably 21 seconds or more.
  • the water absorption rate B (seconds) is preferably 130 seconds or less, more preferably 110 seconds or less, still more preferably 90 seconds or less, still more preferably 75 seconds or less, and particularly preferably 60 seconds or less.
  • the range of the water absorption rate B (seconds) is preferably 4 to 130 seconds, more preferably 7 to 110 seconds, still more preferably 13 to 90 seconds, still more preferably 17 to 75 seconds, and particularly preferably 21 to 60 seconds. be.
  • the water absorption rate A (seconds) of the water-absorbent resin particles and the water absorption rate B (seconds) of the water-absorbent resin composition conform to the methods specified in "Method for testing water absorption rate of water-absorbent resin" of JIS K7224-1996, respectively. Specifically, it is a value measured by the method described in Examples.
  • Water-absorbent resin particles The water-absorbent resin particles contained in the water-absorbent resin composition of the present invention are crosslinked with a polymer of a water-soluble ethylenically unsaturated monomer, that is, a structural unit derived from the water-soluble ethylenically unsaturated monomer. It is composed of a crosslinked polymer having.
  • the water-absorbent resin is usually in the form of particles.
  • the medium particle size of the water-absorbent resin particles is 200 ⁇ m or more, preferably 250 ⁇ m or more, 280 ⁇ m or more, 300 ⁇ m or more, or 350 ⁇ m or more, from the viewpoint of avoiding local absorption in the absorbent article.
  • the medium particle size of the water-absorbent resin particles is 600 ⁇ m or less, preferably 550 ⁇ m or less, 500 ⁇ m or less, 450 ⁇ m or less, or 400 ⁇ m or less, from the viewpoint of making the tactile sensation of the absorbent article comfortable.
  • the medium particle diameter is 200 to 600 ⁇ m, preferably 250 to 500 ⁇ m, more preferably 300 to 450 ⁇ m, and even more preferably 350 to 400 ⁇ m.
  • the medium particle size is preferably 200 to 600 ⁇ m, more preferably 250 to 500 ⁇ m, further preferably 300 to 450 ⁇ m, and even more preferably 350 to 400 ⁇ m. Is even more preferable.
  • the water-absorbent resin particles may be in the form of agglomerated fine particles (primary particles) in addition to the form in which each is composed of a single particle.
  • the shape of the primary particles include a substantially spherical shape, an amorphous crushed shape, and a plate shape.
  • a substantially spherical single particle shape having a smooth surface shape such as a true spherical shape or an elliptical spherical shape can be mentioned. Because the surface shape is smooth, the fluidity as a powder is high, and since the aggregated particles are easily packed densely, they are not easily destroyed even if they receive an impact, and the water-absorbent resin particles have high particle strength. It becomes.
  • the medium particle size of the water-absorbent resin particles can be measured using a JIS standard sieve, and specifically, it is a value measured by the method described in Examples.
  • a typical polymerization method such as an aqueous solution polymerization method, an emulsion polymerization method, or a reverse phase suspension polymerization method is used.
  • aqueous solution polymerization method polymerization is carried out by heating a water-soluble ethylenically unsaturated monomer aqueous solution with stirring as necessary.
  • reverse phase suspension polymerization method polymerization is carried out by heating a water-soluble ethylenically unsaturated monomer in a hydrocarbon dispersion medium under stirring.
  • the reverse phase suspension polymerization method is preferably used from the viewpoint of precise polymerization reaction control and wide range of particle size control.
  • a radical polymerization initiator in a method for producing water-absorbent resin particles by reverse-phase suspension polymerization of a water-soluble ethylenically unsaturated monomer in a hydrocarbon dispersion medium examples thereof include a production method including a step of carrying out polymerization in the presence of a polymerization agent and a step of post-crosslinking the hydrogel-like product obtained by the polymerization in the presence of a post-crosslinking agent.
  • an internal cross-linking agent may be added to the water-soluble ethylenically unsaturated monomer to form a water-containing gel having an internal cross-linking structure, if necessary.
  • Water-soluble ethylenically unsaturated monomer examples include (meth) acrylic acid (in the present specification, “acrylic” and “methacrylic” are collectively referred to as “(meth) acrylic”; the same applies hereinafter) and.
  • water-soluble ethylenically unsaturated monomers (meth) acrylic acid or a salt thereof, (meth) acrylamide, N, N-dimethylacrylamide are preferable from the viewpoint of industrial availability. , (Meta) acrylic acid and salts thereof are more preferred.
  • These water-soluble ethylenically unsaturated monomers may be used alone or in combination of two or more.
  • acrylic acid and its salts are widely used as raw materials for water-absorbent resins, and these acrylic acids and / or their salts are copolymerized with the other water-soluble ethylenically unsaturated monomers described above. It may be used.
  • acrylic acid and / or a salt thereof is preferably used as the main water-soluble ethylenically unsaturated monomer in an amount of 70 to 100 mol% with respect to the total water-soluble ethylenically unsaturated monomer.
  • the water-soluble ethylenically unsaturated monomer is dispersed in a hydrocarbon dispersion medium in the state of an aqueous solution and subjected to reverse phase suspension polymerization.
  • the concentration of the water-soluble ethylenically unsaturated monomer in this aqueous solution is preferably in the range of 20% by mass to the saturation concentration or less.
  • the concentration of the water-soluble ethylenically unsaturated monomer is more preferably 55% by mass or less, further preferably 50% by mass or less, and further preferably 45% by mass or less.
  • the concentration of the water-soluble ethylenically unsaturated monomer is more preferably 25% by mass or more, further preferably 28% by mass or more, and further preferably 30% by mass or more.
  • the acid group is previously alkaline if necessary.
  • Those neutralized with a neutralizing agent may be used.
  • alkaline neutralizer include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium hydroxide and potassium carbonate; ammonia and the like.
  • these alkaline neutralizers may be used in the form of an aqueous solution in order to simplify the neutralization operation.
  • the above-mentioned alkaline neutralizer may be used alone or in combination of two or more.
  • the degree of neutralization of the water-soluble ethylenically unsaturated monomer by the alkaline neutralizing agent shall be 10 to 100 mol% as the degree of neutralization with respect to all the acid groups of the water-soluble ethylenically unsaturated monomer. Is more preferable, 30 to 90 mol% is more preferable, 40 to 85 mol% is further preferable, and 50 to 80 mol% is even more preferable.
  • radical polymerization initiator examples include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate, methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, and dit-butyl peroxide.
  • Peroxides such as t-butylcumylperoxide, t-butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate, hydrogen peroxide, and 2,2'-azobis ( 2-Amidinopropane) 2 hydrochloride, 2,2'-azobis [2- (N-phenylamidino) propane] 2 hydrochloride, 2,2'-azobis [2- (N-allylamidino) propane] 2 hydrochloride , 2,2'-azobis ⁇ 2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane ⁇ 2 hydrochloride, 2,2'-azobis ⁇ 2-methyl-N- [1, 1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide ⁇ , 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) -propionamide], 4,4'-azobis (4-) Examples thereof include azo compounds such
  • radical polymerization initiators potassium persulfate, ammonium persulfate, sodium persulfate and 2,2'-azobis (2-amidinopropane) dihydrochloride are preferable from the viewpoint of easy availability and handling. Be done.
  • These radical polymerization initiators may be used alone or in combination of two or more. Further, the radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • Examples of the amount of the radical polymerization initiator used include 0.00005 to 0.01 mol per 1 mol of the water-soluble ethylenically unsaturated monomer. By satisfying such a usage amount, it is possible to avoid a rapid polymerization reaction from occurring and to complete the polymerization reaction in an appropriate time.
  • Internal cross-linking agent examples include those capable of cross-linking a polymer of a water-soluble ethylenically unsaturated monomer used, for example, (poly) ethylene glycol [“(poly)” is a prefix of “poly”. It means with and without. The same shall apply hereinafter], (poly) propylene glycol, 1,4-butanediol, trimethylolpropane, diols such as (poly) glycerin, polyols such as triol, and unsaturated such as (meth) acrylic acid, maleic acid, fumaric acid and the like.
  • (poly) ethylene glycol ““(poly)” is a prefix of “poly”. It means with and without. The same shall apply hereinafter]
  • (poly) propylene glycol, 1,4-butanediol, trimethylolpropane diols such as (poly) glycerin
  • polyols
  • Unsaturated polyesters obtained by reacting with an acid bisacrylamides such as N, N-methylenebisacrylamide; di (meth) acrylic acid esters or tris obtained by reacting a polyepoxide with (meth) acrylic acid.
  • unsaturated polyesters or polyglycidyl compounds are preferably used, more preferably diglycidyl ether compounds are used, and (poly) ethylene glycol diglycidyl ether and (poly) propylene glycol diglycidyl are used. It is preferable to use ether, (poly) glycerin diglycidyl ether.
  • These internal cross-linking agents may be used alone or in combination of two or more.
  • the amount of the internal cross-linking agent used is preferably 0.000001 to 0.02 mol, preferably 0.00001 to 0.01 mol, based on 1 mol of the water-soluble ethylenically unsaturated monomer. It is more preferably 0.00001 to 0.005 mol, still more preferably 0.00005 to 0.002 mol.
  • hydrocarbon dispersion medium examples include n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, n-octane and the like having 6 to 8 carbon atoms.
  • Aromatic hydrocarbons such as cyclohexane, methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, trans-1,3-dimethylcyclopentane, etc.
  • Group hydrocarbons examples include aromatic hydrocarbons such as benzene, toluene and xylene.
  • hydrocarbon dispersion media n-hexane, n-heptane, and cyclohexane are preferably used because they are industrially easily available, have stable quality, and are inexpensive.
  • These hydrocarbon dispersion media may be used alone or in combination of two or more.
  • a commercially available product such as ExxonMobil (manufactured by ExxonMobil: containing 75 to 85% by mass of hydrocarbon of heptane and its isomer) can also be used to obtain suitable results. be able to.
  • the first-stage water-soluble ethylenically unsaturated monomer is used. It is preferably 100 to 1500 parts by mass, more preferably 200 to 1400 parts by mass with respect to 100 parts by mass.
  • the reverse phase suspension polymerization is carried out in one stage (single stage) or in multiple stages of two or more stages, and the above-mentioned first stage polymerization is the first stage in single stage polymerization or multi-stage polymerization. Means the polymerization reaction of (the same applies hereinafter).
  • a dispersion stabilizer In the reverse phase suspension polymerization, a dispersion stabilizer can also be used in order to improve the dispersion stability of the water-soluble ethylenically unsaturated monomer in the hydrocarbon dispersion medium.
  • a surfactant can be used as the dispersion stabilizer.
  • surfactant examples include sucrose fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, and polyoxyethylene.
  • Alkyl ether polyoxyethylene alkyl phenyl ether, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropyl alkyl ether,
