WO2022016763A1 - 一种含Ni的CuS/C复合材料的制备方法及应用 - Google Patents

一种含Ni的CuS/C复合材料的制备方法及应用 Download PDF

Info

Publication number
WO2022016763A1
WO2022016763A1 PCT/CN2020/131395 CN2020131395W WO2022016763A1 WO 2022016763 A1 WO2022016763 A1 WO 2022016763A1 CN 2020131395 W CN2020131395 W CN 2020131395W WO 2022016763 A1 WO2022016763 A1 WO 2022016763A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
composite material
copper
preparing
cus
Prior art date
Application number
PCT/CN2020/131395
Other languages
English (en)
French (fr)
Inventor
李雪
张英杰
程宏宇
黎永泰
张义永
曾晓苑
肖杰
韦克毅
Original Assignee
昆明理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆明理工大学 filed Critical 昆明理工大学
Publication of WO2022016763A1 publication Critical patent/WO2022016763A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method for preparing metal sulfide by using nickel-doped copper-based metal organic framework material, which is applied to a lithium-sulfur battery energy storage system. Specifically, it relates to a preparation method and application of a Ni-containing CuS/C composite material.
  • Lithium-ion energy storage system batteries have received great attention and development due to their high specific energy density, long cycle life and good safety performance.
  • the lithium-sulfur battery uses sulfur as the positive electrode of the battery and metal lithium as the negative electrode. Because of its low cost, high theoretical specific capacity (1675 mA/hg) and energy density (2600 Wh/kg) ), considered to be one of the most promising next-generation energy storage batteries.
  • lithium-sulfur batteries suffer from capacity fading caused by the shuttle of polysulfide ions and poor rate performance caused by the insulating properties of elemental sulfur and Li2S, which seriously hinder the development and application of lithium-sulfur batteries.
  • the current research on lithium-sulfur batteries is mainly to compound sulfur with carbon materials, or compound sulfur with organic compounds, which can solve the problems of non-conductivity and volume expansion of sulfur.
  • metal sulfide/carbon composites have the characteristics of higher theoretical capacity, good electrical conductivity, and chemical sulfur fixation.
  • the addition of materials with good conductivity is beneficial to improve the rate performance of the battery, and the strong adsorption capacity of polysulfide ions can inhibit the shuttle effect of polysulfide ions.
  • Copper sulfide/carbon composites are promising cathode materials for lithium-ion batteries due to their low cost, high theoretical capacity and diverse synthesis methods, and have received extensive attention from researchers.
  • the commonly used methods for synthesizing metal sulfide/carbon composites are hydrothermal method and solvothermal method.
  • the existing metal sulfide/carbon composite material is generated under high temperature and high pressure reaction, the shape and size are not uniform, the crystallinity is not high, and the composite material is not tightly combined.
  • the structure of the carbon frame is not enough to meet the volume expansion of the metal sulfide in the electrochemical reaction, which leads to the powdering of the electrode and the easy detachment and separation of the metal sulfide and carbon, which makes the material electrically Chemical properties are reduced.
  • the sulfur source of the hydrothermal method and the solvothermal method is generally organic sulfur, which is easy to produce polluted gas and by-products, and under the condition of high temperature and high pressure, the equipment requirements are high and the process is complicated.
  • the present invention utilizes the self-made nickel-doped copper-based metal organic framework material to be prepared into a Ni-containing CuS/C composite material by sulfidation carbonization.
  • the carbon composite prepared in-situ not only makes the material morphology more uniform, but also makes the material bond more closely.
  • Ni-containing CuS/C composites can effectively use bimetallic elements to absorb polysulfide ions, effectively It can reduce the problems of polysulfur shuttle, volume expansion, capacity decay and uneven morphology, and can improve the conductivity of materials, and comprehensively improve the energy storage performance of lithium-sulfur batteries.
  • the preparation method of the Ni-containing CuS/C composite material of the present invention comprises the following steps:
  • the copper-nickel metal salts can be nitrates, sulfates, chlorides, and the copper salts and nickel salts should be similar metal salts, so The molar ratio of Cu2+ and Ni2+ in the copper-nickel ion mixture is 1:3 ⁇ 3:1;
  • Step 3 Preparation of precursor: place the precursor reaction solution obtained in step 2) in a reaction kettle, and conduct a crystallization reaction at a temperature of 90-180° C. for 16 hours to obtain a precursor;
  • Precursor activation treatment place the precursor obtained in step 4) in a 160°C vacuum oven for activation treatment;
  • Precursor vulcanization-carbonization treatment add the activated precursor obtained in step 5) and the high-purity sulfur powder in a molar ratio of 1:1 into a high-energy ball mill and mix for 2 h to obtain a mixed precursor, and then place the mixed precursor in a high-energy ball mill.
  • Ni-containing CuS/C composites were obtained by calcining at the sulfidation-carbonization temperature for 2 h in an argon-protected tube furnace.
  • the molar ratio of Cu in the copper-nickel metal ion solution of the step 1) and Ni is 1: 1 ⁇ 3.
  • the purity of the solute 1,3,5-benzenetricarboxylic acid is 98%.
  • the solvent is N,N-dimethylformamide, or a mixture of absolute ethanol and purified water in a volume ratio of 1:1, or N,N-dimethylformamide , a mixture of absolute ethanol and purified water in a volume ratio of 1:1:1 ⁇ 1:1:5
  • the volume ratio of N,N-dimethylformamide, absolute ethanol and purified water is 1:1:5.
  • the precursor is placed in a vacuum oven at 160° C. for activation treatment for 12 hours.
  • the sulfidation-carbonization temperature is 350°C to 800°C.
  • the purity of the sulfur powder is 99.95%.
  • the mixing method of the activated precursor and the sulfur powder in the high-energy ball mill is as follows: using zirconia balls with a particle size of 5 mm and a particle size of 1 cm in a mass ratio of 1:1 as the ball material, The activated precursor and sulfur powder with a molar ratio of 1:1 are used as materials, and then the ball material and the material are milled at a mass ratio of 20:1 under the protection of argon at a speed of 300-500r/min for 2 hours to obtain a mixed precursor.
  • the activated precursor and the sulfur powder are ground in a high-energy ball mill under the protection of argon at a speed of 500 r/min for 2 h to obtain a mixed precursor.
  • Ni-containing CuS/C composite material provided by the present invention is applied to the positive electrode material of a lithium-sulfur battery.
  • the metal grows in-situ on the carbon frame and can be stably and uniformly distributed:
  • the metal ion forms a stable chemical bond with the organic reagent during the preparation process, so that the metal is on the carbon frame. It grows in-situ and can be stably and uniformly distributed, which solves the problem of uneven distribution of metals, easy agglomeration, poor physical and chemical uniformity of materials, and poor battery physical and chemical uniformity due to the absence of chemical bonds between metals and carbon when the existing process prepares copper sulfide/carbon composite materials. The problem of poor uniformity.
  • the Ni-containing CuS/C composite material of the present invention has a unique porous structure, which can provide more active sites for electrochemical reactions, and good electrical conductivity is conducive to improving the battery's performance. rate capability, and the volume expansion due to the electrochemical reaction can be suppressed due to the carbon framework confinement;
  • Bi-metal ions fix sulfur the Ni-containing CuS/C composite material of the present invention, gold has copper and nickel double metal ion bonds to fix sulfur, and has strong adsorption capacity for polysulfide ions, which can effectively suppress the shuttle problem of polysulfide ions .
  • Bimetal ions synergistically inhibit volume expansion The Ni-containing CuS/C composite material of the present invention is beneficial to inhibit volume expansion and improve the electrochemical performance of the battery due to the synergistic effect of nickel and copper bimetals.
  • the process is simple, environmentally friendly, and does not require high temperature and high pressure: the process adopted in the present invention can directly use pure sulfur as the sulfur source, which is not easy to generate polluting gas and by-products, and does not require high temperature and high pressure conditions, and the operation can be completed in an ordinary laboratory.
  • Fig. 1 is the XRD pattern of the precursor material obtained in step 4) of Example 1;
  • Fig. 2 is the SEM image of the precursor material obtained in step 4) of Example 1;
  • Example 3 is the XRD pattern of the Ni-containing CuS/C composite obtained in Example 1;
  • FIG. 4 is a SEM image of the Ni-containing CuS/C composite material obtained in Example 1.
  • FIG. 4 is a SEM image of the Ni-containing CuS/C composite material obtained in Example 1.
  • a preparation method of Ni-containing CuS/C composite material comprising the following steps:
  • Preparation of precursor reaction solution use a mixture of N,N-dimethylformamide, anhydrous ethanol and purified water in a volume ratio of 1:1:5 as a solvent, and use 98% pure 1,3, 5-benzenetricarboxylic acid is the solute. After magnetic stirring, a mixed solution with a concentration of 0.1 mol/L of 1,3,5-benzenetricarboxylic acid is obtained, and then 60 ml of the mixed solution is added to 20 ml of the copper-nickel obtained in step 1). In the ionic mixture, magnetic stirring and mixing for 20min to obtain the precursor reaction solution;
  • step 3 Preparation of precursor: the precursor reaction solution obtained in step 2) is placed in a reaction kettle, and the reaction is crystallized at a temperature of 100 ° C for 16 hours to obtain a precursor;
  • Step 5 Precursor activation treatment: The precursor obtained in step 4) was placed in a 160°C vacuum oven for activation treatment for 12 hours;
  • Precursor vulcanization - carbonization treatment add the activated precursor obtained in step 5) and sulfur powder with a purity of 99.95% into a high-energy ball mill in a molar ratio of 1:1 and mix for 2 h to obtain a mixed precursor.
  • the body was placed in a tube furnace protected by argon gas, and calcined at a sulfidation-carbonization temperature of 350 °C for 2 h to obtain Ni-containing CuS/C composites.
  • the mixing method of the activated precursor and the sulfur powder in the high-energy ball mill is as follows: using zirconia balls with a particle size of 5 mm and a particle size of 1 cm in a mass ratio of 1:1 as the ball material, and the molar The activated precursor and sulfur powder with a ratio of 1:1 are used as materials, and then the ball material and the material are milled at a mass ratio of 20:1 under the protection of argon at a speed of 500r/min for 2 hours to obtain a mixed precursor.
  • the XRD pattern of the precursor material obtained in step (4) of this example is shown in Figure 1, and the ICP-AES results are shown below, which proves that the precursor material obtained in step (4) is a nickel-doped copper-based metal material, and a copper-based material Predominantly, the nickel base is only lightly doped.
  • the copper-nickel content of nickel-doped copper-based metal organic frameworks was determined:
  • FIG. 2 The SEM image of the precursor material obtained in step (4) of this embodiment is shown in FIG. 2 , FIG. 2( a ) is 500 times magnification, and FIG. 2( b ) is 5000 times magnification. It can be clearly seen that the precursor produced by the method of the present invention has a regular octahedral morphology, and its average grain size is 25 ⁇ m.
  • the XRD pattern of the Ni-containing CuS/C composite material obtained in step (6) of this example is shown in Figure 3, and the peaks in the figure all correspond to the copper sulfide peak and the amorphous carbon peak, indicating that the prepared material is sulfide Composite of copper and carbon.
  • FIG. 4(a) is a magnification of 1000 times
  • Figure 4(b) is a magnification of 5000 times.
  • the average particle size of the product is 25 ⁇ m, and the regular shape of the octahedron is collapsed, but the rough shape of the octahedral block is still maintained.
  • the Ni-containing CuS/C composite obtained in step 6) is used as the positive electrode, lithium metal is used as the negative electrode, and the solvent is a mixed solution of ethylene glycol dimethyl ether (DME) and 1,3-dioxolane (DOL).
  • DME ethylene glycol dimethyl ether
  • DOL 1,3-dioxolane
  • a preparation method of Ni-containing CuS/C composite material comprising the following steps:
  • step 3 Preparation of precursor: the precursor reaction solution obtained in step 2) is placed in a reaction kettle, and the reaction is crystallized at a temperature of 90 ° C for 16 hours to obtain a precursor;
  • Step 5 Precursor activation treatment: The precursor obtained in step 4) was placed in a 160°C vacuum oven for activation treatment for 12 hours;
  • Precursor vulcanization - carbonization treatment add the activated precursor obtained in step 5) and sulfur powder with a purity of 99.95% into a high-energy ball mill in a molar ratio of 1:1 and mix for 2 h to obtain a mixed precursor.
  • the body was placed in a tube furnace protected by argon gas, and calcined at a sulfidation-carbonization temperature of 350 °C for 2 h to obtain Ni-containing CuS/C composites.
  • the mixing method of the activated precursor and the sulfur powder in the high-energy ball mill is as follows: using zirconia balls with a particle size of 5 mm and a particle size of 1 cm in a mass ratio of 1:1 as the ball material, and the molar The activated precursor and sulfur powder with a ratio of 1:1 are used as materials, and then the ball material and the material are milled at a mass ratio of 20:1 under the protection of argon at a speed of 450r/min for 2 hours to obtain a mixed precursor.
