WO2022012008A1 - 泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法 - Google Patents

泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法 Download PDF

Info

Publication number
WO2022012008A1
WO2022012008A1 PCT/CN2021/071737 CN2021071737W WO2022012008A1 WO 2022012008 A1 WO2022012008 A1 WO 2022012008A1 CN 2021071737 W CN2021071737 W CN 2021071737W WO 2022012008 A1 WO2022012008 A1 WO 2022012008A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
foamed nickel
foam
temperature
cobalt tetroxide
Prior art date
Application number
PCT/CN2021/071737
Other languages
English (en)
French (fr)
Inventor
焦杨
熊姗姗
王灵丹
陈叶雯
屠莲红
徐艳超
陈建荣
Original Assignee
浙江师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江师范大学 filed Critical 浙江师范大学
Priority to US17/779,235 priority Critical patent/US20220406533A1/en
Publication of WO2022012008A1 publication Critical patent/WO2022012008A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to the field of supercapacitor electrode materials, in particular to a foam nickel-loaded defect type cobalt tetroxide nanometer material, a low temperature-resistant supercapacitor and a preparation method.
  • supercapacitors With the development of society and economy, as a new type of green energy storage device, supercapacitors have a series of advantages such as high power density, long cycle life, fast charging and discharging speed, green and pollution-free, and safe and portable. wide attention and rapid development.
  • the performance of supercapacitors is mainly determined by the electrode material. Therefore, through a reasonable design, an ideal low-temperature-resistant electrode material can be obtained, which can withstand harsh temperature conditions, stably store energy at low temperatures, and achieve high energy storage and long cycle life.
  • supercapacitors As a new type of green energy storage device, supercapacitors have a series of advantages such as high power density, long cycle life, fast charging and discharging speed, green and pollution-free, and safe and portable. rapid development.
  • the performance of supercapacitors is mainly determined by the electrode material. Therefore, through a reasonable design, an ideal low-temperature-resistant electrode material can be obtained, which can withstand harsh temperature conditions, stably store energy at low temperatures, and achieve high energy storage and long cycle life.
  • Cobalt tetroxide (Co 3 O 4 ) is an important inorganic p-type semiconductor metal oxide, which is widely used in lithium-ion batteries, catalysts, supercapacitors, sensors, magnetic materials and other fields. Co 3 O 4 has great potential application value in the field of photocatalysts due to its abundant sources, cheap and easy availability, and stable chemical properties. However, the current preparation method of Co 3 O 4 is complicated, and the prepared Co 3 O 4 has poor electrochemical performance and cannot work under low temperature conditions.
  • the present invention proposes a foam nickel-supported defect type cobalt tetroxide nanomaterial, a low temperature resistant supercapacitor and a preparation method thereof.
  • a first aspect of the present invention provides a method for preparing a foamed nickel-supported defect-type cobalt tetroxide nanomaterial, comprising the following steps:
  • Cetyltrimethylammonium bromide was added to the pink transparent solution, stirred until dissolved, to obtain a mixed solution;
  • the mixed solution is put into a reaction kettle lined with polytetrafluoroethylene, and the pretreated nickel foam is added to the reaction kettle for reaction, and a purple-pink substance grows on the surface of the reacted nickel foam, and the reaction is repeated. Drying treatment after cleaning;
  • the dried nickel foam composite material is heat treated.
  • the second aspect of the present invention provides a foamed nickel-supported defect-type cobalt tetroxide nanomaterial prepared by the above-mentioned preparation method.
  • a third aspect of the present invention provides a supercapacitor comprising the nickel foam loading defect as described above
  • the pretreatment step of the nickel foam includes:
  • the nickel foam is cut into pieces, ultrasonically cleaned in hydrochloric acid, ethanol, and an aqueous solution in sequence, and then dried.
