WO2022017266A1 - 显示方法及其相关装置 - Google Patents

显示方法及其相关装置 Download PDF

Info

Publication number
WO2022017266A1
WO2022017266A1 PCT/CN2021/106683 CN2021106683W WO2022017266A1 WO 2022017266 A1 WO2022017266 A1 WO 2022017266A1 CN 2021106683 W CN2021106683 W CN 2021106683W WO 2022017266 A1 WO2022017266 A1 WO 2022017266A1
Authority
WO
WIPO (PCT)
Prior art keywords
brightness
light source
current frame
initial
grayscale
Prior art date
Application number
PCT/CN2021/106683
Other languages
English (en)
French (fr)
Inventor
陈晨
黄国生
余新
胡飞
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2022017266A1 publication Critical patent/WO2022017266A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators

Definitions

  • the present application relates to the field of display technology, and in particular, to a display method and related devices.
  • the brightness of the spatial light modulator can be reduced and the grayscale brightness displayed by the DMD can be increased to ensure that the display on the display screen is displayed.
  • the corresponding display brightness of each pixel remains unchanged.
  • the response speed of the commonly used power supply cannot meet the requirements of fast adjustment between frames, especially when using high-brightness light sources, which have dozens or even hundreds of light sources.
  • the total power output of the power supply is as high as kilowatts.
  • the response speed of the power supply is greater than 50ms, and the single-frame duration of the 60Hz video signal is greater than 16.7ms, resulting in abnormal display brightness due to the change of current in one frame over time. problem.
  • the present application provides a display method and a related device thereof, which can compensate for the abnormal display brightness problem that may be caused by the current changing with time in one frame.
  • the present application provides a display method, which includes:
  • a part of the global brightness variation law is selected to generate the light source brightness variation law in the current frame.
  • the final grayscale signal of the pixel Based on the light source brightness variation law and the initial grayscale signal of each pixel in the current frame the final grayscale signal of the pixel; or,
  • the final grayscale signal of each pixel in the current frame is determined by looking up the grayscale mapping table, wherein the grayscale mapping table It is determined according to the global brightness variation law;
  • the current frame is displayed.
  • the final grayscale signal of each pixel in the current frame is determined based on the change rule of the brightness of the light source and the initial grayscale signal of each pixel in the current frame, including:
  • the actual display brightness corresponding to the various grayscale signals is obtained by combining the various grayscale signals and the light source brightness variation laws; the initial grayscale signal and the maximum brightness of each pixel in the current frame are combined
  • the product of the brightness of the light source is used as the expected display brightness of each pixel in the current frame, and the grayscale signal corresponding to the actual display brightness that matches the expected display brightness of each pixel in the current frame is used as the final display brightness of each pixel in the current frame.
  • grayscale signal or,
  • the ratio of the maximum brightness of the light source to the brightness of the initial light source is used as the first ratio
  • the product of the brightness of the initial light source and the first ratio of each pixel in the current frame is the value of each pixel in the current frame.
  • the brightness of the light source is divided into M levels, and the current frame is displayed, including:
  • the brightness of the first-level light source is adjusted, or the brightness of the light source is not adjusted, so that the brightness of the light source is only adjusted between the brightness of the M-level light source, thereby reducing the uncertainty of the brightness change of the light source.
  • the driving current of the light source is divided into M levels, and the brightness of the first-level light source is adjusted, including:
  • the first-level driving current is adjusted to adjust the brightness of the first-level light source.
  • the brightness of the target light source in the current frame is determined by the product of the maximum light source brightness and the maximum initial grayscale signal in the current frame, including:
  • the target light source brightness is equal to the initial light source brightness.
  • the final grayscale signal of each pixel in the current frame is determined by looking up the grayscale mapping table, including:
  • the display method also includes:
  • the initial grayscale signal smaller than the second ratio is a feasible initial grayscale signal, where the second ratio is the ratio of the initial light source brightness to the maximum light source brightness.
  • the present application provides a display device, the display device includes a memory and a processor; a computer program is stored in the memory, and the processor is used to execute the computer program to implement the steps of the above method.
  • the display device further includes: a light source and a digital micro-mirror coupled to the processor,
  • the light source is used to emit illumination light
  • the digital micro-mirror is used to modulate the illumination light to obtain the modulated light required for displaying the image
  • the processor is used to determine the brightness of the target light source in the current frame, and determine the final grayscale signal of each pixel in the current frame based on the initial brightness of the light source in the current frame, the brightness of the target light source and the initial grayscale signal of each pixel in the current frame, based on
  • the brightness of the target light source adjusts the driving current of the light source to adjust the brightness of the illumination light in the current frame; and the digital micro-mirror is used to modulate the adjusted illumination light based on the final grayscale signal of each pixel in the current frame to obtain a display in the current frame.
  • the modulated light required for each pixel.
  • the present application first determines the brightness change rule of the light source in the current frame based on the initial light source brightness and the determined target light source brightness, and then determines the final gray level of each pixel in the current frame based on the determined brightness change rule of the light source signal, which can reduce the traditional Global Dimming's requirement for a faster response speed of the light source, and at the same time can partially realize the advantages of contrast improvement and power saving due to the use of the Global Dimming light source adjustment, and can compensate for the current in one frame.
  • the display brightness is abnormal.
  • Another solution that can achieve the above effect is to first determine the grayscale mapping relationship table based on the global brightness variation law, and then only need to search the grayscale mapping relationship table to determine the final grayscale signal of each pixel in the current frame.
  • Fig. 1 is the contrast schematic diagram of the images of different bit depths in this application.
  • Fig. 2 is the schematic diagram of the present application's Global Dimming display method
  • FIG. 3 is a schematic flowchart of an embodiment of a display method of the present application.
  • FIG. 4 is a schematic flowchart of an implementation manner of determining a light source brightness variation law in the display method of the present application
  • FIG. 5 is a schematic flowchart of another implementation manner of determining the light source brightness variation law in the display method of the present application.
  • FIG. 6 is a schematic flowchart of another implementation manner of determining the light source brightness variation law in the display method of the present application.
  • FIG. 7 is a schematic diagram of calculating the actual display brightness in the display method of the present application.
  • FIG. 8 is a schematic flowchart of another embodiment of the display method of the present application.
  • FIG. 9 is a schematic diagram of the change of the brightness of the light source in one frame in the second embodiment of the display method of the present application.
  • FIG. 10 is a schematic diagram of the DMD flip timing/display brightness when the DMD grayscale is 1/2 in the second embodiment of the display method of the present application;
  • FIG. 11 is a schematic diagram of the integration of luminance changes according to the DMD timing sequence in the second embodiment of the display method of the present application;
  • FIG. 12 is a schematic diagram of luminance mapping after sorting in the second embodiment of the display method of the present application.
  • FIG. 13 is a schematic diagram of current/brightness changes in the third embodiment of the display method of the present application.
  • FIG. 14 is a schematic diagram of the integration of luminance changes according to the DMD timing sequence in the third embodiment of the display method of the present application.
  • 15 is a schematic diagram of luminance mapping after sorting in the third embodiment of the display method of the present application.
  • 16 is a schematic structural diagram of an embodiment of a display device of the present application.
  • FIG. 17 is a schematic structural diagram of another embodiment of the display device of the present application.
  • the "frame” in this article refers to the smallest unit of a single image in an image animation, which is equivalent to each frame of footage on a film.
  • a frame is a still picture, and consecutive frames form an animation, such as a TV image.
  • the number of frames commonly referred to, simply put is the number of frames of pictures transmitted in 1 second, and can also be understood as the number of times the graphics processor can refresh per second, usually expressed in fps (Frames Per Second).
  • Each frame is a still image, and displaying frames in rapid succession creates the illusion of motion. Higher frame rates result in smoother, more realistic animations.
  • the more frames per second (fps) the smoother the motion displayed.
  • a frame of image consists of several pixels.
  • the pixel value displayed by each pixel in a frame of image is related to the grayscale signal of the pixel and the light source brightness of the light source, and the light source brightness is directly affected by the current driven by the light source power supply.
  • bit depth in this paper refers to the number of bits required to represent the grayscale signal of a certain pixel in a grayscale image.
  • a pixel in a grayscale image with a bit depth of 1, a pixel has only 2 (2 1 ) states, namely bright and dark; while in an image with a bit depth of 8, pixels can have 256 (2 8 ) a grayscale state, that is, Among them, Im is the maximum brightness that the pixel point in the grayscale image can display.
  • the "least significant bit (LSB)" in this article is the grayscale difference between two adjacent grayscale signals in the corresponding display process.
  • the display brightness corresponding to LSB is I m /2 n .
  • the "initial light source brightness” herein refers to the brightness of the light source illumination at the display start time point of the current frame.
  • target light source brightness herein refers to the brightness value that needs to be achieved by the brightness illuminated by the light source during the display period of the current frame.
  • the present application discloses a display device, which displays a current frame by controlling the brightness of a light source and a grayscale signal of each pixel in the current frame.
  • the display device may be a DLP (digital light processing, digital light processing) projection display system, but is of course not limited to this.
  • the display device includes a light source, and the current of the light source can be adjusted to dynamically adjust the illumination brightness of the light source, thereby realizing the transformation of the light source brightness from the initial light source brightness to the target light source brightness within the current frame display time.
  • the display device may further include an optical switch.
  • the optical switch may be a DMD (digital mirror device, digital micromirror device), of course, it is not limited thereto.
  • the operation of the optical switch corresponding to the pixel can be controlled according to the grayscale signal of each pixel, so as to control the grayscale value of the pixel.
  • the gray value of the corresponding pixel can be controlled by controlling the time ratio of the optical switch in the "on" state during the display period of one frame of image, that is, by controlling the inversion of the DMD Timing to control the gray value of the corresponding pixel.
  • the brightness of the light source is constant during the display period of each frame, and the brightness of the light source can change instantaneously between two adjacent frames. This requires that the power drive of the light source has a fast response speed, that is, the response time of the power drive of the light source is required to be much shorter than the display time of one image frame.
  • the response time of the power supply of the light source may be slightly shorter than the display time of one image frame, or even greater than the display time of one image frame, that is, the response time of the power supply of the light source cannot meet the requirements of far less than one image frame. Show time requirements.
  • the present application proposes a solution to determine the final grayscale signal sent to the optical switch according to the change law of the brightness of the light source, so as to solve the problem of abnormal display grayscale that may be caused by the change of current in a frame over time.
  • the solution of determining the final grayscale signal sent to the optical switch according to the change rule of the brightness of the light source reference may be made to the following display method implementations.
  • FIG. 3 is a schematic flowchart of an embodiment of the display method of the present application.
  • the display method of this embodiment includes the following steps.
  • S110 Determine the maximum light source brightness, the initial light source brightness in the current frame, and the maximum initial grayscale signal in the current frame.
  • the initial light source brightness in the current frame refers to the illumination brightness of the light source at the display start time of the current frame, which is also equivalent to the illumination brightness of the light source at the display end time of the previous frame image.
  • the maximum light source brightness refers to the maximum value that the illumination brightness of the light source can reach.
  • the maximum initial grayscale signal in the current frame refers to the maximum value among the initial grayscale signals of all pixel points in the current frame.
  • S120 Determine the brightness of the target light source in the current frame by the product of the maximum light source brightness and the maximum initial grayscale signal in the current frame.