  • the test method of this example is the same as that of Example 1, and the specific characterization is shown in the comparison of the test results of the composite material.
  • the phase characterization proves the existence of CuS and S; the SEM morphology shows that the average particle size is 26 ⁇ m and the shape of the octahedron; After 50 cycles in the blue electrochemical performance test, its reversible capacity is 989. mAh/g.
  • a preparation method of Ni-containing CuS/C composite material comprising the following steps:
  • precursor reaction solution a mixture of absolute ethanol and purified water in a volume ratio of 1:1 is used as solvent, and 1,3,5-benzenetricarboxylic acid with a purity of 98% is used as solute, and the mixture is uniformly stirred by magnetic force. Then, a mixed solution with a concentration of 1,3,5-benzenetricarboxylic acid of 0.1 mol/L was obtained, and then 60 ml of the mixed solution was added to 20 ml of the copper-nickel ion mixed solution obtained in step 1), and the mixture was magnetically stirred for 20 minutes to obtain the precursor. body reaction fluid;
  • step 3 Preparation of precursor: the precursor reaction solution obtained in step 2) is placed in a reaction kettle, and the reaction is crystallized at a temperature of 100 ° C for 16 hours to obtain a precursor;
  • Step 5 Precursor activation treatment: The precursor obtained in step 4) was placed in a 160°C vacuum oven for activation treatment for 12 hours;
  • Precursor vulcanization - carbonization treatment add the activated precursor obtained in step 5) and sulfur powder with a purity of 99.95% into a high-energy ball mill in a molar ratio of 1:1 and mix for 2 h to obtain a mixed precursor.
  • the body was placed in a tube furnace protected by argon gas, and calcined at a sulfidation-carbonization temperature of 500 °C for 2 h to obtain Ni-containing CuS/C composites.
  • the mixing method of the activated precursor and the sulfur powder in the high-energy ball mill is as follows: using zirconia balls with a particle size of 5 mm and a particle size of 1 cm in a mass ratio of 1:1 as the ball material, and the molar The activated precursor and sulfur powder with a ratio of 1:1 are used as materials, and then the ball material and the material are ground at a mass ratio of 20:1 under the protection of argon at a speed of 400r/min for 2 hours to obtain a mixed precursor.
  • the test method of this example is the same as that of Example 1.
  • the specific characterization is shown in the comparison of the test results of the composite material.
  • the phase characterization proves the existence of Cu 1.8 S and S; After 50 cycles of electrochemical performance test, its reversible capacity was 897 mAh/g.
  • a preparation method of Ni-containing CuS/C composite material comprising the following steps:
  • precursor reaction solution a mixture of absolute ethanol and purified water in a volume ratio of 1:1 is used as solvent, and 1,3,5-benzenetricarboxylic acid with a purity of 98% is used as solute, and the mixture is uniformly stirred by magnetic force. Then, a mixed solution with a concentration of 1,3,5-benzenetricarboxylic acid of 0.1 mol/L was obtained, and then 60 ml of the mixed solution was added to 20 ml of the copper-nickel ion mixed solution obtained in step 1), and the mixture was magnetically stirred for 20 minutes to obtain the precursor. body reaction fluid;
  • step 3 Preparation of precursor: the precursor reaction solution obtained in step 2) is placed in a reaction kettle, and the reaction is crystallized at a temperature of 130 ° C for 16 hours to obtain a precursor;
  • Step 5 Precursor activation treatment: The precursor obtained in step 4) was placed in a 160°C vacuum oven for activation treatment for 12 hours;
  • Precursor vulcanization - carbonization treatment add the activated precursor obtained in step 5) and sulfur powder with a purity of 99.95% into a high-energy ball mill in a molar ratio of 1:1 and mix for 2 h to obtain a mixed precursor.
  • the body was placed in a tube furnace protected by argon gas, and calcined at a sulfidation-carbonization temperature of 500 °C for 2 h to obtain Ni-containing CuS/C composites.
  • the mixing method of the activated precursor and the sulfur powder in the high-energy ball mill is as follows: using zirconia balls with a particle size of 5 mm and a particle size of 1 cm in a mass ratio of 1:1 as the ball material, and the molar The activated precursor and sulfur powder with a ratio of 1:1 are used as materials, and then the ball material and the material are ground at a mass ratio of 20:1 under the protection of argon at a speed of 400r/min for 2 hours to obtain a mixed precursor.
  • the test method of this example is the same as that of Example 1.
  • the specific characterization is shown in the comparison of the test results of the composite material.
  • the phase characterization proves the existence of Cu 1.8 S and S; After 50 cycles in the blue electro-chemical performance test, the cyclic reversible capacity was 876 mAh/g.
  • a preparation method of Ni-containing CuS/C composite material comprising the following steps:
  • N,N-dimethylformamide is used as solvent, 1,3,5-benzenetricarboxylic acid with purity of 98% is used as solute, and 1,3,5-benzene is obtained after uniform magnetic stirring
  • a mixed solution with a concentration of triformic acid of 0.1 mol/L was added, and 60 ml of the mixed solution was added to 20 ml of the copper-nickel ion mixed solution obtained in step 1), and the mixture was magnetically stirred for 20 min to obtain a precursor reaction solution;
  • Step 3 Preparation of precursor: put the precursor reaction solution obtained in step 2) in a reaction kettle, and conduct a crystallization reaction at a temperature of 180 ° C for 16 hours to obtain a precursor;
  • Step 5 Precursor activation treatment: The precursor obtained in step 4) was placed in a 160°C vacuum oven for activation treatment for 12 hours;
  • Precursor vulcanization - carbonization treatment add the activated precursor obtained in step 5) and sulfur powder with a purity of 99.95% into a high-energy ball mill in a molar ratio of 1:1 and mix for 2 h to obtain a mixed precursor.
  • the body was placed in a tube furnace protected by argon gas, and calcined at a sulfidation-carbonization temperature of 800 °C for 2 h to obtain Ni-containing CuS/C composites.
  • the mixing method of the activated precursor and the sulfur powder in the high-energy ball mill is as follows: using zirconia balls with a particle size of 5 mm and a particle size of 1 cm in a mass ratio of 1:1 as the ball material, and the molar The activated precursor and sulfur powder with a ratio of 1:1 are used as materials, and then the ball material and the material are milled at a mass ratio of 20:1 under the protection of argon at a speed of 500r/min for 2 hours to obtain a mixed precursor.
  • the test method of this example is the same as that of Example 1.
  • the specific characterization is shown in the comparison of the test results of the composite material.
  • the phase characterization proves the existence of Cu 2 S, CuO and S; the SEM morphology shows that the average particle size is 35 ⁇ m, octahedral After 50 cycles in the blue electro-chemical performance test, its reversible capacity was 517 mAh/g.
  • a preparation method of Ni-containing CuS/C composite material comprising the following steps:
  • precursor reaction solution a mixture of absolute ethanol and purified water in a volume ratio of 1:1 is used as solvent, and 1,3,5-benzenetricarboxylic acid with a purity of 98% is used as solute, and the mixture is uniformly stirred by magnetic force. Then, a mixed solution with a concentration of 1,3,5-benzenetricarboxylic acid of 0.1 mol/L was obtained, and then 60 ml of the mixed solution was added to 20 ml of the copper-nickel ion mixed solution obtained in step 1), and the mixture was magnetically stirred for 20 minutes to obtain the precursor. body reaction fluid;
  • step 3 Preparation of precursor: the precursor reaction solution obtained in step 2) is placed in a reaction kettle, and the reaction is crystallized at a temperature of 90 ° C for 16 hours to obtain a precursor;
  • Step 5 Precursor activation treatment: The precursor obtained in step 4) was placed in a 160°C vacuum oven for activation treatment for 12 hours;
  • Precursor vulcanization - carbonization treatment add the activated precursor obtained in step 5) and sulfur powder with a purity of 99.95% into a high-energy ball mill in a molar ratio of 1:1 and mix for 2 h to obtain a mixed precursor.
  • the body was placed in a tube furnace protected by argon gas, and calcined at a sulfidation-carbonization temperature of 350 °C for 2 h to obtain Ni-containing CuS/C composites.
  • the mixing method of the activated precursor and the sulfur powder in the high-energy ball mill is as follows: using zirconia balls with a particle size of 5 mm and a particle size of 1 cm in a mass ratio of 1:1 as the ball material, and the molar The activated precursor and sulfur powder with a ratio of 1:1 are used as materials, and then the ball material and the material are milled at a mass ratio of 20:1 under the protection of argon at a speed of 300r/min for 2 hours to obtain a mixed precursor.
  • the test method of this example is the same as that of Example 1, and the specific characterization is shown in the comparison of the test results of the composite materials.
  • the phase characterization proves the existence of CuS and S; the SEM morphology is rod-like, and its average length is 25 ⁇ m; After 50 cycles of performance test, its reversible capacity was 945 mAh/g.
  • a preparation method of Ni-containing CuS/C composite material comprising the following steps:
  • Preparation of precursor reaction solution use a mixture of N,N-dimethylformamide, anhydrous ethanol and purified water in a volume ratio of 1:1:5 as a solvent, and use 98% pure 1,3, 5-benzenetricarboxylic acid is the solute. After magnetic stirring, a mixed solution with a concentration of 0.1 mol/L of 1,3,5-benzenetricarboxylic acid is obtained, and then 60 ml of the mixed solution is added to 20 ml of the copper-nickel obtained in step 1). In the ionic mixture, magnetic stirring and mixing for 20min to obtain the precursor reaction solution;
  • step 3 Preparation of precursor: the precursor reaction solution obtained in step 2) is placed in a reaction kettle, and the reaction is crystallized at a temperature of 100 ° C for 16 hours to obtain a precursor;
  • Step 5 Precursor activation treatment: The precursor obtained in step 4) was placed in a 160°C vacuum oven for activation treatment for 12 hours;
  • Precursor vulcanization - carbonization treatment add the activated precursor obtained in step 5) and sulfur powder with a purity of 99.95% into a high-energy ball mill in a molar ratio of 1:1 and mix for 2 h to obtain a mixed precursor.
  • the body was placed in a tube furnace protected by argon gas, and calcined at a sulfidation-carbonization temperature of 500 °C for 2 h to obtain Ni-containing CuS/C composites.
  • the mixing method of the activated precursor and the sulfur powder in the high-energy ball mill is as follows: using zirconia balls with a particle size of 5 mm and a particle size of 1 cm in a mass ratio of 1:1 as the ball material, and the molar The activated precursor and sulfur powder with a ratio of 1:1 are used as materials, and then the ball material and the material are milled at a mass ratio of 20:1 under the protection of argon at a speed of 300r/min for 2 hours to obtain a mixed precursor.
  • the test method of this example is the same as that of Example 1.
  • the specific characterization is shown in the comparison of the test results of the composite materials.
  • the phase characterization proves the existence of Cu 1.8 S and S; After 50 cycles in the blue electro-chemical performance test, the cyclic reversible capacity was 679 mAh/g.
  • a preparation method of Ni-containing CuS/C composite material comprising the following steps:
  • step 3 Preparation of precursor: the precursor reaction solution obtained in step 2) is placed in a reaction kettle, and the reaction is crystallized at a temperature of 130 ° C for 16 hours to obtain a precursor;
  • Step 5 Precursor activation treatment: The precursor obtained in step 4) was placed in a 160°C vacuum oven for activation treatment for 12 hours;
  • Precursor vulcanization - carbonization treatment add the activated precursor obtained in step 5) and sulfur powder with a purity of 99.95% into a high-energy ball mill in a molar ratio of 1:1 and mix for 2 h to obtain a mixed precursor.
  • the body was placed in a tube furnace protected by argon gas, and calcined at a sulfidation-carbonization temperature of 800 °C for 2 h to obtain Ni-containing CuS/C composites.
  • the mixing method of the activated precursor and the sulfur powder in the high-energy ball mill is as follows: using zirconia balls with a particle size of 5 mm and a particle size of 1 cm in a mass ratio of 1:1 as the ball material, and the molar The activated precursor and sulfur powder with a ratio of 1:1 are used as materials, and then the ball material and the material are milled at a mass ratio of 20:1 under the protection of argon at a speed of 300r/min for 2 hours to obtain a mixed precursor.
  • the test method of this example is the same as that of Example 1.
  • the specific characterization is shown in the comparison of the test results of the composite material.
  • the phase characterization proves the existence of Cu 2 S and S; After 50 cycles in the blue electro-chemical performance test, its reversible capacity was 757 mAh/g.
  • a preparation method of Ni-containing CuS/C composite material comprising the following steps:
  • step 3 Preparation of precursor: the precursor reaction solution obtained in step 2) is placed in a reaction kettle, and the reaction is crystallized at a temperature of 180 ° C for 16 hours to obtain a precursor;
