CN112053856A - 泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法 - Google Patents

泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法 Download PDF

Info

Publication number
CN112053856A
CN112053856A CN202010693487.1A CN202010693487A CN112053856A CN 112053856 A CN112053856 A CN 112053856A CN 202010693487 A CN202010693487 A CN 202010693487A CN 112053856 A CN112053856 A CN 112053856A
Authority
CN
China
Prior art keywords
nickel
cobaltosic oxide
defective
foam
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010693487.1A
Other languages
English (en)
Inventor
焦杨
熊姗姗
王灵丹
陈叶雯
屠莲红
徐艳超
陈建荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Normal University CJNU
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN202010693487.1A priority Critical patent/CN112053856A/zh
Publication of CN112053856A publication Critical patent/CN112053856A/zh
Priority to PCT/CN2021/071737 priority patent/WO2022012008A1/zh
Priority to US17/779,235 priority patent/US20220406533A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种耐低温超级电容器电极材料领域,尤其涉及一种泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法,包括以下步骤:将醋酸钴溶于乙二醇溶液中,搅拌均匀得到粉色的透明溶液;将十六烷基三甲基溴化氨加入到所述粉色的透明溶液中,搅拌至溶解,得到混合溶液;将所述混合溶液放入内衬为聚四氟乙烯的反应釜内,并向所述反应釜内加入预处理的泡沫镍进行水热反应,反应结束后取出泡沫镍,反复超声清洗后进行干燥处理;对干燥处理后的泡沫镍进行热处理,本发明制备得到生长在泡沫镍上的缺陷型四氧化三钴(D‑Co3O4)在低温下仍然具有较高的比容量,组装成的超级电容器可耐低温,因此具有重大的应用前景。