  • the temperature of the drying treatment in the pretreatment step of the nickel foam is 60-80°C.
  • the ultrasonic cleaning time is 10-15 minutes.
  • the process conditions of the heat treatment are as follows: the temperature is 500-700° C., the heating rate is controlled at 2-5 min ⁇ 1 , and the treatment time is 2-5 hours.
  • the reaction temperature in the reaction kettle is 200-300° C.
  • the reaction time is 8-10 hours.
  • the present invention has the following beneficial effects:
  • the preparation process of the present invention is simple, safe and pollution-free;
  • Defective cobalt tetroxide nanomaterials supported by foamed nickel can expose more electrochemical reaction sites, and have high conductivity and stable properties;
  • the foam nickel-supported defect type cobalt tetroxide (D-Co 3 O 4 ) prepared by the present invention has good wettability in water, which is beneficial to the effective diffusion of electrode liquid ions and improves the electrochemical reaction rate;
  • the foamed nickel-supported defect-type cobalt tetroxide (D-Co 3 O 4 ) prepared by the present invention still has high specific capacity at low temperature, and the assembled supercapacitor can withstand low temperature, so it has a great application prospect.
  • Fig. 1 is the scanning electron microscope image of the nickel foam supported cobalt tetroxide nanomaterial prepared in Example 1 of the present invention
  • Fig. 2 is the scanning electron microscope image of the nickel foam supported cobalt tetroxide nanomaterial prepared in Example 3 of the present invention
  • Fig. 3 is the surface scanning diagram of scanning electron microscope after the calcination of the foamed nickel-supported cobalt tetroxide nanomaterial obtained in Examples 1 and 3 of the present invention
  • Fig. 4 is a transmission electron microscope photograph after calcination of the foamed nickel-supported cobalt tetroxide nanomaterial obtained in Example 1 of the present invention
  • Fig. 5 is the high-definition transmission electron microscope photograph after calcination of the foamed nickel-supported cobalt tetroxide nanomaterial obtained in Example 1 of the present invention
  • Fig. 6 is a partial enlarged view at the A place of Fig. 5;
  • Fig. 8 is a partial enlarged view of Fig. 7;
  • defect-type cobalt tetroxide nanomaterial in the present invention means that the lattice of cobalt tetroxide is distorted.
  • the present embodiment relates to a preparation method of a low-temperature resistant foam nickel-loaded defect-type cobalt tetroxide nanomaterial, comprising the following steps:
  • step 4 Transfer the mixed solution in step 2 to a reaction kettle lined with polytetrafluoroethylene, add the nickel foam obtained in step 1, and react at 200° C. for 8 hours. After the reaction kettle was cooled to room temperature, a purple-pink substance grew on the surface of the reacted nickel foam, which was repeatedly ultrasonically cleaned with absolute ethanol and distilled water and then dried.
  • the foamed nickel composite material is heat-treated at a temperature of 500°C, the heating rate is controlled at 2 min -1 , and the treatment time is 2 hours, and finally the foamed nickel-supported defect type cobalt tetroxide nanomaterial (D-Co 3 O 4 ) is obtained.
  • the cut area is foamed nickel sheet 1 ⁇ 2cm 2 sequentially subjected to ultrasonic cleaning in 3M hydrochloric acid, ethanol, an aqueous solution, the cleaning time was 15 minutes, then treated foamed nickel was placed in an oven for 80 degrees After drying, a cleaned foamed nickel base material is finally obtained.
  • step 4 Transfer the mixed solution in step 2 to a reaction kettle lined with polytetrafluoroethylene, add the nickel foam obtained in step 1, and react at 300° C. for 10 hours.
  • the foamed nickel composite material is heat-treated at a temperature of 700°C, the heating rate is controlled at 5 min -1 , and the treatment time is 5 hours to finally obtain the foamed nickel-supported defect type cobalt tetroxide nanomaterial (D-Co 3 O 4 ).
  • Example 2 Compared with Example 1, the difference is that CTAB is not added in Step 3 in Example 2, and other steps and process conditions are the same as those in Example 1 to obtain foam nickel-supported non-defective cobalt tetroxide (Co 3 O 4 ).