  • surfactants it is particularly preferable to use sorbitan fatty acid ester, polyglycerin fatty acid ester, and sucrose fatty acid ester from the viewpoint of dispersion stability of the monomer.
  • These surfactants may be used alone or in combination of two or more.
  • the amount of the surfactant used is preferably 0.1 to 30 parts by mass, preferably 0.3 to 20 parts by mass, based on 100 parts by mass of the water-soluble ethylenically unsaturated monomer in the first stage. It is more preferably by mass.
  • a polymer-based dispersant may be used in combination with the above-mentioned surfactant.
  • polymer dispersant examples include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified EPDM (ethylene / propylene / diene / tarpolymer), and anhydrous.
  • polymer-based dispersants in particular, from the viewpoint of the dispersion stability of the monomer, maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride, and Ethylene copolymer, maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, oxidized ethylene / propylene It is preferable to use a polymer.
  • These polymer-based dispersants may be used alone or in combination of two or more.
  • the amount of the polymer-based dispersant used is preferably 0.1 to 30 parts by mass, preferably 0.3 to 20 parts by mass with respect to 100 parts by mass of the water-soluble ethylenically unsaturated monomer in the first stage. It is more preferably by mass.
  • a thickener can be added to an aqueous solution containing a water-soluble ethylenically unsaturated monomer to carry out reverse phase suspension polymerization.
  • a thickener By adjusting the viscosity of the aqueous solution by adding a thickener in this way, it is possible to control the medium particle size obtained in the reverse phase suspension polymerization.
  • the thickener examples include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyacrylic acid, polyacrylic acid (partial) neutralized product, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, and polyvinyl alcohol. , Polyvinylpyrrolidone, polyethylene oxide and the like can be used. If the stirring speed at the time of polymerization is the same, the higher the viscosity of the aqueous solution of the water-soluble ethylenically unsaturated monomer, the larger the primary particles and / or the secondary particles of the obtained particles tend to be.
  • Reverse phase suspension polymerization In performing reverse phase suspension polymerization, for example, a monomer aqueous solution containing a water-soluble ethylenically unsaturated monomer is dispersed in a hydrocarbon dispersion medium in the presence of a dispersion stabilizer. At this time, the time for adding the dispersion stabilizer (surfactant or polymer-based dispersant) may be before or after the addition of the monomer aqueous solution before the polymerization reaction is started.
  • the dispersion stabilizer surfactant or polymer-based dispersant
  • the reaction mixture obtained in the first step polymerization reaction after the first step reverse phase suspension polymerization is water-soluble ethylenically unsaturated.
  • the monomers may be added and mixed, and the reverse phase suspension polymerization of the second and subsequent stages may be carried out in the same manner as in the first stage.
  • a radical polymerization initiator is used in the reverse phase suspension polymerization in each stage of the second and subsequent stages.
  • the amount of the water-soluble ethylenically unsaturated monomer to be added it may be added within the range of the molar ratio of each component to the above-mentioned water-soluble ethylenically unsaturated monomer to carry out reverse-phase suspension polymerization. preferable.
  • an internal cross-linking agent may be added to the water-soluble ethylenically unsaturated monomer, if necessary.
  • the reaction temperature of the polymerization reaction is 20 to 110 ° C. from the viewpoint of increasing the economic efficiency by rapidly advancing the polymerization and shortening the polymerization time, and easily removing the heat of polymerization to allow the reaction to proceed smoothly. It is preferably 40 to 90 ° C., and more preferably 40 to 90 ° C.
  • the water-absorbent resin particles of the present invention are crosslinked by adding a post-crosslinking agent to a hydrogel-like substance having an internal cross-linking structure obtained by polymerizing a water-soluble ethylenically unsaturated monomer. It is obtained by that (post-crosslinking reaction).
  • the post-crosslinking reaction is preferably carried out in the presence of a post-crosslinking agent after the polymerization of the water-soluble ethylenically unsaturated monomer.
  • the water-containing gel-like material having an internal cross-linking structure is subjected to a cross-linking reaction to increase the cross-linking density near the surface of the water-absorbent resin particles, resulting in various factors such as water absorption capacity under load. It is possible to obtain water-absorbent resin particles having improved performance.
  • post-crosslinking agent examples include compounds having two or more reactive functional groups.
  • polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, polyglycerin; (poly) ethylene glycol diglycidyl ether, (poly).
  • Polyglycidyl compounds such as glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether; epichlorohydrin, epibromhydrin, ⁇ -Haloepoxy compounds such as methylepicrolhydrin; isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylenediisocyanate; 3-methyl-3-oxetanemethanol, 3-ethyl-3-oxetanmethanol, 3-butyl-3-oxetanmethanol , 3-Methyl-3-oxetaneethanol, 3-ethyl-3-oxetaneethanol, 3-butyl-3-oxetaneethanol and other oxetane compounds
  • post-crosslinking agents (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, (poly) propylene glycol polyglycidyl ether, ( Poly) Polyglycidyl compounds such as glycerol polyglycidyl ether are preferred. These post-crosslinking agents may be used alone or in combination of two or more.
  • the amount of the post-crosslinking agent used is preferably 0.00001 to 0.01 mol, preferably 0.00005 to 0, relative to 1 mol of the total amount of the water-soluble ethylenically unsaturated monomer used for the polymerization. It is more preferably 005 mol, further preferably 0.0001 to 0.002 mol.
  • the post-crosslinking agent may be added as it is or as an aqueous solution, or may be added as a solution using a hydrophilic organic solvent as a solvent, if necessary.
  • a hydrophilic organic solvent include lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol and isopropyl alcohol; ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether, dioxane and tetrahydrofuran; N, N. -Amids such as dimethylformamide; sulfoxides such as dimethylsulfoxide and the like can be mentioned.
  • These hydrophilic organic solvents may be used alone, in combination of two or more, or as a mixed solvent with water.
  • the time for adding the post-crosslinking agent may be after almost all the polymerization reaction of the water-soluble ethylenically unsaturated monomer is completed, and 1 to 1 to 100 parts by mass of the water-soluble ethylenically unsaturated monomer. It is preferably added in the presence of water in the range of 400 parts by mass, more preferably in the presence of water in the range of 5 to 200 parts by mass, and added in the presence of water in the range of 10 to 100 parts by mass. Is more preferable, and it is even more preferable to add it in the presence of water in the range of 20 to 60 parts by mass.
  • the amount of water means the total amount of water contained in the reaction system and water used as necessary when adding the post-crosslinking agent.
  • the reaction temperature in the post-crosslinking reaction is preferably 50 to 250 ° C, more preferably 60 to 180 ° C, further preferably 60 to 140 ° C, and even more preferably 70 to 120 ° C. More preferred.
  • the reaction time of the post-crosslinking reaction is preferably 1 to 300 minutes, more preferably 5 to 200 minutes.
  • a drying step of removing water, a hydrocarbon dispersion medium, etc. by distillation by applying energy such as heat from the outside may be included.
  • the water and the hydrocarbon dispersion medium are once removed from the system by co-boiling distillation by heating the system in which the hydrogel is dispersed in the hydrocarbon dispersion medium. Distill. At this time, if only the distilled hydrocarbon dispersion medium is returned into the system, continuous azeotropic distillation becomes possible.
  • water-absorbent resin particles are obtained by distilling off water and a hydrocarbon dispersion medium.
  • the drying process by distillation may be performed under normal pressure or under reduced pressure. Further, from the viewpoint of increasing the drying efficiency, it may be performed under an air flow such as nitrogen.
  • the drying temperature is preferably 70 to 250 ° C, more preferably 80 to 180 ° C, further preferably 80 to 140 ° C, and 90 to 90 to. It is even more preferable that the temperature is 130 ° C.
  • the drying temperature is preferably 40 to 160 ° C, more preferably 50 to 110 ° C.
  • the drying step by distillation described above is performed after the cross-linking step is completed.
  • the post-crosslinking step and the drying step may be performed at the same time.
  • the water-absorbent resin composition of the present invention may contain an additive depending on the purpose in addition to the above-mentioned acidic compound.
  • additives include inorganic powders, surfactants, oxidizing agents, reducing agents, metal chelating agents, radical chain prohibiting agents, antioxidants, antibacterial agents and the like.
  • amorphous silica as an inorganic powder to 100 parts by mass of the water-absorbent resin particles, the fluidity of the water-absorbent resin composition can be further improved.
  • the content of the water-absorbent resin particles is preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90. It is mass% or more.
  • the water-absorbent resin composition of the present invention is, for example, a mixture of water-absorbent resin particles which are a cross-linked polymer of the above-mentioned water-soluble ethylenically unsaturated monomer, an internal cross-linking agent and a post-cross-linking agent, and an acidic compound. It can be suitably produced by a method including a step.
  • the temperature of the mixing step may be 0 to 90 ° C.
  • the temperature in the mixing step is preferably 15 to 70 ° C., and the relative humidity is preferably 30 to 75%.
  • the water-absorbent resin particles and the acidic compound in a solid phase state.
  • the acidic compound can be present on the surface of the water-absorbent resin particles to the extent that the effect of the present invention can be exhibited.
  • the water-absorbent resin composition of the present invention may be prepared by mixing the acidic compound with the water-absorbent resin particles in a state of being dissolved or dispersed in a liquid medium such as an aqueous liquid.
  • the amount of the acidic compound added in the method for producing the water-absorbent resin composition of the present invention is preferably 0.05 to 30 with respect to 100 parts by mass of the water-absorbent resin particles. It is by mass, more preferably 0.1 to 20 parts by mass, still more preferably 0.5 to 15 parts by mass, and even more preferably 1 to 10 parts by mass.
  • the ratio (T / S) of the medium particle size T ( ⁇ m) of the water-absorbent resin particles to the medium particle size S ( ⁇ m) of the acidic compound in the method for producing the water-absorbent resin composition of the present invention is preferably 0.1 to 30, more preferably 0.5 to 20, still more preferably 0.8 to 15, still more preferably 1.0 to 10.
  • the method for reducing the water absorption rate of the water-absorbent resin particles of the present invention is a method of mixing an acidic compound having a medium particle size of 20 to 600 ⁇ m with a water-absorbent resin particle having a medium particle size of 200 to 600 ⁇ m, preferably. It can be said that it is a method of adhering.
  • the water-absorbent resin composition of the present invention constitutes an absorber used for sanitary materials such as sanitary napkins and disposable diapers, and is suitable for absorbent articles containing the absorber. Used.
