WO2022010147A1 - 페로브스카이트 태양전지의 제조방법 및 그로부터 제조된 페로브스카이트 태양전지 - Google Patents

페로브스카이트 태양전지의 제조방법 및 그로부터 제조된 페로브스카이트 태양전지 Download PDF

Info

Publication number
WO2022010147A1
WO2022010147A1 PCT/KR2021/008061 KR2021008061W WO2022010147A1 WO 2022010147 A1 WO2022010147 A1 WO 2022010147A1 KR 2021008061 W KR2021008061 W KR 2021008061W WO 2022010147 A1 WO2022010147 A1 WO 2022010147A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
transport layer
hole transport
solar cell
layer
Prior art date
Application number
PCT/KR2021/008061
Other languages
English (en)
French (fr)
Inventor
조안나
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Priority to EP21838202.6A priority Critical patent/EP4160709A4/en
Priority to US18/011,611 priority patent/US20230363183A1/en
Priority to CN202180046920.5A priority patent/CN115777240A/zh
Priority to JP2022579919A priority patent/JP2023538996A/ja
Publication of WO2022010147A1 publication Critical patent/WO2022010147A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/811Of specified metal oxide composition, e.g. conducting or semiconducting compositions such as ITO, ZnOx
    • Y10S977/812Perovskites and superconducting composition, e.g. BaxSr1-xTiO3