Description

泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器 及其制备方法
技术领域
本发明涉及超级电容器电极材料领域,具体涉及一种泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及制备方法。
背景技术
随着社会经济的发展,超级电容器作为一种新型的绿色能量储存器件,具有功率密度高、循环寿命长、充放电速度快、绿色无污染和安全便携等一系列优势,已经受到了研究者们的广泛关注,并且得到了快速的发展。超级电容器的性能主要由电极材料决定。因此通过合理的设计能够得到理想的耐低温电极材料,使其能够承受苛刻的温度条件,在低温下稳定储能,实现高储能、长循环寿命。
超级电容器作为一种新型的绿色能量储存器件,具有功率密度高、循环寿命长、充放电速度快、绿色无污染和安全便携等一系列优势,已经受到了研究者们的广泛关注,并且得到了快速的发展。超级电容器的性能主要由电极材料决定。因此通过合理的设计能够得到理想的耐低温电极材料,使其能够承受苛刻的温度条件,在低温下稳定储能,实现高储能、长循环寿命。
四氧化三钴(Co3O4)是一种重要的无机p型半导体金属氧化物,广泛应用于锂离子电池、催化剂、超级电容器、传感器、磁性材料等领域。Co3O4由于来源丰富、价廉易得、化学性质稳定等优点在光催化剂领域有巨大的潜在应用价值。但是目前的Co3O4的制备方法复杂,且制备的Co3O4电化学性能较差,在低温条件下无法进行工作。
发明内容
为克服上述技术问题,本发明提出一种泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法。
为了实现上述目的,本发明第一方面提供了一种泡沫镍负载缺陷型四氧化三钴纳米材料的制备方法,包括以下步骤:
将醋酸钴溶于乙二醇溶液中,搅拌均匀得到粉色的透明溶液;
将十六烷基三甲基溴化氨加入到所述粉色的透明溶液中,搅拌至溶解,得到混合溶液;
将所述混合溶液放入内衬为聚四氟乙烯的反应釜内,并向所述反应釜内加入预处理的泡沫镍进行反应,反应后的泡沫镍表面生长了紫粉色物质,对其反复清洗后进行干燥处理;
对干燥处理后的泡沫镍复合材料进行热处理。
本发明第二方面提供了一种由上述所述制备方法制备得到的泡沫镍负载缺陷型四氧化三钴纳米材料。
本发明第三方面提供了一种超级电容器,包含如上所述的泡沫镍负载缺陷型四氧化三钴纳米材料。
另外,根据本发明上述泡沫镍负载缺陷型四氧化三钴纳米材料的制备方法还可以具有如下附加的技术特征:
根据本发明的一个实施例,所述泡沫镍的预处理步骤包括:
将泡沫镍剪成片,依次在盐酸、乙醇、水溶液中进行超声清洗,然后再进行干燥处理。
根据本发明的一个实施例,所述泡沫镍的预处理步骤中干燥处理的温度为60-80℃。
根据本发明的一个实施例,所述超声清洗的时间为10-15分钟。
根据本发明的一个实施例,所述热处理的工艺条件为:温度为500-700℃,升温速率控制在2-5min-1,处理时间为2-5小时。
根据本发明的一个实施例,在所述反应釜内反应的温度为200-300℃,反应时间为8-10小时。
与现有技术相比,本发明具有以下有益效果:
1.本发明制备工艺简单、安全、无污染;
2.泡沫镍负载缺陷型四氧化三钴纳米材料可以暴露出更多的电化学反应位点,且导电性高,性质稳定;
3.本发明制备得到的泡沫镍负载缺陷型四氧化三钴(D-Co3O4)在水中具有良好的浸润性,有利于电极液离子的有效扩散,提高电化学反应速率;
4.本发明制备得到的泡沫镍负载缺陷型四氧化三钴(D-Co3O4)在低温下仍然具有较高的比容量,组装成的超级电容器可耐低温,因此具有重大的应用前景。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例1制备得到的泡沫镍负载四氧化三钴纳米材料扫描电镜图;
图2为本发明实施例3制备得到的泡沫镍负载四氧化三钴纳米材料扫描电镜图;
图3为本发明实施例1、3得到的泡沫镍负载四氧化三钴纳米材料煅烧后扫面电镜的面扫描图;
图4为本发明实施例1得到的泡沫镍负载四氧化三钴纳米材料煅烧后透射电镜照图;
图5为本发明实施例1得到的泡沫镍负载四氧化三钴纳米材料煅烧后高清透射电镜照图;
图6为图5的A处的局部放大图;
图7为本发明实施例1、3得到的泡沫镍负载四氧化三钴纳米材料的XRD图谱;
图8为图7的局部放大图;
图9为本发明实施例1、3得到的泡沫镍负载四氧化三钴纳米材料在5mVs-1的扫速下的循环伏安曲线;
图10为本发明实施例1、3得到的泡沫镍负载四氧化三钴纳米材料在电流密度为1Ag-1时恒流充放电曲线;
图11为本发明实施例1、3得到的泡沫镍负载四氧化三钴纳米材料在不同电流密度下的比容量;
图12为本发明实施例1、3得到的泡沫镍负载四氧化三钴纳米材料的1000次循环稳定性测试曲线。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明中的缺陷型四氧化三钴纳米材料是指四氧化三钴的晶格发生了畸变。
实施例1
本实施例涉及一种耐低温泡沫镍负载缺陷型四氧化三钴纳米材料的制备方法,包括以下步骤:
1.将泡沫镍剪成面积为1×2cm2的片,依次在3M盐酸、乙醇、水溶液中进行超声清洗,清洗时间分别为10分钟,然后将处理过的泡沫镍置于60度烘箱中进行干燥处理,最终得到清洗干净的泡沫镍基底材料。
2.将一定量醋酸钴溶于30毫升乙二醇溶液中,搅拌均匀得到粉色的透明溶液。
3.将十六烷基三甲基溴化氨(简称CTAB)加入到步骤二制备的溶液中,搅拌至完全溶解。
4.将步骤二中的混合溶液转移到由聚四氟乙烯作为内衬的反应釜中,向其中加入步骤一中得到的泡沫镍,在200℃下反应8小时。反应釜冷却至室温后,反应后的泡沫镍表面生长了紫粉色物质,使用无水乙醇和蒸馏水反复超声清洗后干燥处理。
5.在500℃的温度下对泡沫镍复合材料进行热处理,升温速率控制在2min-1,处理时间为2小时,最终得到泡沫镍负载缺陷型四氧化三钴纳米材料(D-Co3O4)。
实施例2
1.将泡沫镍剪成面积为1×2cm2的片,依次在3M盐酸、乙醇、水溶液中进行超声清洗,清洗时间分别为15分钟,然后将处理过的泡沫镍置于80度烘箱中进行干燥处理,最终得到清洗干净的泡沫镍基底材料。
2.将一定量醋酸钴溶于30毫升乙二醇溶液中,搅拌均匀得到粉色的透明溶液。
3.将十六烷基三甲基溴化氨(简称CTAB)加入到步骤二制备的溶液中,搅拌至完全溶解。
4.将步骤二中的混合溶液转移到由聚四氟乙烯作为内衬的反应釜中,向其中加入步骤一中得到的泡沫镍,在300℃下反应10小时。
5.反应釜冷却至室温后,反应后的泡沫镍表面生长了紫粉色物质,得到紫粉色的泡沫镍,使用无水乙醇和蒸馏水反复超声清洗后干燥处理。
6.在700℃的温度下对泡沫镍复合材料进行热处理,升温速率控制在5min-1,处理时间为5小时,最终得到泡沫镍负载缺陷型四氧化三钴纳米材料(D-Co3O4)。
实施例3
与实施例1相比,其不同之处在于实施例2在步骤3中的未添加CTAB,其他步骤以及工艺条件与实施例1相同,得到泡沫镍负载非缺陷型四氧化三钴(Co3O4)。
对比实验
1、采集材料的扫描电镜照片以及透射电镜照片
分别拍摄实施例1、实施例3制备得到的泡沫镍负载四氧化三钴纳米材料扫描电镜照片以及透射电镜照片,具体如图1-2所示,由图1-2可知,实施例1、实施例3制备得到的泡沫镍负载四氧化三钴纳米材料形貌相似,均为独特纳米片组装形成的花瓣状形貌。
2、采集煅烧后材料的扫描电镜照片以及透射电镜照片
分别对实施例1、实施例3制备的泡沫镍负载四氧化三钴纳米材料进行煅烧,并拍摄煅烧后泡沫镍负载四氧化三钴纳米材料的扫描电镜照片、透射电镜照片以及扫面电镜的面扫描照片,具体如图3-6所示,元素分布图3说明该材料中C、Co、O的分布均匀,图4-6可知,与未加入CTAB合成的Co3O4相比,D-Co3O4的材料的表面变得更加粗糙,同时出现了大量的纳米粒子,这是由于在退火过程中CO2和H2O的移除而导致的。此外,通过图6可以清晰看出D-Co3O4存在有序的滑脱层断层,且这些断层相互平行,有益于电化学性质的提升。
3、采集XRD图谱
分别获取实施例1、实施例3制备得到的四氧化三钴纳米材料XRD图谱,具体如图7-8所示,由图7-8可知:用X射线衍射(XRD)表征了D-Co3O4和Co3O4纳米结构。两个纳米材料的衍射峰都很好地与Co3O4匹配(PDF#62-3103)。峰值分别位于18.9、31.1、36.8、44.8、59.2和65.2,分别对应于Co3O4的(111)、(220)、(311)、(222)、(511)和(440)面。图8为图7放大的XRD谱图。与Co3O4相比,D-Co3O4的(311)衍射峰明显移动到较低的角度,这主要是由于晶格畸变导致的d-间距扩大所致。同时,D-Co3O4的(311)特征峰明显展宽,说明实施例1制备的材料纳米值越低,晶粒越小,晶格畸变越大。
4、电化学性能的测定:
分别使用、上海辰华CHI 660C电化学综合测试仪进行电化学性能测试,与此同时,新威充放电测试仪则用于对超级电容器进行循环性能的测试。在三电极体系中,选择面积为2×2cm2的铂片、双盐桥饱和甘汞电极以及浓度为3M的KOH水溶液分别作为测试中的对电极、参比电极和电解液。将活性物质制备成电极片作为工作电极来测试其电化学性能,其中电化学性能测试主要包含循环伏安(CV)曲线测试、恒流充放电(GCD)测试、交流阻抗(EIS振幅为5mV,频率为0.01Hz-100kHz)测试以及循环稳定性测试等。
在两电极体系中首先将实施例1、实施例3所制备的泡沫镍负载四氧化三钴纳米材料作为电极材料与负极材料进行电荷匹配,随后分别选择合适的电解液或者电解质以及封装材料将其组装成器件(超级电容器),测试其在低温条件下的电化学性能,电极材料在不同电流密度下的比容量可以根据恒流充放电的放电时间进行计算,计算公式如下所示:式中Cs—面积比容量,单位mF cm-2
Figure BDA0002590200650000061
I——电流密度,单位mAcm-2
△t——恒流放电时间,单位s;
△V——工作电位区间,单位V;
s——参与电化学反应的活性物质的面积,单位cm-2
测试结果如图9-12所示,由图9-12所示,实施例1制备的D-Co3O4电极材料在低温(冰水混合物)下也表现出优异的电化学性能。图9为D-Co3O4和Co3O4电极在5mV s-1处的循环伏安曲线对比图。显然,D-Co3O4积分曲线的闭合面积要大于Co3O4,说明它可以存储更多的电容。图10中1mA cm-2处的GCD图像也得到了类似的结果,其中D-Co3O4电极的放电时间更长。图11显示了不同电流密度下D-Co3O4和Co3O4的比电容。结果表明,在电流密度为1mA cm-2时,D-Co3O4的比电容为1052mFcm-2,Co3O4的比电容为338mF cm-2。当电流密度增加到10mA cm-2时,D-Co3O4的比电容始终优于Co3O4。稳定性是衡量电极实用性的重要指标之一。在10A g-1条件下经过1000次循环(图12),制备的D-Co3O4仍然保留了初始比电容的86%,而在1000次循环后Co3O4只保留了74%,表明D-Co3O4具有良好的循环稳定性。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (8)