  • the absorber using the water-absorbent resin composition of the present invention contains, as essential constituent units, water-absorbent resin particles having a medium particle size of 200 to 600 ⁇ m and an acidic compound having a medium particle size of 20 to 600 ⁇ m. including.
  • the absorber may further contain hydrophilic fibers.
  • the form in which the absorber contains the water-absorbent resin particles and the acidic compound may be a form in which the water-absorbent resin particles and the acidic compound each form a layer and are adjacent to each other, or the water-absorbent resin particles and the hydrophilic fiber.
  • the acidic compound may be in a form adjacent to the outside of the mixture, or the water-absorbent resin particles and the acidic compound are sandwiched between the plurality of hydrophilic fiber layers. It may be in the same form.
  • the ratio of the water-absorbent resin particles to the acidic compound is preferably 0.05 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, based on 100 parts by mass of the water-absorbent resin particles. It is more preferably 0.5 to 15 parts by mass, and even more preferably 1 to 10 parts by mass.
  • the absorber using the water-absorbent resin composition of the present invention more preferably contains the water-absorbent resin composition of the present invention.
  • the absorber may further contain hydrophilic fibers.
  • the structure of the absorber is a sheet-like structure in which the water-absorbent resin composition is fixed on the non-woven fabric or between a plurality of non-woven fabrics, and the water-absorbent resin composition and the hydrophilic fibers are mixed so as to have a uniform composition. Examples thereof include a mixed dispersion obtained as a result, a sandwich structure in which a water-absorbent resin composition is sandwiched between layered hydrophilic fibers, and a structure in which a water-absorbent resin composition and hydrophilic fibers are wrapped in a tissue. Be done.
  • the absorber may contain other components, for example, an adhesive binder such as a heat-fusing synthetic fiber, a hot melt adhesive, or an adhesive emulsion for enhancing the shape retention of the absorber. ..
  • the content of the water-absorbent resin composition in the absorber is preferably 5 to 100% by mass, more preferably 10 to 95% by mass, further preferably 20 to 90% by mass, and 30. It is more preferably ⁇ 80% by mass.
  • hydrophilic fiber synthesis of cellulose fiber such as cotton-like pulp obtained from wood, mechanical pulp, chemical pulp, semi-chemical pulp, artificial cellulose fiber such as rayon and acetate, hydrophilic treated polyamide, polyester, polyolefin and the like. Examples include fibers made of resin.
  • the average fiber length of the hydrophilic fibers is usually 0.1-10 mm or may be 0.5-5 mm.
  • An absorber using the water-absorbent resin composition of the present invention is held between a liquid permeable sheet (top sheet) through which a liquid can pass and a liquid impermeable sheet (back sheet) through which a liquid cannot pass. By doing so, the absorbent article of the present invention can be obtained.
  • the liquid permeable sheet is placed on the side that comes into contact with the body, and the liquid permeable sheet is placed on the opposite side that comes into contact with the body.
  • liquid permeable sheet examples include non-woven fabrics such as air-through type, spunbond type, chemical bond type and needle punch type, and porous synthetic resin sheets made of fibers such as polyethylene, polypropylene and polyester.
  • liquid impermeable sheet examples include a synthetic resin film made of a resin such as polyethylene, polypropylene, and polyvinyl chloride.
  • the water-absorbent resin compositions obtained in the following Examples and Comparative Examples were evaluated in the following various tests. Unless otherwise specified, the measurement was carried out in an environment with a temperature of 25 ⁇ 2 ° C. and a humidity of 50 ⁇ 10%. Hereinafter, each evaluation test method will be described.
  • the water absorption rates of the water-absorbent resin composition and the water-absorbent resin particles were measured by the following procedures based on the vortex method (JIS K7224-1996), respectively.
  • 0.05 part by mass of Blue No. 1 was mixed with 2000 parts by mass of ion-exchanged water to prepare colored ion-exchanged water, and the temperature was adjusted to 25 ⁇ 0.2 ° C. in a constant temperature water tank.
  • 50 ⁇ 0.01 g of colored ion-exchanged water was weighed in a beaker with a capacity of 100 mL.
  • a stirrer (8 mm ⁇ ⁇ 30 mm, no ring) was placed in a beaker and stirred at a rotation speed of 600 rpm using a magnetic stirrer to generate a vortex.
  • the time (seconds) from when 0.5 ⁇ 0.0002 g of the water-absorbent resin composition was put into the beaker until the stirrer was covered with the gelled ion-exchanged water was measured.
  • the measurement was performed 5 times, and the average values were taken as the water absorption rate B of the water-absorbent resin composition and the water absorption rate A of the water-absorbent resin particles, respectively.
  • Table 1 shows the difference (BA) between the water absorption rate A of the water-absorbent resin particles and the water absorption rate B of the water-absorbent resin composition.
  • ⁇ Medium particle size of water-absorbent resin particles From the top of the JIS standard sieve, a sieve with an opening of 850 ⁇ m, a sieve with an opening of 600 ⁇ m, a sieve with an opening of 500 ⁇ m, a sieve with an opening of 425 m, a sieve with an opening of 300 ⁇ m, a sieve with an opening of 250 ⁇ m, a sieve with an opening of 150 ⁇ m, and a sieve. Combined in the order of the saucer. 50 g of water-absorbent resin particles were placed in the combined top sieve and shaken for 10 minutes using a low-tap shaker to classify.
  • the mass of the water-absorbent resin particles remaining on each sieve was calculated as a mass percentage with respect to the total amount, and the particle size distribution was obtained.
  • the relationship between the mesh size of the sieve and the integrated value of the mass percentage of the water-absorbent resin particles remaining on the sieve was plotted on a logarithmic probability paper by integrating the particles on the sieve in order from the one having the largest particle size with respect to this particle size distribution. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass was defined as the medium particle size of the water-absorbent resin particles.
  • the sieving conditions were set to a frequency of 80 Hz, a pulse interval of 1 second, and a classification time of 2 minutes.
  • the mass of the acidic compound remaining on each sieve was calculated as a mass percentage to the total amount.
  • the mass percentages of the acidic compounds remaining on each sieve are integrated in order from the one with the largest particle size, and the relationship between the mesh opening of the sieve and the integrated value of the mass percentages of the acidic compounds remaining on the sieve is made into a logarithmic probability paper. Plotted. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass was obtained, and this was used as the medium particle size of the acidic compound.
  • a 75 ⁇ m standard sieve was left for 30 minutes in a state where the angle formed with respect to the horizontal was tilted to about 30 degrees, and excess physiological saline was removed from the water-absorbent resin particles.
  • the mass Wb (g) of the sieve containing the swelling gel is measured, and the mass Wb (g) minus the mass Wa (g) of the 75 ⁇ m standard sieve is calculated by the mass (2.0 g) of the water-absorbent resin particles.
  • ⁇ Manufacturing example 1> A round-bottomed cylindrical separable flask with an inner diameter of 11 cm and a capacity of 2 L, equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade having four inclined paddle blades with a blade diameter of 5 cm in two stages as a stirrer. Got ready. To this flask, take 293 g of n-heptane as a hydrocarbon dispersion medium, add 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (Mitsui Chemicals Co., Ltd., High Wax 1105A) as a polymer-based dispersant, and stir. The temperature was raised to 80 ° C.
  • aqueous solution of the first stage 0.0736 g (0.272 mmol) of potassium persulfate as a polymer and 0.010 g (0.057 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were added and dissolved to prepare an aqueous solution of the first stage. .. Then, the aqueous solution prepared above was added to the separable flask, and after stirring for 10 minutes, HLB3 sucrose stearate ester (Mitsubishi Chemical Foods Co., Ltd., Ryo) was added to 6.62 g of n-heptane as a surfactant.
  • HLB3 sucrose stearate ester Mitsubishi Chemical Foods Co., Ltd., Ryo
  • Toucgar ester S-370 0.736 g of a surfactant solution dissolved by heating is further added, and the inside of the system is sufficiently replaced with nitrogen while stirring at a stirring speed of 550 rpm, and then the flask is replaced with 70.
  • the first-stage polymerized slurry liquid was obtained by immersing in a water bath at ° C. to raise the temperature and performing polymerization for 60 minutes.
  • 128.8 g (1.43 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer was placed in another beaker having an internal volume of 500 mL, and 27 mass% while cooling from the outside.
  • the flask After replacing the inside of the system with nitrogen for 30 minutes, the flask was again immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization reaction was carried out for 60 minutes to obtain a hydrogel polymer.
  • a hydrogel polymer To the hydrogel polymer after the second stage polymerization, 0.589 g of a 45% by mass diethylenetriamine-5 sodium acetate aqueous solution was added under stirring. Then, the flask was immersed in an oil bath set at 125 ° C., and 257.7 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water.
  • Add 0.5 parts by mass of dissociation constant pKa2 3.97, medium particle size 280 ⁇ m), and use a cross rotary mixer manufactured by Meiwa Kogyo Co., Ltd. in an environment with a temperature of 25 ° C and a relative humidity of 50%. The mixture was mixed for minutes (conditions, revolution rotation speed 50 rpm, rotation rotation speed 50 rpm) to obtain a water-absorbent resin composition.
  • Example 2 a water-absorbent resin composition was obtained in the same manner as in Example 1 except that L-tartaric acid was changed to 1.0 part by mass with respect to 100 parts by mass of the water-absorbent resin particles.
  • Example 3 a water-absorbent resin composition was obtained in the same manner as in Example 1 except that L-tartaric acid was changed to 2.0 parts by mass with respect to 100 parts by mass of the water-absorbent resin particles.
  • Example 4 a water-absorbent resin composition was obtained in the same manner as in Example 1 except that L-tartaric acid was changed to 3.0 parts by mass with respect to 100 parts by mass of the water-absorbent resin particles.
  • Example 5 a water-absorbent resin composition was obtained in the same manner as in Example 1 except that L-tartaric acid was changed to 5.0 parts by mass with respect to 100 parts by mass of the water-absorbent resin particles.
  • Example 6 a water-absorbent resin composition was obtained in the same manner as in Example 1 except that L-tartaric acid was changed to 10.0 parts by mass with respect to 100 parts by mass of the water-absorbent resin particles.
  • Meiwa Kogyo A water-absorbent resin composition was obtained by mixing for 30 minutes (conditions, revolution rotation speed 50 rpm, rotation rotation speed 50 rpm) using a cross rotary mixer manufactured by Co., Ltd.
  • Add 1.0 part by mass of dissociation constant pKa2 4.77, medium particle size 156 ⁇ m), and use a cross rotary mixer manufactured by Meiwa Kogyo Co., Ltd. in an environment with a temperature of 25 ° C and a relative humidity of 50%. The mixture was mixed for minutes (conditions, revolution rotation speed 50 rpm, rotation rotation speed 50 rpm) to obtain a water-absorbent resin composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

