WO2022019109A1 - 使用済みの衛生用品から、清浄化されたリサイクルパルプ繊維を製造する方法 - Google Patents

使用済みの衛生用品から、清浄化されたリサイクルパルプ繊維を製造する方法 Download PDF

Info

Publication number
WO2022019109A1
WO2022019109A1 PCT/JP2021/025505 JP2021025505W WO2022019109A1 WO 2022019109 A1 WO2022019109 A1 WO 2022019109A1 JP 2021025505 W JP2021025505 W JP 2021025505W WO 2022019109 A1 WO2022019109 A1 WO 2022019109A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulp fiber
recycled pulp
mixture
water
oxidant
Prior art date
Application number
PCT/JP2021/025505
Other languages
English (en)
French (fr)
Inventor
孝義 小西
孝一 八巻
直人 大橋
範朋 栗田
健司 坂東
Original Assignee
ユニ・チャーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニ・チャーム株式会社 filed Critical ユニ・チャーム株式会社
Priority to EP21845892.5A priority Critical patent/EP4166714A4/en
Priority to CN202180060018.9A priority patent/CN116133626B/zh
Publication of WO2022019109A1 publication Critical patent/WO2022019109A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • D21C5/02Working-up waste paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/70Chemical treatment, e.g. pH adjustment or oxidation
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/14Secondary fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B2101/00Type of solid waste
    • B09B2101/65Medical waste
    • B09B2101/67Diapers or nappies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/64Paper recycling