1.一种泡沫镍负载缺陷型四氧化三钴纳米材料的制备方法,其特征在于,包括以下步骤:
将醋酸钴溶于乙二醇溶液中,搅拌均匀得到粉色的透明溶液;
将十六烷基三甲基溴化氨加入到所述粉色的透明溶液中,搅拌至溶解,得到混合溶液;
将所述混合溶液放入内衬为聚四氟乙烯的反应釜内,并向所述反应釜内加入预处理的泡沫镍进行反应,反应后的泡沫镍表面生长了紫粉色物质,对其反复清洗后进行干燥处理;
对干燥处理后的泡沫镍复合材料进行热处理。
2.根据权利要求1所述的泡沫镍负载缺陷型四氧化三钴纳米材料的制备方法,其特征在于,所述泡沫镍的预处理步骤包括:
将泡沫镍剪成片,依次在盐酸、乙醇、水溶液中进行超声清洗,然后再进行干燥处理。
3.根据权利要求2所述的泡沫镍负载缺陷型四氧化三钴纳米材料的制备方法,其特征在于,所述泡沫镍的预处理步骤中干燥处理的温度为60-80℃。
4.根据权利要求3所述的泡沫镍负载缺陷型四氧化三钴纳米材料的制备方法,其特征在于,所述超声清洗的时间为10-15分钟。
5.根据权利要求1所述的泡沫镍负载缺陷型四氧化三钴纳米材料的制备方法,其特征在于,
所述热处理的工艺条件为:温度为500-700℃,升温速率控制在2-5min-1,处理时间为2-5小时。
6.根据权利要求1所述的泡沫镍负载缺陷型四氧化三钴纳米材料的制备方法,其特征在于,在所述反应釜内反应的温度为200-300℃,反应时间为8-10小时。
7.权利要求1-6任一项所述的制备方法制备得到的泡沫镍负载缺陷型四氧化三钴纳米材料。
8.一种耐低温超级电容器,其特征在于,包括如权利要求7所述的泡沫镍负载缺陷型四氧化三钴纳米材料。
CN202010693487.1A 2020-07-17 2020-07-17 泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法 Pending CN112053856A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010693487.1A CN112053856A (zh) 2020-07-17 2020-07-17 泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法
PCT/CN2021/071737 WO2022012008A1 (zh) 2020-07-17 2021-01-14 泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法
US17/779,235 US20220406533A1 (en) 2020-07-17 2021-01-14 Nickel foam -supported defective tricobalt tetroxide nanomaterial, low temperature resistant supercapacitor and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010693487.1A CN112053856A (zh) 2020-07-17 2020-07-17 泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法