Definitions

  • the present invention relates to a method for manufacturing a perovskite solar cell and a perovskite solar cell manufactured therefrom, and more particularly, to a method for improving hole mobility of a hole transport layer while minimizing damage to other components. It relates to a method for manufacturing a rovskite solar cell and to a perovskite solar cell manufactured therefrom.
  • a solar cell is a core element of photovoltaic power generation that directly converts sunlight into electricity, and is currently being widely used for power supply to homes as well as space. Recently, it is used in aviation, meteorological, and communication fields, and solar vehicles and solar air conditioners are also receiving attention.
  • perovskite solar cells that combine the advantages of DSSC and polymer solar cells cell, PSC
  • PSC polymer solar cells
  • the perovskite solar cell is a fusion solar cell of a conventional DSSC and a polymer solar cell, and as it does not use a liquid electrolyte like DSSC, the reliability is improved. Efficiency is continuously improving through process improvement, material improvement, and structural improvement.
  • the perovskite solar cell 100 includes a substrate layer 10 , a first electrode layer 20 , a hole transport layer 30 , a perovskite layer 40 , an electron transport layer 50 and a first It is composed of two electrode layers (60).
  • the mobility of electrons or holes in each layer is also important, but charge extraction at the interface between each layer is also very important. If the charge cannot be rapidly extracted from the interface, a phenomenon of recombination of electrons and holes occurs.
  • NiO x included in the hole transport layer 30 has a high hole mobility in the material compared to that of the organic hole transporter, but efficiently hole extraction at the interface with the perovskite layer 40 . ), which may adversely affect the characteristics of the solar cell 100 .
  • Ni vacancies can be controlled by using additives or by using high heat to improve the degree of hole extraction, but with the substrate layer 10 or the first electrode layer 20 stacked on the lower surface of the hole transport layer 30 .
  • Indium tin oxide (ITO) which is mainly used, is damaged by high-temperature heat treatment, such as a large increase in resistance at a temperature of 200 ° C. There is a need for improvement measures to improve the extraction degree.
  • the problem to be solved by the present invention is a method for manufacturing a perovskite solar cell capable of improving hole mobility and hole extraction of a hole transport layer while minimizing damage to a substrate layer or an electrode layer, and a perovskite manufactured therefrom to provide solar cells.
  • a hole transport layer (HTL, Hole Transport Layer) comprising a substrate layer, a first electrode layer and a metal oxide is oxidizing the metal oxide by a) treating the hole transport layer of the sequentially stacked stack with an oxidizing agent, b) UV and ozone treatment, c) oxygen plasma treatment, or d) nitrogen dioxide gas treatment; and (S2) sequentially stacking a perovskite layer, an electron transport layer, and a second electrode layer on the hole transport layer of the stack.
  • HTL Hole Transport Layer
  • the step (S1) may further include treating the hole transport layer with a solution containing the oxidizing agent to oxidize the metal oxide, and then removing the solvent included in the solution.
  • the metal oxide in step (S1) may be NiO x.
  • the NiO x may be oxidized to improve Ni vacancies in the hole transport layer.
  • a portion of Ni 2+ included in the hole transport layer may be oxidized to Ni 3+ by oxidizing the NiO x .
  • the content of the Ni 3+ and, the ratio of the total amount of the Ni 2+ and Ni 3+ can be 0.6 or less.
  • the first electrode layer and the second electrode layer are each independently formed from Indium Tin Oxide (ITO), Indium Cerium Oxide (ICO), Indium Tungsten Oxide (IWO), Zinc Indium Tin Oxide (ZITO), and Zinc Indium Oxide (ZIO).
  • ITO Indium Tin Oxide
  • ICO Indium Cerium Oxide
  • IWO Indium Tungsten Oxide
  • ZITO Zinc Indium Tin Oxide
  • ZIO Zinc Indium Oxide
  • ZIO Zinc Tin Oxide
  • ZTO Zinc Tin Oxide
  • GTO Gallium Indium Tin Oxide
  • GIO Gallium Indium Oxide
  • GZO Gallium Zinc Oxide
  • AZO Aluminum doped Zinc Oxide
  • FTO Fluorine Tin Oxide
  • ZnO Zinc Indium Oxide
  • the electron transport layer is Ti oxide, Zn oxide, In oxide, Sn oxide, W oxide, Nb oxide, Mo oxide, Mg oxide, Zr oxide, Sr oxide, Yr oxide, La oxide, V oxide, Al oxide, Y It may include any one or more selected from the group consisting of oxides, Sc oxides, Sm oxides, Ga oxides, and SrTi oxides.
  • the perovskite solar cell has a substrate layer, a first electrode layer, a hole transport layer (HTL, Hole Transport Layer) containing a metal oxide, a perovskite layer, an electron transport layer and a second electrode layer are sequentially stacked, the metal oxide is NiO x , and the hole transport layer includes Ni 2+ and Ni 3+ .
  • HTL Hole Transport Layer
  • a) treatment with an oxidizing agent, b) UV and ozone treatment, c) oxygen plasma treatment, or d) nitrogen dioxide gas treatment, included in the hole transport layer By oxidizing the metal oxide, the hole mobility or hole extraction degree of the hole transport layer can be improved without damaging the substrate layer or the electrode layer.
  • the hole extraction degree of the hole transport layer is improved, it is possible to prevent recombination due to inefficient hole extraction at the interface with the perovskite layer, thereby ultimately improving the photoelectric conversion efficiency.
  • 1 is a side view showing a perovskite solar cell.
  • FIG. 2 is a side view showing a laminate in which a substrate layer, a first electrode layer, and a hole transport layer are stacked according to the present invention.
  • FIG. 3 is a conceptual diagram showing that Ni vacancies in a hole accepting layer are improved through an oxidizing agent treatment according to an embodiment of the present invention.
  • Figure 4 is a graph showing the UPS analysis results in the case of not oxidizing the hole transport layer containing NiO x.
  • FIG. 5 is a graph showing the UPS analysis results in the case of oxidizing the hole transport layer containing NiO x .
  • FIG. 2 is a view showing a laminate in which a substrate layer, a first electrode layer, and a hole transport layer are stacked according to the present invention.
  • a method for manufacturing a perovskite solar cell according to the present invention will be described as follows.
  • the hole transport layer 30 of the laminate in which the substrate layer 10, the first electrode layer 20, and a hole transport layer (HTL, Hole Transport Layer) 30 containing a metal oxide are sequentially stacked, a) an oxidizing agent or b) UV and ozone treatment, c) oxygen plasma treatment, or d) nitrogen dioxide gas treatment to oxidize the metal oxide (step S1).
  • HTL Hole Transport Layer
  • the substrate layer 10 or the first It is possible to improve hole mobility or hole extraction of the hole transport layer 30 without damaging the electrode layer 20 .
  • any material that oxidizes the metal oxide to improve the metal vacancy included in the hole transport layer or increases the oxidation number of metal ions as the oxidizing agent can be used, but specifically H 2 O 2 , HNO 3 , H 2 SO 4 , KNO 3 and the like may be used.
  • the step (S1) may include treating the hole transport layer 30 with a solution containing the oxidizing agent to oxidize the metal oxide, and then removing the solvent contained in the solution.
  • the metal oxide is oxidized, and then the solvent can be removed by evaporation.
  • the solvent may be a solvent having volatility in order to facilitate subsequent evaporation, and more specifically, alcohols including deionized water, ethyl ether, acetone, ethanol, methanol, isopropyl alcohol, etc. are possible, but The present invention is not limited thereto.
  • heat may be applied to a temperature of 150° C. or less in order not to damage the perovskite.
  • the ultraviolet and ozone treatment according to the present invention can oxidize the metal oxide by treating it for at least 5 minutes.
  • oxygen plasma treatment of the present invention may be a low-temperature oxygen plasma treatment maintained at a temperature of less than 200 °C.
  • the nitrogen dioxide gas treatment of the present invention may be to oxidize the metal oxide by flowing dry air containing nitrogen dioxide on the upper surface of the hole transport layer 30 .
  • the concentration of nitrogen dioxide in the dry air may be 5 to 1,000 ppm, the temperature may be maintained at 25 to 35 °C.
  • the step of oxidizing the metal oxide only the surface of the hole transport layer 30 may be oxidized, or the entire hole transport layer 30 may be oxidized.
  • the substrate layer 10 may include a transparent material that allows light to pass therethrough.
  • the substrate layer 10 may include a material that selectively transmits light of a desired wavelength.
  • the substrate layer 10 may include, for example, a transparent conductive oxide (TCO) such as silicon oxide, aluminum oxide, indium tin oxide (ITO), fluorine tin oxide (FTO), glass, quartz, or a polymer.
  • TCO transparent conductive oxide
  • the polymer is polyimide (polyimide), polyethylene naphthalate (polyethylenenaphthalate, PEN), polyethylene terephthalate (polyethyleneterephthalate, PET), polymethyl methacrylate (PMMA) and polydimethylsiloxane (PDMS) at least any one of may contain one.
  • the substrate layer 10 may have, for example, a thickness in a range of 100 ⁇ m to 150 ⁇ m, and for example, a thickness of 125 ⁇ m.
  • the material and thickness of the substrate layer 10 are not limited to those described above, and may be appropriately selected according to the technical spirit of the present invention.
  • the first electrode layer 20 may be formed of a light-transmitting conductive material.