粒子径を大きくすることなく、吸水速度を低速化させた、吸水性樹脂組成物を提供する。 中位粒子径が200~600μmの吸水性樹脂粒子と、中位粒子径が20~600μmの酸性化合物とを含む、吸水性樹脂組成物。

Description

吸水性樹脂組成物、吸水性樹脂組成物の製造方法、及び吸水性樹脂粒子の吸水速度低速化方法
 本発明は、吸水性樹脂組成物、吸水性樹脂組成物の製造方法、及び吸水性樹脂粒子の吸水速度低下法に関し、より詳しくは、紙オムツ、生理用ナプキン、失禁用パッド等の衛生材料に好適に用いられる吸収体を構成する吸水性樹脂組成物、吸水性樹脂組成物の製造方法、及び吸水性樹脂粒子の吸水速度低速化方法に関する。
 吸水性樹脂は、近年、紙オムツ、生理用ナプキン、失禁用パッド等の衛生材料の分野に広く使用されている。
 このような吸水性樹脂としては、アクリル酸部分中和塩重合体架橋物が、優れた吸水能を有するとともに、その原料であるアクリル酸の工業的な入手が容易であるため、品質が一定で且つ安価に製造でき、しかも腐敗や劣化がおこりにくい等の数々の利点を有することから、好ましい吸水性樹脂であるとされている(例えば特許文献1参照)。
 一方、紙オムツ、生理用ナプキン、失禁用パッド等の吸収性物品は、主として中心部に配された、身体から排泄される尿、経血等の体液を吸収、保持する吸収体と、身体に接する側に配された液透過性の表面シート(トップシート)と、身体と接する反対側に配された液不透過性の裏面シート(バックシート)から構成されている。また、吸収体は、通常、パルプ等の親水性繊維と吸水性樹脂とから構成されている。
特開平3-227301号公報
 このような吸収性物品において、吸収体に含まれる吸水性樹脂粒子の吸水速度は速いことが求められるものの、吸水速度が速すぎると、吸収体に液が投入された際、液が投入された箇所において、吸水性樹脂粒子が液を素早く吸収し、吸収体全体にまで液が拡がりにくく、吸収体の広い範囲が有効活用されないことがある。このような場合、吸収体に複数回投入された液が、投入部周辺の吸水性樹脂粒子周辺に滞留して局所的に飽和に至り、吸収されなかった液が逆戻り現象(すなわち、吸収体からの液の戻り現象であり、吸収体を手で触ったときに濡れとして感じる)が生じるという問題がある。
 液を吸収体全体に拡散させ、吸収体の逆戻りを抑制する方法として、吸水速度を低速化させた吸水性樹脂粒子を用いる方法がある。また、吸水速度を低速化させる方法としては、吸水性樹脂粒子の粒子径を大きくし、吸水性樹脂粒子の表面積を小さくする方法がある。しかしながら、吸水性樹脂粒子の粒子径を大きくすると、大きい粒子によるゴツゴツ感が増すことにより、吸収体の感触が悪くなるなどの問題が生じる。
 このような状況下、本発明は、粒子径を大きくすることなく、吸水速度を低速化させた、吸水性樹脂組成物を提供することを主な目的とする。
 本発明者は、上記課題を解決するために鋭意検討した。その結果、中位粒子径が200~600μmの吸水性樹脂粒子と、中位粒子径が20~600μmの酸性化合物とを含む、吸水性樹脂組成物は、粒子径が600μm以下と大粒子ではないにも拘わらず、吸水速度が低速化されることを見出した。本発明は、このような知見に基づき、さらに鋭意検討を重ねて完成した発明である。
 すなわち、本発明は、下記の構成を備える発明を提供する。
項1. 中位粒子径が200~600μmの吸水性樹脂粒子と、中位粒子径が20~600μmの酸性化合物とを含む、吸水性樹脂組成物。
項2. 前記吸水性樹脂粒子の吸水速度Aと前記吸水性樹脂組成物の吸水速度Bとの差(B-A)が、1秒以上である、項1に記載の吸水性樹脂組成物。
項3. 前記吸水性樹脂組成物の吸水速度Bが、4~130秒である、項1又は2に記載の吸水性樹脂組成物。
項4. 前記酸性化合物の第1酸解離定数が0.1~5.0である、項1~3のいずれか1項に記載の吸水性樹脂組成物。
項5. 中位粒子径が200~600μmの吸水性樹脂粒子と、中位粒子径が20~600μmの酸性化合物とを含む、吸収体。
項6. 項5に記載の吸収体を含んでなる、吸収性物品。
項7. 中位粒子径が200~600μmの吸水性樹脂粒子と、中位粒子径が20~600μmの酸性化合物とを混合する工程を備える、吸水性樹脂組成物の製造方法。
項8. 前記混合工程における温度が0~90℃、かつ相対湿度が30~75%である、項7に記載の吸水性樹脂組成物の製造方法。
項9. 前記吸水性樹脂粒子100質量部に対する、前記酸性化合物の量が0.05~30質量部である、項7又は8に記載の吸水性樹脂組成物の製造方法。
項10. 前記酸性化合物の中位粒子径S(μm)に対する、前記吸水性樹脂粒子の中位粒子径T(μm)の比(T/S)が、0.1~30である、項7~9のいずれか1項に記載の吸水性樹脂組成物の製造方法。
項11. 中位粒子径が200~600μmの吸水性樹脂粒子に対して、中位粒子径が20~600μmの酸性化合物を混合する工程を備える、吸水性樹脂粒子の吸水速度低速化方法。
 本発明によれば、粒子径を大きくすることなく、吸水速度を低速化させた、吸水性樹脂組成物を提供することができる。さらに、本発明によれば、当該吸水性樹脂組成物の製造方法、及び吸水性樹脂粒子の吸水速度低速化方法を提供することもできる。
1.吸水性樹脂組成物
 本発明の吸水性樹脂組成物は、中位粒子径が200~600μmの吸水性樹脂粒子と、中位粒子径が20~600μmの酸性化合物とを含むことを特徴とする。このような特徴を備える本発明の吸水性樹脂組成物は、600μm以下と粒子径が大きくないにも拘わらず、かつ、吸水速度が低速化されている。この機序については、次のように考えることができる。
 吸水性樹脂粒子の吸水挙動は、高イオン濃度である吸水性樹脂粒子(例えばポリアクリル酸ナトリウム部分中和物を含む)と、相対的に低イオン濃度である被吸収液との間に生じる浸透圧によって生じる。従って、被吸収液中のイオン濃度が高くなると浸透圧が小さくなり、吸水力も弱まり、吸水量や吸水速度等の吸水特性が低下する。すなわち、酸性化合物を吸水性樹脂粒子近傍に存在させた吸水性樹脂組成物は、吸水時に吸水性樹脂粒子近傍の酸性化合物が局所で溶解し、吸水性樹脂粒子の表面近傍のイオン濃度が高まり、吸水特性、特に吸水速度が好適に低速化する。したがって、吸水性樹脂組成物の粒子径を大きくすることなく、吸水速度を低速化させることができている。以下、本発明の吸水性樹脂組成物について詳述する。
 本発明の効果をより好適に発揮する観点から、酸性化合物は、常温(25℃)及び常圧(1atm)環境で固体であることが好ましい。同様の観点から、酸性化合物は、水溶性であることが好ましい。なお、本発明における水溶性とは、常温及び常圧環境において、水に0.5質量%以上の溶解性を示すことをいう。
 同様の観点から、酸性化合物の25℃における第1酸解離定数は、好ましくは0.1~5.0、より好ましくは0.5~4.5、さらに好ましくは1.0~4.0である。また、酸性化合物に第2酸解離定数がある場合、第2酸解離定数は、好ましくは2.0~7.0、より好ましくは2.5~6.5、さらに好ましくは3.0~6.0である。また、酸性化合物に第3酸解離定数がある場合、第3酸解離定数は、好ましくは3.0~7.0、より好ましくは3.5~6.5、さらに好ましくは4.0~6.0である。
 同様の観点から、酸性化合物の中位粒子径は、20μm以上であり、50μm以上、80μm以上、100μm以上、又は120μm以上が好ましい。一方、酸性化合物の中位粒子径は、600μm以下であり、500μm以下、400μm以下、300μm以下、又は280μm以下が好ましい。すなわち、酸性化合物の中位粒子径は、20~600μmであり、好ましくは50~500μm、さらにより好ましくは100~300μmである。酸性化合物の中位粒子径は、JIS標準篩を用いて測定することができ、具体的には、実施例に記載の方法により測定した値である。
 同様の観点から、酸性化合物の中位粒子径S(μm)に対する、吸水性樹脂粒子の中位粒子径T(μm)の比(T/S)は、好ましくは0.1~30、より好ましくは0.5~20、さらに好ましくは0.8~15、よりさらに好ましくは1.0~10である。
 酸性化合物は、好ましくは有機酸であり、有機酸の中でも特に酒石酸、クエン酸、リンゴ酸、フマル酸、ソルビン酸、マレイン酸、サリチル酸、コハク酸、アジピン酸、グルタル酸、グリコール酸、フタル酸、マンデル酸、安息香酸が好ましく、酒石酸、クエン酸、リンゴ酸、フマル酸がより好ましい。本発明の吸水性樹脂組成物に含まれる酸性化合物は、1種類であってもよいし、2種類以上であってもよい。
 本発明の効果をより好適に発揮する観点から、本発明の吸水性樹脂組成物における酸性化合物の含有率は、吸水性樹脂粒子100質量部に対して、下限は好ましくは0.05質量部以上、より好ましくは0.1質量部以上、さらに好ましくは0.5質量部以上、よりさらに好ましくは1質量部が挙げられる。また工業的な生産のし易さおよびコストの観点からは、吸水性樹脂100質量部に対する酸性化合物の含有量の上限は好ましくは30質量部以下、より好ましくは20質量部以下、さらに好ましくは15質量部以下、よりさらに好ましくは10質量部以下が挙げられる。これらの下限値と上限値はそれぞれ任意に組み合わせることができ、吸水性樹脂100質量部に対する酸性化合物の含有量は、好ましくは0.05~30質量部、より好ましくは0.1~20質量部、さらに好ましくは0.5~15質量部、よりさらに好ましくは1~10質量部である。
 本発明の効果をより好適に発揮する観点から、本発明の吸水性樹脂組成物において、吸水性樹脂粒子の吸水速度A(秒)と、吸水性樹脂組成物の吸水速度B(秒)との差(B-A)は、好ましくは1秒以上、より好ましくは2秒以上、さらに好ましくは3秒以上、よりさらに好ましくは4秒以上、特に好ましくは5秒以上である。当該差(B-A)は、好ましくは70秒以下、より好ましくは60秒以下、さらに好ましくは50秒以下、よりさらに好ましくは40秒以下、特に好ましくは30秒以下である。当該差(B-A)の範囲は、好ましくは1~70、より好ましくは2~60、さらに好ましくは3~50、よりさらに好ましくは4~40、特に好ましくは5~30である。
 また、同様の観点から、吸水性樹脂粒子の吸水速度A(秒)は、好ましくは3秒以上、より好ましくは5秒以上、さらに好ましくは10秒以上、よりさらに好ましくは13秒以上、特に好ましくは16秒以上である。吸水速度A(秒)は、好ましくは60秒以下、より好ましくは50秒以下、さらに好ましくは40秒以下、よりさらに好ましくは35秒以下、特に好ましくは30秒以下である。吸水速度A(秒)の範囲は、好ましくは3~60秒、より好ましくは5~50秒、さらに好ましくは10~40秒、よりさらに好ましくは13~35秒、特に好ましくは15~30秒である。
 さらに、同様の観点から、吸水性樹脂組成物の吸水速度B(秒)は、好ましくは4秒以上、より好ましくは7秒以上、さらに好ましくは13秒以上、よりさらに好ましくは17秒以上、特に好ましくは21秒以上である。吸水速度B(秒)は、好ましくは130秒以下、より好ましくは110秒以下、さらに好ましくは90秒以下、よりさらに好ましくは75秒以下、特に好ましくは60秒以下である。吸水速度B(秒)の範囲は、好ましくは4~130秒、より好ましくは7~110秒、さらに好ましくは13~90秒、よりさらに好ましくは17~75秒、特に好ましくは21~60秒である。
 吸水性樹脂粒子の吸水速度A(秒)及び吸水性樹脂組成物の吸水速度B(秒)は、それぞれ、JIS K7224-1996の「吸水性樹脂の吸水速度試験方法」に規定された方法に準拠して測定され、具体的には、実施例に記載の方法により測定した値である。
 次に、本発明の吸水性樹脂組成物に含まれる吸水性樹脂粒子について詳述する。
(吸水性樹脂粒子)
 本発明の吸水性樹脂組成物に含まれる吸水性樹脂粒子は、水溶性エチレン性不飽和単量体の重合物を架橋したもの、すなわち水溶性エチレン性不飽和単量体に由来する構造単位を有する架橋重合体により構成されている。
 吸水性樹脂は、通常、粒子状である。吸水性樹脂粒子の中位粒子径は、吸収性物品における局所的な吸収を回避する観点から、200μm以上であり、250μm以上、280μm以上、300μm以上、又は350μm以上が好ましい。また、吸水性樹脂粒子の中位粒子径は、吸収性物品における触感を快適にする観点から、600μm以下であり、550μm以下、500μm以下、450μm以下、又は400μm以下が好ましい。すなわち、中位粒子径が200~600μmであり、250~500μmであることが好ましく、300~450μmであることがより好ましく、350~400μmであることがさらに好ましい。また、本発明の吸水性樹脂組成物についても、中位粒子径が200~600μmであることが好ましく、250~500μmであることがより好ましく、300~450μmであることがさらに好ましく、350~400μmであることがよりさらに好ましい。
