WO2022012514A1 - 一种汽车发动机转速检测方法、装置及电池检测设备 - Google Patents

一种汽车发动机转速检测方法、装置及电池检测设备 Download PDF

Info

Publication number
WO2022012514A1
WO2022012514A1 PCT/CN2021/105980 CN2021105980W WO2022012514A1 WO 2022012514 A1 WO2022012514 A1 WO 2022012514A1 CN 2021105980 W CN2021105980 W CN 2021105980W WO 2022012514 A1 WO2022012514 A1 WO 2022012514A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
battery
charging ripple
ripple frequency
speed
Prior art date
Application number
PCT/CN2021/105980
Other languages
English (en)
French (fr)
Inventor
冯光文
Original Assignee
深圳市道通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通科技股份有限公司 filed Critical 深圳市道通科技股份有限公司
Publication of WO2022012514A1 publication Critical patent/WO2022012514A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/4802Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage by using electronic circuits in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables

Definitions

  • the present application relates to the technical field of automobiles, and in particular, to a method and device for detecting the rotational speed of an automobile engine, and a battery detecting device.
  • the embodiments of the present invention aim to provide a method, a device and a battery detection device for detecting the rotational speed of an automobile engine, which can simplify the calculation process of the rotational speed of the engine and improve the detection speed of the rotational speed of the engine.
  • a technical solution adopted in the embodiment of the present invention is to provide a method for detecting the rotational speed of an automobile engine, which is applied to a battery detection device, and the battery detection device is connected to the battery of the automobile, including:
  • the current engine speed of the vehicle is calculated.
  • the determining the conversion ratio between the engine speed of the vehicle and the charging ripple frequency specifically includes:
  • a conversion ratio of the engine speed to the charging ripple frequency is determined.
  • determining the conversion ratio of the engine speed to the charging ripple frequency according to the idle charging ripple frequency and the idle speed specifically includes:
  • a ratio of the idle charging ripple frequency to the idle rotational speed is determined as a conversion ratio of the engine rotational speed to the charging ripple frequency.
  • the obtaining the current charging ripple frequency of the battery specifically includes:
  • the calculation formula of the current engine speed is:
  • r is the current engine speed
  • f is the current charging ripple frequency
  • x is the conversion ratio between the engine speed and the charging ripple frequency.
  • a vehicle engine speed detection device which is applied to a battery detection device, and the battery detection device is connected to the battery of the vehicle, including:
  • a determining module configured to determine the conversion ratio between the engine speed of the car and the charging ripple frequency when the engine of the car is in an idle state
  • an acquisition module for acquiring the current charging ripple frequency of the battery
  • a calculation module configured to calculate the current engine speed of the vehicle according to the current charging ripple frequency and the conversion ratio.
  • the determining module is specifically used for:
  • a conversion ratio of the engine speed to the charging ripple frequency is determined.
  • the determining module is specifically used for:
  • a ratio of the idle charging ripple frequency to the idle rotational speed is determined as a conversion ratio of the engine rotational speed to the charging ripple frequency.
  • the obtaining module is specifically used for:
  • another technical solution adopted in the embodiment of the present invention is to provide a battery detection device for connecting with a battery of an automobile, and the battery detection device includes:
  • a sampling circuit connected to the battery through a signal acquisition connection line;
  • controller includes at least one processor; and,
  • a memory communicatively coupled to the at least one processor
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform the method described above.
  • the signal acquisition connecting line is a Kelvin four-clamp.
  • the sampling circuit includes:
  • a band-pass filter the input end of the band-pass filter is connected to the battery, and the output end of the band-pass filter is connected to the controller.
  • sampling circuit further includes:
  • the input end of the signal processor is connected to the battery, and the output end of the signal processor is connected to the input end of the band-pass filter.
  • another technical solution adopted in the embodiments of the present invention is to provide a non-volatile computer-readable storage medium, wherein the non-volatile computer-readable storage medium stores computer-executable instructions, so The computer-executable instructions are used to cause the controller to perform the method described above.
  • the embodiments of the present invention provide a method, a device and a battery detection device for detecting the rotational speed of an automobile engine. After determining the conversion ratio between the engine speed of the car and the charging ripple frequency in the idle state, the current engine speed of the car is calculated according to the obtained current charging ripple frequency of the battery and the determined conversion ratio. That is, in the embodiment of the present invention, the current engine speed of the vehicle can be calculated only according to the current charging ripple frequency and the conversion ratio, which simplifies the calculation process of the engine speed and improves the detection speed of the engine speed.
  • FIG. 1 is a schematic structural diagram of an implementation environment provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a hardware structure of a controller provided by an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for detecting a rotational speed of an automobile engine provided by an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a device for detecting the rotational speed of an automobile engine provided by an embodiment of the present invention.
  • the present invention provides a method and device for detecting the rotational speed of an automobile engine.
  • the method and the device are applied to a battery detecting device, so that the battery detecting device can detect the rotational speed of the engine of the automobile, and the battery detecting device can detect the rotational speed of the engine of the automobile.
  • the calculation process of the engine speed is simplified, and the detection speed of the engine speed is improved.
  • FIG. 1 is a schematic structural diagram of an implementation environment provided by an embodiment of the present invention.
  • the implementation environment includes an engine 100, a generator 200, a battery 300, and a battery detection device 400.
  • the engine 100 and the generator 200 are connected through a pulley,
  • the generator 200 is electrically connected to the battery 300, and the battery 300 is connected to the battery detection device 400 through a signal acquisition connection line.
  • the signal acquisition connecting line is a Kelvin four-clamp. It can be understood that, in this embodiment of the present invention, the implementation environment is implemented in an automobile.
  • the engine 100 drives the generator 200 to rotate through the pulley, so that the generator 200 charges the battery 300; during the process of charging the battery 300 by the generator 200, the charging voltage of the generator 200 The charging ripple signal is included. Therefore, when the generator 200 charges the battery 300, the battery detection device 400 can collect the charging ripple signal on the battery 300 through the signal acquisition connection line.
  • the charging ripple signal is related to the frequency of the charging voltage. Based on this, the rotation speed of the generator 200 can be determined according to the frequency of the charging ripple signal; in addition, the generator 200 rotates with the rotation of the engine 100, so the rotation speed of the generator 200 It is related to the rotational speed of the engine 100. Based on this, the rotational speed of the engine 100 can be determined according to the frequency of the charging ripple signal. Therefore, in this embodiment of the present invention, after the battery detection device 400 collects the charging ripple signal, the The frequency of the wave signal detects the engine speed of the car, and the frequency of the charging ripple signal is the charging ripple frequency.
