WO2022014450A1 - チラー - Google Patents

チラー Download PDF

Info

Publication number
WO2022014450A1
WO2022014450A1 PCT/JP2021/025707 JP2021025707W WO2022014450A1 WO 2022014450 A1 WO2022014450 A1 WO 2022014450A1 JP 2021025707 W JP2021025707 W JP 2021025707W WO 2022014450 A1 WO2022014450 A1 WO 2022014450A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
refrigerant
heat exchanger
temperature
line
Prior art date
Application number
PCT/JP2021/025707
Other languages
English (en)
French (fr)
Inventor
藤井邦英
戸辺洋平
笹谷俊貴
Original Assignee
Smc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smc株式会社 filed Critical Smc株式会社
Priority to CN202180061088.6A priority Critical patent/CN116194723A/zh
Priority to BR112023000903A priority patent/BR112023000903A2/pt
Priority to KR1020237000321A priority patent/KR20230039635A/ko
Priority to US18/005,518 priority patent/US20240011681A1/en
Priority to MX2023000762A priority patent/MX2023000762A/es
Priority to EP21841967.9A priority patent/EP4184079A4/en
Publication of WO2022014450A1 publication Critical patent/WO2022014450A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/703Cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to a chiller that keeps the temperature of the load constant by supplying a temperature-controlled coolant to the load, and more particularly, to a chiller that can keep the temperature of a plurality of loads constant. Is.
  • a chiller that keeps the temperature of the plurality of loads constant by supplying the temperature-adjusted coolant to the plurality of loads is known as disclosed in Patent Document 1-Patent Document 3 and the like.
  • the chiller (first chiller) disclosed in Patent Document 1 includes one refrigeration circuit, two coolant circuits that separately supply coolant to two loads, and two coolant circuits and a refrigeration circuit. It has two heat exchangers that are connected individually, one heat exchanger regulates the temperature of the coolant in one coolant circuit, and the other heat exchanger regulates the temperature of the coolant in the other coolant circuit. Is to adjust.
  • This first chiller adjusts the temperature of the coolant in the two coolant circuits separately by the two heat exchangers, so it can handle two loads with different temperatures.
  • this first chiller is costly because the two coolant circuits each have their own tank and pump, and the two coolant circuits and the refrigeration circuit are housed in one casing. In that case, there was a problem that the chiller became large.
  • the chillers (second and third chillers) disclosed in Patent Documents 2 and 3 have one tank, one pump, and a plurality of coolant circuits, and one pump.
  • the coolant discharged from is distributed and supplied to a plurality of coolant circuits, and this coolant circuit is configured to cool a plurality of loads by using one tank and one pump. Therefore, it can be made smaller than the first chiller.
  • the second and third chillers distribute and supply the cooling liquid whose temperature is adjusted by one heat exchanger to a plurality of cooling liquid circuits, they can handle a plurality of loads having different temperatures. Can't.
  • the technical object of the present invention is to provide a chiller having a rational structure, which is smaller in size than a conventional chiller, is cost-effective and energy-saving, and can handle a plurality of loads having different temperatures. It is in.
  • the chiller of the present invention has one tank for accommodating the coolant, one pump for discharging the coolant in the tank, and a plurality of chillers by dividing the coolant discharged by the pump. It has a plurality of coolant circuits that are individually supplied to the load and a refrigeration circuit that adjusts the temperature of the coolant by heat exchange between the coolant and the refrigerant.
  • the plurality of coolant circuits are interconnected via individual heat exchangers whose heat exchange capacity can be individually controlled, and the plurality of coolant circuits have a first coolant circuit for cooling the first load and a temperature different from that of the first load.
  • the first heat exchanger which has a second coolant circuit for cooling the second load and connects the first coolant circuit and the refrigeration circuit, returns from the first load and the second load to the tank.
  • the second heat exchanger that adjusts the temperature of the coolant and connects the second coolant circuit and the refrigeration circuit is characterized in that the temperature of the coolant supplied from the tank to the second load is adjusted. do.
  • the first coolant circuit has a first supply pipeline that sends the coolant discharged from the pump to the first load at the first set temperature, which is the temperature in the tank, and the first load. It has a first return line for returning the coolant from the tank to the tank, and the first heat exchanger is connected to the first return line, whereby the first return line is cooled.
  • the liquid flows into the tank after being adjusted to the first set temperature by the first heat exchanger, and the second coolant circuit branches from the first supply pipeline to the second heat exchanger.
  • a branch pipeline connected to, a second supply pipeline that sends the coolant adjusted to the second set temperature by the second heat exchanger to the second load, and a coolant from the second load to the tank. It has a second return line to return, and the second return line is connected to the first return line, whereby the coolant in the second return line is the first return line. It may be configured to join the coolant in the road.
  • a pressure adjusting valve is connected to the second supply pipe, and the pressure adjusting valve applies the pressure of the coolant flowing through the second coolant circuit to the pressure of the coolant flowing through the first coolant circuit. Set the pressure different from the pressure.
  • the first coolant circuit is provided with a filtration pipe connecting the first supply pipe and the first return pipe, and the electric conduction of the coolant is provided in the filter pipe.
  • a DI filter for adjusting the rate and a solenoid valve for opening and closing the filtration pipe are connected, and the electric conductivity of the coolant flowing through the first return pipe is measured in the first return pipe to measure the electromagnetic.
  • a DI sensor that opens and closes the valve may be connected.
  • the filtration line is closer to the first load than the position where the branch line of the first supply line branches, and the position where the second return line of the first return line joins. It is desirable that the position near the first heat exchanger is connected to each other.
  • the refrigerating circuit includes a first refrigerant line connecting the outlet of the compressor and the inlet of the condenser, and a second refrigerant line connecting the outlet of the capacitor and the inlet of the first heat exchanger.
  • a third refrigerant line connecting the outlet of the first heat exchanger and the inlet of the compressor, a fourth refrigerant line connecting the first refrigerant line and the inlet of the second heat exchanger, and the first. 2 It has a fifth refrigerant pipeline connecting the outlet of the heat exchanger and the inlet of the first heat exchanger, and a sixth refrigerant pipeline connecting the fourth refrigerant pipeline and the fifth refrigerant pipeline.
  • a first expansion valve is connected to the second refrigerant line
  • a second expansion valve is connected to the fifth refrigerant line
  • a third expansion valve is connected to the sixth refrigerant line.
  • the refrigerating circuit has a first refrigerant pipe connecting the outlet of the compressor and the inlet of the condenser, and a second refrigerant pipe connecting the outlet of the condenser and the inlet of the first heat exchanger.
  • It has a pipeline and a seventh refrigerant pipeline branched from the sixth refrigerant pipeline and connected to the inlet of the second heat exchanger, and a first expansion valve is connected to the second refrigerant pipeline.
  • the second expansion valve may be connected to the third refrigerant pipe
  • the third expansion valve may be connected to the sixth refrigerant pipe
  • the fourth expansion valve may be connected to the seventh refrigerant pipe.
  • the chiller of the present invention distributes and supplies the coolant to a plurality of coolant circuits by one tank and one pump, and each coolant circuit is an individual heat exchanger whose heat exchange capacity can be individually controlled. Because the temperature of the coolant is adjusted to different set temperatures, it is smaller, lower cost, and energy-saving compared to known chillers that have multiple coolant circuits each with dedicated tanks and pumps. It is a thing.
  • the chiller C1 of the first embodiment shown in FIG. 1 maintains a constant temperature by cooling two loads W1 and W2 having different temperatures with a coolant, and one tank 1 containing the coolant and one tank 1 containing the coolant are used.
  • One pump 2 that discharges the coolant in the tank 1, and two coolant circuits 3 and 4 that separately supply the coolant discharged from the pump 2 to the two loads W1 and W2.
  • One refrigerating circuit 5 that adjusts the temperature of the coolant of the two coolant circuits 3 and 4 to a set temperature, and two heats that individually connect the refrigerating circuit 5 and the two coolant circuits 3 and 4. It has exchangers 6 and 7 and a control device 8 that controls the entire chiller. In this embodiment, pure water is used as the cooling liquid.
  • one of the first load W1 is a laser oscillator in a laser welding apparatus and is a low temperature load
  • the other second load W2 is a probe that irradiates a laser beam. Therefore, the load is higher than that of the laser oscillator.
  • the first coolant circuit 3 cools the first load W1
  • the second coolant circuit 4 cools the second load W2.
  • the first heat exchanger 6 connects the first coolant circuit 3 and the refrigerating circuit 5, and the second coolant circuit 4 and the refrigerating circuit 5 are connected to each other.
  • the second heat exchanger 7 is connected to the 5.
  • the temperature of the coolant supplied to the first load W1 is set to the optimum temperature in the range of 10-30 ° C, preferably in the range of 15-25 ° C.
  • the flow rate of the coolant is set to the optimum flow rate in the range of 20-80 L / min.
  • the temperature of the coolant supplied to the second load W2 is set to the optimum temperature in the range of 10-50 ° C, preferably 20-40 ° C.
  • the flow rate of the coolant is set to the optimum flow rate in the range of 2-10 L / min.
  • the set temperature of the coolant supplied to the second load W2 needs to be equal to or higher than the set temperature of the coolant supplied to the first load W1.
  • the refrigerating circuit 5, one tank 1, one pump 2, and two coolant circuits 3 and 4 are housed inside one housing 9, and the two loads W1 and W2 are said to be the same. It is arranged outside the housing 9. Then, on the outer surface of the housing 9, the supply side load connection port 10 and the return side load connection port 11 for connecting the first load W1 to the first coolant circuit 3 and the second load W2 are provided. A supply-side load connection port 12 and a return-side load connection port 13 for connecting to the second coolant circuit 4 are provided, respectively.
  • the refrigerating circuit 5 compresses a gaseous refrigerant into a high-temperature and high-pressure gaseous refrigerant, and cools the high-temperature and high-pressure gaseous refrigerant sent from the compressor 15 into a low-temperature and high-pressure liquid refrigerant. It has a condenser 16.
  • the condenser 16 is an air-cooled condenser 16 in which the refrigerant is cooled by a fan 17 driven by the electric motor 17a, and the electric motor 17a and the compressor 15 are electrically connected to the control device 8 and the control device is connected to the control device 8.
  • the inverter in 8 By controlling the inverter in 8, the respective rotation speeds, outputs, and the like are controlled.
  • the capacitor 16 may be water-cooled.
  • the refrigerating circuit 5 includes a first refrigerant line 21 connecting the outlet 15a of the compressor 15 and the inlet 16a of the condenser 16, the outlet 16b of the condenser 16 and the inlet 6a of the first heat exchanger 6.
  • a second refrigerant line 22 connecting the first refrigerant line 22 and a third refrigerant line 23 connecting the outlet 6b of the first heat exchanger 6 and the inlet 15b of the compressor 15, the first refrigerant line 21 and the second heat.
  • a fourth refrigerant line 24 connecting the inlet 7a of the exchanger 7, a fifth refrigerant line 25 connecting the outlet 7b of the second heat exchanger 7 and the inlet 6a of the first heat exchanger 6, and the above.