  • the light-transmitting conductive material may include, for example, a transparent conductive oxide, a carbonaceous conductive material, and a metallic material.
  • the transparent conductive oxide include Indium Tin Oxide (ITO), Indium Cerium Oxide (ICO), Indium Tungsten Oxide (IWO), Zinc Indium Tin Oxide (ZITO), Zinc Indium Oxide (ZIO), Zinc Tin Oxide (ZTO), GITO (Gallium Indium Tin Oxide), GIO (Gallium Indium Oxide), GZO (Gallium Zinc Oxide), AZO (Aluminum doped Zinc Oxide), FTO (Fluorine Tin Oxide), ZnO, etc.
  • ITO Indium Tin Oxide
  • ICO Indium Cerium Oxide
  • IWO Indium Tungsten Oxide
  • ZITO Zinc Indium Tin Oxide
  • ZIO Zinc Indium Oxide
  • ZTO Zinc
  • the carbonaceous conductive material for example, graphene or carbon nanotubes may be used, and as the metallic material, for example, a metal (Ag) nanowire, a metal having a multilayer structure such as Au/Ag/Cu/Mg/Mo/Ti A thin film may be used.
  • the term "transparent" refers to something that can transmit light to a certain degree or more, and is not necessarily interpreted as meaning complete transparency.
  • the materials described above are not necessarily limited to the above-described embodiments, and may be formed of various materials, and various modifications are possible, such as a single-layer or multi-layer structure.
  • the first electrode layer 20 may be formed by being stacked on the substrate layer 10 , or may be formed integrally with the substrate layer 10 .
  • a hole transport layer 30 may be stacked on the first electrode layer 20 , which serves to transfer holes generated in the perovskite layer 40 to the first electrode layer 20 .
  • the hole transport layer 30 is at least one selected from tungsten oxide (WO x ), molybdenum oxide (MoO x ), vanadium oxide (V 2 O 5 ), nickel oxide (NiO x ) and mixtures thereof. may include In addition, it may include at least one selected from the group consisting of a single molecule hole transport material and a polymer hole transport material, but is not limited thereto, and any material used in the art may be used without limitation.
  • spiro-MeOTAD [2,2',7,7'-tetrakis(N,Np-dimethoxy-phenylamino)-9,9'-spirobifluorene] may be used as the unimolecular hole transport material, and the polymer As the hole transport material, P3HT [poly(3-hexylthiophene)], PTAA (polytriarylamine), poly(3,4-ethylenedioxythiophene) or polystyrene sulfonate (PEDOT:PSS) may be used, but is not limited thereto.
  • the hole transport layer 30 may further include a doping material, as the doping material, a dopant selected from the group consisting of a Li-based dopant, a Co-based dopant, a Cu-based dopant, a Cs-based dopant, and combinations thereof. can be used, but is not limited thereto.
  • a doping material as the doping material, a dopant selected from the group consisting of a Li-based dopant, a Co-based dopant, a Cu-based dopant, a Cs-based dopant, and combinations thereof. can be used, but is not limited thereto.
  • the hole transport layer 30 may be formed by applying a precursor solution for the hole transport layer on the first electrode layer and drying, and the first electrode layer 20 through UV-ozone treatment on the first electrode layer before applying the precursor solution. ), it can lower the work function, remove surface impurities, and perform hydrophilic treatment.
  • the precursor solution may be applied by a method such as spin coating, but is not limited thereto.
  • the thickness of the formed hole transport layer 30 may be 10 to 500 nm.
  • the metal oxide of the hole transport layer 30 is preferably NiO x , and has the advantage of having high hole mobility in the material as compared to other organic hole transporters or other metal oxides.
  • FIG. 3 is a conceptual diagram showing that Ni vacancy of the hole accepting layer 30 is improved through an oxidizing agent treatment according to an embodiment of the present invention.
  • Ni vacancy of the hole transport layer 30 may be improved by oxidizing the NiO x .
  • a portion of Ni 2+ included in the hole transport layer 30 may be oxidized to Ni 3+ by oxidizing the NiO x .
  • hole mobility is increased and resistance is decreased, thereby improving the hole extraction degree of the hole transport layer 30 .
  • the content of Ni 3+ and, the Ni 2+ and Ni 3+ in the total content ratio is 0.6 or less, it may be specifically less than or equal to 0.3.
  • the ratio of the content exceeds 0.6, that is, when the content of Ni 3+ is excessively increased, a problem of a decrease in optical transmittance may occur.
  • the valence band maximum (VBM) of the hole transport layer 30 is shifted downward.
  • FIG. 4 is a graph showing the UPS analysis result when the hole transport layer containing NiO x is not oxidized
  • Figure 5 is a graph showing the UPS analysis result when the hole transport layer containing NiO x is oxidized.
  • Table 1 shows the work function and valence band edge values for each of the above cases.
  • NiO x is oxidized, as the ratio of Ni 3+ increases, the value of the work function increases and it can be seen that the value of the Valence band edge approaches, which means that it has the same effect as p-type doping.1 ) for NiO x (w/o treatment)
  • a perovskite layer 40, an electron transport layer 50, and a second electrode layer 60 are sequentially stacked on the hole transport layer 30 of the stack (step S2).
  • perovskite solar cell 100 a perovskite compound is adopted as a photoactive material that absorbs sunlight to generate a photoelectron-photohole pair.
  • Perovskite has a direct band gap and has a high light absorption coefficient of about 1.5 ⁇ 10 4 cm -1 at 550 nm, excellent charge transfer characteristics, and excellent resistance to defects.
  • the perovskite compound has the advantage of being able to form the light absorber constituting the photoactive layer through an extremely simple, easy, inexpensive and simple process of solution application and drying, and spontaneously crystallizes by drying the applied solution. It is possible to form a light absorber of coarse crystal grains, and in particular, it has excellent conductivity for both electrons and holes.
  • Such a perovskite compound may be represented by the structure of the following formula (1).
  • A is a monovalent organic ammonium cation or metal cation
  • B is a divalent metal metal cation
  • X is a halogen anion
  • the perovskite compound is, for example, CH 3 NH 3 PbI 3 , CH 3 NH 3 PbI x Cl 3-x , MAPbI 3 , CH 3 NH 3 PbI x Br 3-x , CH 3 NH 3 PbCl x Br 3-x , HC(NH 2 ) 2 PbI 3 , HC(NH 2 ) 2 PbI x Cl 3-x , HC(NH 2 ) 2 PbI x Br 3-x , HC(NH 2 ) 2 PbCl x Br 3-x , ( CH 3 NH 3 )(HC(NH 2 ) 2 ) 1-y PbI 3 , (CH 3 NH 3 )(HC(NH 2 ) 2 ) 1-y PbI x Cl 3-x , (CH 3 NH 3 )( HC(NH 2 ) 2 ) 1-y PbI x Cl 3-x , (CH 3 NH 3 )( HC(NH 2 ) 2 ) 1-y P
  • the electron transport layer 50 is located on the perovskite layer 40 , and can function to easily transfer electrons generated in the perovskite layer 40 to the second electrode layer 60 .
  • the electron transport layer 50 may include a metal oxide, for example, Ti oxide, Zn oxide, In oxide, Sn oxide, W oxide, Nb oxide, Mo oxide, Mg oxide, Zr oxide, Sr oxide, Yr oxide, La oxide , V oxide, Al oxide, Y oxide, Sc oxide, Sm oxide, Ga oxide, SrTi oxide and the like can be used.
  • the electron transport layer 50 according to the present invention may include TiO 2 , SnO 2 , WO 3 or TiSrO 3 having a compact structure.
  • the electron transport layer 50 may further include an n-type or p-type dopant as necessary.
  • the hole transport layer 30 / perovskite layer 40 / electron transport layer 50 as described above has various layer structures and materials constituting the perovskite solar cell 100 in addition to the above-described interlayer structure and / or material. may be applied, and the hole transport layer 30 and the electron transport layer 50 may be formed by changing positions.
  • the second electrode layer 60 may be formed of a light-transmitting conductive material.
  • the light-transmitting conductive material may include, for example, a transparent conductive oxide, a carbonaceous conductive material, and a metallic material.
  • the transparent conductive oxide include Indium Tin Oxide (ITO), Indium Cerium Oxide (ICO), Indium Tungsten Oxide (IWO), Zinc Indium Tin Oxide (ZITO), Zinc Indium Oxide (ZIO), Zinc Tin Oxide (ZTO), GITO (Gallium Indium Tin Oxide), GIO (Gallium Indium Oxide), GZO (Gallium Zinc Oxide), AZO (Aluminum doped Zinc Oxide), FTO (Fluorine Tin Oxide), ZnO, etc.
  • ITO Indium Tin Oxide
  • ICO Indium Cerium Oxide
  • IWO Indium Tungsten Oxide
  • ZITO Zinc Indium Tin Oxide
  • ZIO Zinc Indium Oxide
  • ZTO Zinc
  • the carbonaceous conductive material for example, graphene or carbon nanotubes may be used, and as the metallic material, for example, a metal (Ag) nanowire, a metal having a multilayer structure such as Au/Ag/Cu/Mg/Mo/Ti A thin film may be used.
  • the term "transparent" refers to something that can transmit light to a certain degree or more, and is not necessarily interpreted as meaning complete transparency.
  • the materials described above are not necessarily limited to the above-described embodiments, and may be formed of various materials, and various modifications are possible, such as a single-layer or multi-layer structure.
  • a bus electrode (not shown) may be further disposed on the second electrode layer 60 to lower the resistance of the second electrode layer 60 and to further facilitate charge transfer.
  • the bus electrode may be formed of Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, and/or a compound thereof.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 페로브스카이트 태양전지의 제조방법 및 그로부터 제조된 페로브스카이트 태양전지에 관한 것으로서, 더욱 상세하게는 (S1) 기판층, 제1 전극층 및 금속 산화물을 포함하는 정공수송층(HTL, Hole Transport Layer)이 순서대로 적층된 적층물의 상기 정공수송층에 a) 산화제를 처리하거나, b) 자외선 및 오존처리하거나, c) 산소플라즈마처리하거나, 또는 d) 이산화질소 가스처리하여 상기 금속 산화물을 산화시키는 단계; 및 (S2) 상기 적층물의 상기 정공수송층 상에 페로브스카이트층, 전자수송층 및 제2 전극층을 순서대로 적층시키는 단계를 포함하는 페로브스카이트 태양전지의 제조방법 및 그로부터 제조된 페로브스카이트 태양전지에 관한 것이다.