Definitions

  • This disclosure relates to a method for producing purified recycled pulp fiber from used hygiene products.
  • Patent Document 1 describes a method of recovering a pulp fiber from a used hygiene product containing a pulp fiber and a polymer absorbent, wherein the used hygiene product is immersed in ozone water to obtain a polymer.
  • the process of decomposing the absorbent material the process of discharging the ozone water in which the decomposed polymer absorbent material is dissolved to obtain the residue of the sanitary product from which the polymer absorbent material has been removed, and the sanitary product from which the polymer absorbent material has been removed.
  • Described is a method comprising a step of cleaning the residue of hygiene products and decomposing the residue of hygiene products into components by stirring the residue of the above in an aqueous solution containing a disinfectant or in water. ..
  • the recycled pulp fiber recovered from the used hygiene product has a small amount of residual components such as excrement and super absorbent polymer.
  • the inventor of the present application analyzed the recycled pulp fiber recovered by the above method, it was found that the recycled pulp fiber may contain a high concentration of nitrogen-containing components. Therefore, it is an object of the present disclosure to provide a method for producing purified recycled pulp fiber from used sanitary products capable of forming recycled pulp fiber having a low content of nitrogen-containing components. ..
  • the Disclosers are a method of producing purified recycled pulp fiber from used sanitary ware, the pulp obtained from the used sanitary ware including the pulp fiber and the highly water absorbent polymer.
  • the mixture having undergone the water content adjustment step for adjusting the water content of the mixture containing the fiber and the highly water-absorbent polymer to 70% by mass or less and the water content adjustment step was treated with an oxidant-containing aqueous solution containing an oxidant, and the above.
  • the method of producing purified recycled pulp fiber from used sanitary products disclosed in the present disclosure can form recycled pulp fiber having a low content of nitrogen-containing components.
  • FIG. 1 is a diagram for explaining a method for producing the recycled pulp fiber of the present disclosure.
  • a method of producing purified recycled pulp fiber from used hygiene products A moisture content adjusting step for adjusting the moisture content of a mixture containing the pulp fiber and the superabsorbent polymer obtained from the used hygiene product containing the pulp fiber and the superabsorbent polymer to 70% by mass or less.
  • the mixture that has undergone the water content adjustment step is treated with an oxidant-containing aqueous solution containing an oxidant, the highly water-absorbent polymer is oxidatively decomposed, and the oxidatively decomposed high water-absorbent polymer is dissolved in the oxidant-containing aqueous solution.
  • Oxidizing step which forms the recycled pulp fiber while allowing Recycled pulp fiber recovery step to recover the recycled pulp fiber, The above method comprising.
  • the above method includes a predetermined moisture content adjusting step, an oxidation treatment step, and a recycled pulp fiber recovery step.
  • the moisture content adjusting step the mixture containing the pulp fiber and the superabsorbent polymer is adjusted to a predetermined moisture content.
  • the nitrogen-containing components such as excrement contained in the pulp fibers, particularly the pulp fibers, are removed from the pulp fibers, and the nitrogen-containing components are less likely to remain in the pulp fibers.
  • the oxidizing agent can accurately oxidize and decompose the superabsorbent polymer in the mixture, and remove the superabsorbent polymer that has been oxidatively decomposed.
  • the above method can form recycled pulp fibers having a low content of nitrogen-containing components.
  • the above water content adjustment step is not performed, most of the nitrogen-containing components such as excrement contained in the pulp fiber, particularly the pulp fiber, are likely to remain in the pulp fiber.
  • the oxidant is dispersed and consumed in the oxidation of the nitrogen-containing component and the oxidative decomposition of the highly water-absorbent polymer, and the amount of the oxidant for decomposing the highly water-absorbent polymer is increased. As it tends to increase, the nitrogen-containing component tends to remain.
  • the water content adjustment step the water content of the mixture is adjusted so that the mixture has a predetermined TOC. Therefore, in the moisture content adjusting step, the amount of the nitrogen-containing component contained in the mixture containing the pulp fiber and the super absorbent polymer can be reduced. As a result, the above method can form recycled pulp fibers having a low content of nitrogen-containing components.
  • the mixture in the oxidation treatment step, is treated so that the oxidant-containing aqueous solution has a predetermined TOC.
  • the above method can form recycled pulp fibers having a low content of nitrogen-containing components.
  • the above method further comprises a predetermined dispersion step after the moisture content adjustment step and before the oxidation treatment step. Therefore, the mixture agglomerated through the water content adjustment step can be easily dispersed in each pulp fiber, superabsorbent polymer (each particle), etc., and in the next oxidation treatment step, the superabsorbent polymer is oxidatively decomposed and then decomposed. It facilitates oxidative decomposition of nitrogen-containing components in pulp fibers. As a result, the above method can form recycled pulp fibers having a low content of nitrogen-containing components.
  • the above method further comprises a predetermined recycled pulp fiber cleaning step after the oxidation treatment step and before the recycled pulp fiber recovery step. Therefore, the amount of nitrogen-containing components remaining in the recycled pulp fiber can be further reduced. As a result, the above method can form recycled pulp fibers having a low content of nitrogen-containing components.
  • the above method further includes a predetermined recycled pulp fiber dehydration step after the recycled pulp fiber recovery step. Therefore, when the recycled pulp fiber is dried and stored, it is excellent in drying property, and when the recycled pulp fiber is stored in a wet state, it is excellent in its transportability.
  • the above method further comprises a predetermined superabsorbent polymer dehydration step. Therefore, in the highly water-absorbent polymer dehydration step, the amount of nitrogen-containing components contained in the highly water-absorbent polymer in the mixture can be reduced, and in the next water content adjustment step, most of the nitrogen-containing components are derived from pulp fibers. It is removed and the nitrogen-containing component is less likely to remain in the pulp fiber. As a result, the above method can form recycled pulp fibers having a low content of nitrogen-containing components.
  • the method for producing purified recycled pulp fiber from the used hygiene products of the present disclosure (hereinafter, may be simply referred to as “manufacturing method”) will be described in detail below.
  • the manufacturing method of the present disclosure comprises the following steps, as shown in FIG.
  • moisture content adjustment step S11 The mixture that has undergone the water content adjustment step is treated with an oxidant-containing aqueous solution containing an oxidant, the highly water-absorbent polymer is oxidatively decomposed, and the oxidatively decomposed high water-absorbent polymer is converted into the oxidant-containing aqueous solution.
  • Oxidation treatment step to dissolve and form the recycled pulp fiber hereinafter, may be simply referred to as “oxidation treatment step S12”
  • -Recycled pulp fiber recovery step for recovering the recycled pulp fiber hereinafter, may be referred to as “recycled pulp fiber recovery step S13").
  • the manufacturing method of the present disclosure may further include the following steps as optional steps.
  • -The super absorbent polymer dehydration step of dehydrating the superabsorbent polymer using a dehydrating agent before the moisture content adjusting step (hereinafter, may be simply referred to as "superabsorbent polymer dehydration step S101").
  • a dispersion step of dispersing the mixture in water after the moisture content adjustment step and before the oxidation treatment step hereinafter, may be simply referred to as "dispersion step S102").
  • recycled pulp fiber cleaning step S103 The recycled pulp fiber cleaning step in which the recycled pulp fiber is washed with washing water after the oxidation treatment step and before the recycled pulp fiber recovery step. May)
  • the recycled pulp fiber dehydration step of dehydrating the recycled pulp fiber so as to have a water content of 60% by mass or less (hereinafter, may be simply referred to as “recycled pulp fiber dehydration step S104").
  • ⁇ Moisture content adjustment step S11> the moisture content of the mixture containing the pulp fiber and the superabsorbent polymer obtained from the used sanitary goods containing the pulp fiber and the superabsorbent polymer is adjusted to 70% by mass or less.
  • the hygienic product is not particularly limited as long as it contains pulp fiber and a super absorbent polymer, and examples thereof include disposable diapers, urine absorbing pads, sanitary napkins, bed sheets, pet sheets and the like.
  • the used hygiene product means a hygiene product in a state where excrement is absorbed.
  • the pulp fiber is not particularly limited as long as it can be used as a sanitary product, and examples thereof include wood pulp (for example, softwood pulp and hardwood pulp), crosslinked pulp, and non-wood pulp.
  • the superabsorbent polymer examples include those known in the technical field of hygiene products, and examples thereof include starch-based, cellulosic-based, and synthetic polymer-based superabsorbent polymers.
  • examples of the starch-based or cellulose-based highly water-absorbent polymer include a starch-acrylic acid (salt) graft copolymer, a saponified product of a starch-acrylonitrile copolymer, and a crosslinked product of sodium carboxymethyl cellulose.
  • Examples of the synthetic polymer-based superabsorbent polymer include polyacrylate-based, polysulfonate-based, maleanic anhydride-based, polyacrylamide-based, polyvinyl alcohol-based, polyethylene oxide-based, polyaspartate-based, and polyglutamic acid.
  • Examples thereof include superabsorbent polymers (SAP, Super Absorbent Polymer) such as salt-based, polyarginate-based, starch-based, and cellulose-based polymers.
  • the method for obtaining the mixture containing the pulp fiber and the superabsorbent polymer from the used hygiene product is not particularly limited.
  • the used hygiene product is cut and the pulp fiber and the superabsorbent polymer are obtained from the absorber.
  • a mixture containing a polymer can be obtained.
  • the pulp fiber and the superabsorbent polymer absorb the liquid excrement and retain water, and the superabsorbent polymer does not easily separate the liquid excrement that retains water, so that the water content is high. It is preferable to apply a force, for example, a compressive force (eg, pressure, centrifugal force) to the mixture in order to adjust the amount to 70% by mass or less.
  • a compressive force eg, pressure, centrifugal force
  • the above-mentioned mixture can be dehydrated and the above-mentioned water content can be achieved by compressing the above-mentioned mixture using a screw press dehydrator, a centrifuge or the like.
  • Examples of the screw press dehydrator include a screw press dehydrator manufactured by Kawaguchi Seiki Co., Ltd.
  • the pressure applied to the lid of the screw press dehydrator is not particularly limited as long as the water content of the mixture can be adjusted within a predetermined range, but a high pressure is applied because the super absorbent polymer has excellent water retention. It is preferable to add.
  • the pressure is preferably more than 1.0 MPa, more preferably more than 1.1 MPa, and even more preferably more than 1.2 MPa.
  • the pressure applied to the lid of the screw press dehydrator is preferably 5.0 Mpa or less, more preferably 4.0 Mpa or less, and even more preferably 3.0 Mpa or less.
  • the water content adjustment step S11 it is preferable to adjust the water content of the mixture to 70% by mass or less, more preferably 67% by mass or less, and even more preferably 65% by mass or less. Further, in the water content adjustment step S11, it is preferable to adjust the water content of the mixture to 50% by mass or more, more preferably 53% by mass or more, and further preferably 55% by mass or more. As a result, the amount of the nitrogen-containing component in the mixture and, by extension, the amount of the nitrogen-containing component in the recycled pulp fiber can be easily reduced to a predetermined range. In addition, in this specification, it may be referred to as a solid content of a mixture, and the solid content of a single mixture and the water content have a relationship in which the sum thereof is 100.
  • the moisture content is measured using an infrared moisture meter FD-720 manufactured by Kett. Specifically, a sample of about 5 g is placed on a sample dish of FD-720, the set temperature is set to 150 ° C., the automatic stop mode is selected, and the water content is measured.
  • the mixture in the moisture content adjusting step S11, is preferably 10.0 g / Kg or less, more preferably 8.0 g / Kg or less, and even more preferably 6 per 1 kg of dry mass of the mixture.