  • the first heat exchanger 6 and the second heat exchanger 7 have a refrigerant flow unit 6A and 7A through which the refrigerant flows and a coolant flow unit 6B and 7B through which the coolant flows, and the refrigerant flow unit 6A , 7A and the coolant flowing through the coolant flow units 6B and 7B exchange heat. Therefore, in the refrigeration circuit 5, the inlets of the first heat exchanger 6 and the second heat exchanger 7 are the inlets 6a and 7a of the refrigerant flow units 6A and 7A, and the first heat exchanger 6 The outlets of the second heat exchanger 7 are the outlets 6b and 7b of the refrigerant flow units 6A and 7A.
  • the inlets of the first heat exchanger 6 and the second heat exchanger 7 are the inlets 6c and 7c of the coolant flow units 6B and 7B. Therefore, the outlets of the first heat exchanger 6 and the second heat exchanger 7 are the outlets 6d and 7d of the coolant flow units 6B and 7B.
  • the first expansion valve 27, the second expansion valve 28, and the third expansion valve 29 are electronic expansion valves whose opening degree can be arbitrarily adjusted by a stepping motor, and these expansion valves are electrically connected to the control device 8. It is connected, and the opening degree of each expansion valve 27, 28, 29 is controlled by this control device 8.
  • a first refrigerant temperature sensor 30 that detects the temperature of the refrigerant discharged from the compressor 15 is connected to the first refrigerant line 21, and the condenser 16 and the first are connected to the second refrigerant line 22.
  • a refrigerant filter 31 for removing foreign matter in the refrigerant and a first refrigerant pressure sensor 32 for detecting the pressure of the refrigerant are connected to a position between the expansion valve 27, and the third refrigerant pipeline 23 is connected to the third refrigerant pipeline 23.
  • a second refrigerant pressure sensor 33 that detects the pressure of the refrigerant returning from the first heat exchanger 6 to the compressor 15 and a second refrigerant temperature sensor 34 that detects the temperature of the refrigerant are connected.
  • the refrigerant temperature sensors 30 and 34 and the refrigerant pressure sensors 32 and 33 are electrically connected to the control device 8, and based on the measured refrigerant temperature and refrigerant pressure, the control device 8 causes the compressor 15 and the like. The rotation speed and output of the fan 17 are controlled.
  • the first coolant circuit 3 includes a first supply pipe line 40 connecting the discharge port 2a of the pump 2 and the supply side load connection port 10, the return side load connection port 11, and the first heat exchanger 6. It has a first return pipe 41 connecting the inlet 6c of the first heat exchanger 6 and an inflow pipe 42 connecting the outlet 6d of the first heat exchanger 6 and the tank 1.
  • the coolant discharged from the tank 1 by the pump 2 remains at the first set temperature, which is the temperature in the tank 1, through the first supply pipe 40. It is supplied to the 1 load W1 and cools the 1st load W1.
  • the cooling liquid whose temperature has been raised by cooling the first load W1 is sent to the first heat exchanger 6 through the first return pipe line 41, and the temperature is adjusted by the first heat exchanger 6. After returning to the first set temperature, the liquid flows into the tank 1 from the inflow pipe 42.
  • a first temperature sensor 43 for detecting the temperature of the coolant supplied to the first load W1 and a pressure sensor 44 for detecting the pressure of the coolant are connected to the first supply pipeline 40, and the first is described.
  • a second temperature sensor 45 that detects the temperature of the coolant returning from the first load W1 to the tank 1 is connected to the return pipeline 41.
  • the first temperature sensor 43, the second temperature sensor 45, and the pressure sensor 44 are electrically connected to the control device 8 to the temperature of the coolant measured by the first temperature sensor 43 and the second temperature sensor 45. Based on this, the control device 8 adjusts the opening degrees of the expansion valves 27, 28, 29 to control the heat exchange capacity of the first heat exchanger 6, and the coolant measured by the pressure sensor 44.
  • the pump 2 is controlled by the control device 8 based on the pressure of the above.
  • the member with the reference numeral 46 in the figure is a level switch for detecting the liquid level of the coolant inside the tank 1, and the member with the reference numeral 47 is a drain discharge pipe. Further, the pump 2 is a non-immersion type pump installed outside the tank 1.
  • the second coolant circuit 4 has a branch pipeline 50 branched from the first supply pipeline 40 of the first coolant circuit 3 and connected to the inlet 7c of the second heat exchanger 7.
  • the second supply pipe 51 connecting the outlet 7d of the second heat exchanger 7 and the supply side load connection port 12, the return side load connection port 13, and the first return pipe 41 of the first coolant circuit 3 It has a second return pipeline 52 that connects to and.
  • the position where the second return pipe 52 is connected to the first return pipe 41 is a position on the upstream side (closer to the return side load connection port 11) than the position where the second temperature sensor 45 is provided. be.
  • the coolant discharged by the pump 2 is sent to the second heat exchanger 7 through the branch pipeline 50, and is sent to the second heat exchanger 7 by the second heat exchanger 7.
  • the second load W2 After being adjusted to a second set temperature different from the first set temperature, it is sent to the second load W2 through the second supply pipeline 51 to cool the second load W2.
  • the cooling liquid raised by cooling the second load W2 flows into the first return pipe 41 from the second return pipe 52, and flows through the first return pipe 41.
  • the temperature is adjusted by the first heat exchanger 6 and returned to the first set temperature, and then the tank 1 is sent from the inflow pipe 42. Inflow to.
  • the set temperature (second set temperature) of the coolant in the second coolant circuit 4 is set to the coolant in the first coolant circuit 3. It is higher than the temperature (first set temperature). Therefore, the second heat exchanger 7 heats the coolant sent from the tank 1 via the first coolant circuit 3 and the branch pipeline 50 while maintaining the first set temperature. 2 The temperature is raised to the set temperature. Therefore, it can be said that the second heat exchanger 7 is a heat exchanger for heating.
  • a third temperature sensor 53 that detects the temperature of the coolant supplied to the second load W2 and a pressure adjusting valve 54 that changes the pressure of the coolant are connected in series.
  • the third temperature sensor 53 and the pressure regulating valve 54 are electrically connected to the control device 8, and the second expansion in the control device 8 is based on the temperature of the coolant measured by the third temperature sensor 53.
  • the pressure adjusting valve in the control device 8 is used.
  • the pressure adjusting valve 54 may be a manually operated valve.
  • the first coolant circuit 3 is provided with a filtration pipe line 60 for purifying the coolant whose purity has decreased due to an increase in ionic substances.
  • One end of the filtration pipe 60 is connected to a position on the downstream side (closer to the first load W1) of the first supply pipe 40 from the position where the branch pipe 50 branches, and the other of the filtration pipe 60. The end is connected to a position on the downstream side (closer to the first heat exchanger 6) of the first return pipe 41 from the position to which the second return pipe 52 is connected.
  • a DI filter 61 for removing an ionic substance and a solenoid valve 62 for opening and closing the filtration pipe 60 are connected in series to the filtration pipe 60.
  • a DI sensor 63 for measuring the electric conductivity of the coolant is connected to the confluence of the filtration pipe 60 and the first return pipe 41.
  • the DI filter 61 adsorbs an ionic substance in the coolant to the resin surface by ion exchange and removes the DI filter 61, and is detachably connected to the filter connecting portions 64 and 65 formed in the filtration pipe line 60. Has been done.
  • the DI filter 61 may be disposed inside the housing 9 or may be disposed outside the housing 9.
  • the solenoid valve 62 and the DI sensor 63 are electrically connected to the control device 8, and the solenoid valve 62 is controlled to open / close by the control device 8 according to the electrical conductivity measured by the DI sensor 63. Will be done.
  • the filtration pipe line 60 operates as follows. That is, when the electric conductivity of the coolant in the first return pipe 41 measured by the DI sensor 63 is higher than the reference value due to the increase in the ionic substance, the coolant recirculates. The electrical conductivity of the coolant in the tank 1 is also high. Therefore, the solenoid valve 62 is opened by the control device 8, and the coolant of the first supply pipe 40 flows into the filtration pipe 60, so that the ionic substance in the coolant is removed by the DI filter 61. The purified and purified coolant is sent to the tank 1 through the first return pipe 41. By continuing this operation, the coolant in the tank 1 is purified. As a result, the coolant of the first coolant circuit 3 and the coolant of the second coolant circuit 4 can always be kept at the same purity (liquid quality).
  • the chiller C1 of the first embodiment operates as follows.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 15 is cooled by the condenser 16 to become a low-temperature and high-pressure liquid refrigerant, and then first expanded from the second refrigerant conduit 22. It is sent to the first heat exchanger 6 through the valve 27, and after exchanging heat with the coolant of the first coolant circuit 3 in the first heat exchanger 6, the coolant is cooled to the first set temperature, and then the first 3 Return to the compressor 15 through the refrigerant conduit 23.
  • the second heat exchanger 7 describes the above.
  • the gaseous refrigerant is condensed by heating the coolant in the second heat exchanger 7, and then expanded by the second expansion valve 28, so that the temperature is further lowered.
  • a part of the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 15 is sent from the sixth refrigerant pipe 26 to the first heat exchanger 6 via the third expansion valve 29, and the second one. 1 Used for adjusting the temperature of the refrigerant flowing into the heat exchanger 6.
  • the first coolant circuit 3 After the coolant in the tank 1 adjusted to the first set temperature is discharged from the pump 2, the first set temperature is reached through the first supply pipe 40. It is sent to the first load W1 as it is, and the first load W1 is cooled. The cooling liquid raised by cooling the first load W1 is sent to the first heat exchanger 6 through the first return pipe 41, and is adjusted to the first set temperature by the first heat exchanger 6. After that, it flows into the tank 1 from the inflow pipe 42.
  • the temperature of the coolant is constantly measured by the first temperature sensor 43 and the second temperature sensor 45, and based on the measured temperature of the coolant, the control device 8 determines the first expansion valve 27 and the second expansion valve 27 of the refrigeration circuit 5. By controlling the opening degree of the 3 expansion valve 29, the temperature of the coolant is adjusted to the first set temperature.
  • the opening degree of the first expansion valve 27 in the refrigerating circuit 5 is expanded to increase the flow rate of the low temperature refrigerant, and the opening degree of the third expansion valve 29 is decreased to reduce the flow rate of the high temperature refrigerant. ..
  • the temperature of the refrigerant flowing into the first heat exchanger 6 decreases and the cooling capacity of the first heat exchanger 6 increases, so that the coolant is cooled and the temperature becomes the first set temperature. It will be adjusted.
  • the temperature of the coolant is lower than the first set temperature, it is necessary to heat the coolant with the first heat exchanger 6 to raise the temperature, so that the first expansion valve 27 As the opening degree decreases and the flow rate of the low temperature refrigerant decreases, the opening degree of the third expansion valve 29 increases and the flow rate of the high temperature refrigerant increases. As a result, the temperature of the refrigerant flowing into the first heat exchanger 6 rises, the cooling liquid is heated by the heated refrigerant, and the temperature is adjusted to the first set temperature.