  • the product of the maximum light source brightness and the maximum initial grayscale signal in the current frame may be directly used as the target light source brightness in the current frame.
  • the brightness of the light source is divided into M levels, and the brightness of the light source is adjusted step by step, where M is a positive integer.
  • the light source brightness can be divided into unequal steps, or can be divided into equal steps. It can be understood that, in order to ensure that the brightness of an integer number of light sources is adjusted every frame, the change time of the brightness of two adjacent light sources may be shorter than the duration of each frame. In addition, because the duration of each frame is inversely proportional to the frame rate, the number of stages divided by the brightness of the light source can also be dynamically adjusted according to the frame rate.
  • the brightness of an integer-level light source may be adjusted every frame, and the step of determining the brightness of the target light source in the current frame by the product of the maximum light source brightness and the maximum initial grayscale signal in the current frame may include: first determining the maximum light source brightness and the current frame brightness.
  • the interval formed by the product of the maximum initial grayscale signal is located in the brightness of two adjacent light sources; the maximum or minimum value of this interval is taken as the target light source brightness.
  • the brightness of the light source can vary by multiple levels within a frame of display time, it may occur that the time from the initial brightness of the light source to change to the maximum or minimum value of the interval is longer than the duration of each frame.
  • the step of determining the brightness of the target light source in the current frame by the product of the brightness of the light source and the maximum initial grayscale signal in the current frame may include: first determining the brightness of two adjacent light sources where the product of the brightness of the maximum light source and the maximum initial grayscale signal in the current frame is located The interval formed; starting from the initial light source brightness, along the direction from the initial light source brightness to the maximum or minimum value of the interval, determine the maximum level light source brightness that the light source brightness can reach within each frame duration, and the maximum level light source brightness that can be achieved. Brightness as the target light source brightness.
  • the brightness of the first-level light source is adjusted at most in each frame
  • the step of determining the brightness of the target light source in the current frame by the product of the maximum light source brightness and the maximum initial grayscale signal in the current frame may include: first determining the maximum light source brightness and the maximum light source brightness in the current frame.
  • the initial light source brightness is compared with the maximum value of the interval to determine the target light source brightness level, because this can be more in line with the actual situation, and there is no difference between the actual display brightness of each pixel and the expected display brightness. or only a small difference.
  • S130 Based on the initial light source brightness and the target light source brightness, select a part of the global brightness variation law to generate the light source brightness variation law in the current frame.
  • the global brightness change law includes the law that the brightness of the light source changes from the maximum light source brightness to the minimum light source brightness, and also includes the law that the light source brightness changes from the minimum light source brightness to the maximum light source brightness.
  • the minimum light source brightness is the minimum value that can be achieved by the illumination light brightness.
  • the law of changing from the initial light source brightness to the target light source brightness can be selected from the global brightness change law, and the light source brightness change law can be generated from the law of changing from the initial light source brightness to the target light source brightness. It can be understood that, when the brightness of the initial light source and the brightness of the target light source are equal, the law of changing from the brightness of the initial light source to the brightness of the target light source is the brightness point of the initial light source.
  • the law of changing from the initial light source brightness to the target light source brightness can be directly used as a part of the light source brightness change law in the current frame.
  • the light source brightness of the remaining part of the light source brightness variation law in the frame is equal to the target light source brightness and/or the initial light source brightness.
  • the law of changing from the initial light source brightness to the target light source brightness can be directly selected as the light source brightness change law in the current frame.
  • the global brightness change law when the time from the initial light source brightness to the target light source brightness is greater than the duration of each frame, the law that the initial light source brightness changes along the direction of the target light source brightness change for each frame duration is taken as the current frame light source brightness change law.
  • the duration from the initial light source brightness L m0 to the target light source brightness L t is 20ms, which is longer than the 16.7ms duration of each frame. Therefore, the global brightness change rule shown in FIG. 6(A) is taken from the initial The law that the brightness of the light source changes in the direction of the change of the brightness of the target light source for the duration of each frame is taken as the changing law of the brightness of the light source shown in FIG. 6(B).
  • S140 Determine the final grayscale signal of each pixel in the current frame based on the change rule of the brightness of the light source and the initial grayscale signal of each pixel in the current frame.
  • the final gray level signal of each pixel point in the current frame can be determined based on the change rule of the light source brightness and the initial gray level signal of each pixel point in the current frame.
  • Determining the final grayscale signal of each pixel in the current frame based on the change rule of the brightness of the light source and the initial grayscale signal of each pixel in the current frame may include: combining various grayscale signals and the change law of the brightness of the light source to obtain multiple grayscale signals.
  • the actual display brightness corresponding to the grayscale signal may include: combining various grayscale signals and the change law of the brightness of the light source to obtain multiple grayscale signals.
  • the grayscale signal corresponding to the actual display brightness that matches the expected display brightness of each pixel is used as the final grayscale signal of each pixel in the current frame.
  • the actual display brightness corresponding to all the grayscale signals can be obtained by combining all the grayscale signals with the light source brightness variation law. Because the actual display brightness corresponding to a grayscale signal of 0 must be 0, the above-mentioned "all grayscale signals" may be all grayscale signals except 0. In an implementation scenario, if the current frame is displayed with a bit depth of n, all grayscale signals except 0 include There are 2 n -1 grayscale signals in total.
  • each grayscale signal can only correspond to one DMD inversion sequence.
  • the grayscale signal (100) corresponds to the inversion sequence of (1000000)
  • the grayscale signal (010) corresponds to the inversion timing (0110000).
  • a grayscale signal can also correspond to the inversion timing of multiple DMDs, but when combining the grayscale signal with the light source brightness variation law to determine the actual display brightness corresponding to the grayscale signal, each grayscale signal should be The inversion timing of each DMD corresponding to the signal is combined with the light source brightness variation law to determine the actual display brightness of the inversion timing of each DMD corresponding to each grayscale signal, so that the expected display brightness of each pixel corresponds to each grayscale signal.
  • the final grayscale signal and the final inversion timing of each pixel can be determined, which can be controlled more precisely.
  • the time scale integration may be performed according to the time information of the various grayscale signals on the change rule of the brightness of the light source, so as to obtain the actual display brightness corresponding to the various grayscale signals.
  • the display bit depth is n
  • the change rule of the brightness of the light source is
  • the grayscale signal is s(t i )
  • the duration of the DMD display LSB is a constant value That is, the duration between t i and time t i+1 is Among them, T refers to the duration of each frame. It is understandable that in the actual process, in order to increase the bit depth, the duration from t i to time t i+1 can also be set to be unequal. You need to replace the corresponding duration.
  • the grayscale signal corresponding to the actual display brightness that matches the expected display brightness of each pixel in the current frame is used as the expected display brightness and the actual display brightness in the final grayscale signal of each pixel in the current frame.
  • Brightness matching means that the expected display brightness is equal to the actual display brightness. For example, if the actual display brightness corresponding to the grayscale signal (010) is 0.7cd/m 2 , and the expected display brightness corresponding to the initial grayscale signal (100) of a pixel in the current frame is also 0.7cd/m 2 , then The expected display brightness of the initial grayscale signal (100) matches the actual display brightness corresponding to the grayscale signal (010), and thus the final grayscale signal (010) corresponding to the initial grayscale signal (100).
  • this application scenario can be applied to the situation where the brightness of the light source needs to be reduced, so that the expected display brightness of each pixel in the current frame can be guaranteed to be equal to the actual display brightness.
  • matching the expected display brightness with the actual display brightness means that the ratio of the actual display brightness to the expected display brightness is the first value.
  • the first value is 0.7
  • the expected display brightness of the initial grayscale signal (110) matches the actual display brightness corresponding to the grayscale signal (101), so that the final display brightness corresponding to the initial grayscale signal (110)
  • the grayscale signal is (101).
  • the first value can be adjusted according to the initial grayscale signal of each frame.
  • the first value can be equal to the ratio of the actual display brightness corresponding to the grayscale signal of 1 and the expected display brightness of the initial grayscale signal of 1.
  • the first value may be preset.
  • this application scenario can be applied to the situation where the brightness of the light source needs to be increased, because the current cannot be increased instantaneously, so the highest achievable brightness in the current frame according to the change rule of the brightness of the light source may be less than the expected display brightness of some grayscale signals. It can be considered to reduce the expected display brightness of all pixels in the current frame proportionally.
  • the difference between the expected display brightness and the actual display brightness is a second value, that is, the expected display brightness matches the actual display brightness.
  • the second value can be adjusted according to the initial grayscale signal of each frame.
  • the second value can be equal to the difference between the expected display brightness when the initial grayscale signal is 1 and the actual display brightness corresponding to the grayscale signal of 1. .
  • the second value can be preset.
  • this application scenario can be applied to the situation where the brightness of the light source needs to be increased, because the current cannot be increased instantaneously, so the maximum achievable brightness may be lower than the expected display brightness of some grayscale signals.
  • the brightness of all pixels in the current frame can be The display brightness is expected to decrease by a fixed value at the same time.
  • the method for matching the expected display brightness with the actual display brightness is not limited to the above three implementations.
  • the actual display brightness can be arranged in order from low to high, and the sorted actual display brightness corresponds to the grayscale signals from small to large.
  • the final display brightness of each pixel in the current frame From the corresponding relationship between the actual display brightness and the grayscale signal. Display brightness, which is convenient to determine the corresponding relationship between the initial grayscale signal and the final grayscale signal of each pixel.
  • the step of determining the final grayscale signal of each pixel point in the current frame by the initial grayscale signal of the pixel point includes: taking the ratio of the maximum light source brightness and the initial light source brightness as the first ratio, and the initial light source of each pixel point in the current frame.
  • the product of the luminance and the first ratio is the final grayscale signal of each pixel in the current frame.
  • S150 Display the current frame based on the final grayscale signal of each pixel in the current frame.
  • the step of displaying the current frame includes: controlling the mirror for displaying the gray scale to turn over according to the final gray scale signal of each pixel in the current frame.
  • the step of displaying the current frame further includes: controlling the brightness of the illumination light to change from the brightness of the initial light source to the brightness of the target light source.
  • the difference between the brightness level of the target light source and the brightness level of the initial light source is an integer.
  • the difference between the level of the brightness of the target light source and the level of the brightness of the initial light source is 1 or 0.
  • the application first determines the brightness change rule of the light source in the current frame based on the initial brightness of the light source and the determined brightness of the target light source, and then determines the brightness of each light source in the current frame based on the determined change rule of the brightness of the light source.
  • the final grayscale signal of the pixel point enables the lighting system to reduce the traditional Global Dimming’s requirement for a faster response speed of the light source, and at the same time, it can also have the advantages of contrast improvement and power saving brought by the use of Global Dimming to adjust the light source. The most important thing Yes, it can compensate for the difference in display brightness that may be caused by the current changing with time in one frame, thereby solving the problem of abnormal display brightness.