  • the battery detection device 400 includes: a sampling circuit 410 and a controller 420 , the input end of the sampling circuit 410 is connected to the battery 300 through a signal acquisition cable, and the output end of the sampling circuit 410 is electrically connected to the controller 420 .
  • the sampling circuit 410 is used to collect the charging ripple signal of the battery 300 when the generator 200 is charging the battery 300 ; the controller 420 is used to execute the method for detecting the rotational speed of the vehicle engine, so as to collect the charging ripple signal according to the sampling circuit 410 .
  • the controller 420 determines the conversion ratio between the engine speed and the charging ripple frequency when the engine 100 is in the idle state, and then obtains the current charging ripple frequency of the battery 300 through the sampling circuit 410, and according to the current charging ripple frequency
  • the charging ripple frequency and the conversion ratio calculate the current engine speed of the car.
  • the controller 420 can calculate the current engine speed of the car only according to the current charging ripple frequency and the conversion ratio, compared with the magnetic poles of the generator and the rotor
  • the scheme of calculating the engine speed with many intermediate parameters such as logarithm, the number of power generation phases of the generator, the ratio of the speed of the generator to the engine, and the number of engine cylinders simplifies the calculation process of the engine speed and improves the detection speed of the engine speed.
  • the sampling circuit 410 includes: a signal processor 411 and a bandpass filter 412 , the input end of the signal processor 411 is connected to the battery 300 through a signal acquisition cable, and the output end of the signal processor 411 is connected to the bandpass filter 412 .
  • the input terminal is electrically connected, and the output terminal of the bandpass filter 412 is electrically connected to the controller 420 .
  • the signal processor 411 is used for collecting the charging signal of the battery 300 when the generator 200 is charging the battery 300, and performing reduction processing on the charging signal; the band-pass filter 412 is used for charging the signal processed by the signal processor 411 The signal is filtered to obtain the charging ripple signal.
  • the controller 420 includes: a memory 421 and a processor 422 .
  • the memory 42 as a non-volatile computer-readable storage medium, can be used to store non-volatile software programs, instructions and modules.
  • the memory 421 may include a storage program area and a storage data area.
  • the storage program area can store an operating system and an application program required by at least one function; the storage data area can store data created according to the use of the electronic device, etc., and the storage data area can also store preset data.
  • memory 421 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • memory 421 may optionally include memory located remotely relative to processor 422, which may be connected to the electronic device via a network.
  • the above-mentioned networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the processor 422 is the control center of the controller 420, and can use various interfaces and lines to connect various parts of the entire controller 420, by running or executing the non-volatile software programs, instructions and modules stored in the memory 421, and The data stored in the memory 421 is called, various functions of the controller 420 are executed, and data is processed, so as to control the controller 420 as a whole, for example, to implement the method for detecting the rotational speed of an automobile engine described in any embodiment of the present invention.
  • the number of processors 422 may be one or more, and one processor 422 is taken as an example in FIG. 2 .
  • the processor 422 and the memory 421 may be connected through a bus or in other ways, and the connection through a bus is taken as an example in FIG. 2 .
  • the processor 422 may include a central processing unit (CPU), a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), and the like.
  • the processor 422 may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors combined with a DSP core, or any other such configuration.
  • the battery detection device 400 is connected to the battery 300, and when the generator 200 charges the battery 300, the charging ripple signal of the battery 300 is collected, so as to collect the charging ripple signal according to the collected charging ripple signal. Detecting the engine speed of the automobile simplifies the calculation process of the engine speed and improves the detection speed of the engine speed.
  • FIG. 3 is a schematic flowchart of a method for detecting the rotational speed of an automobile engine provided by an embodiment of the present invention.
  • the method for detecting the rotational speed of an automobile engine is applied to the above-mentioned battery detecting device 400 , and as one of the specific implementations, the The vehicle engine speed detection method is executed by the above-mentioned controller 420, so as to simplify the calculation process of the engine speed and improve the detection speed of the engine speed.
  • the vehicle engine speed detection method includes:
  • the above-mentioned “idle state” is a state when the engine of the automobile is idling. When the engine of the automobile is running and the accelerator pedal of the automobile is completely released, it is determined that the engine of the automobile is in the idle state.
  • the controller determines that the accelerator pedal is completely relaxed , after receiving the charging ripple signal, it is determined that the engine of the car is in an idle state. At this time, the controller determines the conversion ratio of the engine speed of the car to the charging ripple frequency.
  • the idle charging ripple frequency of the battery is obtained, and the idle speed of the car is determined, and the engine speed and the charging ripple are determined according to the idle charging ripple frequency and the idle speed. Conversion ratio of wave frequency.
  • the charging ripple frequency is the frequency of the charging ripple signal generated in the process of the generator charging the battery.
  • the idle charging ripple frequency is the frequency of the charging ripple signal generated when the engine drives the generator to charge the battery in the idle state, and the engine speed in the idle state is the idle speed. Therefore, the idle charging ripple frequency is related to the idle speed. There is a corresponding relationship, that is, when the charging ripple frequency is the idle charging ripple frequency, the engine speed is the idle speed. Based on this, the conversion ratio between the engine speed and the charging ripple frequency can be determined according to the idle charging ripple frequency and the idle speed. .
  • the controller determines the charging ripple frequency collected when the engine of the vehicle is in an idle state as the idle charging ripple frequency. Specifically, after the controller obtains the idle charging ripple signal when the engine of the car is in the idle state through the band-pass filter, it performs Fourier transform on the idle charging ripple signal to obtain the frequency of the idle charging ripple signal.
  • the frequency of the ripple signal is the idle charging ripple frequency.
  • the idle speed is pre-stored in the memory, and the controller can obtain the idle speed of the car from the memory.
  • the idle speed is 800 r/min.
  • the idle speed is different according to different car models.
  • a correspondence table between the car model and the idle speed is pre-established in the memory, so that different car models correspond to different idle speeds. Based on this, the controller When determining the idling speed of the car, the corresponding relationship table can be searched according to the model of the car, so as to determine the idling speed matching the model of the car as the idling speed of the detected car.
  • the controller determines the ratio of the idle charging ripple frequency to the idle speed as the conversion ratio of the engine speed to the charging ripple frequency.
  • the controller sends the first prompt information to the user according to the first detection signal triggered by the user, and the first prompt information is used to instruct the user to control the engine of the car. at idle speed.
  • the user can start the engine to run according to the first prompt information, and keep the accelerator pedal completely relaxed, so that the engine of the car is in an idle state.
