WO2022017115A1 - 商用车电控气压制动系统元件压力变化率测试装置及方法 - Google Patents

商用车电控气压制动系统元件压力变化率测试装置及方法 Download PDF

Info

Publication number
WO2022017115A1
WO2022017115A1 PCT/CN2021/101970 CN2021101970W WO2022017115A1 WO 2022017115 A1 WO2022017115 A1 WO 2022017115A1 CN 2021101970 W CN2021101970 W CN 2021101970W WO 2022017115 A1 WO2022017115 A1 WO 2022017115A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
air
pneumatic
test
solenoid valve
Prior art date
Application number
PCT/CN2021/101970
Other languages
English (en)
French (fr)
Inventor
胡剑
程毅
包汉伟
杨凡
李刚炎
刘育东
Original Assignee
武汉理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉理工大学 filed Critical 武汉理工大学
Publication of WO2022017115A1 publication Critical patent/WO2022017115A1/zh
Priority to US17/725,533 priority Critical patent/US11692891B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/28Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for testing brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/221Procedure or apparatus for checking or keeping in a correct functioning condition of brake systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • G01M3/2815Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes using pressure measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2876Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for valves

Definitions

  • the invention relates to the technical field of automobile braking, in particular to a device and method for testing the pressure change rate of an electronically controlled pneumatic braking system of a commercial vehicle.
  • the air brake system is the core module that determines the braking performance of commercial vehicles, and is also one of the most important parts to avoid traffic accidents.
  • EBS electronic braking system
  • active braking technology With the development of modern automotive technologies such as assisted driving and autonomous driving, active braking technology must be able to adaptively complete specific braking expectations under different working conditions, and this process will gradually be separated from the driver's active intervention. Active braking technology reduces the operation of the driver during the braking process and realizes precise and intelligent control. With the reduction of manufacturing costs and the development of control technology, active braking technology has become an inevitable trend in the development of automobile braking. Therefore, how to Accurately realizing the braking expectation has become a key technical problem that needs to be solved urgently for the electronically controlled pneumatic braking system.
  • the ideal braking expectation should be to reach the expected braking pressure at the expected time, that is, the dynamic characteristics of the electronically controlled pneumatic braking system should comprehensively consider the pressure response and the time response, thereby reducing the pressure deviation and time. deviation.
  • the brake pressure can be changed according to the braking expectation without deviation, but the actual change cannot be accurately detected and characterized, that is, there is a lack of a scientific detection method. means. Therefore, how to detect the pressure change rate of the components of the electronically controlled pneumatic braking system of commercial vehicles has become a key technical problem that needs to be solved urgently.
  • the technical problem to be solved by the present invention is to provide a test device capable of detecting the pressure change rate of the components of the electronically controlled pneumatic braking system of a commercial vehicle, and The method can accurately measure the pressure change rate of the key control parameters of the electronically controlled pneumatic braking system of commercial vehicles, and solve the existence of pressure between the actual braking pressure response and the expected braking pressure response of the electronically controlled pneumatic braking system of commercial vehicles. Bias and time bias issues.
  • the technical scheme adopted in the present invention is:
  • a device for testing the pressure change rate of an electronically controlled air brake system of a commercial vehicle which is characterized by comprising:
  • the pressure change rate test bench including an insulating console composed of a bench panel and an insulating rubber pad, and a special bracket set on the insulating console for fixing various components and assemblies;
  • the pneumatic circuit is installed on the pressure change rate test bench through a special bracket, and is connected with each other through pipelines or elbows, which are used to control the gas on-off and detect the pressure change rate of the components of the electronically controlled pneumatic brake system of the commercial vehicle under test;
  • the signal processing part including filter circuit and NI acquisition card, is used to collect pressure signal and differential pressure signal, and convert the signal to analog and digital to form a signal that can be recognized by the upper controller and lower executive elements;
  • the control device communicates with the pneumatic circuit, and drives the components in the pneumatic circuit to act by setting the control parameters, so as to obtain the test data of the components of the electronically controlled pneumatic brake system of the tested commercial vehicle in the pneumatic circuit; the test data includes the tested Brake pressure rate of change information and pressure information for electronically controlled air brake system components of commercial vehicles.
  • the pneumatic circuit includes an air source device, a manual switch valve, an electric proportional valve, an ABS solenoid valve, an electric proportional valve, a brake air chamber, a laminar flow resistance pipe, a differential pressure sensor, an isothermal container and a pressure sensor.
  • the air source device includes a pneumatic air compressor for supplying air to the pneumatic circuit, a pneumatic triplet for filtering impurities and moisture in the compressed gas, and an air storage tank; the pneumatic triplet is connected to the air pressure through the PA pipe.
  • the manual switch valve is directly connected to the air inlet of the air storage tank through the PA pipe, and the air storage tank is connected to the air outlet of the manual switch valve through the PA pipe;
  • the electrical proportional valve is connected to the air outlet of the air storage tank through the PA pipe;
  • the ABS solenoid valve is directly connected with the air outlet of the electric proportional valve; there are three connection holes on the brake air chamber, including 1 air inlet and 2 air outlets, the air inlet is connected with the ABS solenoid valve through the PA pipe, and the air outlet They are respectively directly connected with the laminar flow resistance tube and the differential pressure sensor; the laminar flow resistance tube is directly connected between the brake air chamber and the isothermal container; the differential pressure sensor is directly connected between the brake air chamber and the isothermal container. between.
  • the outer body of the laminar flow resistance tube is a PA tube, and the interior is filled with capillary tubes with the same length as the outer tube body, so that the flow in the laminar flow resistance tube is in a laminar flow state, and the laminar flow resistance tube is in a laminar flow state.
  • the outlet port pressure changes slightly later than the inlet port, creating a pressure difference across the two ends.
  • the constant temperature inside the isothermal container is used to reduce the error caused by the temperature change during the test process;
  • the isothermal container is in the shape of a flange, and is fixed on the pressure change rate test bench through the isothermal container bracket, and the isothermal container is in the shape of a flange.
  • the container is provided with two flange surfaces, one of which has two holes for connecting the laminar flow resistance tube and the differential pressure sensor respectively, and the other flange surface is provided with a hole for connecting the pressure sensor.
  • the differential pressure sensor is used to measure the pressure difference between the brake air chamber and the isothermal container.
  • the filter circuit is connected with the NI acquisition card and the signal lines of the components in the pneumatic circuit; the NI acquisition card is connected with the filter circuit and the control device for connecting the pneumatic Signals in the circuit are collected and sent to the control device, while signals from the control device are received and sent to control the components of the pneumatic circuit.
  • the filter circuit is connected with the signal lines of the NI acquisition card, the ABS solenoid valve, the electrical proportional valve, the differential pressure sensor and the pressure sensor;
  • the NI acquisition card is connected with the filter circuit and the control device, wherein The signal line of the differential pressure sensor is connected to the A/D port of the NI acquisition card through the filter circuit, and the signal line of the pressure sensor is connected to the A/D port of the NI acquisition card through the filter circuit, and the NI acquisition card collects the signal of the above pressure sensor.
  • the signal line of the ABS solenoid valve is connected to the D/A port of the NI acquisition card through the relay, and the signal line of the electrical proportional valve is connected to the D/A port of the NI acquisition card through the relay, and the NI acquisition card receives And send the signal from the control device, at the same time, the math port of the NI acquisition card outputs the high and low frequency control relay to control the ABS solenoid valve of the pneumatic circuit.