  • the second coolant circuit 4 a part of the coolant discharged from the pump 2 at the first set temperature flows into the second heat exchanger 7 through the branch pipeline 50, and the second heat. It is heated by exchanging heat with a high-temperature and high-pressure gaseous refrigerant in the exchanger 7, adjusted to a second set temperature higher than the first set temperature, and then sent to the second load W2 through the second supply pipeline 51.
  • the second load W2 is cooled.
  • the coolant whose temperature has been raised by cooling the second load W2 flows from the second return pipe 52 into the first return pipe 41, and is from the first load W1 flowing through the first return pipe 41. After merging with the coolant and being sent to the first heat exchanger 6, the temperature is adjusted by the first heat exchanger 6 to return to the first set temperature, and then the water flows into the tank 1 from the inflow pipe 42. do.
  • the temperature of the coolant supplied to the second load W2 is constantly measured by the third temperature sensor 53 connected to the second supply pipeline 51, and the refrigeration circuit is performed by the control device 8 based on the measured temperature. By controlling the opening degree of the second expansion valve 28 of 5, the temperature of the coolant is adjusted to the second set temperature.
  • the temperature of the coolant flowing through the second supply pipeline 51 is higher than the second set temperature, it is necessary to lower the temperature of the coolant, so that the opening degree of the second expansion valve 28 in the refrigeration circuit 5 is open.
  • the heating capacity of the second heat exchanger 7 is reduced by reducing or closing the temperature, and as a result, the temperature of the coolant is lowered and adjusted to the second set temperature.
  • the solenoid valve 62 is opened, the filtration line 60 is opened, and the coolant flows through the filtration line 60, so that the ionic substance in the coolant is removed by the DI filter 61.
  • a part of the coolant may be allowed to flow through the filtration pipe 60 to be filtered, or the load may be stopped from being cooled and the entire coolant may be filtered. It can also be flowed through the conduit 60 for filtration.
  • FIG. 2 shows the chiller C2 of the second embodiment.
  • the difference between the chiller C2 and the chiller C1 of the first embodiment is the configuration of the refrigerating circuit 5A, the configurations of the first coolant circuit 3 and the second coolant circuit 4, and the first heat exchanger 6 and the first.
  • the configuration of the two heat exchangers 7 is the same as that of the chiller of the first embodiment. Therefore, in the following description, the configuration of the refrigerating circuit 5A will be described, and the first coolant circuit 3 and the second coolant circuit 4 and the first heat exchanger 6 and the second heat exchanger 7 will be described. , The same reference numerals as those used in the first embodiment are added, and the description thereof will be omitted.
  • the refrigerating circuit 5A connects the first refrigerant line 72 connecting the outlet 70a of the compressor 70 and the inlet 71a of the condenser 71, and the outlet 71b of the condenser 71 and the inlet 6a of the first heat exchanger 6.
  • It has a fourth refrigerant line 75 connecting the inlet 70b of the compressor 70 and a fifth refrigerant line 76 connecting the outlet 7b of the second heat exchanger 7 and the fourth refrigerant line 75. ..
  • the first expansion valve 77 is connected to the position of the second refrigerant pipe 73 closer to the first heat exchanger 6 than the position where the third refrigerant pipe 74 branches, and the third refrigerant pipe 74 is connected.
  • the second expansion valve 78 is connected to the.
  • the sixth refrigerant line 79 branching from the first refrigerant line 72 is located in the second refrigerant line 73 at a position closer to the inlet 6a of the first heat exchanger 6 than the first expansion valve 77.
  • a third expansion valve 80 is connected to the sixth refrigerant line 79, and a seventh refrigerant line 81 branching from the sixth refrigerant line 79 is connected to the third refrigerant line 74.
  • the second expansion valve 78 is connected at a position closer to the inlet 7a of the second heat exchanger 7, and the fourth expansion valve 82 is connected to the seventh refrigerant pipeline 81.
  • a first refrigerant temperature sensor 83 that detects the temperature of the refrigerant discharged from the compressor 70 is connected to the first refrigerant line 72, and flows out from the condenser 71 to the second refrigerant line 73.
  • a refrigerant filter 84 that removes foreign matter in the refrigerant and a first refrigerant pressure sensor 85 that detects the pressure of the refrigerant are connected, and the first heat exchanger 6 and the second heat exchanger 6 are connected to the fourth refrigerant pipeline 75.
  • a second refrigerant pressure sensor 86 that detects the pressure of the refrigerant returning from the heat exchanger 7 to the compressor 70 and a second refrigerant temperature sensor 87 that detects the temperature of the refrigerant are connected.
  • the chiller of the second embodiment operates as follows.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 70 is cooled by the condenser 71 to become a low-temperature and high-pressure liquid refrigerant, and then first expanded from the second refrigerant pipeline 73.
  • the first heat exchanger 6 is sent from the third refrigerant pipe 74 to the second heat exchanger 7 through the second expansion valve 78, and at the same time, the first heat exchanger 6 is used to send the first heat exchanger.
  • the coolant is heat-exchanged with the coolant of the coolant circuit 3 to adjust the coolant to the first set temperature, and the second heat exchanger 7 exchanges heat with the coolant of the second coolant circuit 4 to cool the coolant. Adjust the liquid to the second set temperature. Then, the refrigerant exiting the first heat exchanger 6 and the second heat exchanger 7 returns to the inlet 70b of the compressor 70 through the fourth refrigerant pipe 75 and the fifth refrigerant pipe 76.
  • a part of the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 70 is sent to the first heat exchanger 6 via the sixth refrigerant conduit 79 and the third expansion valve 80, and is also said. It is sent to the second heat exchanger 7 via the seventh refrigerant pipe 81 and the fourth expansion valve 82, and is used for adjusting the temperature of the refrigerant flowing into each of the heat exchangers 6 and 7.
  • the first coolant circuit 3 after the coolant in the tank 1 adjusted to the first set temperature is discharged from the pump 2, the first set temperature is reached through the first supply pipe 40. It is sent to the first load W1 as it is, and the first load W1 is cooled. The cooling liquid raised by cooling the first load W1 is sent to the first heat exchanger 6 through the first return pipe line 41, and returns to the first set temperature by the first heat exchanger 6. After that, it flows into the tank 1 from the inflow pipe 42.
  • the temperature of the coolant is constantly measured by the first temperature sensor 43 and the second temperature sensor 45, and based on the measured temperature of the coolant, the control device 8 determines the first expansion valve 77 and the first expansion valve 77 of the refrigeration circuit 5A. By controlling the opening degree of the 3 expansion valve 80, the temperature of the coolant is adjusted to the first set temperature.
  • the opening degree of the first expansion valve 77 in the refrigerating circuit 5A increases to increase the flow rate of the low temperature refrigerant, and the opening degree of the third expansion valve 80 decreases to reduce the flow rate of the high temperature refrigerant.
  • the temperature of the refrigerant flowing into the first heat exchanger 6 decreases and the cooling capacity of the first heat exchanger 6 increases, so that the coolant is cooled and the temperature becomes the first set temperature. It will be adjusted.
  • the opening degree of the third expansion valve 80 increases and the flow rate of the high temperature refrigerant increases.
  • the temperature of the refrigerant flowing into the first heat exchanger 6 rises, the cooling liquid is heated by the heated refrigerant, and the temperature is adjusted to the first set temperature.
  • the second coolant circuit 4 a part of the coolant discharged from the pump 2 at the first set temperature flows into the second heat exchanger 7 through the branch pipeline 50, and the second heat.
  • the temperature is raised by exchanging heat with the refrigerant in the exchanger 7, adjusted to a second set temperature higher than the first set temperature, and then sent to the second load W2 through the second supply pipeline 51. 2 Cool the load W2.
  • the cooling liquid whose temperature has been raised by cooling the second load W2 flows from the second return pipe line 52 into the first return pipe line 41, merges with the cooling liquid from the first load W1, and is said to be the first. 1 It is sent to the heat exchanger 6, the temperature is adjusted by the first heat exchanger 6 and returned to the first set temperature, and then the liquid flows into the tank 1 from the inflow pipe 42.
  • the temperature of the coolant supplied to the second load W2 is constantly measured by the third temperature sensor 53 connected to the second supply pipeline 51, and the refrigeration circuit is performed by the control device 8 based on the measured temperature.
  • the control device 8 By controlling the opening degrees of the second expansion valve 78 and the fourth expansion valve 82 of 5A, the temperature of the coolant is adjusted to the second set temperature.
  • the opening degree of the second expansion valve 78 in the refrigerating circuit 5A increases to increase the flow rate of the low temperature refrigerant, and the opening degree of the fourth expansion valve 82 decreases to reduce the flow rate of the high temperature refrigerant.
  • the temperature of the refrigerant flowing into the second heat exchanger 7 decreases and the cooling capacity of the second heat exchanger 7 increases, so that the coolant is cooled and the temperature reaches the second set temperature. It will be adjusted.
  • the second expansion valve 78 As the opening degree decreases and the flow rate of the low temperature refrigerant decreases, the opening degree of the fourth expansion valve 82 increases and the flow rate of the high temperature refrigerant increases. As a result, the temperature of the refrigerant flowing into the second heat exchanger 7 rises, the cooling liquid is heated by the raised refrigerant, and the temperature is adjusted to the second set temperature.
  • the ionic substance in the coolant increases and the purity of the coolant decreases, the ionic substance is removed by the action of the DI filter 61 as in the case of the first embodiment. The same is true.
  • the chiller C1 of the first embodiment and the chiller C2 of the second embodiment have two coolant circuits 3 and 4, respectively, but the chiller of the present invention has three or more coolant circuits. Can be done. For example, having one said first coolant circuit 3 and two or more said second coolant circuits 4 may also have two or more said first coolant circuits 3 and one said second coolant circuit 4. It is also possible to have two or more of the first coolant circuits 3 and two or more of the second coolant circuits 4.
  • the first coolant circuit 3 and the first expansion valve 27 and the third expansion valve 29 are provided.
  • the included refrigerant circuit unit 5a may be connected to each other in parallel with the circuit components connected to each other by the first heat exchanger 6, and when two or more of the second coolant circuits 4 are provided.
  • the second coolant circuit 4 and the refrigerant circuit unit 5b including the second expansion valve 28 may connect circuit components connected to each other by the second heat exchanger 7 in parallel with each other. ..
  • the first coolant circuit 3 and the first expansion valve 77 and the third expansion valve 80 are included.
  • the refrigerant circuit unit 5a and the circuit components connected to each other by the first heat exchanger 6 may be connected in parallel to each other, and when two or more of the second coolant circuits 4 are provided, the second coolant circuit 4 may be provided.
  • the second coolant circuit 4 and the refrigerant circuit unit 5b including the second expansion valve 78 and the fourth expansion valve 82 parallel the circuit components connected to each other by the second heat exchanger 7. Just connect to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】小形で低コスト化及び省エネルギー化されたチラーを提供する。 【解決手段】1つのタンク1と、1つのポンプ2と、複数の負荷を個別に冷却する複数の冷却液回路3,4と、冷凍回路5とを有し、前記複数の冷却液回路3,4と冷凍回路5とは、冷却能力を個々に制御可能な個別の熱交換器6,7を介して相互に接続され、第1冷却液回路3と冷凍回路5とを接続する第1熱交換器6は、第1負荷W1及び第2負荷W2から前記タンク1に戻る冷却液の温度を調整し、第2冷却液回路4と冷凍回路5とを接続する第2熱交換器7は、前記タンク1から第2負荷W2に供給される冷却液の温度を調整する。