  • the water content of the mixture is adjusted so as to have a TOC of .0 g / Kg or less.
  • the lower limit of TOC per 1 kg of dry mass of the mixture is not particularly limited, and examples thereof include 0.1 g / Kg.
  • the dry mass of the mixture means the mass of the mixture after measuring the water content.
  • the TOC per 1 kg of dry mass of the mixture is measured as follows. (1) In the water content adjustment step, the discharged liquid discharged from the above mixture is collected. (2) The discharged liquid is suction-filtered using a glass fiber filter paper having a particle retention capacity of 1 ⁇ m, and is partitioned into a filtration residue and an extract. (3) The TOC: y (g / Kg) of the above extract is measured using TOC-200MD manufactured by Toray Engineering D Solutions Co., Ltd.
  • Moisture content of the adjusted mixture content x (% by mass) is measured according to the method described herein.
  • the water content per 1 kg of dry mass of the mixture whose water content has been adjusted: a (Kg) is expressed by the following formula: a (Kg) x / (100-x) Calculated by
  • the superabsorbent polymer in the mixture before adjusting the moisture content (mixture obtained from used sanitary goods), the superabsorbent polymer is dehydrated even if it is dehydrated with a dehydrating agent. It doesn't have to be.
  • the superabsorbent polymer is preferably 50 times higher in the mixture before adjusting the water content (mixture obtained from used hygiene products). Below, it has a water absorption ratio of more preferably 30 times or less, still more preferably 25 times or less, and even more preferably 20 times or less. As a result, in the moisture content adjusting step S11, the moisture content is more likely to be lowered.
  • the production method of the present disclosure can further include, as an optional step, the super absorbent polymer dehydration step S101 for dehydrating the superabsorbent polymer before the moisture content adjusting step S11.
  • the super absorbent polymer dehydration step S101 for dehydrating the superabsorbent polymer before the moisture content adjusting step S11.
  • the super absorbent polymer dehydration step S101 can be carried out by immersing the above mixture, for example, a used sanitary product, in a dehydrating agent-containing aqueous solution containing a dehydrating agent.
  • the dehydrating agent include acids (for example, inorganic and organic acids), lime, calcium chloride, magnesium sulfate, magnesium chloride, aluminum sulfate, aluminum chloride and the like.
  • the above acid is preferable because it does not easily leave ash in the pulp fiber.
  • the dehydrating agent-containing aqueous solution preferably has a pH of 2.5 or less, and more preferably 1.3 to 2.4. As a result, the water absorption capacity of the superabsorbent polymer can be sufficiently reduced, there is less risk of equipment corrosion, and more alkaline chemicals are less likely to be required for the neutralization treatment during wastewater treatment.
  • Examples of the inorganic acid include sulfuric acid, hydrochloric acid, and nitric acid, but sulfuric acid is preferable from the viewpoint of not containing chlorine and cost.
  • Examples of the organic acid include citric acid, tartaric acid, glycolic acid, malic acid, succinic acid, acetic acid, ascorbic acid and the like, and an acid capable of forming a complex with a metal ion contained in excrement, for example, citric acid. Hydroxycarbonate-based organic acids such as tartrate acid and gluconic acid are particularly preferable.
  • Examples of the metal ion contained in the excrement include calcium ion.
  • the super absorbent polymer dehydration step S101 can be carried out, for example, in accordance with JP-A-2003-326161 and the publications exemplified in "Oxidation Treatment Step S12" described later.
  • the superabsorbent polymer preferably has a water absorption ratio of 50 times or less, more preferably 30 times or less, still more preferably 25 times or less, and even more preferably 20 times or less. , Dehydrate the super absorbent polymer.
  • ⁇ Oxidation treatment step S12> the mixture that has undergone the water content adjustment step S11 is treated with an oxidant-containing aqueous solution containing an oxidant, the highly water-absorbent polymer is oxidatively decomposed, and the oxidatively decomposed high water-absorbent polymer is oxidatively decomposed. And to form recycled pulp fiber.
  • the oxidizing agent include ozone (for example, ozone-containing gas), hydrogen peroxide, chlorine dioxide, peracetic acid, sodium hypochlorite and the like.
  • Examples of the oxidation treatment step S12 include JP-A-2014-217835, JP-A-2016-881, JP-A-2019-007119, JP-A-2019-085474, JP-A-2019-108639, and JP-A-2019. -The steps described in Japanese Patent Publication No. 108640 and the like can be mentioned.
  • the mixture is mixed in an oxidant-containing aqueous solution containing an oxidant, in which the oxidant-containing aqueous solution is preferably 3.0 g / Kg or less, more preferably 2.5 g / Kg or less, and even more preferably. It is processed so as to have a TOC of 2.0 g / Kg or less. As a result, it becomes easy to form recycled pulp fibers having a low content of nitrogen-containing components.
  • the lower limit of the TOC of the recycled pulp fiber is not particularly limited, and examples thereof include 0.5 g / Kg.
  • the TOC of the oxidant-containing aqueous solution is measured as follows. (1) The oxidant-containing aqueous solution is suction-filtered using a glass fiber filter paper having a particle retention capacity of 1 ⁇ m, and is partitioned into a filtration residue and an extract. (2) The TOC: w (g / Kg) of the above extract is measured using TOC-200MD manufactured by Toray Engineering D Solutions Co., Ltd., and the measured value is taken as the TOC of the oxidizing agent-containing aqueous solution.
  • the production method of the present disclosure can further include, as an optional step, a dispersion step S102 for dispersing the mixture in water after the moisture content adjusting step S11 and before the oxidation treatment step S12.
  • a dispersion step S102 for dispersing the mixture in water after the moisture content adjusting step S11 and before the oxidation treatment step S12.
  • the dispersion step S102 can be carried out, for example, by adding water to the mixture to form a dispersed aqueous solution, and passing the dispersed aqueous solution through, for example, a pulper, a refiner, a beater or the like.
  • the water content of the mixture in the dispersed aqueous solution is preferably 80% by mass or more, more preferably 85% by mass or more, and further preferably 90% by mass or more.
  • the water content of the mixture in the dispersed aqueous solution is preferably 99.0% by mass or less, more preferably 98.5% by mass or less, and further preferably 98.0% by mass or less.
  • the dispersed aqueous solution preferably contains the dehydrating agent described in the section of the superabsorbent polymer dehydration step S101 from the viewpoint of suppressing the water absorption of the superabsorbent polymer contained in the mixture. Since it is sufficient that the dehydrated state of the higher aqueous polymer can be maintained in the dispersion step S102, the dispersed aqueous solution has a lower concentration (for example, 1/10 times, 1/100 times, etc.) than the above-mentioned dehydrating agent-containing aqueous solution.
  • the dispersed aqueous solution can contain the same concentration of dehydrating agent as the dehydrating agent-containing aqueous solution, and the dispersed aqueous solution may be the same as the dehydrating agent-containing aqueous solution (ie).
  • the dehydrating agent-containing aqueous solution in the highly water-absorbent polymer dehydration step S101 may be reused as the dispersed aqueous solution in the dispersion step S102).
  • the recycled pulp fiber recovery step S13 the recycled pulp fiber is recovered.
  • the recycled pulp fiber can be recovered from, for example, an oxidant-containing aqueous solution by using, for example, a screen having a plurality of openings.
  • the manufacturing method of the present disclosure further includes, as an optional step, a recycled pulp fiber washing step S103 for washing the recycled pulp fiber with washing water after the oxidation treatment step S12 and before the recycled pulp fiber recovery step S13.
  • the recycled pulp fiber washing step S103 is not particularly limited, and the recycled pulp fiber can be washed with washing water (for example, tap water, deionized water, etc.).
  • the washing water can be used as running water, still water (for example, water stored in a container) or the like.
  • the washing water after the recycled pulp fiber washing step S103 has a TOC of preferably 1.5 g / Kg or less, more preferably 1.0 g / Kg or less, and even more preferably 0.9 g / Kg or less.
  • the lower limit of the TOC of the recycled pulp fiber is not particularly limited, and examples thereof include 0.5 g / Kg.
  • the TOC of the wash water is measured as follows. (1) The washing water is suction-filtered using a glass fiber filter paper having a particle retention capacity of 1 ⁇ m, and is partitioned into a filtration residue and an extract. (2) The TOC: w (g / Kg) of the above extract is measured using TOC-200MD manufactured by Toray Engineering D Solutions Co., Ltd., and the measured value is taken as the TOC of the washing water.
  • the manufacturing method of the present disclosure can further include, as an optional step, the recycled pulp fiber dehydration step S104 for dehydrating the recycled pulp fiber so as to have a water content of 60% by mass or less after the recycled pulp fiber recovery step S13. ..
  • the recycled pulp fiber can be dehydrated so as to have a water content of preferably 60% by mass or less, and more preferably 50% by mass or less.
  • a pressure type dehydrator for example, a screw press dehydrator manufactured by Kawaguchi Seiki Co., Ltd.
  • Example 1 ⁇ Super absorbent polymer dehydration step S101, etc.> Drilling step S11, crushing step S12, first separation step S13, first dust removing step S14, second dust removing step S15, and third dust removing step S16 (bag breaking device 11, crushing) described in JP-A-2019-08547. According to the device 12, the first separation device 13, the first dust removal device 14, the second dust removal device 15, the third dust removal device 16, and the second separation device 17), the pulp fibers and the pulp fibers from the collection bag containing the used paper diapers. Mixture No. 1 containing a super absorbent polymer. 1a (moisture content: 91% by mass) was obtained.
  • the pH of the dehydrating agent-containing aqueous solution was adjusted to 2.0 by adding citric acid.
  • ⁇ Moisture content adjustment step S11> Mixture No. 1a was put into a screw press dehydrator manufactured by Kawaguchi Seiki Co., Ltd., a pressure of 1.2 MPa was applied to the lid, and the discharged liquid and the mixture No. 1a were added. 1b (moisture content: 70% by mass) was obtained.
  • Oxidizing agent Ozone-containing gas
  • Ozone concentration in ozone-containing gas 200 g / m 3
  • Form Nano bubbles
  • Processing time 30 minutes ⁇ pH: 4.5
  • Recycled pulp fiber recovery step S13 Recycled pulp fiber No. that has undergone the oxidation treatment step S12. 1a was dehydrated to make recycled pulp fiber No. 1b was obtained.
  • Example 2 After the oxidation treatment step S12 and before the recycled pulp fiber recovery step S13, the recycled pulp fiber No. 1 that has undergone the oxidation treatment step S12. 1b is taken out and used as washing water to recycle pulp fiber No. Using deionized water 40 times the dry mass of 1b, recycled pulp fiber No. Recycled pulp fiber No. 1a was washed with running water for 3 minutes in the same manner as in Example 1 except that the recycled pulp fiber washing step S103 was added. I got 2. Recycled pulp fiber No. Table 1 shows the TOC of the washing water after obtaining 2. The dry mass of the recycled pulp fiber means the mass after the recycled pulp fiber is dried in an oven at a temperature of 105 ° C ⁇ 3 ° C for 2 hours.
  • Example 3 After the oxidation treatment step S12 and before the recycled pulp fiber recovery step S13, the recycled pulp fiber No. 1 that has undergone the oxidation treatment step S12. 1b is taken out and used as washing water to recycle pulp fiber No. Using deionized water 40 times the dry mass of 1b, recycled pulp fiber No. Recycled pulp fiber No. 1a was washed with running water for 60 minutes in the same manner as in Example 1 except that the recycled pulp fiber washing step S103 was added. I got 3. Recycled pulp fiber No. Table 1 shows the TOC of the washing water after obtaining 3.
  • Example 4 After the oxidation treatment step S12 and before the recycled pulp fiber recovery step S13, the recycled pulp fiber No. 1 that has undergone the oxidation treatment step S12. 1b is taken out and used as washing water to recycle pulp fiber No. Deionized water was added so that the water content of 1b was 99% by mass, and recycled pulp fiber No. In the same manner as in Example 1, the recycled pulp fiber No. 1 was added, except that the recycled pulp fiber cleaning step S103 for cleaning 1a was added. I got 4. Recycled pulp fiber No. Table 1 shows the TOC of the washing water after obtaining 4.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Paper (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本開示は、窒素含有成分の含有率の低いリサイクルパルプ繊維を形成することができる、使用済みの衛生用品から、清浄化されたリサイクルパルプ繊維を製造する方法を提供することを目的とする。 使用済みの衛生用品から、清浄化されたリサイクルパルプ繊維を製造する方法であって、パルプ繊維及び高吸水性ポリマーを含む混合物の水分率を70質量%以下に調整する水分率調整ステップ(S11)、上記水分率調整ステップを経た上記混合物を、酸化剤を含む酸化剤含有水溶液で処理し、上記高吸水性ポリマーを酸化分解し、酸化分解された上記高吸水性ポリマーを上記酸化剤含有水溶液に溶解させるとともに上記リサイクルパルプ繊維を形成する酸化処理ステップ(S12)、上記リサイクルパルプ繊維を回収するリサイクルパルプ繊維回収ステップ(S13)を含むことを特徴とする方法。