  • the first rotational speed detection button is triggered through the on-board device.
  • the controller When the first rotational speed detection button is triggered, the controller receives the corresponding first detection signal, and at this time, controls the The device sends the first prompt information to the user according to the first detection signal triggered by the user to instruct the user to control the engine of the car to be in the idle state, the first prompt information can be "please control the car to be in the idle state” and/or “start the engine and Keep the accelerator pedal fully relaxed” etc.
  • the controller determines whether the engine of the car is in an idle state, and when the controller determines that the engine of the car is in an idle state, it determines the conversion ratio of the engine speed of the car and the charging ripple frequency, And after the conversion ratio is determined, second prompt information is sent to the user, where the second prompt information is used to prompt the user that the detection mode has been entered. At this time, the user can normally drive the car.
  • S300 Calculate the current engine speed of the vehicle according to the current charging ripple frequency and the conversion ratio.
  • the controller After the controller sends the second prompt information to the user, the controller enters the detection mode, and the controller obtains the current charging ripple frequency of the battery in the detection mode.
  • the controller obtains the current charging ripple frequency of the battery in real time in the detection mode, and calculates the current engine speed of the car in real time according to the current charging ripple frequency and conversion ratio obtained in real time.
  • the controller obtains the current charging ripple frequency f1 of the battery at time t1, and then calculates the current engine speed r1 of the car at time t1 according to the current charging ripple frequency f1 and the conversion ratio x; the controller obtains the current current speed of the battery at time t2. If the charging ripple frequency f2 is used, the current engine speed r2 of the car at time t2 is calculated according to the current charging ripple frequency f2 and the conversion ratio x.
  • the controller obtains the current charging ripple frequency of the battery according to the second detection signal triggered by the user in the detection mode, and calculates the time when the user triggers the second detection signal according to the current charging ripple frequency and the conversion ratio.
  • the current engine speed of the car is obtained.
  • the controller receives the corresponding The second detection signal of Engine speed, among which, the current charging ripple frequency f3 is the charging ripple frequency when the accelerator pedal is fully stepped; when the user needs to detect the engine speed when the accelerator pedal is half-depressed, the user will trigger the on-board device after half-depressing the accelerator pedal
  • the second rotation speed detection button when the second rotation speed detection button is triggered, the controller receives the corresponding second detection signal, at this time, the controller obtains the current charging ripple frequency f4 of the battery according to the second detection signal triggered by the user, And according to the current charging ripple frequency f4 and the conversion ratio x, the engine speed of the car when the accelerator pedal is half-depressed is calculated, wherein the current charging ripple frequency f4 is the charging ripple frequency when the accelerator pedal is half-depressed is calculated, wherein the current charging ripple frequency f4 is the charging ripple frequency when the accelerator pedal is half-
  • controller identifies the second detection signal received after sending the second prompt information as a valid detection signal.
  • the current charging ripple signal of the battery is obtained through a band-pass filter, and Fourier transform is performed on the current charging ripple signal to obtain the current charging ripple frequency.
  • r is the current engine speed
  • f is the current charging ripple frequency
  • x is the conversion ratio between the engine speed and the charging ripple frequency.
  • the current charging ripple frequency of the battery obtained and the determined conversion ratio are determined. It can simplify the calculation process of the engine speed and improve the detection speed of the engine speed.
  • FIG. 4 is a schematic structural diagram of a vehicle engine speed detection device provided by an embodiment of the present invention.
  • the vehicle engine speed detection device can be applied to the above-mentioned battery detection device 400, and as one of the specific implementations, The functions of each module of the vehicle engine speed detection device are executed by the above-mentioned controller 420, so as to simplify the calculation process of the engine speed and improve the detection speed of the engine speed.
  • module is a combination of software and/or hardware that can implement predetermined functions.
  • apparatuses described in the following embodiments may be implemented in software, implementations in hardware, or a combination of software and hardware, are also contemplated.
  • the vehicle engine speed detection device includes:
  • a determination module 10 configured to determine the conversion ratio of the engine speed of the automobile and the charging ripple frequency when the engine of the automobile is in an idle state
  • an acquisition module 20 configured to acquire the current charging ripple frequency of the battery
  • the calculation module 30 is configured to calculate the current engine speed of the vehicle according to the current charging ripple frequency and the conversion ratio.
  • the determining module 10 is specifically configured to:
  • a conversion ratio of the engine speed to the charging ripple frequency is determined.
  • the determining module 10 is specifically configured to:
  • a ratio of the idle charging ripple frequency to the idle rotational speed is determined as a conversion ratio of the engine rotational speed to the charging ripple frequency.
  • the obtaining module 20 is specifically used to:
  • the apparatus embodiment and the method embodiment are based on the same concept, on the premise that the contents do not conflict with each other, the content of the apparatus embodiment may refer to the method embodiment, which will not be repeated here.
  • the current charging ripple frequency of the battery obtained and the determined conversion ratio are determined. It can simplify the calculation process of the engine speed and improve the detection speed of the engine speed.
  • An embodiment of the present invention further provides a non-volatile computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors, for example, FIG. 2
  • a processor 422 in the above can cause the computer to execute each step of a method for detecting the rotational speed of an automobile engine in any of the above-mentioned method embodiments, or realize the functions of each module of an apparatus for detecting the rotational speed of an automobile engine in any of the above-mentioned device embodiments.
  • An embodiment of the present invention also provides a computer program product, the computer program product includes a computer program stored on a non-volatile computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a The execution of one or more processors, such as a processor 422 in FIG. 2, can cause the computer to execute each step of a method for detecting the rotational speed of an automobile engine in any of the above-mentioned method embodiments, or to implement one of the above-mentioned any of the device embodiments.
  • the function of each module of a vehicle engine speed detection device can cause the computer to execute each step of a method for detecting the rotational speed of an automobile engine in any of the above-mentioned method embodiments, or to implement one of the above-mentioned any of the device embodiments.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each embodiment can be implemented by means of software plus a general hardware platform, and certainly can also be implemented by hardware.
  • Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be implemented by computer program instructions related to hardware.
  • the program can be stored in a computer-readable storage medium, and when the program is executed At the time, the flow of the implementation method of the above-mentioned methods may be included.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM) or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