  • the NI acquisition card outputs the corresponding analog voltage signal, voltage value and pressure value according to the program settings. Proportional control, so as to obtain the outlet pressure of the electric proportional valve.
  • control device includes a controller and a receiving device, and the controller adopts a host computer to control the real-time action of the ABS solenoid valve and the electric proportional valve in the pneumatic circuit part and to the obtained differential pressure sensor and
  • the test data of the pressure sensor is processed to obtain the braking pressure change rate of the components of the electronically controlled air brake system of the tested commercial vehicle;
  • the receiving device is connected to the NI acquisition card, and is used to receive the electronically controlled air pressure control of the tested commercial vehicle
  • the test data of the dynamic system components is transmitted to the controller.
  • a method for testing the pressure change rate of an electronically controlled pneumatic brake system component of a commercial vehicle characterized in that the above-mentioned device for testing the pressure change rate of an electronically controlled pneumatic braking system component of a commercial vehicle is used, and the method comprises the following steps:
  • the components in the pneumatic circuit are controlled according to the control parameters, so that the components of the electronically controlled pneumatic brake system of the commercial vehicle under test perform the test and detection according to the control parameters;
  • the pressure change rate of the components of the electronically controlled pneumatic brake system of the commercial vehicle under test is obtained by analysis and processing.
  • the boost test is as follows: the upper computer sends out a control signal, and both the intake solenoid valve and the exhaust solenoid valve that control the ABS solenoid valve are powered off. At this time, the air inlet and outlet of the ABS solenoid valve are connected, and the brake air chamber is charged. , the pressure of the brake air chamber rises until it is stable. During this process, the real-time pressure of the isothermal vessel measured by the pressure sensor and the pressure signal of the differential pressure sensor are collected through the NI acquisition card, and sent to the upper computer. Calculate and obtain real-time data and images of the pressure change rate of the brake chamber during the inflation process.
  • the depressurization test is as follows: the upper computer sends a control signal, the intake solenoid valve and exhaust solenoid valve of the ABS solenoid valve are energized, the intake port of the ABS solenoid valve is sealed, and the air outlet is connected to the exhaust port , the brake air chamber is exhausted, and the pressure of the brake air chamber drops until stable.
  • the real-time pressure of the isothermal vessel measured by the pressure sensor and the pressure signal of the differential pressure sensor are collected through the NI acquisition card, and sent to The upper computer, through the operation of the upper computer, obtains the real-time data and images of the pressure change rate of the brake air chamber during the exhaust process;
  • the pressure maintaining test is as follows: the upper computer sends a control signal, the intake solenoid valve that controls the ABS solenoid valve is energized, the exhaust solenoid valve is de-energized, the air inlet and outlet of the ABS solenoid valve are sealed, and the brake air
  • the chamber is in a pressure-holding state.
  • the real-time pressure of the isothermal vessel measured by the pressure sensor and the pressure signal of the differential pressure sensor are collected through the NI acquisition card, and sent to the upper computer.
  • the pressure-holding process is obtained through the operation of the upper computer. Real-time data and images of the rate of change of pressure in the middle brake chamber.
  • the device and method for testing the pressure change rate of an electronically controlled air brake system of a commercial vehicle in order to reduce the error of the mathematical model and make the test environment closer to the real operating environment, the combination of actual physical equipment and simulation is used to measure the pressure change.
  • the rate test bench, the pneumatic circuit, the signal processing part and the control device are integrated into one; the main components of the pneumatic circuit are installed on the pressure change rate test bench through customized brackets, and are connected to each other through PA pipes, elbows and other components.
  • the control device drives the components in the pneumatic circuit by inputting the control parameters, so as to obtain the electronic control of the tested commercial vehicle in the pneumatic circuit.
  • the test data of the air brake system components, the pneumatic circuit is controlled according to the control parameters to carry out the test experiment; the test data includes the pressure difference information and pressure information of the components of the electronically controlled air brake system of the commercial vehicle under test, and the obtained commercial.
  • the real-time test results of the pressure change rate of the components of the vehicle electronically controlled air brake system are more accurate and true. The problem of pressure deviation and time deviation between the actual brake pressure response and the expected brake pressure response of the commercial vehicle electronically controlled air brake system is solved.
  • FIG. 1 is a schematic three-dimensional structure diagram of a device for testing the pressure change rate of an electronically controlled pneumatic braking system for a commercial vehicle according to the present invention
  • Fig. 2 is the test device diagram (part structure of pneumatic circuit) of the pressure change rate of the components of the electronically controlled pneumatic braking system of the commercial vehicle of the present invention
  • Fig. 3 is the control principle diagram of the present invention.
  • FIG. 4 is a schematic diagram of the overall frame structure of the test device for the pressure change rate of the components of the electronically controlled pneumatic braking system of a commercial vehicle according to the present invention.
  • 201-air source device 202-manual switch valve bracket, 203-manual switch valve, 204-ABS solenoid valve, 205-electric proportional valve, 206-brake air chamber, 207-brake air chamber bracket , 208-Laminar flow resistance tube, 209- Differential pressure sensor, 210- Differential pressure sensor bracket, 211-Isothermal vessel, 212-Isothermal vessel holder, 213-Pressure sensor, 214-ABS solenoid valve holder, 401-Air compressor, 402-pneumatic triplet, 403-air tank, 404-NI acquisition card, 405-host computer.
  • a test device for the pressure change rate of an electronically controlled air brake system of a commercial vehicle includes a pressure change rate test bench 100, a pneumatic circuit part, a signal processing part, a data processing part and a control device part.
  • Figures 2 and 4 are the structural layout diagram and the structural principle diagram of the device for testing the pressure change rate of the components of the electronically controlled pneumatic braking system of a commercial vehicle implemented according to the present invention.
  • the pressure change rate test bench includes an insulating operating table and a special bracket
  • the insulating console includes a bench panel 100 and an insulating rubber pad.
  • the insulating rubber pad is made of rubber to ensure electrical safety when testing the pressure change rate;
  • the bench panel 100 is made of 304 stainless steel and is used for installing the The special bracket and the components of the electronically controlled pneumatic brake system of the commercial vehicle under test are tested in the insulating console;
  • the special bracket includes a manual switch valve bracket 202, a brake air chamber bracket 207, a differential pressure sensor bracket 210, an isothermal container bracket 212, and an ABS solenoid valve bracket 214, all of which are made of 304 stainless steel and used to fix the elements of the test device.
  • the device is fastened on the suspended bench panel 100 by bolts, which is beneficial to ensure that the pneumatic circuit is at the same level and increase the smoothness of the pneumatic circuit;
  • frame structures such as aluminum alloy profiles and special triangular connectors for profiles.
  • the frame structure is made of aluminum alloy, which is fastened by bolts.
  • the overall structure is simple and compact. It is used to install the special bracket, the insulating console and the components of the test device, which is beneficial to the electronically controlled air brake system of commercial vehicles.
  • the component pressure change rate test device is beautiful and clear, the pipeline is smooth, and the experimental results are more reliable; the above design is beneficial to the component pressure change rate test device of the electronically controlled air brake system of commercial vehicles.
  • the device is beautiful and clear, the pipeline is smooth, and the experimental results are more reliable More credibility.
  • the pneumatic circuit part includes an air source device 201, a manual switch valve 203, an electric proportional valve 205, an ABS solenoid valve 204, an electric proportional valve 205, a brake air chamber 206, and a laminar flow resistance.