  • Another embodiment that can achieve the above effect is to first determine the grayscale mapping relationship table based on the global brightness variation law, and then only need to search the grayscale mapping relationship table to determine the final grayscale signal of each pixel in the current frame.
  • the display method of this embodiment specifically includes the following steps.
  • S210 Determine the maximum light source brightness, the initial light source brightness in the current frame, and the maximum initial grayscale signal in the current frame.
  • S220 Determine the brightness of the target light source in the current frame by the product of the maximum light source brightness and the maximum initial grayscale signal in the current frame.
  • S230 Based on the initial light source brightness, the target light source brightness, and the initial grayscale signal of each pixel in the current frame, determine the final grayscale signal of each pixel in the current frame by searching the grayscale mapping table.
  • the grayscale mapping relationship table stores the corresponding relationship between the initial grayscale signal and the final grayscale signal when the brightness of the initial light source changes to the brightness of the target light source. Therefore, based on the brightness of the initial light source, the brightness of the target light source and the initial grayscale signal of each pixel in the current frame, the final grayscale signal of each pixel in the current frame can be determined by looking up the grayscale mapping table. When framing images, it is enough to directly look up the grayscale mapping relation table, which saves computing time and can display each frame of images faster.
  • step S230 includes: determining a grayscale mapping relationship table according to a global brightness change rule.
  • the grayscale mapping relationship table is determined according to the global brightness variation law, including: determining various adjustment conditions of the light source brightness; selecting parts from the global brightness variation law based on the initial light source brightness and target light source brightness of each adjustment situation to generate each adjustment Determine the final grayscale signal corresponding to all feasible initial grayscale signals based on the light source brightness change law; save the correspondence between all feasible initial grayscale signals and final grayscale signals in each adjustment situation into the grayscale mapping table.
  • the determination of a plurality of light source luminance adjusting case is to determine the plurality of light source luminance changes, for example, a variety of light source brightness adjustment of the light source luminance includes a case 1, the light source luminance becomes changed from l 0 to l 1 l of to l 2, l 2 from the light source luminance becomes to l 3, whil, from the light source luminance becomes to l n l n + 1 number of situations like.
  • all adjustment conditions of the brightness of the light source should be determined.
  • the brightness of the light source can be divided into M levels. If the brightness of multi-level light sources can be adjusted in one frame, the brightness of the light source can have M 2 -M changes. The brightness is divided into levels, which restricts the brightness of the light source to be adjusted only between a limited number of light source brightness levels, so that the types of light source brightness adjustment of the light source are limited, which can reduce the uncertainty of the brightness change of the light source, and then summarize the brightness adjustment of all light sources.
  • the corresponding relationship of the lower grayscale signals, so that the final grayscale information can be determined based on the previously determined corresponding relationship of the grayscale signals during the display process.
  • the brightness of the first-level light source is adjusted at most in one frame, so that the brightness of the light source can have 2M-2 changes.
  • step S130 which is not done here.
  • step S140 For the specific content of the step of determining the final grayscale signal corresponding to all feasible initial grayscale signals based on the change rule of the brightness of the light source, reference may be made to step S140, which will not be repeated here.
  • all feasible initial grayscale signals may refer to all initial grayscale signals, that is, when the bit depth is n, all feasible initial grayscale signals include And so on 2 n -1 kinds of grayscale signals.
  • all feasible initial grayscale signals may refer to all achievable initial grayscale signals, because the brightness of the light source in some frames needs to be reduced to the brightness of the target light source, and the brightness of the target light source in this part of the frame is less than the maximum brightness of the light source , it means that the maximum initial grayscale signal of this part of the frame is less than the ratio of the brightness of the target light source to the maximum brightness of the light source. Therefore, the initial grayscale signal smaller than the ratio of the target light source brightness to the maximum light source brightness is an achievable initial grayscale signal, that is, a feasible initial grayscale signal, which reduces the number of initial grayscale signals that need to be calculated, thereby reducing the number of initial grayscale signals that need to be calculated.
  • an initial grayscale signal smaller than the ratio of the initial light source brightness to the maximum light source brightness can also be used as a feasible initial grayscale signal, wherein the ratio of the initial light source brightness to the maximum light source brightness can be used as the second ratio.
  • the ratio of the initial grayscale signal to the final grayscale signal can also be used as the amplification factor corresponding to the initial grayscale signal, and the amplification factor corresponding to the initial grayscale signal is also stored in the grayscale mapping relationship table.
  • the maximum feasible display brightness for each adjustment case where the maximum feasible display brightness for each adjustment It refers to the highest brightness that can be achieved when the DMD is in the On state in one frame.
  • the ratio of the actual display brightness corresponding to the initial grayscale signal to the maximum feasible display brightness can be stored in the grayscale mapping relationship table, and the ratio of the feasible maximum display brightness to the maximum light source brightness in each adjustment situation can also be stored in the grayscale. degree mapping table.
  • the actual display brightness corresponding to the initial grayscale signal In order to calculate the actual display brightness corresponding to the initial grayscale signal by the ratio of the feasible maximum display brightness to the maximum light source brightness, and the ratio of the actual display brightness corresponding to the initial grayscale signal to the feasible maximum display brightness, by looking up the grayscale mapping table The actual display brightness of each initial grayscale signal can be determined.
  • the actual display brightness corresponding to the initial grayscale signal in each adjustment situation can also be directly stored in the grayscale mapping relationship table, so that the actual display brightness of each initial grayscale signal in each adjustment situation can be obtained by direct search. .
  • S240 Display the current frame based on the final grayscale signal of each pixel in the current frame.
  • Example 1 is used to illustrate the relevant content of the grayscale mapping relationship table in the second embodiment of the display method.
  • the range of the driving current of the light source from the adjustable minimum value to the adjustable maximum value is divided into M levels, and the corresponding current values are I 1 , I 2 , ..., IM respectively , so that the corresponding light source of the spatial light modulator
  • the brightness is also M-level, that is, the corresponding light source brightness is L 1 , L 2 , ..., L M , respectively .
  • the current Im-1 increases changes to Im
  • the current Im+1 decreases I m to change, i.e., the current value I m may be stabilized in accordance with the determined waveform change.
  • the target in this frame is The light source brightness is set as L m .
  • L m the brightness of the stable light source actually realized in the previous frame
  • L m0 the initial brightness of the light source in one frame
  • the grayscale amplification factor since the flipping sequence of the DMD is determined, there must be a certain It can be defined as the grayscale amplification factor; on the other hand, since the brightness of the light source also changes when the current changes, different initial grayscale signals G need to correspond to different grayscale amplification factors, so that different initial grayscale signals and different grayscales The amplification factor is more matched, which in turn makes the final grayscale signal, which can be determined by the initial grayscale signal and the grayscale amplification factor, more accurate, so that the expected display brightness of different initial grayscale signals can match the actual display brightness of the final grayscale signal. , in order to solve the problem of abnormal display gray scales that may be caused by changes in the brightness of the light source caused by changes in current within a frame. written in vector form.
  • the calculation process is as follows: First, the mirrors of the DMD are all in the On state within one frame of display time, and the maximum brightness that can be achieved at the back end of the DMD is Then, the actual display brightness generated by the combination of 2n -1 different grayscale signals G and the light source brightness change law is sorted in order from low to high, and new 2n -1 grayscale signals are obtained and defined as G '. According to the mapping principle, each G corresponds to a G', so that the gray scale magnification factor can be defined It is actually a grayscale mapping relationship, and a collection of multiple grayscale mapping relationships can form a grayscale mapping relationship table.
  • the gray scale mapping relationship table contains the following three types of information: a correspondence relationship sequence value Ind G (1) the initial value of the gradation sequence signal and a gradation signal of the final Ind G ', a total of (M + 1) 2 n th Corresponding relationship; (2) Actual display brightness and feasible maximum display brightness The ratio value of , a total of (M+1)2 n values; (3) the maximum feasible display brightness The ratio value to the maximum light source brightness L M , a total of (M+1) values.
  • the gray scale magnification factor in the case of m 0 ⁇ m can be defined as
  • the solution of this embodiment summarizes the grayscale mapping relationship under all feasible adjustment conditions through the grayscale mapping relationship table, so that in the actual display process, the final grayscale mapping relationship of each pixel in each frame can be directly determined according to the stored grayscale mapping relationship.
  • Grayscale signal so that the actual display brightness corresponding to the final grayscale signal of each pixel matches the expected display brightness corresponding to the initial grayscale signal of each pixel, and can reduce the traditional Global Dimming response to light sources faster It can also compensate for the abnormal display brightness problem that may be caused by the current change with time in one frame.
  • This embodiment mainly introduces how to obtain the grayscale mapping relationship table specifically, so as to determine the final grayscale signal of each pixel in each frame.
  • the brightness variation rule of the light source within a frame can be directly integrated according to the binary grayscale number to determine the actual display brightness corresponding to each grayscale signal. Understandably, in order to avoid flickering when using binary grayscale numbers for grayscale adjustment, it is considered to split the binary grayscale numbers so that all bit planes except bit plane 0 display at least two LSBs to avoid Brightness changes between frames.
  • the following example illustrates the corresponding relationship between the brightness of the grayscale signal with a bit depth of 3 and the timing of DMD flip.
  • the n-1th bit plane will be split into 2 n- 2 LSBs, then each LSB of each bit plane will be evenly distributed in the DMD flip timing.
  • This embodiment introduces a method for obtaining a grayscale mapping relationship table in a special case.
  • the present application applies the above-mentioned display method to the display device shown in FIG. 16 .
  • the display device 10 of the present application may include a memory 11 and a processor 12 .
  • a computer program is stored in the memory 11 .
  • the processor 12 is used for executing the computer program to realize the steps of the above display method.
  • the display device 10 may further include a light source 13 and a digital micro-mirror 14 .
  • the light source 13 is used for emitting illumination light under the driving of the light source power supply.
  • the digital micro-mirror 14 is used to modulate the illumination light to obtain modulated light required for displaying images.
  • the processor 12 is coupled to the light source 13 and the digital micro mirror 14 .
  • the processor 12 may be configured to determine the brightness of the target light source in the current frame, and determine the final grayscale signal of each pixel in the current frame based on the initial brightness of the light source in the current frame, the brightness of the target light source and the initial grayscale signal of each pixel in the current frame .
  • the processor 12 can also adjust the driving current of the light source 13 based on the brightness of the target light source in the current frame to adjust the brightness of the illumination light in the current frame;
  • the intensity signal modulates the adjusted illumination light to obtain the modulated light required to display each pixel in the current frame.
  • the processor 12 may include an image analysis processing unit 121 and a DMD identifiable decoder 122 .
  • the image analysis processing unit 121 is coupled to the memory 11 .
  • the image analysis processing unit 121 is used to determine the target lighting brightness in the current frame and the final grayscale signal of each pixel, and transmit the determined target lighting brightness in the current frame to the digital micromirror 14 through the DMD identifiable decoder 122,
  • the digital micro-mirror 14 can modulate the adjusted illumination light based on the final grayscale signal of each pixel in the current frame.
  • the image analysis and processing unit 121 can also be configured to adjust the current of the light source power supply based on the brightness of the target light source in the current frame to adjust the brightness of the illumination light in the current frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示方法包括:确定最大光源亮度、当前帧内初始光源亮度和当前帧内最大初始灰度信号;以最大光源亮度和最大初始灰度信号的乘积确定当前帧内目标光源亮度;基于初始光源亮度和目标光源亮度,选取全局亮度变化规律的一部分以生成当前帧内光源亮度变化规律,基于光源亮度变化规律和当前帧内每一像素点的初始灰度信号确定当前帧内每一像素点的最终灰度信号;或基于初始光源亮度、目标光源亮度和当前帧内每一像素点的初始灰度信号通过查找灰度映射关系表,确定当前帧内每一像素点的最终灰度信号;基于当前帧内每一像素点的最终灰度信号,显示当前帧。该方法补偿一帧中电流随时间变化可能带来的显示亮度异常。还提供了一种显示装置,包括存储器和处理器,处理器用于执行显示方法。