 なお、吸水性樹脂粒子は、各々が単一の粒子からなる形態のほかに、微細な粒子(一次粒子)が凝集した形態(二次粒子)であってもよい。一次粒子の形状としては、略球状、不定形破砕状、板状等が挙げられる。逆相懸濁重合によって製造される一次粒子である場合には、真球状、楕円球状等のような円滑な表面形状を有する略球状の単粒子形状が挙げられるが、このような形状の一次粒子は、表面形状が円滑であることにより、粉体としての流動性が高くなるうえ、凝集した粒子が密に充填されやすいために衝撃を受けても破壊されにくく、粒子強度が高い吸水性樹脂粒子となる。
 吸水性樹脂粒子の中位粒子径は、JIS標準篩を用いて測定することができ、具体的には、実施例に記載の方法により測定した値である。
 水溶性エチレン性不飽和単量体の重合方法は、代表的な重合法である水溶液重合法、乳化重合法、逆相懸濁重合法等が用いられる。水溶液重合法では、水溶性エチレン性不飽和単量体水溶液を、必要に応じて攪拌しながら、加熱することにより重合が行われる。また、逆相懸濁重合法では、水溶性エチレン性不飽和単量体を、炭化水素分散媒中、攪拌下で加熱することにより重合が行われる。精密な重合反応制御と広範な粒子径の制御が可能な観点から逆相懸濁重合法が好ましく用いられる。
 吸水性樹脂粒子に関して、その製造方法の一例を、以下に説明する。
 吸水性樹脂粒子の製造方法の具体例としては、水溶性エチレン性不飽和単量体を炭化水素分散媒中で逆相懸濁重合させて吸水性樹脂粒子を製造する方法において、ラジカル重合開始剤の存在下において重合を行う工程と、重合で得られた含水ゲル状物に後架橋剤の存在下に後架橋する工程とを有する製造方法が挙げられる。なお、本発明の吸水性樹脂粒子の製造方法においては、必要に応じて水溶性エチレン性不飽和単量体に内部架橋剤を添加して内部架橋構造を有する含水ゲル状物としてもよい。
  <重合工程>
 [水溶性エチレン性不飽和単量体]
 水溶性エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸(本明細書においては、「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。以下同様)及びその塩;2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート等の非イオン性単量体;N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体及びその4級化物等が挙げられる。これらの水溶性エチレン性不飽和単量体の中でも、工業的に入手が容易であること等の観点から、(メタ)アクリル酸又はその塩、(メタ)アクリルアミド、N,N-ジメチルアクリルアミドが好ましく、(メタ)アクリル酸及びその塩がより好ましい。なお、これらの水溶性エチレン性不飽和単量体は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 これらの中でも、アクリル酸及びその塩が吸水性樹脂の原材料として広く用いられており、これらアクリル酸及び/又はその塩に、前述の他の水溶性エチレン性不飽和単量体を共重合させて用いる場合もある。この場合、アクリル酸及び/又はその塩は、主となる水溶性エチレン性不飽和単量体として、総水溶性エチレン性不飽和単量体に対して70~100モル%用いられることが好ましい。
 水溶性エチレン性不飽和単量体は、水溶液の状態で炭化水素分散媒中に分散されて、逆相懸濁重合に供されるのが好ましい。水溶性エチレン性不飽和単量体は、水溶液とすることにより、炭化水素分散媒中での分散効率を上昇させることができる。この水溶液における水溶性エチレン性不飽和単量体の濃度としては、20質量%~飽和濃度以下の範囲であることが好ましい。また、水溶性エチレン性不飽和単量体の濃度としては、55質量%以下であることがより好ましく、50質量%以下であることがさらに好ましく、45質量%以下であることがよりさらに好ましい。一方、水溶性エチレン性不飽和単量体の濃度としては25質量%以上であることがより好ましく、28質量%以上であることがさらに好ましく、30質量%以上であることがよりさらに好ましい。
 水溶性エチレン性不飽和単量体が、(メタ)アクリル酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸等のように酸基を有する場合、必要に応じてその酸基が予めアルカリ性中和剤により中和されたものを用いてもよい。このようなアルカリ性中和剤としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;アンモニア等が挙げられる。また、これらのアルカリ性中和剤は、中和操作を簡便にするために水溶液の状態にして用いてもよい。なお、上述したアルカリ性中和剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 アルカリ性中和剤による水溶性エチレン性不飽和単量体の中和度としては、水溶性エチレン性不飽和単量体が有する全ての酸基に対する中和度として、10~100モル%であることが好ましく、30~90モル%であることがより好ましく、40~85モル%であることがさらに好ましく、50~80モル%であることがよりさらに好ましい。
[ラジカル重合開始剤]
 当該重合工程に添加されるラジカル重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩類、メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、過酸化水素等の過酸化物類、並びに、2,2’-アゾビス(2-アミジノプロパン)2塩酸塩、2,2’-アゾビス〔2-(N-フェニルアミジノ)プロパン〕2塩酸塩、2,2’-アゾビス〔2-(N-アリルアミジノ)プロパン〕2塩酸塩、2,2’-アゾビス{2-〔1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル〕プロパン}2塩酸塩、2,2’-アゾビス{2-メチル-N-〔1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル〕プロピオンアミド}、2,2’-アゾビス〔2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド〕、4,4’-アゾビス(4-シアノ吉草酸)等のアゾ化合物等を挙げることができる。これらのラジカル重合開始剤の中でも、入手が容易で取り扱いやすいという観点から、好ましくは、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム及び2,2’-アゾビス(2-アミジノプロパン)2塩酸塩が挙げられる。これらラジカル重合開始剤は、単独で用いても、2種以上を組み合わせて用いてもよい。また、前記ラジカル重合開始剤は、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、及びL-アスコルビン酸等の還元剤と併用して、レドックス重合開始剤として用いることもできる。
 ラジカル重合開始剤の使用量としては、例えば、水溶性エチレン性不飽和単量体1モルに対して0.00005~0.01モルが挙げられる。このような使用量を充足することにより、急激な重合反応が起こるのを回避し、且つ重合反応を適切な時間で完了させることができる。
 [内部架橋剤]
 内部架橋剤としては、使用する水溶性エチレン性不飽和単量体の重合体を架橋できるものが挙げられ、例えば、(ポリ)エチレングリコール〔「(ポリ)」とは「ポリ」の接頭語がある場合とない場合を意味する。以下同様〕、(ポリ)プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、(ポリ)グリセリン等のジオール、トリオール等のポリオール類と(メタ)アクリル酸、マレイン酸、フマル酸等の不飽和酸とを反応させて得られる不飽和ポリエステル類;N,N-メチレンビスアクリルアミド等のビスアクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ(メタ)アクリル酸エステル類又はトリ(メタ)アクリル酸エステル類;トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のポリイソシアネートと(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉、アリル化セルロース、ジアリルフタレート、N,N’,N’’-トリアリルイソシアヌレート、ジビニルベンゼン等の重合性不飽和基を2個以上有する化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等のジグリシジル化合物、トリグリシジル化合物等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のエピハロヒドリン化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物等の反応性官能基を2個以上有する化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物等が挙げられる。これらの内部架橋剤の中でも、不飽和ポリエステル類、又はポリグリシジル化合物を用いることが好ましく、ジグリシジルエーテル化合物を用いることがより好ましく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテルを用いることが好ましい。これらの内部架橋剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 内部架橋剤の使用量としては、水溶性エチレン性不飽和単量体1モルに対して、0.000001~0.02モルであることが好ましく、0.00001~0.01モルであることがより好ましく、0.00001~0.005モルであることがさらに好ましく、0.00005~0.002モルであることがよりさらに好ましい。
 [炭化水素分散媒]
 炭化水素分散媒としては、例えば、n-ヘキサン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、3-エチルペンタン、n-オクタン等の炭素数6~8の脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans-1,2-ジメチルシクロペンタン、cis-1,3-ジメチルシクロペンタン、trans-1,3-ジメチルシクロペンタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。これらの炭化水素分散媒の中でも、特に、工業的に入手が容易であり、品質が安定しており且つ安価である点で、n-ヘキサン、n-ヘプタン、シクロヘキサンが好適に用いられる。これらの炭化水素分散媒は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。なお、炭化水素分散媒の混合物の例としては、エクソールヘプタン(エクソンモービル社製:ヘプタン及びその異性体の炭化水素75~85質量%含有)等の市販品を用いても好適な結果を得ることができる。
 炭化水素分散媒の使用量としては、水溶性エチレン性不飽和単量体を均一に分散し、重合温度の制御を容易にする観点から、第1段目の水溶性エチレン性不飽和単量体100質量部に対して、100~1500質量部であることが好ましく、200~1400質量部であることがより好ましい。なお、後述するが、逆相懸濁重合は、1段(単段)もしくは2段以上の多段で行われ、上述した第1段目の重合とは、単段重合もしくは多段重合における1段目の重合反応を意味する(以下も同様)。
 [分散安定剤]
  (界面活性剤)
 逆相懸濁重合では、水溶性エチレン性不飽和単量体の炭化水素分散媒中での分散安定性を向上させるために、分散安定剤を用いることもできる。その分散安定剤としては、界面活性剤を用いることができる。
 界面活性剤としては、例えば、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル、アルキルグルコシド、N-アルキルグルコンアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルエーテルのリン酸エステル、ポリオキシエチレンアルキルアリルエーテルのリン酸エステル等を用いることができる。これらの界面活性剤の中でも、特に、単量体の分散安定性の面から、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステルを用いることが好ましい。これらの界面活性剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 界面活性剤の使用量としては、第1段目の水溶性エチレン性不飽和単量体100質量部に対して、好ましくは0.1~30質量部であることが好ましく、0.3~20質量部であることがより好ましい。