  • Tube 208 differential pressure sensor 209 , isothermal vessel 211 and pressure sensor 213 .
  • the air source device 201 includes a pneumatic air compressor 401, a pneumatic triplet 402 (generally three air source processing elements of an air filter, a pressure reducing valve and a lubricator are assembled together), and an air storage tank 403;
  • the air compressor 401 supplies air to the pneumatic circuit, which can stably supply the gas pressure of 1Mpa;
  • the pneumatic triple piece 402 is connected to the air outlet of the air compressor 401 through the PA pipe, and is mainly used to filter impurities and moisture in the compressed gas;
  • the The manual switch valve 203 is directly connected to the air inlet of the gas storage tank 403 through the PA pipe, and is fixed on the pressure change rate test bench through the manual switch valve bracket 202, which is the main gas supply switch of the entire test device;
  • the gas storage The tank 403 is connected to the air outlet of the manual switch valve 203 through the PA pipe, which is used to store gas, and is also conducive to stabilizing the air pressure during the test process, ensuring the stability of the pneumatic
  • the ABS solenoid valve is electrically controlled, which is conducive to direct Control;
  • the brake air chamber 206 is fixed on the pressure change rate test bench through the brake air chamber bracket 207, and the brake air chamber 206 has three connecting holes, 1 air inlet hole and 2 air outlets.
  • the air port is connected to the ABS solenoid valve through the PA pipe, and the air outlet is directly connected to the laminar flow resistance pipe 208 and the differential pressure sensor 209, respectively.
  • the brake air chamber 206 can be replaced with other components to be tested. In this embodiment, only the brake The gas chamber is described as an example;
  • the laminar flow resistance tube 208 is directly connected between the brake air chamber 206 and the isothermal container 211, and its outer tube body is a PA tube, and its interior is filled with capillary tubes with the same length as the outer tube body, so that the laminar flow resistance tube is
  • the flow in 208 is in a laminar flow state, which is conducive to the later change of the pressure at the outlet port of the laminar flow resistance tube 208, and a pressure difference is formed between the two ends;
  • the isothermal container 211 has a constant temperature inside, which is conducive to reducing the temperature caused by the change in the test process. error.
  • the differential pressure sensor 209 is directly connected between the brake air chamber 206 and the isothermal container 211 to measure the pressure difference between the brake air chamber 206 and the isothermal container 211; the isothermal container 211 is in the shape of a flange, The isothermal container bracket 212 is fixed on the pressure change rate test bench.
  • the isothermal container 211 has three holes, one of which has two holes on the flange surface, which are respectively connected to the laminar flow resistance tube 208 and the differential pressure sensor 209. The hole is used to connect the pressure sensor 213, and the internal temperature is constant, which is beneficial to reduce the error caused by the temperature change during the test process; the pressure sensor 213 is connected to the isothermal container, and is used to measure the pressure value of the isothermal container.
  • Figure 3 shows the control system and schematic diagram of the present invention. It includes a signal processing part, a data processing part and a control device.
  • the signal processing part includes a filter circuit and an NI acquisition card; the filter circuit is connected to the NI acquisition card 404, the ABS solenoid valve 204, the electrical proportional valve 205, the differential pressure sensor 209 and the pressure sensor 213. Signals of components in the pneumatic circuit The line is connected, which is conducive to the smoothness of the obtained signal; the NI acquisition card is connected with the filter circuit and the control device, wherein the signal line of the differential pressure sensor 209 is connected to the A/D port of the NI acquisition card 404 through the filter circuit, and the pressure The signal line of the sensor 213 is connected to the A/D port of the NI acquisition card 404 through the filter circuit.
  • the NI acquisition card 404 collects the above signal and sends it to the control device.
  • the signal line of the ABS solenoid valve 204 is connected to the NI acquisition card through a relay.
  • the D/A port of the card 404, the signal line of the electrical proportional valve 205 is connected to the D/A port of the NI acquisition card 404 through the relay, the NI acquisition card 404 receives and sends the signal from the control device, and the math port of the NI acquisition card 404 Output the high and low frequency control relay to control the ABS solenoid valve 204 of the pneumatic circuit.
  • the NI acquisition card 404 outputs the corresponding analog voltage signal according to the program settings.
  • the voltage value and the pressure value are proportionally controlled, so as to obtain the output pressure of the electric proportional valve 205 .
  • the control device includes a controller and a receiving device.
  • the controller adopts an upper computer to control the real-time action of the ABS solenoid valve 204 and the electric proportional valve 205 in the pneumatic circuit part and to the obtained differential pressure sensor 209 and pressure.
  • the test data of the sensor 213 is processed to obtain the braking pressure change rate of the components of the electronically controlled air brake system of the tested commercial vehicle; the receiving device is connected to the NI acquisition card 404 for receiving the electronically controlled air pressure of the tested commercial vehicle
  • the test data of the components of the braking system are transmitted to the controller.
  • the working process of the device for testing the pressure change rate of the electronically controlled air brake system of a commercial vehicle of the present invention includes:
  • the manual switch valve 203 or the stop valve should be closed, the output pressure should be zero everywhere, and the throttle valve of the lubricator in the manual switch valve 203 should be fully closed.
  • the air compressor 401 is turned on, so that the compressed air enters the pneumatic triplet 402, and clean compressed gas is obtained by filtering; open the manual switch valve 203 to make clean
  • the compressed air enters the air storage tank 403, and the compressed air fills the air storage tank 403 to ensure the air pressure stability during the test process;
  • the electrical proportional valve 205 is controlled by the upper computer 405, so that the outlet pressure of the air storage tank 403 can reach 0.7MPa, and the pressure at the outlet of the air storage tank 403 can reach 0.7MPa.
  • the engine 405 controls the ABS solenoid valve 204, collects the pressure signals of the pressure sensor 213 and the differential pressure sensor 209, so as to perform a pressure increase test, a pressure reduction test and a pressure maintenance test on the brake air chamber 206 respectively.
  • the boost test is as follows: the host computer 405 sends out a control signal to control both the intake solenoid valve and the exhaust solenoid valve of the ABS solenoid valve 204 to be powered off, and at this time, the intake port and the exhaust port of the ABS solenoid valve 204 are connected, and the brake is applied.
  • the air chamber is inflated, and the pressure of the brake air chamber rises until stable.
  • the real-time pressure of the isothermal vessel 211 measured by the pressure sensor 213 and the pressure signal of the differential pressure sensor 209 are collected through the NI acquisition card 404, and sent To the host computer 405, through program operation, real-time data and images of the pressure change rate of the brake air chamber 206 during the inflation process are obtained.
  • the depressurization test is as follows: the upper computer control 405 sends out a control signal, and both the intake solenoid valve and the exhaust solenoid valve of the ABS solenoid valve 204 are energized, the intake port of the ABS solenoid valve 204 is sealed, and the air outlet is connected to the exhaust port. The ports are connected, the brake air chamber is exhausted, and the pressure of the brake air chamber decreases until stable.
  • the real-time pressure of the isothermal container 211 and the differential pressure sensor 209 measured by the pressure sensor 213 are collected through the NI acquisition card 404.
  • the pressure signal is sent to the host computer 405, and through program operation, real-time data and images of the pressure change rate of the brake air chamber 206 during the exhaust process are obtained.
  • the pressure-holding test is as follows: the upper computer control 405 sends a control signal to control the energization of the intake solenoid valve of the ABS solenoid valve 204, the power off of the exhaust solenoid valve, and the air inlet and outlet of the ABS solenoid valve 204 are sealed.
  • the brake air chamber is in a pressure-holding state.
  • the NI acquisition card 404 collects the real-time pressure of the isothermal vessel 211 measured by the pressure sensor 213 and the pressure signal of the differential pressure sensor 209, and sends them to the host computer 405.
  • the program is operated to obtain real-time data and images of the pressure change rate of the brake air chamber 206 during the pressure maintaining process.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Regulating Braking Force (AREA)