  • Example 1 and Example 3 The SEM photos and TEM photos of the nickel foam supported cobalt tetroxide nanomaterials prepared in Example 1 and Example 3 were taken respectively, as shown in Figure 1-2. It can be seen from Figure 1-2 that Examples 1 and 3 were prepared The obtained foam nickel-supported cobalt tetroxide nanomaterials have similar morphologies, which are all petal-shaped morphologies formed by unique nanosheet assemblies.
  • the nickel foam supported cobalt tetroxide nanomaterials prepared in Example 1 and Example 3 are respectively calcined, and the scanning electron microscope photos, transmission electron microscope photos and scanning electron microscope photos of the foam nickel loaded cobalt tetroxide nanomaterials after calcination are taken, as shown in the figure.
  • the element distribution in Figure 3 shows that the distribution of C, Co, and O in the material is uniform.
  • Figure 4-6 shows that, compared with Co 3 O 4 synthesized without CTAB, the material of D-Co 3 O 4 the surface becomes more rough, while there have been a large number of nanoparticles, which is due to the removal of CO 2 O and H 2 in the annealing process caused.
  • D-Co 3 O 4 has ordered detachment layer faults, and these faults are parallel to each other, which is beneficial to the improvement of electrochemical properties.
  • FIG. 8 is an enlarged XRD pattern of FIG. 7 .
  • D-Co 3 O (311) diffraction peak 4 to move significantly lower angles, d- spacings mainly due to lattice distortion caused due to expansion.
  • the (311) characteristic peak of D-Co 3 O 4 is significantly broadened, indicating that the lower the nanometer value of the material prepared in Example 1, the smaller the crystal grain and the greater the lattice distortion.
  • the Shanghai Chenhua CHI 660C electrochemical comprehensive tester was used to test the electrochemical performance, while the Xinwei charge-discharge tester was used to test the cycle performance of the supercapacitor.
  • select an area of 2 ⁇ 2cm 2 of the platinum plate, double salt bridge saturated calomel electrode and a concentration of 3M aqueous KOH solution were used as counter electrode, reference electrode and electrolyte testing.
  • the active material is prepared into an electrode sheet as a working electrode to test its electrochemical performance.
  • the electrochemical performance test mainly includes cyclic voltammetry (CV) curve test, constant current charge-discharge (GCD) test, alternating current impedance (EIS amplitude is 5mV, Frequency is 0.01Hz-100kHz) test and cycle stability test, etc.
  • the foamed nickel-supported cobalt tetroxide nanomaterials prepared in Example 1 and Example 3 were used as the electrode material and the negative electrode material to be charge-matched, and then appropriate electrolytes or electrolytes and packaging materials were selected to assemble them into devices. (super capacitor), tested for electrochemical performance at low temperatures, the specific capacity of the electrode material at different current densities can be calculated based on the discharge time constant current charging and discharging, is calculated as follows: where C s - area Specific capacity, in mF cm -2 ;
  • I current density, in mAcm -2 ;
  • s the area of the active material participating in the electrochemical reaction, in cm -2 .
  • FIG. 9 is a comparison diagram of the cyclic voltammetry curves of D-Co 3 O 4 and Co 3 O4 electrodes at 5mV s ⁇ 1 .
  • the closed area of the integral curve of D-Co 3 O 4 is larger than that of Co 3 O 4 , indicating that it can store more capacitance.
  • GCD image cm -2 at 10 in FIG 1mA Similar results were also obtained, wherein the discharge time of D-Co 3 O 4 electrode longer.
  • 11 shows a D-Co at different current densities than 3 O 4 and Co 3 O 4 of the capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种耐低温超级电容器电极材料领域,尤其涉及一种泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法,包括以下步骤:将醋酸钴溶于乙二醇溶液中,搅拌均匀得到粉色的透明溶液;将十六烷基三甲基溴化氨加入到所述粉色的透明溶液中,搅拌至溶解,得到混合溶液;将所述混合溶液放入内衬为聚四氟乙烯的反应釜内,并向所述反应釜内加入预处理的泡沫镍进行水热反应,反应结束后取出泡沫镍,反复超声清洗后进行干燥处理;对干燥处理后的泡沫镍进行热处理,制备得到生长在泡沫镍上的缺陷型四氧化三钴(D-Co 3O 4)在低温下仍然具有较高的比容量,组装成的超级电容器可耐低温,因此具有重大的应用前景。