  • Step 5 Precursor activation treatment: The precursor obtained in step 4) was placed in a 160°C vacuum oven for activation treatment for 12 hours;
  • Precursor vulcanization - carbonization treatment The activated precursor obtained in step 5) and the sulfur powder with a purity of 99.95% are added to a high-energy ball mill in a molar ratio of 1:1 and mixed for 2 h to obtain a mixed precursor.
  • Ni-containing CuS/C composites were obtained by calcining at a sulfidation-carbonization temperature of 500 °C for 2 h in an argon-protected tube furnace.
  • the mixing method of the activated precursor and the sulfur powder in the high-energy ball mill is as follows: using zirconia balls with a particle size of 5 mm and a particle size of 1 cm in a mass ratio of 1:1 as the ball material, and the molar The activated precursor and sulfur powder with a ratio of 1:1 are used as materials, and then the ball material and the material are milled at a mass ratio of 20:1 under the protection of argon at a speed of 300r/min for 2 hours to obtain a mixed precursor.
  • the test method of this example is the same as that of Example 1.
  • the specific characterization is shown in the comparison of the test results of the composite material.
  • the phase characterization proves the existence of Cu 2 S and S; After 50 cycles in the blue electro-chemical performance test, the cyclic reversible capacity was 765 mAh/g.
  • a preparation method of Ni-containing CuS/C composite material comprising the following steps:
  • Preparation of precursor reaction solution use a mixture of N,N-dimethylformamide, anhydrous ethanol and purified water in a volume ratio of 1:1:5 as a solvent, and use 98% pure 1,3, 5-benzenetricarboxylic acid is the solute. After magnetic stirring, a mixed solution with a concentration of 0.1 mol/L of 1,3,5-benzenetricarboxylic acid is obtained, and then 60 ml of the mixed solution is added to 20 ml of the copper-nickel obtained in step 1). In the ionic mixture, magnetic stirring and mixing for 20min to obtain the precursor reaction solution;
  • step 3 Preparation of precursor: the precursor reaction solution obtained in step 2) is placed in a reaction kettle, and the reaction is crystallized at a temperature of 100 ° C for 16 hours to obtain a precursor;
  • Step 5 Precursor activation treatment: The precursor obtained in step 4) was placed in a 160°C vacuum oven for activation treatment for 12 hours;
  • Precursor vulcanization - carbonization treatment The activated precursor obtained in step 5) and sulfur powder with a purity of 99.95% were added to a mortar in a molar ratio of 1:1 for manual grinding for 10 minutes.
  • the test method of this example is the same as that of Example 1, and the specific characterization is shown in the comparison of the test results of the composite material.
  • the phase characterization proves the existence of CuS and S; the SEM morphology shows that the average particle size is 25 ⁇ m, and the shape of the octahedron is 25 ⁇ m; After 50 cycles of blue electrochemical performance test, its reversible capacity is 305 mAh/g.
  • a preparation method of a Cu-containing S/C composite material comprising the following steps:
  • Precursor activation treatment degassed under vacuum at 170 °C for 18 h.
  • Precursor vulcanization treatment The obtained precursor and sulfur powder were placed separately, and heated to 350 °C in an argon-protected tube furnace for vulcanization-carbonization treatment for 2 h.
  • the morphology of the Cu-containing S/C composite obtained in this example is octahedral, and its reversible capacity is 495 after 50 cycles in the blue electro-chemical performance test. mAh/g.
  • Example 1 Phase: CuS, S; average grain size: 25 ⁇ m; morphology: octahedron; discharge capacity after 50 cycles: 1036 mAh/g;
  • Example 2 phase: CuS, S; average grain size: 26 ⁇ m; morphology: rod-like; discharge capacity after 50 cycles: 989 mAh/g;
  • Example 3 phase: Cu 1.8 S, S; average grain size: 28 ⁇ m (rod length); morphology: rod-like; discharge capacity after 50 cycles: 897 mAh/g;
  • Example 4 Phase: Cu 1.8 S, S; average grain size: 32 ⁇ m; morphology: octahedron; discharge capacity after 50 cycles: 876 mAh/g;
  • Example 5 Phase: Cu 2 S, CuO, S; average grain size: 35 ⁇ m; morphology: octahedron; discharge capacity after 50 cycles: 517 mAh/g;
  • Example 6 Phase: CuS, S; average grain size: 25 ⁇ m (rod length); morphology: rod-like; discharge capacity after 50 cycles: 945 mAh/g;
  • Example 7 Phase: Cu 1.8 S, S; average grain size: 29 ⁇ m; morphology: octahedron; discharge capacity after 50 cycles: 679 mAh/g;
  • Example 8 Phase: Cu 2 S, S; average grain size: 33 ⁇ m; morphology: octahedral; discharge capacity after 50 cycles: 757 mAh/g;
  • Example 9 Phase: Cu 2 S, S; average grain size: 30 ⁇ m; morphology: octahedron; discharge capacity after 50 cycles: 765 mAh/g;
  • Example 10 Phase: CuS, S; average grain size: 25 ⁇ m; morphology: octahedron; discharge capacity after 50 cycles: 305 mAh/g;
  • Example 11 phase: CuS; average grain size: 30 ⁇ m; morphology: octahedral; discharge capacity after 50 cycles: 495 mAh/g;
  • the electrochemical performance of the sulfur-copper compound after introducing nickel can be more than double that of the pure sulfur-copper compound; Carbon material, but due to manual grinding and no high temperature carbonization, the conductivity is poor, the metal ion activity is strong and easy to lose, and the electrochemical performance is the worst; Example 11 does not introduce nickel ion doping, resulting in the volume expansion of the material And electrode pulverization, poor electrochemical performance.
  • Example 1 crystallization/sulfurization temperature: 100°C/350°C; copper-nickel ion concentration: Cu2+ and Ni2+ molar ratio of 1:1; crystallization/sulfurization/ball milling time: 16h/2h/2h; ball milling speed: 500r/ min; solvent type: N,N-dimethylformamide, absolute ethanol and purified water in a volume ratio of 1:1:5;
  • Example 2 crystallization/sulfurization temperature: 90°C/350°C; copper-nickel ion concentration: Cu2+ and Ni2+ molar ratio of 1:3; crystallization/sulfurization/ball milling time: 16h/2h/2h; ball milling speed: 450r/ min; solvent type: N,N-dimethylformamide, absolute ethanol and purified water in a volume ratio of 1:1:1;
  • Example 3 crystallization/sulfurization temperature: 100°C/500°C; copper-nickel ion concentration: Cu2+ and Ni2+ molar ratio of 1:3; crystallization/sulfurization/ball milling time: 16h/2h/2h; ball milling speed: 400r/ min; solvent type: absolute ethanol and purified water in a volume ratio of 1:1;
  • Example 4 crystallization/sulfurization temperature: 130°C/500°C; copper-nickel ion concentration: Cu2+ and Ni2+ molar ratio of 3:1; crystallization/sulfurization/ball milling time: 16h/2h/2h; ball milling speed: 400r/ min; solvent type: absolute ethanol and purified water in a volume ratio of 1:1;
  • Example 5 crystallization/sulfurization temperature: 180°C/800°C; copper-nickel ion concentration: Cu2+ and Ni2+ molar ratio of 3:1; crystallization/sulfurization/ball milling time: 16h/2h/2h; ball milling speed: 500r/ min; solvent type: N,N-dimethylformamide;
  • Example 6 crystallization/sulfurization temperature: 90°C/350°C; copper-nickel ion concentration: Cu2+ and Ni2+ molar ratio of 1:1; crystallization/sulfurization/ball milling time: 16h/2h/2h; ball milling speed: 300r/ min; solvent type: absolute ethanol and purified water in a volume ratio of 1:1;
  • Example 7 crystallization/sulfurization temperature: 100°C/500°C; copper-nickel ion concentration: Cu2+ and Ni2+ molar ratio of 1:1; crystallization/sulfurization/ball milling time: 16h/2h/2h; ball milling speed: 300r/ min; solvent type: N,N-dimethylformamide, absolute ethanol and purified water in a volume ratio of 1:1:5;
  • Example 8 crystallization/sulfurization temperature: 130°C/800°C; copper-nickel ion concentration: Cu2+ and Ni2+ molar ratio of 1:1; crystallization/sulfurization/ball milling time: 16h/2h/2h; ball milling speed: 300r/ min; solvent type: N,N-dimethylformamide;
  • Example 9 crystallization/sulfurization temperature: 180°C/500°C; copper-nickel ion concentration: Cu2+ and Ni2+ molar ratio of 1:1; crystallization/sulfurization/ball milling time: 16h/2h/2h; ball milling speed: 300r/ min; solvent type: N,N-dimethylformamide;
  • Example 10 crystallization/sulfurization temperature: 100°C/none; copper-nickel ion concentration: Cu2+ and Ni2+ molar ratio of 1:1; crystallization/sulfurization/ball milling time: 16h/none/none; manual grinding for 10 minutes; solvent Type: N,N-dimethylformamide, absolute ethanol and purified water in a volume ratio of 1:1:5;
  • Example 11 Crystallization/Sulfurization Temperature: 105°C/350°C; Copper Nitrate Trihydrate; Crystallization/Sulfurization/None: 16h/2h/None; Ball Milling Speed: None; Solvent Type: N,N-Dimethyl Formamide, absolute ethanol and purified water are in a volume ratio of 1:1:1.
  • the crystallization and vulcanization temperature, solution composition and concentration, crystallization and ball milling time or solvent type in the experimental conditions are all related to the electrochemical properties of the finally obtained composite materials.
  • Change the experimental conditions The physical and chemical properties of the material can be changed, and the physical and chemical properties of the material determine the electrochemical properties of the material. From the summary of the above experimental conditions, it can be seen that the higher the crystallization temperature, the longer the crystallization time, the larger the grain size, the smaller the specific surface area, the smaller the surface activation energy, and the smaller the discharge capacity.
  • Examples 3, 4, 6, do not use N,N-dimethylformamide, but only use water and ethanol as solvents to easily form a rod-shaped structure.
  • This two-dimensional rod-shaped structure is not as high as the octahedral tap density and good porosity;
  • the solvent added with N,N-dimethylformamide is easy to form an octahedral morphology structure, which has a higher tap density, which can improve the capacity of the battery.
  • the porous structure can make the electrolyte wettability better, and the electrode material can maintain The improvement of the liquid is beneficial to improve the cycle performance of the battery; in Examples 1-5, the longer the ball milling time, the higher the rotational speed, the smaller the grain size of the material, the larger the surface area, and the more active sites available for reaction on the surface.
  • Example 1 the better the electrochemical performance; in Examples 4 and 5, the higher the concentration of copper ions relative to the concentration of nickel ions, the more conducive to the formation of cuprous sulfide phase, which is lower than the theoretical specific capacity of copper sulfide phase, so the battery discharge capacity will decrease; the higher the sulfidation and carbonization temperature, the longer the sulfidation and carbonization time, the more the loss of sulfur powder in the material, so the battery discharge capacity will decrease, such as Examples 5 and 8; Taking the experimental conditions of Example 1 as the optimal combination, the Ni-containing CuS/C composite material prepared by the technical solution of Example 1 is applied to the positive electrode material of lithium-sulfur battery, and a remarkable discharge capacity of 1036mAh/g can be obtained for 50 cycles. Effect.
  • the application field of the invention is the cathode material of lithium-sulfur battery, and the lithium-sulfur battery needs to suppress the ion shuttle effect.
  • CuS/C with Ni The composite material can effectively use copper sulfide to chemically fix sulfur and bimetallic elements to absorb polysulfide ions, effectively reduce the problems of polysulfide shuttle, volume expansion, capacity attenuation and uneven morphology, and can improve the conductivity of the material, and comprehensively improve the performance of lithium-sulfur batteries. energy storage performance.
  • the physicochemical properties of the Ni-containing CuS/C composite material obtained by the present invention the peaks in the figure all correspond to the copper sulfide peak and the amorphous carbon peak, indicating that the prepared material is a composite material of copper sulfide and carbon;
  • the precursor is a regular octahedron with an average grain size of 25 ⁇ m, and the average particle size of the sulfide product is 25 ⁇ m.
  • the regular shape of the octahedron collapses, but still retains the approximate shape of an octahedral block.
  • the morphology and size distribution are uniform.
  • Electrochemical properties at a current density of 100 mA/g constant current charge and discharge, the cycle number is 50 times, and the cycle reversible capacity is 1036 mAh/g, with good structural stability.
  • the method of the present invention Compared with other methods of supporting metal sulfides on carbon materials, the method of the present invention generates a carbon framework on CuS in situ, so that the distribution of CuS and the carbon framework is more uniform, and the material interface is more closely combined; the present invention can generate a three-dimensional carbon framework.
  • the electronic conductivity of the material can be increased, and on the other hand, the specific surface area can be increased to increase the wettability of the interface electrolyte; the present invention can regulate the size of the pores of the carbon structure, so that the surface area can be effectively regulated;
  • the introduction of nickel metal inhibits the agglomeration of copper ions in the precursor, and the volume expansion of the electrode material during the electrochemical process is hindered by the synergistic effect of bimetals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及一种含Ni的CuS/C复合材料的制备方法及应用,包括以下步骤:制备铜镍离子混合液、制备前驱体反应液、制备前驱体、去除杂质、前驱体活化处理、前驱体硫化-碳化处理,本发明提供的含Ni的CuS/C复合材料是应用于锂硫电池正极材料上。本发明提供的含Ni的CuS/C复合材料独特的多孔碳框架结构有利于提高电池的倍率性能、双金属离子固硫可以有效抑制多硫离子的穿梭问题、双金属离子协同抑制体积膨胀问题。本发明的制备方法工艺简单,环境友好,不需要高温高压,可以直接用纯硫作为硫源,不易产生污染气体和副产物,而且无需高温高压条件,普通实验室即可完成操作。