Description

显示方法及其相关装置 技术领域
本申请涉及显示技术领域,特别是涉及显示方法及其相关装置。
背景技术
现有技术中,在一帧中待显示图像的最大亮度小于投影系统最大可显示亮度时,可以通过减弱空间光调制器的亮度的同时提高DMD显示的灰阶亮度的方式,保证显示屏上显示的每个像素的对应显示亮度保持不变。
然而,在实际的使用过程中,除非特别设计,一般使用的电源的响应速度并不能满足帧间快速调节的要求,尤其是在使用高亮度光源时,其具有几十颗甚至几百颗数目的激光器,电源输出的总功率高达上千瓦。在实际使用的高亮度光源的电源设计中,有些情况下,电源的响应速度大于50ms,大于60Hz视频信号单帧时长16.7ms,从而导致由于一帧中电流随时间变化而带来的显示亮度异常问题。
发明内容
本申请提供显示方法及其相关装置,可以补偿一帧中电流随时间变化可能带来的显示亮度异常问题。
为达到上述目的,本申请提供一种显示方法,该方法包括:
确定最大光源亮度、当前帧内初始光源亮度和当前帧内最大初始灰度信号;
以最大光源亮度和当前帧内最大初始灰度信号的乘积确定当前帧内目标光源亮度;
基于初始光源亮度和目标光源亮度,选取全局亮度变化规律的一部分以生成当前帧内光源亮度变化规律,基于光源亮度变化规律和当前帧内每一像素点的初始灰度信号确定当前帧内每一像素点的最终灰度信 号;或,
基于初始光源亮度、目标光源亮度和当前帧内每一像素点的初始灰度信号通过查找灰度映射关系表,确定当前帧内每一像素点的最终灰度信号,其中,灰度映射关系表是根据全局亮度变化规律确定的;
基于当前帧内每一像素点的最终灰度信号,显示当前帧。
其中,基于光源亮度变化规律和当前帧内每一像素点的初始灰度信号确定当前帧内每一像素点的最终灰度信号,包括:
在初始光源亮度与目标光源亮度不同时,将多种灰度信号和光源亮度变化规律结合得到多种灰度信号对应的实际显示亮度;将当前帧内每一像素点的初始灰度信号和最大光源亮度的乘积作为当前帧内每一像素点的预计显示亮度,将与当前帧内每一像素点的预计显示亮度匹配的实际显示亮度对应的灰度信号作为当前帧内每一像素点的最终灰度信号;或,
在初始光源亮度与目标光源亮度相等时,将最大光源亮度和初始光源亮度的比值作为第一比值,当前帧内每一像素点的初始光源亮度和第一比值的乘积即为当前帧内每一像素点的最终灰度信号。
其中,光源亮度被分为M级,显示当前帧,包括:
显示当前帧的过程中,调节一级光源亮度,或不对光源亮度进行调节,以使光源亮度只在M级光源亮度之间调节,进而降低光源亮度变化的不确定性。
光源的驱动电流被分为M级,调节一级光源亮度,包括:
显示当前帧的过程中,调节一级驱动电流,以调节一级光源亮度。
其中,以最大光源亮度和当前帧内最大初始灰度信号的乘积确定当前帧内目标光源亮度,包括:
计算当前帧内最大初始灰度信号和最大光源亮度的乘积;
确定乘积处于的相邻两级光源亮度构成的区间;
在初始光源亮度大于区间的最大值时,减小一级所述初始光源亮度的级别以得到目标光源亮度的级别;或,
增加一级所述初始光源亮度的级别以得到所述目标光源亮度的级 别;或,
在初始光源亮度与区间的最大值时,目标光源亮度等于初始光源亮度。
其中,基于初始光源亮度、目标光源亮度和当前帧内每一像素点的初始灰度信号,通过查找灰度映射关系表确定当前帧内每一像素点的最终灰度信号,之前包括:
确定光源亮度的多种调节情况;
基于每种调节情况的初始光源亮度和目标光源亮度确定每种调节情况的光源亮度变化规律;
基于光源亮度变化规律确定所有可行的初始灰度信号对应的最终灰度信号;
将每种调节情况下的所有可行的初始灰度信号与最终灰度信号的对应关系保存到灰度映射关系表中。
其中,显示方法还包括:
基于光源亮度变化规律确定每种调节情况下的可行最大显示亮度;
计算每种调节情况下可行最大显示亮度与最大光源亮度的比值,
将比值保存到灰度映射关系表中。
其中,在目标光源亮度比初始光源亮度小的调节情况中,比第二比值小的初始灰度信号为可行的初始灰度信号,其中,第二比值为初始光源亮度和最大光源亮度的比值。
为达到上述目的,本申请提供一种显示装置,该显示装置包括存储器和处理器;存储器中存储有计算机程序,处理器用于执行计算机程序以实现上述方法的步骤。
其中,显示装置还包括:与处理器耦接的光源和数字微反射镜,
光源用于发射照明光;
数字微反射镜用于调制照明光,得到显示图像所需的被调制光;
处理器用于确定当前帧内目标光源亮度,基于当前帧内初始光源亮度、目标光源亮度和当前帧内每一像素点的初始灰度信号确定当前帧内每一像素点的最终灰度信号,基于目标光源亮度调节光源的驱动电流而 调整当前帧内照明光的亮度;以及数字微反射镜用于基于当前帧内每一像素点的最终灰度信号调制经过调整的照明光,得到显示当前帧内每一像素点所需的被调制光。
本申请考虑到光源亮度不能瞬间切换,先基于初始光源亮度和确定的目标光源亮度确定当前帧内光源亮度变化规律,继而基于确定的光源亮度变化规律确定当前帧内每一像素点的最终灰度信号,使得可以降低传统Global Dimming对光源响应速度较快的要求,同时又能够部分实现因采用Global Dimming光源调节带来的对比度提高及节省电能的优点,可以补偿一帧中电流随时间变化可能带来的显示亮度异常问题。可以实现上述效果的另一个方案是先以全局亮度变化规律确定灰度映射关系表,继而只需要查找灰度映射关系表就可以确定当前帧内每一像素点的最终灰度信号。
附图说明
为了更清楚地说明本申请实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请中不同位深的图像的对比示意图;
图2是本申请Global Dimming显示方法的示意图;
图3是本申请显示方法一实施方式的流程示意图;
图4是本申请显示方法中确定光源亮度变化规律一实现方式的流程示意图;
图5是本申请显示方法中确定光源亮度变化规律另一实现方式的流程示意图;
图6是本申请显示方法中确定光源亮度变化规律又一实现方式的流程示意图;
图7是本申请显示方法中计算实际显示亮度的示意图;
图8是本申请显示方法另一实施方式的流程示意图;
图9是本申请显示方法第二实施例中一帧内光源亮度的变化示意图;
图10是本申请显示方法第二实施例中DMD灰度为1/2时DMD翻转时序/显示亮度示意图;
图11是本申请显示方法第二实施例中按照DMD时序对亮度变化积分示意图;
图12是本申请显示方法第二实施例中排序之后亮度映射示意图;
图13是本申请显示方法第三实施例中电流/亮度变化示意图;
图14是本申请显示方法第三实施例中按照DMD时序对亮度变化积分示意图;
图15是本申请显示方法第三实施例中排序之后的亮度映射示意图;
图16是本申请显示装置一实施例的结构示意图;
图17是本申请显示装置另一实施例的结构示意图。
具体实施方式
为使本领域的技术人员更好地理解本申请的技术方案,下面结合附图和具体实施方式对本申请所提供的显示方法及其相关装置做进一步详细描述。
本文中的“帧”是指影像动画中最小单位的单幅影像画面,相当于电影胶片上的每一格镜头。一帧就是一副静止的画面,连续的帧就形成动画,如电视图像等。通常所说的帧数,简单地说,就是在1秒钟时间里传输的图片的帧数,也可以理解为图形处理器每秒钟能够刷新的次数,通常用fps(Frames Per Second)表示。每一帧都是静止的图像,快速连续地显示帧便形成了运动的假象。高的帧率可以得到更流畅、更逼真的动画。每秒钟帧数(fps)愈多,所显示的动作就会愈流畅。其中,一帧图像由若干个像素点组成。一帧图像中每个像素点显示的像素值与该像素点的灰度信号和光源的光源亮度相关,而光源亮度直接受到光源电源驱动的电流的影响。
本文中的“位深”是指表示灰度图像中某个像素点的灰度信号时所需要的位数。位深越大,即所需要的位数越多,相邻灰度信号之间的差别越小,对模拟信息的数值化采样越不明显,图像中灰度信号的过渡越自 然顺滑。如图1所示,位深为1的灰度图像中,像素点只有2(2 1)种状态,即亮和暗;而位深为8的图像中,像素点可以有256(2 8)种灰度状态,即
Figure PCTCN2021106683-appb-000001
其中,I m为灰度图像中像素点能够显示的最大亮度。
本文中的“最低有效位LSB(least significant bit)”是对应显示过程中相邻两个灰阶信号之间的灰度差别,对于位深为n的灰度信号,LSB对应的显示亮度为I m/2 n
本文中的“初始光源亮度”是指当前帧的显示起始时间点的光源照射的亮度。
本文中的“目标光源亮度”是指在当前帧的显示时间段内,光源照射的亮度需要达到的亮度值。
本申请公开一种显示装置,该显示装置通过控制光源亮度和当前帧内每一像素点的灰度信号,来显示当前帧。显示装置可以是DLP(数字光处理,digital light processing)投影显示系统,当然不限于此。
可选地,显示装置包括光源,可以通过调节光源的电流,实现光源的照射亮度的动态调节,进而可实现在当前帧显示时间内光源亮度从初始光源亮度至目标光源亮度的变换。
另外,显示装置还可以包括光开关。光开关可以是DMD(数字反射镜器件,digital micromirror device),当然不限于此。可以按照每一像素点的灰度信号控制该像素点对应的光开关的操作,以控制该像素点的灰度值。
具体地,在光开关为DMD时,可以通过控制光开关在一帧图像的显示时间段内处于“on”状态的时间比例,来控制其对应像素点的灰度值,即通过控制DMD的翻转时序来控制对应像素点的灰度值。
其中,显示方法可以是Global Dimming显示方法。具体地,如图2所示,在一帧图像帧中的初始灰度信号均小于最大灰度信号1时,可以通过图像分析处理单元将传递给光开关的信号进行整体的信号幅度变换,以使得最终灰度信号的最大值接近最大灰度信号1。假设原来像素点的初始灰度信号为G,在拉伸之后该像素点的最终灰度信号变为G’; 相应地,光源照射的亮度将由L变为L’,并且满足L*G=L′*G′。具体来讲,L’的选定原则是L*G max=L′*G′ max≤L′,选定的灰度放大系数为
Figure PCTCN2021106683-appb-000002
对于每个初始灰度信号为G的像素点,由图像处理单元传递给光开关的最终灰度信号G′=βG。但是在Global Dimming显示方法中,有一个很重要的假设,即在每一帧的显示时间段内光源亮度恒定,且光源亮度可以在相邻两帧之间瞬间变化。这要求光源的电源驱动具有很快的响应速度,即要求光源的电源驱动的响应时间远小于一帧图像帧的显示时间。但是实际使用过程中,光源的电源的响应时间可能略小于一帧图像帧的显示时间,甚至可能大于一帧图像帧的显示时间,即光源的电源的响应时间无法满足远小于一帧图像帧的显示时间的要求。
为了解决上述电源响应速度不足的情况,本申请提出依据光源亮度变化规律确定发送给光开关的最终灰度信号的方案,以解决一帧中电流随时间变化可能带来的显示灰阶异常问题。具体地,依据光源亮度变化规律确定发送给光开关的最终灰度信号的方案可参照下述显示方法的实施方式。
具体请参阅图3,图3是本申请显示方法一实施方式的流程示意图。本实施方式显示方法包括以下步骤。
S110:确定最大光源亮度、当前帧内初始光源亮度和当前帧内最大初始灰度信号。
其中,当前帧内初始光源亮度是指当前帧的显示起始时间的光源的照射亮度,也相当于前一帧图像的显示结束时间的光源的照射亮度。
最大光源亮度是指光源的照射亮度能够达到的最大值。
当前帧内最大初始灰度信号是指当前帧内所有像素点的初始灰度信号中的最大值。
S120:以最大光源亮度和当前帧内最大初始灰度信号的乘积确定当前帧内目标光源亮度。
在一实现方式中,可以直接将最大光源亮度和当前帧内最大初始灰度信号的乘积作为当前帧内目标光源亮度。
在另一实现方式中,光源亮度被分为M级,逐级调节光源亮度,其 中,M为正整数。光源亮度可以不等步长划分,或者可以等步长划分。可以理解的是,为了能够确保每帧调整整级数光源亮度,相邻两级光源亮度的变化时间可以比每帧时长少。另外,因为每帧时长与帧率呈反比,还可以根据帧率动态调节光源亮度划分的级数。