Description

페로브스카이트 태양전지의 제조방법 및 그로부터 제조된 페로브스카이트 태양전지
본 발명은 페로브스카이트 태양전지의 제조방법 및 그로부터 제조된 페로브스카이트 태양전지에 관한 것으로서, 더욱 상세하게는 다른 구성요소의 손상을 최소화하면서 정공수송층의 정공 이동도를 향상시킬 수 있는 페로브스카이트 태양전지의 제조방법 및 그로부터 제조된 페로브스카이트 태양전지에 관한 것이다.
태양전지(Solar Cell)는 태양광을 직접 전기로 변환시키는 태양광발전의 핵심소자로서, 현재 가정은 물론 우주에 이르기까지 전원공급용으로 광범위하게 활용되고 있다. 최근에는 항공, 기상, 통신분야에 이르기까지 사용되고 있으며, 태양광 자동차, 태양광 에어컨 등도 주목받고 있다.
이러한 태양전지는 주로 실리콘 반도체를 이용하고 있으나, 고순도 실리콘 반도체의 원자재 가격 및 이를 이용한 태양전지 셀 제조공정의 복잡성으로 인해 발전단가가 높다는 문제점이 있다. 즉, 종래의 화석연료에 의한 발전단가보다 3~10배 높기 때문에 각국 정부의 보조에 의해서 시장이 성장하고 있다는 한계를 안고 있다. 이러한 이유로 실리콘을 사용하지 않는 태양전지의 연구개발이 활성화되었고, 1990년대부터는 유기반도체 소재인 염료를 이용한 염료감응형 태양전지(Dye-Sensitized Solar Cell; DSSC)와 전도성 고분자를 이용한 고분자태양전지(Polymer Solar Cell)가 본격적으로 연구되기 시작하였다. 이러한 DSSC와 고분자태양전지와 같은 유기반도체 기반 태양전지가 학계와 산업계의 많은 노력에도 불구하고 사업화 단계에까지 이르지 못하였으나, 최근 DSSC와 고분자태양전지의 장점을 융합한 페로브스카이트 태양전지(perovskite solar cell, PSC)의 출현에 의해 차세대 태양전지에 대한 기대감이 한층 높아지고 있는 상황이다.
페로브스카이트 태양전지는 종래 DSSC와 고분자 태양전지의 융합형 태양전지로서, DSSC와 같이 액체 전해질을 사용하지 않아서 신뢰성이 개선되었으며, 페로브스카이트의 광학적 우수성으로 인해 고효율이 가능한 태양전지이며 최근 공정개선, 소재개선 및 구조개선을 통하여 지속적으로 효율이 향상되고 있다.
도 1은 페로브스카이트 태양전지를 보여주는 도면이다. 도 1을 참조하면, 페로브스카이트 태양전지(100)는 기판층(10), 제1 전극층(20), 정공수송층(30), 페로브스카이트층(40), 전자수송층(50) 및 제2 전극층(60)으로 구성된다.
페로브스카이트 태양전지(100)는 상기 각 층에서의 전자 또는 정공(hole, 홀)의 이동도도 중요하지만 각 층간 계면에서의 전하 추출 역시 매우 중요하다. 상기 계면에서 전하를 빠르게 추출하지 못하면 전자와 홀이 재결합(recombination)하는 현상이 발생한다.
일 예로, 정공수송층(30)에 포함되는 NiOx는 유기 정공수송체와 비교했을 때 물질 내 높은 정공 이동도를 가지고 있으나, 페로브스카이트층(40)과의 계면에서 효율적으로 정공 추출(hole extraction)을 하지 못해 태양전지(100)의 특성에 악영향을 줄 수 있다. 정공 추출도를 향상시키기 위해 첨가제를 사용하거나 높은 열을 이용해 Ni 공공(vacancy)의 조절이 가능하나, 정공수송층(30)의 하면에 적층되어 있는 기판층(10) 또는 제1 전극층(20)으로 주로 사용되는 ITO(Indium tin oxide)는 200 ℃ 이상의 온도에서 저항이 크게 증가하는 등, 고온 열처리에 의한 손상이 발생하기 때문에, 기판층(10) 또는 제1 전극층(20)에 손상을 가하지 않고 정공 추출도를 향상시키는 방법에 대한 개선책이 필요한 상황이다.
따라서 본 발명이 해결하고자 하는 과제는 기판층 또는 전극층의 손상을 최소화하면서 정공수송층의 정공 이동도 및 정공 추출도를 향상시킬 수 있는 페로브스카이트 태양전지의 제조방법 및 그로부터 제조된 페로브스카이트 태양전지를 제공하는 것이다.
상기 목적을 달성하기 위해, 본 발명의 일 측면에 따른 페로브스카이트 태양전지의 제조방법은, (S1) 기판층, 제1 전극층 및 금속 산화물을 포함하는 정공수송층(HTL, Hole Transport Layer)이 순서대로 적층된 적층물의 상기 정공수송층에 a) 산화제를 처리하거나, b) 자외선 및 오존처리하거나, c) 산소플라즈마처리하거나, 또는 d) 이산화질소 가스처리하여 상기 금속 산화물을 산화시키는 단계; 및 (S2) 상기 적층물의 상기 정공수송층 상에 페로브스카이트층, 전자수송층 및 제2 전극층을 순서대로 적층시키는 단계를 포함한다.
여기서, 상기 (S1) 단계는 상기 정공수송층에 상기 산화제를 포함하는 용액을 처리하여 상기 금속 산화물을 산화시킨 후, 상기 용액에 포함된 용매를 제거하는 단계를 더 포함할 수 있다.
그리고, 상기 (S1) 단계의 상기 금속 산화물은 NiOx인 것일 수 있다.
이때, 상기 (S1) 단계에서, 상기 NiOx를 산화시켜 상기 정공수송층의 Ni 공공(vacancy)을 향상시킨 것일 수 있다.
그리고, 상기 (S1) 단계에서, 상기 NiOx를 산화시켜 상기 정공수송층에 포함된 Ni2+의 일부를 Ni3+로 산화시킨 것일 수 있다.
이때, 상기 Ni3+의 함량과, 상기 Ni2+ 및 Ni3+의 전체 함량의 비가 0.6 이하일 수 있다.
한편, 상기 제1 전극층 및 상기 제2 전극층은 서로 독립적으로 ITO(Indium Tin Oxide), ICO(Indium Cerium Oxide), IWO(Indium Tungsten Oxide), ZITO(Zinc Indium Tin Oxide), ZIO(Zinc Indium Oxide), ZTO(Zinc Tin Oxide), GITO(Gallium Indium Tin Oxide), GIO(Gallium Indium Oxide), GZO(Gallium Zinc Oxide), AZO(Aluminum doped Zinc Oxide), FTO(Fluorine Tin Oxide) 및 ZnO로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 것일 수 있다.
그리고, 상기 전자수송층은, Ti 산화물, Zn 산화물, In 산화물, Sn 산화물, W 산화물, Nb 산화물, Mo 산화물, Mg 산화물, Zr 산화물, Sr 산화물, Yr 산화물, La 산화물, V 산화물, Al 산화물, Y 산화물, Sc 산화물, Sm 산화물, Ga 산화물 및 SrTi 산화물로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 것일 수 있다.
한편, 본 발명의 다른 측면에 따른 페로브스카이트 태양전지는 기판층, 제1 전극층, 금속 산화물을 포함하는 정공수송층(HTL, Hole Transport Layer), 페로브스카이트층, 전자수송층 및 제2 전극층이 순서대로 적층된 것이고, 상기 금속 산화물은 NiOx이며, 상기 정공수송층은 Ni2+ 및 Ni3+를 포함한다.
본 발명에 따르면 정공수송층에 200 ℃ 이상의 고온 열처리를 가하지 않고, a) 산화제를 처리하거나, b) 자외선 및 오존처리하거나, c) 산소플라즈마처리하거나, 또는 d) 이산화질소 가스처리하여, 정공수송층에 포함된 금속 산화물을 산화시킴으로써 기판층 또는 전극층에 손상을 가하지 않으면서 정공수송층의 정공 이동도 또는 정공 추출도를 향상시킬 수 있다.
이처럼, 정공수송층의 정공 추출도가 향상되면, 페로브스카이트층과의 계면에서 비효율적인 정공 추출로 인한 recombination을 방지해 궁극적으로 광전변환 효율을 향상시킬 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 페로브스카이트 태양전지를 보여주는 측면도이다.
도 2는 본 발명에 따른 기판층, 제1 전극층 및 정공수송층이 적층된 적층물을 보여주는 측면도이다.
도 3은 본 발명의 일 실시예에 따른 산화제 처리를 통해 정공수수층의 Ni 공공(vacancy)을 향상시킨 것을 보여주는 개념도이다.
도 4는 NiOx를 포함하는 정공수송층을 산화처리 하지 않은 경우의 UPS 분석결과를 나타낸 그래프이다.
도 5는 NiOx를 포함하는 정공수송층을 산화처리 한 경우의 UPS 분석결과를 나타낸 그래프이다.