Description

使用済みの衛生用品から、清浄化されたリサイクルパルプ繊維を製造する方法
 本開示は、使用済みの衛生用品から、清浄化されたリサイクルパルプ繊維を製造する方法に関する。
 使用済みの衛生用品からリサイクルパルプ繊維を回収する検討が行われている。
 例えば、特許文献1には、パルプ繊維および高分子吸収材を含む使用済み衛生用品からパルプ繊維を回収する方法であって、該方法が、使用済み衛生用品をオゾン水に浸漬して、高分子吸収材を分解する工程、分解した高分子吸収材が溶けたオゾン水を排出して、高分子吸収材が取り除かれた衛生用品の残渣を得る工程、および高分子吸収材が取り除かれた衛生用品の残渣を、消毒薬を含む水溶液中または水中で攪拌することにより、衛生用品の残渣を洗浄するとともに衛生用品の残渣を構成要素に分解する工程を含むことを特徴とする方法が記載されている。
特開2014-217835号公報
 使用済み衛生用品から回収されたリサイクルパルプ繊維には、排泄物、高吸水性ポリマー等の残存成分が少ないことが好ましい。
 本願発明者が、上記方法により回収されたリサイクルパルプ繊維を分析したところ、上記リサイクルパルプ繊維には、高濃度の窒素含有成分が残存している場合があることが分かった。
 従って、本開示は、窒素含有成分の含有率の低いリサイクルパルプ繊維を形成することができる、使用済みの衛生用品から、清浄化されたリサイクルパルプ繊維を製造する方法を提供することを目的とする。
 本開示者らは、使用済みの衛生用品から、清浄化されたリサイクルパルプ繊維を製造する方法であって、パルプ繊維及び高吸水性ポリマーを含む上記使用済みの衛生用品から得られた、上記パルプ繊維及び上記高吸水性ポリマーを含む混合物の水分率を70質量%以下に調整する水分率調整ステップ、上記水分率調整ステップを経た上記混合物を、酸化剤を含む酸化剤含有水溶液で処理し、上記高吸水性ポリマーを酸化分解し、酸化分解された上記高吸水性ポリマーを上記酸化剤含有水溶液に溶解させるとともに上記リサイクルパルプ繊維を形成する酸化処理ステップ、上記リサイクルパルプ繊維を回収するリサイクルパルプ繊維回収ステップ、を含むことを特徴とする方法を見出した。
 本開示の、使用済みの衛生用品から、清浄化されたリサイクルパルプ繊維を製造する方法は、窒素含有成分の含有率の低いリサイクルパルプ繊維を形成することができる。
図1は、本開示のリサイクルパルプ繊維を製造する方法を説明するための図である。
 具体的には、本開示は以下の態様に関する。
[態様1]
 使用済みの衛生用品から、清浄化されたリサイクルパルプ繊維を製造する方法であって、
 パルプ繊維及び高吸水性ポリマーを含む上記使用済みの衛生用品から得られた、上記パルプ繊維及び上記高吸水性ポリマーを含む混合物の水分率を70質量%以下に調整する水分率調整ステップ、
 上記水分率調整ステップを経た上記混合物を、酸化剤を含む酸化剤含有水溶液で処理し、上記高吸水性ポリマーを酸化分解し、酸化分解された上記高吸水性ポリマーを上記酸化剤含有水溶液に溶解させるとともに上記リサイクルパルプ繊維を形成する酸化処理ステップ、
 上記リサイクルパルプ繊維を回収するリサイクルパルプ繊維回収ステップ、
 を含むことを特徴とする、上記方法。
 上記方法は、所定の水分率調整ステップと、酸化処理ステップと、リサイクルパルプ繊維回収ステップとを含む。上記水分率調整ステップでは、パルプ繊維及び高吸水性ポリマーを含む混合物を、所定の水分率に調整する。その結果、パルプ繊維、特にパルプ繊維の内部に含まれる、排泄物等の窒素含有成分の多くがパルプ繊維から除去され、窒素含有成分がパルプ繊維に残存しにくくなる。次に、酸化処理ステップにおいて、酸化剤が、混合物中の高吸水性ポリマーを的確に酸化分解し、酸化分解された高吸水性ポリマーを除去することができる。その結果、上記方法は、窒素含有成分の含有率の低いリサイクルパルプ繊維を形成することができる。
 なお、上記水分率調整ステップを実施しない場合には、パルプ繊維、特にパルプ繊維の内部に含まれる、排泄物等の窒素含有成分の多くが、パルプ繊維に残存しやすくなる。その結果、次の酸化処理ステップにおいて、酸化剤が、窒素含有成分の酸化と、高吸水性ポリマーの酸化分解とに分散して消費され、高吸水性ポリマーの分解するための酸化剤の量が増える傾向があるともに、窒素含有成分が残存しやすくなる傾向にある。
[態様2]
 上記水分率調整ステップにおいて、上記混合物が、上記混合物の乾燥質量1kg当たり、10.0g/Kg以下のTOCを有するように、上記混合物の水分を調整する、態様1に記載の方法。
 上記方法では、水分率調整ステップにおいて、混合物が所定のTOCを有するように、混合物の水分を調整する。従って、水分率調整ステップにおいて、パルプ繊維及び高吸水性ポリマーを含む混合物に含まれる窒素含有成分の量を低減することができる。その結果、上記方法は、窒素含有成分の含有率の低いリサイクルパルプ繊維を形成することができる。
[態様3]
 上記酸化処理ステップにおいて、上記混合物を、酸化剤を含む酸化剤含有水溶液中で、当該酸化剤含有水溶液が3.0g/Kg以下のTOCを有するように処理する、態様1又は2に記載の方法。
 上記方法では、酸化処理ステップにおいて、酸化剤含有水溶液が所定のTOCを有するように、混合物を処理する。その結果、上記方法は、窒素含有成分の含有率の低いリサイクルパルプ繊維を形成することができる。
[態様4]
 上記水分率調整ステップの後且つ上記酸化処理ステップの前に、上記混合物を水に分散させる分散ステップをさらに含む、態様1~3のいずれか一項に記載の方法。
 パルプ繊維及び高吸水性ポリマーを含む混合物は、高吸水性ポリマーの保水性の高さに起因して、混合物の水分率を下げることが難しい傾向がある。従って、混合物の水分率を70質量%以下に調整するためには、混合物に圧縮力を加える場合があり、その場合に、混合物が塊となり、混合物を水に再分散させることが難しくなる、時間がかかる等の問題が生じうる。
 上記方法は、水分率調整ステップの後且つ酸化処理ステップの前に、所定の分散ステップをさらに含む。従って、水分率調整ステップを経て塊化した混合物を、各パルプ繊維、高吸水性ポリマー(各粒子)等に分散させやすくなり、次の酸化処理ステップにおいて、高吸水性ポリマーを酸化分解し、そしてパルプ繊維中の窒素含有成分を酸化分解しやすくなる。その結果、上記方法は、窒素含有成分の含有率の低いリサイクルパルプ繊維を形成することができる。
[態様5]
 上記酸化処理ステップの後且つ上記リサイクルパルプ繊維回収ステップの前に、上記リサイクルパルプ繊維を、洗浄水を用いて洗浄するリサイクルパルプ繊維洗浄ステップをさらに含む、態様1~4のいずれか一項に記載の方法。
 上記方法は、酸化処理ステップの後且つリサイクルパルプ繊維回収ステップの前に、所定のリサイクルパルプ繊維洗浄ステップをさらに含む。従って、リサイクルパルプ繊維に残存する窒素含有成分の量をさらに低減することができる。その結果、上記方法は、窒素含有成分の含有率の低いリサイクルパルプ繊維を形成することができる。
[態様6]
 上記リサイクルパルプ繊維洗浄ステップ後の洗浄水が、1.5g/Kg以下のTOCを有する、態様5に記載の方法。
 上記方法では、リサイクルパルプ繊維洗浄ステップ後の洗浄水が、所定のTOCを有する。その結果、上記方法は、窒素含有成分の含有率の低いリサイクルパルプ繊維を的確に形成することができる。
[態様7]
 上記リサイクルパルプ繊維回収ステップの後に、上記リサイクルパルプ繊維を60質量%以下の水分率を有するように脱水するリサイクルパルプ繊維脱水ステップをさらに含む、態様1~6のいずれか一項に記載の方法。
 上記方法では、リサイクルパルプ繊維回収ステップの後、所定のリサイクルパルプ繊維脱水ステップをさらに含む。従って、リサイクルパルプ繊維を乾燥して保存する場合に、乾燥性に優れ、そしてリサイクルパルプ繊維を湿式で保存する場合に、その運搬性に優れる。
[態様8]
 上記水分率調整ステップの前に、脱水剤を用いて、上記高吸水性ポリマーを脱水させる高吸水性ポリマー脱水ステップをさらに含む、態様1~7のいずれか一項に記載の方法。
 上記方法は、所定の高吸水性ポリマー脱水ステップをさらに含む。従って、高吸水性ポリマー脱水ステップにおいて、混合物中の高吸水性ポリマーに含まれる窒素含有成分の量を低減することができるとともに、次の水分率調整ステップにおいて、窒素含有成分の多くがパルプ繊維から除去され、窒素含有成分がパルプ繊維に残存しにくくなる。その結果、上記方法は、窒素含有成分の含有率の低いリサイクルパルプ繊維を形成することができる。
 本開示の使用済みの衛生用品から、清浄化されたリサイクルパルプ繊維を製造する方法(以下、単に「製造方法」と称する場合がある)について、以下、詳細に説明する。
 本開示の製造方法は、図1に示されるように、以下のステップを含む。
・パルプ繊維及び高吸水性ポリマーを含む上記使用済みの衛生用品から得られた、上記パルプ繊維及び上記高吸水性ポリマーを含む混合物の水分率を70質量%以下に調整する水分率調整ステップ(以下、単に「水分率調整ステップS11」と称する場合がある)
・上記水分率調整ステップを経た上記混合物を、酸化剤を含む酸化剤含有水溶液で処理し、上記高吸水性ポリマーを酸化分解し、酸化分解された上記高吸水性ポリマーを上記酸化剤含有水溶液に溶解させるとともに上記リサイクルパルプ繊維を形成する酸化処理ステップ(以下、単に「酸化処理ステップS12」と称する場合がある)
・上記リサイクルパルプ繊維を回収するリサイクルパルプ繊維回収ステップ(以下、「リサイクルパルプ繊維回収ステップS13」と称する場合がある)
 本開示の製造方法は、図1に示されるように、任意ステップとして、以下のステップをさらに含むことができる。
・上記水分率調整ステップの前の、脱水剤を用いて、上記高吸水性ポリマーを脱水させる高吸水性ポリマー脱水ステップ(以下、単に「高吸水性ポリマー脱水ステップS101」と称する場合がある)
・上記水分率調整ステップの後且つ上記酸化処理ステップの前の、上記混合物を水に分散させる分散ステップ(以下、単に「分散ステップS102」と称する場合がある)
・上記酸化処理ステップの後且つ上記リサイクルパルプ繊維回収ステップの前の、上記リサイクルパルプ繊維を、洗浄水を用いて洗浄するリサイクルパルプ繊維洗浄ステップ(以下、単に「リサイクルパルプ繊維洗浄ステップS103」と称する場合がある)