Description

一种含Ni的CuS/C复合材料的制备方法及应用 技术领域
本发明涉及一种利用镍掺杂铜基金属有机框架材料制备金属硫化物的方法,应用于锂硫电池储能系统。具体涉及一种含Ni的CuS/C复合材料的制备方法及应用。
背景技术
随着科学技术和经济发展,电子器件对于移动电源的要求日益提升,锂离子储能体系电池由于具有比能量密度大、循环寿命长和安全性能好等特点,因此受到极大关注和发展。其中的锂硫电池是以硫元素作为电池正极,金属锂作为负极的一种锂电池,因其较低的成本、较高的理论比容量(1675 mA/hg)和能量密度(2600 Wh/kg),被认为是最有前途的下一代储能电池之一。但是锂硫电池存在多硫离子穿梭导致的容量衰减以及单质硫和Li2S的绝缘性导致的倍率性能差等问题,严重阻碍了锂硫电池的发展和应用。因此,目前对锂硫电池的研究,主要是把硫和碳材料复合,或者把硫和有机物复合,可以解决硫的不导电和体积膨胀问题。与传统的锂硫电池材料相比,金属硫化物/碳复合材料具有较高理论容量、良好的导电性以及化学固硫等特点。导电性好的材料添加有利于提升电池的倍率性能,对多硫离子较强的吸附能力可以抑制多硫离子的穿梭效应。
硫化铜/碳复合材料具有成本低,较高理论容量以及合成方法多样,是一种有前景的锂离子电池正极材料,受到研究者的广泛关注。目前常用的合成金属硫化物/碳复合材料的方法为水热法和溶剂热法,
但现有方法及金属硫化物/碳复合材料具有以下问题:
(1)现有的金属硫化物/碳复合材料是在高温高压反应下生成,形貌大小并不均匀,结晶度不高,复合材料结合不够紧密。
(2)现有的硫化铜/碳复合材料,碳框架的结构不足以满足金属硫化物在电化学反应中发生的体积膨胀,导致电极粉化以及金属硫化物和碳易脱落分离,使得材料电化学性能降低。
(3)水热法和溶剂热法的硫源一般为有机硫,易产生污染气体和副产物,而且在高温高压条件下,对设备要求高且工艺复杂。
(4)传统工艺利用水热,固相混合等方法将金属相与导电相进行混合,金属与碳不存在化学键作用,这导致金属分布不均匀,容易团聚,材料理化均一性较差,直接导致电池均一性较差。
(5)现有的硫化铜/碳复合材料,虽然对多硫离子的穿梭问题有一定程度的解决,但仍然没有达到预想值,说明利用硫化铜/碳复合材料来抑制多硫离子的穿梭问题依然有潜力可挖。
技术解决方案
为了解决以上问题,本发明利用自制的镍掺杂铜基金属有机框架材料硫化碳化制备成含Ni的CuS/C 复合材料,原位制备的碳复合不仅使得材料形貌更加均匀,材料结合更加紧密,而且可以提升材料的结晶程度;硫粉硫化方法不仅方法简单,成本低,而且产生的污染气体和副产物少;含Ni的CuS/C 复合材料可以有效利用双金属元素吸纳多硫离子,有效降低多硫穿梭、体积膨胀、容量衰减及形貌不均等问题,且可以提高材料导电性,综合提升锂硫电池的储能性能。
本发明的含Ni的CuS/C复合材料的制备方法,包括以下步骤:
1)制备铜镍离子混合液:分别采用铜镍金属盐溶液混合获得,所述铜镍金属盐可为硝酸盐,硫酸盐,氯化物,所述铜盐和镍盐应为同类金属盐,所述铜镍离子混合液中Cu2+和Ni2+摩尔比值为1:3~3:1;
2)制备前驱体反应液:以N,N-二甲基甲酰胺或/和无水乙醇和纯化水为溶剂,以1,3,5-苯三甲酸为溶质,经磁力搅拌均匀后得到1,3,5-苯三甲酸的浓度为0.1 mol/L的混合溶液,然后将60 ml混合溶液加入到20 ml步骤1)所得铜镍离子混合液中,磁力搅拌混合20min,获得前驱体反应液;
3)制备前驱体:将步骤2)所得前驱体反应液置于反应釜中,于90-180℃的温度下晶化反应16小时,获得前驱体;
4)去除杂质:将步骤3)所得前驱体置于无水乙醇中浸泡24 h,然后离心去除无水乙醇,反复浸泡离心3次后,在60℃下干燥,得到去除残余金属盐和有机配体的前躯体;
5)前驱体活化处理:将步骤4)所得前驱体置于160℃真空烘箱中活化处理;
6)前驱体硫化-碳化处理:将步骤5)所得的活化前驱体与高纯度硫粉以摩尔比1:1的量加入高能球磨机中混合2 h得到混合前驱体,然后将混合前躯体置于氩气保护的管式炉中,以硫化-碳化温度煅烧2 h,得到含Ni的CuS/C复合材料。
优选地,所述步骤1)的铜镍金属离子溶液中的Cu2+和Ni2+摩尔比值为1: 1~3。
优选地,所述步骤2)中,溶质1,3,5-苯三甲酸的纯度为98% 。
进一步,所述步骤2)中,溶剂为N,N-二甲基甲酰胺,或者为无水乙醇和纯化水按体积比1:1的混合液,或者为N,N-二甲基甲酰胺、无水乙醇和纯化水按体积比1:1:1~1:1:5混合的混合液
优选地,所述步骤2)中, N,N-二甲基甲酰胺、无水乙醇和纯化水的体积比为1:1:5。
优选地,所述步骤5)中,前驱体置于160℃真空烘箱中活化处理12小时。
优选地,所述步骤6)中,硫化-碳化温度为350℃~800℃。
优选地,所述步骤6)中,硫粉的纯度为99.95%。
优选地,所述步骤6)中,活化前驱体与硫粉在高能球磨机中的混合方式为:以质量比1:1的粒径5毫米和粒径1厘米的氧化锆球为球料,以摩尔比1:1的活化前驱体和硫粉为物料,然后将球料与物料以质量比20:1,在氩气保护下,以300-500r/min转速研磨2 h,得到混合前躯体。
优选地,所述步骤6)中,活化前驱体与硫粉在高能球磨机中,在氩气保护下,以500r/min转速研磨2 h,得到混合前躯体。
本发明提供的含Ni的CuS/C复合材料是应用于锂硫电池正极材料上。
有益效果
1、 金属在碳框架上原位生长并且可以稳定,均匀分布:本发明的含Ni的CuS/C复合材料,金属离子在制备过程中与有机试剂形成了稳定的化学键,使得金属在碳框架上原位生长并且可以稳定,均匀分布,解决了现有工艺制备硫化铜/碳复合材料时,由于金属与碳不存在化学键作用产生的金属分布不均匀、容易团聚、材料理化均一性较差、电池均一性较差的问题。
2、 独特的多孔碳框架结构:本发明的含Ni的CuS/C复合材料,碳框架具有独特的多孔结构,可以提供更多电化学反应的活性位点,良好的导电性有利于提高电池的倍率性能,而且由于碳框架约束可以抑制电化学反应产生的体积膨胀;
3、 双金属离子固硫:本发明的含Ni的CuS/C复合材料,金具有铜、镍双金属离子键固硫,对于多硫离子的吸附能力强,可以有效抑制多硫离子的穿梭问题。
4、 双金属离子协同抑制体积膨胀:本发明的含Ni的CuS/C复合材料,由于镍铜双金属的协同作用有利于抑制体积膨胀,提高电池的电化学性能。
5、 工艺简单,环境友好,不需要高温高压:本发明采用的工艺可以直接用纯硫作为硫源,不易产生污染气体和副产物,而且无需高温高压条件,普通实验室即可完成操作。
附图说明
图1为实施例1步骤4)获得的前驱体材料的XRD图;
图2为实施例1步骤4)获得的前驱体材料的SEM图;
图3为实施例1获得的含Ni的CuS/C复合材料的XRD图;
图4为实施例1获得的含Ni的CuS/C复合材料的SEM图。
本发明的实施方式
以下结合实施例对本发明作进一步说明。
实施例 1
一种含Ni的CuS/C复合材料的制备方法,包括以下步骤:
1) 制备铜镍离子混合液:采用硝酸铜和硝酸镍溶液混合获得,所述铜镍离子混合液中Cu 2+和Ni 2+摩尔比值为1:1;
2) 制备前驱体反应液:以N,N-二甲基甲酰胺、无水乙醇和纯化水按体积比1:1:5混合的混合液为溶剂,以纯度为98%的1,3,5-苯三甲酸为溶质,经磁力搅拌均匀后得到1,3,5-苯三甲酸的浓度为0.1 mol/L的混合溶液,然后将60 ml混合溶液加入到20 ml步骤1)所得铜镍离子混合液中,磁力搅拌混合20min,获得前驱体反应液;
3) 制备前驱体:将步骤2)所得前驱体反应液置于反应釜中,于100℃的温度下晶化反应16小时,获得前驱体;
4) 去除杂质:将步骤3)所得前驱体置于无水乙醇中浸泡24 h,然后离心去除无水乙醇,反复浸泡离心3次后,在60℃下干燥,得到去除残余金属盐和有机配体的前躯体;
5) 前驱体活化处理:将步骤4)所得前驱体置于160℃真空烘箱中活化处理12小时;
6) 前驱体硫化 - 碳化处理:将步骤5)所得的活化前驱体与纯度为99.95%的硫粉以摩尔比1:1的量加入高能球磨机中混合2 h得到混合前驱体,然后将混合前躯体置于氩气保护的管式炉中,以350℃硫化-碳化温度煅烧2 h,得到含Ni的CuS/C复合材料。
其中,所述步骤6)中,活化前驱体与硫粉在高能球磨机中的混合方式为:以质量比1:1的粒径5毫米和粒径1厘米的氧化锆球为球料,以摩尔比1:1的活化前驱体和硫粉为物料,然后将球料与物料以质量比20:1,在氩气保护下,以500r/min转速研磨2 h,得到混合前躯体。
本实施例的步骤(4)所得前驱体材料的XRD图如图1所示, ICP-AES结果如下所示,证明步骤(4)所得前驱体材料为镍掺杂铜基金属材料,铜基材料占主体,镍基仅为少量掺杂。
测定出镍掺杂铜基金属有机框架材料的铜镍含量:
Cu:23.2 wt%
Ni:0.7 wt%
本实施例的步骤(4)所得前驱体材料的SEM图如图2所示,图2(a)为放大500倍,图2(b)为放大5000倍。可以清楚的看到,本发明的方法生成的前驱体为规则的八面体形貌,其平均晶粒大小为25 μm。
本实施例的步骤(6)所得含Ni的CuS/C复合材料的XRD图如图3所示,图中的峰都对应为硫化铜峰和非晶型的碳峰,说明制备所得材料为硫化铜和碳的复合材料。
本实施例的步骤(6)所得含Ni的CuS/C复合材料的SEM图如图4所示,图4(a)为放大1000倍,图4(b)为放大5000倍。产物平均粒径为25 μm,在八面体的规则形貌有所坍缩,但是仍保有八面体块状的大致的形貌。
锂电池的组装和测试:
以步骤6)所得含Ni的CuS/C复合材料为正极,锂金属为负极,溶剂为乙二醇二甲醚(DME)与1,3-二氧戊环(DOL)混合的溶液,其体积比1:1,电解质采用1 mol/L的三氟甲基磺酸锂(LiCFSO3),隔膜使用Celgard2400,在氩气气氛下使用CR2016型扣式电池进行组装;利用蓝电电池测试系统进行电池性能测试,电池测试温度为常温,充放电电压范围为1-3V,以电流密度的100 mA/g恒流充放电,循环圈数50次,如复合材料测试结果对比所示,其循环可逆容量为1036 mAh/g。
实施例 2
一种含Ni的CuS/C复合材料的制备方法,包括以下步骤:
1) 制备铜镍离子混合液:采用硝酸铜和硝酸镍溶液混合获得,所述铜镍离子混合液中Cu 2+和Ni 2+摩尔比值为1:3;
2) 制备前驱体反应液:以N,N-二甲基甲酰胺、无水乙醇和纯化水按体积比1:1:1混合的混合液为溶剂,以纯度为98%的1,3,5-苯三甲酸为溶质,经磁力搅拌均匀后得到1,3,5-苯三甲酸的浓度为0.1 mol/L的混合溶液,然后将60 ml混合溶液加入到20 ml步骤1)所得铜镍离子混合液中,磁力搅拌混合20min,获得前驱体反应液;
3) 制备前驱体:将步骤2)所得前驱体反应液置于反应釜中,于90℃的温度下晶化反应16小时,获得前驱体;
4) 去除杂质:将步骤3)所得前驱体置于无水乙醇中浸泡24 h,然后离心去除无水乙醇,反复浸泡离心3次后,在60℃下干燥,得到去除残余金属盐和有机配体的前躯体;
5) 前驱体活化处理:将步骤4)所得前驱体置于160℃真空烘箱中活化处理12小时;
6) 前驱体硫化 - 碳化处理:将步骤5)所得的活化前驱体与纯度为99.95%的硫粉以摩尔比1:1的量加入高能球磨机中混合2 h得到混合前驱体,然后将混合前躯体置于氩气保护的管式炉中,以350℃硫化-碳化温度煅烧2 h,得到含Ni的CuS/C复合材料。
其中,所述步骤6)中,活化前驱体与硫粉在高能球磨机中的混合方式为:以质量比1:1的粒径5毫米和粒径1厘米的氧化锆球为球料,以摩尔比1:1的活化前驱体和硫粉为物料,然后将球料与物料以质量比20:1,在氩气保护下,以450r/min转速研磨2 h,得到混合前躯体。
