WO2022009878A1 - 接着積層コア製造方法及び接着積層コア製造装置 - Google Patents

接着積層コア製造方法及び接着積層コア製造装置 Download PDF

Info

Publication number
WO2022009878A1
WO2022009878A1 PCT/JP2021/025452 JP2021025452W WO2022009878A1 WO 2022009878 A1 WO2022009878 A1 WO 2022009878A1 JP 2021025452 W JP2021025452 W JP 2021025452W WO 2022009878 A1 WO2022009878 A1 WO 2022009878A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
steel plate
curing
strip
laminated core
Prior art date
Application number
PCT/JP2021/025452
Other languages
English (en)
French (fr)
Inventor
和年 竹田
真介 高谷
隆 平山
賢明 岩瀬
真 丹羽
成志 山田
Original Assignee
日本製鉄株式会社
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社, 東亞合成株式会社 filed Critical 日本製鉄株式会社
Priority to KR1020237000073A priority Critical patent/KR20230019931A/ko
Priority to JP2022535343A priority patent/JP7467634B2/ja
Priority to EP21837998.0A priority patent/EP4181365A1/en
Priority to CN202180048749.1A priority patent/CN115803997A/zh
Priority to MX2023000269A priority patent/MX2023000269A/es
Priority to US18/014,352 priority patent/US20230253140A1/en
Publication of WO2022009878A1 publication Critical patent/WO2022009878A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • B05D1/38Successively applying liquids or other fluent materials, e.g. without intermediate treatment with intermediate treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/10Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an adhesive surface
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/18Homopolymers or copolymers of nitriles
    • C09J133/20Homopolymers or copolymers of acrylonitrile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2701/00Coatings being able to withstand changes in the shape of the substrate or to withstand welding
    • B05D2701/10Coatings being able to withstand changes in the shape of the substrate or to withstand welding withstanding draw and redraw process, punching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/22Notching the peripheries of circular blanks, e.g. laminations for dynamo-electric machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/03Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of sheet metal otherwise than by folding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or of Groups 14 to 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/163Metal in the substrate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B11/00Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding
    • F16B11/006Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding by gluing

Definitions

  • the present invention relates to an adhesive laminated core manufacturing method and an adhesive laminated core manufacturing apparatus.
  • a rotary electric machine used as an electric machine is equipped with a laminated core.
  • This laminated core is manufactured by punching a strip-shaped steel plate into a predetermined shape in a plurality of times while intermittently feeding the strip-shaped steel plates, and laminating a plurality of the obtained steel plate parts. Fixing between each steel plate component is performed by welding, bonding, caulking, etc. Among these, the fixing method by bonding is attracting attention from the viewpoint of effectively suppressing iron loss of the laminated core.
  • Patent Document 1 a hoop material coated with press working oil on one side or both sides is sequentially subjected to a plurality of press workings, an adhesive is applied to one side of the hoop material, and then an outer shape punching process is performed to perform a metal thin plate.
  • the present invention discloses a method for producing a metal thin plate laminate by laminating and adhering a predetermined number of the metal thin plates, wherein the metal thin plate laminate is produced by adding a curing accelerator to the press working oil. There is.
  • Patent Document 2 in a punching laminated press method in which a steel plate component having a predetermined shape is punched from an intermittently sent strip-shaped steel plate and the steel plate component is laminated, the steel plate component is punched from the strip-shaped steel plate from the press working position.
  • the first coating step of applying either one of the adhesive and the curing accelerator for accelerating the curing of the adhesive to the lower surface of the strip-shaped steel sheet, and in the press working position.
  • a punching laminated press method including a second coating step of coating the other of the adhesive and the curing accelerator on the upper surface of the strip-shaped steel sheet.
  • the curing time of the adhesive can be significantly shortened by performing the first coating step and the second coating step, and the production of a core manufactured by laminating a plurality of steel plate parts is produced. It is explained that it can enhance sex.
  • the lubricating function of the press working oil at the time of punching the steel sheet and the function of promoting the curing of the adhesive by using the curing accelerator at the time of bonding the steel sheet are higher. It needs to be demonstrated. However, conventionally, sufficient studies have not been made on the coating form of the curing accelerator.
  • the present invention has been made in view of the above circumstances, and is a method for manufacturing an adhesive laminated core and an apparatus for producing an adhesive laminated core, which can obtain higher productivity while ensuring sufficient adhesive strength in the production of an adhesive laminated core.
  • the issue is to provide.
  • the method for manufacturing an adhesive laminated core is It is a method of manufacturing an adhesive laminated core by punching out a plurality of steel plate parts while feeding strip-shaped steel plates and laminating each of the steel plate parts via an adhesive.
  • the curing promoting portion provided on the strip-shaped steel sheet is pre-dried and cured, it is mixed with the press working oil applied in the subsequent step. Is suppressed. Therefore, when laminating and adhering between the steel sheet parts, the curing promoting portion can be mixed with the adhesive while maintaining a high concentration, so that high adhesive strength can be exhibited at an early stage. Therefore, it is possible to obtain higher productivity while ensuring sufficient adhesive strength. Furthermore, since the surface of the curing accelerating portion is coated with the press working oil, it is possible to prevent the curing accelerating portion from adhering to the mold during the subsequent press working.
  • the exposed curing promotion part peels off at the time of punching and adheres to a specific part of the die (for example, the lower die of the progressive die). , May accumulate.
  • a specific part of the die for example, the lower die of the progressive die.
  • the deposits will come off during continuous pressing and reattach to each steel plate component, and the deposits will be sandwiched between the laminates of the steel sheet components.
  • the shape of the adhesive laminated core may be distorted, which may adversely affect the structural strength and magnetic characteristics of the adhesive laminated core.
  • the curing promotion portion is covered with press working oil in advance to protect it, and then the press working is performed, the above-mentioned problem is suppressed.
  • Each of the steel plate parts includes a first steel plate part and a second steel plate part.
  • the curing promoting portion is pre-dried and cured in the first step, and is in a state of being suppressed from being mixed with the press working oil. Therefore, when the first steel plate component and the second steel sheet component are overlapped and bonded in the third step, the curing promoting portion can be mixed with the adhesive while maintaining a high concentration.
  • Each of the steel plate parts includes a first steel plate part and a second steel plate part.
  • the curing promoting portion is pre-dried and cured in the fourth step, and is in a state of being suppressed from being mixed with the press working oil. Therefore, when the first steel plate component and the second steel sheet component are overlapped and bonded in the sixth step, the curing promoting portion can be mixed with the adhesive while maintaining a high concentration.
  • Each of the steel plate parts includes a first steel plate part and a second steel plate part.
  • the curing promoting portion is pre-dried and cured in the seventh step, and is in a state of being suppressed from being mixed with the press working oil. Therefore, when the first steel plate component and the second steel sheet component are overlapped and bonded in the ninth step, the curing promoting portion can be mixed with the adhesive while maintaining a high concentration.
  • the adhesive may be an anaerobic adhesive or a 2-cyanoacrylate adhesive. According to the adhesive laminated core manufacturing method described in (5) above, it is possible to relatively increase the amount of the curing accelerator, shorten the curing time, and improve the adhesive strength without affecting the processability. Benefits are obtained.
  • the curing accelerator of the anaerobic adhesive is titanium, chromium, manganese, iron, cobalt, nickel, copper, zinc, silver, vanadium, molybdenum, and the like. It may contain an active ingredient that promotes anaerobic hardening selected from ruthenium, saccharin and combinations thereof.
  • the active ingredient that promotes anaerobic curing is selected from titanium, chromium, manganese, iron, cobalt, nickel, copper, zinc, silver, vanadium, molybdenum, ruthenium, saccharin and combinations thereof.
  • it may be selected from copper, iron, vanadium, cobalt, chromium, silver, and manganese, and combinations thereof.
  • it can be copper, iron, vanadium, cobalt, and chromium, and combinations thereof.
  • it is provided in the form of a metal oxide or salt.
  • the anaerobic adhesive is rapidly and completely cured, so that it is extremely excellent in manufacturing that requires short-time manufacturing and suppression of outgas. , The advantage that productivity can be improved can be obtained.
  • the curing accelerator of the 2-cyanoacrylate adhesive is dimethylaniline, diethylamine, o-phenylenediamine, dimethylparatoluidine, diethylparatoluidine and N.
  • Organic amines such as N-diethylaniline, acid amides such as trichloroacetamide, organic imides such as succinic imide, quaternary ammonium salts such as tetramethylammonium chloride and benzyltrimethylammonium chloride, and combinations thereof.
  • the 2-cyanoacrylate-based adhesive selected from the above may contain an active ingredient that promotes curing.
  • the active ingredient that promotes the curing of the 2-cyanoacrylate adhesive include organic amines such as dimethylaniline, diethylamine, o-phenylenediamine, dimethylparatoluidine, diethylparatoluidine, N, N-diethylaniline, etc. It is selected from acid amides such as trichloracetamide, organic imides such as succinimide, quaternary ammonium salts such as tetramethylammonium chloride and benzyltrimethylammonium chloride, and combinations thereof.
  • organic amines such as dimethylaniline, diethylamine, o-phenylenediamine, dimethylparatoluidine, diethylparatoluidine, N, N-diethylaniline, etc. It is selected from acid amides such as trichloracetamide, organic imides such as succinimide, quaternary ammonium salts such as tetramethylammonium chloride and benz
  • one or a combination of two or more selected from organic amines such as dimethylaniline, diethylamine, o-phenylenediamine, dimethylparatoluidine, diethylparatoluidine, N, N-diethylaniline and the like can be mentioned.
  • organic amines such as dimethylaniline, diethylamine, o-phenylenediamine, dimethylparatoluidine, diethylparatoluidine, N, N-diethylaniline and the like.
  • the 2-cyanoacrylate-based adhesive is rapidly and completely cured, so that production in a particularly short time and suppression of outgas are required. It is extremely excellent and has the advantage that productivity can be improved.
  • the curing accelerator of the anaerobic adhesive or the 2-cyanoacrylate adhesive is a ketone solvent, an alcohol solvent, an ester solvent, or a glycol.
  • a solvent such as an ether solvent, a hydrocarbon solvent, a halogenated hydrocarbon solvent, an ether solvent, a glycol solvent, or an amine solvent. It may contain an active ingredient that promotes curing.
  • the solvent type one type or a combination of two or more types selected from the above solvent types is selected.
  • For the production of the adhesive laminated core one or a combination of two or more selected from ethyl acetate, acetone, ethanol, methanol, butanol, tol
  • the adhesive laminated core may be a stator for a rotary electric machine. According to the adhesive laminated core manufacturing method described in (9) above, higher productivity can be obtained while ensuring sufficient adhesive strength, so that a stator for a rotary electric machine having high performance and low manufacturing cost can be obtained. Will be able to be manufactured.
  • the adhesive laminated core manufacturing apparatus is A device for manufacturing an adhesive laminated core by laminating a plurality of steel plate parts punched from the strip-shaped steel plate while feeding the strip-shaped steel plate via an adhesive.
  • a curing accelerating portion forming portion for forming a curing accelerating portion by applying and drying a curing accelerating agent on one or both sides of the strip-shaped steel sheet.
  • a press working oil application portion that is arranged on the downstream side of the curing promotion portion forming portion and that applies press working oil to at least the surface of the curing promotion portion.
  • a press working part that is arranged on the downstream side of the press working oil coating part and presses the strip-shaped steel sheet, and a press working part.
  • An adhesive coating portion for applying the adhesive to the one side of the strip-shaped steel plate, and an adhesive coating portion. Be prepared.
  • the curing promotion portion forming portion the curing promoting portion is formed on the strip-shaped steel sheet in a state of being previously dried and cured. Therefore, it is possible to prevent the curing accelerating portion from being mixed with the press working oil applied by the press working oil applying portion. Therefore, when laminating and adhering between the steel sheet parts, the curing promoting portion can be mixed with the adhesive while maintaining a high concentration, so that high adhesive strength can be exhibited at an early stage. Therefore, it is possible to obtain higher productivity while ensuring sufficient adhesive strength.
  • the curing promotion portion forming portion, the press working oil coating portion, the press working portion, and the bonding portion are formed along the feeding direction of the strip-shaped steel sheet.
  • the agent application portions may be arranged in this order.
  • the curing promoting portion is pre-dried and cured in the curing promoting portion forming portion, and is mixed with the stamping oil applied in the press working oil coating portion. Is in a suppressed state. Therefore, when the first steel plate component and the second steel plate component are overlapped and bonded, the curing promoting portion can be mixed with the adhesive while maintaining a high concentration.
  • the configuration may be as follows: The first stage having the curing promotion portion forming portion and A second stage having a transport section for feeding the strip-shaped steel plate transferred from the first stage toward the press working oil coating section, and a second stage. Equipped with In the second stage, the transport portion, the press working oil coating portion, the press working portion, and the adhesive coating portion are arranged side by side in this order along the feeding direction in which the strip-shaped steel plate is fed. There is.
  • the strip-shaped steel plates having the curing promotion portion formed in advance in the first stage can be collectively made and stored.
  • the adhesive may be an anaerobic adhesive or a 2-cyanoacrylate adhesive. According to the adhesive laminated core manufacturing apparatus described in (13) above, it is possible to relatively increase the amount of the curing accelerator, shorten the curing time, and improve the adhesive strength without affecting the processability. Benefits are obtained.
  • the curing accelerator of the anaerobic adhesive is titanium, chromium, manganese, iron, cobalt, nickel, copper, zinc, silver, vanadium, molybdenum, and the like. It may contain an active ingredient that promotes anaerobic hardening selected from ruthenium, saccharin and combinations thereof. That is, in the adhesive laminated core manufacturing apparatus according to (13) above, examples of the curing accelerator of the anaerobic adhesive include those containing an active ingredient that promotes anaerobic curing.
  • the active ingredient that promotes anaerobic curing is selected from titanium, chromium, manganese, iron, cobalt, nickel, copper, zinc, silver, vanadium, molybdenum, ruthenium, saccharin and combinations thereof.
  • it may be selected from copper, iron, vanadium, cobalt, chromium, silver, and manganese, and combinations thereof.
  • it can be copper, iron, vanadium, cobalt, and chromium, and combinations thereof.
  • it is provided in the form of a metal oxide or salt.
  • the anaerobic adhesive is rapidly and completely cured, and is therefore extremely excellent in manufacturing that requires short-time manufacturing and suppression of outgas. , The advantage that productivity can be improved can be obtained.
  • the curing accelerator of the 2-cyanoacrylate adhesive is dimethylaniline, diethylamine, o-phenylenediamine, dimethylparatoluidine, diethylparatoluidine and N.
  • Organic amines such as N-diethylaniline, acid amides such as trichloroacetamide, organic imides such as succinic imide, quaternary ammonium salts such as tetramethylammonium chloride and benzyltrimethylammonium chloride, and combinations thereof.
  • the 2-cyanoacrylate-based adhesive selected from the above may contain an active ingredient that promotes curing.
  • the curing accelerator for the 2-cyanoacrylate-based adhesive contains an active ingredient that promotes the curing of the 2-cyanoacrylate-based adhesive.
  • the active ingredient that promotes the curing of the 2-cyanoacrylate adhesive include organic amines such as dimethylaniline, diethylamine, o-phenylenediamine, dimethylparatoluidine, diethylparatoluidine, N, N-diethylaniline, etc.
  • acid amides such as trichloracetamide
  • organic imides such as succinimide
  • quaternary ammonium salts such as tetramethylammonium chloride and benzyltrimethylammonium chloride
  • one or a combination of two or more selected from organic amines such as dimethylaniline, diethylamine, o-phenylenediamine, dimethylparatoluidine, diethylparatoluidine, N, N-diethylaniline and the like can be mentioned.
  • the 2-cyanoacrylate-based adhesive is rapidly and completely cured, it is required to be manufactured in a particularly short time or to suppress outgas. It is extremely excellent and has the advantage that productivity can be improved.
  • the curing accelerator of the anaerobic adhesive or the 2-cyanoacrylate adhesive is a ketone solvent, an alcohol solvent, an ester solvent, or a glycol.
  • a solvent such as an ether solvent, a hydrocarbon solvent, a halogenated hydrocarbon solvent, an ether solvent, a glycol solvent, or an amine solvent. It may contain an active ingredient that promotes curing.
  • the solvent type at least one or a combination selected from the above solvent types is selected.
  • one or a combination of two or more selected from ethyl acetate, acetone, ethanol, methanol, butanol and toluene is preferable.
  • the adhesive laminated core may be a stator for a rotary electric machine. According to the adhesive laminated core manufacturing apparatus described in (17) above, higher productivity can be obtained while ensuring sufficient adhesive strength, so that a stator for a rotary electric machine having high performance and low manufacturing cost can be obtained. Will be able to be manufactured.
  • FIG. 1 is a cross-sectional view of a rotary electric machine 10 provided with an adhesive laminated core 21 for a stator manufactured in each embodiment.
  • FIG. 2 is a side view of the adhesive laminated core 21 for the stator.
  • the rotary electric machine 10 shown in FIG. 1 is an electric motor, specifically an AC electric motor, more specifically a synchronous motor, and more specifically a permanent magnet field type motor will be described as an example.
  • This type of motor is suitably adopted for, for example, an electric vehicle.
  • the rotary electric machine 10 includes a stator 20, a rotor 30, a case 50, and a rotary shaft 60.
  • the stator 20 and rotor 30 are housed in a case 50.
  • the stator 20 is fixed in the case 50.
  • the rotary electric machine 10 exemplifies an inner rotor type in which the rotor 30 is located inside the stator 20 in the radial direction.
  • the rotary electric machine 10 may be an outer rotor type in which the rotor 30 is located outside the stator 20.
  • a case where the rotary electric machine 10 is a 12-pole 18-slot three-phase AC motor is illustrated.
  • the rotary electric machine 10 can rotate at a rotation speed of 1000 rpm, for example, by applying an exciting current having an effective value of 10 A and a frequency of 100 Hz to each phase.
  • the stator 20 includes an adhesive laminated core 21 for a stator and a winding (not shown).
  • the stator adhesive laminated core 21 includes an annular core back portion 22 and a plurality of tooth portions 23.
  • the central axis O direction of the stator adhesive laminated core 21 (or core back portion 22) is referred to as an axial direction, and is orthogonal to the radial direction (central axis O) of the stator adhesive laminated core 21 (or core back portion 22).
  • the direction) is referred to as a radial direction
  • the circumferential direction (direction that orbits around the central axis O) of the adhesive laminated core 21 (or core back portion 22) for a stator is referred to as a circumferential direction.
  • the core back portion 22 is formed in an annular shape in a plan view of the stator 20 when viewed from the axial direction.
  • the plurality of tooth portions 23 project radially inward from the inner circumference of the core back portion 22.
  • the plurality of tooth portions 23 are arranged at equal angular intervals in the circumferential direction. In the example of FIG. 1, 18 tooth portions 23 are provided at every 20 degrees of the central angle centered on the central axis O.
  • the plurality of tooth portions 23 are formed to have the same shape and the same size as each other. Therefore, the plurality of tooth portions 23 have the same thickness dimension as each other.
  • the winding is wound around the teeth portion 23.
  • the winding may be a centralized winding or a distributed winding.