Description

泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法 技术领域
本发明涉及超级电容器电极材料领域,具体涉及一种泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及制备方法。
背景技术
随着社会经济的发展,超级电容器作为一种新型的绿色能量储存器件,具有功率密度高、循环寿命长、充放电速度快、绿色无污染和安全便携等一系列优势,已经受到了研究者们的广泛关注,并且得到了快速的发展。超级电容器的性能主要由电极材料决定。因此通过合理的设计能够得到理想的耐低温电极材料,使其能够承受苛刻的温度条件,在低温下稳定储能,实现高储能、长循环寿命。
超级电容器作为一种新型的绿色能量储存器件,具有功率密度高、循环寿命长、充放电速度快、绿色无污染和安全便携等一系列优势,已经受到了研究者们的广泛关注,并且得到了快速的发展。超级电容器的性能主要由电极材料决定。因此通过合理的设计能够得到理想的耐低温电极材料,使其能够承受苛刻的温度条件,在低温下稳定储能,实现高储能、长循环寿命。
四氧化三钴(Co 3O 4)是一种重要的无机p型半导体金属氧化物,广泛应用于锂离子电池、催化剂、超级电容器、传感器、磁性材料等领域。Co 3O 4由于来源丰富、价廉易得、化学性质稳定等优点在光催化剂领域有巨大的潜在应用价值。但是目前的Co 3O 4的制备方法复杂,且制备的Co 3O 4电化学性能较差,在低温条件下无法进行工作。
发明内容
为克服上述技术问题,本发明提出一种泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法。
为了实现上述目的,本发明第一方面提供了一种泡沫镍负载缺陷型四氧化三钴纳米材料的制备方法,包括以下步骤:
将醋酸钴溶于乙二醇溶液中,搅拌均匀得到粉色的透明溶液;
将十六烷基三甲基溴化氨加入到所述粉色的透明溶液中,搅拌至溶解,得到混合溶液;
将所述混合溶液放入内衬为聚四氟乙烯的反应釜内,并向所述反应釜内加入预处理的泡沫镍进行反应,反应后的泡沫镍表面生长了紫粉色物质,对其反复清洗后进行干燥处理;
对干燥处理后的泡沫镍复合材料进行热处理。
本发明第二方面提供了一种由上述所述制备方法制备得到的泡沫镍负载缺陷型四氧化三钴纳米材料。
本发明第三方面提供了一种超级电容器,包含如上所述的泡沫镍负载缺陷
型四氧化三钴纳米材料。
另外,根据本发明上述泡沫镍负载缺陷型四氧化三钴纳米材料的制备方法还可以具有如下附加的技术特征:
根据本发明的一个实施例,所述泡沫镍的预处理步骤包括:
将泡沫镍剪成片,依次在盐酸、乙醇、水溶液中进行超声清洗,然后再进行干燥处理。
根据本发明的一个实施例,所述泡沫镍的预处理步骤中干燥处理的温度为60-80℃。
根据本发明的一个实施例,所述超声清洗的时间为10-15分钟。
根据本发明的一个实施例,所述热处理的工艺条件为:温度为500-700℃,升温速率控制在2-5min -1,处理时间为2-5小时。
根据本发明的一个实施例,在所述反应釜内反应的温度为200-300℃,反应时间为8-10小时。
与现有技术相比,本发明具有以下有益效果:
1.本发明制备工艺简单、安全、无污染;
2.泡沫镍负载缺陷型四氧化三钴纳米材料可以暴露出更多的电化学反应位点,且导电性高,性质稳定;
3.本发明制备得到的泡沫镍负载缺陷型四氧化三钴(D-Co 3O 4)在水中具有良好的浸润性,有利于电极液离子的有效扩散,提高电化学反应速率;
4.本发明制备得到的泡沫镍负载缺陷型四氧化三钴(D-Co 3O 4)在低温下仍然具有较高的比容量,组装成的超级电容器可耐低温,因此具有重大的应用前景。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例1制备得到的泡沫镍负载四氧化三钴纳米材料扫描电镜图;
