CN110600681A - 一种泡沫铜的制备方法 - Google Patents

一种泡沫铜的制备方法 Download PDF

Info

Publication number
CN110600681A
CN110600681A CN201910747679.3A CN201910747679A CN110600681A CN 110600681 A CN110600681 A CN 110600681A CN 201910747679 A CN201910747679 A CN 201910747679A CN 110600681 A CN110600681 A CN 110600681A
Authority
CN
China
Prior art keywords
copper
foam
preparing
foam according
loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910747679.3A
Other languages
English (en)
Inventor
艾亮
颜鹤
贾明
杨静如
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Aihua Group Co Ltd
Original Assignee
Hunan Aihua Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Aihua Group Co Ltd filed Critical Hunan Aihua Group Co Ltd
Priority to CN201910747679.3A priority Critical patent/CN110600681A/zh
Publication of CN110600681A publication Critical patent/CN110600681A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明一种泡沫铜的制备方法,包括以下步骤:(1)泡沫铜的制备:将铜粉与碱金属盐混合后,制成生坯,于保护气氛下烧结,得到烧结坯料,然后除去碱金属盐,得到泡沫铜;(2)将步骤(1)得到的泡沫铜于氢氧化镍和氢氧化钴胶体溶液中浸泡后干燥,于还原气气氛下进行煅烧,得到负载有多孔镍钴金属的泡沫铜;(3)将步骤(2)得到的负载有多孔镍钴金属的泡沫铜于气态炔烃和隋性气体的混合气体的条件下进行裂解反应,得到负载有多孔镍钴金属和纳米碳颗粒的泡沫铜。

Description

一种泡沫铜的制备方法
技术领域
本发明涉及一种涉及一种泡沫铜的制备方法。
背景技术
锂离子电池作为一种绿色能源,具有能量密度大、工作电压高、工作温度范围大、循环寿命长、无记忆效应,重量轻等优点,广泛应用于便携式电器、电动车行业、军事装备及航天产业等。锂离子电池的负极材料是影响电池性能的重要因素之一,决定了锂离子电池的容量和循环性能。
目前,负载碳材料作为锂离子电池电极材料的嵌锂特性可以直接作为导电剂加入到电极中使用,且具有优良的电学性能,但其制备方法复杂,成本高。
发明内容
本发明的目的在于提供一种泡沫铜的制备方法。该方法制备工艺简单,成本低,可制备得到电化学性能优良的负极材料。
本发明一种泡沫铜的制备方法,包括以下步骤:
(1)泡沫铜的制备:将铜粉与碱金属盐混合后,制成生坯,于保护气氛下烧结,得到烧结坯料,然后除去碱金属盐,得到泡沫铜;
(2)将步骤(1)得到的泡沫铜于氢氧化镍和氢氧化钴胶体溶液中浸泡后干燥,于还原气气氛下进行煅烧,得到负载有多孔镍钴金属的泡沫铜;
(3)将步骤(2)得到的负载有多孔镍钴金属的泡沫铜于气态炔烃和隋性气体的混合气体的条件下进行裂解反应,得到负载有多孔镍钴金属和纳米碳颗粒的泡沫铜。
所述铜粉为电解铜粉,所述电解铜粉的粒径为2-5μm。
所述碱金属盐为氯化钠、氯化钾、溴化钠或溴化钾。
所述碱金属盐的粒径为4-8μm。
所述保护气氛为氩气或氮气。
所述烧结的温度为700-800℃。
所述还原气氛为氢气。
所述煅烧的温度为900-1000℃。
所述气态炔烃为乙炔、丙炔或丁炔。
所述裂解反应于500-600℃下进行。
相对于现有技术,本发明有益效果如下:
1、本发明可在泡沫铜集流体上生长出质量好和纯度高的碳纳米相,纳米碳颗粒。
2、该方法制备工艺简单,成本低、电化学性能优良,易于实现如推广。
具体实施方式
实施例1
将10gNaCl颗粒球磨60min后,得到平均粒径为4μm的NaCl颗粒,取2.41g粒径为4μm的NaCl颗粒与10g电解铜粉混合后,取30mgNaCl与铜粉的混合物压制成生坯。将上述制得的生坯料置于管式炉中,在氩气的保护气氛下,以10℃/min的升温速率升温至760℃,保温时间为2h,得到烧结坯料。取烧结坯料置于80℃循环热水装置溶出NaCl,然后烘干,即制得孔隙率为50%,平均孔径为40μm的泡沫铜。
分别称取0.0145g六水硝酸镍和0.0063g六水硝酸钴,溶入50mL去离子水中,配制成0.001mol/L的溶液,然后加入氨水,得到氢氧化镍与氢氧化钴混合胶体。然后采用真空浸渍法泡沫铜浸于混合胶体中,时间为30min后,干燥。通入氢气于600℃下进行煅烧,然后关闭氢气,通入氩气冷却,得到负载有多孔镍钴金属的泡沫铜。
将负载有多孔镍钴金属的泡沫铜,于550℃和氩气与乙炔气的混合气氛下催化裂解0.5h,其中,氩气和乙炔气的体积比为240∶6,然后在氩气氛围下将降至室温,得到负载有多孔镍钴金属和纳米碳颗粒的泡沫铜。

Claims (10)