  • the rotor 30 is arranged radially inside the stator 20 (adhesive laminated core 21 for the stator).
  • the rotor 30 includes a rotor core 31 and a plurality of permanent magnets 32.
  • the rotor core 31 is formed in an annular shape (annular ring) arranged coaxially with the stator 20.
  • a rotation shaft 60 is arranged in the rotor core 31.
  • the rotating shaft 60 is fixed to the rotor core 31.
  • the plurality of permanent magnets 32 are fixed to the rotor core 31.
  • a set of two permanent magnets 32 form one magnetic pole.
  • the plurality of sets of permanent magnets 32 are arranged at equal angular intervals in the circumferential direction.
  • 12 sets (24 in total) of permanent magnets 32 are provided at a central angle of 30 degrees about the central axis O.
  • an embedded magnet type motor is adopted as a permanent magnet field type motor.
  • the rotor core 31 is formed with a plurality of through holes 33 that penetrate the rotor core 31 in the axial direction.
  • the plurality of through holes 33 are provided corresponding to the arrangement of the plurality of permanent magnets 32.
  • Each permanent magnet 32 is fixed to the rotor core 31 in a state of being arranged in the corresponding through hole 33.
  • the fixing of each permanent magnet 32 to the rotor core 31 can be realized, for example, by adhering the outer surface of the permanent magnet 32 and the inner surface of the through hole 33 with an adhesive.
  • a surface magnet type motor may be adopted instead of the embedded magnet type.
  • the stator adhesive laminated core 21 and the rotor core 31 are both laminated cores.
  • the adhesive laminated core 21 for a stator is formed by laminating a plurality of electromagnetic steel sheets 40 in the laminating direction.
  • the product thickness (total length along the central axis O) of each of the stator adhesive laminated core 21 and the rotor core 31 is, for example, 50.0 mm.
  • the outer diameter of the adhesive laminated core 21 for a stator is, for example, 250.0 mm.
  • the inner diameter of the adhesive laminated core 21 for a stator is, for example, 165.0 mm.
  • the outer diameter of the rotor core 31 is, for example, 163.0 mm.
  • the inner diameter of the rotor core 31 is, for example, 30.0 mm. However, these values are examples, and the product thickness, outer diameter and inner diameter of the stator adhesive laminated core 21, and the product thickness, outer diameter and inner diameter of the rotor core 31 are not limited to these values.
  • the inner diameter of the adhesive laminated core 21 for a stator is based on the tip of the tooth portion 23 in the adhesive laminated core 21 for a stator. That is, the inner diameter of the adhesive laminated core 21 for a stator is the diameter of a virtual circle inscribed in the tips of all the teeth portions 23.
  • Each of the electromagnetic steel sheets 40 forming the adhesive laminated core 21 for the stator and the rotor core 31 is formed, for example, by punching a strip-shaped steel plate as a base material.
  • the electromagnetic steel sheet 40 a known electrical steel sheet can be used.
  • the chemical composition of the electrical steel sheet 40 contains 2.5% to 3.9% Si in mass%, as shown below in mass% units. By setting the chemical composition in this range, the yield strength of each electrical steel sheet 40 can be set to 380 MPa or more and 540 MPa or less.
  • a non-oriented electrical steel sheet is used as the electrical steel sheet 40.
  • a non-oriented electrical steel strip of JISC2552: 2014 can be adopted.
  • the electromagnetic steel sheet 40 a grain-oriented electrical steel sheet may be adopted instead of the non-oriented electrical steel sheet.
  • a grain-oriented electrical steel strip of JISC2553: 2012 can be adopted.
  • Both sides of the electrical steel sheet 40 are coated with a phosphate-based insulating film in order to improve the workability of the laminated core and the iron loss of the laminated core.
  • a phosphate-based insulating film for example, (1) an inorganic compound, (2) an organic resin, (3) a mixture of an inorganic compound and an organic resin, and the like can be adopted.
  • the inorganic compound include (1) a complex of dichromate and boric acid, and (2) a complex of phosphate and silica.
  • the organic resin include epoxy-based resin, acrylic-based resin, acrylic styrene-based resin, polyester-based resin, silicon-based resin, and fluorine-based resin.
  • FIG. 3 is a side view of the adhesive laminated core manufacturing apparatus according to the present embodiment.
  • FIG. 4 is a flowchart for explaining the adhesive laminated core manufacturing method according to the present embodiment.
  • the adhesive laminated core manufacturing apparatus 100 of the present embodiment includes a strip-shaped steel plate supply section 110, a curing promotion section forming section 120, a drive section (not shown), a press working oil coating section 130, and the like.
  • a press-processed portion 140, an adhesive application portion 150, and a laminated adhesive portion 160 are provided.
  • the progressive die is configured by the combination of the press-processed portion 140, the adhesive coating portion 150, and the laminated adhesive portion 160.
  • a hoop material F wound around a strip-shaped steel plate M which is a material of the electromagnetic steel plate (steel plate component) 40, is pivotally supported in the strip-shaped steel plate supply unit 110, and the strip-shaped steel plate M is sent out toward the right side of the paper surface in FIG.
  • the right side of the paper surface which is the feeding direction of the strip-shaped steel plate M
  • the left side of the paper surface which is the opposite direction
  • the strip-shaped steel sheet M sent toward the downstream side from the strip-shaped steel plate supply unit 110 is a steel plate having the above-mentioned chemical composition, and both sides thereof are covered with the above-mentioned insulating coating.
  • the curing accelerator forming unit 120 has a curing accelerator tank 121, a nozzle 122, and a dryer 123.
  • the curing accelerator is stored in the curing accelerator tank 121.
  • the curing accelerator of the anaerobic adhesive contains the active ingredient that promotes the anaerobic curing, and the curing accelerator of the 2-cyanoacrylate adhesive promotes the curing of the 2-cyanoacrylate adhesive. Examples include those containing an active ingredient.
  • the curing accelerator promotes instant curing of the adhesive by mixing with an anaerobic adhesive or a 2-cyanoacrylate adhesive.
  • a solvent such as a ketone solvent, an alcohol solvent, an ester solvent, a glycol ether solvent, a hydrocarbon solvent, a halogenated hydrocarbon solvent, an ether solvent, a glycol solvent, or an amine solvent is used. It contains a diluted active ingredient that promotes anaerobic curing or an active ingredient that promotes curing of a 2-cyanoacrylate adhesive.
  • the solvent type at least one or a combination selected from the above solvent types is selected.
  • one or a combination of two or more selected from ethyl acetate, acetone, ethanol, methanol, butanol and toluene is preferable.
  • the curing accelerator applied to the strip-shaped steel sheet M is previously dried and cured to form a curing promoting portion, and then the surface thereof is coated with press working oil. Therefore, it is suppressed that the curing accelerator is mixed with the press working oil.
  • the solvent component is volatilized in advance by drying before applying the press working oil, so that the alcohol-based solvent is mixed with the press working oil. There is no need to handle it with consideration for crowds.
  • the degree of drying of the curing accelerator is most preferably dried until the solvent is completely volatilized, but in addition to this, the curing accelerator is not mixed with the press working oil. It is called "drying" including the case where it is dried to form a curing promotion part.
  • drying including the case where it is dried to form a curing promotion part.
  • the active components of the curing accelerator when an anaerobic adhesive is used include titanium, chromium, manganese, iron, cobalt, nickel, copper, zinc, silver, vanadium, molybdenum, ruthenium, saccharin and combinations thereof. What is selected is the detection target.
  • the active ingredient of the curing accelerator includes organic amines such as dimethylaniline, diethylamine, o-phenylenediamine, dimethylparatoluidine, diethylparatoluidine and N, N-diethylaniline.
  • organic amines such as dimethylaniline, diethylamine, o-phenylenediamine, dimethylparatoluidine, diethylparatoluidine and N, N-diethylaniline.
  • Acid amides such as trichloracetamide
  • organic imides such as succinic imide
  • quaternary ammonium salts such as tetramethylammonium chloride and benzyltrimethylammonium chloride
  • the metal catalyst of the curing accelerator dissolved in the stamping oil is discharged while being dissolved in the pressing oil without being used for the original curing promoting application.
  • the metal catalyst of the curing accelerator is of a type that does not completely dissolve in the stamping oil, this metal catalyst will precipitate and deposit in the stamping oil discharge path of the die, causing clogging and residues. There is a risk of becoming.
  • an appropriate mixing ratio is specified between the curing accelerator and the adhesive, and the adhesive performance deteriorates regardless of whether the mixing ratio is higher or lower. If the curing accelerator is mixed with the press working oil, it is necessary to increase the amount of the curing accelerator so as to compensate for the loss. However, since the shape of the steel plate component of the adhesive laminated core is complicated, it is not easy to adjust the adhesion amount of the curing accelerator to the target value. Therefore, there is a risk that the original adhesive performance cannot be expressed at a high level due to poor adjustment.
  • the active ingredient that promotes anaerobic curing is selected from titanium, chromium, manganese, iron, cobalt, nickel, copper, zinc, silver, vanadium, molybdenum, ruthenium, saccharin and combinations thereof.
  • it may be selected from copper, iron, vanadium, cobalt, chromium, silver, and manganese, and combinations thereof.
  • it can be copper, iron, vanadium, cobalt, and chromium, and combinations thereof.
  • it is provided in the form of a metal oxide or salt.
  • the curing accelerator mixes with an anaerobic adhesive to promote instant curing of the adhesive.
  • the curing accelerator of the 2-cyanoacrylate adhesive includes organic amines such as dimethylaniline, diethylamine, o-phenylenediamine, dimethylparatoluidine, diethylparatoluidine and N, N-diethylaniline, and acid amides such as trichloracetamide.
  • Organic imides such as succinate imide, quaternary ammonium salts such as tetramethylammonium chloride and benzyltrimethylammonium chloride, and effective in promoting the curing of 2-cyanoacrylate adhesives selected from their combinations. Contains ingredients.
  • one or a combination of two or more selected from organic amines such as dimethylaniline, diethylamine, o-phenylenediamine, dimethylparatoluidine, diethylparatoluidine, N, N-diethylaniline and the like can be mentioned.
  • the nozzle 122 is connected to the curing accelerator tank 121.
  • the nozzle port of the nozzle 122 faces the upper surface of the strip-shaped steel plate M, and an appropriate amount of the curing accelerator in the curing accelerator tank 121 is applied to the upper surface.
  • the curing accelerator is applied so as to cover the entire surface of the upper surface, but the curing accelerator is not limited to this form, and may be configured to be partially applied, for example, in the form of dots.
  • the dryer 123 has a pair of rollers 123a and a dryer 123b.
  • the pair of rollers 123a are arranged on the downstream side of the nozzle 122.
  • the pair of rollers 123a hold the strip-shaped steel plate M passing between them so as to be always kept horizontal.
  • the dryer 123b is arranged at a position sandwiched between the pair of rollers 123a.
  • the dryer 123b dries the curing accelerator by blowing air on the upper surface and the lower surface of the strip-shaped steel plate M.
  • a curing promoting layer (curing promoting portion) in which the solvent is dried is formed on the upper surface of the strip-shaped steel sheet M after passing through the downstream side of the pair of rollers 123a with a uniform thickness over the entire surface.
  • the thickness of the curing acceleration layer 0.1 ⁇ m can be exemplified. Since the lower surface of the strip-shaped steel plate M is not coated with the curing accelerator, the insulating film remains exposed.
  • the drive unit is arranged at the position D between the curing promotion unit forming unit 120 and the press working oil coating unit 130.
  • the driving unit intermittently feeds the strip-shaped steel plate M from the curing promoting portion forming portion 120 toward the pressing oil coating portion 130 toward the right side of the paper surface.
  • a curing promoting layer in which the curing accelerator is dried is already formed on the upper surface of the strip-shaped steel sheet M sent out from the curing promoting portion forming portion 120 before entering the driving portion.
  • the lower surface of the strip-shaped steel plate M before entering the driving unit has no curing promoting layer, and the insulating film remains exposed.
  • the press working oil coating unit 130 includes a coating roller 131 and an oil pan 132.
  • the oil pan 132 is arranged below the coating roller 131 and stores press working oil.
  • the coating roller 131 is a pair of rollers that hold the strip-shaped steel plate M so as to be sandwiched between the upper and lower surfaces thereof, and is in contact with the upper surface and the lower surface of the strip-shaped steel plate M and is sent out to the downstream side while applying press working oil.
  • a dried hardening accelerating layer is formed on the upper surface of the strip-shaped steel plate M, so that the pressing working oil layer is not mixed on the hardening accelerating layer. Is formed over the entire surface. That is, the surface of the curing acceleration layer is covered with the press working oil layer without gaps.
  • a layer of press working oil is formed over the entire surface on the lower surface (insulation coating) of the strip-shaped steel plate M.
  • the press working portion 140 includes a first-stage punching portion 141 and a second-stage punching portion 142, and forms a part of the progressive mold.
  • the first-stage punching portion 141 is arranged on the downstream side of the press working oil coating portion 130, and has a male die 141a and a female die 141b.
  • the male mold 141a and the female mold 141b are coaxially arranged along the vertical direction, and the strip-shaped steel plate M is inserted between them. Therefore, the male mold 141a faces the upper surface of the strip-shaped steel plate M, and the female mold 141b faces the lower surface of the strip-shaped steel plate M.
  • the male mold 141a is moved downward by a hydraulic mechanism (not shown) so as to reach the inside of the female mold 141b, among the strip-shaped steel plates M.
  • the first punching process necessary for forming the electromagnetic steel sheet 40 is performed.
  • the press working oil is applied to the upper and lower surfaces of the strip-shaped steel plate M, it can be punched out without causing seizure or the like.
  • the surface of the curing accelerating layer is coated with the press working oil, it is possible to prevent the curing accelerating layer from adhering to the male die 141a and the female die 141b.
  • the male mold 141a is moved upward and pulled out from the female mold 141b, and the strip-shaped steel plate M is sent out again toward the downstream side.
  • the second-stage punching portion 142 is arranged on the downstream side of the first-stage punching portion 141, and has a male die 142a and a female die 142b.
  • the male die 142a and the female die 142b are coaxially arranged along the vertical direction, and the strip-shaped steel plate M after the first punching process is inserted is inserted between them. Therefore, the male mold 142a faces the upper surface of the strip-shaped steel plate M, and the female mold 142b faces the lower surface of the strip-shaped steel plate M. Then, in a state where the feeding of the strip-shaped steel plate M is temporarily stopped again, the male mold 142a is moved downward by a hydraulic mechanism (not shown) so as to reach the inside of the female mold 142b.
  • the second punching process necessary for forming the electromagnetic steel sheet 40 is performed.
  • the press working oil is applied to the upper and lower surfaces of the strip-shaped steel plate M, it can be punched out without causing seizure or the like.
  • the surface of the curing acceleration layer is covered with the press working oil, it is possible to prevent the curing acceleration layer from adhering to the male mold 142a and the female mold 142b. Therefore, since the possibility that the curing promoting layer is peeled off and deposited on the male mold 142a and the female mold 142b can be suppressed, it is possible to suppress the deterioration of the structural strength and the magnetic characteristics of the adhesive laminated core 21 for a stator to be manufactured from now on.
  • the male mold 142a is moved upward and pulled out from the female mold 142b, and the strip-shaped steel plate M is sent out again toward the downstream side.
  • the adhesive coating portion 150 is arranged on the downstream side of the press working portion 140.
  • the adhesive coating unit 150 includes a pneumatic feeder 151, a syringe 152, a nozzle 153, and a steel plate holder 154.
  • the syringe 152 is a container for storing the adhesive, and is connected between the pneumatic feeder 151 and the nozzle 153 via a pipe.
  • "Arontite” (registered trademark) manufactured by Toagosei Co., Ltd. can be exemplified as the anaerobic adhesive
  • “Aron Alpha” (registered trademark) manufactured by Toagosei Co., Ltd. can be exemplified as the 2-cyanoacrylate adhesive.
  • the nozzle 153 includes a plurality of needles having a discharge port facing upward. Each needle is arranged below the strip-shaped steel plate M. Therefore, the discharge port of each needle faces the lower surface of the strip-shaped steel plate M.
  • the steel plate retainer 154 is arranged above the nozzle 153 (immediately above each needle). Therefore, the steel plate holding 154 faces the upper surface of the strip-shaped steel plate M.
  • the steel plate restraint 154 is pushed downward by a hydraulic mechanism (not shown) with the delivery of the strip-shaped steel plate M temporarily stopped.
  • the lower surface of the steel plate retainer 154 comes into contact with the upper surface of the strip steel plate M and pushes down the strip steel plate M downward.
  • the height position of the strip-shaped steel plate M can be pushed down to the adhesive application position by the nozzle 153 for positioning. In this positioning state, the lower surface of the strip-shaped steel plate M is close to the discharge port of each needle.
  • the laminated adhesive portion 160 is arranged on the downstream side of the adhesive application portion 150.
  • the laminated bonding portion 160 includes an outer peripheral punching male die 161, an outer peripheral punching female die 162, a spring 163, and a heater 164.
  • the outer peripheral punched male die 161 is a cylindrical die having a circular bottom surface, and the lower end of the spring 163 is connected to the upper end thereof.
  • the outer peripheral punching die 161 is supported by the spring 163 and can move up and down together with the spring 163.
  • the outer peripheral punched male die 161 has substantially the same outer diameter as the outer diameter of the stator adhesive laminated core 21.
  • the outer peripheral punched female die 162 is a die having a cylindrical internal space, and has substantially the same inner diameter as the outer diameter of the stator adhesive laminated core 21.
  • the heater 164 is integrally incorporated in the outer peripheral punching female die 162.
  • the heater 164 heats each electromagnetic steel plate (steel plate component) 40 laminated in the outer peripheral punched female die 162 from the periphery thereof.
  • a heat-curable type is used as the adhesive, the adhesive receives heat from the heater 164 and cures.
  • a room temperature curing type is used as the adhesive, this adhesive cures at room temperature without requiring heating.
  • the outer peripheral punching male die 161 is lowered, the strip-shaped steel plate M is sandwiched between the outer peripheral punching female die 162, and further the outer periphery is further formed.
  • the outer peripheral punched electromagnetic steel sheet 40 can be obtained from the strip-shaped steel plate M.
  • the surface of the curing accelerating layer is covered with the press working oil, it is possible to prevent the curing accelerating layer from adhering to the outer peripheral punching male die 161 and the outer peripheral punching female die 162.
  • the electromagnetic steel sheet 40 punched out by the outer peripheral punching die 161 is laminated on the upper surface of another electromagnetic steel sheet 40 laminated and bonded in the outer peripheral punching female die 162 which has been punched out first, and further, the outer peripheral punching male die. It receives the pressing force from 161 and the heating from the heater 164. At this time, the pressing force applied to the electromagnetic steel sheet 40 from the outer peripheral punching die 161 is always maintained constant by the urging force of the spring 163. As described above, the electrical steel sheet 40 punched this time is adhesively fixed to the upper surface of the electrical steel sheet 40 punched last time. By repeating each of the steps of punching the outer periphery, pressurizing, and heating as many times as the number of laminated sheets of each electrical steel sheet 40, the adhesive laminated core 21 for a stator is formed in the outer peripheral punching female die 162.