  (高分子系分散剤)
 また、逆相懸濁重合で用いられる分散安定剤としては、上述した界面活性剤と共に、高分子系分散剤を併せて用いてもよい。
 高分子系分散剤としては、例えば、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性EPDM(エチレン・プロピレン・ジエン・ターポリマー)、無水マレイン酸変性ポリブタジエン、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、無水マレイン酸・ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース等が挙げられる。これらの高分子系分散剤の中でも、特に、単量体の分散安定性の面から、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体を用いることが好ましい。これらの高分子系分散剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 高分子系分散剤の使用量としては、第1段目の水溶性エチレン性不飽和単量体100質量部に対して、0.1~30質量部であることが好ましく、0.3~20質量部であることがより好ましい。
 [その他の成分]
 吸水性樹脂粒子の製造方法において、所望によりその他の成分を、水溶性エチレン性不飽和単量体を含む水溶液に添加して逆相懸濁重合を行うようにしてもよい。その他の成分としては、増粘剤、連鎖移動剤等の各種の添加剤を添加することができる。
 一例として、水溶性エチレン性不飽和単量体を含む水溶液に対して増粘剤を添加して逆相懸濁重合を行うことができる。このように増粘剤を添加して水溶液粘度を調整することによって、逆相懸濁重合において得られる中位粒子径を制御することが可能である。
 増粘剤としては、例えば、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、カルボキシメチルセルロース、ポリアクリル酸、ポリアクリル酸(部分)中和物、ポリエチレングリコール、ポリアクリルアミド、ポリエチレンイミン、デキストリン、アルギン酸ナトリウム、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド等を用いることができる。なお、重合時の攪拌速度が同じであれば、水溶性エチレン性不飽和単量体水溶液の粘度が高いほど得られる粒子の一次粒子及び/又は二次粒子は大きくなる傾向にある。
 [逆相懸濁重合]
 逆相懸濁重合を行うにあたっては、例えば、分散安定剤の存在下に、水溶性エチレン性不飽和単量体を含む単量体水溶液を、炭化水素分散媒に分散させる。このとき、重合反応を開始する前であれば、分散安定剤(界面活性剤や高分子系分散剤)の添加時期は、単量体水溶液添加の前後どちらであってもよい。
 その中でも、得られる吸水性樹脂粒子に残存する炭化水素分散媒量を低減しやすいという観点から、高分子系分散剤を分散させた炭化水素分散媒に、単量体水溶液を分散させた後に、さらに界面活性剤を分散させてから重合を行うことが好ましい。
 このような逆相懸濁重合を、1段もしくは2段以上の多段で行うことが可能である。また、生産性を高める観点から2~3段で行うことが好ましい。
 2段以上の多段で逆相懸濁重合を行う場合には、1段目の逆相懸濁重合を行った後、1段目の重合反応で得られた反応混合物に水溶性エチレン性不飽和単量体を添加して混合し、1段目と同様の方法で2段目以降の逆相懸濁重合を行えばよい。2段目以降の各段における逆相懸濁重合では、水溶性エチレン性不飽和単量体の他に、ラジカル重合開始剤を、2段目以降の各段における逆相懸濁重合の際に添加する水溶性エチレン性不飽和単量体の量を基準として、上述した水溶性エチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行うことが好ましい。なお、2段目以降の重合においても、必要に応じて、水溶性エチレン性不飽和単量体に内部架橋剤を添加してもよい。
 重合反応の反応温度としては、重合を迅速に進行させ、重合時間を短くすることにより、経済性を高めるとともに、容易に重合熱を除去して円滑に反応を行わせる観点から、20~110℃であることが好ましく、40~90℃であることがより好ましい。
  <後架橋工程>
 次に、本発明の吸水性樹脂粒子は、水溶性エチレン性不飽和単量体を重合して得られた内部架橋構造を有する含水ゲル状物に対して、後架橋剤を添加して架橋すること(後架橋反応)で得られる。この後架橋反応は、水溶性エチレン性不飽和単量体の重合後以降に後架橋剤の存在下に行うことが好ましい。このように、重合後以降に、内部架橋構造を有する含水ゲル状物に対して後架橋反応を施すことによって、吸水性樹脂粒子の表面近傍の架橋密度を高めて、荷重下吸水能等の諸性能を高めた吸水性樹脂粒子を得ることができる。
 後架橋剤としては、反応性官能基を2個以上有する化合物を挙げることができる。例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物が挙げられる。これらの後架橋剤の中でも、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物が好ましい。これらの後架橋剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 後架橋剤の使用量としては、重合に使用した水溶性エチレン性不飽和単量体の総量1モルに対して、0.00001~0.01モルであることが好ましく、0.00005~0.005モルであることがより好ましく、0.0001~0.002モルであることがさらに好ましい。
 後架橋剤の添加方法としては、後架橋剤をそのまま添加しても、水溶液として添加してもよいが、必要に応じて、溶媒として親水性有機溶媒を用いた溶液として添加してもよい。親水性有機溶媒としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール等の低級アルコール類;アセトン、メチルエチルケトン等のケトン類;ジエチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類;N,N-ジメチルホルムアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類等が挙げられる。これら親水性有機溶媒は、単独で用いてもよく、2種類以上を組み合わせて、又は水との混合溶媒として用いてもよい。
 後架橋剤の添加時期としては、水溶性エチレン性不飽和単量体の重合反応がほぼすべて終了した後であればよく、水溶性エチレン性不飽和単量体100質量部に対して、1~400質量部の範囲の水分存在下に添加することが好ましく、5~200質量部の範囲の水分存在下に添加することがより好ましく、10~100質量部の範囲の水分存在下に添加することがさらに好ましく、20~60質量部の範囲の水分存在下に添加することがよりさらに好ましい。なお、水分の量は、反応系に含まれる水分と後架橋剤を添加する際に必要に応じて用いられる水分との合計量を意味する。
 後架橋反応における反応温度としては、50~250℃であることが好ましく、60~180℃であることがより好ましく、60~140℃であることがさらに好ましく、70~120℃であることがよりさらに好ましい。また、後架橋反応の反応時間としては、1~300分間であることが好ましく、5~200分間であることがより好ましい。
  <乾燥工程>
 上述した逆相懸濁重合を行った後、熱等のエネルギーを外部から加えることで、水、炭化水素分散媒等を蒸留により除去する乾燥工程を含んでいてもよい。逆相懸濁重合後の含水ゲルから脱水を行う場合、炭化水素分散媒中に含水ゲルが分散している系を加熱することで、水と炭化水素分散媒を共沸蒸留により系外に一旦留去する。このとき、留去した炭化水素分散媒のみを系内へ返送すると、連続的な共沸蒸留が可能となる。その場合、乾燥中の系内の温度が、炭化水素分散媒との共沸温度以下に維持されるため、樹脂が劣化しにくい等の観点から好ましい。引き続き、水及び炭化水素分散媒を留去することにより、吸水性樹脂粒子が得られる。この重合後における乾燥工程の処理条件を制御して脱水量を調整することにより、得られる吸水性樹脂粒子の諸性能を制御することが可能である。
 乾燥工程では、蒸留による乾燥処理を常圧下で行ってもよく、減圧下で行ってもよい。また、乾燥効率を高める観点から、窒素等の気流下で行ってもよい。乾燥処理を常圧下で行う場合においては、乾燥温度としては、70~250℃であることが好ましく、80~180℃であることがより好ましく、80~140℃であることがさらに好ましく、90~130℃であることがよりさらに好ましい。また、乾燥処理を減圧下で行う場合においては、乾燥温度としては、40~160℃であることが好ましく、50~110℃であることがより好ましい。
 なお、逆相懸濁重合により単量体の重合を行った後に後架橋剤による後架橋工程を行った場合には、その後架橋工程の終了後に、上述した蒸留による乾燥工程を行うようにする。または、後架橋工程と乾燥工程とを同時に行うようにしてもよい。
 本発明の吸水性樹脂組成物は、前記の酸性化合物に加えて、目的に応じた添加剤を含んでいてもよい。このような添加剤としては、無機粉末、界面活性剤、酸化剤、還元剤、金属キレート剤、ラジカル連鎖禁止剤、酸化防止剤、抗菌剤等が挙げられる。例えば、吸水性樹脂粒子100質量部に対し、無機粉末として0.05~5質量部の非晶質シリカを添加することで、吸水性樹脂組成物の流動性をさらに向上させることができる。
 なお、本発明の吸水性樹脂組成物において、吸水性樹脂粒子(添加剤を除く)の含有率は、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、さらに好ましくは90質量%以上である。
 本発明の吸水性樹脂組成物は、例えば、前述した水溶性エチレン性不飽和単量体と内部架橋剤と後架橋剤との架橋重合体である吸水性樹脂粒子と、酸性化合物とを混合する工程を含む方法により、好適に製造することができる。該混合工程の温度は0~90℃であってもよい。混合工程における温度は、好ましくは15~70℃であり、かつ、相対湿度は、好ましくは30~75%である、例えば、吸水性樹脂粒子と酸性化合物とを固相の状態で混合することにより、本発明の効果を発現できる程度に、吸水性樹脂粒子の表面に酸性化合物を存在させることができる。また、酸性化合物を水性液のような液状媒体に溶解又は分散させた状態で、吸水性樹脂粒子と混合して本発明の吸水性樹脂組成物を調製してもよい。
 本発明の効果をより好適に発揮する観点から、本発明の吸水性樹脂組成物の製造方法における酸性化合物の添加量は、吸水性樹脂粒子100質量部に対して、好ましくは0.05~30質量部、より好ましくは0.1~20質量部、さらに好ましくは0.5~15質量部、よりさらに好ましくは1~10質量部である。
 同様の観点から、本発明の吸水性樹脂組成物の製造方法における酸性化合物の中位粒子径S(μm)に対する、吸水性樹脂粒子の中位粒子径T(μm)の比(T/S)は、好ましくは0.1~30、より好ましくは0.5~20、さらに好ましくは0.8~15、よりさらに好ましくは1.0~10である。
 本発明の吸水性樹脂粒子の吸水速度低速化方法は、中位粒子径が200~600μmの吸水性樹脂粒子に対して、中位粒子径が20~600μmの酸性化合物を混合する方法、好ましくは付着させる方法といえる。
2.吸収体、吸収性物品
 本発明の吸水性樹脂組成物は、例えば、生理用品、紙オムツ等の衛生材料に用いられる吸収体を構成するものであり、前記吸収体を含む吸収性物品に好適に用いられる。
 ここで、本発明の吸水性樹脂組成物を用いた吸収体は、必須構成単位として、中位粒子径が200~600μmの吸水性樹脂粒子と、中位粒子径が20~600μmの酸性化合物とを含む。吸収体は、親水性繊維をさらに含んでいてもよい。吸収体が、吸水性樹脂粒子と酸性化合物とを含む形態としては、吸水性樹脂粒子と酸性化合物がそれぞれ層を形成して隣接した形態であってもよいし、吸水性樹脂粒子と親水性繊維とを均一な組成となるように混合し、酸性化合物が該混合物の外側に隣接した形態であってもよいし、複数の親水性繊維層の間に吸水性樹脂粒子ならびに酸性化合物がそれぞれ挟まれた形態であってもよい。このような形態における、吸水性樹脂粒子と酸性化合物との比率は、吸水性樹脂粒子100質量部に対して、好ましくは0.05~30質量部、より好ましくは0.1~20質量部、さらに好ましくは0.5~15質量部、よりさらに好ましくは1~10質量部である。