Abstract

一种商用车电控气压制动系统元件压力变化率测试装置及方法,装置包括压力变化率测试台架;气动回路,用于控制气体通断及检测被测商用车电控气压制动系统元件的压力变化率;信号处理部分,用于采集压力信号和压差信号,以及将信号进行模拟量和数字量的转换,形成可以供上层控制器和下层执行元件可识别的信号;控制装置,与气动回路通信,通过设置控制参数驱动气动回路中的元器件动作,从而获取气动回路中被测商用车电控气压制动系统元件的测试数据。商用车电控气压制动系统元件压力变化率测试装置及方法能精确测量商用车电控气压制动系统的关键控制参数压力变化率,解决商用车电控气压制动系统存在的实际制动压力响应和期望制动压力响应之间存在压力偏差和时间偏差的问题。

Description

商用车电控气压制动系统元件压力变化率测试装置及方法 技术领域
本发明涉及汽车制动技术领域,具体涉及一种商用车电控气压制动系统元件压力变化率测试装置及方法。
背景技术
商用车的主动安全性、稳定性和平顺性更是成为了道路运输行业关注的重点。气压制动系统是决定商用车制动性能的核心模块,同时是避免交通事故的最重要的部分之一。近年来,商用车的电子制动系统(EBS)有了较大的发展,并逐渐装备到商用车辆上。EBS增强了车辆的安全性,改善了制动性能,集成的制动系统可以降低操作成本。
随着辅助驾驶及自动驾驶等现代汽车技术的发展,主动制动技术必须能够自适应的完成不同工况的特定制动预期,并且这个过程将逐渐脱离驾驶员的主动干预。主动制动技术减少了驾驶员制动过程中的操作,实现精确化、智能化控制,随着制造成本降低,控制技术发展,主动制动技术已经成为汽车制动发展的必然趋势,因此,如何精准实现制动预期成为电控气压制动系统亟需解决的关键技术问题。
对于能够主动制动的商用车电控气压制动系统而言,即使制动压力达到了预期压力数值,但依旧存在响应时间存在滞后或提前的情况,又缺乏驾驶员干预,仍然会引起安全性或稳定性问题。在主动制动环境下,理想的制动预期应该是在预期时刻达到预期制动压力,即电控气压制动系统动态特性应综合考虑压力响应和时间响应两部分,进而减小压力偏差和时间偏差。为了保证商用车能够安全、稳定的实现制动工况,使得制动压力能够无偏差的按制动预期进行变化,但是实际变化情况如何是无法准确检测并表征,也即缺少一种科学的检测手段。因此,如何检测商用车电控气压制动系统元件压力变化率成为亟需解决的关键技术问题。
发明内容
本发明要解决的技术问题是针对现有商用车电控气压制动系统存在的压力偏差和时间偏差的问题,提供一种能够检测商用车电控气压制动系统元件压力变化率的测试装置及方法,能实现精确的测量商用车电控气压制动系统的关键控制参数压力变化率,解决了商用车电控气压制动系统存在的实际制动压力响应和期望制动压力响应之间存在压力偏差和时间偏差的问题。
为解决上述技术问题,本发明采用的技术方案是:
一种商用车电控气压制动系统元件压力变化率测试装置,其特征在于包括:
压力变化率测试台架,包括由台架面板和绝缘橡胶垫构成的绝缘操作台、设置在绝缘操作台上用于固定各种元器件和组件的专用支架;
气动回路,通过专用支架安装在压力变化率测试台架上,相互间通过管路或弯头连接,用于控制气体通断及检测被测商用车电控气压制动系统元件的压力变化率;
信号处理部分,包括滤波电路和NI采集卡,用于采集压力信号和压差信号,以及将信号进行模拟量和数字量的转换,形成可以供上层控制器和下层执行元件可识别的信号;
控制装置,与气动回路通信,通过设置控制参数,驱动气动回路中的元器件动作,从而获取气动回路中被测商用车电控气压制动系统元件的测试数据;所述的测试数据包括被测商用车电控气压制动系统元件的制动压力变化率信息和压力信息。
上述技术方案中,所述的气动回路包括气源装置、手动开关阀、电气比例阀、ABS电磁阀、电气比例阀、制动气室、层流阻力管、压差传感器、等温容器和压力传感器;所述的气源装置包括向气动回路供气的气动空压机、用于过滤压缩气体中的杂质和水分的气动三联件、储气罐;所述气动三联件通过PA管接在空压机出气口,手动开关阀通过PA管直接与储气罐进气口相连接,储气罐通过PA管接在手动开关阀出气口处;电气比例阀通过PA管与储气罐出气口相连;ABS电磁阀直接与电气比例阀出气口相连接;制动气室上有三个连接孔,其中包括1个进气孔和2个出气口,进气口与ABS电磁阀通过PA管相连,出气口分别与层流阻力管和压差传感器直接相连接;所述层流阻力管直接连接于制动气室与等温容器之间;所述的压差传感器直接连接于制动气室与等温容器之间。
上述技术方案中,所述层流阻力管的外部管体为PA管,内部则填满长度与外部管体长度相同的毛细管,使得层流阻力管中的流动为层流状态,层流阻力管出气端口压力相对于进气端口稍晚变化,两端形成压力差。
上述技术方案中,所述等温容器内部恒温,用于在测试过程中减小温度变化造成的误差;所述等温容器为法兰形状,通过等温容器支架固定于压力变化率测试台架上,等温容器设置两个法兰面,其中一个法兰面有两个孔,分别连接层流阻力管和压差传感器,另一个法兰面设置一个孔用于连接压力传感器。
上述技术方案中,所述的压差传感器用于测量制动气室与等温容器间的压力差值。
上述技术方案中,所述滤波电路与所述NI采集卡和所述气动回路中元器件的信号线相连接;所述NI采集卡与所述滤波电路和所述控制装置连接,用于将气动回路中的信号进行采集并发送到所述控制装置,同时接收和发送来自所述控制装置的信号来控制所述气动回 路的元器件。
上述技术方案中,所述滤波电路与NI采集卡、ABS电磁阀、电气比例阀、压差传感器和压力传感器的信号线相连接;所述NI采集卡与所述滤波电路和控制装置连接,其中压差传感器的信号线通过滤波电路连接入NI采集卡的A/D口,压力传感器的信号线通过滤波电路连接入NI采集卡的A/D口,NI采集卡将上述压力传感器的信号进行采集并发送到所述控制装置;ABS电磁阀的信号线通过继电器连接入NI采集卡的D/A口,电气比例阀的信号线通过继电器连接入NI采集卡的D/A口,NI采集卡接收并发送来自控制装置的信号,同时NI采集卡的数学端口输出高低电频控制继电器来控制气动回路的ABS电磁阀,NI采集卡根据程序设置,输出对应的模拟量电压信号,电压值和压力值成比例控制,从而得到电气比例阀输出口压力。