  • the female die 141b, the female die 142b, the nozzle 153, the outer peripheral punched female die 162, and the heater 164 are fixed on a common fixed base 171. .. Therefore, the female dies 141b, the female dies 142b, the nozzle 153, the outer peripheral punched female dies 162, and the heater 164 are fixed in relative positions in the horizontal direction and the vertical direction.
  • the male die 141a, the male die 142a, the steel plate retainer 154, and the outer peripheral punched male die 161 are also fixed to the lower surface of the common movable base 172. Therefore, the male dies 141a, the male dies 142a, the steel plate retainer 154, and the outer peripheral punched male dies 161 are fixed in relative positions in the horizontal direction and the vertical direction.
  • the drive unit sends the strip-shaped steel plate M toward the downstream side, and when the movable base 172 is temporarily stopped, the movable base 172 is lowered to punch, laminate, and bond the outer periphery of the electromagnetic steel plate 40, and then punch the outer circumference with the strip-shaped steel plate M.
  • the adhesive is applied to the position of the electromagnetic steel sheet 40 to be applied, the second punching process to the position where the adhesive is applied next on the strip-shaped steel plate M, and the second punching process on the strip-shaped steel plate M.
  • the first punching process to the position where the above is performed is performed at the same time.
  • the movable base 172 is raised and retracted above the strip-shaped steel plate M, and then the strip-shaped steel plate M is sent out to the downstream side again by a predetermined distance by the driving unit, and then temporarily stopped again. In this state, the movable base 172 is lowered again, and processing at each position is continued. In this way, the adhesive laminated core 21 for a stator is manufactured by repeating the process of moving the movable base 172 up and down at the time of temporary stop while intermittently feeding the strip-shaped steel plate M in the progressive mold by the driving unit. To.
  • the adhesive laminated core manufacturing method of the present embodiment includes a steel plate feeding step S1, a curing accelerator coating step S2, a curing accelerator drying step S3, a processing oil coating step S4, and first punching. It has a step S5, a second punching step S6, an adhesive application step S7, a stator adhesive laminated core forming step S8, and a take-out step S9.
  • the strip-shaped steel plate M is fed from the hoop material F toward the downstream side.
  • the curing accelerator a is applied from the nozzle 122 to the entire upper surface of the strip-shaped steel plate M.
  • the curing accelerator a at this point is liquid.
  • air from the dryer 123b is blown onto the upper and lower surfaces of the strip-shaped steel plate M to dry the liquid curing accelerator a to form a curing promoting layer (curing promoting portion) a'.
  • This curing acceleration layer a' is a solid.
  • the press working oil b is applied to the upper and lower surfaces of the strip-shaped steel plate M by the coating roller 131 to form a layer.
  • the concentration does not decrease due to mixing with the press working oil b, and the original state is maintained.
  • the strip-shaped steel plate M is punched for the first time by the first-stage punching portion 141.
  • the strip-shaped steel plate M is coated with the press working oil b in advance, there is no problem in the press working such as seizure between the male die 141a and the female die 141b.
  • the strip-shaped steel plate M is punched for the second time by the second-stage punching portion 142.
  • the press working oil b is applied to the strip-shaped steel plate M in advance, there is no problem in press working such as seizure between the male die 142a and the female die 142b.
  • the adhesive c discharged from the nozzle 153 is applied so as to be arranged on the lower surface of the strip-shaped steel plate M via the press working oil b.
  • the adhesive c is applied in a dot shape having a predetermined thickness dimension and a predetermined diameter dimension.
  • the adhesive c is not yet mixed with the curing promoting layer a', it is in a liquid state.
  • the subsequent step S8 for forming the adhesive laminated core for the stator the electromagnetic steel sheet 40 whose outer circumference is punched from the strip-shaped steel sheet M by the outer peripheral punching die 161 is laminated on the upper surface of the other electrical steel sheet 40 punched earlier.
  • a curing acceleration layer a'coated with the press working oil b is formed on the upper surface of the other electrical steel sheet 40.
  • the electromagnetic steel sheet 40 punched out on the outer periphery is laminated on this and heated while pressurizing.
  • the adhesive c on the lower surface of the electrical steel sheet 40 punched out this time pushes away the press working oil b on the upper surface side of the other electrical steel sheet 40 punched out earlier, and the curing promotion layer underneath it. It cures instantly while mixing with a'.
  • each step of the steel sheet feeding step S1 to the stator adhesive laminated core forming step S8 is sequentially repeated until the number of laminated electromagnetic steel sheets 40 reaches a predetermined number. Then, when the number of laminated electromagnetic steel sheets 40 after the stator adhesive laminated core forming step S8 reaches the predetermined number, the process proceeds to the taking-out step S9 without returning to the steel sheet feeding step S1. In the subsequent taking-out step S9, the completed adhesive laminated core 21 for a stator is taken out from the outer peripheral punching female die 162, whereby the entire step of the adhesive laminated core manufacturing method is completed.
  • the outline of the adhesive laminated core manufacturing method using the adhesive laminated core manufacturing apparatus 100 described above is summarized below.
  • the strip-shaped steel sheet M coated with the press-processed oil b on both sides is pressed, and the adhesive c is applied to the lower surface (one side) of the strip-shaped steel plate M via the press-processed oil b.
  • This is a method of obtaining a plurality of electromagnetic steel plates (steel plate parts) 40 and sequentially laminating and adhering each of the electromagnetic steel plates 40 to manufacture an adhesive laminated core (adhesive laminated core) 21 for a stator.
  • the curing accelerator a is applied and dried on the upper surface of one side of the strip-shaped steel plate M to form a curing promoting layer (curing promoting portion) a'. That is, in the method for manufacturing an adhesive laminated core of the present embodiment, a plurality of electrical steel sheets 40 are punched out while the strip-shaped steel sheets M are fed in the progressive mold, and the electrical steel sheets 40 are laminated via the adhesive c. This is a method for manufacturing an adhesive laminated core 21 for a stator.
  • the curing accelerator a is applied and dried on the upper surface of one side of the strip-shaped steel sheet M before the pressing oil b is applied to form the curing promoting layer a'. It has a step and a step of applying the press working oil b to the surface of the curing acceleration layer a'.
  • each electrical steel sheet 40 includes a first punched electrical steel sheet (first steel sheet component) 40 and a later punched electrical steel sheet (second steel sheet component) 40.
  • the method for manufacturing an adhesive laminated core of the present embodiment includes a first step of performing a steel plate feeding step S1 to a stator adhesive laminated core forming step S8 to obtain a bonded electromagnetic steel plate (first steel plate component) 40, and a steel plate.
  • the second step of performing the feeding step S1 to the adhesive application step S7 to obtain the electromagnetic steel sheet (second steel plate component) 40 before bonding, and the bonding laminated core forming step S8 for the stator are performed to obtain the electromagnetic steel sheet (second steel sheet component) before bonding.
  • the third step of adhering the steel plate component) 40 onto the bonded electromagnetic steel plate (first steel sheet component) 40 is performed.
  • a magnetic steel sheet (first steel sheet component) 40 having a processing oil b and having a lower surface bonded to the upper surface of another electromagnetic steel sheet 40 is prepared.
  • a pre-bonded electromagnetic steel sheet (second steel sheet component) 40 having a lower surface (second surface) and an adhesive c arranged on the lower surface via press working oil b is prepared.
  • the unbonded electrical steel sheet 40 is superposed on the bonded electrical steel sheet 40 and bonded so that the first surface and the second surface face each other.
  • the curing acceleration layer a'provided on the strip-shaped steel sheet M is formed by pre-drying, it is suppressed from being mixed with the press working oil b applied in the post-processing. There is. Therefore, when the electrical steel sheets 40 are laminated and bonded, the curing promoting layer a'can be mixed with the adhesive c of the electrical steel sheet 40 to be bonded while maintaining the original high concentration, so that high adhesive strength can be achieved at an early stage. Can be expressed in. Therefore, it is possible to obtain higher productivity while ensuring sufficient adhesive strength.
  • the press working oil b may be applied not only to both sides of the strip-shaped steel plate M but also to only one side on which the curing promotion layer a'is formed.
  • the curing accelerator a may be applied not only to one side of the strip-shaped steel sheet M but also to both sides.
  • the coating of the curing accelerator a is not limited to the entire surface coating of the strip-shaped steel plate M, but may be a dot coating.
  • the punctate adhesive c and the punctate curing accelerating layer (curing accelerating portion) a' are correctly overlapped and mixed in the stator adhesive laminated core forming step S8, so that they are applied in a later step. It is necessary to correctly adjust the relative positional relationship with the adhesive c to be formed.
  • the adhesive laminated core manufacturing apparatus 100 of the present embodiment includes a press working oil coating unit 130 that applies press working oil b to both sides of the strip steel plate M, a press working portion 140 that presses the strip steel plate M, and a strip steel plate M.
  • the curing accelerator a is applied and dried on one side of the adhesive coating portion 150 for applying the adhesive c to the lower surface of the steel sheet M via the stamping oil b and the strip-shaped steel sheet M before reaching the stamping oil coating portion 130 for curing.
  • a curing promoting portion forming portion 120 for forming the promoting layer a' is provided.
  • the adhesive laminated core manufacturing apparatus 100 of the present embodiment a plurality of electromagnetic steel plates 40 punched out from the strip-shaped steel plate M while feeding the strip-shaped steel plate M are laminated via an adhesive c to form a stator adhesive laminated core 21. It is a device that manufactures. Then, in the adhesive laminated core manufacturing apparatus 100 of the present embodiment, the curing accelerator a is applied and dried on the upper surface of one side of the strip-shaped steel plate M to form the curing promoting layer a', and the curing promoting portion forming portion 120 and the curing are performed.
  • the press working oil coating part 130 is arranged on the downstream side of the promotion part forming part 120, and at least coats the surface of the curing promotion layer a'with the press working oil b, and is arranged on the downstream side of the press working oil coating part 130.
  • the strip-shaped steel plate M is provided with a press working portion 140 that presses the strip-shaped steel plate M, and an adhesive coating portion 150 that applies the adhesive c to the lower surface of the strip-shaped steel plate M via the press working oil b.
  • the curing promotion portion forming portion 120, the press working oil coating portion 130, the press working portion 140, and the adhesive coating portion 150 are arranged in this order. There is.
  • the curing promoting portion a' is formed on the strip-shaped steel plate M in a pre-dried state in the curing promoting portion forming portion 120. Therefore, it is possible to prevent the curing accelerating portion a'from being mixed with the press working oil b applied by the press working oil applying portion 130. Therefore, when the electrical steel sheets 40 are laminated and bonded, the curing promoting layer a'can be mixed with the adhesive c of the electrical steel sheet 40 to be bonded while maintaining a high concentration, so that high adhesive strength can be achieved at an early stage. Can be expressed. Therefore, it is possible to obtain higher productivity while ensuring sufficient adhesive strength.
  • FIG. 5 is a side view of the adhesive laminated core manufacturing apparatus according to the present embodiment.
  • FIG. 6 is a flowchart for explaining the adhesive laminated core manufacturing method according to the present embodiment.
  • the adhesive laminated core manufacturing apparatus 200 of the present embodiment includes a strip-shaped steel plate supply unit 210, a curing promotion unit forming unit 220, a drive unit (not shown), a press working oil coating unit 230, and the press working oil coating unit 230. It includes a press working portion 240, an adhesive coating portion 250, and a laminated adhesive portion 260.
  • the progressive die is configured by the combination of the press-processed portion 240, the adhesive coating portion 250, and the laminated adhesive portion 260.
  • the hoop material F wound around the strip-shaped steel plate M which is the material of the electromagnetic steel plate (steel plate component) 40, is pivotally supported by the strip-shaped steel plate supply unit 210, and the strip-shaped steel plate M is sent out toward the right side of the paper surface in FIG.
  • the right side of the paper surface which is the feeding direction of the strip-shaped steel plate M
  • the left side of the paper surface which is the opposite direction
  • the strip-shaped steel sheet M sent toward the downstream side from the strip-shaped steel plate supply unit 210 is a steel plate having the above-mentioned chemical composition, and both sides thereof are covered with the above-mentioned insulating coating.
  • the curing accelerator forming portion 220 includes a curing accelerator tank 221, a nozzle 222, a seal box 223, and a wiping roller 224.
  • the curing accelerator tank 221 stores a solution of the curing accelerator in a solvent.
  • the curing accelerator promotes instant curing of the adhesive by mixing with an anaerobic adhesive or a 2-cyanoacrylate adhesive.
  • the nozzle 222 is connected to the curing accelerator tank 221.
  • the nozzle port of the nozzle 222 faces the lower surface of the strip-shaped steel plate M, and the curing accelerator in the curing accelerator tank 221 is sprayed on the lower surface in an appropriate amount.
  • the curing accelerator is applied so as to cover the entire surface of the lower surface, but the curing accelerator is not limited to this form, and may be configured to be partially applied, for example, in the form of dots.
  • the seal box 223 is a box having an internal space, and has an entrance and an exit leading to the internal space.
  • the strip-shaped steel plate M is fed into the internal space of the seal box 223 from the inlet while maintaining its horizontal state, and then is sent out of the seal box 223 from the outlet.
  • the nozzle 222 is arranged below the internal space of the seal box 223. As described above, the nozzle port of the nozzle 222 is directed to the lower surface of the portion of the strip-shaped steel plate M through which the internal space is inserted.
  • the curing accelerator sprayed from the nozzle 11 onto the lower surface of the strip-shaped steel plate M dries instantly because the solvent volatilizes.
  • a curing promoting layer (curing promoting portion) in which the solvent is dried is formed on the lower surface of the strip-shaped steel plate M with a uniform thickness over the entire surface.
  • 0.1 ⁇ m can be exemplified.
  • the degree of drying of the curing accelerator layer (curing accelerator) is most preferably dried until the solvent is completely volatilized, but in addition to this, the curing accelerator is not mixed with the press working oil. It is called "drying" including the case where it is dried to form a curing promoting layer.
  • the degree of dryness of the curing accelerator layer As described above, as a means for quantitatively examining the degree of dryness of the curing accelerator layer, it is determined by detecting the content of the active ingredient of the curing accelerator contained in the press working oil after being applied to the curing promoting portion. can. Since the curing accelerator is hardly applied to the upper surface of the strip-shaped steel sheet M, the insulating film is almost left exposed.
  • the wiping roller 224 mainly wipes off the curing accelerator remaining on the upper surface of the strip-shaped steel plate M as a surplus. As a result, the upper surface of the strip-shaped steel sheet M after passing through the wiping roller 224 is in a state where the curing accelerator is completely wiped off and the insulating film remains exposed.
  • the drive unit is arranged at the position D between the curing promotion unit forming unit 220 and the press working oil coating unit 230.
  • the driving unit intermittently feeds the strip-shaped steel plate M from the curing promoting portion forming portion 220 toward the pressing oil coating portion 230 toward the right side of the paper surface.
  • a curing promoting layer in which the curing accelerator is dried is already formed on the lower surface of the strip-shaped steel plate M sent out from the curing promoting portion forming portion 220 before entering the driving portion.
  • the upper surface of the strip-shaped steel plate M before entering the driving unit has no curing promoting layer, and the insulating film remains exposed.
  • the press working oil coating unit 230 includes a coating roller 231 and an oil pan 232.
  • the oil pan 232 is arranged below the coating roller 231 and stores the press working oil.
  • the coating roller 231 is a pair of rollers that hold the strip-shaped steel plate M so as to be sandwiched between the upper and lower surfaces thereof, and is in contact with the upper surface and the lower surface of the strip-shaped steel plate M and is sent out to the downstream side while applying press working oil.
  • a dried hardening accelerating layer is formed on the lower surface of the strip-shaped steel plate M, so that the pressing working oil layer is not mixed on the hardening accelerating layer. Is formed over the entire surface. That is, the surface of the curing acceleration layer is covered with the press working oil layer without gaps.
  • a layer of press working oil is formed on the upper surface (insulation coating) of the strip-shaped steel plate M over the entire surface.
  • the press working portion 240 is a progressive remittance mold including a first-stage punching portion 241, a second-stage punching portion 242, and a third-stage punching portion 243.
  • the first-stage punching portion 241 is arranged on the downstream side of the press working oil coating portion 230, and has a male die 241a and a female die 241b.
  • the male mold 241a and the female mold 241b are coaxially arranged along the vertical direction, and the strip-shaped steel plate M is inserted between them. Therefore, the male mold 241a faces the upper surface of the strip-shaped steel plate M, and the female mold 241b faces the lower surface of the strip-shaped steel plate M.
  • the male mold 241a is moved downward by a hydraulic mechanism (not shown) so as to reach the inside of the female mold 241b.
  • the first punching process necessary for forming the electromagnetic steel sheet 40 is performed.
  • the press working oil is applied to the upper and lower surfaces of the strip-shaped steel plate M, it can be punched out without causing seizure or the like.
  • the surface of the curing accelerating layer is coated with the press working oil, it is possible to prevent the curing accelerating layer from adhering to the male mold 241a and the female mold 241b.
  • the male mold 241a After punching the strip-shaped steel plate M, the male mold 241a is moved upward and pulled out from the female mold 241b, and the strip-shaped steel plate M is sent out again toward the downstream side.
  • the second-stage punching portion 242 is arranged on the downstream side of the first-stage punching portion 241 and has a male die 242a and a female die 242b.
  • the male die 242a and the female die 242b are coaxially arranged along the vertical direction, and the strip-shaped steel plate M after the first punching process is inserted is inserted between them. Therefore, the male mold 242a faces the upper surface of the strip-shaped steel plate M, and the female mold 242b faces the lower surface of the strip-shaped steel plate M. Then, in a state where the feeding of the strip-shaped steel plate M is temporarily stopped again, the male mold 242a is moved downward by a hydraulic mechanism (not shown) so as to reach the inside of the female mold 242b.
  • the second punching process necessary for forming the electromagnetic steel sheet 40 is performed.
  • the press working oil is applied to the upper and lower surfaces of the strip-shaped steel plate M, it can be punched out without causing seizure or the like.
  • the surface of the curing acceleration layer is covered with the press working oil, it is possible to prevent the curing acceleration layer from adhering to the male mold 242a and the female mold 242b. Therefore, since the possibility that the curing promoting layer is peeled off and deposited on the male mold 242a and the female mold 242b can be suppressed, it is possible to suppress the deterioration of the structural strength and the magnetic characteristics of the adhesive laminated core 21 for a stator to be manufactured from now on.
  • the male mold 242a After punching the strip-shaped steel plate M, the male mold 242a is moved upward and pulled out from the female mold 242b, and the strip-shaped steel plate M is sent out again toward the downstream side.
  • the third-stage punching portion 243 is arranged on the downstream side of the second-stage punching portion 242, and has a male die 243a and a female die 243b.
  • the male die 243a and the female die 243b are coaxially arranged along the vertical direction, and the strip-shaped steel plate M after the second punching process is inserted is inserted between them. Therefore, the male mold 243a faces the upper surface of the strip-shaped steel plate M, and the female mold 243b faces the lower surface of the strip-shaped steel plate M. Then, in a state where the feeding of the strip-shaped steel plate M is temporarily stopped again, the male mold 243a is moved downward by a hydraulic mechanism (not shown) so as to reach the inside of the female mold 243b.