Description

チラー
 本発明は、温度調整された冷却液を負荷に供給することによって該負荷の温度を一定に保つチラーに関するものであり、更に詳しくは、複数の負荷の温度を一定に保つことができるチラーに関するものである。
 温度調整された冷却液を複数の負荷に供給することによって該複数の負荷の温度を一定に保つチラーは、特許文献1-特許文献3等に開示されているように公知である。
 特許文献1に開示されたチラー(第1のチラー)は、1つの冷凍回路と、2つの負荷に冷却液を別々に供給する2つの冷却液回路と、2つの冷却液回路と冷凍回路とを個別に接続する2つの熱交換器とを有し、一方の熱交換器で一方の冷却液回路の冷却液の温度を調整し、他方の熱交換器で他方の冷却液回路の冷却液の温度を調整するものである。
 この第1のチラーは、2つの冷却液回路の冷却液の温度を2つの熱交換器で別々に調整するため、温度が異なる2つの負荷に対応することができる。しかし、この第1のチラーは、2つの冷却液回路がそれぞれ専用のタンク及びポンプを有しているため、コストが高く、また、2つの冷却液回路及び冷凍回路を一つのケーシング内に収容した場合、チラーが大形化するという問題を有していた。
 一方、特許文献2及び特許文献3に開示されたチラー(第2及び第3のチラー)は、1つのタンクと、1つのポンプと、複数の冷却液回路とを有していて、1つのポンプから吐出される冷却液を複数の冷却液回路に分散して供給し、この冷却液回路で複数の負荷を冷却するように構成されたもので、1つのタンクと1つのポンプとを使用しているため、第1のチラーに比べて小形化することが可能である。
 しかしながら、この第2及び第3のチラーは、1つの熱交換器で温度調整した冷却液を複数の冷却液回路に分散して供給するようにしているため、温度の異なる複数の負荷に対応することができない。
実公平5-17535号公報 特開2004-28554号公報 特開2011-163698号公報
 本発明の技術的課題は、従来のチラーに比べて小形で低コスト化及び省エネルギー化されると共に、温度が異なる複数の負荷にも対応することができる、合理的構造を有するチラーを提供することにある。
 前記課題を解決するため、本発明のチラーは、冷却液を収容する1つのタンクと、該タンク内の冷却液を吐出する1つのポンプと、該ポンプが吐出する冷却液を分流して複数の負荷に個別に供給する複数の冷却液回路と、前記冷却液の温度を該冷却液と冷媒との熱交換により調整する冷凍回路とを有し、前記複数の冷却液回路と冷凍回路とは、熱交換能力を個々に制御可能な個別の熱交換器を介して相互に接続され、前記複数の冷却液回路は、第1負荷を冷却する第1冷却液回路と、該第1負荷と異なる温度の第2負荷を冷却する第2冷却液回路とを有し、前記第1冷却液回路と冷凍回路とを接続する第1熱交換器は、前記第1負荷及び第2負荷から前記タンクに戻る冷却液の温度を調整し、前記第2冷却液回路と冷凍回路とを接続する第2熱交換器は、前記タンクから前記第2負荷に供給される冷却液の温度を調整することを特徴とする。
 本発明において、前記第1冷却液回路は、前記ポンプから吐出された冷却液を、タンク内での温度である第1設定温度のまま第1負荷に送る第1供給管路と、第1負荷からの冷却液を前記タンクに戻す第1戻り管路とを有していて、該第1戻り管路に前記第1熱交換器が接続されており、それによって該第1戻り管路の冷却液は、前記第1熱交換器で前記第1設定温度に調整されたあと前記タンクに流入し、前記第2冷却液回路は、前記第1供給管路から分岐して前記第2熱交換器に接続された分岐管路と、前記第2熱交換器で第2設定温度に調整された冷却液を第2負荷に送る第2供給管路と、第2負荷からの冷却液を前記タンクに戻す第2戻り管路とを有していて、該第2戻り管路は前記第1戻り管路に接続されており、それによって該第2戻り管路の冷却液は、前記第1戻り管路の冷却液に合流するように構成されていても良い。
 また、本発明において、前記第2供給管路に圧力調整弁が接続され、該圧力調整弁は、前記第2冷却液回路を流れる冷却液の圧力を前記第1冷却液回路を流れる冷却液の圧力とは異なる圧力にする。
 また、本発明においては、前記第1冷却液回路に、前記第1供給管路と第1戻り管路とを接続する濾過管路が設けられ、該濾過管路に、前記冷却液の電気伝導率を調整するDIフィルタと、該濾過管路を開閉する電磁弁とが接続され、前記第1戻り管路に、該第1戻管路を流れる冷却液の電気伝導率を測定して前記電磁弁を開閉させるDIセンサが接続されていても良い。
 前記濾過管路は、前記第1供給管路の前記分岐管路が分岐する位置よりも第1負荷寄りの位置と、前記第1戻り管路の前記第2戻り管路が合流する位置よりも第1熱交換器寄りの位置とを、相互に接続していることが望ましい。
 本発明において、前記冷凍回路は、圧縮機の出口とコンデンサの入口とを結ぶ第1冷媒管路と、該コンデンサの出口と前記第1熱交換器の入口とを結ぶ第2冷媒管路と、前記第1熱交換器の出口と前記圧縮機の入口を結ぶ第3冷媒管路と、前記第1冷媒管路と前記第2熱交換器の入口とを結ぶ第4冷媒管路と、前記第2熱交換器の出口と前記第1熱交換器の入口とを結ぶ第5冷媒管路と、前記第4冷媒管路と該第5冷媒管路とを結ぶ第6冷媒管路とを有し、前記第2冷媒管路に第1膨張弁が接続され、前記第5冷媒管路に第2膨張弁が接続され、前記第6冷媒管路に第3膨張弁が接続されている。
 また、本発明において、前記冷凍回路は、圧縮機の出口とコンデンサの入口とを結ぶ第1冷媒管路と、該コンデンサの出口と前記第1熱交換器の入口とを結ぶ第2冷媒管路と、該第2冷媒管路と前記第2熱交換器の入口とを結ぶ第3冷媒管路と、前記第1熱交換器の出口と前記圧縮機の入口を結ぶ第4冷媒管路と、前記第2熱交換器の出口と前記第4冷媒管路とを結ぶ第5冷媒管路と、前記第1冷媒管路から分岐して前記第1熱交換器の入口に接続された第6冷媒管路と、該第6冷媒管路から分岐して前記第2熱交換器の入口に接続された第7冷媒管路とを有し、前記第2冷媒管路に第1膨張弁が接続され、前記第3冷媒管路に第2膨張弁が接続され、前記第6冷媒管路に第3膨張弁が接続され、前記第7冷媒管路に第4膨張弁が接続されていても良い。
 本発明のチラーは、1つのタンクと1つのポンプとによって複数の冷却液回路に冷却液を分散して供給すると共に、熱交換能力を個々に制御可能な個別の熱交換器で各冷却液回路の冷却液の温度を異なる設定温度に調整するようにしているため、複数の冷却液回路が専用のタンク及びポンプをそれぞれ有する公知のチラーに比べ、小形で低コストであると共に、省エネルギー化されたものである。
本発明に係るチラーの第1実施形態を記号で示す回路図である。 本発明に係るチラーの第2実施形態を記号で示す回路図である。
 図1に示す第1実施形態のチラーC1は、温度が異なる2つの負荷W1,W2を冷却液で冷却することによってそれぞれ一定温度に保つもので、冷却液が収容された1つのタンク1と、このタンク1内の冷却液を吐出する1つのポンプ2と、このポンプ2から吐出された冷却液を分流して2つの負荷W1,W2に個別に供給する2つの冷却液回路3,4と、この2つの冷却液回路3,4の冷却液の温度をそれぞれ設定温度に調整する1つの冷凍回路5と、この冷凍回路5と2つの冷却液回路3,4とを個別に接続する2つの熱交換器6,7と、チラー全体を制御する制御装置8とを有している。なお、本実施形態においては、前記冷却液として純水が使用されている。
 前記2つの負荷W1,W2のうち、一方の第1負荷W1は、レーザー溶接装置におけるレーザー発振器であって、低温の負荷であり、他方の第2負荷W2は、レーザー光を照射するプローブであって、レーザー発振器より高温の負荷である。
 また、前記2つの冷却液回路3,4のうち、第1負荷W1を冷却するのが第1冷却液回路3であり、第2負荷W2を冷却するのが第2冷却液回路4である。
 さらに、前記2つの熱交換器6,7のうち、前記第1冷却液回路3と冷凍回路5とを接続するのが第1熱交換器6であり、前記第2冷却液回路4と冷凍回路5とを接続するのが第2熱交換器7である。
 また、例えば、前記第1冷却液回路3において、前記第1負荷W1に供給される冷却液の温度は、10-30℃の範囲、好ましくは15-25℃の範囲で、最適の温度に設定され、冷却液の流量は、20-80L/minの範囲で最適の流量に設定される。
 一方、前記第2冷却液回路4において、前記第2負荷W2に供給される冷却液の温度は、10-50℃の範囲、好ましくは20-40℃の範囲で、最適の温度に設定され、冷却液の流量は、2-10L/minの範囲で最適の流量に設定される。但し、第2負荷W2に供給される冷却液の設定温度は、第1負荷W1に供給される冷却液の設定温度に比べ、同等以上であることが必要である。