이하, 본 발명을 도면을 참조하여 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 2는 본 발명에 따른 기판층, 제1 전극층 및 정공수송층이 적층된 적층물을 보여주는 도면이다. 도 2를 참조하여, 본 발명에 따른 페로브스카이트 태양전지의 제조방법을 설명하면 다음과 같다.
먼저, 기판층(10), 제1 전극층(20) 및 금속 산화물을 포함하는 정공수송층(HTL, Hole Transport Layer)(30)이 순서대로 적층된 적층물의 상기 정공수송층(30)에 a) 산화제를 처리하거나, b) 자외선 및 오존처리하거나, c) 산소플라즈마처리하거나, 또는 d) 이산화질소 가스처리하여 상기 금속 산화물을 산화시킨다(S1 단계).
이처럼, 상기 정공수송층(30)에 200 ℃ 이상의 고온 열처리를 가하지 않고, 산화제를 처리하는 등의 상기 방식들을 통해, 정공수송층(30)에 포함된 금속 산화물을 산화시킴으로써 기판층(10) 또는 제1 전극층(20)에 손상을 가하지 않으면서 정공수송층(30)의 정공 이동도 또는 정공 추출도를 향상시킬 수 있다.
이때, 상기 산화제는 금속 산화물을 산화시켜, 정공수송층에 포함된 금속 공공(vacancy)을 향상시키거나, 금속 이온의 산화수를 증가시켜 주는 물질이라면 모두 사용이 가능하나, 구체적으로는 H2O2, HNO3, H2SO4, KNO3 등이 사용될 수 있다.
여기서, 상기 (S1) 단계는 상기 정공수송층(30)에 상기 산화제를 포함하는 용액을 처리하여 상기 금속 산화물을 산화시킨 후, 상기 용액에 포함된 용매를 제거하는 단계를 포함할 수 있다.
이때, 상기 산화제를 포함하는 용액을 상기 정공수송층(30) 상면에 스핀코팅하거나, 상기 적층물을 상기 용액에 침지시키는 디핑코팅 등의 용액공정을 진행한 다음, 상기 금속 산화물을 산화시킨 후, 용매를 증발시켜 제거할 수 있다.
상기 용매는 추후 증발이 용이하게 이루어지도록 하기 위해, 휘발성을 갖는 용매일 수 있고, 더욱 구체적으로는 탈이온수, 에틸에테르, 아세톤, 에탄올, 메탄올, 이소프로필 알코올 등을 포함하는 알코올류 등이 가능하지만 이에만 한정되는 것은 아니다. 상기 용매 증발 시, 페로브스카이트에 손상을 가하지 않도록 하기 위해 150 ℃ 이하의 온도로 열을 가할 수 있다.
그리고, 본 발명에 따른 상기 자외선 및 오존처리는 최소 5분 이상 처리함으로써 금속 산화물을 산화시킬 수 있다.
또한, 본 발명의 산소플라즈마처리는 200 ℃ 미만의 온도로 유지되는 저온 산소플라즈마처리일 수 있다.
또한, 본 발명의 상기 이산화질소 가스처리는 이산화질소를 포함하는 건조 공기(dry air)를 상기 정공수송층(30)의 상면에 흘려줌으로써 상기 금속 산화물을 산화시키는 것일 수 있다. 이때 상기 건조 공기 내의 이산화질소의 농도는 5 내지 1,000 ppm일 수 있고, 온도는 25 내지 35 ℃로 유지되는 것일 수 있다.
금속 산화물을 산화시키는 단계를 통해 상기 정공수송층(30)의 표면만을 산화시킬 수도 있고, 상기 정공수송층(30) 전체를 산화시킬 수도 있다.
한편, 상기 기판층(10)은, 광을 통과시키는 투명한 물질을 포함할 수 있다. 또한, 상기 기판층(10)은 원하는 파장의 광을 선별적으로 통과시키는 물질을 포함할 수 있다. 상기 기판층(10)은, 예를 들어 실리콘 옥사이드, 알루미늄 옥사이드, ITO(Indium Tin Oxide), FTO(Fluorine Tin Oxide)와 같은 TCO(Transparent Conductive Oxide), 글래스, 석영, 또는 폴리머를 포함할 수 있고, 예를 들면, 상기 폴리머는 폴리이미드(polyimide), 폴리에틸렌 나프탈레이트(polyethylenenaphthalate, PEN), 폴리에틸렌 테레프탈레이트(polyethyleneterephthalate, PET), 폴리메틸메타크릴레이트(PMMA) 및 폴리디메틸실록산(PDMS) 중 적어도 어느 하나를 포함할 수 있다.
상기 기판층(10)은, 예를 들어 100 μm 내지 150 μm 범위의 두께를 가질 수 있고, 예를 들면 125 μm의 두께를 가질 수 있다. 그러나, 상기 기판층(10)의 재질 및 두께는 상기 기재된 내용에만 한정되는 것은 아니며, 본 발명의 기술적 사상에 따라 적절히 선택될 수 있다.
그리고, 상기 제1 전극층(20)은 투광성을 갖는 도전성 소재로 형성될 수 있다. 투광성을 갖는 도전성 소재는, 예컨대 투명 전도성 산화물, 탄소질 전도성 소재 및 금속성 소재 등을 포함할 수 있다. 투명 전도성 산화물로는, 예컨대 ITO(Indium Tin Oxide), ICO(Indium Cerium Oxide), IWO(Indium Tungsten Oxide), ZITO(Zinc Indium Tin Oxide), ZIO(Zinc Indium Oxide), ZTO(Zinc Tin Oxide), GITO(Gallium Indium Tin Oxide), GIO(Gallium Indium Oxide), GZO(Gallium Zinc Oxide), AZO(Aluminum doped Zinc Oxide), FTO(Fluorine Tin Oxide), ZnO 등이 사용될 수 있다. 탄소질 전도성 소재로는, 예컨대 그래핀 또는 카본나노튜브 등이 사용될 수 있으며, 금속성 소재로는, 예컨대 금속(Ag) 나노 와이어, Au/Ag/Cu/Mg/Mo/Ti와 같은 다층 구조의 금속 박막이 사용될 수 있다. 본 명세서에서 투명이라는 용어는 빛을 일정 정도 이상 투과할 수 있는 것을 말하며, 반드시 완전한 투명을 의미하는 것으로 해석되지 않는다. 이상 설명한 물질들은 반드시 위에 설명한 실시예들에 한정되는 것은 아니고 다양한 재질로 형성될 수 있으며, 그 구조 또한 단층 또는 다층이 될 수 있는 등 다양한 변형이 가능하다.
이때, 상기 제1 전극층(20)은 상기 기판층(10) 상에 적층되어 형성될 수도 있고, 상기 기판층(10)과 일체로써 형성될 수도 있다.
그리고, 상기 제1 전극층(20) 상에는 정공수송층(30)이 적층될 수 있으며, 이는 페로브스카이트층(40)에서 생성되는 정공(hole)을 제1 전극층(20)으로 전달하는 역할을 한다. 상기 정공수송층(30)은 텅스텐 옥사이드(WOx), 몰리브덴 옥사이드(MoOx), 바나듐 옥사이드(V2O5), 니켈 옥사이드(NiOx) 및 이들의 혼합물로부터 선택되는 금속 산화물 중에서 적어도 어느 하나를 포함할 수 있다. 또한 단분자 정공수송물질 및 고분자 정공수송물질로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함할 수 있으나 이에 한정되지 않고 당해 업계에서 사용되는 물질이면 한정되지 않고 사용할 수 있다. 예를 들면, 상기 단분자 정공수송물질로서 spiro-MeOTAD [2,2',7,7'-tetrakis(N,N-p-dimethoxy-phenylamino)-9,9'-spirobifluorene]를 사용할 수 있고, 상기 고분자 정공수송물질로서 P3HT[poly(3-hexylthiophene)], PTAA(polytriarylamine), poly(3,4-ethylenedioxythiophene) 또는 polystyrene sulfonate(PEDOT:PSS)를 사용할 수 있으나, 이에 제한되지 않는다.
또한, 상기 정공수송층(30)에는 도핑 물질이 더 포함될 수 있으며, 상기 도핑 물질로는 Li 계열 도펀트, Co 계열 도펀트, Cu 계열 도펀트, Cs 계열 도펀트 및 이들의 조합들로 이루어진 군에서 선택되는 도펀트를 사용할 수 있으나, 이에 제한되지 않는다.
상기 정공수송층(30)은 제1 전극층 상에 정공수송층용 전구체 용액을 도포하고, 건조하여 형성될 수 있으며, 상기 전구체 용액을 도포하기 전 제1 전극층에 UV-오존 처리를 통해 제1 전극층(20)의 일함수를 낮추고, 표면 불순물 제거하며 친수성 처리를 할 수 있다. 전구체 용액의 도포는 스핀코팅과 같은 방법을 사용 수 있으나 이에 한정되는 것은 아니다. 형성된 정공수송층(30)의 두께는 10 내지 500 nm일 수 있다.
이때, 상기 정공수송층(30)의 금속 산화물은 NiOx인 것이 바람직한데, 다른 유기 정공수송체 또는 다른 금속 산화물과 비교했을 때 물질 내 높은 정공 이동도를 가지고 있는 장점이 있다.