可选地,可以每帧调整整数级光源亮度,以最大光源亮度和当前帧内最大初始灰度信号的乘积确定当前帧内目标光源亮度的步骤,可以包括:先确定最大光源亮度和当前帧内最大初始灰度信号的乘积处于的相邻两级光源亮度构成的区间;将该区间的最大值或最小值作为目标光源亮度。进一步地,在光源亮度可以在一帧显示时间内变化多个级别的情况下,可能会出现从初始光源亮度变化至区间的最大值或最小值的时间比每帧时长长,基于此,以最大光源亮度和当前帧内最大初始灰度信号的乘积确定当前帧内目标光源亮度的步骤,可以包括:先确定最大光源亮度和当前帧内最大初始灰度信号的乘积处于的相邻两级光源亮度构成的区间;以初始光源亮度作为起点,沿着初始光源亮度到区间的最大值或最小值的方向,确定在每帧时长内光源亮度能够达到的最大级别光源亮度,将能够达到的最大级别光源亮度作为目标光源亮度。
优选地,每帧最多调整一级光源亮度,以最大光源亮度和当前帧内最大初始灰度信号的乘积确定当前帧内目标光源亮度的步骤,可以包括:先确定最大光源亮度和当前帧内最大初始灰度信号的乘积处于的相邻两级光源亮度构成的区间;在初始光源亮度大于区间的最大值/最小值时,减小一级所述初始光源亮度的级别以得到所述目标光源亮度的级别;或,在初始光源亮度小于区间的最大值/最小值时,增加一级所述初始光源亮度的级别以得到所述目标光源亮度的级别;或,在初始光源亮度与区间的最大值/最小值时,目标光源亮度等于初始光源亮度。更为优选的是,将初始光源亮度与区间的最大值进行比较以确定目标光源亮度的级别,因为这样可以更加符合实际情况,每一像素点的实际显示亮度和预计显示亮度之间不存在差异或仅有少量差异。
S130:基于初始光源亮度和目标光源亮度,选取全局亮度变化规律的一部分以生成当前帧内光源亮度变化规律。
可以理解的是,全局亮度变化规律包括光源亮度由最大光源亮度变化至最小光源亮度的规律,还包括光源亮度由最小光源亮度变化至最大光源亮度的规律。可以理解的是,最小光源亮度即为照明光亮度能够实现的最小值。
可以从全局亮度变化规律选取从初始光源亮度变化至目标光源亮度的规律,以从初始光源亮度变化至目标光源亮度的规律生成光源亮度变化规律。可以理解的是,在初始光源亮度和目标光源亮度相等时,从初始光源亮度变化至目标光源亮度的规律即为初始光源亮度点。
其中,全局亮度变化规律中从初始光源亮度变化至目标光源亮度的时间小于每帧时长时,可以直接将从初始光源亮度变化至目标光源亮度的规律作为当前帧内光源亮度变化规律的一部分,当前帧内光源亮度变化规律的剩余部分的光源亮度等于目标光源亮度和/或初始光源亮度。例如,如图4所示,从图4(A)的全局亮度变化规律中,选取初始光源亮度L m0变化至目标光源亮度L t的部分,并将初始光源亮度L m0变化至目标光源亮度L t的规律作为图4(B)所示的光源亮度变化规律的中间部分,图4(B)所示的光源亮度变化规律的前一部分的光源亮度等于初始光源亮度L m0,图4(B)所示的光源亮度变化规律的后一部分的光源亮度等于目标光源亮度L t。又例如,如图5所示,从图5(A)的全局亮度变化规律选取初始光源亮度L m0变化至目标光源亮度L t的部分,并将初始光源亮度L m0变化至目标光源亮度L t的规律作为图5(B)所示的光源亮度变化规律的前一部分,图5(B)所示的光源亮度变化规律的后一部分光源亮度均等于目标光源亮度。当然不限于此。
全局亮度变化规律中从初始光源亮度变化至目标光源亮度的时间等于每帧时长时,可以直接将从初始光源亮度变化至目标光源亮度的规律选作为当前帧内光源亮度变化规律。
全局亮度变化规律中从初始光源亮度变化至目标光源亮度的时间大于每帧时长时,将初始光源亮度沿着向目标光源亮度变化的方向变化每帧时长的规律作为当前帧内光源亮度变化规律。例如,如图6所示,初始光源亮度L m0变化至目标光源亮度L t的时长为20ms,比每帧时长 16.7ms长,因此,将图6(A)所示的全局亮度变化规律中初始光源亮度沿着向目标光源亮度变化的方向变化每帧时长的规律作为图6(B)所示的光源亮度变化规律。
S140:基于光源亮度变化规律和当前帧内每一像素点的初始灰度信号确定当前帧内每一像素点的最终灰度信号。
确定光源亮度变化规律后,可以基于光源亮度变化规律和当前帧内每一像素点的初始灰度信号确定当前帧内每一像素点的最终灰度信号。
基于光源亮度变化规律和当前帧内每一像素点的初始灰度信号确定当前帧内每一像素点的最终灰度信号,可以包括:可以将多种灰度信号和光源亮度变化规律结合得到多种灰度信号对应的实际显示亮度;然后计算每一像素点的初始灰度信号和最大光源亮度的乘积,并将该乘积作为当前帧内每一像素点的预计显示亮度;将与当前帧内每一像素点的预计显示亮度匹配的实际显示亮度对应的灰度信号作为当前帧内每一像素点的最终灰度信号。
其中,可以将所有灰度信号与光源亮度变化规律结合得到所有灰度信号对应的实际显示亮度。因为灰度信号为0对应的实际显示亮度必然为0,因此,上述“所有灰度信号”可以是除0以外的所有灰度信号。在一实现场景中,如果当前帧显示的位深为n,除0以外的所有灰度信号包括
Figure PCTCN2021106683-appb-000003
等共2 n-1种灰度信号。
另外,为了保证每一帧的物理显示亮度与预计显示亮度相符合,每一种灰度信号可以只对应一种DMD的翻转时序,例如灰度信号(100)对应着翻转时序为(1000000)、灰度信号(010)对应着翻转时序为(0110000)。
可以理解的是,一种灰度信号也可以对应着多种DMD的翻转时序,但是在将灰度信号与光源亮度变化规律结合确定灰度信号对应的实际显示亮度时,应当将每种灰度信号对应的各个DMD的翻转时序与光源亮度变化规律结合确定每种灰度信号对应的各个DMD的翻转时序的实际显示亮度,这样在将每一像素点的预计显示亮度与每种灰度信号对应的各个DMD的翻转时序的实际显示亮度匹配时,可以确定每一像素点 的最终灰度信号和最终翻转时序,可以做到更加精准地控制。
可选地,可以在光源亮度变化规律上按照多种灰度信号的时间信息进行时间尺度积分,以得到多种灰度信号对应的实际显示亮度。示例性地,如图7所示,显示位深为n,在光源亮度变化规律为
Figure PCTCN2021106683-appb-000004
时,灰度信号为s(t i),那灰度信号对应的实际显示亮度为
Figure PCTCN2021106683-appb-000005
其中s(t i)是从时间t i到时间t i+1之间的DMD的翻转状态:On状态时,
Figure PCTCN2021106683-appb-000006
Off状态时,s(t i)=0。值得注意的是,为便于表述,假设DMD显示LSB的时长为恒定值
Figure PCTCN2021106683-appb-000007
即t i到时间t i+1之间的时长为
Figure PCTCN2021106683-appb-000008
其中,T是指每帧时长,可以理解的,实际过程中,为了提高位深,也可以将t i到时间t i+1的时长设定为不等长情况,具体操作时,只需根据需要替换相应的时长即可。
在一应用场景中,将与当前帧内每一像素点的预计显示亮度匹配的实际显示亮度对应的灰度信号作为当前帧内每一像素点的最终灰度信号中的预计显示亮度与实际显示亮度匹配是指,预计显示亮度与实际显示亮度相等。例如,设灰度信号(010)对应的实际显示亮度为0.7cd/m 2,并且当前帧内一像素点的初始灰度信号(100)对应的预计显示亮度也为0.7cd/m 2,那初始灰度信号(100)的预计显示亮度与灰度信号(010)对应的实际显示亮度相匹配,从而初始灰度信号(100)对应的最终灰度信号(010)。优选地,该应用场景可以应用到光源亮度需要减小的情况中,这样可以保证当前帧内每一像素点的预计显示亮度与实际显示亮度相等。
在另一应用场景中,预计显示亮度与实际显示亮度匹配是指,实际显示亮度与预计显示亮度的比值为第一值。例如,设灰度信号(101)对应的实际显示亮度为1.3cd/m 2,第一值为0.7,并且当前帧内一像素点的初始灰度信号(110)对应的预计显示亮度为0.91cd/m 2,其中,0.91=1.3*0.7,即初始灰度信号(110)的预计显示亮度与灰度信号(101)对应的实际显示亮度相匹配,从而初始灰度信号(110)对应的最终灰度信号为(101)。第一值可以根据每一帧的初始灰度信号的情况自行调 节,例如,该第一值可以等于灰度信号为1对应的实际显示亮度与初始灰度信号为1的预计显示亮度的比值。或者该第一值可以预先设定。优选地,该应用场景可以应用到光源亮度需要增加的情况中,因为电流不能瞬间提高,从而按照光源亮度变化规律的当前帧内最高可实现亮度可能小于部分灰度信号的预计显示亮度,此时可以考虑将当前帧内所有像素点的预计显示亮度成比例下降。
在又一应用场景中,预计显示亮度与实际显示亮度的差值为第二值,即预计显示亮度与实际显示亮度匹配。第二值可以根据每一帧的初始灰度信号的情况自行调节,例如,该第二值可以等于初始灰度信号为1的预计显示亮度与灰度信号为1对应的实际显示亮度的差值。或者该第二值可以预先设定。优选地,该应用场景可以应用到光源亮度需要增加的情况中,因为电流不能瞬间提高,从而最高可实现亮度可能小于部分灰度信号的预计显示亮度,此时可以将当前帧内所有像素点的预计显示亮度同时减少一个固定值。
当然预计显示亮度与实际显示亮度匹配的方法不限于上面三种实现方式。
进一步地,在获得多种灰度信号对应的实际显示亮度后,可以按照实际显示亮度从低到高的顺序依次排列,将排序后的实际显示亮度与自小到大的灰度信号相对应,以得到实际显示亮度和灰度信号的对应关系,继而根据当前帧内每一像素点的预计显示亮度,从实际显示亮度和灰度信号的对应关系中查找到当前帧内每一像素点的最终显示亮度,这样方便确定每一像素点的初始灰度信号与最终灰度信号的对应关系。
另外,在初始光源亮度与目标光源亮度相等时,因为光源亮度变化规律中所有的光源亮度等于初始光源亮度,即当前帧内光源亮度是恒定的,所以基于光源亮度变化规律和当前帧内每一像素点的初始灰度信号确定当前帧内每一像素点的最终灰度信号的步骤,包括:将最大光源亮度和初始光源亮度的比值作为第一比值,当前帧内每一像素点的初始光源亮度和第一比值的乘积即为当前帧内每一像素点的最终灰度信号。
S150:基于当前帧内每一像素点的最终灰度信号,显示当前帧。
显示当前帧的步骤包括,按照当前帧内每一像素点的最终灰度信号控制显示灰阶的镜片进行翻转。
显示当前帧的步骤还包括,控制照明光亮度从初始光源亮度变化为目标光源亮度。可以理解的是,在光源亮度被划分为M级的方案中,目标光源亮度的级别和初始光源亮度的级别的差值为整数。优选地,目标光源亮度的级别和初始光源亮度的级别的差值为1或0。
在本实施方式中,本申请考虑到光源亮度不能瞬间切换,先基于初始光源亮度和确定的目标光源亮度确定当前帧内光源亮度变化规律,继而基于确定的光源亮度变化规律确定当前帧内每一像素点的最终灰度信号,使得照明系统可以降低传统Global Dimming对光源响应速度较快的要求,同时又能够兼具因采用Global Dimming调节光源带来的对比度提高及节省电能的优点,最重要的是,可以补偿一帧中由于电流随时间变化可能带来的显示亮度的差异,进而解决显示亮度异常的问题。
可以实现上述效果的另一个实施方式是先以全局亮度变化规律确定灰度映射关系表,继而只需要查找灰度映射关系表就可以确定当前帧内每一像素点的最终灰度信号。如图8所示,该实施方式显示方法具体包括以下步骤。
S210:确定最大光源亮度、当前帧内初始光源亮度和当前帧内最大初始灰度信号。
S220:以最大光源亮度和当前帧内最大初始灰度信号的乘积确定当前帧内目标光源亮度。
S230:基于初始光源亮度、目标光源亮度和当前帧内每一像素点的初始灰度信号,通过查找灰度映射关系表确定当前帧内每一像素点的最终灰度信号。