上述技术方案中,所述控制装置包括控制器和接收装置,所述控制器采用上位机,用于控制所述气动回路部分中的ABS电磁阀和电气比例阀实时动作和对所得压差传感器和压力传感器的测试数据进行处理,得到被测商用车电控气压制动系统元件的制动压力变化率;所述接收装置与NI采集卡连接,用于接收所述被测商用车电控气压制动系统元件的所述测试数据并传输给所述控制器。
一种商用车电控气压制动系统元件压力变化率测试方法,其特征在于采用上述的商用车电控气压制动系统元件压力变化率测试装置,所述方法包括以下步骤:
输入所述控制参数并发送给气动回路中的元器件;
根据所述控制参数控制气动回路中的元器件,使得所述被测商用车电控气压制动系统元件按照控制参数进行所述的测试检测;
根据测试检测过程中获得的所述测试数据,分析处理得到所述被测商用车电控气压制动系统元件的压力变化率。
上述技术方案中,测试制动气室的压力变化率时,包括如下步骤:
试运转前,排放各处冷凝水,手动开关阀处于关闭状态,各处输出压力应为零;
打开空压机使压缩空气进入气动三联件,过滤得到干净的压缩气体;打开手动开关阀,使干净的压缩气体进入储气罐,压缩空气充满储气罐,保证测试过程的气压稳定;通过上位机控制电气比例阀,令储气罐的出口压力可以达到0.7MPa,在通过上位机控制ABS电磁阀,采集压力传感器和压差传感器的压力信号,从而对制动气室分别进行升压试验、降压试验和保压试验:
所述升压试验如下:上位机发出控制信号,控制ABS电磁阀的进气电磁阀和排气电磁阀门 均断电,此时ABS电磁阀的进气口和出气口相通,制动气室充气,制动气室的压力升高直至稳定,在此过程中,通过NI采集卡,采集压力传感器测得的等温容器的实时压力以及压差传感器的压力信号,并发送给上位机,通过上位机运算,得到充气过程中制动气室的压力变化率的实时数据和图像。
所述降压试验如下:上位机控发出控制信号,控制ABS电磁阀的进气电磁阀和排气电磁阀门均通电,ABS电磁阀的进气口被封住,出气口与排气口相连通,制动气室排气,制动气室的压力下降直至稳定,在此过程中,通过NI采集卡,采集压力传感器测得的等温容器的实时压力以及压差传感器的压力信号,并发送给上位机,通过上位机运算,得到排气过程中制动气室的压力变化率的实时数据和图像;
所述保压试验如下:上位机控发出控制信号,控制ABS电磁阀的进气电磁阀通电,排气电磁阀门断电,ABS电磁阀的进气口和出气口都被封住,制动气室呈保压状态,在此过程中,通过NI采集卡,采集压力传感器测得的等温容器的实时压力以及压差传感器的压力信号,并发送给上位机,通过上位机运算,得到保压过程中制动气室的压力变化率的实时数据和图像。
本发明商用车电控气压制动系统元件压力变化率测试装置及方法,为了能够减少数学模型的误差,测试环境更接近真实的运行环境,采用实际物理设备与仿真相结合的方式,将压力变化率测试台架、气动回路、信号处理部分和控制装置集成为一体;气动回路主要元器件都通过定制的支架安装在压力变化率测试台架上,相互间通过PA管、弯头等部件连接,用于控制气体通断及检测被测商用车电控气压制动系统元件的压力变化率;控制装置通过输入控制参数,驱动气动回路中的元器件动作,从而获取气动回路中被测商用车电控气压制动系统元件的测试数据,根据所述控制参数控制所述气动回路进行测试实验;所述的测试数据包括被测商用车电控气压制动系统元件的压差信息和压力信息,所得商用车电控气压制动系统元件压力变化率的实时测试结果更准确、真实。解决了商用车电控气压制动系统存在的实际制动压力响应和期望制动压力响应之间存在压力偏差和时间偏差的问题。
附图说明
图1是本发明商用车电控气压制动系统元件压力变化率的测试装置的立体结构示意图;
图2是本发明商用车电控气压制动系统元件压力变化率的测试装置图(气动回路部分结构);
图3是本发明的控制原理图;
图4是本发明商用车电控气压制动系统元件压力变化率的测试装置结构整体框架原理图。
附图标注说明:201-气源装置,202-手动开关阀支架,203-手动开关阀,204-ABS电磁阀,205-电气比例阀,206-制动气室,207-制动气室支架,208-层流阻力管,209-压差传感器,210-压差传感器支架,211-等温容器,212-等温容器支架,213-压力传感器,214-ABS电磁阀支架,401-空压机,402-气动三联件,403-储气罐,404-NI采集卡,405-上位机。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图及实施例对本发明的装置和方法进行进一步详细描述。以下对本发明的各种示例性实施例的描述仅仅是说明性的,并不用于限定本发明。除非另外具体说明,在示例性实施例中的组件和步骤的相对布置、表达式和数值不限制本发明的范围。
如附图1所示,一种商用车电控气压制动系统元件压力变化率的测试装置,包括压力变化率测试台架100、气动回路部分、信号处理部分、数据处理部分和控制装置部分。
如附图2和附图4所示为根据本发明实施的商用车电控气压制动系统元件压力变化率测试装置结构布置图和结构原理图。
所述的压力变化率测试台架,包括绝缘操作台、专用支架;
所述绝缘操作台,包括台架面板100和绝缘橡胶垫,所述绝缘橡胶垫为橡胶材质,确保测试压力变化率时用电安全;所述台架面板100为304不锈钢材质,用于安装所述专用支架,以及被测商用车电控气压制动系统元件在所述绝缘操作台内进行测试;
所述专用支架包括手动开关阀支架202、制动气室支架207、压差传感器支架210、等温容器支架212、ABS电磁阀支架214,均为304不锈钢材质,用于固定所述测试装置的元器件,通过螺栓紧固在悬空的台架面板100上,有利于保证气动回路在同一层面,增加气路的平顺性;
除上述专用支架外,其他的元器件采用诸如铝合金型材、型材专用三角连接件的框架结构连接固定在台架面板100上或周围。框架结构均为铝合金材质,通过螺栓紧固,整体结构简约紧凑,用于安装所述专用支架、所述绝缘操作台以及所述测试装置的元器件,有利于商用车电控气压制动系统元件压力变化率测试装置美观清晰、管路平顺、让实验结果可信度更高;上述设计有利于商用车电控气压制动系统元件压力变化率测试装置美观清晰、管路平顺、让 实验结果可信度更高。