한편, 도 3은 본 발명의 일 실시예에 따른 산화제 처리를 통해 정공수수층(30)의 Ni 공공(vacancy)을 향상시킨 것을 보여주는 개념도이다. 도 3을 참조하면, 상기 (S1) 단계에서, 상기 NiOx를 산화시켜 상기 정공수송층(30)의 Ni 공공(vacancy)을 향상시킨 것일 수 있다. 그리고, 상기 NiOx를 산화시켜 상기 정공수송층(30)에 포함된 Ni2+의 일부를 Ni3+로 산화시킨 것일 수 있다. 이처럼 Ni 공공이 증가하게 되거나, Ni2+의 일부를 Ni3+로 산화시키면 정공 이동도가 증가하고 저항이 감소하게 되어 정공수송층(30)의 정공 추출도를 향상시키게 된다.
여기서, 상기 Ni3+의 함량과, 상기 Ni2+ 및 Ni3+의 전체 함량의 비가 0.6 이하, 구체적으로는 0.3 이하인 것일 수 있다. 이때, 상기 함량의 비가 0.6을 초과하게 되면, 즉, Ni3+의 함량이 과하게 많아지면, 광투과율(Optical transmittance)이 감소하는 문제가 발생할 수 있다. 그리고, Ni3+의 비율이 커질수록 상기 정공수송층(30)의 valence band maximum(VBM)은 하향 이동(downward shift)하게 된다. 상기 Ni3+의 함량과, 상기 Ni2+ 및 Ni3+의 전체 함량의 비가 0.6, 더욱 바람직하게는 0.3 정도인 경우에는 페로브스카이트층과 energy matching이 잘 일어나 효율적인 전하 추출(charge extraction)이 일어날 수 있는데, 만일, Ni3+의 함량이 과하게 많아져, VBM(work function)이 과하게 떨어지게 되면 페로브스카이트와의 계면에서 energy level alignment의 미스매치(mismatch)가 발생하기 때문에 계면에서의 정공 추출(hole extraction)을 방해하는 문제가 발생할 수 있다.
도 4는 NiOx를 포함하는 정공수송층을 산화처리 하지 않은 경우의 UPS 분석결과를 나타낸 그래프이고, 도 5는 NiOx를 포함하는 정공수송층을 산화처리 한 경우의 UPS 분석결과를 나타낸 그래프이며, 하기 표 1은 상기 각각의 경우에 대한 work function과 valence band edge 값을 보여준다.
NiOx (w/o treatment) NiOx (w/ treatment)
Work function 4.66 5.16
Valence band edge 5.61 5.69
NiOx를 산화처리 한 후 Ni3+의 비율이 증가함에 따라 work function의 수치는 증가하고, Valence band edge 값과 가까워지는 것을 확인할 수 있으며, 이는 p type 도핑과 같은 효과가 있는 것을 의미한다.1) NiOx (w/o treatment) 경우
Work function: 21.22eV(He|UPS spectra) - 16.56eV = 4.66 eV
Valence band edge: 4.66(Work function) eV + 0.95 eV = 5.61 eV
2) NiOx (w/ treatment) 경우
Work function: 21.22eV(He|UPS spectra) - 16.06eV = 5.16 eV
Valence band edge: 5.16(Work function) eV + 0.53 eV = 5.69 eV
이어서, 상기 적층물의 상기 정공수송층(30) 상에 페로브스카이트층(40), 전자수송층(50) 및 제2 전극층(60)을 순서대로 적층시킨다(S2 단계).
본 발명에 따른 페로브스카이트 태양전지(100)에서는, 태양광을 흡수하여 광전자-광정공 쌍을 생성하는 광활성 물질로 페로브스카이트 화합물을 채택하였다. 페로브스카이트는 직접형 밴드갭(direct band gap)을 가지면서 광흡수계수가 550nm에서 1.5×104cm-1 정도로 높고, 전하 이동 특성이 우수하며 결함에 대한 내성이 뛰어나다는 장점이 있다.
또한, 페로브스카이트 화합물은 용액의 도포 및 건조라는 극히 간단하고 용이하며 저가의 단순한 공정을 통해 광활성층을 이루는 광흡수체를 형성할 수 있는 장점이 있고, 도포된 용액의 건조에 의해 자발적으로 결정화가 이루어져 조대 결정립의 광흡수체 형성이 가능하며, 특히 전자와 정공 모두에 대한 전도도가 우수하다.
이러한 페로브스카이트 화합물은 하기의 화학식 1의 구조로 표시될 수 있다.
[화학식 1]
ABX3
(여기서, A는 1가의 유기 암모늄 양이온 또는 금속 양이온, B는 2가의 금속 금속 양이온, X는 할로겐 음이온을 의미한다)
페로브스카이트 화합물은 예컨대, CH3NH3PbI3, CH3NH3PbIxCl3-x, MAPbI3, CH3NH3PbIxBr3-x, CH3NH3PbClxBr3-x, HC(NH2)2PbI3, HC(NH2)2PbIxCl3-x, HC(NH2)2PbIxBr3-x, HC(NH2)2PbClxBr3-x, (CH3NH3)(HC(NH2)2)1-yPbI3, (CH3NH3)(HC(NH2)2)1-yPbIxCl3-x, (CH3NH3)(HC(NH2)2)1-yPbIxBr3-x, (CH3NH3)(HC(NH2)2)1-yPbClxBr3-x 등이 사용될 수 있다(0≤x, y≤1). 또한, ABX3의 A에 Cs가 일부 도핑된 화합물도 사용될 수 있다.
그리고, 상기 전자수송층(50)은 상기 페로브스카이트층(40) 상에 위치하고, 페로브스카이트층(40)에서 생성된 전자가 제2 전극층(60)으로 용이하게 전달되도록 하는 기능을 할 수 있다. 전자수송층(50)은 금속 산화물을 포함할 수 있으며, 예컨대 Ti 산화물, Zn 산화물, In 산화물, Sn 산화물, W 산화물, Nb 산화물, Mo 산화물, Mg 산화물, Zr 산화물, Sr 산화물, Yr 산화물, La 산화물, V 산화물, Al 산화물, Y 산화물, Sc 산화물, Sm 산화물, Ga 산화물, SrTi 산화물 등이 사용될 수 있다. 본 발명에 따른 전자수송층(50)은 컴팩트한 구조의 TiO2, SnO2, WO3 또는 TiSrO3 등을 포함할 수도 있다. 이러한 전자수송층(50)은 필요에 따라 n형 또는 p형 도펀트를 더 포함할 수 있다.
상기와 같은 정공수송층(30)/페로브스카이트층(40)/전자수송층(50)은 전술한 층간 구조 및/또는 물질 이외에도 페로브스카이트 태양전지(100)를 구성하는 다양한 층 구조 및 물질이 적용될 수 있고, 상기 정공수송층(30)과 상기 전자수송층(50)은 서로 위치가 바뀌어 형성될 수도 있다.
그리고, 상기 제2 전극층(60)은 투광성을 갖는 도전성 소재로 형성될 수 있다. 투광성을 갖는 도전성 소재는, 예컨대 투명 전도성 산화물, 탄소질 전도성 소재 및 금속성 소재 등을 포함할 수 있다. 투명 전도성 산화물로는, 예컨대 ITO(Indium Tin Oxide), ICO(Indium Cerium Oxide), IWO(Indium Tungsten Oxide), ZITO(Zinc Indium Tin Oxide), ZIO(Zinc Indium Oxide), ZTO(Zinc Tin Oxide), GITO(Gallium Indium Tin Oxide), GIO(Gallium Indium Oxide), GZO(Gallium Zinc Oxide), AZO(Aluminum doped Zinc Oxide), FTO(Fluorine Tin Oxide), ZnO 등이 사용될 수 있다. 탄소질 전도성 소재로는, 예컨대 그래핀 또는 카본나노튜브 등이 사용될 수 있으며, 금속성 소재로는, 예컨대 금속(Ag) 나노 와이어, Au/Ag/Cu/Mg/Mo/Ti와 같은 다층 구조의 금속 박막이 사용될 수 있다. 본 명세서에서 투명이라는 용어는 빛을 일정 정도 이상 투과할 수 있는 것을 말하며, 반드시 완전한 투명을 의미하는 것으로 해석되지 않는다. 이상 설명한 물질들은 반드시 위에 설명한 실시예들에 한정되는 것은 아니고 다양한 재질로 형성될 수 있으며, 그 구조 또한 단층 또는 다층이 될 수 있는 등 다양한 변형이 가능하다.
한편, 도시되지는 않았으나, 제2 전극층(60) 상에는 제2 전극층(60)의 저항을 낮추고 전하의 전달을 더욱 용이하게 하기 위하여 버스전극(미도시)이 더 배치될 수도 있다. 상기 버스 전극은 Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr 및/또는 이들의 화합물 등으로 형성될 수 있다.
한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 본 발명의 기술 내용을 쉽게 설명하고 본 발명의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.