  • the third punching process necessary for forming the electromagnetic steel sheet 40 is performed. At this time as well, since the press working oil is applied to the upper and lower surfaces of the strip-shaped steel plate M, it can be punched out without causing seizure or the like. After this punching process, the male die 243a is moved upward and pulled out from the female die 243b, and the strip-shaped steel plate M is sent out again toward the downstream side.
  • the adhesive coating portion 250 is incorporated in the laminated adhesive portion 260 on the downstream side of the press working portion 240.
  • the adhesive application unit 250 includes a pneumatic feeder 251 and a syringe 252, and a nozzle 253.
  • the syringe 252 is a container for storing the adhesive, and is connected between the pneumatic feeder 251 and the nozzle 253 via a pipe.
  • the adhesive the one described in the first embodiment can be used.
  • the nozzle 253 is arranged above the strip-shaped steel plate M. Therefore, the ejection port of the nozzle 253 faces the upper surface of the strip-shaped steel plate M.
  • the laminated adhesive portion 260 is arranged on the downstream side of the press-processed portion 240 and at the same position as the adhesive application portion 250.
  • the laminated bonding portion 260 includes an outer peripheral punching male die 261, an outer peripheral punching female die 262, a spring 263, and a heater 264.
  • the outer peripheral punched male die 261 is a cylindrical die having a circular bottom surface, and the lower end of the spring 263 is connected to the upper end thereof.
  • the outer peripheral punching die 261 is supported by the spring 263 and can move up and down together with the spring 263.
  • the outer peripheral punched male die 261 has substantially the same outer diameter as the outer diameter of the stator adhesive laminated core 21.
  • the nozzle 253 is built in the outer peripheral punching die 261.
  • the discharge port of the nozzle 253 is formed on the bottom surface of the outer peripheral punching die 261.
  • the outer peripheral punched female die 262 is a die having a cylindrical internal space, and has substantially the same inner diameter as the outer diameter of the stator adhesive laminated core 21.
  • the heater 264 is integrally incorporated in the outer peripheral punching female die 262.
  • the heater 264 heats each electromagnetic steel plate (steel plate component) 40 laminated in the outer peripheral punched female die 262 from the periphery thereof.
  • a heat-curable type is used as the adhesive, the adhesive receives heat from the heater 264 and cures.
  • a room temperature curing type is used as the adhesive, this adhesive cures at room temperature without requiring heating.
  • the outer peripheral punching male die 261 is lowered, the strip-shaped steel plate M is sandwiched between the outer peripheral punching female die 262, and further the outer periphery is further formed.
  • the outer peripheral punched electromagnetic steel sheet 40 can be obtained from the strip-shaped steel plate M.
  • the surface of the curing accelerating layer is covered with the press working oil, it is possible to prevent the curing accelerating layer from adhering to the outer peripheral punching male die 261 and the outer peripheral punching female die 262.
  • the adhesive in the syringe 252 is sent to the nozzle 253.
  • an appropriate amount of adhesive is discharged from the discharge port formed on the bottom surface of the outer peripheral punching die 261 and applied to the upper surface of the strip-shaped steel plate M.
  • the adhesive applied here is used for adhering another electromagnetic steel sheet 40 that is next punched out on the outer periphery and laminated.
  • the electrical steel sheet 40 punched out by the outer peripheral punching male die 261 is laminated on the upper surface of another electrical steel sheet 40 laminated and bonded in the outer peripheral punched female die 262 that was punched out last time.
  • the adhesive previously formed on the upper surface of the other electrical steel sheet 40 is mixed with the curing acceleration layer formed on the lower surface of the electrical steel sheet 40 punched out this time.
  • the pressing force from the outer peripheral punching die 261 and the heating from the heater 264 are applied to each of the laminated electromagnetic steel sheets 40. At this time, the pressing force applied to the electromagnetic steel sheet 40 from the outer peripheral punching die 261 is always maintained constant by the urging force of the spring 263.
  • the electrical steel sheet 40 punched this time is adhesively fixed to the upper surface of the electrical steel sheet 40 punched last time.
  • the adhesive applied to the upper surface of the electromagnetic steel sheet 40 punched out this time has not yet been mixed with the curing promoting layer at this point, so that it does not cure and remains in a liquid state.
  • the female die 241b, the female die 242b, the female die 243b, the outer peripheral punched female die 262, and the heater 264 are fixed on a common fixed base 271. ing. Therefore, the female dies 241b, the female dies 242b, the female dies 243b, the outer peripheral punched female dies 262, and the heater 264 are fixed in relative positions in the horizontal direction and the vertical direction. Similarly, the male die 241a, the male die 242a, the nozzle 253, and the outer peripheral punching male die 261 are also fixed to the lower surface of the common movable base 272. Therefore, these male dies 241a, male dies 242a, nozzles 253, and outer peripheral punched male dies 261 are also fixed in relative positions in the horizontal and vertical directions.
  • the movable base 272 is lowered to punch out the outer periphery of the electromagnetic steel sheet 40, laminate and bond it, and apply an adhesive for the next step.
  • the first punching process to the position where the second punching process is performed is performed at the same time.
  • the movable base 272 is raised and retracted above the strip-shaped steel plate M, and then the strip-shaped steel plate M is sent out to the downstream side again by a predetermined distance by the driving unit, and then temporarily stopped again. In this state, the movable base 272 is lowered again, and processing at each position is continued.
  • the adhesive laminated core 21 for a stator is manufactured by repeating the step of moving the movable base 272 up and down at the time of temporary stop while intermittently feeding the strip-shaped steel plate M by the driving unit.
  • the adhesive laminated core manufacturing method of the present embodiment includes a steel plate feeding step S11, a curing accelerator coating and drying step S12, a surplus wiping step S13, a processing oil coating step S14, and a first punching. It has a step S15, a second punching step S16, a third punching step S17, an adhesive coating and stator adhesive laminated core forming step S18, and a take-out step S19.
  • the strip-shaped steel plate M is fed from the hoop material F toward the downstream side.
  • the curing accelerator a is applied and dried from the nozzle 222 onto the entire lower surface of the strip-shaped steel sheet M to form the curing accelerator layer a'.
  • This curing acceleration layer a' is a solid.
  • the subsequent excess curing accelerator step S13 the excess curing accelerator on the upper surface of the strip-shaped steel plate M is wiped off. Therefore, the curing promotion layer a'is not formed on the upper surface of the strip-shaped steel plate M.
  • the press working oil b is applied to the upper and lower surfaces of the strip-shaped steel plate M by the coating roller 231 to form a layer.
  • the concentration does not decrease due to mixing with the press working oil b, and the original state is maintained.
  • the strip-shaped steel plate M is punched for the first time by the first-stage punching portion 241.
  • the strip-shaped steel plate M is coated with the press working oil b in advance, there is no problem in the press working such as seizure between the male die 241a and the female die 241b.
  • the strip-shaped steel plate M is punched for the second time by the second-stage punching portion 242.
  • the press working oil b is applied to the strip-shaped steel plate M in advance, there is no problem in press working such as seizure between the male die 242a and the female die 242b.
  • the strip-shaped steel plate M is punched for the third time by the third-stage punching portion 243.
  • the press working oil b is applied to the strip-shaped steel plate M in advance, there is no problem in press working such as seizure between the male die 243a and the female die 243b.
  • the electromagnetic steel sheet 40 whose outer periphery is punched from the strip-shaped steel sheet M by the outer peripheral punching die 261 is laminated on the upper surface of the other electromagnetic steel sheet 40 punched earlier. Will be done.
  • the adhesive c is applied to the upper surface of the other electrical steel sheet 40 via the press working oil b.
  • a curing acceleration layer a'coated with the press working oil b is formed on the lower surface of the electromagnetic steel sheet 40 laminated on the electromagnetic steel sheet 40.
  • the adhesive c on the upper surface of the other electrical steel sheet 40 punched on the outer periphery of the previous time pushes away the press working oil b on the lower surface side of the electrical steel sheet 40 punched on the outer periphery this time, and the hardening promotion layer a on the outer surface is pushed away. It cures instantly while mixing with'.
  • the adhesive c from the nozzle 253 is placed on the upper surface of the electrical steel sheet 40 punched out this time via the press working oil b. Is applied. Since this adhesive c is on the upper surface side of the electromagnetic steel sheet 40 and has not yet been mixed with the curing promoting layer a', it is in a liquid state.
  • each step of the steel sheet feeding step S11 to the stator adhesive laminated core forming step S18 is sequentially repeated until the number of laminated electromagnetic steel sheets 40 reaches a predetermined number. Then, when the number of laminated electromagnetic steel sheets 40 after the stator adhesive laminated core forming step S18 reaches the predetermined number, the process proceeds to the taking-out step S19 without returning to the steel sheet feeding step S11. In the subsequent take-out step S19, the completed adhesive laminated core 21 for a stator is taken out from the outer peripheral punching female die 262, thereby completing the entire process of the adhesive laminated core manufacturing method.
  • the gist of the adhesive laminated core manufacturing method using the adhesive laminated core manufacturing apparatus 200 described above is basically the same as that described in the first embodiment, and is described in the stator adhesive laminated core forming step S8 of FIG.
  • the vertical relationship between the laminated structure of the electromagnetic steel plate 40 shown and the laminated structure of the electromagnetic steel plate 40 shown in the adhesive coating and the adhesive laminated core forming step S18 for the stator of FIG. 6 is reversed.
  • the curing promotion portion forming portion 220 is arranged below the strip-shaped steel plate M, and the adhesive coating portion 250 is arranged above the strip-shaped steel plate M. ing. That is, in the present embodiment, the position where the curing promoting layer a'is formed on the strip-shaped steel sheet M and the position where the adhesive c is applied are upside down from those in the first embodiment.
  • the curing acceleration layer a'provided on the strip-shaped steel plate M is formed by drying in advance, it is suppressed from being mixed with the press working oil b applied in the post-processing. Therefore, when the electrical steel sheets 40 are laminated and bonded, the curing promoting layer a'can be mixed with the adhesive c while maintaining the same high concentration as originally, so that high adhesive strength can be exhibited at an early stage. Therefore, it is possible to obtain higher productivity while ensuring sufficient adhesive strength.
  • the press working oil b may be applied not only to both sides of the strip-shaped steel plate M but also to only one side on which the curing promotion layer a'is formed.
  • the curing accelerator a may be applied not only to one side of the strip-shaped steel sheet M but also to both sides.
  • the coating of the curing accelerator a is not limited to the entire surface coating of the strip-shaped steel plate M, but may be a dot coating.
  • FIG. 7 is a side view of the adhesive laminated core manufacturing apparatus according to the present embodiment.
  • FIG. 8 is a flowchart for explaining the adhesive laminated core manufacturing method according to the present embodiment.
  • the adhesive laminated core manufacturing apparatus 300 of the present embodiment includes a strip-shaped steel plate supply unit 310, a curing promotion unit forming unit 320, a drive unit (not shown), a press working oil coating unit 330, and a press working oil coating unit 330. It is provided with a press working portion 340, an adhesive coating portion 350, and a laminated adhesive portion 360.
  • the combination of the press-processed portion 340, the adhesive coating portion 350, and the laminated adhesive portion 360 constitutes a progressive die.
  • the hoop material F wound around the strip-shaped steel plate M which is the material of the electromagnetic steel plate (steel plate component) 40, is pivotally supported by the strip-shaped steel plate supply unit 310, and the strip-shaped steel plate M is sent out toward the right side of the paper surface in FIG.
  • the right side of the paper surface which is the feeding direction of the strip-shaped steel plate M
  • the left side of the paper surface which is the opposite direction
  • the strip-shaped steel sheet M sent toward the downstream side from the strip-shaped steel plate supply unit 310 is a steel plate having the above-mentioned chemical composition, and both sides thereof are covered with the above-mentioned insulating coating.
  • the curing accelerator forming portion 320 has a curing accelerator tank 321, a nozzle 322, and a dryer 323.
  • the curing accelerator is stored in the curing accelerator tank 321.
  • the curing accelerator promotes instant curing of the adhesive by mixing with an anaerobic adhesive or a 2-cyanoacrylate adhesive.
  • the nozzle 322 is connected to the curing accelerator tank 321.
  • the nozzle port of the nozzle 322 faces the upper surface of the strip-shaped steel plate M, and an appropriate amount of the curing accelerator in the curing accelerator tank 321 is applied to the upper surface.
  • the curing accelerator is applied so as to cover the entire surface of the upper surface, but the curing accelerator is not limited to this form, and may be configured to be partially applied, for example, in the form of dots.
  • the dryer 323 has a pair of rollers 323a and a dryer 323b.
  • the pair of rollers 323a are arranged on the downstream side of the nozzle 322.
  • the pair of rollers 323a holds the strip-shaped steel plate M passing between them so as to be always kept horizontal.
  • the dryer 323b is arranged at a position sandwiched between the pair of rollers 323a.
  • the dryer 323b dries the curing accelerator by blowing air on the upper surface and the lower surface of the strip-shaped steel plate M.
  • the strip-shaped steel plate M is exposed to air when it exceeds the upstream side of the pair of rollers 323a, and the curing accelerator begins to dry, and the downstream side of the pair of rollers 323a. Drying is completed before reaching.
  • a curing promoting layer (curing promoting portion) in which the curing accelerator is dried is formed with a uniform thickness over the entire surface.
  • 0.1 ⁇ m can be exemplified.
  • the degree of drying of the curing accelerator layer (curing accelerator) is most preferably dried until the solvent is completely volatilized, but in addition to this, the curing accelerator is not mixed with the press working oil. It is called "drying" including the case where it is dried to form a curing promoting layer.
  • the degree of dryness of the curing accelerator layer it is determined by detecting the content of the active ingredient of the curing accelerator contained in the press working oil after being applied to the curing promoting portion. can. Since the lower surface of the strip-shaped steel plate M is not coated with the curing accelerator, the insulating film remains exposed.
  • the drive unit is arranged at the position D between the curing promotion unit forming unit 320 and the press working oil coating unit 330.
  • the driving unit intermittently feeds the strip-shaped steel plate M from the curing promoting portion forming portion 320 toward the pressing oil coating portion 330 toward the right side of the paper surface.
  • a curing promoting layer in which the curing accelerator is dried is already formed on the upper surface of the strip-shaped steel sheet M sent out from the curing promoting portion forming portion 320 before entering the driving portion.
  • the lower surface of the strip-shaped steel plate M before entering the driving unit has no curing promoting layer as described above, and the insulating film remains exposed.
  • the press working oil coating unit 330 includes a coating roller 331 and an oil pan 332.
  • the oil pan 332 is arranged below the coating roller 331 and stores the press working oil.
  • the coating roller 331 is a pair of rollers that hold the strip-shaped steel plate M so as to be sandwiched between the upper and lower surfaces thereof, and is in contact with the upper surface and the lower surface of the strip-shaped steel plate M and is sent out to the downstream side while applying press working oil.
  • a dried hardening accelerating layer is formed on the upper surface of the strip-shaped steel plate M, so that the pressing working oil layer is not mixed on the hardening accelerating layer. Is formed over the entire surface. That is, the surface of the curing acceleration layer is covered with the press working oil layer without gaps.
  • a layer of press working oil is formed over the entire surface on the lower surface (insulation coating) of the strip-shaped steel plate M.
  • the press working portion 340 is a progressive remittance mold including a first-stage punching portion 341, a second-stage punching portion 342, and a third-stage punching portion 343.
  • the first-stage punching portion 341 is arranged on the downstream side of the press working oil coating portion 330, and has a male die 341a and a female die 341b.
  • the male mold 341a and the female mold 341b are coaxially arranged along the vertical direction, and the strip-shaped steel plate M is inserted between them. Therefore, the male mold 341a faces the upper surface of the strip-shaped steel plate M, and the female mold 341b faces the lower surface of the strip-shaped steel plate M.
  • the male mold 341a is moved downward by a hydraulic mechanism (not shown) so as to reach the inside of the female mold 341b, among the strip-shaped steel plates M.
  • the first punching process necessary for forming the electromagnetic steel sheet 40 is performed.
  • the press working oil is applied to the upper and lower surfaces of the strip-shaped steel plate M, it can be punched out without causing seizure or the like.
  • the surface of the curing accelerating layer is coated with the press working oil, it is possible to prevent the curing accelerating layer from adhering to the male mold 341a and the female mold 341b.
  • the male mold 341a After punching the strip-shaped steel plate M, the male mold 341a is moved upward and pulled out from the female mold 341b, and the strip-shaped steel plate M is sent out again toward the downstream side.
  • the second-stage punching portion 342 is arranged on the downstream side of the first-stage punching portion 341 and has a male die 342a and a female die 342b.
  • the male die 342a and the female die 342b are coaxially arranged along the vertical direction, and the strip-shaped steel plate M after the first punching process is inserted is inserted between them. Therefore, the male mold 342a faces the upper surface of the strip-shaped steel plate M, and the female mold 342b faces the lower surface of the strip-shaped steel plate M. Then, in a state where the feeding of the strip-shaped steel plate M is temporarily stopped again, the male mold 342a is moved downward by a hydraulic mechanism (not shown) so as to reach the inside of the female mold 342b.
  • the second punching process necessary for forming the electromagnetic steel sheet 40 is performed.
  • the press working oil is applied to the upper and lower surfaces of the strip-shaped steel plate M, it can be punched out without causing seizure or the like.
  • the surface of the curing promoting layer is covered with the press working oil, it is possible to prevent the curing promoting layer from adhering to the male mold 342a and the female mold 342b.
  • the male mold 342a After punching the strip-shaped steel plate M, the male mold 342a is moved upward and pulled out from the female mold 342b, and the strip-shaped steel plate M is sent out again toward the downstream side.
  • the third-stage punching portion 343 is arranged on the downstream side of the second-stage punching portion 342, and has a male die 343a and a female die 343b.
  • the male die 343a and the female die 343b are coaxially arranged along the vertical direction, and the strip-shaped steel plate M after the second punching process is inserted is inserted between them. Therefore, the male mold 343a faces the upper surface of the strip-shaped steel plate M, and the female mold 343b faces the lower surface of the strip-shaped steel plate M. Then, in a state where the feeding of the strip-shaped steel plate M is temporarily stopped again, the male mold 343a is moved downward by a hydraulic mechanism (not shown) so as to reach the inside of the female mold 343b.
  • the third punching process necessary for forming the electromagnetic steel sheet 40 is performed. At this time as well, since the press working oil is applied to the upper and lower surfaces of the strip-shaped steel plate M, it can be punched out without causing seizure or the like. After this punching process, the male die 343a is moved upward and pulled out from the female die 343b, and the strip-shaped steel plate M is sent out again toward the downstream side.
  • the adhesive coating portion 350 is incorporated in the laminated adhesive portion 360 on the downstream side of the press working portion 340.
  • the adhesive application unit 350 includes a pneumatic feeder 351 and a syringe 352, and a nozzle 353.
  • the syringe 352 is a container for storing the adhesive, and is connected between the pneumatic feeder 351 and the nozzle 353 via a pipe.
  • the adhesive the one described in the first embodiment can be used.
  • the nozzle 353 is arranged above the strip-shaped steel plate M. Therefore, the ejection port of the nozzle 353 faces the upper surface of the strip-shaped steel plate M.