本实例的测试方法与实施例1一致,具体表征如复合材料测试结果对比所示,物相表征证明CuS和S的存在;SEM形貌表征其平均粒径为26 μm,八面体的形貌;在蓝电电化学性能测试循环50圈后其循环可逆容量为989 mAh/g。
实施例 3
一种含Ni的CuS/C复合材料的制备方法,包括以下步骤:
1) 制备铜镍离子混合液:采用硝酸铜和硝酸镍溶液混合获得,所述铜镍离子混合液中Cu 2+和Ni 2+摩尔比值为1:3;
2) 制备前驱体反应液:以无水乙醇和纯化水按体积比1:1混合的混合液为溶剂,以纯度为98%的1,3,5-苯三甲酸为溶质,经磁力搅拌均匀后得到1,3,5-苯三甲酸的浓度为0.1 mol/L的混合溶液,然后将60 ml混合溶液加入到20 ml步骤1)所得铜镍离子混合液中,磁力搅拌混合20min,获得前驱体反应液;
3) 制备前驱体:将步骤2)所得前驱体反应液置于反应釜中,于100℃的温度下晶化反应16小时,获得前驱体;
4) 去除杂质:将步骤3)所得前驱体置于无水乙醇中浸泡24 h,然后离心去除无水乙醇,反复浸泡离心3次后,在60℃下干燥,得到去除残余金属盐和有机配体的前躯体;
5) 前驱体活化处理:将步骤4)所得前驱体置于160℃真空烘箱中活化处理12小时;
6) 前驱体硫化 - 碳化处理:将步骤5)所得的活化前驱体与纯度为99.95%的硫粉以摩尔比1:1的量加入高能球磨机中混合2 h得到混合前驱体,然后将混合前躯体置于氩气保护的管式炉中,以500℃硫化-碳化温度煅烧2 h,得到含Ni的CuS/C复合材料。
其中,所述步骤6)中,活化前驱体与硫粉在高能球磨机中的混合方式为:以质量比1:1的粒径5毫米和粒径1厘米的氧化锆球为球料,以摩尔比1:1的活化前驱体和硫粉为物料,然后将球料与物料以质量比20:1,在氩气保护下,以400r/min转速研磨2 h,得到混合前躯体。
本实例的测试方法与实施例1一致,具体表征如复合材料测试结果对比所示,物相表征证明Cu 1.8S和S的存在;SEM形貌表征为棒状,平均长度为28 μm;在蓝电电化学性能测试循环50圈后其循环可逆容量为897 mAh/g。
实施例 4
一种含Ni的CuS/C复合材料的制备方法,包括以下步骤:
1) 制备铜镍离子混合液:采用硝酸铜和硝酸镍溶液混合获得,所述铜镍离子混合液中Cu 2+和Ni 2+摩尔比值为3:1;
2) 制备前驱体反应液:以无水乙醇和纯化水按体积比1:1混合的混合液为溶剂,以纯度为98%的1,3,5-苯三甲酸为溶质,经磁力搅拌均匀后得到1,3,5-苯三甲酸的浓度为0.1 mol/L的混合溶液,然后将60 ml混合溶液加入到20 ml步骤1)所得铜镍离子混合液中,磁力搅拌混合20min,获得前驱体反应液;
3)  制备前驱体:将步骤2)所得前驱体反应液置于反应釜中,于130℃的温度下晶化反应16小时,获得前驱体;
4) 去除杂质:将步骤3)所得前驱体置于无水乙醇中浸泡24 h,然后离心去除无水乙醇,反复浸泡离心3次后,在60℃下干燥,得到去除残余金属盐和有机配体的前躯体;
5) 前驱体活化处理:将步骤4)所得前驱体置于160℃真空烘箱中活化处理12小时;
6) 前驱体硫化 - 碳化处理:将步骤5)所得的活化前驱体与纯度为99.95%的硫粉以摩尔比1:1的量加入高能球磨机中混合2 h得到混合前驱体,然后将混合前躯体置于氩气保护的管式炉中,以500℃硫化-碳化温度煅烧2 h,得到含Ni的CuS/C复合材料。
其中,所述步骤6)中,活化前驱体与硫粉在高能球磨机中的混合方式为:以质量比1:1的粒径5毫米和粒径1厘米的氧化锆球为球料,以摩尔比1:1的活化前驱体和硫粉为物料,然后将球料与物料以质量比20:1,在氩气保护下,以400r/min转速研磨2 h,得到混合前躯体。
本实例的测试方法与实施例1一致,具体表征如复合材料测试结果对比所示,物相表征证明Cu 1.8S和S的存在;SEM形貌表征其平均粒径为32 μm,八面体的形貌;在蓝电电化学性能测试循环50圈后其循环可逆容量为876 mAh/g。
实施例 5
一种含Ni的CuS/C复合材料的制备方法,包括以下步骤:
1)   制备铜镍离子混合液:采用硝酸铜和硝酸镍溶液混合获得,所述铜镍离子混合液中Cu 2+和Ni 2+摩尔比值为3:1;
2)   制备前驱体反应液:以N,N-二甲基甲酰胺为溶剂,以纯度为98%的1,3,5-苯三甲酸为溶质,经磁力搅拌均匀后得到1,3,5-苯三甲酸的浓度为0.1 mol/L的混合溶液,然后将60 ml混合溶液加入到20 ml步骤1)所得铜镍离子混合液中,磁力搅拌混合20min,获得前驱体反应液;
3)   制备前驱体:将步骤2)所得前驱体反应液置于反应釜中,于180℃的温度下晶化反应16小时,获得前驱体;
4)    去除杂质:将步骤3)所得前驱体置于无水乙醇中浸泡24 h,然后离心去除无水乙醇,反复浸泡离心3次后,在60℃下干燥,得到去除残余金属盐和有机配体的前躯体;
5)    前驱体活化处理:将步骤4)所得前驱体置于160℃真空烘箱中活化处理12小时;
6) 前驱体硫化 - 碳化处理:将步骤5)所得的活化前驱体与纯度为99.95%的硫粉以摩尔比1:1的量加入高能球磨机中混合2 h得到混合前驱体,然后将混合前躯体置于氩气保护的管式炉中,以800℃硫化-碳化温度煅烧2 h,得到含Ni的CuS/C复合材料。
其中,所述步骤6)中,活化前驱体与硫粉在高能球磨机中的混合方式为:以质量比1:1的粒径5毫米和粒径1厘米的氧化锆球为球料,以摩尔比1:1的活化前驱体和硫粉为物料,然后将球料与物料以质量比20:1,在氩气保护下,以500r/min转速研磨2 h,得到混合前躯体。
本实例的测试方法与实施例1一致,具体表征如复合材料测试结果对比所示,物相表征证明Cu 2S,CuO和S的存在;SEM形貌表征其平均粒径为35 μm,八面体的形貌;在蓝电电化学性能测试循环50圈后其循环可逆容量为517 mAh/g。
实施例 6
一种含Ni的CuS/C复合材料的制备方法,包括以下步骤:
1) 制备铜镍离子混合液:采用硝酸铜和硝酸镍溶液混合获得,所述铜镍离子混合液中Cu 2+和Ni 2+摩尔比值为1:1;
2) 制备前驱体反应液:以无水乙醇和纯化水按体积比1:1混合的混合液为溶剂,以纯度为98%的1,3,5-苯三甲酸为溶质,经磁力搅拌均匀后得到1,3,5-苯三甲酸的浓度为0.1 mol/L的混合溶液,然后将60 ml混合溶液加入到20 ml步骤1)所得铜镍离子混合液中,磁力搅拌混合20min,获得前驱体反应液;
3) 制备前驱体:将步骤2)所得前驱体反应液置于反应釜中,于90℃的温度下晶化反应16小时,获得前驱体;
4)  去除杂质:将步骤3)所得前驱体置于无水乙醇中浸泡24 h,然后离心去除无水乙醇,反复浸泡离心3次后,在60℃下干燥,得到去除残余金属盐和有机配体的前躯体;
5)  前驱体活化处理:将步骤4)所得前驱体置于160℃真空烘箱中活化处理12小时;
6) 前驱体硫化 - 碳化处理:将步骤5)所得的活化前驱体与纯度为99.95%的硫粉以摩尔比1:1的量加入高能球磨机中混合2 h得到混合前驱体,然后将混合前躯体置于氩气保护的管式炉中,以350℃硫化-碳化温度煅烧2 h,得到含Ni的CuS/C复合材料。
其中,所述步骤6)中,活化前驱体与硫粉在高能球磨机中的混合方式为:以质量比1:1的粒径5毫米和粒径1厘米的氧化锆球为球料,以摩尔比1:1的活化前驱体和硫粉为物料,然后将球料与物料以质量比20:1,在氩气保护下,以300r/min转速研磨2 h,得到混合前躯体。
本实例的测试方法与实施例1一致,具体表征如复合材料测试结果对比所示,物相表征证明CuS和S的存在;SEM形貌为棒状,其平均长度为25 μm;在蓝电电化学性能测试循环50圈后其循环可逆容量为945 mAh/g。
实施例 7
一种含Ni的CuS/C复合材料的制备方法,包括以下步骤:
1) 制备铜镍离子混合液:采用硝酸铜和硝酸镍溶液混合获得,所述铜镍离子混合液中Cu 2+和Ni 2+摩尔比值为1:1;
2) 制备前驱体反应液:以N,N-二甲基甲酰胺、无水乙醇和纯化水按体积比1:1:5混合的混合液为溶剂,以纯度为98%的1,3,5-苯三甲酸为溶质,经磁力搅拌均匀后得到1,3,5-苯三甲酸的浓度为0.1 mol/L的混合溶液,然后将60 ml混合溶液加入到20 ml步骤1)所得铜镍离子混合液中,磁力搅拌混合20min,获得前驱体反应液;
3) 制备前驱体:将步骤2)所得前驱体反应液置于反应釜中,于100℃的温度下晶化反应16小时,获得前驱体;
4) 去除杂质:将步骤3)所得前驱体置于无水乙醇中浸泡24 h,然后离心去除无水乙醇,反复浸泡离心3次后,在60℃下干燥,得到去除残余金属盐和有机配体的前躯体;
5)  前驱体活化处理:将步骤4)所得前驱体置于160℃真空烘箱中活化处理12小时;
6)  前驱体硫化 - 碳化处理:将步骤5)所得的活化前驱体与纯度为99.95%的硫粉以摩尔比1:1的量加入高能球磨机中混合2 h得到混合前驱体,然后将混合前躯体置于氩气保护的管式炉中,以500℃硫化-碳化温度煅烧2 h,得到含Ni的CuS/C复合材料。
其中,所述步骤6)中,活化前驱体与硫粉在高能球磨机中的混合方式为:以质量比1:1的粒径5毫米和粒径1厘米的氧化锆球为球料,以摩尔比1:1的活化前驱体和硫粉为物料,然后将球料与物料以质量比20:1,在氩气保护下,以300r/min转速研磨2 h,得到混合前躯体。
本实例的测试方法与实施例1一致,具体表征如复合材料测试结果对比所示,物相表征证明Cu 1.8S和S的存在;SEM形貌表征其平均粒径为29 μm,八面体的形貌;在蓝电电化学性能测试循环50圈后其循环可逆容量为679 mAh/g。
实施例 8
一种含Ni的CuS/C复合材料的制备方法,包括以下步骤:
1) 制备铜镍离子混合液:采用硝酸铜和硝酸镍溶液混合获得,所述铜镍离子混合液中Cu 2+和Ni 2+摩尔比值为1:1;
2)  制备前驱体反应液:以N,N-二甲基甲酰胺为溶剂,以纯度为98%的1,3,5-苯三甲酸为溶质,经磁力搅拌均匀后得到1,3,5-苯三甲酸的浓度为0.1 mol/L的混合溶液,然后将60 ml混合溶液加入到20 ml步骤1)所得铜镍离子混合液中,磁力搅拌混合20min,获得前驱体反应液;
3) 制备前驱体:将步骤2)所得前驱体反应液置于反应釜中,于130℃的温度下晶化反应16小时,获得前驱体;
4)  去除杂质:将步骤3)所得前驱体置于无水乙醇中浸泡24 h,然后离心去除无水乙醇,反复浸泡离心3次后,在60℃下干燥,得到去除残余金属盐和有机配体的前躯体;
5) 前驱体活化处理:将步骤4)所得前驱体置于160℃真空烘箱中活化处理12小时;
6) 前驱体硫化 - 碳化处理:将步骤5)所得的活化前驱体与纯度为99.95%的硫粉以摩尔比1:1的量加入高能球磨机中混合2 h得到混合前驱体,然后将混合前躯体置于氩气保护的管式炉中,以800℃硫化-碳化温度煅烧2 h,得到含Ni的CuS/C复合材料。
其中,所述步骤6)中,活化前驱体与硫粉在高能球磨机中的混合方式为:以质量比1:1的粒径5毫米和粒径1厘米的氧化锆球为球料,以摩尔比1:1的活化前驱体和硫粉为物料,然后将球料与物料以质量比20:1,在氩气保护下,以300r/min转速研磨2 h,得到混合前躯体。
本实例的测试方法与实施例1一致,具体表征如复合材料测试结果对比所示,物相表征证明Cu 2S和S的存在;SEM形貌表征其平均粒径为33 μm,八面体的形貌;在蓝电电化学性能测试循环50圈后其循环可逆容量为757 mAh/g。
实施例 9