Claims (10)

  1. (S1) 기판층, 제1 전극층 및 금속 산화물을 포함하는 정공수송층(HTL, Hole Transport Layer)이 순서대로 적층된 적층물의 상기 정공수송층에 a) 산화제를 처리하거나, b) 자외선 및 오존처리하거나, c) 산소플라즈마처리하거나, 또는 d) 이산화질소 가스처리하여 상기 금속 산화물을 산화시키는 단계; 및
    (S2) 상기 적층물의 상기 정공수송층 상에 페로브스카이트층, 전자수송층 및 제2 전극층을 순서대로 적층시키는 단계를 포함하는 페로브스카이트 태양전지의 제조방법.
  2. 제1항에 있어서,
    상기 (S1) 단계는 상기 정공수송층에 상기 산화제를 포함하는 용액을 처리하여 상기 금속 산화물을 산화시킨 후, 상기 용액에 포함된 용매를 제거하는 단계를 더 포함하는 것인 페로브스카이트 태양전지의 제조방법.
  3. 제1항에 있어서,
    상기 (S1) 단계의 상기 금속 산화물은 NiOx인 것인 페로브스카이트 태양전지의 제조방법.
  4. 제3항에 있어서,
    상기 (S1) 단계에서, 상기 NiOx를 산화시켜 상기 정공수송층의 Ni 공공(vacancy)을 향상시킨 것인 페로브스카이트 태양전지의 제조방법.
  5. 제3항에 있어서,
    상기 (S1) 단계에서, 상기 NiOx를 산화시켜 상기 정공수송층에 포함된 Ni2+의 일부를 Ni3+로 산화시킨 것인 페로브스카이트 태양전지의 제조방법.
  6. 제5항에 있어서,
    상기 Ni3+의 함량과, 상기 Ni2+ 및 Ni3+의 전체 함량의 비가 0.6 이하인 것인 페로브스카이트 태양전지의 제조방법.
  7. 제1항에 있어서,
    상기 제1 전극층 및 상기 제2 전극층은 서로 독립적으로 ITO(Indium Tin Oxide), ICO(Indium Cerium Oxide), IWO(Indium Tungsten Oxide), ZITO(Zinc Indium Tin Oxide), ZIO(Zinc Indium Oxide), ZTO(Zinc Tin Oxide), GITO(Gallium Indium Tin Oxide), GIO(Gallium Indium Oxide), GZO(Gallium Zinc Oxide), AZO(Aluminum doped Zinc Oxide), FTO(Fluorine Tin Oxide) 및 ZnO로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 것인 페로브스카이트 태양전지의 제조방법.
  8. 제1항에 있어서,
    상기 전자수송층은, Ti 산화물, Zn 산화물, In 산화물, Sn 산화물, W 산화물, Nb 산화물, Mo 산화물, Mg 산화물, Zr 산화물, Sr 산화물, Yr 산화물, La 산화물, V 산화물, Al 산화물, Y 산화물, Sc 산화물, Sm 산화물, Ga 산화물 및 SrTi 산화물로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 것인 페로브스카이트 태양전지의 제조방법.
  9. 기판층, 제1 전극층, 금속 산화물을 포함하는 정공수송층(HTL, Hole Transport Layer), 페로브스카이트층, 전자수송층 및 제2 전극층이 순서대로 적층된 것이고,
    상기 금속 산화물은 NiOx이며,
    상기 정공수송층은 Ni2+ 및 Ni3+를 포함하는 페로브스카이트 태양전지.
  10. 제9항에 있어서,
    상기 Ni3+의 함량과, 상기 Ni2+ 및 Ni3+의 전체 함량의 비가 0.6 이하인 것인 페로브스카이트 태양전지.
PCT/KR2021/008061 2020-07-08 2021-06-28 페로브스카이트 태양전지의 제조방법 및 그로부터 제조된 페로브스카이트 태양전지 WO2022010147A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21838202.6A EP4160709A4 (en) 2020-07-08 2021-06-28 METHOD FOR MANUFACTURING PEROVSKITE SOLAR CELL AND PEROVSKITE SOLAR CELL MANUFACTURED THEREBY
US18/011,611 US20230363183A1 (en) 2020-07-08 2021-06-28 Manufacturing method for perovskite solar cell and perovskite solar cell manufactured by the same method
CN202180046920.5A CN115777240A (zh) 2020-07-08 2021-06-28 制造钙钛矿太阳能电池的方法及由所述方法制造的钙钛矿太阳能电池
JP2022579919A JP2023538996A (ja) 2020-07-08 2021-06-28 ペロブスカイト太陽電池の製造方法及びそれから製造されたペロブスカイト太陽電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0084012 2020-07-08
KR1020200084012A KR102401218B1 (ko) 2020-07-08 2020-07-08 페로브스카이트 태양전지의 제조방법 및 그로부터 제조된 페로브스카이트 태양전지

Publications (1)