一种汽车发动机转速检测方法,包括:在汽车的发动机处于怠速状态时,确定汽车的发动机转速与充电纹波频率的转换比(S100);获取蓄电池的当前充电纹波频率(S200);根据当前充电纹波频率以及转换比,计算汽车的当前发动机转速(S300)。能够简化发动机转速的计算过程,提高发动机转速的检测速度。还公开了一种汽车发动机转速检测装置、一种电池检测设备及一种非易失性计算机可读存储介质。

Description

一种汽车发动机转速检测方法、装置及电池检测设备
本申请要求于2020年7月14日提交中国专利局、申请号为202010676997.8、申请名称为“一种汽车发动机转速检测方法、装置及电池检测设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车技术领域,特别是涉及一种汽车发动机转速检测方法、装置及电池检测设备。
背景技术
在汽车性能检测过程中,对发动机转速进行检测是很有必要的。比如,检测汽车发电机的充电能力时,就需要检测发动机转速以确定发动机转速是否达到预设标准,只有发动机转速达到预设标准,才能保证汽车发电机的充电能力达到饱和。
目前,对发动机转速进行检测时,需要确定发电机与转子的磁极对数、发电机的发电相数、发电机与发动机的转速比、发动机缸数等中间参数,由于中间参数较多,需要涉及较多的计算公式才能计算得到发动机转速,使得发动机转速计算复杂。
发明内容
本发明实施例旨在提供一种汽车发动机转速检测方法、装置及电池检测设备,能够简化发动机转速的计算过程,提高发动机转速的检测速度。
为解决上述技术问题,本发明实施例采用的一个技术方案是:提供一种汽车发动机转速检测方法,应用于电池检测设备,所述电池检测设备与所述汽车的蓄电池连接,包括:
在所述汽车的发动机处于怠速状态时,确定所述汽车的发动机转速与充电纹波频率的转换比;
获取所述蓄电池的当前充电纹波频率;
根据所述当前充电纹波频率以及所述转换比,计算所述汽车的当前发动机转速。
可选地,所述确定所述汽车的发动机转速与充电纹波频率的转换比,具体包括:
在所述汽车的发动机处于怠速状态时,获取所述蓄电池的怠速充电纹波频率;
确定所述汽车的怠速转速;
根据所述怠速充电纹波频率和所述怠速转速,确定所述发动机转速与充电纹波频率的转换比。
可选地,所述根据所述怠速充电纹波频率和所述怠速转速,确定所述发动机转速与充电纹波频率的转换比,具体包括:
将所述怠速充电纹波频率与所述怠速转速的比值确定为所述发动机转速与充电纹波频率的转换比。
可选地,所述获取所述蓄电池的当前充电纹波频率,具体包括:
通过带通滤波器获取所述蓄电池的当前充电纹波信号;
对所述当前充电纹波信号进行傅里叶变换,得到所述当前充电纹波频率。
可选地,所述当前发动机转速的计算公式为:
Figure PCTCN2021105980-appb-000001
其中,r为当前发动机转速,f为当前充电纹波频率,x为发动机转速与充电纹波频率的转换比。
为解决上述技术问题,本发明实施例采用的另一个技术方案是:提供一种汽车发动机转速检测装置,应用于电池检测设备,所述电池检测设备与所述汽车的蓄电池连接,包括:
确定模块,用于在所述汽车的发动机处于怠速状态时,确定所述汽车的发动机转速与充电纹波频率的转换比;
获取模块,用于获取所述蓄电池的当前充电纹波频率;
计算模块,用于根据所述当前充电纹波频率以及所述转换比,计算所述汽车的当前发动机转速。
可选地,所述确定模块具体用于:
在所述汽车的发动机处于怠速状态时,获取所述蓄电池的怠速充电纹波频率;
确定所述汽车的怠速转速;
根据所述怠速充电纹波频率和所述怠速转速,确定所述发动机转速与充电纹波频率的转换比。
可选地,所述确定模块具体用于:
将所述怠速充电纹波频率与所述怠速转速的比值确定为所述发动机转速与充电纹波频率的转换比。
可选地,所述获取模块具体用于:
通过带通滤波器获取所述蓄电池的当前充电纹波信号;
对所述当前充电纹波信号进行傅里叶变换,得到所述当前充电纹波频率。
为解决上述技术问题,本发明实施例采用的另一个技术方案是:提供一种电池检测设备,用于与汽车的蓄电池连接,所述电池检测设备包括:
采样电路,通过信号采集连接线与所述蓄电池连接;以及,
控制器,与所述采样电路电连接;
其中,所述控制器包括至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够用于执行以上所述的方法。
可选地,所述信号采集连接线为开尔文四线夹。
可选地,所述采样电路包括:
带通滤波器,所述带通滤波器的输入端与所述蓄电池连接,所述带通滤波器的输出端与所述控制器连接。
可选地,所述采样电路还包括:
信号处理器,所述信号处理器的输入端与所述蓄电池连接,所述信号处理器的输出端与所述带通滤波器的输入端连接。
为解决上述技术问题,本发明实施例采用的另一个技术方案是:提供一种非易失性计算机可读存储介质,所述非易失性计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使控制器执行以上所述的方法。
本发明实施例的有益效果是:区别于现有技术的情况下,本发明实施例提供一种汽车发动机转速检测方法、装置及电池检测设备,在该汽车发动机转速检测方法中,在汽车的发动机处于怠速状态下确定汽车的发动机转速与充电纹波频率的转换比后,根据获取的蓄电池的当前充电纹波频率以及所确定的转换比,计算汽车的当前发动机转速。亦即,在本发明实施例中,只需根据当前充电纹波频率和转换比就能计算得到汽车的当前发动机转速,简化了发动机转速的计算过程,提高了发送机转速的检测速度。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本发明实施例提供的一种实施环境的结构示意图;
图2是本发明实施例提供的一种控制器的硬件结构示意图;
图3是本发明实施例提供的一种汽车发动机转速检测方法的流程示意图;
图4是本发明实施例提供的一种汽车发动机转速检测装置的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有 其他实施例,都属于本发明保护的范围。
需要说明的是,当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。此外,下面所描述的本发明各个实施例中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供了一种汽车发动机转速检测方法及装置,该方法及装置应用于电池检测设备,从而使得该电池检测设备能够检测汽车的发动机转速,并使得电池检测设备在检测汽车的发动机转速时能够简化发动机转速的计算过程,提高发动机转速的检测速度。
下面,将通过具体实施例对本发明进行阐述。
请参阅图1,是本发明实施例提供的一种实施环境的结构示意图,该实施环境包括:发动机100、发电机200、蓄电池300和电池检测设备400,发动机100与发电机200通过皮带轮连接,发电机200与蓄电池300电连接,蓄电池300与电池检测设备400通过信号采集连接线连接。其中,信号采集连接线为开尔文四线夹。可以理解的是,在本发明实施例中,该实施环境在汽车内实现。