・上記リサイクルパルプ繊維回収ステップの後の、上記リサイクルパルプ繊維を60質量%以下の水分率を有するように脱水するリサイクルパルプ繊維脱水ステップ(以下、単に「リサイクルパルプ繊維脱水ステップS104」と称する場合がある)
<水分率調整ステップS11>
 水分率調整ステップS11では、パルプ繊維及び高吸水性ポリマーを含む使用済みの衛生用品から得られた、パルプ繊維及び高吸水性ポリマーを含む混合物の水分率を70質量%以下に調整する。
 上記衛生用品としては、パルプ繊維及び高吸水性ポリマーを含むものであれば、特に制限されず、例えば、紙おむつ、尿取りパッド、生理用ナプキン、ベッドシート、ペットシート等が挙げられる。上記使用済みの衛生用品は、排泄物を吸収した状態の衛生用品を意味する。
 上記パルプ繊維としては、衛生用品として使用可能なものであれば特に制限されず、例えば、木材パルプ(例えば、針葉樹パルプ、広葉樹パルプ)、架橋パルプ、非木材パルプ等が挙げられる。
 上記高吸水性ポリマーとしては、上記衛生用品の技術分野で公知のものが挙げられ、例えば、デンプン系、セルロース系、合成ポリマー系の高吸水性ポリマーが挙げられる。デンプン系又はセルロース系の高吸水性ポリマーとしては、例えば、デンプン-アクリル酸(塩)グラフト共重合体、デンプン-アクリロニトリル共重合体のケン化物、ナトリウムカルボキシメチルセルロースの架橋物等が挙げられる。合成ポリマー系の高吸水性ポリマーとしては、例えば、ポリアクリル酸塩系、ポリスルホン酸塩系、無水マレイン酸塩系、ポリアクリルアミド系、ポリビニルアルコール系、ポリエチレンオキシド系、ポリアスパラギン酸塩系、ポリグルタミン酸塩系、ポリアルギン酸塩系、デンプン系、セルロース系等の高吸水性ポリマー(SAP,Super Absorbent Polymer)等が挙げられる。
 上記使用済の衛生用品から、パルプ繊維及び高吸水性ポリマーを含む混合物を得る方法としては、特に制限されず、例えば、使用済みの衛生用品を切断し、吸収体から、パルプ繊維及び高吸水性ポリマーを含む混合物を取得することができる。
 上記混合物では、パルプ繊維及び高吸水性ポリマーが、液状の排泄物を吸収し、保水しているとともに、高吸水性ポリマーが、保水している液状の排泄物を離水させにくいことから、水分率を70質量%以下に調整するためには、上記混合物に力、例えば、圧縮力(例えば、圧力、遠心力)を加えることが好ましい。例えば、上記混合物を、スクリュープレス脱水機、遠心分離機等を用いて圧縮することにより、上記混合物を脱水し、上述の水分率を達成することができる。
 上記スクリュープレス脱水機としては、例えば、川口精機株式会社製のスクリュープレス脱水機が挙げられる。上記スクリュープレス脱水機の蓋体に加えられる圧力は、上記混合物の水分率を所定の範囲に調整できる圧力であれば特に制限されないが、高吸水性ポリマーが保水性に優れることから、高い圧力を加えることが好ましい。
 上記圧力は、好ましくは1.0MPa超、より好ましくは1.1MPa超、そしてさらに好ましくは1.2MPa超である。また、上記スクリュープレス脱水機の蓋体に加えられる圧力は、好ましくは5.0Mpa以下、より好ましくは4.0Mpa以下、そしてさらに好ましくは3.0Mpa以下である。それにより、混合物の水分率を上述の範囲に調整しやすくなるとともに、混合物の再分散性を確保しやすくなる。
 水分率調整ステップS11では、上記混合物の水分率を、70質量%以下、より好ましくは67質量%以下、そしてさらに好ましくは65質量%以下に調整することが好ましい。また、水分率調整ステップS11では、上記混合物の水分率を、50質量%以上、より好ましくは53質量%以上、そしてさらに好ましくは55質量%以上に調整することが好ましい。それにより、混合物中の窒素含有成分の量、ひいてはリサイクルパルプ繊維中の窒素含有成分の量を、所定の範囲に低減させやすくなる。
 なお、本明細書では、混合物の固形分と称する場合があり、単一の混合物の固形分と、水分率とは、その和が100となる関係にある。
 本明細書では、水分率は、ケット社の赤外線水分計FD-720を用いて測定される。具体的には、FD-720の試料皿に約5gの試料を置き、設定温度を150℃とし、自動停止モードを選択して、水分率を測定する。
 本開示の製造方法では、水分率調整ステップS11において、上記混合物が、上記混合物の乾燥質量1kg当たり、好ましくは10.0g/Kg以下、より好ましくは8.0g/Kg以下、そしてさらに好ましくは6.0g/Kg以下のTOCを有するように、上記混合物の水分率を調整する。それにより、混合物中の窒素含有成分の量、ひいてはリサイクルパルプ繊維中の窒素含有成分の量を、所定の範囲に低減させやすくなる。
 また、水分率調整ステップにおいて、上記混合物の乾燥質量1kg当たりのTOCの下限は、特に制限されないが、例えば、0.1g/Kgが挙げられる。
 なお、上記混合物の乾燥質量は、上述の水分率を測定した後の混合物の質量を意味する。
 本明細書では、混合物の乾燥質量1kg当たりのTOCは、以下の通り測定される。
(1)水分率調整ステップにおいて、上記混合物から排出された排出液を回収する。
(2)上記排出液を、粒子保持能:1μmのガラス繊維ろ紙を用いて吸引ろ過し、ろ過残渣と、抽出液とに区画する。
(3)上記抽出液のTOC:y(g/Kg)を、東レエンジニアリングDソリューションズ株式会社製のTOC-200MDを用いて測定する。
(4)水分率を調整された混合物の水分率:x(質量%)を、本明細書に記載の方法に従って測定する。
(5)水分率を調整された混合物の乾燥質量1kg当たりの水分量:a(Kg)を、以下の式:
 a(Kg)=x/(100-x)
 により算出する。
(6)混合物の乾燥質量1kg当たりのTOC:z(g/Kg)を、次の式:
 z(g/Kg)=y×a
        =x×y/(100-x)
 により算出する。
 上記ガラス繊維ろ紙としては、GEヘルスケア・ジャパン製のガラス繊維円形濾紙GF/Bが挙げられる。
 なお、TOCは、全有機炭素(Total Organic Carbon)を意味する。
 水分率調整ステップS11では、水分率を調整する前の混合物(使用済みの衛生用品から得られた混合物)において、高吸水性ポリマーは、脱水剤を用いて脱水されていても、そして脱水されていなくともよい。
 脱水剤を用いて高吸水性ポリマーが脱水されている場合には、水分率を調整する前の混合物(使用済みの衛生用品から得られた混合物)において、高吸水性ポリマーが、好ましくは50倍以下、より好ましくは30倍以下、さらに好ましくは25倍以下、そしてさらにいっそう好ましくは20倍以下の吸水倍率を有する。それにより、水分率調整ステップS11において、水分率をより低下させやすくなる。
<高吸水性ポリマー脱水ステップS101>
 本開示の製造方法は、任意ステップとして、水分率調整ステップS11の前に、高吸水性ポリマーを脱水させる高吸水性ポリマー脱水ステップS101をさらに含むことができる。それにより、混合物中の高吸水性ポリマーに含まれる窒素含有成分の量を低減することができるとともに、次の水分率調整ステップS11において、窒素含有成分の多くがパルプ繊維から除去され、窒素含有成分がパルプ繊維に残存しにくくなる。
 高吸水性ポリマー脱水ステップS101は、脱水剤を含む脱水剤含有水溶液に、上記混合物、例えば、使用済みの衛生用品を浸漬することにより実施することができる。
 上記脱水剤としては、酸(例えば、無機酸及び有機酸)、石灰、塩化カルシウム、硫酸マグネシウム、塩化マグネシウム、硫酸アルミニウム、塩化アルミニウム等が挙げられる。上記酸は、パルプ繊維に灰分を残留させにくいことから好ましい。上記脱水剤として酸を用いる場合は、上記脱水剤含有水溶液は、好ましくは2.5以下、そしてより好ましくは1.3~2.4のpHを有する。それにより、高吸水性ポリマーの吸水能力を十分に低下させることができ、設備の腐食のおそれが少なく、そして排水処理時の中和処理に多くのアルカリ薬品が必要となりにくくなる。
 上記無機酸としては、例えば、硫酸、塩酸、硝酸が挙げられるが、塩素を含まないこと、コスト等の観点から硫酸が好ましい。上記有機酸としては、クエン酸、酒石酸、グリコール酸、リンゴ酸、コハク酸、酢酸、アスコルビン酸等が挙げられるが、排泄物に含まれる金属イオンと錯体を形成可能な酸、例えば、クエン酸、酒石酸、グルコン酸等のヒドロキシカーボネート系有機酸が特に好ましい。なお、排泄物に含まれる金属イオンとしては、カルシウムイオンが挙げられる。排泄物に含まれる金属イオンと錯体を形成可能な酸のキレート効果により、排泄物中の金属イオンがトラップされ、除去可能であるためである。また、クエン酸は、その洗浄効果により、高い汚れ成分除去効果が期待できる。
 高吸水性ポリマー脱水ステップS101は、例えば、特開2003-326161号公報、後述の「酸化処理ステップS12」の箇所に例示の公報等に従って実施することができる。
 高吸水性ポリマー脱水ステップS101では、高吸水性ポリマーが、好ましくは50倍以下、より好ましくは30倍以下、さらに好ましくは25倍以下、そしてさらにいっそう好ましくは20倍以下の吸水倍率を有するように、高吸水性ポリマーを脱水する。
 上記吸水倍率は、以下の通り測定される。
(1)高吸水性ポリマーを、メッシュに入れて5分間吊るし、それらの表面に付着した水分を除去し、その乾燥前質量:m1(g)を測定する。
(2)高吸水性ポリマーを、120℃で10分間乾燥し、その乾燥後質量:m2(g)を測定する。
(3)吸水倍率(g/g)を、次の式:
 吸水倍率(g/g)=100×m1/m2
 により算出する。
<酸化処理ステップS12>
 酸化処理ステップS12では、水分率調整ステップS11を経た混合物を、酸化剤を含む酸化剤含有水溶液で処理し、高吸水性ポリマーを酸化分解し、酸化分解された高吸水性ポリマーを酸化剤含有水溶液に溶解させるとともにリサイクルパルプ繊維を形成する。
 上記酸化剤としては、オゾン(例えば、オゾン含有ガス)、過酸化水素、二酸化塩素、過酢酸、次亜塩素酸ナトリウム等が挙げられる。
 酸化処理ステップS12としては、特開2014-217835号公報、特開2016-881号公報、特開2019-007119号公報、特開2019-085447号公報、特開2019-108639号公報、特開2019-108640号公報等に記載の工程が挙げられる。
 酸化処理ステップS12では、上記混合物を、酸化剤を含む酸化剤含有水溶液中で、酸化剤含有水溶液が、好ましくは3.0g/Kg以下、より好ましくは2.5g/Kg以下、そしてさらに好ましくは2.0g/Kg以下のTOCを有するように処理する。それにより、窒素含有成分の含有率の低いリサイクルパルプ繊維を形成しやすくなる。