一种含Ni的CuS/C复合材料的制备方法,包括以下步骤:
1) 制备铜镍离子混合液:采用硝酸铜和硝酸镍溶液混合获得,所述铜镍离子混合液中Cu 2+和Ni 2+摩尔比值为1:1;
2) 制备前驱体反应液:以N,N-二甲基甲酰胺为溶剂,以纯度为98%的1,3,5-苯三甲酸为溶质,经磁力搅拌均匀后得到1,3,5-苯三甲酸的浓度为0.1 mol/L的混合溶液,然后将60 ml混合溶液加入到20 ml步骤1)所得铜镍离子混合液中,磁力搅拌混合20min,获得前驱体反应液;
3) 制备前驱体:将步骤2)所得前驱体反应液置于反应釜中,于180℃的温度下晶化反应16小时,获得前驱体;
4) 去除杂质:将步骤3)所得前驱体置于无水乙醇中浸泡24 h,然后离心去除无水乙醇,反复浸泡离心3次后,在60℃下干燥,得到去除残余金属盐和有机配体的前躯体;
5) 前驱体活化处理:将步骤4)所得前驱体置于160℃真空烘箱中活化处理12小时;
6)   前驱体硫化 - 碳化处理:将步骤5)所得的活化前驱体与纯度为99.95%的硫粉以摩尔比1:1的量加入高能球磨机中混合2 h得到混合前驱体,然后将混合前躯体置于氩气保护的管式炉中,以500℃硫化-碳化温度煅烧2 h,得到含Ni的CuS/C复合材料。
其中,所述步骤6)中,活化前驱体与硫粉在高能球磨机中的混合方式为:以质量比1:1的粒径5毫米和粒径1厘米的氧化锆球为球料,以摩尔比1:1的活化前驱体和硫粉为物料,然后将球料与物料以质量比20:1,在氩气保护下,以300r/min转速研磨2 h,得到混合前躯体。
本实例的测试方法与实施例1一致,具体表征如复合材料测试结果对比所示,物相表征证明Cu 2S和S的存在;SEM形貌表征其平均粒径为30 μm,八面体的形貌;在蓝电电化学性能测试循环50圈后其循环可逆容量为765 mAh/g。
实施例 10  研磨方式对材料性能的影响实验
一种含Ni的CuS/C复合材料的制备方法,包括以下步骤:
1) 制备铜镍离子混合液:采用硝酸铜和硝酸镍溶液混合获得,所述铜镍离子混合液中Cu 2+和Ni 2+摩尔比值为1:1;
2) 制备前驱体反应液:以N,N-二甲基甲酰胺、无水乙醇和纯化水按体积比1:1:5混合的混合液为溶剂,以纯度为98%的1,3,5-苯三甲酸为溶质,经磁力搅拌均匀后得到1,3,5-苯三甲酸的浓度为0.1 mol/L的混合溶液,然后将60 ml混合溶液加入到20 ml步骤1)所得铜镍离子混合液中,磁力搅拌混合20min,获得前驱体反应液;
3) 制备前驱体:将步骤2)所得前驱体反应液置于反应釜中,于100℃的温度下晶化反应16小时,获得前驱体;
4) 去除杂质:将步骤3)所得前驱体置于无水乙醇中浸泡24 h,然后离心去除无水乙醇,反复浸泡离心3次后,在60℃下干燥,得到去除残余金属盐和有机配体的前躯体;
5) 前驱体活化处理:将步骤4)所得前驱体置于160℃真空烘箱中活化处理12小时;
6) 前驱体硫化 - 碳化处理:将步骤5)所得的活化前驱体与纯度为99.95%的硫粉以摩尔比1:1的量加入研钵进行手动研磨10分钟。
本实例的测试方法与实施例1一致,具体表征如复合材料测试结果对比所示,物相表征证明CuS和S的存在;SEM形貌表征其平均粒径为25 μm,八面体的形貌;在蓝电电化学性能测试循环50圈后其循环可逆容量为305 mAh/g。
实施例 11
一种含Cu的S/C复合材料的制备方法,包括以下步骤:
(1)配置制备前驱体的反应溶剂:将3 g硝酸铜三水合物和2 g偏苯三酸酐,溶解于N,N-二甲基甲酰胺、乙醇和H2O的体积比为1:1:1的100 mL溶剂,
(2)制备前驱体:在105℃下加热12 h。
(3)去除制备前驱体的反应溶剂:每天两次浸入甲醇中数天。
(4)前驱体活化处理:在170°C的真空下脱气18 h。
(5)前驱体硫化处理:所得前驱体与硫粉分开放置,在氩气保护的管式炉中加热到350℃硫化-碳化处理2 h。
本实施例获得的含Cu的S/C复合材料形貌为八面体,在蓝电电化学性能测试循环50圈后其循环可逆容量为495 mAh/g。
实施例 1-11 的复合材料测试结果对比:硫铜化合物电极材料的物相,平均晶粒,形貌和电化学循环性能测试结果
实施例 1 物相:CuS,S;平均晶粒:25μm;形貌:八面体;循环50圈放电容量:1036 mAh/g;
实施例 2 物相:CuS,S;平均晶粒:26μm;形貌:棒状;循环50圈放电容量:989 mAh/g;
实施例 3 物相:Cu 1.8S,S;平均晶粒:28μm(棒长度);形貌:棒状;循环50圈放电容量:897 mAh/g;
实施例 4 物相:Cu 1.8S,S;平均晶粒:32μm;形貌:八面体;循环50圈放电容量:876 mAh/g;
实施例 5 物相:Cu 2S,CuO,S;平均晶粒:35μm;形貌:八面体;循环50圈放电容量:517 mAh/g;
实施例 6 物相:CuS,S;平均晶粒:25μm(棒长度);形貌:棒状;循环50圈放电容量:945 mAh/g;
实施例 7 物相:Cu 1.8S,S;平均晶粒:29μm;形貌:八面体;循环50圈放电容量:679 mAh/g;
实施例 8 物相:Cu 2S,S;平均晶粒:33μm;形貌:八面体;循环50圈放电容量:757 mAh/g;
实施例 9 物相:Cu 2S,S;平均晶粒:30μm;形貌:八面体;循环50圈放电容量:765 mAh/g;
实施例 10 物相:CuS,S;平均晶粒:25μm;形貌:八面体;循环50圈放电容量:305 mAh/g;
实施例 11 物相:CuS;平均晶粒:30μm;形貌:八面体;循环50圈放电容量:495 mAh/g;
从以上测试结果对比可以看出,采用本发明的制备方法,可以使硫铜化合物中引入镍后比单纯的硫铜化合物电化学性能好一倍以上;实施例10制备的也是镍、铜离子的碳材料,但由于是手动研磨,且未进行高温碳化,导电性较差,金属离子活性较强容易流失,电化学性能反而最差;实施例11未引入镍离子掺杂,导致其材料体积膨胀及电极粉化,电化学性能较差。
实施例 1-11 的实验条件对比:
实施例 1 晶化/硫化温度:100℃/350℃;铜镍离子浓度:Cu2+和Ni2+摩尔比值为1:1;晶化/硫化/球磨时间:16h/2h/2h;球磨速度:500r/min;溶剂种类:N,N-二甲基甲酰胺、无水乙醇和纯化水按体积比1:1:5;
实施例 2 晶化/硫化温度:90℃/350℃;铜镍离子浓度:Cu2+和Ni2+摩尔比值为1:3;晶化/硫化/球磨时间:16h/2h/2h;球磨速度:450r/min;溶剂种类:N,N-二甲基甲酰胺、无水乙醇和纯化水按体积比1:1:1;
实施例 3 晶化/硫化温度:100℃/500℃;铜镍离子浓度:Cu2+和Ni2+摩尔比值为1:3;晶化/硫化/球磨时间:16h/2h/2h;球磨速度:400r/min;溶剂种类:无水乙醇和纯化水按体积比1:1;
实施例 4 晶化/硫化温度:130℃/500℃;铜镍离子浓度:Cu2+和Ni2+摩尔比值为3:1;晶化/硫化/球磨时间:16h/2h/2h;球磨速度:400r/min;溶剂种类:无水乙醇和纯化水按体积比1:1;
实施例 5 晶化/硫化温度:180℃/800℃;铜镍离子浓度:Cu2+和Ni2+摩尔比值为3:1;晶化/硫化/球磨时间:16h/2h/2h;球磨速度:500r/min;溶剂种类:N,N-二甲基甲酰胺;
实施例 6 晶化/硫化温度:90℃/350℃;铜镍离子浓度:Cu2+和Ni2+摩尔比值为1:1;晶化/硫化/球磨时间:16h/2h/2h;球磨速度:300r/min;溶剂种类:无水乙醇和纯化水按体积比1:1;
实施例 7 晶化/硫化温度:100℃/500℃;铜镍离子浓度:Cu2+和Ni2+摩尔比值为1:1;晶化/硫化/球磨时间:16h/2h/2h;球磨速度:300r/min;溶剂种类:N,N-二甲基甲酰胺、无水乙醇和纯化水按体积比1:1:5;
实施例 8 晶化/硫化温度:130℃/800℃;铜镍离子浓度:Cu2+和Ni2+摩尔比值为1:1;晶化/硫化/球磨时间:16h/2h/2h;球磨速度:300r/min;溶剂种类:N,N-二甲基甲酰胺;
实施例 9 晶化/硫化温度:180℃/500℃;铜镍离子浓度:Cu2+和Ni2+摩尔比值为1:1;晶化/硫化/球磨时间:16h/2h/2h;球磨速度:300r/min;溶剂种类:N,N-二甲基甲酰胺;
实施例 10 晶化/硫化温度:100℃/无;铜镍离子浓度:Cu2+和Ni2+摩尔比值为1:1;晶化/硫化/球磨时间:16h/无/无;手动研磨10分钟;溶剂种类:N,N-二甲基甲酰胺、无水乙醇和纯化水按体积比1:1:5;
实施例 11 晶化/硫化温度:105℃/350℃;硝酸铜三水合物;晶化/硫化/无:16h/2h /无;球磨速度:无;溶剂种类:N,N-二甲基甲酰胺、无水乙醇和纯化水按体积比1:1:1。
从实施例1-11可看出,实验条件中的晶化和硫化温度、溶液组分和浓度、晶化和球磨时间或者溶剂种类与最后获得的复合材料电化学性能都有关系,改变实验条件可以改变材料的理化性能,而材料的理化性能又决定了材料的电化学性能。从以上的实验条件总结中可看出,晶化温度越高,晶化时间越长,其晶粒尺寸增大,其比表面积减少,表面活化能减少,放电容量会有所减小;实施例3、4、6,不使用N,N-二甲基甲酰胺,而仅适用水与乙醇为溶剂易形成棒状形貌结构,此二维棒状结构不及八面体振实密度高和多孔性好;其他实施例添加N,N-二甲基甲酰胺的溶剂易形成八面体形貌结构,具有的较高振实密度,可以提升电池的容量,多孔结构可以使得电解液润湿性更好,电极材料保液性的提升有利于提升电池的循环性能;实施例1-5,球磨时间越长,转速越高,材料晶粒尺寸越小,其表面积越大,其表面可供反应的活性位点越多,电化学性能越好;实施例4和5,铜离子浓度相对镍离子浓度越高,就越有利于形成硫化亚铜相,其相较之硫化铜相理论比容量较低,因此电池放电容量会降低;硫化碳化温度越高,硫化碳化时间越长,材料中硫粉损失越多,因此电池放电容量会降低,比如实施例5和8;在综合了以上各种实验条件的对比后,选定实施例1的实验条件为最优组合,采用采用实施例1的技术方案制备的含Ni的CuS/C复合材料应用在锂硫电池正极材料上可以获得循环50圈放电容量1036mAh/g的显著效果。
本发明应用领域为锂硫电池正极材料,锂硫电池需要抑制离子穿梭效应。含Ni的CuS/C 复合材料可以有效利用硫化铜化学固硫以及双金属元素吸纳多硫离子,有效降低多硫穿梭、体积膨胀、容量衰减及形貌不均等问题,且可以提高材料导电性,综合提升锂硫电池的储能性能。
本发明获得的含Ni的CuS/C 复合材料理化性质:图中的峰都对应为硫化铜峰和非晶型的碳峰,说明制备所得材料为硫化铜和碳的复合材料;本发明生成的前驱体为规则的八面体形貌,其平均晶粒大小为25 μm,硫化产物平均粒径为25 μm,在八面体的规则形貌有所坍缩,但是仍保有八面体块状的大致的形貌,形貌大小分布均匀。电化学性质:以电流密度的100 mA/g恒流充放电,循环圈数50次,其循环可逆容量为1036 mAh/g,具有良好的结构稳定性。
比起其他碳材料上负载金属硫化物的方法,本发明方法在CuS上原位生成碳框架的方法,使得CuS和碳框架分布更加均匀,材料界面结合更加紧密;本发明可以生成三维碳框架的结构,一方面增加材料的电子导电性,一方面可以提高比表面积从而增加界面电解液的润湿性;本发明可以调控碳结构的孔洞大小,使得表面积得到有效调控;本发明在硫化铜由于少量镍金属的引入,使得前驱体中铜离子的团聚受到抑制,以及电极材料电化学过程中的发生体积膨胀受到双金属协同作用的阻碍。
  对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