Publications (1)

Publication Number Publication Date
CN112053856A true CN112053856A (zh) 2020-12-08

Family

ID=73602072

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010693487.1A Pending CN112053856A (zh) 2020-07-17 2020-07-17 泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法

Country Status (3)

Country Link
US (1) US20220406533A1 (zh)
CN (1) CN112053856A (zh)
WO (1) WO2022012008A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022012008A1 (zh) * 2020-07-17 2022-01-20 浙江师范大学 泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法
CN114231954A (zh) * 2021-12-20 2022-03-25 复旦大学 一种亲锂三维氧化钴/泡沫金属复合锂金属负极材料及其超组装制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116273024A (zh) * 2023-03-31 2023-06-23 华南理工大学 一种针对OVOCs催化氧化的高效整体式催化剂及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103359796A (zh) * 2013-07-12 2013-10-23 上海大学 一种超级电容器氧化钴电极材料的制备方法
CN103950993A (zh) * 2014-05-07 2014-07-30 河北工程大学 一种蒲公英状四氧化三钴的制备方法
US20170053750A1 (en) * 2015-08-17 2017-02-23 Research Cooperation Foundation Of Yeungnam University Three-dimensional composites of nickel cobalt oxide/ graphene on nickel foam for supercapacitor electrodes, and preparation method thereof
CN111056574A (zh) * 2019-12-31 2020-04-24 华北水利水电大学 一种在泡沫镍基底上制备花样Co3O4纳米材料的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112053856A (zh) * 2020-07-17 2020-12-08 浙江师范大学 泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103359796A (zh) * 2013-07-12 2013-10-23 上海大学 一种超级电容器氧化钴电极材料的制备方法
CN103950993A (zh) * 2014-05-07 2014-07-30 河北工程大学 一种蒲公英状四氧化三钴的制备方法
US20170053750A1 (en) * 2015-08-17 2017-02-23 Research Cooperation Foundation Of Yeungnam University Three-dimensional composites of nickel cobalt oxide/ graphene on nickel foam for supercapacitor electrodes, and preparation method thereof
CN111056574A (zh) * 2019-12-31 2020-04-24 华北水利水电大学 一种在泡沫镍基底上制备花样Co3O4纳米材料的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022012008A1 (zh) * 2020-07-17 2022-01-20 浙江师范大学 泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法
CN114231954A (zh) * 2021-12-20 2022-03-25 复旦大学 一种亲锂三维氧化钴/泡沫金属复合锂金属负极材料及其超组装制备方法