 本発明の吸水性樹脂組成物を用いた吸収体は、より好ましくは、本発明の吸水性樹脂組成物を含む。吸収体は、親水性繊維をさらに含んでいてもよい。吸収体の構成としては、吸水性樹脂組成物を不織布上あるいは複数の不織布間に固定した形態のシート状構造体、吸水性樹脂組成物と親水性繊維とを均一な組成となるように混合することによって得られた混合分散体、層状の親水性繊維の間に吸水性樹脂組成物が挟まれたサンドイッチ構造体、吸水性樹脂組成物と親水性繊維とをティッシュで包んだ構造体等が挙げられる。なお、吸収体には、他の成分、例えば、吸収体の形態保持性を高めるための熱融着性合成繊維、ホットメルト接着剤、接着性エマルジョン等の接着性バインダーが配合されていてもよい。
 吸収体における吸水性樹脂組成物の含有量としては、5~100質量%であることが好ましく、10~95質量%であることがより好ましく、20~90質量%であることがさらに好ましく、30~80質量%であることがよりさらに好ましい。
 親水性繊維としては、木材から得られる綿状パルプ、メカニカルパルプ、ケミカルパルプ、セミケミカルパルプ等のセルロース繊維、レーヨン、アセテート等の人工セルロース繊維、親水化処理されたポリアミド、ポリエステル、ポリオレフィン等の合成樹脂からなる繊維等が挙げられる。親水性繊維の平均繊維長は、通常、0.1~10mmであり、又は0.5~5mmであってよい。
 本発明の吸水性樹脂組成物を用いた吸収体を、液体が通過し得る液体透過性シート(トップシート)と、液体が通過し得ない液体不透過性シート(バックシート)との間に保持することによって、本発明の吸収性物品とすることができる。液体透過性シートは、身体と接触する側に配され、液体不透過性シートは、身体と接する反対側に配される。
 液体透過性シートとしては、ポリエチレン、ポリプロピレン、ポリエステル等の繊維からなる、エアスルー型、スパンボンド型、ケミカルボンド型、ニードルパンチ型等の不織布及び多孔質の合成樹脂シート等が挙げられる。また、液体不透過性シートとしては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の樹脂からなる合成樹脂フィルム等が挙げられる。
 以下に実施例及び比較例を示して本発明を詳細に説明する。但し本発明は実施例に限定されるものではない。
 なお、下記の実施例及び比較例で得られた吸水性樹脂組成物は、以下の各種試験で評価した。なお、特に断りのない場合、測定は温度25±2℃、湿度50±10%の環境下で実施した。以下、各評価試験方法について説明する。
<吸水速度>
 吸水性樹脂組成物及び吸水性樹脂粒子の吸水速度を、それぞれ、ボルテックス法(JIS K7224-1996)に基づき下記手順で測定した。まず、イオン交換水2000質量部に対し、青色1号0.05質量部を混合し、着色したイオン交換水を作製し、恒温水槽にて25±0.2℃の温度に調整した。着色したイオン交換水50±0.01gを容量100mLのビーカーに量りとった。次に、攪拌子(8mmφ×30mm、リング無し)をビーカーに入れ、マグネチックスターラーを用いて回転数600rpmで撹拌することにより渦を発生させた。前記ビーカーに吸水性樹脂組成物0.5±0.0002gを投入してから、攪拌子がゲル化したイオン交換水に覆われるまでの時間(秒)を測定した。測定は5回行い、その平均値をそれぞれ吸水性樹脂組成物の吸水速度B及び吸水性樹脂粒子の吸水速度Aとした。また、吸水性樹脂粒子の吸水速度Aと吸水性樹脂組成物の吸水速度Bとの差(B-A)を表1に示す。
<吸水性樹脂粒子の中位粒子径>
 JIS標準篩を上から、目開き850μmの篩、目開き600μmの篩、目開き500μmの篩、目開き425mの篩、目開き300μmの篩、目開き250μmの篩、目開き150μmの篩、及び受け皿の順に組み合わせた。組み合わせた最上の篩に、吸水性樹脂粒子50gを入れ、ロータップ式振とう器を用いて10分間振とうさせて分級した。分級後、各篩上に残った吸水性樹脂粒子の質量を全量に対する質量百分率として算出し、粒度分布を求めた。この粒度分布に関して粒子径の大きい方から順に篩上を積算することにより、篩の目開きと篩上に残った吸水性樹脂粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を吸水性樹脂粒子の中位粒子径とした。
<酸性化合物の中位粒子径>
 酸性化合物10gを、連続全自動音波振動式ふるい分け測定器(ロボットシフター RPS-205、株式会社セイシン企業製)と、JIS規格の目開き850μm、500μm、425μm、300μm、212μm、106μm、75μm及び45μmの篩と、受け皿とを用いて、ふるい条件を周波数80Hz、パルス間隔1秒、分級時間2分として、ふるい分けした。各篩上に残った酸性化合物の質量を全量に対する質量百分率として算出した。各篩上に残存した酸性化合物の質量百分率を、粒子径の大きいものから順に積算し、篩の目開きと、篩上に残った酸性化合物の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を求め、これを酸性化合物の中位粒子径とした。
<生理食塩水吸水量>
 500mLプラスチックビーカーに生理食塩水500gと攪拌子(8mmφ×30mmリングなし)を入れ、マグネチックスターラーを用いて600rpmで攪拌した。吸水性樹脂粒子2.0gを、前記ビーカーに分散させ、600rpmで1時間穏やかに撹拌して十分膨潤させた。一方で、目開き75μm標準篩の質量Wa(g)を測定しておき、膨潤ゲルを含んだ水溶液を75μm標準篩でろ過した。水平に対して成す角を約30度程度となるように傾けた状態で75μm標準篩を30分放置して、吸水性樹脂粒子から余剰の生理食塩水を除いた。膨潤ゲルを含んだ篩質量Wb(g)を測定するとともに、この質量Wb(g)から75μm標準篩の質量Wa(g)を引いたものを、吸水性樹脂粒子の質量(2.0g)で除することにより吸水量を算出した。
吸水量=(Wb-Wa)÷(吸水性樹脂粒子質量)
<製造例1>
 還流冷却器、滴下ロート、窒素ガス導入管、並びに、攪拌機として、翼径5cmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径11cm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン293gをとり、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.736gを添加し、攪拌しつつ80℃まで昇温して分散剤を溶解した後、50℃まで冷却した。一方、内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(1.03モル)をとり、外部より氷水で冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gを滴下して75モル%の中和を行った後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HECAW-15F)、水溶性ラジカル重合剤として過硫酸カリウム0.0736g(0.272ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)を加えて溶解し、第1段目の水性液を調製した。そして、上記にて調製した水性液をセパラブルフラスコに添加して、10分間攪拌した後、n-ヘプタン6.62gに界面活性剤としてHLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.736gを加熱溶解した界面活性剤溶液を、さらに添加して、撹拌機の回転数を550rpmとして攪拌しながら系内を窒素で十分に置換した後、フラスコを70℃の水浴に浸漬して昇温し、重合を60分間行うことにより、第1段目の重合スラリー液を得た。一方、別の内容積500mLのビーカーに水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液128.8g(1.43モル)をとり、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して75モル%の中和を行った後、水溶性ラジカル重合開始剤として過硫酸カリウム0.103g(0.381ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.067ミリモル)を加えて溶解し、第2段目の水性液を調製した。撹拌機の回転数を1000rpmとして撹拌しながら、上記のセパラブルフラスコ系内を25℃に冷却した後、上記第2段目の水性液の全量を、第1段目の重合スラリー液に添加して、系内を窒素で30分間置換した後、再度、フラスコを70℃の水浴に浸漬して昇温し、重合反応を60分間行って、含水ゲル重合体を得た。第2段目の重合後の含水ゲル重合体に、45質量%のジエチレントリアミン5酢酸5ナトリウム水溶液0.589gを攪拌下で添加した。その後、125℃に設定した油浴にフラスコを浸漬し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら、257.7gの水を系外へ抜き出した。その後、フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(0.507ミリモル)を添加し、83℃で2時間保持した。その後、n-ヘプタンを125℃にて蒸発させて乾燥させることによって、重合体粒子(乾燥品)を得た。この重合体粒子を目開き850μmの篩に通過させ、吸水性樹脂粒子を228.0g得た。該吸水性樹脂粒子の中位粒子径は394μm、生理食塩水の吸水量は61g/gであった。
<実施例1>
 製造例1で得られた吸水性樹脂粒子100質量部に対し、L-酒石酸(扶桑化学工業株式会社製、製品名:精製L-酒石酸、第1酸解離定数pKa1=2.87、第2酸解離定数pKa2=3.97、中位粒子径280μm)を0.5質量部添加し、温度25℃、相対湿度50%の環境下において、明和工業株式会社製クロスロータリー混合機を用いて、30分間(条件、公転回転数50rpm、自転回転数50rpm)混合して、吸水性樹脂組成物を得た。
<実施例2>
 実施例1において、L-酒石酸を、吸水性樹脂粒子100質量部に対して1.0質量部に変更した以外は、実施例1と同様にして吸水性樹脂組成物を得た。
<実施例3>
 実施例1において、L-酒石酸を、吸水性樹脂粒子100質量部に対して2.0質量部に変更した以外は、実施例1と同様にして吸水性樹脂組成物を得た。
<実施例4>
 実施例1において、L-酒石酸を、吸水性樹脂粒子100質量部に対して3.0質量部に変更した以外は、実施例1と同様にして吸水性樹脂組成物を得た。
<実施例5>
 実施例1において、L-酒石酸を、吸水性樹脂粒子100質量部に対して5.0質量部に変更した以外は、実施例1と同様にして吸水性樹脂組成物を得た。
<実施例6>
 実施例1において、L-酒石酸を、吸水性樹脂粒子100質量部に対して10.0質量部に変更した以外は、実施例1と同様にして吸水性樹脂組成物を得た。
<実施例7>
 製造例1で得られた吸水性樹脂粒子100質量部に対し、クエン酸(扶桑化学工業株式会社製、製品名:クエン酸フソウ(無水)、第1酸解離定数pKa1=2.90、第2酸解離定数pKa2=4.35、第3酸解離定数pKa3=5.69、中位粒子径236μm)を1.0質量部添加し、温度25℃、相対湿度50%の環境下において、明和工業株式会社製クロスロータリー混合機を用いて、30分間(条件、公転回転数50rpm、自転回転数50rpm)混合して、吸水性樹脂組成物を得た。
<実施例8>
 製造例1で得られた吸水性樹脂粒子100質量部に対し、DL-リンゴ酸(扶桑化学工業株式会社製、製品名:リンゴ酸フソウ、第1酸解離定数pKa1=3.23、第2酸解離定数pKa2=4.77、中位粒子径156μm)を1.0質量部添加し、温度25℃、相対湿度50%の環境下において、明和工業株式会社製クロスロータリー混合機を用いて、30分間(条件、公転回転数50rpm、自転回転数50rpm)混合して、吸水性樹脂組成物を得た。
<実施例9>
 製造例1で得られた吸水性樹脂粒子100質量部に対し、フマル酸(扶桑化学工業株式会社製、製品名:フマル酸、第1酸解離定数pKa1=3.07、第2酸解離定数pKa2=4.58、中位粒子径161μm)を1.0質量部添加し、温度25℃、相対湿度50%の環境下において、明和工業株式会社製クロスロータリー混合機を用いて、30分間(条件、公転回転数50rpm、自転回転数50rpm)混合して、吸水性樹脂組成物を得た。
<比較例1>
 製造例1で得られた吸水性樹脂粒子をそのまま比較例1の吸水性樹脂粒子とした。
Figure JPOXMLDOC01-appb-T000001