 なお、酸化処理ステップS12では、リサイクルパルプ繊維のTOCの下限は、特に制限されないが、例えば、0.5g/Kgが挙げられる。
 本明細書では、酸化剤含有水溶液のTOCは、以下の通り測定される。
(1)酸化剤含有水溶液を、粒子保持能:1μmのガラス繊維ろ紙を用いて吸引ろ過し、ろ過残渣と、抽出液とに区画する。
(2)上記抽出液のTOC:w(g/Kg)を、東レエンジニアリングDソリューションズ株式会社製のTOC-200MDを用いて測定し、その測定値を酸化剤含有水溶液のTOCとする。
<分散ステップS102>
 本開示の製造方法は、任意ステップとして、水分率調整ステップS11の後且つ酸化処理ステップS12の前に、上記混合物を水に分散させる分散ステップS102をさらに含むことができる。それにより、水分率調整ステップS11を経て、混合物の少なくとも一部又は全部が塊化している場合であっても、混合物を、各パルプ繊維、高吸水性ポリマー(各粒子)等に分散させやすくなり、次の酸化処理ステップS12において、高吸水性ポリマーを酸化分解し、そしてパルプ繊維中の窒素含有成分を酸化分解しやすくなる。
 分散ステップS102は、例えば、上記混合物に水を添加し、分散水溶液を形成し、上記分散水溶液を、例えば、パルパー、リファイナー、ビーター等に通すことにより実施することができる。
 上記分散水溶液における上記混合物の水分率は、好ましくは80質量%以上、より好ましくは85質量%以上、そしてさらに好ましくは90質量%以上である。また、上記分散水溶液における上記混合物の水分率は、好ましくは99.0質量%以下、より好ましくは98.5質量%以下、そしてさらに好ましくは98.0質量%以下である。それにより、水分率調整ステップS11を経て塊化した、混合物の塊化部分を、各パルプ繊維、高吸水性ポリマー(各粒子)等に分散させやすくなる。
 上記分散水溶液は、上記混合物に含まれる高吸水性ポリマーの吸水を抑制する観点から、高吸水性ポリマー脱水ステップS101の箇所で説明された脱水剤を含むことが好ましい。
 分散ステップS102では、高級水性ポリマーの脱水状態を維持することができればよいことから、上記分散水溶液は、上述の脱水剤含有水溶液よりも低濃度(例えば、1/10倍、1/100倍等)の脱水剤を含むことができ、そして上記分散水溶液は、上述の脱水剤含有水溶液と同一濃度の脱水剤を含むことができ、分散水溶液が、脱水剤含有水溶液と同一であってもよい(すなわち、高吸水性ポリマー脱水ステップS101における脱水剤含有水溶液を、分散ステップS102における分散水溶液として再利用してもよい)。
<リサイクルパルプ繊維回収ステップS13>
 リサイクルパルプ繊維回収ステップS13では、リサイクルパルプ繊維を回収する。
 リサイクルパルプ繊維回収ステップS13では、例えば、酸化剤含有水溶液から、例えば、複数の開口を有するスクリーンを用いて、リサイクルパルプ繊維を回収することができる。
<リサイクルパルプ繊維洗浄ステップS103>
 本開示の製造方法は、任意ステップとして、酸化処理ステップS12の後且つリサイクルパルプ繊維回収ステップS13の前に、上記リサイクルパルプ繊維を、洗浄水を用いて洗浄するリサイクルパルプ繊維洗浄ステップS103をさらに含むことができる。
 リサイクルパルプ繊維洗浄ステップS103は、特に制限されず、上記リサイクルパルプ繊維を、洗浄水(例えば、水道水、脱イオン水等)を用いて洗浄することができる。上記洗浄水は、流水、静水(例えば、容器に貯蔵した水)等として用いられることができる。
 リサイクルパルプ繊維洗浄ステップS103後の上記洗浄水は、好ましくは1.5g/Kg以下、より好ましくは1.0g/Kg以下、そしてさらに好ましくは0.9g/Kg以下のTOCを有する。それにより、窒素含有成分の含有率の低いリサイクルパルプ繊維を的確に形成することができる。
 なお、上記リサイクルパルプ繊維のTOCの下限は、特に制限されないが、例えば、0.5g/Kgが挙げられる。
 本明細書では、洗浄水のTOCは、以下の通り測定される。
(1)洗浄水を、粒子保持能:1μmのガラス繊維ろ紙を用いて吸引ろ過し、ろ過残渣と、抽出液とに区画する。
(2)上記抽出液のTOC:w(g/Kg)を、東レエンジニアリングDソリューションズ株式会社製のTOC-200MDを用いて測定し、その測定値を洗浄水のTOCとする。
<リサイクルパルプ繊維脱水ステップS104>
 本開示の製造方法は、任意ステップとして、リサイクルパルプ繊維回収ステップS13の後に、上記リサイクルパルプ繊維を60質量%以下の水分率を有するように脱水するリサイクルパルプ繊維脱水ステップS104をさらに含むことができる。
 上記リサイクル繊維脱水ステップでは、リサイクルパルプ繊維を、好ましくは60質量%以下、そしてより好ましくは50質量%以下の水分率を有するように脱水することができる。それにより、リサイクルパルプ繊維を乾燥して保存する場合に、乾燥性に優れ、そしてリサイクルパルプ繊維を湿式で保存する場合に、その運搬性に優れることになる。
 上記サイクル繊維脱水ステップは、例えば、加圧型脱水機、例えば、川口精機株式会社製,スクリュープレス脱水機を用いて実施することができる。
 以下、例を挙げて本開示を説明するが、本開示はこれらの例に限定されるものではない。
[実施例1]
<高吸水性ポリマー脱水ステップS101等>
 特開2019-085447号公報に記載の穴開け工程S11,破砕工程S12,第1分離工程S13,第1除塵工程S14,第2除塵工程S15,及び第3除塵工程S16(破袋装置11,破砕装置12,第1分離装置13,第1除塵装置14,第2除塵装置15,第3除塵装置16,及び第2分離装置17)に従って、使用済みの紙おむつを含む収集袋から、パルプ繊維と、高吸水性ポリマーとを含む混合物No.1a(水分率:91質量%)を得た。
 なお、高吸水性ポリマー脱水ステップS101では、脱水剤含有水溶液を、クエン酸を添加することによりpH=2.0に調整した。
<水分率調整ステップS11>
 混合物No.1aを、川口精機株式会社製のスクリュープレス脱水機に投入し、蓋体に1.2MPaの圧力を加え、排出液と、混合物No.1b(水分率:70質量%)とを得た。
 上記排出液のTOCと、混合物No.1bの水分率とから、混合物No.1bのTOCを算出した。混合物No.1bのTOCを表1に示す。
 また、上記排出液のTOCと、混合物No.1aの水分率とから、混合物No.1aのTOCを算出した。混合物No.1aのTOCを表1に示す。
<分散ステップS102>
 混合物No.1bに水を加え、サトミ製作所製のリファイナー装置に通し、パルプ繊維及び高吸水性ポリマーを水に分散させた、混合物No.1c(固形分率:4.0質量%)を得た。
<酸化処理ステップS12>
 混合物No.1cを、固形分率1.0質量%に調整し、特開2019-085447号公報に記載の酸化剤処理工程S19(オゾン処理装置22)に従い、以下の条件で酸化処理ステップS12を実施し、リサイクルパルプ繊維No.1aを形成した。リサイクルパルプ繊維No.1aを形成した後の酸化剤含有水溶液のTOCを表1に示す。
・酸化剤:オゾン含有ガス
・オゾン含有ガス中のオゾン濃度:200g/m3
・形態:ナノバブル
・処理時間:30分
・pH:4.5
<リサイクルパルプ繊維回収ステップS13>
 酸化処理ステップS12を経たリサイクルパルプ繊維No.1aを脱水し、リサイクルパルプ繊維No.1bを得た。
[実施例2]
 酸化処理ステップS12の後且つリサイクルパルプ繊維回収ステップS13の前に、酸化処理ステップS12を経たリサイクルパルプ繊維No.1bを取り出し、洗浄水として、リサイクルパルプ繊維No.1bの乾燥質量の40倍の脱イオン水を用いて、リサイクルパルプ繊維No.1aを3分間流水洗浄するリサイクルパルプ繊維洗浄ステップS103を追加した以外は、実施例1と同様にして、リサイクルパルプ繊維No.2を得た。リサイクルパルプ繊維No.2を得た後の洗浄水のTOCを表1に示す。
 なお、リサイクルパルプ繊維の乾燥質量は、リサイクルパルプ繊維を、105℃±3℃の温度のオーブンで2時間乾燥させた後の質量を意味する。
[実施例3]
 酸化処理ステップS12の後且つリサイクルパルプ繊維回収ステップS13の前に、酸化処理ステップS12を経たリサイクルパルプ繊維No.1bを取り出し、洗浄水として、リサイクルパルプ繊維No.1bの乾燥質量の40倍の脱イオン水を用いて、リサイクルパルプ繊維No.1aを60分間流水洗浄するリサイクルパルプ繊維洗浄ステップS103を追加した以外は、実施例1と同様にして、リサイクルパルプ繊維No.3を得た。リサイクルパルプ繊維No.3を得た後の洗浄水のTOCを表1に示す。
[実施例4]
 酸化処理ステップS12の後且つリサイクルパルプ繊維回収ステップS13の前に、酸化処理ステップS12を経たリサイクルパルプ繊維No.1bを取り出し、洗浄水として、リサイクルパルプ繊維No.1bの水分率が99質量%となるように脱イオン水を添加し、リサイクルパルプ繊維No.1aを洗浄するリサイクルパルプ繊維洗浄ステップS103を追加した以外は、実施例1と同様にして、リサイクルパルプ繊維No.4を得た。リサイクルパルプ繊維No.4を得た後の洗浄水のTOCを表1に示す。
[比較例1]
 水分率調整ステップS11及び分散ステップS102を実施しなかった以外は、実施例1と同様にして、リサイクルパルプ繊維No.5を得た。混合物No.1a及び酸化剤含有水溶液のTOCを表1に示す。
[比較例2]
 酸化処理ステップS12の後且つリサイクルパルプ繊維回収ステップS13の前に、酸化処理ステップS12を経たリサイクルパルプ繊維No.5を取り出し、洗浄水として、リサイクルパルプ繊維No.5の乾燥質量の40倍の脱イオン水を用いて、リサイクルパルプ繊維No.5を3分間流水洗浄するリサイクルパルプ繊維洗浄ステップS103を追加した以外は、比較例1と同様にして、リサイクルパルプ繊維No.6を得た。リサイクルパルプ繊維No.6を得た後の洗浄水のTOCは、洗浄前の酸化剤含有水溶液の約半分であった。
Figure JPOXMLDOC01-appb-T000001
  S11 水分率調整ステップ
  S12 酸化処理ステップ
  S13 リサイクルパルプ繊維回収ステップ
  S101 高吸水性ポリマー脱水ステップ
  S102 分散ステップ
  S103 リサイクルパルプ繊維洗浄ステップ
  S104 リサイクルパルプ繊維脱水ステップ