图2为本发明实施例3制备得到的泡沫镍负载四氧化三钴纳米材料扫描电镜图;
图3为本发明实施例1、3得到的泡沫镍负载四氧化三钴纳米材料煅烧后扫面电镜的面扫描图;
图4为本发明实施例1得到的泡沫镍负载四氧化三钴纳米材料煅烧后透射电镜照图;
图5为本发明实施例1得到的泡沫镍负载四氧化三钴纳米材料煅烧后高清透射电镜照图;
图6为图5的A处的局部放大图;
图7为本发明实施例1、3得到的泡沫镍负载四氧化三钴纳米材料的XRD图谱;
图8为图7的局部放大图;
图9为本发明实施例1、3得到的泡沫镍负载四氧化三钴纳米材料在5mVs -1的扫速下的循环伏安曲线;
图10为本发明实施例1、3得到的泡沫镍负载四氧化三钴纳米材料在电流 密度为1Ag -1时恒流充放电曲线;
图11为本发明实施例1、3得到的泡沫镍负载四氧化三钴纳米材料在不同电流密度下的比容量;
图12为本发明实施例1、3得到的泡沫镍负载四氧化三钴纳米材料的1000次循环稳定性测试曲线。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明中的缺陷型四氧化三钴纳米材料是指四氧化三钴的晶格发生了畸变。
实施例1
本实施例涉及一种耐低温泡沫镍负载缺陷型四氧化三钴纳米材料的制备方法,包括以下步骤:
1.将泡沫镍剪成面积为1×2cm 2的片,依次在3M盐酸、乙醇、水溶液中进行超声清洗,清洗时间分别为10分钟,然后将处理过的泡沫镍置于60度烘箱中进行干燥处理,最终得到清洗干净的泡沫镍基底材料。
2.将一定量醋酸钴溶于30毫升乙二醇溶液中,搅拌均匀得到粉色的透明溶液。
3.将十六烷基三甲基溴化氨(简称CTAB)加入到步骤二制备的溶液中,搅拌至完全溶解。
4.将步骤二中的混合溶液转移到由聚四氟乙烯作为内衬的反应釜中,向其中加入步骤一中得到的泡沫镍,在200℃下反应8小时。反应釜冷却至室温后,反应后的泡沫镍表面生长了紫粉色物质,使用无水乙醇和蒸馏水反复超声清洗后干燥处理。
5.在500℃的温度下对泡沫镍复合材料进行热处理,升温速率控制在2min -1,处理时间为2小时,最终得到泡沫镍负载缺陷型四氧化三钴纳米材料(D-Co 3O 4)。
实施例2
1.将泡沫镍剪成面积为1×2cm 2的片,依次在3M盐酸、乙醇、水溶液中进行超声清洗,清洗时间分别为15分钟,然后将处理过的泡沫镍置于80度烘箱中进行干燥处理,最终得到清洗干净的泡沫镍基底材料。
2.将一定量醋酸钴溶于30毫升乙二醇溶液中,搅拌均匀得到粉色的透明溶液。
3.将十六烷基三甲基溴化氨(简称CTAB)加入到步骤二制备的溶液中,搅拌至完全溶解。
4.将步骤二中的混合溶液转移到由聚四氟乙烯作为内衬的反应釜中,向其中加入步骤一中得到的泡沫镍,在300℃下反应10小时。
5.反应釜冷却至室温后,反应后的泡沫镍表面生长了紫粉色物质,得到紫粉色的泡沫镍,使用无水乙醇和蒸馏水反复超声清洗后干燥处理。
6.在700℃的温度下对泡沫镍复合材料进行热处理,升温速率控制在5min -1,处理时间为5小时,最终得到泡沫镍负载缺陷型四氧化三钴纳米材料(D-Co 3O 4)。
实施例3
与实施例1相比,其不同之处在于实施例2在步骤3中的未添加CTAB,其他步骤以及工艺条件与实施例1相同,得到泡沫镍负载非缺陷型四氧化三钴(Co 3O 4)。
对比实验
1、采集材料的扫描电镜照片以及透射电镜照片
分别拍摄实施例1、实施例3制备得到的泡沫镍负载四氧化三钴纳米材料扫描电镜照片以及透射电镜照片,具体如图1-2所示,由图1-2可知,实施例1、实施例3制备得到的泡沫镍负载四氧化三钴纳米材料形貌相似,均为独特纳米片组装形成的花瓣状形貌。
2、采集煅烧后材料的扫描电镜照片以及透射电镜照片