其中,可以理解的是,灰度映射关系表存储有从初始光源亮度变化至目标光源亮度时初始灰度信号和最终灰度信号的对应关系。从而可以基于初始光源亮度、目标光源亮度和当前帧内每一像素点的初始灰度信号,通过查找灰度映射关系表来确定当前帧内每一像素点的最终灰度信号,这样在显示每帧图像时,直接查找灰度映射关系表即可,节约计算 时间,可以更快地显示每帧图像。
可以理解的是,在步骤S230之前,包括:根据全局亮度变化规律确定灰度映射关系表。
其中,根据全局亮度变化规律确定灰度映射关系表,包括:确定光源亮度的多种调节情况;基于每种调节情况的初始光源亮度和目标光源亮度从全局亮度变化规律选取部分以生成每种调节情况的光源亮度变化规律;基于光源亮度变化规律确定所有可行的初始灰度信号对应的最终灰度信号;将每种调节情况下的所有可行的初始灰度信号与最终灰度信号的对应关系保存到灰度映射关系表中。
可以理解的是,确定光源亮度的多种调节情况是指确定光源亮度的多种变化情况,例如,光源亮度的多种调节情况包括光源亮度由l 0变至l 1、光源亮度由l 1变至l 2、光源亮度由l 2变至l 3、……、光源亮度由l n变至l n+1等多种情况。当然为了显示每帧图像前都能通过查找灰度映射关系表确定每帧所有像素点的最终灰度信号,应确定光源亮度的所有调节情况。
进一步地,为了方便罗列光源亮度的所有调节情况,可以将光源亮度划分为M级,如果一帧内可以调节多级光源亮度,那光源亮度可以有M 2-M种变化情况,这样通过对光源亮度划分级别,限定了光源亮度只在有限的多个光源亮度等级之间调节,使得光源的光源亮度调节的种类有限,这样可以降低光源亮度变化的不确定性,进而可以总结所有光源亮度调节情况下灰度信号的对应关系,使得显示过程中可以基于先前确定的灰度信号的对应关系确定最终灰度信息。另外,还需要考虑到有些光源亮度的变化情况需要耗费比每帧时长更多的时间,即在每帧内有些光源亮度的变化不能实现,所以光源亮度的所有调节情况小于或等于M 2-M种变化情况。更优选地,一帧内最多调节一级光源亮度,这样光源亮度可以有2M-2种变化情况。
可以理解的是,基于每种调节情况的初始光源亮度和目标光源亮度从全局亮度变化规律选取部分以生成每种调节情况的光源亮度变化规律的步骤的具体内容可参见步骤S130,在此不做赘述。基于光源亮度变 化规律确定所有可行的初始灰度信号对应的最终灰度信号的步骤的具体内容,可参见步骤S140,在此不做赘述。
确定每种调节情况下所有可行的初始灰度信号对应的最终灰度信号后,可以将每种调节情况下的所有可行的初始灰度信号与最终灰度信号的对应关系保存到灰度映射关系表中。其中,所有可行的初始灰度信号可以指所有初始灰度信号,即位深为n时,所有可行的初始灰度信号包括
Figure PCTCN2021106683-appb-000009
等2 n-1种灰度信号。在另一实现方式中,所有可行的初始灰度信号可以指可实现的所有初始灰度信号,因为部分帧的光源亮度需要降低至目标光源亮度,而这部分帧的目标光源亮度小于最大光源亮度时,说明这部分帧的最大初始灰度信号小于目标光源亮度与最大光源亮度的比值。从而比目标光源亮度与最大光源亮度的比值小的初始灰度信号是可实现的初始灰度信号,即可行的初始灰度信号,这样减少了需要计算的初始灰度信号的数量,进而减少了需要存储到灰度映射关系表的初始灰度信号和最终灰度信号的对应关系的数量。在又一实现方式中,也可将比初始光源亮度与最大光源亮度的比值小的初始灰度信号作为可行的初始灰度信号,其中,初始光源亮度与最大光源亮度的比值可以作为第二比值。
进一步地,还可以将初始灰度信号与最终灰度信号的比值作为初始灰度信号对应的放大系数,并将初始灰度信号对应的放大系数也保存到灰度映射关系表中。
可选地,还可以计算每种调节情况下的可行最大显示亮度
Figure PCTCN2021106683-appb-000010
其中,每种调节情况下的可行最大显示亮度
Figure PCTCN2021106683-appb-000011
是指:一帧内DMD全处于On状态,可以实现的最高亮度。即,
Figure PCTCN2021106683-appb-000012
Figure PCTCN2021106683-appb-000013
可以将初始灰度信号对应的实际显示亮度与可行最大显示亮度的比值保存到灰度映射关系表中,另外,还可以将每种调节情况下可行最大显示亮度与最大光源亮度的比值保存到灰度映射关系表中。以便通过可行最大显示亮度与最大光源亮度的比值,和初始灰度信号对应的实际显示亮度与可行最大显示亮度的比值计算出初始灰 度信号对应的实际显示亮度,这样通过查找灰度映射关系表就可以确定每一初始灰度信号的实际显示亮度。当然,也可以将每种调节情况下的初始灰度信号对应的实际显示亮度直接存储到灰度映射关系表中,以便直接查找就可以得到每种调节情况的各个初始灰度信号的实际显示亮度。
S240:基于当前帧内每一像素点的最终灰度信号,显示当前帧。
下面为更好说明本申请显示方法,基于以下显示方法具体实施例来示例性说明。其中,实施例1用来示例性说明显示方法第二实施方式中灰度映射关系表的相关内容。
实施例1
将光源的驱动电流由可调节最小值变为可调节最大值的范围分为M级,对应的电流值分别为I 1、I 2、……、I M,从而对应的空间光调制器的光源亮度也为M级,即对应的光源亮度分别为L 1、L 2、……、L M。相邻的电流级次之间的调节步长ΔI m=I m-I m-1,(m=2,3,…M)。在一帧的显示时间内,电流I m-1增加
Figure PCTCN2021106683-appb-000014
变至I m,或者电流I m+1减小
Figure PCTCN2021106683-appb-000015
变至I m,即电流可以按照确定的波形变化为稳定值I m
若一帧中所有像素点的灰度信号最大值G max满足L m-1<L M·G max≤L m,其中L M是显示装置可以实现的最大光源亮度,则将本帧中的目标光源亮度定为L m。假设前一帧实际实现的稳定光源亮度为L m0,即一帧的初始光源亮度为L m0,具体需要考虑下述三种情况。
(1)当m 0=m时,则电流I m0=I m,初始光源亮度与目标光源亮度均为L m,可以理解的是L m=L t。此时一帧显示时间内,电流不需要调节,光源亮度为恒定值。且一帧的灰度放大系数
Figure PCTCN2021106683-appb-000016
对于不同灰度信号G均采用同一个灰度放大系数,即
Figure PCTCN2021106683-appb-000017
(2)当m 0>m时,则电流I m0>I m,一帧内的初始光源亮度L m0大于目标光源亮度L m,其中,L m=L t。此时,在一帧显示时间内,需要将光源的驱动电流减小至I m,对应的光源亮度变化为
Figure PCTCN2021106683-appb-000018
因此一帧每一像素点的实际显示亮度记为
Figure PCTCN2021106683-appb-000019
同时,定义
Figure PCTCN2021106683-appb-000020
Figure PCTCN2021106683-appb-000021
值得一提的是,按照本申请的技术方案,一方面,在确定的设计方案中,由于DMD的翻转时序是确定的,因此,一定存在某个
Figure PCTCN2021106683-appb-000022
可以定义为灰度放大系数;另一方面,由于电流变化时的光源亮度也在随之变化,不同初始灰度信号G需要对应不同的灰度放大系数,使得不同初始灰度信号与不同灰度放大系数更匹配,进而让可以由初始灰度信号和灰度放大系数确定的最终灰度信号更加准确,从而让不同初始灰度信号的预计显示亮度能够与最终灰度信号的实际显示亮度相匹配,以解决一帧内电流变化导致光源亮度变化可能带来的显示灰阶异常的问题,故而,本申请优选的将
Figure PCTCN2021106683-appb-000023
写成向量形式。
Figure PCTCN2021106683-appb-000024
的计算过程如下所示:首先,在一帧显示时间内DMD的反射镜全部处于On状态,DMD后端可以实现的最高亮度为
Figure PCTCN2021106683-appb-000025
Figure PCTCN2021106683-appb-000026
然后,将2 n-1种不同的灰度信号G与光源亮度变化规律结合产生的实际显示亮度按照从低到高的顺序进行排序,得到新的2 n-1种灰度信号并定义为G’。依照映射原则,每个G都对应一个G’,从而可以定义灰度放大系数
Figure PCTCN2021106683-appb-000027
Figure PCTCN2021106683-appb-000028
实际是一种灰度映射关系,将多个灰度映射关系进行集合,可以构成灰度映射关系表。具体的,灰度映射关系表包含以下三种信息:(1)初始灰度信号的序列值Ind G与最终灰度信号的序列值Ind G’的对应关系,共(M+1)2 n个对应关系;(2)实际显示亮度与可行最大显示亮度
Figure PCTCN2021106683-appb-000029
的比例值,共(M+1)2 n个值;(3)可行最大显示亮度
Figure PCTCN2021106683-appb-000030
与最大光源亮度L M的比例值,共(M+1)个值。
可以理解的是,m 0=m的情况下的灰度映射关系也需要存储。只是相比于m 0>m情况下的灰度映射关系而言,m 0=m情况下的灰度映射关系比较特殊。因为在m 0=m时,不同的初始灰度信号G与其对应的最终灰度信号G′的比值相等,均为
Figure PCTCN2021106683-appb-000031
Figure PCTCN2021106683-appb-000032
即针对不同的初始灰度信号G,采用相同的亮度放大系数。另外,在m 0=m时,实际显示亮 度相比可行最大显示亮度
Figure PCTCN2021106683-appb-000033
的比例值为灰度G′;可行最大显示亮度L m0与L M的比例值即为
Figure PCTCN2021106683-appb-000034
(3)当m 0<m时,则电流I m0<I m,一帧内的初始光源亮度L m0小于目标光源亮度L m,其中,L m=L t。此时,在一帧显示时间内,需要将光源的驱动电流增大至I m,对应的光源亮度变化为
Figure PCTCN2021106683-appb-000035
因此一帧每一像素点的实际显示亮度可以记为
Figure PCTCN2021106683-appb-000036
相应的,定义
Figure PCTCN2021106683-appb-000037
但是对于m 0<m的情况可能会存在电流不能快速提高的问题,从而导致一帧的可行最大显示亮度比该帧的目标光源亮度小,即在m 0+1<m时,
Figure PCTCN2021106683-appb-000038
此时需要考虑暂时降低显示亮度的方案。另外,类似于(2)中的情形,m 0<m情况下的灰度放大系数可定义为
Figure PCTCN2021106683-appb-000039
根据以上的分析,需要解决的核心问题在于如何求得灰度放大系数
Figure PCTCN2021106683-appb-000040
使灰度放大系数可以满足
Figure PCTCN2021106683-appb-000041
其中,k为初始光源亮度对应的驱动电流的级别和目标光源亮度对应的驱动电流的级别的差值,k={0,-1,+1},m 0={1,2,…,M},
Figure PCTCN2021106683-appb-000042
另外,需要存储的最大的灰度映射关系的数目为3×M(2 n+2 n+1)。并且,在k=0时,所有的初始灰度信号G对应同一个灰度放大系数
Figure PCTCN2021106683-appb-000043
可以考虑减少灰度映射关系的存储数目,数目可以减少为2×M(2 n+2 n+1)+M。另外,对于k=-1的情形,