在该实施环境中,当发动机100转动时,发动机100通过皮带轮带动发电机200转动,以使发电机200为蓄电池300充电;在发电机200为蓄电池300充电的过程中,发电机200的充电电压包含充电纹波信号,因此,电池检测设备400能够在发电机200为蓄电池300充电时,通过信号采集连接线在蓄电池300上采集到充电纹波信号。
其中,由于发电机200输出的充电电压的频率会随着发电机200转速的不同而不同,而发电机200输出的充电电压所包含的充电纹波信号与充电电压相辅相成,因此,充电纹波信号的频率与充电电压的频率相关,基于此,根据充电纹波信号的频率能够确定发电机200的转速;再加上,发电机200随着发动机100的转动而转动,因此,发电机200的转速与发动机100的转速相关,基于此,根据充电纹波信号的频率能够确定发动机100的转速,因此,在本发明实施例中,电池检测设备400在采集到充电纹波信号后,能够根据充电纹波信号的频率检测汽车发动机转速,该充电纹波信号的频率亦即充电纹波频率。
具体地,该电池检测设备400包括:采样电路410和控制器420,采样电路410的输入端通过信号采集连接线与蓄电池300连接,采样电路410的输出端与控制器420电连接。
其中,采样电路410用于在发电机200为蓄电池300充电时,采集蓄电池300的充电纹波信号;控制器420则用于执行汽车发动机转速检测方法,以根据采样电路410采集的充电纹波信号检测汽车发动机转速,具体地,控制器420在发动机100处于怠速状态时,确定发动机转速与充电纹波频率的转换比, 然后,通过采样电路410获取蓄电池300的当前充电纹波频率,并根据当前充电纹波频率和转换比计算汽车的当前发动机转速,由于控制器420只需根据当前充电纹波频率和转换比就能够计算得到汽车的当前发动机转速,因此,相比通过发电机与转子的磁极对数、发电机的发电相数、发电机与发动机的转速比、发动机缸数等较多中间参数计算发动机转速的方案,简化了发动机转速的计算过程,提高发动机转速的检测速度。
进一步地,采样电路410包括:信号处理器411和带通滤波器412,信号处理器411的输入端通过信号采集连接线与蓄电池300连接,信号处理器411的输出端与带通滤波器412的输入端电连接,带通滤波器412的输出端与控制器420电连接。
其中,信号处理器411用于在发电机200为蓄电池300充电时,采集蓄电池300的充电信号,并对充电信号进行缩小处理;带通滤波器412则用于对信号处理器411处理后的充电信号进行滤波,以得到充电纹波信号。
控制器420则包括:存储器421和处理器422。
其中,存储器421作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、指令以及模块。
存储器421可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据电子设备的使用所创建的数据等,该存储数据区还能够存储预设的数据。
此外,存储器421可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
在一些实施例中,存储器421可选包括相对于处理器422远程设置的存储器,这些远程设置的存储器可以通过网络连接至电子设备。上述网络包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
处理器422则为控制器420的控制中心,能够利用各种接口和线路连接整个控制器420的各个部分,通过运行或执行存储在存储器421内的非易失性软件程序、指令和模块,以及调用存储在存储器421内的数据,执行控制器420的各种功能并处理数据,从而对控制器420进行整体控制,例如实现本发明任一实施例所述的汽车发动机转速检测方法。
处理器422可以为一个或多个,图2中以一个处理器422为例。
处理器422与存储器421可以通过总线或者其他方式连接,图2中以通过总线连接为例。
处理器422可以包括中央处理器(CPU)、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编辑门阵列(FPGA)等。处理器422还可以被实现为计算设备的组合,例如,DSP与微处理器的组合、多个微处理器、结合DSP核心的一个或多个微处理器、或者任何其它此类配置。
可以理解的是,在本发明实施例中,电池检测设备400通过与蓄电池300连接,在发电机200为蓄电池300充电时,采集蓄电池300的充电纹波信号, 以根据所采集的充电纹波信号检测汽车发动机转速,简化了发动机转速的计算过程,提高发动机转速的检测速度。
进一步地,请参阅图3,是本发明实施例提供的一种汽车发动机转速检测方法的流程示意图,该汽车发动机转速检测方法应用于上述电池检测设备400,并且作为其中一种具体实现方式,该汽车发动机转速检测方法由上述控制器420执行,以简化发动机转速的计算过程,提高发动机转速的检测速度。
具体地,该汽车发动机转速检测方法包括:
S100:在汽车的发动机处于怠速状态时,确定汽车的发动机转速与充电纹波频率的转换比。
上述“怠速状态”为汽车的发动机空转时的状态,当汽车的发动机运转且汽车的油门踏板完全放松时,则确定汽车的发动机处于怠速状态。
由于汽车的发动机运转时,带动发电机为蓄电池充电,使得电池检测设备能够从蓄电池上采集到充电纹波信号,因此,作为其中一种具体实现方式,若控制器在检测到油门踏板完全放松时,接收到充电纹波信号,则确定汽车的发动机处于怠速状态,此时,控制器确定汽车的发动机转速与充电纹波频率的转换比。
具体地,确定汽车的发动机转速与充电纹波频率的转换比时,获取蓄电池的怠速充电纹波频率,并确定汽车的怠速转速,根据怠速充电纹波频率和怠速转速,确定发动机转速与充电纹波频率的转换比。
其中,充电纹波频率为发电机为蓄电池充电过程中产生的充电纹波信号的频率。
怠速充电纹波频率为发动机在怠速状态下带动发电机为蓄电池充电过程中产生的充电纹波信号的频率,而发动机在怠速状态下的转速为怠速转速,因此,怠速充电纹波频率与怠速转速存在对应关系,亦即,当充电纹波频率为怠速充电纹波频率时,发动机转速为怠速转速,基于此,根据怠速充电纹波频率和怠速转速能够确定发动机转速与充电纹波频率的转换比。
其中,控制器将汽车的发动机处于怠速状态时采集的充电纹波频率确定为怠速充电纹波频率。具体地,控制器通过带通滤波器获取汽车的发动机处于怠速状态时的怠速充电纹波信号后,对怠速充电纹波信号进行傅里叶变换,得到怠速充电纹波信号的频率,该怠速充电纹波信号的频率即为怠速充电纹波频率。
怠速转速则预先存储于存储器,控制器能够从存储器中获取汽车的怠速转速。优选地,在本发明实施例中,怠速转速为800r/min。
在一些实施例中,怠速转速根据汽车型号的不同而不同,此时,在存储器中预先建立汽车型号与怠速转速的对应关系表,以使不同汽车型号对应不同的怠速转速,基于此,控制器在确定汽车的怠速转速时,能够根据汽车型号查找对应关系表,以将与汽车型号匹配的怠速转速确定为所检测汽车的怠速转速。
控制器将怠速充电纹波频率与怠速转速的比值确定为发动机转速与充电纹波频率的转换比。