分别对实施例1、实施例3制备的泡沫镍负载四氧化三钴纳米材料进行煅烧,并拍摄煅烧后泡沫镍负载四氧化三钴纳米材料的扫描电镜照片、透射电镜照片以及扫面电镜的面扫描照片,具体如图3-6所示,元素分布图3说明该材料中C、Co、O的分布均匀,图4-6可知,与未加入CTAB合成的Co 3O 4相比,D-Co 3O 4 的材料的表面变得更加粗糙,同时出现了大量的纳米粒子,这是由于在退火过程中CO 2和H 2O的移除而导致的。此外,通过图6可以清晰看出D-Co 3O 4存在有序的滑脱层断层,且这些断层相互平行,有益于电化学性质的提升。
3、采集XRD图谱
分别获取实施例1、实施例3制备得到的四氧化三钴纳米材料XRD图谱,具体如图7-8所示,由图7-8可知:用X射线衍射(XRD)表征了D-Co 3O 4和Co 3O 4纳米结构。两个纳米材料的衍射峰都很好地与Co 3O 4匹配(PDF#62-3103)。峰值分别位于18.9、31.1、36.8、44.8、59.2和65.2,分别对应于Co 3O 4的(111)、(220)、(311)、(222)、(511)和(440)面。图8为图7放大的XRD谱图。与Co 3O 4相比,D-Co 3O 4的(311)衍射峰明显移动到较低的角度,这主要是由于晶格畸变导致的d-间距扩大所致。同时,D-Co 3O 4的(311)特征峰明显展宽,说明实施例1制备的材料纳米值越低,晶粒越小,晶格畸变越大。
4、电化学性能的测定:
分别使用、上海辰华CHI 660C电化学综合测试仪进行电化学性能测试,与此同时,新威充放电测试仪则用于对超级电容器进行循环性能的测试。在三电极体系中,选择面积为2×2cm 2的铂片、双盐桥饱和甘汞电极以及浓度为3M的KOH水溶液分别作为测试中的对电极、参比电极和电解液。将活性物质制备成电极片作为工作电极来测试其电化学性能,其中电化学性能测试主要包含循环伏安(CV)曲线测试、恒流充放电(GCD)测试、交流阻抗(EIS振幅为5mV,频率为0.01Hz-100kHz)测试以及循环稳定性测试等。
在两电极体系中首先将实施例1、实施例3所制备的泡沫镍负载四氧化三钴纳米材料作为电极材料与负极材料进行电荷匹配,随后分别选择合适的电解液或者电解质以及封装材料将其组装成器件(超级电容器),测试其在低温条件下的电化学性能,电极材料在不同电流密度下的比容量可以根据恒流充放电的放电时间进行计算,计算公式如下所示:式中C s—面积比容量,单位mF cm -2
Figure PCTCN2021071737-appb-000001
I——电流密度,单位mAcm -2
△t——恒流放电时间,单位s;
△V——工作电位区间,单位V;
s——参与电化学反应的活性物质的面积,单位cm -2
测试结果如图9-12所示,由图9-12所示,实施例1制备的D-Co 3O 4电极材料在低温(冰水混合物)下也表现出优异的电化学性能。图9为D-Co 3O 4和Co 3O4电极在5mV s -1处的循环伏安曲线对比图。显然,D-Co 3O 4积分曲线的闭合面积要大于Co 3O 4,说明它可以存储更多的电容。图10中1mA cm -2处的GCD图像也得到了类似的结果,其中D-Co 3O 4电极的放电时间更长。图11显示了不同电流密度下D-Co 3O 4和Co 3O 4的比电容。结果表明,在电流密度为1mA cm -2时,D-Co 3O 4的比电容为1052mFcm -2,Co 3O 4的比电容为338mF cm -2。当电流密度增加到10mA cm -2时,D-Co 3O 4的比电容始终优于Co 3O 4。稳定性是衡量电极实用性的重要指标之一。在10A g -1条件下经过1000次循环(图12),制备的D-Co 3O 4仍然保留了初始比电容的86%,而在1000次循环后Co 3O 4只保留了74%,表明D-Co 3O 4具有良好的循环稳定性。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (8)