Figure PCTCN2021106683-appb-000044
说明电流需要降低,此时一帧显示时间内的最大灰度信号为
Figure PCTCN2021106683-appb-000045
即实际并不需要确认大于
Figure PCTCN2021106683-appb-000046
的初始灰度信号的灰度映射关系,此时可以减少需要存储的灰度映射关系的数目。
本实施例方案通过灰度映射关系表总结所有可行的调节情况下的灰度映射关系,从而在实际显示过程中,可以直接依据存储的灰度映射关系确定每一帧中每一像素点的最终灰度信号,从而让每一像素点的最终灰度信号对应的实际显示亮度与每一像素点的初始灰度信号对应的 预计显示亮度相匹配,且可以降低传统Global Dimming对光源响应速度较快的要求,也可以补偿一帧中电流随时间变化可能带来的显示亮度异常问题。
实施例2
本实施例主要介绍了如何具体的获取灰度映射关系表,以用于确定每一帧中每一像素点的最终灰度信号。
假设每帧时长T为16.67ms,光源的电流可以分5级等步长调节,电流在相邻两级之间调节的响应时间约为3.33ms,在最大值和次大值之间切换对应的光源亮度变化规律如错误!未找到引用源。9所示,其中,图9对应一帧内的光源亮度变化曲线方程可以表示为
Figure PCTCN2021106683-appb-000047
其中
Figure PCTCN2021106683-appb-000048
在获取灰度映射关系表的过程中,可以直接按照二进制灰度数对一帧内光源亮度变化规律进行积分,以确定每一灰度信号对应的实际显示亮度。可以理解的,为了避免采用二进制灰度数进行灰度调节时出现的闪烁情况,考虑将二进制灰度数进行位拆分,使得除了位平面0以外的位平面都显示至少两个LSB,以避免帧间的亮度突变。
例如,假设显示的位深为8位,对应的灰度信号
Figure PCTCN2021106683-appb-000049
Figure PCTCN2021106683-appb-000050
DMD位平面的分布总结为
Figure PCTCN2021106683-appb-000051
其中,x是指位平面编号,x∈(0,1,2,…,n-1),a x对应的权重为2 x,意味着每帧2 n-1个LSB中会有2 x个a x,一种均匀的排列方式为每相邻的2 n-xLSB中含有一个a x,且a x在每个2 n-x中的位置为2 n-1-x,例如,n=3,错误!未找到引用源。10示意了灰度信号为1/2时DMD翻转的时序-显示亮度的示意图。为了将DMD翻转的时序表示地更清晰,下面举例说明位深为3的灰度信号亮度与DMD翻转时序的对应关系,如表所示,第n-1位平面会被拆分为2 n-2个LSB,然后每个位平面的各个LSB会被均匀分布DMD翻转时序中。
表1 3位系统DMD翻转时序图
十进制数 二进制数 DMD翻转时序
0 000 0000000
1 001 0001000
2 010 0100010
3 011 0101010
4 100 1010101
5 101 1011101
6 110 1110111
7 111 1111111
将图10所示的显示时序图进行时间尺度积分,可以得到一帧图像累积的实际显示亮度,同时,使用最大可显示亮度将多种灰度信号的实际显示亮度进行归一化处理,得到如错误!未找到引用源。11所示的亮度变化积分示意图。进一步对,按照自小而大的顺序对多种灰度信号的实际显示亮度进行排序,以得到图12所示的排序后的实际显示亮度与自小到大的灰度信号的函数曲线。可以看出,G’和G满足良好的线性映射关系,这将简化信号处理过程,同时,由于原始排在第i位的初始灰度信号对应的最终灰度信号仍然排在第i位,即Ind G’=Ind G,因此只需要存储最终灰度信号G’相对于可行最大显示亮度的比值以及
Figure PCTCN2021106683-appb-000052
与L M的比例值,即可确定初始灰度信号和最终灰度信号的灰度映射关系。
实施例3
本实施例介绍一种特殊情况下的获取灰度映射关系表的方法。
假设光源亮度的变化曲线如错误!未找到引用源。3所示,对应的一帧内的光源亮度变化规律为
Figure PCTCN2021106683-appb-000053
其中
Figure PCTCN2021106683-appb-000054
这种情况下灰度信号与实际显示亮度对应的关系如错误!未找到引用源。4所示,可以看出,实际显示亮度不再是随灰度信号递增的关系。
将具有起伏的实际显示亮度自小而大进行排序,得到如错误!未找到引用源。5所示的排序后的实际显示亮度与灰度信号的对应关系。对于此种情形,需要将初始灰度信号对应的预计显示亮度与实际显示亮度相匹配,将相匹配的实际显示亮度对应的灰度信号作为初始灰度信号对应的最终灰度信号,以确定初始灰度信号与最终灰度信号的对应关系, 并且利用G’和G之间的映射关系求得最终灰度信号G’的二维分布以处理信号。
实施例4
本申请将上述显示方法应用到图16所示的显示装置中。如图16所示,本申请显示装置10可以包括存储器11和处理器12。存储器11中存储有计算机程序。处理器12用于执行计算机程序以实现上述显示方法的步骤。
可选地,如图17所示,显示装置10还可以包括光源13和数字微反射镜14。其中,光源13用于在光源电源的驱动下发出照明光。数字微反射镜14用于调制照明光,得到显示图像所需的被调制光。另外,处理器12耦接于光源13和数字微反射镜14。处理器12可用于确定当前帧内目标光源亮度,基于当前帧内初始光源亮度、目标光源亮度和当前帧内每一像素点的初始灰度信号确定当前帧内每一像素点的最终灰度信号。另外,处理器12还可基于当前帧内目标光源亮度,调节光源13的驱动电流而调整当前帧内照明光的亮度;以及数字微反射镜14用于基于当前帧内每一像素点的最终灰度信号调制经过调整的照明光,得到显示当前帧内每一像素点所需要的被调制光。
可选地,处理器12可以包括图像分析处理单元121和DMD可识别解码器122。图像分析处理单元121耦接于存储器11。图像分析处理单元121用于确定当前帧内目标照明亮度和每一像素点的最终灰度信号,将确定好的当前帧内目标照明亮度通过DMD可识别解码器122传输给数字微反射镜14,让数字微反射镜14可以基于当前帧内每一像素点的最终灰度信号调制经过调整的照明光。并且图像分析处理单元121还可用于基于当前帧内目标光源亮度,调节光源电源的电流而调整当前帧内照明光的亮度。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种显示方法,其特征在于,所述方法包括:
    确定最大光源亮度、当前帧内初始光源亮度和当前帧内最大初始灰度信号;
    以所述最大光源亮度和所述当前帧内最大初始灰度信号的乘积确定当前帧内目标光源亮度;
    基于所述初始光源亮度和所述目标光源亮度,选取全局亮度变化规律的一部分以生成当前帧内光源亮度变化规律,基于所述光源亮度变化规律和当前帧内每一像素点的初始灰度信号确定当前帧内每一像素点的最终灰度信号;或,
    基于所述初始光源亮度、所述目标光源亮度和当前帧内每一像素点的初始灰度信号,通过查找灰度映射关系表,确定当前帧内每一像素点的最终灰度信号,其中,所述灰度映射关系表是根据全局亮度变化规律确定的;
    基于所述当前帧内每一像素点的最终灰度信号,显示所述当前帧。
  2. 根据权利要求1所述的显示方法,其特征在于,所述基于所述光源亮度变化规律和当前帧内每一像素点的初始灰度信号确定当前帧内每一像素点的最终灰度信号,包括:
    在所述初始光源亮度与所述目标光源亮度不同时,将多种灰度信号和所述光源亮度变化规律结合得到多种灰度信号对应的实际显示亮度;将当前帧内每一像素点的初始灰度信号和最大光源亮度的乘积作为当前帧内每一像素点的预计显示亮度,将与当前帧内每一像素点的预计显示亮度匹配的实际显示亮度对应的灰度信号作为当前帧内每一像素点的最终灰度信号;或,
    在所述初始光源亮度与所述目标光源亮度相等时,将最大光源亮度和初始光源亮度的比值作为第一比值,所述当前帧内每一像素点的初始光源亮度和第一比值的乘积即为当前帧内每一像素点的最终灰度信号。
  3. 根据权利要求1所述的显示方法,其特征在于,光源亮度被分为 M级,所述显示所述当前帧,包括:
    显示所述当前帧的过程中,调节一级所述光源亮度,或不对所述光源亮度进行调节,以使光源亮度只在M级光源亮度之间调节,进而降低光源亮度变化的不确定性。
  4. 根据权利要求3所述的显示方法,其特征在于,光源的驱动电流被分为M级,调节一级所述光源亮度,包括:
    显示所述当前帧的过程中,调节一级驱动电流,以调节一级光源亮度。
  5. 根据权利要求3所述的显示方法,其特征在于,所述以所述最大光源亮度和所述当前帧内最大初始灰度信号的乘积确定当前帧内目标光源亮度,包括:
    计算当前帧内最大初始灰度信号和最大光源亮度的乘积;
    确定所述乘积处于的相邻两级光源亮度构成的区间;
    在所述初始光源亮度大于所述区间的最大值时,减小一级所述初始光源亮度的级别以得到所述目标光源亮度的级别;或,
    在所述初始光源亮度小于所述区间的最大值时,增加一级所述初始光源亮度的级别以得到所述目标光源亮度的级别;或,
    在所述初始光源亮度与所述区间的最大值时,所述目标光源亮度等于所述初始光源亮度。
  6. 根据权利要求3所述的显示方法,其特征在于,所述基于所述初始光源亮度、所述目标光源亮度和当前帧内每一像素点的初始灰度信号,通过查找灰度映射关系表确定当前帧内每一像素点的最终灰度信号,之前包括:
    确定光源亮度的多种调节情况;
    基于每种调节情况的初始光源亮度和目标光源亮度确定每种调节情况的光源亮度变化规律;
    基于所述光源亮度变化规律确定所有可行的初始灰度信号对应的最终灰度信号;
    将每种调节情况下的所有可行的初始灰度信号与最终灰度信号的对应关系保存到灰度映射关系表中。
  7. 根据权利要求6所述的显示方法,其特征在于,所述方法还包括:
    基于所述光源亮度变化规律确定每种调节情况下的可行最大显示亮度;
    计算每种调节情况下可行最大显示亮度与最大光源亮度的比值,
    将所述比值保存到所述灰度映射关系表中。
  8. 根据权利要求6所述的显示方法,其特征在于,在目标光源亮度比初始光源亮度小的调节情况中,比第二比值小的初始灰度信号为可行的初始灰度信号,其中,第二比值为初始光源亮度和最大光源亮度的比值。
  9. 一种显示装置,其特征在于,所述显示装置包括存储器和处理器;所述存储器中存储有计算机程序,所述处理器用于执行所述计算机程序以实现如权利要求1-8中任一项所述方法的步骤。
  10. 根据权利要求9所述的显示装置,其特征在于,所述显示装置还包括:与处理器耦接的光源和数字微反射镜,
    其中,光源用于发射照明光;
    所述数字微反射镜用于调制所述照明光,得到显示图像所需的被调制光;
    所述处理器用于确定当前帧内目标光源亮度,基于当前帧内初始光源亮度、目标光源亮度和当前帧内每一像素点的初始灰度信号确定当前帧内每一像素点的最终灰度信号,基于所述目标光源亮度调节所述光源的驱动电流而调整当前帧内照明光的亮度;以及数字微反射镜用于基于当前帧内每一像素点的最终灰度信号调制经过调整的照明光,得到显示当前帧内每一像素点所需的被调制光。
PCT/CN2021/106683 2020-07-20 2021-07-16 显示方法及其相关装置 WO2022017266A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010700957.2A CN113963643A (zh) 2020-07-20 2020-07-20 显示方法及其相关装置
CN202010700957.2 2020-07-20