 前記冷凍回路5と、1つのタンク1と、1つのポンプ2と、2つの冷却液回路3,4とは、1つの筐体9の内部に収容され、前記2つの負荷W1,W2は、該筐体9の外部に配設されている。そして、この筐体9の外側面に、前記第1負荷W1を前記第1冷却液回路3に接続するための供給側負荷接続口10及び戻り側負荷接続口11と、前記第2負荷W2を前記第2冷却液回路4に接続するための供給側負荷接続口12及び戻り側負荷接続口13とが、それぞれ設けられている。
 前記冷凍回路5は、ガス状冷媒を圧縮して高温高圧のガス状冷媒にする圧縮機15と、該圧縮機15から送られる高温高圧のガス状冷媒を冷却して低温高圧の液状冷媒にするコンデンサ16とを有している。このコンデンサ16は、電動モータ17aで駆動されるファン17によって冷媒を冷却する空冷式のコンデンサ16であり、これら電動モータ17a及び圧縮機15は、制御装置8に電気的に接続され、この制御装置8でインバーター制御されることにより、各々の回転数や出力等が制御される。しかし、前記コンデンサ16は水冷式であっても良い。
 また、前記冷凍回路5は、前記圧縮機15の出口15aとコンデンサ16の入口16aとを結ぶ第1冷媒管路21と、前記コンデンサ16の出口16bと前記第1熱交換器6の入口6aとを結ぶ第2冷媒管路22と、該第1熱交換器6の出口6bと前記圧縮機15の入口15bを結ぶ第3冷媒管路23と、前記第1冷媒管路21と前記第2熱交換器7の入口7aとを結ぶ第4冷媒管路24と、前記第2熱交換器7の出口7bと前記第1熱交換器6の入口6aとを結ぶ第5冷媒管路25と、前記第4冷媒管路24と該第5冷媒管路25とを結ぶ第6冷媒管路26とを有している。そして、前記第2冷媒管路22に第1膨張弁27が接続され、前記第5冷媒管路25における、前記第6冷媒管路26が接続された位置よりも前記第2熱交換器7の出口7b寄りの位置に、第2膨張弁28が接続され、前記第6冷媒管路26に第3膨張弁29が接続されている。
 なお、前記第1熱交換器6及び第2熱交換器7は、冷媒が流れる冷媒流通部6A,7Aと冷却液が流れる冷却液流通部6B,7Bとを有していて、冷媒流通部6A,7Aを流れる冷媒と冷却液流通部6B,7Bを流れる冷却液との間で熱交換を行うものである。このため、前記冷凍回路5において、第1熱交換器6及び第2熱交換器7の入口というのは、冷媒流通部6A,7Aの入口6a,7aのことであり、第1熱交換器6及び第2熱交換器7の出口というのは、冷媒流通部6A,7Aの出口6b,7bのことである。また、後述する第1冷却液回路3及び第2冷却液回路4において、第1熱交換器6及び第2熱交換器7の入口というのは、冷却液流通部6B,7Bの入口6c,7cのことであり、第1熱交換器6及び第2熱交換器7の出口というのは、冷却液流通部6B,7Bの出口6d,7dのことである。
 前記第1膨張弁27、第2膨張弁28、第3膨張弁29は、ステッピングモータによって開度を任意に調整可能な電子膨張弁であり、これらの膨張弁は前記制御装置8に電気的に接続され、この制御装置8で各々の膨張弁27,28,29の開度が制御される。
 前記第1冷媒管路21には、前記圧縮機15から吐出された冷媒の温度を検出する第1冷媒温度センサ30が接続され、前記第2冷媒管路22には、前記コンデンサ16と第1膨張弁27との間の位置に、冷媒中の異物を除去する冷媒フィルタ31と、この冷媒の圧力を検出する第1冷媒圧力センサ32とが接続され、前記第3冷媒管路23には、前記第1熱交換器6から圧縮機15に戻る冷媒の圧力を検出する第2冷媒圧力センサ33と、この冷媒の温度を検出する第2冷媒温度センサ34とが接続されている。
 前記冷媒温度センサ30,34及び冷媒圧力センサ32,33は、前記制御装置8に電気的に接続され、測定された冷媒温度及び冷媒圧力に基づいて、前記制御装置8により、前記圧縮機15やファン17の回転数及び出力等が制御される。
 前記第1冷却液回路3は、前記ポンプ2の吐出口2aと前記供給側負荷接続口10とを結ぶ第1供給管路40と、前記戻り側負荷接続口11と前記第1熱交換器6の入口6cとを結ぶ第1戻り管路41と、前記第1熱交換器6の出口6dと前記タンク1とを結ぶ流入管路42とを有している。
 これにより、前記第1冷却液回路3において、前記タンク1からポンプ2で吐出された冷却液は、前記タンク1内での温度である第1設定温度のまま前記第1供給管路40を通じて第1負荷W1に供給され、前記第1負荷W1を冷却する。そして、この第1負荷W1を冷却することにより昇温した冷却液は、前記第1戻り管路41を通じて前記第1熱交換器6に送られ、この第1熱交換器6で温度調整されて第1設定温度に戻されたあと、前記流入管路42からタンク1に流入する。
 前記第1供給管路40には、第1負荷W1に供給される冷却液の温度を検出する第1温度センサ43と、冷却液の圧力を検出する圧力センサ44とが接続され、前記第1戻り管路41には、第1負荷W1から前記タンク1に戻る冷却液の温度を検出する第2温度センサ45が接続されている。
 前記第1温度センサ43、第2温度センサ45、及び圧力センサ44は、前記制御装置8に電気的に接続され、前記第1温度センサ43及び第2温度センサ45が測定した冷却液の温度に基づいて、前記制御装置8で前記膨張弁27,28,29の開度が調整されることにより、前記第1熱交換器6の熱交換能力が制御され、前記圧力センサ44が測定した冷却液の圧力に基づいて、前記制御装置8で前記ポンプ2が制御される。
 なお、図中の符号46が付された部材は、前記タンク1の内部の冷却液の液位を検出するレベルスイッチ、47が付された部材は、ドレン排出管である。
 また、前記ポンプ2は、前記タンク1の外部に設置される非浸漬式のポンプである。
 一方、前記第2冷却液回路4は、前記第1冷却液回路3の第1供給管路40から分岐して前記第2熱交換器7の入口7cに接続された分岐管路50と、前記第2熱交換器7の出口7dと前記供給側負荷接続口12とを結ぶ第2供給管路51と、前記戻り側負荷接続口13と前記第1冷却液回路3の第1戻り管路41とを結ぶ第2戻り管路52とを有している。該第2戻り管路52が前記第1戻り管路41に接続されている位置は、前記第2温度センサ45が設けられている位置より上流側(戻り側負荷接続口11寄り)の位置である。
 この構成により、前記第2冷却液回路4において、前記ポンプ2で吐出された冷却液は、前記分岐管路50を通って第2熱交換器7に送られ、該第2熱交換器7で前記第1設定温度とは異なる第2設定温度に調整されたあと、前記第2供給管路51を通って第2負荷W2に送られ、該第2負荷W2を冷却する。そして、前記第2負荷W2を冷却することにより昇温した冷却液は、前記第2戻り管路52から第1戻り管路41に流入し、この第1戻り管路41を流れる第1冷却液回路3の冷却液と合流して前記第1熱交換器6に送られ、この第1熱交換器6で温度調整されて第1設定温度に戻されたあと、前記流入管42から前記タンク1に流入する。
 ここで、前記第2負荷W2は第1負荷W1より高温であるため、第2冷却液回路4の冷却液の設定温度(第2設定温度)は、第1冷却液回路3の冷却液の設定温度(第1設定温度)より高い。このため、前記第2熱交換器7は、前記タンク1から第1冷却液回路3及び分岐管路50を介して第1設定温度を保った状態で送られて来る冷却液を加熱し、第2設定温度に上昇させるものである。従って、この第2熱交換器7は、加熱用の熱交換器であるということができる。
 前記第2供給管路51には、第2負荷W2に供給される冷却液の温度を検出する第3温度センサ53と、この冷却液の圧力を変更する圧力調整弁54とが、直列に接続されている。
 前記第3温度センサ53及び圧力調整弁54は、前記制御装置8に電気的に接続され、前記第3温度センサ53が測定した冷却液の温度に基づいて、前記制御装置8で前記第2膨張弁28の開度が調整されることにより、前記第2熱交換器7の熱交換能力が制御される。また、前記第2供給管路51を流れる冷却液の圧力を前記第1供給管路40を流れる冷却液の圧力と異なる圧力にする必要がある場合には、前記制御装置8で前記圧力調整弁54が制御される。しかし、前記圧力調整弁54は、手動操作式の弁であっても良い。
 更に、前記第1冷却液回路3には、イオン性物質の増加によって純度が低下した冷却液を浄化するための濾過管路60が設けられている。この濾過管路60の一端は、前記第1供給管路40の、前記分岐管路50が分岐する位置より下流側(第1負荷W1寄り)の位置に接続され、該濾過管路60の他端は、前記第1戻り管路41の、前記第2戻り管路52が接続された位置より下流側(第1熱交換器6寄り)の位置に接続されている。そして、この濾過管路60に、イオン性物質を除去するDIフィルタ61と、前記濾過管路60を開閉する電磁弁62とが、直列に接続されている。また、該濾過管路60と前記第1戻り管路41との合流点に、冷却液の電気伝導率を測定するDIセンサ63が接続されている。