  1. 一种泡沫镍负载缺陷型四氧化三钴纳米材料的制备方法,其特征在于,包括以下步骤:
    将醋酸钴溶于乙二醇溶液中,搅拌均匀得到粉色的透明溶液;
    将十六烷基三甲基溴化氨加入到所述粉色的透明溶液中,搅拌至溶解,得到混合溶液;
    将所述混合溶液放入内衬为聚四氟乙烯的反应釜内,并向所述反应釜内加入预处理的泡沫镍进行反应,反应后的泡沫镍表面生长了紫粉色物质,对其反复清洗后进行干燥处理;
    对干燥处理后的泡沫镍复合材料进行热处理。
  2. 根据权利要求1所述的泡沫镍负载缺陷型四氧化三钴纳米材料的制备方法,其特征在于,所述泡沫镍的预处理步骤包括:
    将泡沫镍剪成片,依次在盐酸、乙醇、水溶液中进行超声清洗,然后再进行干燥处理。
  3. 根据权利要求2所述的泡沫镍负载缺陷型四氧化三钴纳米材料的制备方法,其特征在于,所述泡沫镍的预处理步骤中干燥处理的温度为60-80℃。
  4. 根据权利要求3所述的泡沫镍负载缺陷型四氧化三钴纳米材料的制备方法,其特征在于,所述超声清洗的时间为10-15分钟。
  5. 根据权利要求1所述的泡沫镍负载缺陷型四氧化三钴纳米材料的制备方法,其特征在于,
    所述热处理的工艺条件为:温度为500-700℃,升温速率控制在2-5min -1,处理时间为2-5小时。
  6. 根据权利要求1所述的泡沫镍负载缺陷型四氧化三钴纳米材料的制备方法,其特征在于,在所述反应釜内反应的温度为200-300℃,反应时间为8-10小时。
  7. 权利要求1-6任一项所述的制备方法制备得到的泡沫镍负载缺陷型四氧化三钴纳米材料。
  8. 一种耐低温超级电容器,其特征在于,包括如权利要求7所述的泡沫镍负载缺陷型四氧化三钴纳米材料。
PCT/CN2021/071737 2020-07-17 2021-01-14 泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法 WO2022012008A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/779,235 US20220406533A1 (en) 2020-07-17 2021-01-14 Nickel foam -supported defective tricobalt tetroxide nanomaterial, low temperature resistant supercapacitor and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010693487.1A CN112053856A (zh) 2020-07-17 2020-07-17 泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法
CN202010693487.1 2020-07-17