Publications (1)

Publication Number Publication Date
WO2022017266A1 true WO2022017266A1 (zh) 2022-01-27

Family

ID=79459526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106683 WO2022017266A1 (zh) 2020-07-20 2021-07-16 显示方法及其相关装置

Country Status (2)

Country Link
CN (1) CN113963643A (zh)
WO (1) WO2022017266A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116540293A (zh) * 2023-06-28 2023-08-04 赛诺威盛科技(北京)股份有限公司 探测器的测试方法、装置和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102318338A (zh) * 2008-03-31 2012-01-11 曼德斯必德技术公司 便携式lcos/lcd/dlp投影系统中的功率耗散的减少
US20140225934A1 (en) * 2013-02-08 2014-08-14 Hung-Ta LIU Display control method used in display apparatus
CN105721844A (zh) * 2016-01-29 2016-06-29 四川长虹电器股份有限公司 基于液晶电视Gamma调整的增强画质对比度层次感的方法
CN106531092A (zh) * 2016-11-08 2017-03-22 青岛海信电器股份有限公司 调整图像亮度和对比度的方法、视频处理器及显示装置
CN108810318A (zh) * 2018-06-11 2018-11-13 京东方科技集团股份有限公司 图像处理方法、装置、显示设备及计算机存储介质
CN109429045A (zh) * 2017-08-30 2019-03-05 深圳光峰科技股份有限公司 图像处理装置、显示装置、图像处理及显示装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102318338A (zh) * 2008-03-31 2012-01-11 曼德斯必德技术公司 便携式lcos/lcd/dlp投影系统中的功率耗散的减少
US20140225934A1 (en) * 2013-02-08 2014-08-14 Hung-Ta LIU Display control method used in display apparatus
CN105721844A (zh) * 2016-01-29 2016-06-29 四川长虹电器股份有限公司 基于液晶电视Gamma调整的增强画质对比度层次感的方法
CN106531092A (zh) * 2016-11-08 2017-03-22 青岛海信电器股份有限公司 调整图像亮度和对比度的方法、视频处理器及显示装置
CN109429045A (zh) * 2017-08-30 2019-03-05 深圳光峰科技股份有限公司 图像处理装置、显示装置、图像处理及显示装置及方法
CN108810318A (zh) * 2018-06-11 2018-11-13 京东方科技集团股份有限公司 图像处理方法、装置、显示设备及计算机存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116540293A (zh) * 2023-06-28 2023-08-04 赛诺威盛科技(北京)股份有限公司 探测器的测试方法、装置和系统
CN116540293B (zh) * 2023-06-28 2023-09-26 赛诺威盛科技(北京)股份有限公司 探测器的测试方法、装置和系统

Also Published As

Publication number Publication date
CN113963643A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
JP5734580B2 (ja) 画素データの補正方法及びこれを遂行するための表示装置
CN110379368B (zh) 脉宽和电压混合调制的驱动方法、驱动装置及显示装置
US9214112B2 (en) Display device and display method
JP4796038B2 (ja) 画像表示方法
KR101148394B1 (ko) 화상 처리 장치 및 화상 표시 장치
TWI357044B (en) Display driving circuit
KR101686103B1 (ko) 표시장치 및 이의 구동방법
JP2008129584A (ja) 液晶表示装置及びその駆動方法
JP2008203292A (ja) 画像表示装置、及び画像表示方法
JPH06102484A (ja) 空間光変調素子を用いた映像表示方法及び映像表示装置
JP2006048040A (ja) 表示装置での出力レベル制御及び/又はコントラスト制御のための方法及び装置
JP2015142276A5 (zh)
TWI482135B (zh) 顯示裝置及其影像控制方法
JP2005134724A (ja) 液晶表示装置
KR20070029128A (ko) 액정 디스플레이를 위한 동적 감마
WO2022017266A1 (zh) 显示方法及其相关装置
US11070776B2 (en) Light source drive device, light source drive method, and display apparatus
US10297212B2 (en) Display device and display device drive method
US9443489B2 (en) Gamma curve compensating method, gamma curve compensating circuit and display system using the same
US10573255B2 (en) Display apparatus and control method therefor
JP2018116256A (ja) 表示装置および表示方法
CN109640155B (zh) 一种基于背光调整的图像处理方法、智能电视及存储介质
WO2018131357A1 (ja) 表示装置および表示方法
JP2017053960A (ja) 液晶駆動装置、画像表示装置および液晶駆動プログラム
JP2019164206A (ja) 表示装置、表示装置の制御方法、プログラム、及び、記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845701

Country of ref document: EP

Kind code of ref document: A1