如图1、2、4,所述的气动回路部分,包括气源装置201、手动开关阀203、电气比例阀205、ABS电磁阀204、电气比例阀205、制动气室206、层流阻力管208、压差传感器209、等温容器211和压力传感器213。所述的气源装置201,包括气动空压机401、气动三联件402(一般是空气过滤器、减压阀和油雾器三种气源处理元件组装一起)、储气罐403;所述空压机401向气动回路供气,能够稳定供应1Mpa的气体压力;所述气动三联件402通过PA管接在空压机401出气口,主要用于过滤压缩气体中的杂质和水分;所述手动开关阀203,通过PA管直接与储气罐403进气口相连接,通过手动开关阀支架202固定于压力变化率测试台架上,是整个测试装置的供气总开关;所述储气罐403通过PA管接在手动开关阀203出气口处,用于储存气体,也有利于稳定测试过程中的气压,保证气动回路压力稳定;所述电气比例阀205,通过PA管与储气罐403出气口相连,电气比例阀205调压精度高,可电控,有利于通过上位机直接调节测试回路的气体压力,保证气动回路中的压力准确;所述ABS电磁阀204,直接与电气比例阀出气口相连接,通过ABS电磁阀支架214固定于压力变化率测试台架上,借助ABS电磁阀的功能,实现测试回路的压力变化,ABS电磁阀为电控的,有利于通过上位机直接控制;所述制动气室206,通过制动气室支架207固定于压力变化率测试台架上,制动气室206上有三个连接孔,1个进气孔和2个出气口,进气口与ABS电磁阀通过PA管相连,出气口分别与层流阻力管208和压差传感器209直接相连接,制动气室206可换为其它被测元器件,本实施例仅以制动气室为例进行描述;
所述层流阻力管208直接连接于制动气室206与等温容器211之间,其外部管体为PA管,其内部则填满长度与外部管体长度相同的毛细管,使得层流阻力管208中的流动为层流状态,有利于层流阻力管208出气端口压力稍晚变化,两端形成压力差;所述等温容器211,内部恒温,有利于在测试过程中减小温度变化造成的误差。
所述的压差传感器209直接连接于制动气室206与等温容器211之间,用于测量制动气室206与等温容器211间的压力差值;所述等温容器211为法兰形状,通过等温容器支架212固定于压力变化率测试台架上,等温容器211上有三个孔,其中一个法兰面有两个孔,分别连接层流阻力管208和压差传感器209,另一个面的孔用于连接压力传感器213,内部恒温,有利于在测试过程中减小温度变化造成的误差;所述压力传感器213与等温容器连接,用于测量等温容器的压力值。
如附图3所示为本发明的控制系统和原理图。包括信号处理部分、数据处理部分和控制装置。
所述信号处理部分,包括滤波电路和NI采集卡;所述滤波电路与NI采集卡404、ABS电磁阀204、电气比例阀205、压差传感器209和压力传感器213相连气动回路中元器件的信号线相连接,有利于所得信号较为平滑;所述NI采集卡与所述滤波电路和控制装置连接,其中压差传感器209的信号线通过滤波电路连接入NI采集卡404的A/D口,压力传感器213的信号线通过滤波电路连接入NI采集卡404的A/D口,NI采集卡404将上述信号进行采集并发送到所述控制装置,ABS电磁阀204的信号线通过继电器连接入NI采集卡404的D/A口,电气比例阀205的信号线通过继电器连接入NI采集卡404的D/A口,NI采集卡404接收并发送来自控制装置的信号,同时NI采集卡404的数学端口输出高低电频控制继电器来控制气动回路的ABS电磁阀204,NI采集卡404根据程序设置,输出对应的模拟量电压信号,电压值和压力值成比例控制,从而得到电气比例阀205输出口压力。
所述控制装置,包括控制器和接收装置,所述控制器采用上位机,用于控制所述气动回路部分中的ABS电磁阀204和电气比例阀205实时动作和对所得压差传感器209和压力传感器213的测试数据进行处理,得到被测商用车电控气压制动系统元件的制动压力变化率;所述接收装置与NI采集卡404连接,用于接收所述被测商用车电控气压制动系统元件的所述测试数据并传输给所述控制器。
根据图4的本发明的结构原理图可以看到,本发明商用车电控气压制动系统元件压力变化率测试装置的工作过程包括:
试运转前,排放各处冷凝水,手动开关阀203或截止阀应处于关闭状态,各处输出压力应为零,手动开关阀203中油雾器的节流阀应全闭。
下面以制动气室206为测试对象,对压力变化率的测试进行说明,打开空压机401,使压缩空气进入气动三联件402,过滤得到干净的压缩气体;打开手动开关阀203,使干净的压缩气体进入储气罐403,压缩空气充满储气罐403,保证测试过程的气压稳定;通过上位机405控制电气比例阀205,令储气罐403的出口压力可以达到0.7MPa,在通过上位机405控制ABS电磁阀204,采集压力传感器213和压差传感器209的压力信号,从而对制动气室206分别进行升压试验、降压试验和保压试验。
所述升压试验如下:上位机405发出控制信号,控制ABS电磁阀204的进气电磁阀和排气电磁阀门均断电,此时ABS电磁阀204的进气口和出气口相通,制动气室充气,制动气室的压力升高直至稳定,在此过程中,通过NI采集卡404,采集压力传感器213测得的等温容器211的实时压力以及压差传感器209的压力信号,并发送给上位机405,通过程序运算,得到充气过程中制动气室206的压力变化率的实时数据和图像。
所述降压试验如下:上位机控405发出控制信号,控制ABS电磁阀204的进气电磁阀和排气电磁阀门均通电,ABS电磁阀204的进气口被封住,出气口与排气口相连通,制动气室排气,制动气室的压力下降直至稳定,在此过程中,通过NI采集卡404,采集压力传感器213测得的等温容器211的实时压力以及压差传感器209的压力信号,并发送给上位机405,通过程序运算,得到排气过程中制动气室206的压力变化率的实时数据和图像。
所述保压试验如下:上位机控405发出控制信号,控制ABS电磁阀204的进气电磁阀通电,排气电磁阀门断电,ABS电磁阀204的进气口和出气口都被封住,制动气室呈保压状态,在此过程中,通过NI采集卡404,采集压力传感器213测得的等温容器211的实时压力以及压差传感器209的压力信号,并发送给上位机405,通过程序运算,得到保压过程中制动气室206的压力变化率的实时数据和图像。
以上所述实施例只是本发明的优选实施方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的技术特征作替代和变形,这些替代和变形均在本发明的保护范围内。