可以理解的是,在控制器确定汽车的发动机处于怠速状态的步骤之前,控制器根据用户触发的第一检测信号向用户发送第一提示信息,该第一提示信息用于指示用户控制汽车的发动机处于怠速状态。此时,用户能够根据第一提示信息启动发动机运转,并保持油门踏板完全放松,使汽车的发动机处于怠速状态。举例而言,当用户需要对汽车发动机转速进行检测时,通过车载设备触发第一转速检测按钮,当第一转速检测按钮被触发时,控制器接收到对应的第一检测信号,此时,控制器根据用户触发的第一检测信号向用户发送第一提示信息,以指示用户控制汽车的发动机处于怠速状态,该第一提示信息可以为“请控制汽车处于怠速状态”和/或“启动发动机并保持油门踏板完全放松”等。
在控制器完成第一提示信息的发送后,控制器确定汽车的发动机是否处于怠速状态,当控制器确定汽车的发动机处于怠速状态时,则确定汽车的发动机转速与充电纹波频率的转换比,并在转换比确定完成后,向用户发送第二提示信息,该第二提示信息用于提示用户已进入检测模式。此时,用户能够正常驱动汽车。
S200:获取蓄电池的当前充电纹波频率;
S300:根据当前充电纹波频率以及转换比,计算汽车的当前发动机转速。
当控制器向用户发送第二提示信息后,控制器进入检测模式,控制器在检测模式下获取蓄电池的当前充电纹波频率。
作为其中一种具体实现方式,控制器在检测模式下实时获取蓄电池的当前充电纹波频率,并根据实时获取的当前充电纹波频率以及转换比,实时计算汽车的当前发动机转速。
比如,控制器在t1时刻获取蓄电池的当前充电纹波频率f1,则根据该当前充电纹波频率f1以及转换比x,计算t1时刻汽车的当前发动机转速r1;控制器在t2时刻获取蓄电池的当前充电纹波频率f2,则根据该当前充电纹波频率f2以及转换比x,计算t2时刻汽车的当前发动机转速r2。
作为另一种具体实现方式,控制器在检测模式下根据用户触发的第二检测信号获取蓄电池的当前充电纹波频率,并根据当前充电纹波频率以及转换比,计算用户触发第二检测信号时汽车的当前发动机转速。
比如,当用户需要检测油门踏板踩满时的发动机转速时,用户在将油门踏板踩满后,通过车载设备触发第二转速检测按钮,当第二转速检测按钮被触发时,控制器接收到对应的第二检测信号,此时,控制器根据用户触发的第二检测信号获取蓄电池的当前充电纹波频率f3,并根据当前充电纹波频率f3以及转换比x,计算油门踏板踩满时汽车的发动机转速,其中,当前充电纹波频率f3为油门踏板踩满时的充电纹波频率;当用户需要检测油门踏板半踩时的发动机转速时,用户在将油门踏板半踩后,通过车载设备触发第二转速检测按钮,当第二转速检测按钮被触发时,控制器接收到对应的第二检测信号,此时,控 制器根据用户触发的第二检测信号获取蓄电池的当前充电纹波频率f4,并根据当前充电纹波频率f4以及转换比x,计算油门踏板半踩时汽车的发动机转速,其中,当前充电纹波频率f4为油门踏板半踩时的充电纹波频率。
可以理解的是,控制器将发送第二提示信息后接收到的第二检测信号认定为有效检测信号。
在本发明实施例中,获取蓄电池的当前充电纹波频率时,通过带通滤波器获取蓄电池的当前充电纹波信号,并对当前充电纹波信号进行傅里叶变换,以得到当前充电纹波频率。
而当前发动机转速的计算公式则为:
Figure PCTCN2021105980-appb-000002
其中,r为当前发动机转速,f为当前充电纹波频率,x为发动机转速与充电纹波频率的转换比。
可以理解的是,在本发明实施例中,在汽车的发动机处于怠速状态下确定汽车的发动机转速与充电纹波频率的转换比后,根据获取的蓄电池的当前充电纹波频率以及所确定的转换比,计算汽车的当前发动机转速,能够简化发动机转速的计算过程,提高发送机转速的检测速度。
进一步地,请参阅图4,是本发明实施例提供的一种汽车发动机转速检测装置的结构示意图,该汽车发动机转速检测装置能够应用于上述电池检测设备400,并且作为其中一种具体实现方式,该汽车发动机转速检测装置各个模块的功能由上述控制器420执行,以简化发动机转速的计算过程,提高发动机转速的检测速度。
以下所使用的术语“模块”为可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能被构想的。
具体地,该汽车发动机转速检测装置包括:
确定模块10,用于在所述汽车的发动机处于怠速状态时,确定所述汽车的发动机转速与充电纹波频率的转换比;
获取模块20,用于获取所述蓄电池的当前充电纹波频率;
计算模块30,用于根据所述当前充电纹波频率以及所述转换比,计算所述汽车的当前发动机转速。
在一些实施例中,确定模块10具体用于:
在所述汽车的发动机处于怠速状态时,获取所述蓄电池的怠速充电纹波频率;
确定所述汽车的怠速转速;
根据所述怠速充电纹波频率和所述怠速转速,确定所述发动机转速与充电纹波频率的转换比。
在一些实施例中,确定模块10具体用于:
将所述怠速充电纹波频率与所述怠速转速的比值确定为所述发动机转速与充电纹波频率的转换比。
在一些实施例中,获取模块20具体用于:
通过带通滤波器获取所述蓄电池的当前充电纹波信号;
对所述当前充电纹波信号进行傅里叶变换,得到所述当前充电纹波频率。
由于装置实施例和方法实施例是基于同一构思,在内容不互相冲突的前提下,装置实施例的内容可以引用方法实施例的,在此不再一一赘述。
可以理解的是,在本发明实施例中,在汽车的发动机处于怠速状态下确定汽车的发动机转速与充电纹波频率的转换比后,根据获取的蓄电池的当前充电纹波频率以及所确定的转换比,计算汽车的当前发动机转速,能够简化发动机转速的计算过程,提高发送机转速的检测速度。
本发明实施例还提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图2中的一个处理器422,可使得计算机执行上述任意方法实施例中的一种汽车发动机转速检测方法的各个步骤,或者,实现上述任意装置实施例中的一种汽车发动机转速检测装置的各个模块的功能。
本发明实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被一个或多个处理器执行,例如图2中的一个处理器422,可使得计算机执行上述任意方法实施例中的一种汽车发动机转速检测方法的各个步骤,或者,实现上述任意装置实施例中的一种汽车发动机转速检测装置的各个模块的功能。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施例的描述,本领域普通技术人员可以清楚地了解到各实施例可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施方法的流程。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(RandomAccessMemory,RAM)等。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利 用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (14)