  • the laminated adhesive portion 360 is arranged on the downstream side of the press-processed portion 340 and at the same position as the adhesive application portion 350.
  • the laminated bonding portion 360 includes an outer peripheral punching male die 361, an outer peripheral punching female die 362, a spring 363, and a heater 364.
  • the outer peripheral punched male die 361 is a cylindrical die having a circular bottom surface, and the lower end of the spring 363 is connected to the upper end thereof.
  • the outer peripheral punching die 361 is supported by the spring 363 and can move up and down together with the spring 363.
  • the outer peripheral punched male die 361 has substantially the same outer diameter as the outer diameter of the stator adhesive laminated core 21.
  • the nozzle 353 is built in the outer peripheral punching die 361.
  • the discharge port of the nozzle 353 is formed on the bottom surface of the outer peripheral punching die 361.
  • the outer peripheral punched female die 362 is a die having a cylindrical internal space, and has substantially the same inner diameter as the outer diameter of the stator adhesive laminated core 21.
  • the heater 364 is integrally incorporated in the outer peripheral punching female die 362.
  • the heater 364 heats each electromagnetic steel plate (steel plate component) 40 laminated in the outer peripheral punched female die 362 from the periphery thereof.
  • a heat-curable type is used as the adhesive, the adhesive receives heat from the heater 364 and cures.
  • a room temperature curing type is used as the adhesive, this adhesive cures at room temperature without requiring heating.
  • the outer peripheral punching male die 361 is lowered, the strip-shaped steel plate M is sandwiched between the outer peripheral punching female die 362, and further the outer periphery is further formed.
  • the outer peripheral punched electromagnetic steel sheet 40 can be obtained from the strip-shaped steel plate M.
  • the surface of the curing accelerating layer is covered with the press working oil, it is possible to prevent the curing accelerating layer from adhering to the outer peripheral punching male die 361 and the outer peripheral punching female die 362.
  • the adhesive in the syringe 352 is sent to the nozzle 353.
  • an appropriate amount of adhesive is discharged from the discharge port formed on the bottom surface of the outer peripheral punching die 361 and applied to the upper surface of the strip-shaped steel plate M.
  • the adhesive is applied onto the press working oil that covers the entire surface of the curing acceleration layer formed on the upper surface of the strip-shaped steel plate M.
  • this adhesive is applied above the curing promoting layer, the curing of the adhesive does not start at this point because the press working oil is interposed between the two.
  • the adhesive applied here is used for adhering another electromagnetic steel sheet 40 that is next punched out on the outer periphery and laminated.
  • the electrical steel sheet 40 punched on the outer circumference this time is laminated on the upper surface of another electrical steel sheet 40 laminated and bonded in the female mold 362 punched on the outer circumference last time.
  • the adhesive previously formed on the upper surface of the other electrical steel sheet 40 and the curing accelerating layer push away the press working oil on the same upper surface and mix with each other.
  • the pressing force from the outer peripheral punching die 361 and the heating from the heater 364 are applied to each of the laminated electromagnetic steel sheets 40. At this time, the pressing force applied to the electromagnetic steel sheet 40 from the outer peripheral punching die 361 is always maintained constant by the urging force of the spring 363.
  • the electrical steel sheet 40 punched this time is adhesively fixed to the upper surface of the electrical steel sheet 40 punched last time.
  • the adhesive applied to the upper surface of the electromagnetic steel sheet 40 punched out this time has not yet been mixed with the curing promoting layer on the upper surface of the electromagnetic steel sheet 40, so that it does not cure and remains in a liquid state.
  • the female die 341b, the female die 342b, the female die 343b, the outer peripheral punched female die 362, and the heater 364 are fixed on a common fixed base 371. ing. Therefore, the female dies 341b, the female dies 342b, the female dies 343b, the outer peripheral punched female dies 362, and the heater 364 are fixed in relative positions in the horizontal direction and the vertical direction.
  • the male die 341a, the male die 342a, the nozzle 353, and the outer peripheral punching male die 361 are also fixed to the lower surface of the common movable base 372. Therefore, these male dies 341a, male dies 342a, nozzles 353, and outer peripheral punched male dies 361 are also fixed in relative positions in the horizontal and vertical directions.
  • the movable base 372 is lowered to punch out the outer periphery of the electromagnetic steel sheet 40, laminate and bond it, and apply an adhesive for the next step.
  • the first punching process to the position where the second punching process is performed is performed at the same time.
  • the movable base 372 is raised and retracted above the strip-shaped steel plate M, and then the strip-shaped steel plate M is sent out to the downstream side again by a predetermined distance by the driving unit, and then temporarily stopped again. In this state, the movable base 372 is lowered again, and machining at each position is continued.
  • the adhesive laminated core 21 for a stator is manufactured by repeating the step of moving the movable base 372 up and down at the time of temporary stop while intermittently feeding the strip-shaped steel plate M by the driving unit.
  • the adhesive laminated core manufacturing method of the present embodiment includes a steel plate feeding step S21, a curing accelerator coating step S22, a curing accelerator drying step S23, a processing oil coating step S24, and first punching. It has a step S25, a second punching step S26, a third punching step S27, an adhesive coating and stator adhesive laminated core forming step S28, and a take-out step S29.
  • the strip-shaped steel plate M is fed from the hoop material F toward the downstream side.
  • the curing accelerator a is applied to the entire upper surface of the strip-shaped steel plate M from the nozzle 322.
  • the curing accelerator a at this point is liquid.
  • air from the dryer 323b is blown onto the upper and lower surfaces of the strip-shaped steel plate M to dry the liquid curing accelerator a to form a curing promoting layer (curing promoting portion) a'.
  • This curing acceleration layer a' is a solid.
  • the press working oil b is applied to the upper and lower surfaces of the strip-shaped steel plate M by the coating roller 331 to form a layer.
  • the concentration does not decrease due to mixing with the press working oil b, and the original state is maintained.
  • the strip-shaped steel plate M is punched for the first time by the first stage punching portion 341.
  • the strip-shaped steel plate M is coated with the press working oil b in advance, there is no problem in the press working such as seizure between the male die 341a and the female die 341b.
  • the strip-shaped steel plate M is punched for the second time by the second-stage punching portion 342.
  • the press working oil b is applied to the strip-shaped steel plate M in advance, there is no problem in press working such as seizure between the male die 342a and the female die 342b.
  • the strip-shaped steel plate M is punched for the third time by the third-stage punching portion 343.
  • the press working oil b is previously applied to the strip-shaped steel plate M, there are no problems in press working such as seizure between the male die 343a and the female die 343b.
  • the electromagnetic steel sheet 40 whose outer circumference is punched from the strip-shaped steel sheet M by the outer peripheral punching die 361 is laminated on the upper surface of the other electrical steel sheet 40 punched earlier. Will be done.
  • a curing promoting layer a' is formed on the upper surface of the other electrical steel sheet 40, and the adhesive c is further applied on the curing promoting layer a'via the press working oil b. Therefore, when these electrical steel sheets 40 are laminated and pressurized, the press working oil b on the upper surface of the other electrical steel sheets 40 is repelled, and the curing promoting layer a'on the upper surface thereof and the adhesive c are mixed.
  • the adhesive c is applied from the nozzle 353 to the upper surface of the electrical steel sheet 40 punched on the outer periphery this time. Since this adhesive c is on the upper surface of the electromagnetic steel sheet 40 and has not yet been mixed with the curing promoting layer a', it is in a liquid state.
  • each step of the steel sheet feeding step S21 to the stator adhesive laminated core forming step S28 is sequentially repeated until the number of laminated electromagnetic steel sheets 40 reaches a predetermined number. Then, when the number of laminated electromagnetic steel sheets 40 after the stator adhesive laminated core forming step S28 reaches the predetermined number, the process proceeds to the taking-out step S29 without returning to the steel sheet feeding step S21. In the subsequent take-out step S29, the completed adhesive laminated core 21 for a stator is taken out from the outer peripheral punching female die 362, thereby completing the entire process of the adhesive laminated core manufacturing method.
  • the essence of the adhesive laminated core manufacturing method using the adhesive laminated core manufacturing apparatus 200 described above is basically the same as that described in the second embodiment, and the formation position of the hardening promoting layer a'is set to the electrical steel sheet.
  • the lower surface of the 40 is changed to the upper surface.
  • the curing promotion portion forming portion 220 is arranged above the strip-shaped steel plate M.
  • each electrical steel sheet 40 includes a first punched electrical steel sheet (first steel sheet component) 40 and a later punched electrical steel sheet (second steel sheet component) 40.
  • the adhesive laminated core manufacturing method of the present embodiment is arranged on the upper surface (first surface), the curing promoting layer (curing promoting portion) a'formed on the upper surface, and the curing promoting layer a'.
  • the step of continuously punching and preparing the 40 (fifth step) and the step of superimposing the later punched electromagnetic steel plate 40 on the previously punched electromagnetic steel plate 40 so that the upper surface and the lower surface face each other. Perform the bonding step (sixth step).
  • the curing acceleration layer a'provided on the strip-shaped steel plate M is formed by drying in advance, it is suppressed from being mixed with the press working oil b applied in the post-processing. Therefore, when the electrical steel sheets 40 are laminated and bonded, the curing promoting layer a'can be mixed with the adhesive c while maintaining the same high concentration as originally, so that high adhesive strength can be exhibited at an early stage. Therefore, it is possible to obtain higher productivity while ensuring sufficient adhesive strength.
  • the press working oil b may be applied not only to both sides of the strip-shaped steel plate M but also to only one side on which the curing promotion layer a'is formed. However, in the case of one side, it is necessary to apply the press working oil b so as to be sandwiched between the curing promoting layer a'and the adhesive c.
  • the coating of the curing accelerator a is not limited to the entire surface coating of the strip-shaped steel plate M, but may be a dot coating.
  • FIG. 9 is a side view of the adhesive laminated core manufacturing apparatus according to the present embodiment. Since the present embodiment corresponds to a modification in which only one point is changed from the first embodiment described with reference to FIGS. 3 and 4, the following description describes the same components as the first embodiment. Use the same reference numerals and omit detailed description thereof.
  • the adhesive laminated core manufacturing apparatus 400 of the present embodiment sends out the first stage A having the curing promotion portion forming portion 120 and the strip-shaped steel plate M transferred from the first stage A toward the press working oil coating portion 130.
  • a second stage B having a portion is provided.
  • the transport portion, the press working oil coating portion 130, the press working portion 140, the adhesive coating portion 150, and the laminated adhesive portion 160 are provided along the feeding direction of the strip-shaped steel plate M. They are arranged side by side in this order.
  • the progressive die is configured by the combination of the press-processed portion 140, the adhesive coating portion 150, and the laminated adhesive portion 160.
  • the first stage A has a transport portion for feeding out the hoop material F, a curing promoting portion forming portion 120, and a winding portion for winding the strip-shaped steel plate M after forming the curing promoting layer into the hoop material F1.
  • the hoop material F1 which is an intermediate material manufactured in the first stage A, is removed from the winding portion of the stage A and moved to another place. By performing this a plurality of times, a plurality of hoop materials F1 can be prepared and stored.
  • the second stage B has another transport unit, the drive unit (not shown), a press working oil coating unit 130, and press working, which receives the hoop material F1 that has been prepared and sends it out toward the press working oil coating unit 130.
  • a portion 140, an adhesive coating portion 150, and a laminated adhesive portion 160 are provided.
  • the strip-shaped steel plate M sent out from the other transport section is sent out toward the press working oil coating section 130 by the drive section.
  • the curing accelerator layer (curing accelerator) in the first stage A is preferably dried until the solvent is completely volatilized, but it does not mix with the press working oil and the strip-shaped steel plate M is pulled out from the hoop material F1.
  • the degree of dryness may be such that no inconvenience occurs during use. Also in the adhesive laminated core manufacturing method using the adhesive laminated core manufacturing apparatus 400 described above, it is possible to obtain the same effect as that of the first embodiment.
  • the adhesive c may be applied to both the upper surface of the electrical steel sheet 40 to be laminated and the lower surface of the electrical steel sheet 40 to be laminated. ..
  • the adhesive laminated core manufacturing method first performs a step (seventh step) of preparing the previously punched electrical steel sheet (first steel sheet component) 40.
  • An electromagnetic steel plate (first steel plate component) 40 having an adhesive c applied and arranged on the press working oil b is prepared.
  • a step (eighth step) of preparing the electromagnetic steel sheet (second steel sheet component) 40 punched out later is first performed.
  • an electromagnetic steel plate (second steel plate component) 40 having a lower surface (second surface) and an adhesive c applied and arranged on the lower surface is prepared.
  • the first punched-out electromagnetic steel sheet 40 and the later punched-out electromagnetic steel sheet 40 are overlapped and bonded so that the first surface and the second surface face each other. ..
  • the shape of the adhesive laminated core 21 for a stator is not limited to the form shown in each embodiment.
  • the dimensional ratio and the like can be arbitrarily designed according to the characteristics of the desired rotary electric machine.
  • a pair of permanent magnets 32 form one magnetic pole, but the manufacturing object of the present invention is not limited to this embodiment.
  • one permanent magnet 32 may form one magnetic pole, or three or more permanent magnets 32 may form one magnetic pole.
  • the permanent magnet field type electric machine has been described as an example of the rotary electric machine 10, but the structure of the rotary electric machine 10 is not limited to this as illustrated below, and is not further illustrated below. Various known structures can also be adopted.
  • the permanent magnet field type electric machine has been described as an example of the rotary electric machine 10, but the present invention is not limited to this.
  • the rotary electric machine 10 may be a reluctance type electric machine or an electromagnet field type electric machine (winding field type electric machine).
  • the synchronous motor has been described as an example as the AC motor, but the present invention is not limited to this.
  • the rotary electric machine 10 may be an induction motor.
  • the AC electric machine has been described as an example of the rotary electric machine 10, but the present invention is not limited to this.
  • the rotary electric machine 10 may be a DC motor.
  • the rotary electric machine 10 has been described by taking an electric machine as an example, but the present invention is not limited to this.
  • the rotary electric machine 10 may be a generator.