Claims (8)

  1.  使用済みの衛生用品から、清浄化されたリサイクルパルプ繊維を製造する方法であって、
     パルプ繊維及び高吸水性ポリマーを含む前記使用済みの衛生用品から得られた、前記パルプ繊維及び前記高吸水性ポリマーを含む混合物の水分率を70質量%以下に調整する水分率調整ステップ、
     前記水分率調整ステップを経た前記混合物を、酸化剤を含む酸化剤含有水溶液で処理し、前記高吸水性ポリマーを酸化分解し、酸化分解された前記高吸水性ポリマーを前記酸化剤含有水溶液に溶解させるとともに前記リサイクルパルプ繊維を形成する酸化処理ステップ、
     前記リサイクルパルプ繊維を回収するリサイクルパルプ繊維回収ステップ、
     を含むことを特徴とする、前記方法。
  2.  前記水分率調整ステップにおいて、前記混合物が、前記混合物の乾燥質量1kg当たり、10.0g/Kg以下のTOCを有するように、前記混合物の水分を調整する、請求項1に記載の方法。
  3.  前記酸化処理ステップにおいて、前記混合物を、酸化剤を含む酸化剤含有水溶液中で、当該酸化剤含有水溶液が3.0g/Kg以下のTOCを有するように処理する、請求項1又は2に記載の方法。
  4.  前記水分率調整ステップの後且つ前記酸化処理ステップの前に、前記混合物を水に分散させる分散ステップをさらに含む、請求項1~3のいずれか一項に記載の方法。
  5.  前記酸化処理ステップの後且つ前記リサイクルパルプ繊維回収ステップの前に、前記リサイクルパルプ繊維を、洗浄水を用いて洗浄するリサイクルパルプ繊維洗浄ステップをさらに含む、請求項1~4のいずれか一項に記載の方法。
  6.  前記リサイクルパルプ繊維洗浄ステップ後の洗浄水が、1.5g/Kg以下のTOCを有する、請求項5に記載の方法。
  7.  前記リサイクルパルプ繊維回収ステップの後に、前記リサイクルパルプ繊維を60質量%以下の水分率を有するように脱水するリサイクルパルプ繊維脱水ステップをさらに含む、請求項1~6のいずれか一項に記載の方法。
  8.  前記水分率調整ステップの前に、脱水剤を用いて、前記高吸水性ポリマーを脱水させる高吸水性ポリマー脱水ステップをさらに含む、請求項1~7のいずれか一項に記載の方法。
PCT/JP2021/025505 2020-07-20 2021-07-06 使用済みの衛生用品から、清浄化されたリサイクルパルプ繊維を製造する方法 WO2022019109A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21845892.5A EP4166714A4 (en) 2020-07-20 2021-07-06 METHOD FOR PRODUCING CLEANED RECYCLED PULP FIBERS FROM USED SANITARY MATERIALS
CN202180060018.9A CN116133626B (zh) 2020-07-20 2021-07-06 由使用过的卫生用品制造经过清洁化的再循环浆粕纤维的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-124011 2020-07-20
JP2020124011A JP7355714B2 (ja) 2020-07-20 2020-07-20 使用済みの衛生用品から、清浄化されたリサイクルパルプ繊維を製造する方法