 前記DIフィルタ61は、前記冷却液内のイオン性物質を、イオン交換により樹脂表面に吸着させて除去するもので、前記濾過管路60に形成されたフィルタ接続部64,65に着脱自在に接続されている。該DIフィルタ61は、前記筐体9の内部に配設されていても、該筐体9の外部に配設されていても良い。
 また、前記電磁弁62とDIセンサ63とは、前記制御装置8に電気的に接続され、該DIセンサ63が測定した電気伝導率に応じて前記電磁弁62が、前記制御装置8によって開閉制御される。
 前記濾過管路60は次のように動作する。即ち、前記DIセンサ63が測定する前記第1戻り管路41内の冷却液の電気伝導率が、イオン性物質の増加によって基準値より高くなっている場合には、この冷却液が還流する前記タンク1内の冷却液の電気伝導率も高くなっている。このため、前記制御装置8によって前記電磁弁62が開放され、前記第1供給管路40の冷却液が濾過管路60に流入することにより、DIフィルタ61で冷却液中のイオン性物質が除去され、浄化された冷却液が、前記第1戻り管路41を通じて前記タンク1に送り込まれる。この動作が継続されることにより、前記タンク1内の冷却液は浄化される。この結果、前記第1冷却液回路3の冷却液と第2冷却液回路4の冷却液とを、常に同じ純度(液質)に保つことができる。
 前記第1実施形態のチラーC1は次のように動作する。
 前記冷凍回路5において、前記圧縮機15から吐出された高温高圧のガス状冷媒は、前記コンデンサ16で冷却されて低温高圧の液状冷媒になったあと、前記第2冷媒管路22から第1膨張弁27を通じて第1熱交換器6に送られ、該第1熱交換器6で前記第1冷却液回路3の冷却液と熱交換して該冷却液を第1設定温度に冷却したあと、第3冷媒管路23を通じて前記圧縮機15に戻る。
 また、前記圧縮機15から吐出された高温高圧のガス状冷媒の一部は、前記第4冷媒管路24を通じて前記第2熱交換器7にそのまま送られ、該第2熱交換器7で前記第2冷却液回路4の冷却液と熱交換して該冷却液を第2設定温度に加熱したあと、第5冷媒回路の第2膨張弁28を通じて前記第1熱交換器6に流入する。このとき、前記ガス状冷媒は、前記第2熱交換器7で冷却液を加熱することによって凝縮したあと、前記第2膨張弁28で膨張することによって更に温度が低下した状態になり、その状態で前記第2冷媒管路22の冷媒と合流して前記第1熱交換器6に流入し、該第1熱交換器6の冷却能力を補助的に高める役目を果たす。これは、前記第2膨張弁28が、前記第2熱交換器7の出口と第1熱交換器6の入口との間に接続されることにより、前記第2熱交換器7がコンデンサ16として機能することによるものである。
 更に、前記圧縮機15から吐出された高温高圧のガス状冷媒の一部は、前記第6冷媒管路26から第3膨張弁29を介して前記第1熱交換器6に送られ、該第1熱交換器6に流入する冷媒の温度調整のために使用される。
 一方、前記第1冷却液回路3においては、第1設定温度に調整された前記タンク1内の冷却液が、前記ポンプ2から吐出されたあと、第1供給管路40を通じて第1設定温度のまま第1負荷W1に送られ、該第1負荷W1を冷却する。
 前記第1負荷W1を冷却することにより昇温した冷却液は、第1戻り管路41を通じて前記第1熱交換器6に送られ、該第1熱交換器6で前記第1設定温度に調整されたあと、前記流入管路42から前記タンク1に流入する。
 前記冷却液の温度は、前記第1温度センサ43及び第2温度センサ45により常時測定され、測定された冷却液の温度に基づいて前記制御装置8で冷凍回路5の第1膨張弁27及び第3膨張弁29の開度が制御されることにより、該冷却液の温度が第1設定温度に調整される。
 例えば、前記第1温度センサ43で測定された冷却液の温度が第1設定温度より高い場合には、前記第1熱交換器6の冷却能力を高めて該冷却液の温度を下げる必要があるため、前記冷凍回路5における第1膨張弁27の開度が拡大して低温の冷媒の流量が増大すると共に、前記第3膨張弁29の開度が減少して高温の冷媒の流量が減少する。その結果、前記第1熱交換器6に流入する冷媒の温度が低下して該第1熱交換器6の冷却能力が増大するため、前記冷却液は冷却され、その温度が第1設定温度に調整される。
 その逆に、前記冷却液の温度が第1設定温度より低い場合には、前記第1熱交換器6で該冷却液を加熱して温度を上げる必要があるため、前記第1膨張弁27の開度が減少して低温の冷媒の流量が減少すると共に、前記第3膨張弁29の開度が増大して高温の冷媒の流量が増大する。その結果、前記第1熱交換器6に流入する冷媒の温度は上昇し、昇温した該冷媒により前記冷却液は加熱され、その温度が第1設定温度に調整される。
 また、前記第2冷却液回路4においては、前記ポンプ2から第1設定温度で吐出された冷却液の一部が、分岐管路50を通じて第2熱交換器7に流入し、この第2熱交換器7で高温高圧のガス状冷媒と熱交換することにより加熱され、前記第1設定温度より高い第2設定温度に調整されたあと、前記第2供給管路51を通じて第2負荷W2に送られ、該第2負荷W2を冷却する。
 前記第2負荷W2を冷却することにより昇温した冷却液は、前記第2戻り管路52から第1戻り管路41に流入し、この第1戻り管路41を流れる第1負荷W1からの冷却液と合流して前記第1熱交換器6に送られ、この第1熱交換器6で温度調整されて第1設定温度に戻されたあと、前記流入管路42から前記タンク1に流入する。
 前記第2負荷W2に供給される冷却液の温度は、前記第2供給管路51に接続された第3温度センサ53により常時測定され、測定された温度に基づいて前記制御装置8で冷凍回路5の第2膨張弁28の開度が制御されることにより、該冷却液の温度が第2設定温度に調整される。
 例えば、前記第2供給管路51を流れる冷却液の温度が第2設定温度より高い場合、該冷却液の温度を低下させる必要があるため、前記冷凍回路5における第2膨張弁28の開度が減少するか又は閉じることによって前記第2熱交換器7の加熱能力が減少し、その結果、前記冷却液の温度は低下して第2設定温度に調整される。
 その逆に、前記第2供給管路51を流れる冷却液の温度が第2設定温度より低い場合には、該冷却液の温度を上げる必要があるため、前記第2膨張弁28の開度が増大して第2熱交換器7に流入する高温の冷媒の流量が増大し、その結果、冷却液は加熱されてその温度が第2設定温度に調整される。
 また、前記冷却液中のイオン性物質の量が増加すると、該冷却液の電気伝導率が上昇するが、前記DIセンサ63で測定された電気伝導率が基準値より大きくなった場合には、前記電磁弁62が開放して前記濾過管路60が開放し、該濾過管路60を冷却液が流れることにより、該冷却液中のイオン性物質が前記DIフィルタ61で除去される。
 このとき、前記負荷の冷却を続けながら、前記冷却液の一部を前記濾過管路60に流して濾過するようにすることも、前記負荷の冷却を停止し、前記冷却液の全部を前記濾過管路60に流して濾過するようにすることもできる。
 図2には第2実施形態のチラーC2が示されている。このチラーC2が前記第1実施形態のチラーC1と異なる点は、冷凍回路5Aの構成であり、第1冷却液回路3及び第2冷却液回路4の構成と、第1熱交換器6及び第2熱交換器7の構成は、前記第1実施形態のチラーと同じである。
 そこで、以下の説明においては、前記冷凍回路5Aの構成について説明し、前記第1冷却液回路3及び第2冷却液回路4と、前記第1熱交換器6及び第2熱交換器7については、第1実施形態で用いた符号と同一の符号を付してその説明は省略する。
 前記冷凍回路5Aは、圧縮機70の出口70aとコンデンサ71の入口71aとを結ぶ第1冷媒管路72と、該コンデンサ71の出口71bと前記第1熱交換器6の入口6aとを結ぶ第2冷媒管路73と、該第2冷媒管路73から分岐して第2熱交換器7の入口7aに接続された第3冷媒管路74と、前記第1熱交換器6の出口6bと前記圧縮機70の入口70bを結ぶ第4冷媒管路75と、前記第2熱交換器7の出口7bと前記第4冷媒管路75とを結ぶ第5冷媒管路76とを有している。そして、前記第2冷媒管路73の、前記第3冷媒管路74が分岐する位置より第1熱交換器6寄りの位置に、第1膨張弁77が接続され、前記第3冷媒管路74に第2膨張弁78が接続されている。
 また、前記第1冷媒管路72から分岐する第6冷媒管路79が、前記第2冷媒管路73に、前記第1膨張弁77より前記第1熱交換器6の入口6a寄りの位置で接続され、この第6冷媒管路79に第3膨張弁80が接続され、更に、前記第6冷媒管路79から分岐する第7冷媒管路81が、前記第3冷媒管路74に、前記第2膨張弁78より前記第2熱交換器7の入口7a寄りの位置で接続され、この第7冷媒管路81に第4膨張弁82が接続されている。