Claims (10)

  1. 一种商用车电控气压制动系统元件压力变化率测试装置,其特征在于包括:
    压力变化率测试台架,包括由台架面板和绝缘橡胶垫构成的绝缘操作台、设置在绝缘操作台上用于固定各种元器件和组件的专用支架;
    气动回路,通过专用支架安装在压力变化率测试台架上,相互间通过管路或弯头连接,用于控制气体通断及检测被测商用车电控气压制动系统元件的压力变化率;
    信号处理部分,包括滤波电路和NI采集卡,用于采集压力信号和压差信号,以及将信号进行模拟量和数字量的转换,形成可以供上层控制器和下层执行元件可识别的信号;
    控制装置,与气动回路通信,通过设置控制参数,驱动气动回路中的元器件动作,从而获取气动回路中被测商用车电控气压制动系统元件的测试数据;所述的测试数据包括被测商用车电控气压制动系统元件的制动压力变化率信息和压力信息。
  2. 根据权利要求1所述的商用车电控气压制动系统元件压力变化率测试装置,其特征在于所述的气动回路包括气源装置、手动开关阀、电气比例阀、ABS电磁阀、电气比例阀、制动气室、层流阻力管、压差传感器、等温容器和压力传感器;
    所述的气源装置包括向气动回路供气的气动空压机、用于过滤压缩气体中的杂质和水分的气动三联件、储气罐;所述气动三联件通过PA管接在空压机出气口,手动开关阀通过PA管直接与储气罐进气口相连接,储气罐通过PA管接在手动开关阀出气口处;电气比例阀通过PA管与储气罐出气口相连;ABS电磁阀直接与电气比例阀出气口相连接;制动气室上有三个连接孔,其中包括1个进气孔和2个出气口,进气口与ABS电磁阀通过PA管相连,出气口分别与层流阻力管和压差传感器直接相连接;所述层流阻力管直接连接于制动气室与等温容器之间;所述的压差传感器直接连接于制动气室与等温容器之间。
  3. 根据权利要求2所述的商用车电控气压制动系统元件压力变化率测试装置,其特征在于所述层流阻力管的外部管体为PA管,内部则填满长度与外部管体长度相同的毛细管,使得层流阻力管中的流动为层流状态,层流阻力管出气端口压力相对于进气端口稍晚变化,两端形成压力差。
  4. 根据权利要求2所述的商用车电控气压制动系统元件压力变化率测试装置,其特征在于所述等温容器内部恒温,用于在测试过程中减小温度变化造成的误差;所述等温容器为法兰形状,通过等温容器支架固定于压力变化率测试台架上,等温容器设置两个法兰面,其中一个法兰面有两个孔,分别连接层流阻力管和压差传感器,另一个法兰面设置一个孔用于连接压力传感器。
  5. 根据权利要求2所述的商用车电控气压制动系统元件压力变化率测试装置,其特征在于 所述的压差传感器用于测量制动气室与等温容器间的压力差值。
  6. 根据权利要求1所述的商用车电控气压制动系统元件压力变化率测试装置,其特征在于所述滤波电路与所述NI采集卡和所述气动回路中元器件的信号线相连接;所述NI采集卡与所述滤波电路和所述控制装置连接,用于将气动回路中的信号进行采集并发送到所述控制装置,同时接收和发送来自所述控制装置的信号来控制所述气动回路的元器件。
  7. 根据权利要求6所述的商用车电控气压制动系统元件压力变化率测试装置,其特征在于所述滤波电路与NI采集卡、ABS电磁阀、电气比例阀、压差传感器和压力传感器的信号线相连接;所述NI采集卡与所述滤波电路和控制装置连接,其中压差传感器的信号线通过滤波电路连接入NI采集卡的A/D口,压力传感器的信号线通过滤波电路连接入NI采集卡的A/D口,NI采集卡将上述压力传感器的信号进行采集并发送到所述控制装置;ABS电磁阀的信号线通过继电器连接入NI采集卡的D/A口,电气比例阀的信号线通过继电器连接入NI采集卡的D/A口,NI采集卡接收并发送来自控制装置的信号,同时NI采集卡的数学端口输出高低电频控制继电器来控制气动回路的ABS电磁阀,NI采集卡根据程序设置,输出对应的模拟量电压信号,电压值和压力值成比例控制,从而得到电气比例阀输出口压力。
  8. 根据权利要求1所述的商用车电控气压制动系统元件压力变化率测试装置,其特征在于所述控制装置包括控制器和接收装置,所述控制器采用上位机,用于控制所述气动回路部分中的ABS电磁阀和电气比例阀实时动作和对所得压差传感器和压力传感器的测试数据进行处理,得到被测商用车电控气压制动系统元件的制动压力变化率;所述接收装置与NI采集卡连接,用于接收所述被测商用车电控气压制动系统元件的所述测试数据并传输给所述控制器。
  9. 一种商用车电控气压制动系统元件压力变化率测试方法,其特征在于采用上述权利要求1-8任一项所述的商用车电控气压制动系统元件压力变化率测试装置,所述方法包括以下步骤:
    输入所述控制参数并发送给气动回路中的元器件;
    根据所述控制参数控制气动回路中的元器件,使得所述被测商用车电控气压制动系统元件按照控制参数进行所述的测试检测;
    根据测试检测过程中获得的所述测试数据,分析处理得到所述被测商用车电控气压制动系统元件的压力变化率。
  10. 根据权利要求9所述的商用车电控气压制动系统元件压力变化率测试方法,其特征在于测试制动气室的压力变化率时,包括如下步骤:
    试运转前,排放各处冷凝水,手动开关阀处于关闭状态,各处输出压力应为零;
    打开空压机使压缩空气进入气动三联件,过滤得到干净的压缩气体;打开手动开关阀,使干净的压缩气体进入储气罐,压缩空气充满储气罐,保证测试过程的气压稳定;通过上位机控制电气比例阀,令储气罐的出口压力可以达到0.7MPa,在通过上位机控制ABS电磁阀,采集压力传感器和压差传感器的压力信号,从而对制动气室分别进行升压试验、降压试验和保压试验:
    所述升压试验如下:上位机发出控制信号,控制ABS电磁阀的进气电磁阀和排气电磁阀门均断电,此时ABS电磁阀的进气口和出气口相通,制动气室充气,制动气室的压力升高直至稳定,在此过程中,通过NI采集卡,采集压力传感器测得的等温容器的实时压力以及压差传感器的压力信号,并发送给上位机,通过上位机运算,得到充气过程中制动气室的压力变化率的实时数据和图像;
    所述降压试验如下:上位机控发出控制信号,控制ABS电磁阀的进气电磁阀和排气电磁阀门均通电,ABS电磁阀的进气口被封住,出气口与排气口相连通,制动气室排气,制动气室的压力下降直至稳定,在此过程中,通过NI采集卡,采集压力传感器测得的等温容器的实时压力以及压差传感器的压力信号,并发送给上位机,通过上位机运算,得到排气过程中制动气室的压力变化率的实时数据和图像;
    所述保压试验如下:上位机控发出控制信号,控制ABS电磁阀的进气电磁阀通电,排气电磁阀门断电,ABS电磁阀的进气口和出气口都被封住,制动气室呈保压状态,在此过程中,通过NI采集卡,采集压力传感器测得的等温容器的实时压力以及压差传感器的压力信号,并发送给上位机,通过上位机运算,得到保压过程中制动气室的压力变化率的实时数据和图像。
PCT/CN2021/101970 2020-07-21 2021-06-24 商用车电控气压制动系统元件压力变化率测试装置及方法 WO2022017115A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/725,533 US11692891B2 (en) 2020-07-21 2022-04-20 Apparatus and method for testing pressure change rate of component in electro-pneumatic braking system of commercial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010703475.2 2020-07-21
CN202010703475.2A CN111855070B (zh) 2020-07-21 2020-07-21 商用车电控气压制动系统元件压力变化率测试装置及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/725,533 Continuation US11692891B2 (en) 2020-07-21 2022-04-20 Apparatus and method for testing pressure change rate of component in electro-pneumatic braking system of commercial vehicle