  • Adhesive laminated core for stator (adhesive laminated core, stator for rotary electric machine) 40 Electrical steel sheet (steel plate parts, first steel plate parts, second steel plate parts) 100,200,300,400 Adhesive laminated core manufacturing equipment 120,220,320 Curing promotion part Forming part 130,230,330 Pressing oil coating part 140,240,340 Pressing part 150,250,350 Adhesive coating part A 1st stage a Curing accelerator a'Curing accelerator B 2nd stage b Press working oil c Adhesive M Strip-shaped steel plate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Laminated Bodies (AREA)

Abstract

この接着積層コア製造方法は、帯状鋼板を送りながら複数枚の鋼板部品を打ち抜き、前記各鋼板部品を、接着剤を介して積層させることにより接着積層コアを製造する方法であって、プレス加工油を塗布する前の前記帯状鋼板の片面又は両面に、硬化促進剤を塗布及び乾燥させて硬化促進部を形成する工程と、前記硬化促進部の表面に前記プレス加工油を塗布する工程と、を有する。

Description

接着積層コア製造方法及び接着積層コア製造装置
 本発明は、接着積層コア製造方法及び接着積層コア製造装置に関する。
 本願は、2020年7月7日に、日本国に出願された特願2020-117265号に基づき優先権を主張し、その内容をここに援用する。
 例えば電動機として用いられる回転電機は、積層コアを備えている。この積層コアは、帯状鋼板を間欠的に送りながら複数回に分けて所定形状に打ち抜き、得られた鋼板部品を複数枚積層することで製造される。各鋼板部品間の固定は、溶接、接着、かしめ等により行われるが、これらの中でも、積層コアの鉄損を効果的に抑制できる観点より、接着による固定方法が注目されている。
 例えば下記特許文献1には、片面または両面にプレス加工油を塗布したフープ材に複数のプレス加工を順次施し、当該フープ材の片面に接着剤を塗布した上で外形打抜き加工を行って金属薄板を得て、当該金属薄板を所定枚数積層接着することによって金属薄板積層体を製造する方法であって、前記プレス加工油に硬化促進剤が添加された金属薄板積層体の製造方法が開示されている。
 この金属薄板積層体の製造方法によれば、プレス加工油に硬化促進剤を添加したため、プレス加工油を除去することなく金属薄板間の接着が迅速かつ強固に行われ、製造工程の簡略化や順送金型装置における金型の小型等が可能となって製品品質および生産性の向上や製造設備の小型化等が実現される、と説明されている。
 また、下記特許文献2には、断続的に送られる帯状鋼板から所定形状の鋼板部品を打ち抜くとともに該鋼板部品を積層する打抜き積層プレス方法において、上記帯状鋼板から上記鋼板部品を打ち抜くプレス加工位置よりも上流側において、上記帯状鋼板の下面に、接着剤と、該接着剤の硬化を促進するための硬化促進剤とのうちのいずれか一方を塗布する第1塗布工程と、上記プレス加工位置において、上記帯状鋼板の上面に、上記接着剤と上記硬化促進剤とのうちの他方を塗布する第2塗布工程とを含む打抜き積層プレス方法が開示されている。
 この打抜き積層プレス方法によれば、第1塗布工程と第2塗布工程とを行うことにより接着剤の硬化時間を大幅に短縮することができ、複数の鋼板部品を積層して製造するコアの生産性を高めることができる、と説明されている。
日本国特許第4648765号公報 日本国特許第6164029号公報
 上記特許文献1の金属薄板積層体の製造方法によれば、硬化促進剤の利用によって金属薄板間の接着を迅速に行えるとしている。硬化促進剤はプレス加工油の添加によって薄められた状態で塗布されるため、より高い硬化促進効果が求められる場合には、硬化促進剤の含有量を相当量まで増やす必要がある。しかしこの場合、今度はプレス加工油の割合が減ってしまうため、金属薄板を打ち抜く際の打ち抜き加工性に影響を及ぼす懸念がある。
 また、上記特許文献2の打抜き積層プレス方法によれば、接着剤の硬化時間を大幅に短縮できるとしている。しかし、ここでも、打ち抜き加工に必須であるプレス加工油が硬化促進剤に与える影響については全く検討されていない。
 このように、接着積層コアの生産性をさらに高めるには、鋼板打ち抜き時におけるプレス加工油の潤滑機能と、鋼板接着時の硬化促進剤利用による接着剤の硬化促進機能とを、より高次に発揮させる必要がある。しかし、従来は、硬化促進剤の塗布形態について十分な検討がなされてこなかった。
 本発明は、上記事情に鑑みてなされたものであり、接着積層コアの製造に際し、十分な接着強度を確保した上でより高い生産性が得られる、接着積層コア製造方法及び接着積層コア製造装置の提供を課題とする。
 前記課題を解決するために、本発明は以下の手段を採用している。
(1)本発明の一態様に係る接着積層コア製造方法は、
 帯状鋼板を送りながら複数枚の鋼板部品を打ち抜き、前記各鋼板部品を、接着剤を介して積層させることにより接着積層コアを製造する方法であって、
 プレス加工油を塗布する前の前記帯状鋼板の片面又は両面に、硬化促進剤を塗布及び乾燥させて硬化促進部を形成する工程と、
 前記硬化促進部の表面に前記プレス加工油を塗布する工程と、
を有する。
 上記(1)に記載の接着積層コア製造方法によれば、帯状鋼板に設けられた硬化促進部が予め乾燥して硬化しているため、その後の工程で塗布されるプレス加工油と混ざり合うことが抑制される。したがって、各鋼板部品間を積層して接着する際に、硬化促進部が高い濃度を維持したまま接着剤と混ざり合えるため、高い接着強度を早期に発現できる。よって、十分な接着強度を確保した上でより高い生産性を得ることが可能である。
 さらに言うと、硬化促進部の表面をプレス加工油で被覆するため、その後に行われるプレス加工時に、硬化促進部が金型に付着することを抑制できる。もし、プレス加工油で被覆することなくそのまま送ってプレス加工を行った場合、剥き出し状態の硬化促進部が打ち抜き時に剥離して金型(例えば順送金型の下側金型)の特定部位に付着、堆積する虞がある。このような堆積物が生じると、連続プレス中に堆積物が剥がれて各鋼板部品に再付着し、そして堆積物が各鋼板部品の積層間に挟み込まれる虞がある。その場合、接着積層コアの形状が歪み、接着積層コアの構造強度や磁気特性に悪影響を及ぼす虞がある。これに対し、上記態様では、硬化促進部をプレス加工油で予め被覆して保護してから、その後にプレス加工を行っているため、上述した問題の発生を抑制している。
(2)上記(1)に記載の接着積層コア製造方法において、以下のようにしてもよい:
 前記各鋼板部品が、第1鋼板部品及び第2鋼板部品を含み、
 第1面と、前記第1面上に形成された前記硬化促進部と、前記硬化促進部の前記表面上に配置された前記プレス加工油とを有する前記第1鋼板部品を準備する第1の工程と、
 第2面と、前記第2面上に配置された前記接着剤と、を有する前記第2鋼板部品を準備する第2の工程と、
 前記第1面及び前記第2面が互いに対向するように、前記第1鋼板部品及び前記第2鋼板部品を重ね合わせて接着する第3の工程と、
を有する。
 上記(2)に記載の接着積層コア製造方法によれば、第1の工程において硬化促進部が予め乾燥して硬化しており、プレス加工油と混ざり合うのが抑制された状態にある。そのため、第3の工程で第1鋼板部品及び第2鋼板部品を重ね合わせて接着する際に、硬化促進部が高い濃度を維持したまま接着剤と混ざり合える。
(3)上記(1)に記載の接着積層コア製造方法において、以下のようにしてもよい:
 前記各鋼板部品が、第1鋼板部品及び第2鋼板部品を含み、
 第1面と、前記第1面上に形成された前記硬化促進部と、前記硬化促進部の前記表面上に配置された前記プレス加工油と、前記プレス加工油上に配置された前記接着剤とを有する前記第1鋼板部品を準備する第4の工程と、
 第2面を有する前記第2鋼板部品を準備する第5の工程と、
 前記第1面及び前記第2面が互いに対向するように、前記第1鋼板部品及び前記第2鋼板部品を重ね合わせて接着する第6の工程と、
を有する。
 上記(3)に記載の接着積層コア製造方法によれば、第4の工程において硬化促進部が予め乾燥して硬化しており、プレス加工油と混ざり合うのが抑制された状態にある。そのため、第6の工程で第1鋼板部品及び第2鋼板部品を重ね合わせて接着する際に、硬化促進部が高い濃度を維持したまま接着剤と混ざり合える。
(4)上記(1)に記載の接着積層コア製造方法において、以下のようにしてもよい:
 前記各鋼板部品が、第1鋼板部品及び第2鋼板部品を含み、
 第1面と、前記第1面上に形成された前記硬化促進部と、前記硬化促進部の前記表面上に配置された前記プレス加工油と、前記プレス加工油上に配置された前記接着剤とを有する前記第1鋼板部品を準備する第7の工程と、
 第2面と、前記第2面上に配置された前記接着剤と、を有する前記第2鋼板部品を準備する第8の工程と、
 前記第1面及び前記第2面が互いに対向するように、前記第1鋼板部品及び前記第2鋼板部品を重ね合わせて接着する第9の工程と、
を有する。
 上記(4)に記載の接着積層コア製造方法によれば、第7の工程において硬化促進部が予め乾燥して硬化しており、プレス加工油と混ざり合うのが抑制された状態にある。そのため、第9の工程で第1鋼板部品及び第2鋼板部品を重ね合わせて接着する際に、硬化促進部が高い濃度を維持したまま接着剤と混ざり合える。
(5)上記(1)~(4)の何れか1項に記載の接着積層コア製造方法において、前記接着剤が、嫌気性接着剤または2-シアノアクリレート系接着剤であってもよい。
 上記(5)に記載の接着積層コア製造方法によれば、加工性に影響を与えることなく、相対的に硬化促進剤の量を増やし、硬化時間の短縮と接着強度を向上させることができるという利点が得られる。
(6)上記(5)に記載の接着積層コア製造方法において、前記嫌気性接着剤の硬化促進剤が、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、バナジウム、モリブデン、ルテニウム、サッカリン及びそれらの組み合わせから選択される嫌気硬化を促進する有効成分を含んでもよい。
 嫌気硬化を促進する有効成分は、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、バナジウム、モリブデン、ルテニウム、サッカリン及びそれらの組み合わせから選択される。好ましくは、銅、鉄、バナジウム、コバルト、クロム、銀、及びマンガン、並びにそれらの組み合わせから選択されてもよい。望ましくは、銅、鉄、バナジウム、コバルト、及びクロム、並びにそれらの組み合わせであり得る。望ましくは、金属酸化物または塩の形態で提供される。好ましくは、バナジウムアセチルアセトネート、バナジルアセチルアセトネート、ステアリン酸バナジル、バナジウムプロポキシド、バナジウムブトキシド、五酸化バナジウム、ナフテン酸コバルト、ナフテン酸マンガン、ヘキサン酸銅、ビス(2-エチルヘキサン酸)銅(II)等から選ばれる1種または2種以上の組み合わせが挙げられる。
 上記(6)に記載の接着積層コア製造方法によれば、嫌気性接着剤の硬化が速やか、かつ完全に進行するため、特に短時間の製造やアウトガスの抑制等を要求される製造に極めて優れ、生産性が向上することができるという利点が得られる。
(7)上記(5)に記載の接着積層コア製造方法において、前記2-シアノアクリレート系接着剤の硬化促進剤が、ジメチルアニリン、ジエチルアミン、o-フェニレンジアミン、ジメチルパラトルイジン、ジエチルパラトルイジン及びN,N-ジエチルアニリン等の有機アミン類、トリクロルアセトアミド等の酸アミド類、コハク酸イミド等の有機イミド類、テトラメチルアンモニウムクロライド及びベンジルトリメチルアンモニウムクロライド等の第4級アンモニウム塩等、並びにそれらの組み合わせから選択される前記2-シアノアクリレート系接着剤の硬化を促進する有効成分を含んでもよい。
 2-シアノアクリレート系接着剤の硬化を促進する有効成分の具体例としては、ジメチルアニリン、ジエチルアミン、o-フェニレンジアミン、ジメチルパラトルイジン、ジエチルパラトルイジン、N,N-ジエチルアニリン等の有機アミン類、トリクロルアセトアミド等の酸アミド類、コハク酸イミド等の有機イミド類、テトラメチルアンモニウムクロライド、ベンジルトリメチルアンモニウムクロライド等の第4級アンモニウム塩等及びそれらの組み合わせから選択される。好ましくは、ジメチルアニリン、ジエチルアミン、o-フェニレンジアミン、ジメチルパラトルイジン、ジエチルパラトルイジン、N,N-ジエチルアニリン等の有機アミン類から選ばれる1種または2種以上の組み合わせが挙げられる。
 上記(7)に記載の接着積層コア製造方法によれば、2-シアノアクリレート系接着剤の硬化が速やか、かつ完全に進行するため、特に短時間の製造やアウトガスの抑制等を要求される製造に極めて優れ、生産性が向上することができるという利点が得られる。
(8)上記(5)に記載の接着積層コア製造方法において、前記嫌気性接着剤または前記2-シアノアクリレート系接着剤の硬化促進剤は、ケトン系溶剤、アルコール系溶剤、エステル系溶剤、グリコールエーテル系溶剤、炭化水素系溶剤、ハロゲン化炭化水素系溶剤、エーテル系溶剤、グリコール系溶剤、アミン系溶剤等の溶剤により希釈した嫌気硬化を促進する有効成分または前記2-シアノアクリレート系接着剤の硬化を促進する有効成分を含んでもよい。
 溶剤種としては、上記溶剤種から選ばれる1種または2種以上の組み合わせが選択される。接着積層コア製造上、好ましくは酢酸エチル、アセトン、エタノール、メタノール、ブタノール、トルエン、ヘプタンから選ばれる1種または2種以上の組み合わせが挙げられる。
(9)上記(1)~(8)の何れか1項に記載の接着積層コア製造方法において、前記接着積層コアが、回転電機用の固定子であってもよい。
 上記(9)に記載の接着積層コア製造方法によれば、十分な接着強度を確保した上でより高い生産性が得られるので、高い性能を持ちながらも製造コストが低い回転電機用の固定子を製造することが可能になる。
(10)本発明の一態様に係る接着積層コア製造装置は、
 帯状鋼板を送りながら前記帯状鋼板から打ち抜いた複数枚の鋼板部品を、接着剤を介して積層することで接着積層コアを製造する装置であって、
 前記帯状鋼板の片面又は両面に硬化促進剤を塗布及び乾燥させて硬化促進部を形成する硬化促進部形成部と、
 前記硬化促進部形成部よりも下流側に配置され、少なくとも前記硬化促進部の表面にプレス加工油を塗布するプレス加工油塗布部と、
 前記プレス加工油塗布部よりも下流側に配置され、前記帯状鋼板にプレス加工を加えるプレス加工部と、
 前記帯状鋼板の前記片面に前記接着剤を塗布する接着剤塗布部と、
備える。
 上記(10)に記載の接着積層コア製造装置によれば、硬化促進部形成部において、硬化促進部が予め乾燥して硬化した状態で帯状鋼板に形成される。したがって、硬化促進部が、プレス加工油塗布部で塗布されるプレス加工油に混ざることが抑制される。したがって、各鋼板部品間を積層して接着する際に、硬化促進部が高い濃度を維持したまま接着剤と混ざり合えるため、高い接着強度を早期に発現できる。よって、十分な接着強度を確保した上でより高い生産性を得ることが可能である。
(11)上記(10)に記載の接着積層コア製造装置において、前記帯状鋼板の送り方向に沿って、前記硬化促進部形成部と、前記プレス加工油塗布部と、前記プレス加工部及び前記接着剤塗布部とが、この順に並んでいてもよい。
 上記(11)に記載の接着積層コア製造装置によれば、硬化促進部形成部において硬化促進部は予め乾燥して硬化しており、プレス加工油塗布部で塗布されるプレス加工油と混ざり合うことが抑制された状態にある。そのため、第1鋼板部品及び第2鋼板部品を重ね合わせて接着する際に、硬化促進部が高い濃度を維持したまま接着剤と混ざり合える。
(12)上記(10)に記載の接着積層コア製造装置において、以下のように構成してもよい:
 前記硬化促進部形成部を有する第1ステージと、
 前記第1ステージから移された前記帯状鋼板を前記プレス加工油塗布部に向かって送る搬送部を有する第2ステージと、
を備え、
 前記第2ステージに、前記帯状鋼板を送る送り方向に沿って、前記搬送部と、前記プレス加工油塗布部と、前記プレス加工部及び前記接着剤塗布部とが、この順に並んで配置されている。
 上記(12)に記載の接着積層コア製造装置によれば、第1ステージで硬化促進部を予め形成した帯状鋼板を纏めて作り置きしておくことができる。そして、これら帯状鋼板のうちより必要な数の帯状鋼板を取り出して第2ステージに移し、プレス加工油の塗布、接着剤の塗布、そして第1鋼板部品及び第2鋼板部品間の接着を行える。このように、接着積層コア製造装置を第1ステージと第2ステージに分けた場合も、十分な接着強度を確保した上でより高い生産性を得ることが可能である。
(13)上記(10)~(12)の何れか1項に記載の接着積層コア製造装置において、前記接着剤が、嫌気性接着剤または2-シアノアクリレート系接着剤であってもよい。
 上記(13)に記載の接着積層コア製造装置によれば、加工性に影響を与えることなく、相対的に硬化促進剤の量を増やし、硬化時間の短縮と接着強度を向上させることができるという利点が得られる。
(14)上記(13)に記載の接着積層コア製造装置において、前記嫌気性接着剤の硬化促進剤が、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、バナジウム、モリブデン、ルテニウム、サッカリン及びそれらの組み合わせから選択される嫌気硬化を促進する有効成分を含んでもよい。
 すなわち、上記(13)に記載の接着積層コア製造装置において、前記嫌気性接着剤の硬化促進剤としては前記嫌気硬化を促進する有効成分を含むものが挙げられる。
 嫌気硬化を促進する有効成分は、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、バナジウム、モリブデン、ルテニウム、サッカリン及びそれらの組み合わせから選択される。好ましくは、銅、鉄、バナジウム、コバルト、クロム、銀、及びマンガン、並びにそれらの組み合わせから選択されてもよい。望ましくは、銅、鉄、バナジウム、コバルト、及びクロム、並びにそれらの組み合わせであり得る。望ましくは、金属酸化物または塩の形態で提供される。好ましくは、バナジウムアセチルアセトネート、バナジルアセチルアセトネート、ステアリン酸バナジル、バナジウムプロポキシド、バナジウムブトキシド、五酸化バナジウム、ナフテン酸コバルト、ナフテン酸マンガン、ヘキサン酸銅、ビス(2-エチルヘキサン酸)銅(II)等から選ばれる1種または2種以上の組み合わせが挙げられる。
 上記(14)に記載の接着積層コア製造装置によれば、嫌気性接着剤の硬化が速やか、かつ完全に進行するため、特に短時間の製造やアウトガスの抑制等を要求される製造に極めて優れ、生産性が向上することができるという利点が得られる。
(15)上記(13)に記載の接着積層コア製造装置において、前記2-シアノアクリレート系接着剤の硬化促進剤が、ジメチルアニリン、ジエチルアミン、o-フェニレンジアミン、ジメチルパラトルイジン、ジエチルパラトルイジン及びN,N-ジエチルアニリン等の有機アミン類、トリクロルアセトアミド等の酸アミド類、コハク酸イミド等の有機イミド類、テトラメチルアンモニウムクロライド及びベンジルトリメチルアンモニウムクロライド等の第4級アンモニウム塩等、並びにそれらの組み合わせから選択される前記2-シアノアクリレート系接着剤の硬化を促進する有効成分を含んでもよい。
 すなわち、上記(13)に記載の接着積層コア製造装置において、前記2-シアノアクリレート系接着剤の硬化促進剤としては、前記2-シアノアクリレート系接着剤の硬化を促進する有効成分を含むものが挙げられる。