Also Published As

Publication number Publication date
WO2022012008A1 (zh) 2022-01-20
US20220406533A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
Jiang et al. Hierarchical NiCo2O4 nanowalls composed of ultrathin nanosheets as electrode materials for supercapacitor and Li ion battery applications
Wei et al. Carbon dots/NiCo2O4 nanocomposites with various morphologies for high performance supercapacitors
CN112053856A (zh) 泡沫镍负载缺陷型四氧化三钴纳米材料、耐低温超级电容器及其制备方法
Wang et al. ZnCo 2 O 4@ MnCo 2 O 4 heterojunction structured nanosheets for high-performance supercapacitor
Wang et al. In situ construction of dual-morphology ZnCo 2 O 4 for high-performance asymmetric supercapacitors
Zhao et al. Defect-rich honeycomb-like nickel cobalt sulfides on graphene through rapid microwave-induced synthesis for ultrahigh rate supercapacitors
Hu et al. Preparation and electrochemical properties of bimetallic carbide Fe3Mo3C/Mo2C@ carbon nanotubes as negative electrode material for supercapacitor
Yin et al. Facile synthesis of hexagonal single-crystalline ZnCo2O4 nanosheet arrays assembled by mesoporous nanosheets as electrodes for high-performance electrochemical capacitors and gas sensors
CN111681887B (zh) 一种超级电容器用超薄类石墨烯碳材料的制备方法
Wang et al. High electrochemical performance and structural stability of CoO nanosheets/CoO film as self-supported anodes for lithium-ion batteries
CN111777058A (zh) 一种碳纳米管的制备及其在锂离子电池中的应用
CN105957728A (zh) 一种镍-钴双氢氧化物/NiCo2S4复合纳米材料、其制备方法及作为超级电容器电极材料的应用
Wang et al. Deft dipping combined with electrochemical reduction to obtain 3D electrochemical reduction graphene oxide and its applications in supercapacitors
Liu et al. Two-dimensional β-MoO 3@ C nanosheets as high-performance negative materials for supercapacitors with excellent cycling stability
CN108400023A (zh) 一种三维氮掺杂碳泡沫复合电极材料及其制备方法
Barkhordari et al. Facile synthesis of ZnMn 2 O 4 nanosheets via cathodic electrodeposition: characterization and supercapacitor behavior studies
Zhang et al. Graphene-Carbon nanotube@ cobalt derivatives from ZIF-67 for All-Solid-State asymmetric supercapacitor
CN110282663B (zh) 一种基于同种金属铁离子制备不同维度纳米材料的方法
CN110273145B (zh) 一种纳米花状的Bi-Co-O纳米材料及其制备方法和应用
CN104167298A (zh) 一类石墨烯-蛋白质衍生碳超级电容器材料及其制备方法
CN110391091B (zh) Mn7O13·5H2O/α-Fe2O3复合材料的制备方法、制备产物及应用
Chen et al. In-situ constructing pearl necklace-shaped heterostructure: Zn2+ substituted Na3V2 (PO4) 3 attached on carbon nano fibers with high performance for half and full Na ion cells
CN111268745A (zh) 一种NiMoO4@Co3O4核壳纳米复合材料、制备方法和应用
CN110491684A (zh) 针状花钴镍双金属氢氧化物复合材料及其制备方法和应用
Zhou et al. Construction of high-performance electrode materials of NiCo 2 O 4 nanoparticles encapsulated in ultrathin N-doped carbon nanosheets for supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201208