Claims (11)

  1.  中位粒子径が200~600μmの吸水性樹脂粒子と、中位粒子径が20~600μmの酸性化合物とを含む、吸水性樹脂組成物。
  2.  前記吸水性樹脂粒子の吸水速度Aと前記吸水性樹脂組成物の吸水速度Bとの差(B-A)が、1秒以上である、請求項1に記載の吸水性樹脂組成物。
  3.  前記吸水性樹脂組成物の吸水速度Bが、4~130秒である、請求項1又は2に記載の吸水性樹脂組成物。
  4.  前記酸性化合物の第1酸解離定数が0.1~5.0である、請求項1~3のいずれか1項に記載の吸水性樹脂組成物。
  5.  中位粒子径が200~600μmの吸水性樹脂粒子と、中位粒子径が20~600μmの酸性化合物とを含む、吸収体。
  6.  請求項5に記載の吸収体を含んでなる、吸収性物品。
  7.  中位粒子径が200~600μmの吸水性樹脂粒子と、中位粒子径が20~600μmの酸性化合物とを混合する工程を備える、吸水性樹脂組成物の製造方法。
  8.  前記混合工程における温度が0~90℃、かつ相対湿度が30~75%である、請求項7に記載の吸水性樹脂組成物の製造方法。
  9.  前記吸水性樹脂粒子100質量部に対する、前記酸性化合物の量が0.05~30質量部である、請求項7又は8に記載の吸水性樹脂組成物の製造方法。
  10.  前記酸性化合物の中位粒子径S(μm)に対する、前記吸水性樹脂粒子の中位粒子径T(μm)の比(T/S)が、0.1~30である、請求項7~9のいずれか1項に記載の吸水性樹脂組成物の製造方法。
  11.  中位粒子径が200~600μmの吸水性樹脂粒子に対して、中位粒子径が20~600μmの酸性化合物を混合する工程を備える、吸水性樹脂粒子の吸水速度低速化方法。
PCT/JP2021/026699 2020-07-22 2021-07-15 吸水性樹脂組成物、吸水性樹脂組成物の製造方法、及び吸水性樹脂粒子の吸水速度低速化方法 WO2022019218A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21846781.9A EP4186948A4 (en) 2020-07-22 2021-07-15 WATER-ABSORBENT RESIN COMPOSITION, METHOD FOR PRODUCING WATER-ABSORBENT RESIN COMPOSITION, AND METHOD FOR SLOWING DOWN WATER ABSORPTION SPEED OF WATER-ABSORBENT RESIN PARTICLES
JP2022537967A JPWO2022019218A1 (ja) 2020-07-22 2021-07-15
US18/006,025 US20230285936A1 (en) 2020-07-22 2021-07-15 Water-absorbent resin composition, method for producing water-absorbent resin composition, and method for slowing water absorption rate of water-absorbent resin particles
KR1020237002676A KR20230042281A (ko) 2020-07-22 2021-07-15 흡수성 수지 조성물, 흡수성 수지 조성물의 제조 방법 및 흡수성 수지 입자의 흡수 속도 저속화 방법
CN202180059844.1A CN116209414A (zh) 2020-07-22 2021-07-15 吸水性树脂组合物、吸水性树脂组合物的制造方法和吸水性树脂颗粒的吸水速度低速化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-125174 2020-07-22
JP2020125174 2020-07-22

Publications (1)

Publication Number Publication Date
WO2022019218A1 true WO2022019218A1 (ja) 2022-01-27

Family

ID=79729566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026699 WO2022019218A1 (ja) 2020-07-22 2021-07-15 吸水性樹脂組成物、吸水性樹脂組成物の製造方法、及び吸水性樹脂粒子の吸水速度低速化方法

Country Status (7)

Country Link
US (1) US20230285936A1 (ja)
EP (1) EP4186948A4 (ja)
JP (1) JPWO2022019218A1 (ja)
KR (1) KR20230042281A (ja)
CN (1) CN116209414A (ja)
TW (1) TW202208545A (ja)
WO (1) WO2022019218A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228402A (ja) * 1985-05-15 1987-02-06 ザ、プロクタ−、エンド、ギヤンブル、カンパニ− 使い捨て吸収物品
JPS6433158A (en) * 1987-07-29 1989-02-03 Nippon Synthetic Chem Ind Highly water-absorptive resin composition
JPH03227301A (ja) 1990-01-31 1991-10-08 Sumitomo Seika Chem Co Ltd 吸水性樹脂の製造方法
JP2001098170A (ja) * 1999-07-26 2001-04-10 Nippon Shokubai Co Ltd 吸水剤組成物およびその用途
JP2005029751A (ja) * 2003-07-11 2005-02-03 Sumitomo Seika Chem Co Ltd 吸水性樹脂組成物
JP2005509696A (ja) * 2001-11-21 2005-04-14 ビーエーエスエフ アクチェンゲゼルシャフト 超吸収性ポリマー粒子
JP2014094379A (ja) * 2007-09-28 2014-05-22 Nippon Shokubai Co Ltd 吸水剤及びその製造方法
JP2014204799A (ja) * 2013-04-11 2014-10-30 株式会社リブドゥコーポレーション 吸収性物品
JP2015009042A (ja) * 2013-07-01 2015-01-19 株式会社リブドゥコーポレーション 吸収性物品
WO2017170604A1 (ja) * 2016-03-28 2017-10-05 株式会社日本触媒 吸水剤の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327926A (ja) * 1999-05-25 2000-11-28 Sanyo Chem Ind Ltd 吸収剤組成物および吸収性物品
EP1072630B1 (en) * 1999-07-26 2004-12-01 Nippon Shokubai Co., Ltd. Water-absorbing composition and its use
JP2005186016A (ja) * 2003-12-26 2005-07-14 San-Dia Polymer Ltd 吸収剤
WO2014054656A1 (ja) * 2012-10-01 2014-04-10 株式会社日本触媒 多元金属化合物からなる粉塵低減剤、多元金属化合物を含む吸水剤及びその製造方法
JPWO2017200085A1 (ja) * 2016-05-20 2019-04-18 Sdpグローバル株式会社 吸水性樹脂粒子、その製造方法、これを含有してなる吸収体及び吸収性物品
KR102356629B1 (ko) * 2017-11-24 2022-01-26 주식회사 엘지화학 고흡수성 수지 조성물
KR102452566B1 (ko) * 2018-04-27 2022-10-06 주식회사 엘지화학 고흡수성 수지 조성물

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228402A (ja) * 1985-05-15 1987-02-06 ザ、プロクタ−、エンド、ギヤンブル、カンパニ− 使い捨て吸収物品
JPS6433158A (en) * 1987-07-29 1989-02-03 Nippon Synthetic Chem Ind Highly water-absorptive resin composition
JPH03227301A (ja) 1990-01-31 1991-10-08 Sumitomo Seika Chem Co Ltd 吸水性樹脂の製造方法
JP2001098170A (ja) * 1999-07-26 2001-04-10 Nippon Shokubai Co Ltd 吸水剤組成物およびその用途
JP2005509696A (ja) * 2001-11-21 2005-04-14 ビーエーエスエフ アクチェンゲゼルシャフト 超吸収性ポリマー粒子
JP2005029751A (ja) * 2003-07-11 2005-02-03 Sumitomo Seika Chem Co Ltd 吸水性樹脂組成物
JP2014094379A (ja) * 2007-09-28 2014-05-22 Nippon Shokubai Co Ltd 吸水剤及びその製造方法
JP2014204799A (ja) * 2013-04-11 2014-10-30 株式会社リブドゥコーポレーション 吸収性物品
JP2015009042A (ja) * 2013-07-01 2015-01-19 株式会社リブドゥコーポレーション 吸収性物品
WO2017170604A1 (ja) * 2016-03-28 2017-10-05 株式会社日本触媒 吸水剤の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4186948A4

Also Published As

Publication number Publication date
TW202208545A (zh) 2022-03-01
EP4186948A4 (en) 2024-07-17
US20230285936A1 (en) 2023-09-14
CN116209414A (zh) 2023-06-02
KR20230042281A (ko) 2023-03-28
JPWO2022019218A1 (ja) 2022-01-27
EP4186948A1 (en) 2023-05-31

Similar Documents

Publication Publication Date Title
WO2018180864A1 (ja) 吸水性樹脂
WO2016006130A1 (ja) 吸水性樹脂及び吸収性物品
JP6993878B2 (ja) 吸水性樹脂および吸水剤
JP5719079B1 (ja) 吸水性樹脂及び吸収性物品
JP7249938B2 (ja) 吸水性樹脂組成物、吸収体、及び吸収性物品
WO2018159800A1 (ja) 吸水性樹脂及び吸収性物品
WO2018159802A1 (ja) 吸水性樹脂及び吸収性物品
JP7429121B2 (ja) 吸水性樹脂
JP6737571B2 (ja) 吸水性樹脂及び吸収性物品
WO2022019218A1 (ja) 吸水性樹脂組成物、吸水性樹脂組成物の製造方法、及び吸水性樹脂粒子の吸水速度低速化方法
WO2021220983A1 (ja) 粒子状吸水性樹脂組成物、吸収体、及び吸収性物品
WO2022019219A1 (ja) 吸水性樹脂組成物、吸収体及び吸収性物品
JP7165589B2 (ja) 吸水性樹脂組成物、吸収体、及び吸収性物品
WO2021220985A1 (ja) 粒子状吸水性樹脂組成物及びその製造方法、吸収体、並びに吸収性物品
WO2023074862A1 (ja) 吸水性樹脂組成物、吸収体、及び吸収性物品
WO2022085643A1 (ja) 吸水性樹脂、吸収体及び吸収性物品
WO2020095811A1 (ja) 吸水性樹脂
WO2021220982A1 (ja) 吸水性樹脂組成物、吸収体、及び吸収性物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022537967

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317008140

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021846781

Country of ref document: EP

Effective date: 20230222