 2-シアノアクリレート系接着剤の硬化を促進する有効成分の具体例としては、ジメチルアニリン、ジエチルアミン、o-フェニレンジアミン、ジメチルパラトルイジン、ジエチルパラトルイジン、N,N-ジエチルアニリン等の有機アミン類、トリクロルアセトアミド等の酸アミド類、コハク酸イミド等の有機イミド類、テトラメチルアンモニウムクロライド、ベンジルトリメチルアンモニウムクロライド等の第4級アンモニウム塩等及びそれらの組み合わせから選択される。好ましくは、ジメチルアニリン、ジエチルアミン、o-フェニレンジアミン、ジメチルパラトルイジン、ジエチルパラトルイジン、N,N-ジエチルアニリン等の有機アミン類から選ばれる1種または2種以上の組み合わせが挙げられる。
 上記(15)に記載の接着積層コア製造装置によれば、2-シアノアクリレート系接着剤の硬化が速やか、かつ完全に進行するため、特に短時間の製造やアウトガスの抑制等を要求される製造に極めて優れ、生産性が向上することができるという利点が得られる。
(16)上記(13)に記載の接着積層コア製造装置において、前記嫌気性接着剤または前記2-シアノアクリレート系接着剤の硬化促進剤は、ケトン系溶剤、アルコール系溶剤、エステル系溶剤、グリコールエーテル系溶剤、炭化水素系溶剤、ハロゲン化炭化水素系溶剤、エーテル系溶剤、グリコール系溶剤、アミン系溶剤等の溶剤により希釈した嫌気硬化を促進する有効成分または前記2-シアノアクリレート系接着剤の硬化を促進する有効成分を含んでもよい。
 溶剤種としては、上記溶剤種から選ばれる少なくとも一種、組み合わせが選択される。接着積層コア製造上、好ましくは酢酸エチル、アセトン、エタノール、メタノール、ブタノール、トルエンから選ばれる1種または2種以上の組み合わせが挙げられる。
(17)上記(10)~(16)の何れか1項に記載の接着積層コア製造装置において、前記接着積層コアが、回転電機用の固定子であってもよい。
 上記(17)に記載の接着積層コア製造装置によれば、十分な接着強度を確保した上でより高い生産性が得られるので、高い性能を持ちながらも製造コストが低い回転電機用の固定子を製造することが可能になる。
 本発明の上記各態様によれば、接着積層コアの製造に際し、十分な接着強度を確保した上でより高い生産性が得られる、接着積層コア製造方法及び接着積層コア製造装置を提供できる。
本発明の各実施形態で製造されるステータ用接着積層コアを備えた、回転電機の断面図である。 同ステータ用接着積層コアの側面図である。 本発明の第1実施形態に係る接着積層コア製造装置の側面図である。 同実施形態に係る接着積層コア製造方法を説明するための、フローチャートである。 本発明の第2実施形態に係る接着積層コア製造装置の側面図である。 同実施形態に係る接着積層コア製造方法を説明するための、フローチャートである。 本発明の第3実施形態に係る接着積層コア製造装置の側面図である。 同実施形態に係る接着積層コア製造方法を説明するための、フローチャートである。 本発明の第4実施形態に係る接着積層コア製造装置の側面図である。
 以下、図面を参照しながら、本発明の各実施形態に係る接着積層コア製造方法及び接着積層コア製造装置を説明する。その前に、図1及び図2を用いて、各実施形態で製造されるステータ用接着積層コア(接着積層コア。回転電機用の固定子)を先に説明する。
[ステータ用接着積層コア]
 図1は、各実施形態で製造されるステータ用接着積層コア21を備えた、回転電機10の断面図である。図2は、同ステータ用接着積層コア21の側面図である。
 以下、図1に示す回転電機10が、電動機、具体的には交流電動機、より具体的には同期電動機、より一層具体的には永久磁石界磁型電動機である場合を例示して説明する。この種の電動機は、例えば、電気自動車などに好適に採用される。
 図1に示すように、回転電機10は、ステータ20と、ロータ30と、ケース50と、回転軸60と、を備える。ステータ20およびロータ30は、ケース50内に収容される。ステータ20は、ケース50内に固定される。
 図1の例では、回転電機10として、ロータ30がステータ20の径方向内側に位置するインナーロータ型を例示している。しかしながら、回転電機10として、ロータ30がステータ20の外側に位置するアウターロータ型であってもよい。また、ここでは、回転電機10が12極18スロットの三相交流モータである場合を例示する。しかし、極数、スロット数、相数などは、適宜変更できる。
 回転電機10は、例えば、各相に実効値10A、周波数100Hzの励磁電流を印加することにより、回転数1000rpmで回転することができる。
 ステータ20は、ステータ用接着積層コア21と、図示しない巻線と、を備える。
 ステータ用接着積層コア21は、環状のコアバック部22と、複数のティース部23と、を備える。以下では、ステータ用接着積層コア21(又はコアバック部22)の中心軸線O方向を軸方向と言い、ステータ用接着積層コア21(又はコアバック部22)の径方向(中心軸線Oに直交する方向)を径方向と言い、ステータ用接着積層コア21(又はコアバック部22)の周方向(中心軸線O回りに周回する方向)を周方向と言う。
 コアバック部22は、ステータ20を軸方向から見た平面視において円環状に形成されている。
 複数のティース部23は、コアバック部22の内周から径方向内側に向けて突出する。複数のティース部23は、周方向に同等の角度間隔をあけて配置されている。図1の例では、中心軸線Oを中心とする中心角20度おきに18個のティース部23が設けられている。複数のティース部23は、互いに同等の形状でかつ同等の大きさに形成されている。よって、複数のティース部23は、互いに同じ厚み寸法を有している。
 前記巻線は、ティース部23に巻回されている。前記巻線は、集中巻きされていてもよく、分布巻きされていてもよい。
 ロータ30は、ステータ20(ステータ用接着積層コア21)に対して径方向の内側に配置されている。ロータ30は、ロータコア31と、複数の永久磁石32と、を備える。
 ロータコア31は、ステータ20と同軸に配置される環状(円環状)に形成されている。ロータコア31内には、回転軸60が配置されている。回転軸60は、ロータコア31に固定されている。
 複数の永久磁石32は、ロータコア31に固定されている。図1の例では、2つ1組の永久磁石32が1つの磁極を形成している。複数組の永久磁石32は、周方向に同等の角度間隔をあけて配置されている。図1の例では、中心軸線Oを中心とする中心角30度おきに12組(全体では24個)の永久磁石32が設けられている。
 図1の例では、永久磁石界磁型電動機として、埋込磁石型モータが採用されている。ロータコア31には、ロータコア31を軸方向に貫通する複数の貫通孔33が形成されている。複数の貫通孔33は、複数の永久磁石32の配置に対応して設けられている。各永久磁石32は、対応する貫通孔33内に配置された状態でロータコア31に固定されている。各永久磁石32のロータコア31への固定は、例えば永久磁石32の外面と貫通孔33の内面とを接着剤により接着すること等により、実現できる。なお、永久磁石界磁型電動機として、埋込磁石型に代えて表面磁石型モータを採用してもよい。
 ステータ用接着積層コア21およびロータコア31は、いずれも積層コアである。例えばステータ用接着積層コア21は、図2に示すように、複数の電磁鋼板40が積層方向に積層されることで形成されている。
 なお、ステータ用接着積層コア21およびロータコア31それぞれの積厚(中心軸線Oに沿った全長)は、例えば50.0mmとされる。ステータ用接着積層コア21の外径は、例えば250.0mmとされる。ステータ用接着積層コア21の内径は、例えば165.0mmとされる。ロータコア31の外径は、例えば163.0mmとされる。ロータコア31の内径は、例えば30.0mmとされる。ただし、これらの値は一例であり、ステータ用接着積層コア21の積厚、外径や内径、およびロータコア31の積厚、外径や内径は、これらの値のみに限られない。ここで、ステータ用接着積層コア21の内径は、ステータ用接着積層コア21におけるティース部23の先端部を基準とする。すなわち、ステータ用接着積層コア21の内径は、全てのティース部23の先端部に内接する仮想円の直径である。
 ステータ用接着積層コア21およびロータコア31を形成する各電磁鋼板40は、例えば、母材となる帯状鋼板を打ち抜き加工することにより形成される。電磁鋼板40としては、公知の電磁鋼板を用いることができる。電磁鋼板40の化学組成は、以下に質量%単位で示すように、質量%で2.5%~3.9%のSiを含有する。化学組成をこの範囲とすることにより、各電磁鋼板40の降伏強度を、380MPa以上540MPa以下に設定することができる。
 Si:2.5%~3.9%
 Al:0.001%~3.0%
 Mn:0.05%~5.0%
 残部:Fe及び不純物
 本実施形態では、電磁鋼板40として、無方向性電磁鋼板を採用している。無方向性電磁鋼板としては、JISC2552:2014の無方向性電鋼帯を採用できる。しかしながら、電磁鋼板40として、無方向性電磁鋼板に代えて方向性電磁鋼板を採用してもよい。この場合の方向性電磁鋼板としては、JISC2553:2012の方向性電鋼帯を採用できる。
 積層コアの加工性や、積層コアの鉄損を改善するため、電磁鋼板40の両面は、リン酸塩系の絶縁被膜で被覆されている。絶縁被膜を構成する物質としては、例えば、(1)無機化合物、(2)有機樹脂、(3)無機化合物と有機樹脂との混合物、などが採用できる。無機化合物としては、例えば、(1)重クロム酸塩とホウ酸の複合物、(2)リン酸塩とシリカの複合物、などが挙げられる。有機樹脂としては、エポキシ系樹脂、アクリル系樹脂、アクリルスチレン系樹脂、ポリエステル系樹脂、シリコン系樹脂、フッ素系樹脂などが挙げられる。
[第1実施形態]
 図3及び図4を用いて本発明の第1実施形態を以下に説明する。図3は、本実施形態に係る接着積層コア製造装置の側面図である。また、図4は、本実施形態に係る接着積層コア製造方法を説明するための、フローチャートである。
 図3に示すように、本実施形態の接着積層コア製造装置100は、帯状鋼板供給部110と、硬化促進部形成部120と、駆動部(不図示)と、プレス加工油塗布部130と、プレス加工部140と、接着剤塗布部150と、積層接着部160とを備える。これらのうち、プレス加工部140と、接着剤塗布部150と、積層接着部160との組み合わせにより、順送金型(Progressive Die)が構成される。
 帯状鋼板供給部110には、電磁鋼板(鋼板部品)40の素材となる帯状鋼板Mを巻回したフープ材Fが軸支されており、図3の紙面右側に向かって帯状鋼板Mを送り出す。以下の説明において、帯状鋼板Mの送り方向である紙面右側を下流側(あるいは下流方向)、その逆方向である紙面左側を上流側(あるいは上流方向)という場合がある。この帯状鋼板供給部110より下流側に向けて送られる帯状鋼板Mは、上述した化学組成を有する鋼板であり、その両面が上述した絶縁被膜で被覆されている。
 硬化促進部形成部120は、硬化促進剤タンク121と、ノズル122と、乾燥機123とを有する。
 硬化促進剤タンク121には、硬化促進剤が貯留されている。嫌気性接着剤の硬化促進剤としては、前記嫌気硬化を促進する有効成分を含むものが、また2-シアノアクリレート系接着剤の硬化促進剤としては前記2-シアノアクリレート系接着剤の硬化を促進する有効成分を含むものが例示される。硬化促進剤は、嫌気性接着剤または2-シアノアクリレート系接着剤と混ざり合うことで、接着剤の瞬時硬化を促す。
 硬化促進剤としては、ケトン系溶剤、アルコール系溶剤、エステル系溶剤、グリコールエーテル系溶剤、炭化水素系溶剤、ハロゲン化炭化水素系溶剤、エーテル系溶剤、グリコール系溶剤、アミン系溶剤等の溶剤により希釈した嫌気硬化を促進する有効成分または2-シアノアクリレート系接着剤の硬化を促進する有効成分を含むものである。
 溶剤種としては、上記溶剤種から選ばれる少なくとも一種、組み合わせが選択される。接着積層コア製造上、好ましくは酢酸エチル、アセトン、エタノール、メタノール、ブタノール、トルエンから選ばれる1種または2種以上の組み合わせが挙げられる。
 後述するが、本実施形態の接着積層コア製造方法では、帯状鋼板Mに塗布した硬化促進剤を予め乾燥硬化させて硬化促進部としてから、その表面をプレス加工油で被覆している。そのため、プレス加工油に硬化促進剤が混ざり込むことが抑制されている。
 ここで、硬化促進剤の溶剤として低沸点のアルコール系溶剤を用いても、プレス加工油の塗布前に乾燥させて溶剤成分を予め揮発させてしまうため、プレス加工油へのアルコール系溶剤の混ざり込みを配慮した取り扱いが不要である。このように、本実施形態の接着積層コア製造方法では、硬化促進剤の溶剤がプレス加工油に混ざり込むことによるデメリットを生じないため、使用可能な溶剤として幅広い選択肢が得られる上に、作業性も高い。なお、硬化促進部(硬化促進剤)の乾燥度合いとしては、溶剤が完全に揮発するまで乾燥させることが最も好ましいが、これに加えて、硬化促進剤を、プレス加工油と混ざり合わない程度に乾燥させて硬化促進部とした場合も含めて、「乾燥」と言う。
 硬化促進部の乾燥度合いを定量的に調べる手段としては、硬化促進部に塗布した後のプレス加工油に含まれる硬化促進剤の有効成分の含有量を検出することにより、判断できる。
 すなわち、プレス加工油に占める硬化促進剤の有効成分の含有量が1重量%を超えるようであれば未乾燥状態にあると判断される。よって、硬化促進剤の有効成分の含有量が1重量%以下、好ましくは0.5重量%以下、より好ましくは0.1重量%以下であれば、「乾燥」していると判断できる。ここで、嫌気性接着剤を用いる場合における硬化促進剤の有効成分としては、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、バナジウム、モリブデン、ルテニウム、サッカリン及びそれらの組み合わせから選択されるものが、検出対象になる。また、2-シアノアクリレート系接着剤を用いる場合における硬化促進剤の有効成分としては、ジメチルアニリン、ジエチルアミン、o-フェニレンジアミン、ジメチルパラトルイジン、ジエチルパラトルイジン及びN,N-ジエチルアニリン等の有機アミン類、トリクロルアセトアミド等の酸アミド類、コハク酸イミド等の有機イミド類、テトラメチルアンモニウムクロライド及びベンジルトリメチルアンモニウムクロライド等の第4級アンモニウム塩等、並びにそれらの組み合わせから選択されるものが、検出対象になる。
 プレス加工油に硬化促進剤が混ざり込んだ場合、プレス加工油に溶け込んだ硬化促進剤の金属触媒が、本来の硬化促進用途に供されずにプレス加工油に溶け込んだまま排出されてしまう。この場合、排出されたプレス加工油から硬化促進剤の金属触媒を回収して再利用することが困難である上に、プレス加工油を廃棄する前に処理を加える手間も生じる。逆に、硬化促進剤の金属触媒がプレス加工油に完全に溶け込まない種類のものである場合、この金属触媒が金型のプレス加工油排出路に析出して堆積し、目詰まりや残渣の原因となる虞がある。
 さらに言うと、硬化促進剤と接着剤との間には適切な混合比率が規定されており、その混合比率より高くても低くても接着性能が低下する。もし、硬化促進剤がプレス加工油に混ざり込んでしまうと、その損失分を補うように硬化促進剤を増量させる必要がある。しかし、接着積層コアの鋼板部品は形状が複雑であるため、硬化促進剤の付着量が狙った値となるように調整することは容易ではない。よって、調整が上手くいかずに本来の接着性能を高位に発現 できない虞がある。
 嫌気硬化を促進する有効成分は、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、バナジウム、モリブデン、ルテニウム、サッカリン及びそれらの組み合わせから選択される。好ましくは、銅、鉄、バナジウム、コバルト、クロム、銀、及びマンガン、並びにそれらの組み合わせから選択されてもよい。望ましくは、銅、鉄、バナジウム、コバルト、及びクロム、並びにそれらの組み合わせであり得る。望ましくは、金属酸化物または塩の形態で提供される。好ましくは、バナジウムアセチルアセトネート、バナジルアセチルアセトネート、ステアリン酸バナジル、バナジウムプロポキシド、バナジウムブトキシド、五酸化バナジウム、ナフテン酸コバルト、ナフテン酸マンガン、ヘキサン酸銅、ビス(2-エチルヘキサン酸)銅(II)等から選ばれる1種または2種以上の組み合わせが例示される。硬化促進剤は、嫌気性の接着剤と混ざり合うことで、接着剤の瞬時硬化を促す。
 前記2-シアノアクリレート系接着剤の硬化促進剤は、ジメチルアニリン、ジエチルアミン、o-フェニレンジアミン、ジメチルパラトルイジン、ジエチルパラトルイジン及びN,N-ジエチルアニリン等の有機アミン類、トリクロルアセトアミド等の酸アミド類、コハク酸イミド等の有機イミド類、テトラメチルアンモニウムクロライド及びベンジルトリメチルアンモニウムクロライド等の第4級アンモニウム塩等、並びにそれらの組み合わせから選択される2-シアノアクリレート系接着剤の硬化を促進する有効成分を含む。好ましくは、ジメチルアニリン、ジエチルアミン、o-フェニレンジアミン、ジメチルパラトルイジン、ジエチルパラトルイジン、N,N-ジエチルアニリン等の有機アミン類から選ばれる1種または2種以上の組み合わせが挙げられる。
 ノズル122は、硬化促進剤タンク121に接続されている。ノズル122は、そのノズル口が帯状鋼板Mの上面に向いており、硬化促進剤タンク121内の硬化促進剤を、適量をもって前記上面に塗布する。硬化促進剤は、本実施形態では前記上面に対してその全面を覆うように塗布されるが、この形態のみに限らず、例えば点状など部分的に塗布するように構成してもよい。
 乾燥機123は、一対のローラー123aと、ドライヤー123bとを有する。
 一対のローラー123aは、ノズル122の下流側に配置されている。一対のローラー123aは、これらの間を通過していく帯状鋼板Mが常に水平に保たれるように保持する。
 ドライヤー123bは、一対のローラー123a間に挟まれる位置に配置されている。ドライヤー123bは、帯状鋼板Mの上面及び下面に空気を吹き付けることで硬化促進剤を乾燥させる。これにより、帯状鋼板Mは、一対のローラー123aのうちの上流側の方を超えた時点で空気の吹き付けを受けて硬化促進剤が乾燥し始め、そして一対のローラー123aのうちの下流側の方に至る前に乾燥が完了している。したがって、一対のローラー123aの下流側を経た後の帯状鋼板Mの上面には、溶剤が乾燥した硬化促進層(硬化促進部)が均等厚かつ全面にわたって形成されている。硬化促進層の厚みとしては、0.1μmを例示できる。なお、帯状鋼板Mの下面は、硬化促進剤が塗布されていないため、絶縁被膜が露出したままの状態になっている。
 前記駆動部は、硬化促進部形成部120とプレス加工油塗布部130との間の位置Dに配置されている。前記駆動部は、帯状鋼板Mを、硬化促進部形成部120からプレス加工油塗布部130に向かう紙面右方向に向けて間欠的に送り出す。なお、硬化促進部形成部120から送り出された帯状鋼板Mの上面には、前記駆動部に入る前に、硬化促進剤が乾燥した硬化促進層が既に形成されている。一方、前記駆動部に入る前における帯状鋼板Mの下面は、硬化促進層がなく、絶縁被膜が露出したままの状態になっている。
 プレス加工油塗布部130は、塗布ローラー131とオイルパン132とを備える。
 オイルパン132は、塗布ローラー131の下方に配置されており、プレス加工油が貯留されている。塗布ローラー131は帯状鋼板Mをその上下より間に挟み込むように保持する一対のローラーであり、帯状鋼板Mの上面及び下面に接してプレス加工油を塗布しながら下流側に送り出す。プレス加工油塗布部130でプレス加工油を塗布した際、帯状鋼板Mの上面には乾燥済みの硬化促進層が形成されているため、この硬化促進層上に、混ざることなくプレス加工油の層が全面にわたって形成される。すなわち、硬化促進層の表面が、プレス加工油の層により隙間無く被覆される。同時に、帯状鋼板Mの下面(絶縁被膜)上にも、プレス加工油の層が全面にわたって形成される。
 プレス加工部140は、第1段打ち抜き部141と第2段打ち抜き部142とを備え、前記順送金型の一部をなす。