1.一种泡沫铜的制备方法,其特征在于:包括以下步骤:
(1)泡沫铜的制备:将铜粉与碱金属盐混合后,制成生坯,于保护气氛下烧结,得到烧结坯料,然后除去碱金属盐,得到泡沫铜;
(2)将步骤(1)得到的泡沫铜于氢氧化镍和氢氧化钴胶体溶液中浸泡后干燥,于还原气气氛下进行煅烧,得到负载有多孔镍钴金属的泡沫铜;
(3)将步骤(2)得到的负载有多孔镍钴金属的泡沫铜于气态炔烃和隋性气体的混合气体的条件下进行裂解反应,得到负载有多孔镍钴金属和纳米碳颗粒的泡沫铜。
2.如权利要求1所述的泡沫铜的制备方法,其特征在于:所述铜粉为电解铜粉,所述电解铜粉的粒径为2-5μm。
3.如权利要求1所述的泡沫铜的制备方法,其特征在于:所述碱金属盐为氯化钠、氯化钾、溴化钠或溴化钾。
4.如权利要求1或4所述的泡沫铜的制备方法,其特征在于:所述碱金属盐的粒径为4-8μm。
5.如权利要求1所述的泡沫铜的制备方法,其特征在于:所述保护气氛为氩气或氮气。
6.如权利要求1所述的泡沫铜的制备方法,其特征在于:所述烧结的温度为700-800℃。
7.如权利要求1所述的泡沫铜的制备方法,其特征在于:所述还原气氛为氢气。
8.如权利要求1所述的泡沫铜的制备方法,其特征在于:所述煅烧的温度为900-1000℃。
9.如权利要求1所述的泡沫铜的制备方法,其特征在于:所述气态炔烃为乙炔、丙炔或丁炔。
10.如权利要求1所述的泡沫铜的制备方法,其特征在于:所述裂解反应于500-600℃下进行。
CN201910747679.3A 2019-08-14 2019-08-14 一种泡沫铜的制备方法 Pending CN110600681A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910747679.3A CN110600681A (zh) 2019-08-14 2019-08-14 一种泡沫铜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910747679.3A CN110600681A (zh) 2019-08-14 2019-08-14 一种泡沫铜的制备方法

Publications (1)

Publication Number Publication Date
CN110600681A true CN110600681A (zh) 2019-12-20

Family

ID=68854085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910747679.3A Pending CN110600681A (zh) 2019-08-14 2019-08-14 一种泡沫铜的制备方法

Country Status (1)

Country Link
CN (1) CN110600681A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111965223A (zh) * 2020-08-13 2020-11-20 电子科技大学 一种ppb级探测下限的氢气传感器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103000906A (zh) * 2012-12-13 2013-03-27 天津大学 泡沫铜/碳纳米相复合锂离子电池负极材料的制备方法
CN104134788A (zh) * 2014-07-22 2014-11-05 南方科技大学 一种三维梯度金属氢氧化物/氧化物电极材料及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103000906A (zh) * 2012-12-13 2013-03-27 天津大学 泡沫铜/碳纳米相复合锂离子电池负极材料的制备方法
CN104134788A (zh) * 2014-07-22 2014-11-05 南方科技大学 一种三维梯度金属氢氧化物/氧化物电极材料及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111965223A (zh) * 2020-08-13 2020-11-20 电子科技大学 一种ppb级探测下限的氢气传感器及其制备方法
CN111965223B (zh) * 2020-08-13 2021-06-01 电子科技大学 一种ppb级探测下限的氢气传感器及其制备方法

Similar Documents

Publication Publication Date Title
CN103000906B (zh) 泡沫铜/碳纳米相复合锂离子电池负极材料的制备方法
CN109755482B (zh) 硅/碳复合材料及其制备方法
CN110085822B (zh) 一种f-n-c复合材料及其制备方法和应用
CN111009647B (zh) 锂二次电池锂硼硅合金负极活性材料、负极及其制备和应用
WO2022016763A1 (zh) 一种含Ni的CuS/C复合材料的制备方法及应用
Yin et al. Tunable Co 3 O 4 hollow structures (from yolk–shell to multi-shell) and their Li storage properties
CN110518213A (zh) 一种多孔硅-碳纳米管复合材料及其制备方法和应用
CN112421048A (zh) 一种低成本制备石墨包覆纳米硅锂电池负极材料的方法
CN107768645B (zh) 一种多孔的氮掺杂碳纳米片复合负极材料及其制备方法
CN110627031A (zh) 一种钼掺杂磷化钴碳珊瑚片复合材料的制备方法
CN113013391A (zh) 一种制备适配铝硫电池硫正极载体的氮掺杂多维多级孔碳材料的方法
CN109728282B (zh) 一种多孔过渡金属氧化物/碳复合材料的制备方法
CN108017054B (zh) 一种微晶石墨和鳞片石墨制备混合膨胀石墨的方法
CN108270014B (zh) 一种超临界二氧化碳流体制备二氧化硅/石墨烯复合材料的方法及应用
CN107742706B (zh) 一种石墨烯复合金属硼化物和硫复合纳米材料的制备方法及其应用
CN110600681A (zh) 一种泡沫铜的制备方法
CN116002660B (zh) 一种碳硅复合材料的制备方法、碳硅复合材料及锂电池
CN110838584B (zh) 一种硼磷共掺杂多孔硅负极材料及制备方法
CN113120959A (zh) 一种改性球形锰酸锂正极材料制备方法
CN109786709B (zh) 一种四氧化三铁/碳复合负极材料及其制备方法和用途
CN112349889B (zh) 一种过渡金属硫化物纳米复合电极材料的制备方法
CN109768233B (zh) 锂离子电池NiCo2S4/石墨烯复合负极材料的制备方法
CN110890536A (zh) 一种可用于锂离子电池负极的氧化镍/多孔炭材料、制备方法及其应用
CN110600710A (zh) 硫化铁-碳复合材料及其制备方法、锂离子电池负极材料、锂离子电池负极片和锂离子电池
CN112265977B (zh) 一种刻蚀制备多孔空心碳材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191220

RJ01 Rejection of invention patent application after publication