  1. 一种含Ni的CuS/C复合材料的制备方法,其特征在于,包括以下步骤:1)  制备铜镍离子混合液:分别采用铜镍金属盐溶液混合获得,所述铜镍金属盐可为硝酸盐,硫酸盐,氯化物,所述铜盐和镍盐应为同类金属盐,所述铜镍离子混合液中Cu2+和Ni2+摩尔比值为1:3~3:1;2) 制备前驱体反应液:以N,N-二甲基甲酰胺或/和无水乙醇和纯化水为溶剂,以1,3,5-苯三甲酸为溶质,经磁力搅拌均匀后得到1,3,5-苯三甲酸的浓度为0.1 mol/L的混合溶液,然后将60 ml混合溶液加入到20 ml步骤1)所得铜镍离子混合液中,磁力搅拌混合20min,获得前驱体反应液;3)  制备前驱体:将步骤2)所得前驱体反应液置于反应釜中,于90-180℃的温度下晶化反应16小时,获得前驱体;4)    去除杂质:将步骤3)所得前驱体置于无水乙醇中浸泡24 h,然后离心去除无水乙醇,反复浸泡离心3次后,在60℃下干燥,得到去除残余金属盐和有机配体的前躯体;5) 前驱体活化处理:将步骤4)所得前驱体置于160℃真空烘箱中活化处理12小时;6)    前驱体硫化-碳化处理:将步骤5)所得的活化前驱体与高纯度硫粉以摩尔比1:1的量加入高能球磨机中混合2h得到混合前驱体,然后将混合前躯体置于氩气保护的管式炉中,以硫化-碳化温度煅烧2 h,得到含Ni的CuS/C复合材料。
  2. 根据权利要求1所述含Ni的CuS/C复合材料的制备方法,其特征在于,所述步骤1)的铜镍金属离子溶液中的Cu2+和Ni2+摩尔比值为1: 1~3。
  3. 根据权利要求1所述含Ni的CuS/C复合材料的制备方法,其特征在于,所述步骤2)中,溶质1,3,5-苯三甲酸的纯度为98% 。
  4. 根据权利要求1所述含Ni的CuS/C复合材料的制备方法,其特征在于,所述步骤2)中,溶剂为N,N-二甲基甲酰胺,或者为无水乙醇和纯化水按体积比1:1的混合液,或者为N,N-二甲基甲酰胺、无水乙醇和纯化水按体积比1:1:1~1:1:5混合的混合液。
  5. 根据权利要求1所述含Ni的CuS/C复合材料的制备方法,其特征在于,所述步骤2)中,N,N-二甲基甲酰胺、无水乙醇和纯化水的体积比为1:1:5。
  6. 根据权利要求1所述含Ni的CuS/C复合材料的制备方法,其特征在于,所述步骤6)中,硫化-碳化温度为350℃~800℃。
  7. 根据权利要求1所述含Ni的CuS/C复合材料的制备方法,其特征在于,所述步骤6)中,硫粉的纯度为99.95%。
  8. 根据权利要求1所述含Ni的CuS/C复合材料的制备方法,其特征在于,所述步骤6)中,活化前驱体与硫粉在高能球磨机中的混合方式为:以质量比1:1的粒径5毫米和粒径1厘米的氧化锆球为球料,以摩尔比1:1的活化前驱体和硫粉为物料,然后将球料与物料以质量比20:1,在氩气保护下,以300-500r/min转速研磨2 h,得到混合前躯体。
  9. 根据权利要求8所述含Ni的CuS/C复合材料的制备方法,其特征在于,在氩气保护下,以500r/min转速研磨2 h,得到混合前躯体。
  10. 权利要求1-9任一所述含Ni的CuS/C复合材料的制备方法获得的含Ni的CuS/C复合材料在锂硫电池正极材料上的应用。
PCT/CN2020/131395 2020-07-23 2020-11-25 一种含Ni的CuS/C复合材料的制备方法及应用 WO2022016763A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010718489.1 2020-07-23
CN202010718489.1A CN111883756B (zh) 2020-07-23 2020-07-23 一种含Ni的CuS/C复合材料的制备方法及应用