Publications (1)

Publication Number Publication Date
WO2022017115A1 true WO2022017115A1 (zh) 2022-01-27

Family

ID=73001618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101970 WO2022017115A1 (zh) 2020-07-21 2021-06-24 商用车电控气压制动系统元件压力变化率测试装置及方法

Country Status (3)

Country Link
US (1) US11692891B2 (zh)
CN (1) CN111855070B (zh)
WO (1) WO2022017115A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111855070B (zh) * 2020-07-21 2022-03-01 武汉理工大学 商用车电控气压制动系统元件压力变化率测试装置及方法
CN113358967A (zh) * 2021-06-29 2021-09-07 青岛思锐科技有限公司 试验台电气试验方法及系统
CN113479182A (zh) * 2021-07-19 2021-10-08 武汉理工大学 危险品半挂运输车制动气室压力变化率监控方法与系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6754568B1 (en) * 2001-03-16 2004-06-22 Bendix Commercial Vehicle Systems Llc Brake response analysis system
CN101825514A (zh) * 2010-05-21 2010-09-08 北京理工大学 一种流量式泄漏检测方法及装置
CN202204685U (zh) * 2011-08-26 2012-04-25 广州市西合汽车电子装备有限公司 Abs调节器动态性能测试系统
CN105910833A (zh) * 2016-06-30 2016-08-31 吉林大学 一种气压制动过程测试系统及误差校正方法
CN109084991A (zh) * 2018-07-06 2018-12-25 武汉理工大学 一种商用车气压制动性能硬件在环测试系统与测试方法
CN111855070A (zh) * 2020-07-21 2020-10-30 武汉理工大学 商用车电控气压制动系统元件压力变化率测试装置及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936153A (en) * 1997-06-30 1999-08-10 National Railroad Passenger Corporation Apparatus and method for testing brake actuator units used in railroad cars
DE10338859A1 (de) * 2002-08-22 2004-03-25 Continental Teves Ag & Co. Ohg Verfahren zur Bestimmung von Phasenverschiebungen von sinusförmigen Signalen gleicher Frequenz
US20070046098A1 (en) * 2005-08-31 2007-03-01 Bendix Commercial Vehicle Systems Llc Vehicle stability system diagnostic method
JP4661476B2 (ja) * 2005-09-14 2011-03-30 トヨタ自動車株式会社 車両用制動制御装置および車両用制動制御方法
DE102006039295A1 (de) * 2006-08-22 2008-03-13 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Anordnung zum Betrieb eines Sensors
CN101509834A (zh) * 2008-03-31 2009-08-19 北京航空航天大学 基于轮速闭环模拟的液压abs测试试验台
DE102014116714B3 (de) * 2014-11-14 2016-02-25 CS GmbH & Co. KG Bremsenprüfstand
CN104990713B (zh) * 2015-07-28 2017-05-17 江苏科技大学 一种汽车制动器总成疲劳试验台架
US10124777B2 (en) 2017-02-22 2018-11-13 Arnaldo C. Gomes Multiple-stage collision avoidance braking system and method
US10549739B2 (en) 2017-09-15 2020-02-04 Bendix Commercial Vehicle Systems Llc Towing vehicle controller using trailer braking strategy and trailer braking control method
CN110131041B (zh) * 2019-07-10 2019-10-18 潍柴动力股份有限公司 一种排气制动控制功能的故障检测方法及故障检测系统
CN111766060B (zh) * 2020-06-24 2022-04-15 武汉理工大学 一种电控气压制动系统自动调压阀的测试装置和测试方法
US20230015629A1 (en) * 2021-07-19 2023-01-19 Wuhan University Of Technology Pneumatic automatic pressure regulating valve for automatic driving of commercial vehicle and control method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6754568B1 (en) * 2001-03-16 2004-06-22 Bendix Commercial Vehicle Systems Llc Brake response analysis system
CN101825514A (zh) * 2010-05-21 2010-09-08 北京理工大学 一种流量式泄漏检测方法及装置
CN202204685U (zh) * 2011-08-26 2012-04-25 广州市西合汽车电子装备有限公司 Abs调节器动态性能测试系统
CN105910833A (zh) * 2016-06-30 2016-08-31 吉林大学 一种气压制动过程测试系统及误差校正方法
CN109084991A (zh) * 2018-07-06 2018-12-25 武汉理工大学 一种商用车气压制动性能硬件在环测试系统与测试方法
CN111855070A (zh) * 2020-07-21 2020-10-30 武汉理工大学 商用车电控气压制动系统元件压力变化率测试装置及方法

Also Published As

Publication number Publication date
US11692891B2 (en) 2023-07-04
CN111855070B (zh) 2022-03-01
CN111855070A (zh) 2020-10-30
US20220244121A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
WO2022017115A1 (zh) 商用车电控气压制动系统元件压力变化率测试装置及方法
WO2021259325A1 (zh) 一种电控气压制动系统自动调压阀的测试装置和测试方法
CN107907280B (zh) Abs液压单元密封性能测试装置及其测试方法
CN109883724B (zh) 一种ebs双通道桥模块性能检测装置及检测方法
CN102507107B (zh) 用于测量车厢气密性的试验设备
CN111076961A (zh) 一种车用空气处理单元的检测系统及检测方法
CN110082098B (zh) 一种ebs挂车阀检测装置及检测方法
CN109883734B (zh) 制动控制系统试验台及试验方法
CN200962065Y (zh) 进气歧管压力传感器的检测装置
CN204085909U (zh) 一种新型转向架制动试验机
CN114216631B (zh) 一种汽车制动软管高低温气密性试验系统
CN204188392U (zh) 一种c电控空气悬架的台架试验装置
CN112284715A (zh) 一种车用高压氢气减压阀测试装置
CN214384532U (zh) 铁道车辆基础制动产品气动测试系统
CN209783897U (zh) 一种ebs挂车阀检测装置
WO2023000365A1 (zh) 危险品半挂运输车制动气室压力变化率监控方法与系统
CN211061137U (zh) 一种用于检测客车底盘制动系统气密性的装置
CN210573414U (zh) 散热器爆破试验系统
CN211651975U (zh) 一种低压管路保压内检测系统
CN109083888B (zh) 过滤器压差报警功能的检测装置及检测方法
JP2000231410A (ja) 車両における制御装置のモニタ方法および装置
CN209280209U (zh) 一种防止汽车漏油的人工智能检测装置
CN112985853A (zh) 铁道车辆基础制动产品气动测试系统
RU116815U1 (ru) Устройство для подкачки шины автомобиля
CN207007475U (zh) 脚制动阀响应时间试验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21846168

Country of ref document: EP

Kind code of ref document: A1