Publication Number Publication Date
WO2022010147A1 true WO2022010147A1 (ko) 2022-01-13

Family

ID=79552523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008061 WO2022010147A1 (ko) 2020-07-08 2021-06-28 페로브스카이트 태양전지의 제조방법 및 그로부터 제조된 페로브스카이트 태양전지

Country Status (6)

Country Link
US (1) US20230363183A1 (ko)
EP (1) EP4160709A4 (ko)
JP (1) JP2023538996A (ko)
KR (1) KR102401218B1 (ko)
CN (1) CN115777240A (ko)
WO (1) WO2022010147A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115083787A (zh) * 2022-06-23 2022-09-20 南京邮电大学 一种超薄氧化物修饰的半导体电极及其制备方法
CN116081711A (zh) * 2022-12-08 2023-05-09 武汉大学 油酸盐修饰的氧化镍纳米晶材料及其制备方法与应用
EP4273942A4 (en) * 2022-03-09 2024-04-24 Contemporary Amperex Technology Co., Limited PEROVSKITE SOLAR BATTERY AND PRODUCTION PROCESS THEREOF

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230167963A (ko) 2022-06-03 2023-12-12 한국전력공사 페로브스카이트 태양전지 및 이의 제조 방법
KR20240000198A (ko) 2022-06-23 2024-01-02 고려대학교 산학협력단 페로브스카이트 광전소자 및 이의 제조 방법
KR20240136027A (ko) 2023-03-06 2024-09-13 고려대학교 산학협력단 전자 전달층 용액의 제조 방법, 이를 이용한 전자 전달층의 제조 방법, 이를 통하여 제조된 전자 전달층, 이를 포함하는 페로브스카이트 태양전지의 제조 방법 및 이를 통하여 제조된 페로브스카이트 태양전지
TWI844323B (zh) * 2023-03-29 2024-06-01 國立陽明交通大學 鈣鈦礦光電裝置及應用於鈣鈦礦光電裝置的自適應傳輸層結構

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016868A (ja) * 2003-12-16 2008-01-24 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法
KR20110015525A (ko) * 2008-04-28 2011-02-16 다이니폰 인사츠 가부시키가이샤 정공 주입 수송층을 갖는 디바이스, 및 그 제조 방법, 및 정공 주입 수송층 형성용 잉크
WO2013161166A1 (ja) * 2012-04-27 2013-10-31 パナソニック株式会社 有機el素子、およびそれを備える有機elパネル、有機el発光装置、有機el表示装置
KR20170040708A (ko) * 2015-10-05 2017-04-13 한국에너지기술연구원 양면 투명전극을 활용한 높은 내구성을 가지는 유-무기 하이브리드 태양전지 및 이의 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017106811A1 (en) * 2015-12-17 2017-06-22 University Of Florida Research Foundation, Inc. Polymer passivated metal oxide surfaces and organic electronic devices therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016868A (ja) * 2003-12-16 2008-01-24 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法
KR20110015525A (ko) * 2008-04-28 2011-02-16 다이니폰 인사츠 가부시키가이샤 정공 주입 수송층을 갖는 디바이스, 및 그 제조 방법, 및 정공 주입 수송층 형성용 잉크
WO2013161166A1 (ja) * 2012-04-27 2013-10-31 パナソニック株式会社 有機el素子、およびそれを備える有機elパネル、有機el発光装置、有機el表示装置
KR20170040708A (ko) * 2015-10-05 2017-04-13 한국에너지기술연구원 양면 투명전극을 활용한 높은 내구성을 가지는 유-무기 하이브리드 태양전지 및 이의 제조 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4160709A4 *
WANG TUN, DING DONG, ZHENG HAO, WANG XIN, WANG JIAYUAN, LIU HONG, SHEN WENZHONG: "Efficient Inverted Planar Perovskite Solar Cells Using Ultraviolet/Ozone‐Treated NiO x as the Hole Transport Layer", SOLAR RRL, vol. 3, no. 6, 1 June 2019 (2019-06-01), pages 1900045, XP055885906, ISSN: 2367-198X, DOI: 10.1002/solr.201900045 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4273942A4 (en) * 2022-03-09 2024-04-24 Contemporary Amperex Technology Co., Limited PEROVSKITE SOLAR BATTERY AND PRODUCTION PROCESS THEREOF
CN115083787A (zh) * 2022-06-23 2022-09-20 南京邮电大学 一种超薄氧化物修饰的半导体电极及其制备方法
CN116081711A (zh) * 2022-12-08 2023-05-09 武汉大学 油酸盐修饰的氧化镍纳米晶材料及其制备方法与应用

Also Published As

Publication number Publication date
CN115777240A (zh) 2023-03-10
JP2023538996A (ja) 2023-09-13
US20230363183A1 (en) 2023-11-09
KR20220006264A (ko) 2022-01-17
KR102401218B1 (ko) 2022-05-23
EP4160709A4 (en) 2023-12-06
EP4160709A1 (en) 2023-04-05
KR102401218B9 (ko) 2023-02-23

Similar Documents

Publication Publication Date Title
WO2022010147A1 (ko) 페로브스카이트 태양전지의 제조방법 및 그로부터 제조된 페로브스카이트 태양전지
Kim et al. Photovoltaic technologies for flexible solar cells: beyond silicon
EP3172776B9 (en) Mesoscopic framework for organic-inorganic perovskite based photoelectric conversion device and method for manufacturing the same
Jiang et al. Optical analysis of perovskite/silicon tandem solar cells
US11764001B2 (en) Perovskite solar cell configurations
Hu et al. Recent development of organic–inorganic perovskite‐based tandem solar cells
CN109216557A (zh) 一种基于柠檬酸/SnO2电子传输层的钙钛矿太阳能电池及其制备方法
Kanda et al. Facile fabrication method of small-sized crystal silicon solar cells for ubiquitous applications and tandem device with perovskite solar cells
Zhang et al. Enhanced performance of ZnO based perovskite solar cells by Nb2O5 surface passivation
Aftab et al. Quantum junction solar cells: Development and prospects
Li et al. A contact study in hole conductor free perovskite solar cells with low temperature processed carbon electrodes
CN108346742A (zh) 基于聚苯乙烯界面层提高光伏性能的钙钛矿电池及其制备
CN114784198A (zh) 一种高效钙钛矿太阳能电池、电池组件、电池器件及其制备方法
CN116072752A (zh) 一种薄膜太阳能电池、其制备方法、光伏组件及发电设备
Bag et al. The influence of top electrode work function on the performance of methylammonium lead iodide based perovskite solar cells having various electron transport layers
CN114759063A (zh) 一种太阳电池复合组件和光伏系统
CN118175861A (zh) 一种钙钛矿/硅叠层太阳能电池组件及其制备方法
WO2022139342A1 (ko) 태양전지의 제조방법 및 그로부터 제조된 태양전지
WO2018016886A1 (ko) 유-무기 복합 태양전지용 적층체 제조방법 및 유-무기 복합 태양전지 제조방법
KR20140012224A (ko) 투명 전도성 중간층을 포함하는 적층형 태양전지 및 그 제조방법
KR20220092150A (ko) 페로브스카이트 태양전지의 제조방법 및 그로부터 제조된 페로브스카이트 태양전지
JP2009260209A (ja) 積層型光電変換装置及び光電変換モジュール
KR102377621B1 (ko) 수분 안정성과 장기 안정성이 향상된 태양전지
JP2009032661A (ja) 積層型光電変換装置
Shu Evaluation of stability and performance of an air-processed all-inorganic perovskite solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838202

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579919

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021838202

Country of ref document: EP

Effective date: 20221228

NENP Non-entry into the national phase

Ref country code: DE