Publications (1)

Publication Number Publication Date
WO2022016763A1 true WO2022016763A1 (zh) 2022-01-27

Family

ID=73154724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131395 WO2022016763A1 (zh) 2020-07-23 2020-11-25 一种含Ni的CuS/C复合材料的制备方法及应用

Country Status (3)

Country Link
CN (1) CN111883756B (zh)
AU (1) AU2021103929A4 (zh)
WO (1) WO2022016763A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114628683A (zh) * 2022-03-25 2022-06-14 浙江大学 一种用于锂硫电池的生物碳/(CuNiCo)3P复合材料及制备方法
CN114678508A (zh) * 2022-04-13 2022-06-28 电子科技大学长三角研究院(湖州) 一种碳基负载金属硫化物复合材料及其制备方法和应用
CN114804187A (zh) * 2022-03-22 2022-07-29 邯郸学院 一种开口硫化铜空心纳米球的制备方法
CN115924960A (zh) * 2023-01-09 2023-04-07 楚能新能源股份有限公司 具有三维网状结构的金属硫化物/碳复合负极材料及其制备方法和锂离子电池
CN115957780A (zh) * 2023-01-09 2023-04-14 蚌埠学院 一种硫化亚铜-硫化铜纳米复合物的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111883756B (zh) * 2020-07-23 2021-09-07 昆明理工大学 一种含Ni的CuS/C复合材料的制备方法及应用
CN114725353A (zh) * 2022-04-29 2022-07-08 长江师范学院 一种新型金属硫属化物固溶体电极材料及其制备方法和应用
CN115010191B (zh) * 2022-07-05 2023-07-04 浙江帕瓦新能源股份有限公司 电池材料前驱体及其制备方法和应用
CN115925054B (zh) * 2022-10-31 2023-12-19 南京工业大学 一种膜泡相合成炭电极复合材料制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236542A (zh) * 2013-04-17 2013-08-07 浙江大学 一种以金属-有机框架材料为硫载体的锂硫电池正极材料的制备方法
CN109360960A (zh) * 2018-10-18 2019-02-19 西安建筑科技大学 一种CuCo双金属有机框架复合硫材料及其制备和用途
WO2019173214A1 (en) * 2018-03-05 2019-09-12 Sabic Global Technologies B.V. Porous manganese dioxide-carbon hybrid hollow particles and uses thereof
CN111095623A (zh) * 2017-09-28 2020-05-01 株式会社Lg化学 碳-硫复合物、其制备方法以及包含其的锂二次电池
CN111883756A (zh) * 2020-07-23 2020-11-03 昆明理工大学 一种含Ni的CuS/C复合材料的制备方法及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784525B (zh) * 2016-12-12 2019-06-28 中南大学 一种Co-N-C@RGO复合材料、制备方法及用于锂硫电池隔膜改性的应用
CN106684355A (zh) * 2016-12-29 2017-05-17 中国电子科技集团公司第十八研究所 金属有机框架Uio‑66@S锂硫正极材料及制备方法
CN108987721B (zh) * 2018-08-07 2020-11-27 北京科技大学 一种锂硫电池用复合正极材料及工作电极的制备方法
CN110600707B (zh) * 2019-09-25 2021-02-19 郑州大学 一种高氮掺杂碳包覆金属硫化物钠二次电池用高容量电极材料及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236542A (zh) * 2013-04-17 2013-08-07 浙江大学 一种以金属-有机框架材料为硫载体的锂硫电池正极材料的制备方法
CN111095623A (zh) * 2017-09-28 2020-05-01 株式会社Lg化学 碳-硫复合物、其制备方法以及包含其的锂二次电池
WO2019173214A1 (en) * 2018-03-05 2019-09-12 Sabic Global Technologies B.V. Porous manganese dioxide-carbon hybrid hollow particles and uses thereof
CN109360960A (zh) * 2018-10-18 2019-02-19 西安建筑科技大学 一种CuCo双金属有机框架复合硫材料及其制备和用途
CN111883756A (zh) * 2020-07-23 2020-11-03 昆明理工大学 一种含Ni的CuS/C复合材料的制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG ZHEN; AN YONGLING; FENG JINKUI; CI LIJIE; DUAN BINHUA; HUANG WEI; DONG CHENGLONG; XIONG SHENGLIN: "Carbon coated copper sulfides nanosheets synthesized via directly sulfurizing Metal-Organic Frameworks for lithium batteries", MATERIALS LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 181, 16 June 2016 (2016-06-16), AMSTERDAM, NL , pages 340 - 344, XP029648582, ISSN: 0167-577X, DOI: 10.1016/j.matlet.2016.06.066 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804187A (zh) * 2022-03-22 2022-07-29 邯郸学院 一种开口硫化铜空心纳米球的制备方法
CN114804187B (zh) * 2022-03-22 2023-10-27 邯郸学院 一种开口硫化铜空心纳米球的制备方法
CN114628683A (zh) * 2022-03-25 2022-06-14 浙江大学 一种用于锂硫电池的生物碳/(CuNiCo)3P复合材料及制备方法
CN114628683B (zh) * 2022-03-25 2024-04-05 浙江大学 一种用于锂硫电池的生物碳/(CuNiCo)3P复合材料及制备方法
CN114678508A (zh) * 2022-04-13 2022-06-28 电子科技大学长三角研究院(湖州) 一种碳基负载金属硫化物复合材料及其制备方法和应用
CN115924960A (zh) * 2023-01-09 2023-04-07 楚能新能源股份有限公司 具有三维网状结构的金属硫化物/碳复合负极材料及其制备方法和锂离子电池
CN115957780A (zh) * 2023-01-09 2023-04-14 蚌埠学院 一种硫化亚铜-硫化铜纳米复合物的制备方法

Also Published As

Publication number Publication date
CN111883756B (zh) 2021-09-07
AU2021103929A4 (en) 2021-10-07
CN111883756A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2022016763A1 (zh) 一种含Ni的CuS/C复合材料的制备方法及应用
Lu et al. Macroporous Co3O4 platelets with excellent rate capability as anodes for lithium ion batteries
Chen et al. Faceted Cu 2 O structures with enhanced Li-ion battery anode performances
Chao et al. Micro‑meso-macroporous FeCo-NC derived from hierarchical bimetallic FeCo-ZIFs as cathode catalysts for enhanced Li-O2 batteries performance
CN108539142B (zh) 一种锂硫电池正极材料的制备方法
CN103000906A (zh) 泡沫铜/碳纳米相复合锂离子电池负极材料的制备方法
CN110729463A (zh) 含三维互穿复合碳材料的锂硫电池正极材料及制备方法、含其的正极极片和锂硫电池
CN109748282B (zh) 一种低温制备纳米碳化硅的方法
CN102790212A (zh) 锂离子电池负极活性物质及其制备方法和负极材料及负极
CN113104824A (zh) Se掺杂Fe2P自支撑钠离子电池负极材料的制备方法
CN105826524A (zh) 一种石墨烯原位形核磷酸铁锂的合成方法
CN112786865A (zh) 一种MoS2准量子点/氮硫共掺杂生物质碳复合纳米材料的制备方法和应用
CN112038635A (zh) 一种锂硫电池类石墨烯负载渗碳体颗粒复合正极材料及其制备方法
CN110921668B (zh) 一种过渡金属碳化物、碳材料、过渡金属硫属化合物的制备方法和应用
CN113903884A (zh) 正极活性材料及其制备方法、正极、锂离子电池
CN109279663B (zh) 一种硼酸盐类钠离子电池负极材料及其制备和应用
CN111243871A (zh) 新型NiSe2包覆介孔空心碳球复合材料及其制备方法和在超级电容器中的应用
CN113675406A (zh) 一种金属氮化物负载氮掺杂碳网络结构的复合材料及其制备方法和应用
CN112265977B (zh) 一种刻蚀制备多孔空心碳材料的方法
CN110723727B (zh) 松枝状氧化钐石墨烯硫凝胶结构材料及制备方法与应用
CN113725426A (zh) 一种Ni(OH)2-Ni2P@碳布复合材料、其制备及应用
CN113964319A (zh) 一种二氧化铈掺杂多孔碳棒抑制锂硫电池穿梭效应的方法
CN111342016A (zh) 一种钠硒电池正极材料及其制备方法
CN110600681A (zh) 一种泡沫铜的制备方法
CN110589818A (zh) 一种氮掺杂介孔碳材料的制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946251

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20946251

Country of ref document: EP

Kind code of ref document: A1