Publications (1)

Publication Number Publication Date
WO2022019109A1 true WO2022019109A1 (ja) 2022-01-27

Family

ID=79729712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025505 WO2022019109A1 (ja) 2020-07-20 2021-07-06 使用済みの衛生用品から、清浄化されたリサイクルパルプ繊維を製造する方法

Country Status (4)

Country Link
EP (1) EP4166714A4 (ja)
JP (1) JP7355714B2 (ja)
CN (1) CN116133626B (ja)
WO (1) WO2022019109A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04317785A (ja) * 1991-04-15 1992-11-09 Nippon Shokubai Co Ltd 吸水性製品からのパルプ回収方法
JPH06502454A (ja) * 1991-06-17 1994-03-17 ノワスト・テクノロジーズ・インコーポレーテツド 吸収性生理用紙製品の処理
JP2003326161A (ja) 2002-03-06 2003-11-18 Nippon Shokubai Co Ltd 吸水性樹脂の再生方法および吸水剤
JP2009183668A (ja) * 2008-02-08 2009-08-20 Kazutoshi Koto 洗う紙おむつ
JP2013132600A (ja) * 2011-12-27 2013-07-08 Care-Root Service Co Ltd パルプ回収設備
JP2014217835A (ja) 2013-04-10 2014-11-20 ユニ・チャーム株式会社 使用済み衛生用品からパルプ繊維を回収する方法およびその方法により得られる再生パルプ
JP2016000881A (ja) 2014-06-12 2016-01-07 ユニ・チャーム株式会社 使用済み衛生用品からリサイクルパルプを製造する方法
JP2019007119A (ja) 2017-06-28 2019-01-17 ユニ・チャーム株式会社 リサイクル繊維を製造する方法及びリサイクル繊維
JP2019085447A (ja) 2017-11-01 2019-06-06 ユニ・チャーム株式会社 使用済み吸収性物品からパルプ繊維を回収する方法及びシステム
JP2019108640A (ja) 2017-12-20 2019-07-04 ユニ・チャーム株式会社 リサイクルパルプ繊維の製造方法、過酸の、高吸水性ポリマーの不活化及び分解のための使用、並びに過酸を含む、高吸水性ポリマーの不活化及び分解剤
JP2019108639A (ja) 2017-12-20 2019-07-04 ユニ・チャーム株式会社 リサイクルパルプ繊維の製造方法
JP2019178986A (ja) * 2018-03-30 2019-10-17 ユニ・チャーム株式会社 リサイクル資材の清浄度を評価する方法、及び使用済の衛生用品からリサイクル資材を製造する方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6162400B2 (ja) 2011-12-28 2017-07-12 日本製紙株式会社 使用済み衛生用品の処理方法
JP6203158B2 (ja) * 2014-10-15 2017-09-27 ユニ・チャーム株式会社 使用済み衛生用品からリサイクルパルプを製造する方法
JP6161669B2 (ja) * 2014-12-26 2017-07-12 ユニ・チャーム株式会社 使用済み吸収性物品のリサイクル方法
JP6698506B2 (ja) * 2016-12-02 2020-05-27 ユニ・チャーム株式会社 使用済み吸収性物品のリサイクル方法
JP6438077B1 (ja) * 2017-06-28 2018-12-12 ユニ・チャーム株式会社 糖化用パルプ繊維を製造する方法、及び糖化用パルプ繊維水溶液
JP2017193819A (ja) * 2017-07-20 2017-10-26 ユニ・チャーム株式会社 使用済み衛生用品からリサイクルパルプを製造する方法
JP6861662B2 (ja) * 2018-03-30 2021-04-21 ユニ・チャーム株式会社 リサイクルパルプ繊維、及びリサイクルパルプ繊維の製造方法
US11802373B2 (en) * 2017-12-20 2023-10-31 Unicharm Corporation Method for evaluating degree of cleanliness of recycled material, method for manufacturing recycled material, and method for manufacturing recycled pulp fiber

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04317785A (ja) * 1991-04-15 1992-11-09 Nippon Shokubai Co Ltd 吸水性製品からのパルプ回収方法
JPH06502454A (ja) * 1991-06-17 1994-03-17 ノワスト・テクノロジーズ・インコーポレーテツド 吸収性生理用紙製品の処理
JP2003326161A (ja) 2002-03-06 2003-11-18 Nippon Shokubai Co Ltd 吸水性樹脂の再生方法および吸水剤
JP2009183668A (ja) * 2008-02-08 2009-08-20 Kazutoshi Koto 洗う紙おむつ
JP2013132600A (ja) * 2011-12-27 2013-07-08 Care-Root Service Co Ltd パルプ回収設備
JP2014217835A (ja) 2013-04-10 2014-11-20 ユニ・チャーム株式会社 使用済み衛生用品からパルプ繊維を回収する方法およびその方法により得られる再生パルプ
JP2016000881A (ja) 2014-06-12 2016-01-07 ユニ・チャーム株式会社 使用済み衛生用品からリサイクルパルプを製造する方法
JP2019007119A (ja) 2017-06-28 2019-01-17 ユニ・チャーム株式会社 リサイクル繊維を製造する方法及びリサイクル繊維
JP2019085447A (ja) 2017-11-01 2019-06-06 ユニ・チャーム株式会社 使用済み吸収性物品からパルプ繊維を回収する方法及びシステム
JP2019108640A (ja) 2017-12-20 2019-07-04 ユニ・チャーム株式会社 リサイクルパルプ繊維の製造方法、過酸の、高吸水性ポリマーの不活化及び分解のための使用、並びに過酸を含む、高吸水性ポリマーの不活化及び分解剤
JP2019108639A (ja) 2017-12-20 2019-07-04 ユニ・チャーム株式会社 リサイクルパルプ繊維の製造方法
JP2019178986A (ja) * 2018-03-30 2019-10-17 ユニ・チャーム株式会社 リサイクル資材の清浄度を評価する方法、及び使用済の衛生用品からリサイクル資材を製造する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4166714A4

Also Published As

Publication number Publication date
JP2022020488A (ja) 2022-02-01
EP4166714A1 (en) 2023-04-19
CN116133626B (zh) 2024-08-02
EP4166714A4 (en) 2024-03-27
JP7355714B2 (ja) 2023-10-03
CN116133626A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
US10961658B2 (en) Method for recovering pulp fiber from used sanitary product and recycled pulp obtained thereby
JP6412611B2 (ja) 使用済み衛生用品の処理方法
JP6061875B2 (ja) 使用済み衛生用品からパルプ繊維を回収する方法
JP6316796B2 (ja) 使用済み衛生用品からパルプ繊維を回収する方法
WO2018025501A1 (ja) 使用済み吸収性物品からパルプ繊維を回収する方法
US10960577B2 (en) Method for recovering pulp fiber from used sanitary product and recycled pulp obtained thereby
JP6364004B2 (ja) 使用済み衛生用品の処理方法
JP6567102B2 (ja) 使用済み衛生用品の高分子吸収材を処理する装置
EA034862B1 (ru) Способ регенерации целлюлозных волокон из использованного впитывающего изделия
KR102244570B1 (ko) 사용 완료 흡수성 물품으로부터 펄프 섬유를 회수하는 방법
WO2022019109A1 (ja) 使用済みの衛生用品から、清浄化されたリサイクルパルプ繊維を製造する方法
AU2022418060A1 (en) Method for producing recycled pulp fibers, method for degrading super absorbent polymer, and method for evaluating cleanliness degree of recycled pulp fibers
CN118434933A (zh) 再循环纸浆纤维制造方法、高吸水性聚合物分解方法及再循环纸浆纤维清洁度评价方法
JP2023126013A (ja) リサイクルパルプ繊維の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845892

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317001333

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021845892

Country of ref document: EP

Effective date: 20230111

NENP Non-entry into the national phase

Ref country code: DE