 前記第1冷媒管路72には、前記圧縮機70から吐出された冷媒の温度を検出する第1冷媒温度センサ83が接続され、前記第2冷媒管路73には、前記コンデンサ71から流出する冷媒中の異物を除去する冷媒フィルタ84と、この冷媒の圧力を検出する第1冷媒圧力センサ85とが接続され、前記第4冷媒管路75には、前記第1熱交換器6及び第2熱交換器7から圧縮機70に戻る冷媒の圧力を検出する第2冷媒圧力センサ86と、この冷媒の温度を検出する第2冷媒温度センサ87とが接続されている。
 前記第2実施形態のチラーは次のように動作する。
 前記冷凍回路5Aにおいて、前記圧縮機70から吐出された高温高圧のガス状冷媒は、前記コンデンサ71で冷却されて低温高圧の液状冷媒になったあと、前記第2冷媒管路73から第1膨張弁77を通じて第1熱交換器6に送られると同時に、前記第3冷媒管路74から第2膨張弁78を通じて第2熱交換器7に送られ、前記第1熱交換器6で前記第1冷却液回路3の冷却液と熱交換して該冷却液を第1設定温度に調整すると共に、前記第2熱交換器7で前記第2冷却液回路4の冷却液と熱交換して該冷却液を第2設定温度に調整する。そして、前記第1熱交換器6及び第2熱交換器7を出た冷媒は、第4冷媒管路75及び第5冷媒管路76を通って圧縮機70の入口70bに戻る。
 また、前記圧縮機70から吐出された高温高圧のガス状冷媒の一部は、前記第6冷媒管路79及び第3膨張弁80を介して前記第1熱交換器6に送られると共に、前記第7冷媒管路81及び第4膨張弁82を介して前記第2熱交換器7に送られ、各熱交換器6,7に流入する冷媒の温度調整のために使用される。
 一方、前記第1冷却液回路3においては、第1設定温度に調整された前記タンク1内の冷却液が、前記ポンプ2から吐出されたあと、第1供給管路40を通じて第1設定温度のまま第1負荷W1に送られ、該第1負荷W1を冷却する。
 前記第1負荷W1を冷却することにより昇温した冷却液は、第1戻り管路41を通じて前記第1熱交換器6に送られ、該第1熱交換器6で前記第1設定温度に戻されたあと、前記流入管路42から前記タンク1に流入する。
 前記冷却液の温度は、前記第1温度センサ43及び第2温度センサ45により常時測定され、測定された冷却液の温度に基づいて前記制御装置8で冷凍回路5Aの第1膨張弁77及び第3膨張弁80の開度が制御されることにより、該冷却液の温度が第1設定温度に調整される。
 例えば、前記第1温度センサ43で測定された冷却液の温度が第1設定温度より高い場合、前記第1熱交換器6の冷却能力を高めて該冷却液の温度を下げる必要があるため、前記冷凍回路5Aにおける第1膨張弁77の開度が拡大して低温の冷媒の流量が増大すると共に、前記第3膨張弁80の開度が減少して高温の冷媒の流量が減少する。その結果、前記第1熱交換器6に流入する冷媒の温度が低下して該第1熱交換器6の冷却能力が増大するため、前記冷却液は冷却され、その温度が第1設定温度に調整される。
 その逆に、前記冷却液の温度が第1設定温度より低い場合には、前記第1熱交換器6で該冷却液を加熱して温度を上げる必要があるため、前記第1膨張弁77の開度が減少して低温の冷媒の流量が減少すると共に、前記第3膨張弁80の開度が増大して高温の冷媒の流量が増大する。その結果、前記第1熱交換器6に流入する冷媒の温度は上昇し、昇温した該冷媒により前記冷却液は加熱され、その温度が第1設定温度に調整される。
 また、前記第2冷却液回路4においては、前記ポンプ2から第1設定温度で吐出された冷却液の一部が、分岐管路50を通じて第2熱交換器7に流入し、この第2熱交換器7で冷媒と熱交換することにより昇温し、前記第1設定温度より高い第2設定温度に調整されたあと、前記第2供給管路51を通じて第2負荷W2に送られ、該第2負荷W2を冷却する。
 前記第2負荷W2を冷却することにより昇温した冷却液は、前記第2戻り管路52から第1戻り管路41に流入し、前記第1負荷W1からの冷却液と合流して前記第1熱交換器6に送られ、この第1熱交換器6で温度調整されて第1設定温度に戻されたあと、前記流入管路42から前記タンク1に流入する。
 前記第2負荷W2に供給される冷却液の温度は、前記第2供給管路51に接続された第3温度センサ53により常時測定され、測定された温度に基づいて前記制御装置8で冷凍回路5Aの第2膨張弁78及び第4膨張弁82の開度が制御されることにより、該冷却液の温度が第2設定温度に調整される。
 例えば、前記第3温度センサ53で測定された冷却液の温度が第2設定温度より高い場合、前記第2熱交換器7の冷却能力を高めて該冷却液の温度を下げる必要があるため、前記冷凍回路5Aにおける第2膨張弁78の開度が拡大して低温の冷媒の流量が増大すると共に、前記第4膨張弁82の開度が減少して高温の冷媒の流量が減少する。その結果、前記第2熱交換器7に流入する冷媒の温度が低下して該第2熱交換器7の冷却能力が増大するため、前記冷却液は冷却され、その温度が第2設定温度に調整される。
 その逆に、前記冷却液の温度が第2設定温度より低い場合には、前記第2熱交換器7で該冷却液を加熱して温度を上げる必要があるため、前記第2膨張弁78の開度が減少して低温の冷媒の流量が減少すると共に、前記第4膨張弁82の開度が増大して高温の冷媒の流量が増大する。その結果、前記第2熱交換器7に流入する冷媒の温度は上昇し、昇温した該冷媒により前記冷却液は加熱され、その温度が第2設定温度に調整される。
 また、前記冷却液中のイオン性物質の量が増加して冷却液の純度が低下した場合に、DIフィルタ61の作用でイオン性物質が除去されることは、前記第1実施形態の場合と同様である。
 前記第1実施形態のチラーC1及び第2実施形態のチラーC2は、それぞれ2つの冷却液回路3,4を有しているが、本発明のチラーは、3つ以上の冷却液回路を有することができる。例えば、1つの前記第1冷却液回路3と2つ以上の前記第2冷却液回路4とを有することも、2つ以上の前記第1冷却液回路3と1つの前記第2冷却液回路4とを有することも、2つ以上の前記第1冷却液回路3と2つ以上の前記第2冷却液回路4とを有することもできる。
 ここで、前記第1実施形態のチラーC1において、前記第1冷却液回路3を2つ以上設ける場合は、該第1冷却液回路3と、前記第1膨張弁27及び第3膨張弁29を含む冷媒回路部5aとが、前記第1熱交換器6で相互に接続された回路構成部分を、互いに並列に接続すれば良く、また、前記第2冷却液回路4を2つ以上設ける場合は、該第2冷却液回路4と、前記第2膨張弁28を含む冷媒回路部5bとが、前記第2熱交換器7で相互に接続された回路構成部分を、互いに並列に接続すれば良い。
 また、前記第2実施形態のチラーC2において、前記第1冷却液回路3を2つ以上設ける場合は、該第1冷却液回路3と、前記第1膨張弁77及び第3膨張弁80を含む冷媒回路部5aとが、前記第1熱交換器6で相互に接続された回路構成部分を、互いに並列に接続すれば良く、また、前記第2冷却液回路4を2つ以上設ける場合は、該第2冷却液回路4と、前記第2膨張弁78及び第4膨張弁82を含む冷媒回路部5bとが、前記第2熱交換器7で相互に接続された回路構成部分を、互いに並列に接続すれば良い。
   C1,C2   チラー
   W1   第1負荷
   W2   第2負荷
   1   タンク
   2   ポンプ
   3   第1冷却液回路
   4   第2冷却液回路
   5,5A   冷凍回路
   6   第1熱交換器
   6a,6c   入口
   6b,6d   出口
   7   第2熱交換器
   7a,7c   入口
   7b,7d   出口
   8   制御装置
  15,70   圧縮機
  15a,70a   出口
  15b,70b   入口
  16,71   コンデンサ
  16a,71a   入口
  16b,71b   出口
  21,72   第1冷媒管路
  22,73   第2冷媒管路
  23,74   第3冷媒管路
  24,75   第4冷媒管路
  25,76   第5冷媒管路
  26,79   第6冷媒管路
  27,77   第1膨張弁
  28,78   第2膨張弁
  29,80   第3膨張弁
  40   第1供給管路
  41   第1戻り管路
  50   分岐管路
  51   第2供給管路
  52   第2戻り管路
  54   圧力調整弁
  60   濾過管路
  61   DIフィルタ
  62   電磁弁
  63   DIセンサ
  81   第7冷媒管路
  82   第4膨張弁