Publications (1)

Publication Number Publication Date
WO2022012008A1 true WO2022012008A1 (zh) 2022-01-20

Family

ID=73602072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071737 WO2022012008A1 (zh) 2020-07-17 2021-01-14 泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法

Country Status (3)

Country Link
US (1) US20220406533A1 (zh)
CN (1) CN112053856A (zh)
WO (1) WO2022012008A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112053856A (zh) * 2020-07-17 2020-12-08 浙江师范大学 泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法
CN114231954A (zh) * 2021-12-20 2022-03-25 复旦大学 一种亲锂三维氧化钴/泡沫金属复合锂金属负极材料及其超组装制备方法
CN116273024A (zh) * 2023-03-31 2023-06-23 华南理工大学 一种针对OVOCs催化氧化的高效整体式催化剂及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103359796A (zh) * 2013-07-12 2013-10-23 上海大学 一种超级电容器氧化钴电极材料的制备方法
CN103950993A (zh) * 2014-05-07 2014-07-30 河北工程大学 一种蒲公英状四氧化三钴的制备方法
US20170053750A1 (en) * 2015-08-17 2017-02-23 Research Cooperation Foundation Of Yeungnam University Three-dimensional composites of nickel cobalt oxide/ graphene on nickel foam for supercapacitor electrodes, and preparation method thereof
CN111056574A (zh) * 2019-12-31 2020-04-24 华北水利水电大学 一种在泡沫镍基底上制备花样Co3O4纳米材料的方法
CN112053856A (zh) * 2020-07-17 2020-12-08 浙江师范大学 泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103359796A (zh) * 2013-07-12 2013-10-23 上海大学 一种超级电容器氧化钴电极材料的制备方法
CN103950993A (zh) * 2014-05-07 2014-07-30 河北工程大学 一种蒲公英状四氧化三钴的制备方法
US20170053750A1 (en) * 2015-08-17 2017-02-23 Research Cooperation Foundation Of Yeungnam University Three-dimensional composites of nickel cobalt oxide/ graphene on nickel foam for supercapacitor electrodes, and preparation method thereof
CN111056574A (zh) * 2019-12-31 2020-04-24 华北水利水电大学 一种在泡沫镍基底上制备花样Co3O4纳米材料的方法
CN112053856A (zh) * 2020-07-17 2020-12-08 浙江师范大学 泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法

Also Published As

Publication number Publication date
CN112053856A (zh) 2020-12-08
US20220406533A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
WO2022012008A1 (zh) 泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法
Jiang et al. Hierarchical NiCo2O4 nanowalls composed of ultrathin nanosheets as electrode materials for supercapacitor and Li ion battery applications
Wang et al. In situ construction of dual-morphology ZnCo 2 O 4 for high-performance asymmetric supercapacitors
Kang et al. Bimetallic coordination polymer composites: A new choice of electrode materials for lithium ion batteries
CN110444408A (zh) 一种氮化钒纳米片柔性复合电极材料及其制备方法与应用
CN107140608B (zh) 一种超声波辅助水热制备钠离子电池负极用超分散硒化锑纳米线的方法
WO2019169739A9 (zh) 一种具有缺陷结构的氮/硫共掺杂多孔碳气凝胶质子交换膜燃料电池阴极催化剂的制备方法
CN108400023A (zh) 一种三维氮掺杂碳泡沫复合电极材料及其制备方法
CN112490017A (zh) 一种NiCo-LDH纳米材料的制备方法及其应用
CN110391091B (zh) Mn7O13·5H2O/α-Fe2O3复合材料的制备方法、制备产物及应用
CN110273145B (zh) 一种纳米花状的Bi-Co-O纳米材料及其制备方法和应用
CN110282663B (zh) 一种基于同种金属铁离子制备不同维度纳米材料的方法
CN111268745A (zh) 一种NiMoO4@Co3O4核壳纳米复合材料、制备方法和应用
CN110491684A (zh) 针状花钴镍双金属氢氧化物复合材料及其制备方法和应用
CN109950503A (zh) 一种CoMoOx/碳/硫复合纳米材料的制备方法、锂离子电池负极及锂离子半电池
CN108598403A (zh) 锂离子电池二元过渡金属氧化物负极材料的形成方法
CN108539170A (zh) 锂离子电池纳米片负极材料的形成方法
Ji et al. Reconstruction of Co/Ni metal-organic-framework based electrode materials with excellent conductivity and integral stability via extended hydrothermal treatment toward improved performance of supercapacitors
CN113247954A (zh) 一种大层间距二硫化钼材料及其制备方法与应用
CN112927947A (zh) 一种基于蛋黄壳结构的镍钴硫电极材料、制备方法及超级电容器
CN111986929A (zh) 一种锰酸钴/硫化镍核壳阵列结构电极材料的制备方法
CN111430703A (zh) 用于锂离子电池的富锂锰基正极材料及其制备方法、正极片、锂离子电池和电动汽车
CN113903599B (zh) 一种镍钴硫材料及其制备方法和超级电容器
CN113896177B (zh) 电池负极材料及其制备方法、负极及锂离子电池
CN112086634B (zh) 缺陷型K0.5Mn2O4纳米材料及制备方法、锌离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842548

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21842548

Country of ref document: EP

Kind code of ref document: A1