  1. 一种汽车发动机转速检测方法,其特征在于,应用于电池检测设备,所述电池检测设备与所述汽车的蓄电池连接,包括:
    在所述汽车的发动机处于怠速状态时,确定所述汽车的发动机转速与充电纹波频率的转换比;
    获取所述蓄电池的当前充电纹波频率;
    根据所述当前充电纹波频率以及所述转换比,计算所述汽车的当前发动机转速。
  2. 根据权利要求1所述的汽车发动机转速检测方法,其特征在于,所述确定所述汽车的发动机转速与充电纹波频率的转换比,具体包括:
    在所述汽车的发动机处于怠速状态时,获取所述蓄电池的怠速充电纹波频率;
    确定所述汽车的怠速转速;
    根据所述怠速充电纹波频率和所述怠速转速,确定所述发动机转速与充电纹波频率的转换比。
  3. 根据权利要求2所述的汽车发动机转速检测方法,其特征在于,所述根据所述怠速充电纹波频率和所述怠速转速,确定所述发动机转速与充电纹波频率的转换比,具体包括:
    将所述怠速充电纹波频率与所述怠速转速的比值确定为所述发动机转速与充电纹波频率的转换比。
  4. 根据权利要求1至3中任一项所述的汽车发动机转速检测方法,其特征在于,所述获取所述蓄电池的当前充电纹波频率,具体包括:
    通过带通滤波器获取所述蓄电池的当前充电纹波信号;
    对所述当前充电纹波信号进行傅里叶变换,得到所述当前充电纹波频率。
  5. 根据权利要求1至4中任一项所述的汽车发动机转速检测方法,其特征在于,所述当前发动机转速的计算公式为:
    Figure PCTCN2021105980-appb-100001
    其中,r为当前发动机转速,f为当前充电纹波频率,x为发动机转速与充电纹波频率的转换比。
  6. 一种汽车发动机转速检测装置,其特征在于,应用于电池检测设备,所述电池检测设备与所述汽车的蓄电池连接,包括:
    确定模块,用于在所述汽车的发动机处于怠速状态时,确定所述汽车的发动机转速与充电纹波频率的转换比;
    获取模块,用于获取所述蓄电池的当前充电纹波频率;
    计算模块,用于根据所述当前充电纹波频率以及所述转换比,计算所述汽车的当前发动机转速。
  7. 根据权利要求6所述的汽车发动机转速检测装置,其特征在于,所述确定模块具体用于:
    在所述汽车的发动机处于怠速状态时,获取所述蓄电池的怠速充电纹波频率;
    确定所述汽车的怠速转速;
    根据所述怠速充电纹波频率和所述怠速转速,确定所述发动机转速与充电纹波频率的转换比。
  8. 根据权利要求7所述的汽车发动机转速检测装置,其特征在于,所述确定模块具体用于:
    将所述怠速充电纹波频率与所述怠速转速的比值确定为所述发动机转速与充电纹波频率的转换比。
  9. 根据权利要求6至8中任一项所述的汽车发动机转速检测装置,其特征在于,所述获取模块具体用于:
    通过带通滤波器获取所述蓄电池的当前充电纹波信号;
    对所述当前充电纹波信号进行傅里叶变换,得到所述当前充电纹波频率。
  10. 一种电池检测设备,其特征在于,用于与汽车的蓄电池连接,所述电池检测设备包括:
    采样电路,通过信号采集连接线与所述蓄电池连接;以及,
    控制器,与所述采样电路电连接;
    其中,所述控制器包括至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够用于执行如权利要求1至5中任一项所述的方法。
  11. 根据权利要求10所述的电池检测设备,其特征在于,所述信号采集连接线为开尔文四线夹。
  12. 根据权利要求10或11所述的电池检测设备,其特征在于,所述采样电路包括:
    带通滤波器,所述带通滤波器的输入端与所述蓄电池连接,所述带通滤波器的输出端与所述控制器连接。
  13. 根据权利要求12所述的电池检测设备,其特征在于,所述采样电路还包括:
    信号处理器,所述信号处理器的输入端与所述蓄电池连接,所述信号处理器的输出端与所述带通滤波器的输入端连接。
  14. 一种非易失性计算机可读存储介质,其特征在于,所述非易失性计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使控制器执行如权利要求1至5中任一项所述的方法。
PCT/CN2021/105980 2020-07-14 2021-07-13 一种汽车发动机转速检测方法、装置及电池检测设备 WO2022012514A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010676997.8A CN111766395B (zh) 2020-07-14 2020-07-14 一种汽车发动机转速检测方法、装置及电池检测设备
CN202010676997.8 2020-07-14