Claims (7)

  1.  冷却液を収容する1つのタンクと、該タンク内の冷却液を吐出する1つのポンプと、該ポンプが吐出する冷却液を分流して複数の負荷に個別に供給する複数の冷却液回路と、前記冷却液の温度を該冷却液と冷媒との熱交換により調整する冷凍回路とを有し、
     前記複数の冷却液回路と冷凍回路とは、熱交換能力を個々に制御可能な個別の熱交換器を介して相互に接続され、
     前記複数の冷却液回路は、第1負荷を冷却する第1冷却液回路と、該第1負荷と異なる温度の第2負荷を冷却する第2冷却液回路とを有し、
     前記第1冷却液回路と冷凍回路とを接続する第1熱交換器は、前記第1負荷及び第2負荷から前記タンクに戻る冷却液の温度を調整し、
     前記第2冷却液回路と冷凍回路とを接続する第2熱交換器は、前記タンクから前記第2負荷に供給される冷却液の温度を調整する、
     ことを特徴とするチラー。
  2.  前記第1冷却液回路は、前記ポンプから吐出された冷却液を、タンク内での温度である第1設定温度のまま第1負荷に送る第1供給管路と、第1負荷からの冷却液を前記タンクに戻す第1戻り管路とを有していて、該第1戻り管路に前記第1熱交換器が接続されており、それによって該第1戻り管路の冷却液は、前記第1熱交換器で前記第1設定温度に調整されたあと前記タンクに流入し、
     前記第2冷却液回路は、前記第1供給管路から分岐して前記第2熱交換器に接続された分岐管路と、前記第2熱交換器で第2設定温度に調整された冷却液を第2負荷に送る第2供給管路と、第2負荷からの冷却液を前記タンクに戻す第2戻り管路とを有していて、該第2戻り管路は前記第1戻り管路に接続されており、それによって該第2戻り管路の冷却液は、前記第1戻り管路の冷却液に合流する、
     ことを特徴とする請求項1に記載のチラー。
  3.  前記第2供給管路に圧力調整弁が接続され、該圧力調整弁は、前記第2冷却液回路を流れる冷却液の圧力を前記第1冷却液回路を流れる冷却液の圧力とは異なる圧力にすることを特徴とする請求項2に記載のチラー。
  4.  前記第1冷却液回路に、前記第1供給管路と第1戻り管路とを接続する濾過管路が設けられ、該濾過管路に、前記冷却液の電気伝導率を調整するDIフィルタと、該濾過管路を開閉する電磁弁とが接続され、
     前記第1戻り管路に、該第1戻管路を流れる冷却液の電気伝導率を測定して前記電磁弁を開閉させるDIセンサが接続されている、
     ことを特徴とする請求項2又は3に記載のチラー。
  5.  前記濾過管路は、前記第1供給管路の前記分岐管路が分岐する位置よりも第1負荷寄りの位置と、前記第1戻り管路の前記第2戻り管路が合流する位置よりも第1熱交換器寄りの位置とを、相互に接続していることを特徴とする請求項4に記載のチラー。
  6.  前記冷凍回路は、圧縮機の出口とコンデンサの入口とを結ぶ第1冷媒管路と、該コンデンサの出口と前記第1熱交換器の入口とを結ぶ第2冷媒管路と、前記第1熱交換器の出口と前記圧縮機の入口を結ぶ第3冷媒管路と、前記第1冷媒管路と前記第2熱交換器の入口とを結ぶ第4冷媒管路と、前記第2熱交換器の出口と前記第1熱交換器の入口とを結ぶ第5冷媒管路と、前記第4冷媒管路と該第5冷媒管路とを結ぶ第6冷媒管路とを有し、
     前記第2冷媒管路に第1膨張弁が接続され、前記第5冷媒管路に第2膨張弁が接続され、前記第6冷媒管路に第3膨張弁が接続されている、
     ことを特徴とする請求項1から5の何れかに記載のチラー。
  7.  前記冷凍回路は、圧縮機の出口とコンデンサの入口とを結ぶ第1冷媒管路と、該コンデンサの出口と前記第1熱交換器の入口とを結ぶ第2冷媒管路と、該第2冷媒管路と前記第2熱交換器の入口とを結ぶ第3冷媒管路と、前記第1熱交換器の出口と前記圧縮機の入口を結ぶ第4冷媒管路と、前記第2熱交換器の出口と前記第4冷媒管路とを結ぶ第5冷媒管路と、前記第1冷媒管路から分岐して前記第1熱交換器の入口に接続された第6冷媒管路と、該第6冷媒管路から分岐して前記第2熱交換器の入口に接続された第7冷媒管路とを有し、
     前記第2冷媒管路に第1膨張弁が接続され、前記第3冷媒管路に第2膨張弁が接続され、前記第6冷媒管路に第3膨張弁が接続され、前記第7冷媒管路に第4膨張弁が接続されている、
     ことを特徴とする請求項1から5の何れかに記載のチラー。
PCT/JP2021/025707 2020-07-17 2021-07-08 チラー WO2022014450A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180061088.6A CN116194723A (zh) 2020-07-17 2021-07-08 冷却器
BR112023000903A BR112023000903A2 (pt) 2020-07-17 2021-07-08 Resfriador
KR1020237000321A KR20230039635A (ko) 2020-07-17 2021-07-08 칠러
US18/005,518 US20240011681A1 (en) 2020-07-17 2021-07-08 Chiller
MX2023000762A MX2023000762A (es) 2020-07-17 2021-07-08 Enfriador.
EP21841967.9A EP4184079A4 (en) 2020-07-17 2021-07-08 COOLER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020123202A JP7559394B2 (ja) 2020-07-17 2020-07-17 チラー
JP2020-123202 2020-07-17

Publications (1)

Publication Number Publication Date
WO2022014450A1 true WO2022014450A1 (ja) 2022-01-20

Family

ID=79554771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025707 WO2022014450A1 (ja) 2020-07-17 2021-07-08 チラー

Country Status (9)

Country Link
US (1) US20240011681A1 (ja)
EP (1) EP4184079A4 (ja)
JP (1) JP7559394B2 (ja)
KR (1) KR20230039635A (ja)
CN (1) CN116194723A (ja)
BR (1) BR112023000903A2 (ja)
MX (1) MX2023000762A (ja)
TW (1) TW202206761A (ja)
WO (1) WO2022014450A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7322219B1 (ja) 2022-03-01 2023-08-07 新菱冷熱工業株式会社 熱源システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517535U (ja) 1991-08-14 1993-03-05 株式会社堀場製作所 電磁誘導式導電率計
JPH0517535Y2 (ja) * 1989-09-18 1993-05-11
JP2004028554A (ja) 2002-05-08 2004-01-29 Timec Inc レーザ加工機用冷却装置
JP2011089663A (ja) * 2009-10-20 2011-05-06 Nippon Spindle Mfg Co Ltd 温度調整装置
JP2011163698A (ja) 2010-02-12 2011-08-25 Orion Machinery Co Ltd 多系統冷却装置及びその給水設定方法
WO2014045394A1 (ja) * 2012-09-21 2014-03-27 三菱電機株式会社 冷凍装置
WO2020100206A1 (ja) * 2018-11-13 2020-05-22 Smc株式会社 マルチ‐チラー

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585003B2 (ja) 2009-05-27 2014-09-10 三洋電機株式会社 冷凍装置
JP6053907B1 (ja) 2015-12-21 2016-12-27 伸和コントロールズ株式会社 チラー装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517535Y2 (ja) * 1989-09-18 1993-05-11
JPH0517535U (ja) 1991-08-14 1993-03-05 株式会社堀場製作所 電磁誘導式導電率計
JP2004028554A (ja) 2002-05-08 2004-01-29 Timec Inc レーザ加工機用冷却装置
JP2011089663A (ja) * 2009-10-20 2011-05-06 Nippon Spindle Mfg Co Ltd 温度調整装置
JP2011163698A (ja) 2010-02-12 2011-08-25 Orion Machinery Co Ltd 多系統冷却装置及びその給水設定方法
WO2014045394A1 (ja) * 2012-09-21 2014-03-27 三菱電機株式会社 冷凍装置
WO2020100206A1 (ja) * 2018-11-13 2020-05-22 Smc株式会社 マルチ‐チラー

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4184079A4

Also Published As

Publication number Publication date
EP4184079A4 (en) 2024-04-10
BR112023000903A2 (pt) 2023-02-07
TW202206761A (zh) 2022-02-16
KR20230039635A (ko) 2023-03-21
US20240011681A1 (en) 2024-01-11
MX2023000762A (es) 2023-02-13
EP4184079A1 (en) 2023-05-24
JP7559394B2 (ja) 2024-10-02
JP2022019393A (ja) 2022-01-27
CN116194723A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
JP7341391B2 (ja) デュアルチラー
US20150135746A1 (en) Parallel evaporator circuit with balanced flow
KR20110125441A (ko) 반도체 공정용 칠러 장치 및 이의 온도제어 방법
TWI794317B (zh) 液體溫度調節裝置及使用其之溫度調節方法
WO2022014450A1 (ja) チラー
JP6948012B2 (ja) 超純水の加熱方法
CN108988109A (zh) 用于激光器的双温水冷机
JP2008039230A (ja) 熱媒体配管システム
JP2003130428A (ja) 連結型冷温水装置
WO2022019127A1 (ja) チラー
JP4871800B2 (ja) チラー装置
CN113547896A (zh) 具有电池加热功能的车载空调系统
CN113874662A (zh) 空调装置
CN220601654U (zh) 供水系统
CN221409606U (zh) Cdu系统及散热系统
JP2004037030A (ja) 空調設備
JP2004198001A (ja) 冷凍装置
CN117412568A (zh) Cdu系统及散热系统
JP2024075217A (ja) 温水製造システム
TW202032079A (zh) 可溫控的熱交換裝置
JPH1114094A (ja) 低温媒体発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841967

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023000903

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023000903

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230117

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021841967

Country of ref document: EP

Effective date: 20230217