Publications (1)

Publication Number Publication Date
WO2022012514A1 true WO2022012514A1 (zh) 2022-01-20

Family

ID=72725548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105980 WO2022012514A1 (zh) 2020-07-14 2021-07-13 一种汽车发动机转速检测方法、装置及电池检测设备

Country Status (2)

Country Link
CN (1) CN111766395B (zh)
WO (1) WO2022012514A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766395B (zh) * 2020-07-14 2022-04-15 深圳市道通科技股份有限公司 一种汽车发动机转速检测方法、装置及电池检测设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241667A (ja) * 1985-04-19 1986-10-27 Automob Antipollut & Saf Res Center デイ−ゼル車のエンジン回転数検出装置
CN202870111U (zh) * 2012-10-25 2013-04-10 天津市圣威科技发展有限公司 基于蓄电池纹波频率的汽车发动机转速测量仪
CN203275432U (zh) * 2013-02-27 2013-11-06 杭州亿恒科技有限公司 汽车发动机转速的测量装置
CN203519635U (zh) * 2013-10-22 2014-04-02 深圳市伊爱高新技术开发有限公司 一种非接触式发动机转速检测电路
CN203587605U (zh) * 2013-12-09 2014-05-07 郴州市金通电器有限责任公司 汽车发动机转速测量装置
CN104569476A (zh) * 2013-10-22 2015-04-29 深圳市伊爱高新技术开发有限公司 一种非接触式发动机转速检测电路
TW201809672A (zh) * 2016-06-13 2018-03-16 傅彥鈞 引擎轉速之偵測系統
CN108026832A (zh) * 2015-10-07 2018-05-11 株式会社电装 转速检测装置
CN110579617A (zh) * 2019-09-05 2019-12-17 中国航空工业集团公司沈阳飞机设计研究所 一种用于地面试验的航空发动机转速测量装置及方法
CN111766395A (zh) * 2020-07-14 2020-10-13 深圳市道通科技股份有限公司 一种汽车发动机转速检测方法、装置及电池检测设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19732088A1 (de) * 1997-07-25 1999-02-11 Bosch Gmbh Robert Einrichtung zur Bestimmung der Drehzahl einer Brennkraftmaschine
DE102013217968B3 (de) * 2013-09-09 2015-01-22 Robert Bosch Gmbh Phasenregelschleife, Generatorsteuereinrichtung und Verfahren zum Ansteuern eineselektrischen Antriebssystems eines Hybridfahrzeugs
CN103560743B (zh) * 2013-10-23 2016-04-20 国家电网公司 电动机转速检测方法和装置
US10967743B2 (en) * 2017-02-21 2021-04-06 Ford Global Technologies, Llc Hybrid drive system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241667A (ja) * 1985-04-19 1986-10-27 Automob Antipollut & Saf Res Center デイ−ゼル車のエンジン回転数検出装置
CN202870111U (zh) * 2012-10-25 2013-04-10 天津市圣威科技发展有限公司 基于蓄电池纹波频率的汽车发动机转速测量仪
CN203275432U (zh) * 2013-02-27 2013-11-06 杭州亿恒科技有限公司 汽车发动机转速的测量装置
CN203519635U (zh) * 2013-10-22 2014-04-02 深圳市伊爱高新技术开发有限公司 一种非接触式发动机转速检测电路
CN104569476A (zh) * 2013-10-22 2015-04-29 深圳市伊爱高新技术开发有限公司 一种非接触式发动机转速检测电路
CN203587605U (zh) * 2013-12-09 2014-05-07 郴州市金通电器有限责任公司 汽车发动机转速测量装置
CN108026832A (zh) * 2015-10-07 2018-05-11 株式会社电装 转速检测装置
TW201809672A (zh) * 2016-06-13 2018-03-16 傅彥鈞 引擎轉速之偵測系統
CN110579617A (zh) * 2019-09-05 2019-12-17 中国航空工业集团公司沈阳飞机设计研究所 一种用于地面试验的航空发动机转速测量装置及方法
CN111766395A (zh) * 2020-07-14 2020-10-13 深圳市道通科技股份有限公司 一种汽车发动机转速检测方法、装置及电池检测设备

Also Published As

Publication number Publication date
CN111766395B (zh) 2022-04-15
CN111766395A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2022012514A1 (zh) 一种汽车发动机转速检测方法、装置及电池检测设备
CN108957323B (zh) 一种电池健康状态的判断方法及装置
WO2022007710A1 (zh) 一种检测车辆发电机的方法及电池检测仪
CN113587746B (zh) 基于地磁信息测量弹体的大跨度转速的方法、装置及系统
CN110861533B (zh) 电动汽车soh估算方法、装置和存储介质
CN103443426A (zh) 用于诊断内燃机的增压系统的方法
CN113866350B (zh) 车辆累碳量测量实现方法、装置、设备及存储介质
CN113162478B (zh) 电机启动参数的测试方法、系统、终端设备及存储介质
CN106094692A (zh) 一种检测车辆启动的方法及系统
CN112217444A (zh) 一种电动汽车水泵控制方法、电子设备及存储介质
WO2020015653A1 (zh) 飞行器剩余飞行时间的估算方法、装置、电池及飞行器
CN111639425B (zh) 蓄电池启动性能预测方法、存储介质及电子设备
CN113422540B (zh) 电机初始状态检测装置及电机初始状态检测方法
CN112904199B (zh) 电机堵转故障的处理方法和装置
CN112197827B (zh) 车辆油耗测试方法、设备、存储介质及装置
MX2008012303A (es) Comprobador de motor de arranque que mide la potencia.
WO2023279762A1 (zh) 电池状态检测方法、车辆设备和计算机可读存储介质
JP2004045235A (ja) 内部抵抗推定方法、充電状態推定方法及びエンジン始動判定方法
CN111505505A (zh) 混合动力系统锂电池荷电状态计算和校正方法、电子设备
CN111720192A (zh) 一种车辆、颗粒捕集器的控制方法与控制装置、存储介质
JPS58172466A (ja) 多気筒内燃機関の点火時期制御方法
CN115306550A (zh) 一种混合动力汽车的清缸方法、装置、存储介质和设备
CN114170992B (zh) 一种车辆主动降噪效果评价方法、装置、存储介质及设备
CN117184038A (zh) 混动发动机怠速发电控制方法、装置及存储介质
CN104833815A (zh) 发动机转速测量方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842092

Country of ref document: EP

Kind code of ref document: A1