 第1段打ち抜き部141は、プレス加工油塗布部130の下流側に配置され、雄金型141a及び雌金型141bを有する。雄金型141a及び雌金型141bは、鉛直方向に沿って同軸配置されており、これらの間を帯状鋼板Mが挿通する。よって、帯状鋼板Mの上面に対して雄金型141aが対向し、帯状鋼板Mの下面に対して雌金型141bが対向する。そして、帯状鋼板Mの送り出しを一時停止させた状態で、図示されない油圧機構により、雄金型141aを下方に向けて移動させて雌金型141b内に至らせることで、帯状鋼板Mのうち、電磁鋼板40を形成するために必要な1回目の打ち抜き加工を行う。この時、帯状鋼板Mの上下面にはプレス加工油が塗布されているので、焼き付き等を生じることなく打ち抜くことができる。
 さらに言うと、硬化促進層の表面がプレス加工油で被覆されているため、硬化促進層が雄金型141a及び雌金型141bに付着することを抑制できる。よって、硬化促進層が剥がれて雄金型141a及び雌金型141bに堆積する虞を抑制できるので、これから製造するステータ用接着積層コア21の構造強度や磁気特性の低下を抑制できる。
 帯状鋼板Mを打ち抜き加工した後、今度は雄金型141aを上方に移動させて雌金型141bから引き抜き、帯状鋼板Mを再び下流側に向けて送り出す。
 第2段打ち抜き部142は、第1段打ち抜き部141の下流側に配置され、雄金型142a及び雌金型142bを有する。雄金型142a及び雌金型142bは、鉛直方向に沿って同軸配置されており、これらの間を、1回目の打ち抜き加工を終えた後の帯状鋼板Mが挿通する。よって、帯状鋼板Mの上面に対して雄金型142aが対向し、帯状鋼板Mの下面に対して雌金型142bが対向する。そして、帯状鋼板Mの送り出しを再び一時停止させた状態で、図示されない油圧機構により、雄金型142aを下方に向けて移動させて雌金型142b内に至らせることで、帯状鋼板Mのうち、電磁鋼板40を形成するために必要な2回目の打ち抜き加工を行う。この時も、帯状鋼板Mの上下面にはプレス加工油が塗布されているので、焼き付き等を生じることなく打ち抜くことができる。
 この時も、硬化促進層の表面がプレス加工油で被覆されているため、硬化促進層が雄金型142a及び雌金型142bに付着することを抑制できる。よって、硬化促進層が剥がれて雄金型142a及び雌金型142bに堆積する虞を抑制できるので、これから製造するステータ用接着積層コア21の構造強度や磁気特性の低下を抑制できる。
 帯状鋼板Mを打ち抜き加工した後、今度は雄金型142aを上方に移動させて雌金型142bから引き抜き、帯状鋼板Mを再び下流側に向けて送り出す。
 接着剤塗布部150は、プレス加工部140の下流側に配置されている。接着剤塗布部150は、空気圧送機151と、シリンジ152と、ノズル153と、鋼板抑え154とを備える。
 シリンジ152は、接着剤を貯留する容器であり、空気圧送機151とノズル153との間に配管を介して接続されている。接着剤のうち嫌気性接着剤としては東亞合成株式会社製「アロンタイト」(商標登録)を、2-シアノアクリレート系接着剤としては東亞合成株式会社製「アロンアルフア」(商標登録)を例示できる。
 ノズル153は、吐出口が上方を向いた複数本のニードルを備える。各ニードルは、帯状鋼板Mの下方に配置されている。よって、各ニードルの吐出口は、帯状鋼板Mの下面に対向している。
 鋼板抑え154は、ノズル153の上方(各ニードルの直上)に配置されている。よって、鋼板抑え154は、帯状鋼板Mの上面に対向している。鋼板抑え154は、帯状鋼板Mの送り出しを一時停止させた状態で、図示されない油圧機構により、下方に向かって押し下げられる。これにより、鋼板抑え154の下面が帯状鋼板Mの上面に当接して帯状鋼板Mを下方に押し下げる。これにより、帯状鋼板Mの高さ位置を、ノズル153による接着剤塗布位置まで押し下げて位置決めできる。この位置決め状態では、帯状鋼板Mの下面が各ニードルの吐出口に近接する。
 さらに、この位置決め状態において、前記空気圧送機151を起動させて適量の空気をシリンジ152へ圧送すると、シリンジ152内の接着剤がノズル153へ送られる。その結果、前記各ニードルから適量の接着剤が吐出され、帯状鋼板Mの下面に塗布される。その後、前記油圧機構により鋼板抑え154を上昇させることで、帯状鋼板Mの高さ位置を元の高さに復帰させる。
 積層接着部160は、接着剤塗布部150の下流側に配置されている。積層接着部160は、外周打ち抜き雄金型161と、外周打ち抜き雌金型162と、スプリング163と、加熱器164と、を備える。
 外周打ち抜き雄金型161は、円形の底面を有する円柱形状の金型であり、その上端にはスプリング163の下端が接続されている。そして、外周打ち抜き雄金型161は、スプリング163で支持された状態で、スプリング163と共に上下動可能とされている。外周打ち抜き雄金型161は、前記ステータ用接着積層コア21の外径寸法と略同じ外径寸法を有している。
 外周打ち抜き雌金型162は、円柱形状の内部空間を有する金型であり、前記ステータ用接着積層コア21の外径寸法と略同じ内径寸法を有している。
 加熱器164は、外周打ち抜き雌金型162に、一体に組み込まれている。加熱器164は、外周打ち抜き雌金型162内に積層された各電磁鋼板(鋼板部品)40をその周囲より加熱する。前記接着剤として加熱硬化型を用いる場合、この接着剤は、加熱器164からの熱を受けて硬化する。一方、接着剤として常温硬化型を用いる場合、この接着剤は、加熱を要することなく室温にて硬化する。
 上記積層接着部160によれば、帯状鋼板Mの送り出しを一時停止させた状態で、外周打ち抜き雄金型161を降下させて帯状鋼板Mを外周打ち抜き雌金型162との間に挟み込み、さらに外周打ち抜き雄金型161を外周打ち抜き雌金型162内に押し込むことで、帯状鋼板Mから外周打ち抜きされた電磁鋼板40が得られる。
 この時も、硬化促進層の表面がプレス加工油で被覆されているため、硬化促進層が外周打ち抜き雄金型161及び外周打ち抜き雌金型162に付着することを抑制できる。よって、硬化促進層が剥がれて外周打ち抜き雄金型161及び外周打ち抜き雌金型162に堆積する虞を抑制できるので、これから製造するステータ用接着積層コア21の構造強度や磁気特性の低下を抑制できる。
 外周打ち抜き雄金型161により打ち抜かれた電磁鋼板40は、先に打ち抜かれて外周打ち抜き雌金型162内に積層及び接着された他の電磁鋼板40の上面に積層され、さらに外周打ち抜き雄金型161からの加圧力と、加熱器164からの加熱とを受ける。この時、外周打ち抜き雄金型161から電磁鋼板40に加えられる加圧力は、前記スプリング163の付勢力によって常に一定に維持される。
 以上により、今回打ち抜いた電磁鋼板40が、前回に打ち抜かれた電磁鋼板40の上面に対して接着固定される。このような外周打ち抜き、加圧、そして加熱の各工程を各電磁鋼板40の積層枚数分の回数、繰り返すことで、外周打ち抜き雌金型162内にステータ用接着積層コア21が形成される。
 図3に示すように、前記雌金型141b、前記雌金型142b、前記ノズル153、前記外周打ち抜き雌金型162、及び前記加熱器164は、共通の固定基台171上に固定されている。したがって、これら雌金型141b、雌金型142b、前記ノズル153、外周打ち抜き雌金型162、及び加熱器164は、水平方向及び上下方向の相対位置が固定されている。
 同様に、前記雄金型141a、前記雄金型142a、前記鋼板抑え154、及び前記外周打ち抜き雄金型161も、共通の可動基台172の下面に固定されている。したがって、これら雄金型141a、雄金型142a、鋼板抑え154、及び外周打ち抜き雄金型161は、水平方向及び上下方向の相対位置が固定されている。
 前記駆動部が帯状鋼板Mを下流側に向かって送り出し、一時停止させた時に可動基台172を下降させることで、電磁鋼板40の外周打ち抜き及び積層及び接着と、帯状鋼板Mで次に外周打ち抜きされる電磁鋼板40の位置への接着剤の塗布と、帯状鋼板Mで次に接着剤が塗布される位置への前記2回目の打ち抜き加工と、帯状鋼板Mで次に前記2回目の打ち抜き加工を行う位置への前記1回目の打ち抜き加工と、が同時に行われる。
 続いて、可動基台172を上昇させて帯状鋼板Mの上方に退避させた後、前記駆動部により帯状鋼板Mを再び下流側に所定距離だけ送り出し、そして再び一時停止させる。この状態で可動基台172を再び下降させ、各位置での加工を継続して行う。このように、前記駆動部により帯状鋼板Mを前記順送金型内で間欠的に送りながら、一時停止時に可動基台172を上下動させる工程を繰り返すことにより、ステータ用接着積層コア21が製造される。
 以上説明の構成を有する接着積層コア製造装置100を用いた接着積層コア製造方法について、図4を用いて以下に説明する。
 図4に示すように、本実施形態の接着積層コア製造方法は、鋼板送り出し工程S1と、硬化促進剤塗布工程S2と、硬化促進剤乾燥工程S3と、加工油塗布工程S4と、1回目打ち抜き工程S5と、2回目打ち抜き工程S6と、接着剤塗布工程S7と、ステータ用接着積層コア形成工程S8と、取り出し工程S9と、を有する。
 鋼板送り出し工程S1では、フープ材Fから下流側に向けて帯状鋼板Mを送り出す。
 続く硬化促進剤塗布工程S2では、ノズル122から帯状鋼板Mの上面の全面に、硬化促進剤aを塗布する。この時点の硬化促進剤aは液状である。
 続く硬化促進剤乾燥工程S3では、ドライヤー123bからの空気を帯状鋼板Mの上下面に吹き付け、液状であった硬化促進剤aを乾燥させて硬化促進層(硬化促進部)a’を形成する。この硬化促進層a’は固体である。
 続く加工油塗布工程S4では、塗布ローラー131により、帯状鋼板Mの上下面にプレス加工油bが塗布されて層を形成する。この時、硬化促進層a’は予め乾燥されているので、プレス加工油bと混ざって濃度が下がることはなく、ほぼ元の状態を維持する。
 続く1回目打ち抜き工程S5では、第1段打ち抜き部141により帯状鋼板Mの1回目の打ち抜きが行われる。この時、帯状鋼板Mにはプレス加工油bが予め塗布されているため、雄金型141a及び雌金型141b間における焼き付き等、プレス加工上の不具合が生じない。
 続く2回目打ち抜き工程S6では、第2段打ち抜き部142により帯状鋼板Mの2回目の打ち抜きが行われる。この時も、帯状鋼板Mにはプレス加工油bが予め塗布されているため、雄金型142a及び雌金型142b間における焼き付き等、プレス加工上の不具合が生じない。
 以上の1回目打ち抜き工程S5及び2回目打ち抜き工程S6により、外形部分を除き、図1に示したコアバック部22及びティース部23が帯状鋼板Mに形成される。
 続く接着剤塗布工程S7では、ノズル153から吐出された接着剤cが、帯状鋼板Mの下面にプレス加工油bを介して配置されるように塗布される。この時、接着剤cは、所定の厚み寸法と所定の径寸法を持つ点状に塗布される。ここで、接着剤cはまだ硬化促進層a’と混ざっていないため、液状をなしている。
 続くステータ用接着積層コア形成工程S8では、外周打ち抜き雄金型161によって帯状鋼板Mから外周が打ち抜かれた電磁鋼板40が、先に打ち抜かれた他の電磁鋼板40の上面に積層される。この時、前記他の電磁鋼板40の上面には、プレス加工油bで被覆された硬化促進層a’が形成されている。この上に今回外周打ち抜きをした電磁鋼板40を積層して加圧しながら加熱する。すると、今回外周打ち抜きをした電磁鋼板40の下面にある接着剤cが、先に外周打ち抜きをした前記他の電磁鋼板40の上面側にあるプレス加工油bを押しのけてその下にある硬化促進層a’と混ざり合いながら瞬時に硬化する。
 以上の工程を順次繰り返すことで必要枚数の電磁鋼板40を積層及び接着し、ステータ用接着積層コア21が完成する。具体的に言うと、電磁鋼板40の積層枚数が所定枚数に達するまで、鋼板送り出し工程S1~ステータ用接着積層コア形成工程S8の各工程を順番に繰り返していく。そして、ステータ用接着積層コア形成工程S8後における電磁鋼板40の積層枚数が前記所定枚数に達した時点で、鋼板送り出し工程S1には戻らずに取り出し工程S9へと進む。
 続く取り出し工程S9では、完成したステータ用接着積層コア21を外周打ち抜き雌金型162内から取り出すことで、接着積層コア製造方法の全工程が終了する。
 以上説明の接着積層コア製造装置100を用いた接着積層コア製造方法の骨子を、以下に纏める。
 本実施形態の接着積層コア製造方法は、両面にプレス加工油bを塗布した帯状鋼板Mにプレス加工を行い、帯状鋼板Mの下面(片面)にプレス加工油bを介して接着剤cを塗布して複数枚の電磁鋼板(鋼板部品)40を得て、各電磁鋼板40を順次、積層接着することによってステータ用接着積層コア(接着積層コア)21を製造する方法である。そして、プレス加工油bを塗布する前に、帯状鋼板Mの片面である上面に硬化促進剤aを塗布及び乾燥させて硬化促進層(硬化促進部)a’を形成する。
 すなわち、本実施形態の接着積層コア製造方法は、帯状鋼板Mを前記順送金型内で送りながら複数枚の電磁鋼板40を打ち抜き、各電磁鋼板40を、接着剤cを介して積層させることによりステータ用接着積層コア21を製造する方法である。そして、本実施形態の接着積層コア製造方法は、プレス加工油bを塗布する前の帯状鋼板Mの片面である上面に、硬化促進剤aを塗布及び乾燥させて硬化促進層a’を形成する工程と、硬化促進層a’の表面にプレス加工油bを塗布する工程と、を有する。
 より具体的には、各電磁鋼板40が、先に打ち抜かれた電磁鋼板(第1鋼板部品)40及び後に打ち抜かれた電磁鋼板(第2鋼板部品)40を含む。そして、本実施形態の接着積層コア製造方法は、鋼板送り出し工程S1~ステータ用接着積層コア形成工程S8を行って接着済みの電磁鋼板(第1鋼板部品)40を得る第1の工程と、鋼板送り出し工程S1~接着剤塗布工程S7を行って接着前の電磁鋼板(第2鋼板部品)40を得る第2の工程と、ステータ用接着積層コア形成工程S8を行って接着前の電磁鋼板(第2鋼板部品)40を接着済みの電磁鋼板(第1鋼板部品)40上に接着する第3の工程とを行う。
 ここで、前記第1の工程では、上面(第1面)と、この上面上に形成された硬化促進層(硬化促進部)a’と、硬化促進層a’の上面に直接配置されたプレス加工油bとを有してかつ、下面が他の電磁鋼板40の上面に接着済みの電磁鋼板(第1鋼板部品)40を準備する。
 また、前記第2の工程では、下面(第2面)と、下面にプレス加工油bを介して配置された接着剤cと、を有する接着前の電磁鋼板(第2鋼板部品)40を準備する。
 そして、前記第3の工程では、前記第1面及び前記第2面が互いに対向するように、接着済みの電磁鋼板40に接着前の電磁鋼板40を重ね合わせて接着する。
 上記接着積層コア製造方法によれば、帯状鋼板Mに設けた硬化促進層a’が予め乾燥させて形成されているため、後加工で塗布されるプレス加工油bと混ざり合うことが抑制されている。したがって、各電磁鋼板40を積層して接着する際に、硬化促進層a’が元々の高い濃度を維持したまま、接着先の電磁鋼板40の接着剤cと混ざり合えるため、高い接着強度を早期に発現できる。よって、十分な接着強度を確保した上でより高い生産性を得ることが可能である。
 なお、プレス加工油bの塗布は、帯状鋼板Mの両面に限らず、硬化促進層a’が形成された片面だけとしてもよい。同様に、硬化促進剤aの塗布は、帯状鋼板Mの片面に限らず、両面としてもよい。また、硬化促進剤aの塗布は帯状鋼板Mの全面塗布に限らず、点状塗布としてもよい。ただし、この場合は、前記ステータ用接着積層コア形成工程S8で点状の接着剤cと点状の硬化促進層(硬化促進部)a’とが正しく重なって混合するために、後工程で塗布される接着剤cとの相対位置関係を正しく調整する必要がある。
 本実施形態の接着積層コア製造装置100は、帯状鋼板Mの両面にプレス加工油bを塗布するプレス加工油塗布部130と、帯状鋼板Mにプレス加工を加えるプレス加工部140と、帯状鋼板Mの下面にプレス加工油bを介して接着剤cを塗布する接着剤塗布部150と、プレス加工油塗布部130に至る前の帯状鋼板Mの片面に硬化促進剤aを塗布及び乾燥させて硬化促進層a’を形成する硬化促進部形成部120と、備える。
 すなわち、本実施形態の接着積層コア製造装置100は、帯状鋼板Mを送りながら帯状鋼板Mから打ち抜いた複数枚の電磁鋼板40を、接着剤cを介して積層することでステータ用接着積層コア21を製造する装置である。そして、本実施形態の接着積層コア製造装置100は、帯状鋼板Mの片面である上面に硬化促進剤aを塗布及び乾燥させて硬化促進層a’を形成する硬化促進部形成部120と、硬化促進部形成部120よりも下流側に配置され、少なくとも硬化促進層a’の表面にプレス加工油bを塗布するプレス加工油塗布部130と、プレス加工油塗布部130よりも下流側に配置され、帯状鋼板Mにプレス加工を加えるプレス加工部140と、帯状鋼板Mの片面である下面にプレス加工油bを介して接着剤cを塗布する接着剤塗布部150と、備える。
 そして、帯状鋼板Mの送り方向である送り方向に沿って、硬化促進部形成部120と、プレス加工油塗布部130と、プレス加工部140と、接着剤塗布部150とが、この順に並んでいる。
 この接着積層コア製造装置100によれば、硬化促進部形成部120において、硬化促進部a’が予め乾燥した状態で帯状鋼板Mに形成される。したがって、硬化促進部a’が、プレス加工油塗布部130で塗布されるプレス加工油bに混ざることが抑制される。したがって、各電磁鋼板40間を積層して接着する際に、硬化促進層a’が高い濃度を維持したまま、接着先の電磁鋼板40の接着剤cと混ざり合えるため、高い接着強度を早期に発現できる。よって、十分な接着強度を確保した上でより高い生産性を得ることが可能である。
[第2実施形態]
 図5及び図6を用いて本発明の第2実施形態を以下に説明する。図5は、本実施形態に係る接着積層コア製造装置の側面図である。また、図6は、本実施形態に係る接着積層コア製造方法を説明するための、フローチャートである。
 図5に示すように、本実施形態の接着積層コア製造装置200は、帯状鋼板供給部210と、硬化促進部形成部220と、駆動部(不図示)と、プレス加工油塗布部230と、プレス加工部240と、接着剤塗布部250と、積層接着部260とを備える。これらのうち、プレス加工部240と、接着剤塗布部250と、積層接着部260との組み合わせにより、順送金型(Progressive Die)が構成される。
 帯状鋼板供給部210には、電磁鋼板(鋼板部品)40の素材となる帯状鋼板Mを巻回したフープ材Fが軸支されており、図5の紙面右側に向かって帯状鋼板Mを送り出す。以下の説明において、帯状鋼板Mの送り方向である紙面右側を下流側(あるいは下流方向)、その逆方向である紙面左側を上流側(あるいは上流方向)という場合がある。この帯状鋼板供給部210より下流側に向けて送られる帯状鋼板Mは、上述した化学組成を有する鋼板であり、その両面が上述した絶縁被膜で被覆されている。
 硬化促進部形成部220は、硬化促進剤タンク221と、ノズル222と、シールボックス223と、拭き取りローラー224とを有する。
 硬化促進剤タンク221には、硬化促進剤を溶剤に溶かしたものが貯留されている。この硬化促進剤としては、上記第1実施形態で例示したものが使用できる。硬化促進剤は、嫌気性接着剤または2-シアノアクリレート系接着剤と混ざり合うことで、接着剤の瞬時硬化を促す。
 ノズル222は、硬化促進剤タンク221に接続されている。ノズル222は、そのノズル口が帯状鋼板Mの下面に向いており、硬化促進剤タンク221内の硬化促進剤を、適量をもって前記下面に噴霧する。硬化促進剤は、本実施形態では前記下面に対してその全面を覆うように塗布されるが、この形態のみに限らず、例えば点状など部分的に塗布するように構成してもよい。
 シールボックス223は、内部空間を有する箱であり、この内部空間に通じる入口及び出口を有する。帯状鋼板Mは、その水平状態を保ったまま、前記入口よりシールボックス223の内部空間に送り込まれた後、前記出口からシールボックス223の外へと送り出される。このシールボックス223の内部空間の下方には、前記ノズル222が配置されている。そして上述の通り、帯状鋼板Mのうち、前記内部空間を挿通する部分の下面にノズル222のノズル口が向けられている。ノズル11より帯状鋼板Mの下面に噴霧された硬化促進剤は、溶剤が揮発するため、瞬時に乾燥する。これにより、帯状鋼板Mが前記出口から出る前に、帯状鋼板Mの下面には、溶剤が乾燥した硬化促進層(硬化促進部)が均等厚かつ全面にわたって形成されている。硬化促進層の厚みとしては、0.1μmを例示できる。なお、硬化促進層(硬化促進剤)の乾燥度合いとしては、溶剤が完全に揮発するまで乾燥させることが最も好ましいが、これに加えて、硬化促進剤を、プレス加工油と混ざり合わない程度に乾燥させて硬化促進層とした場合も含めて、「乾燥」と言う。
 上述したように、硬化促進層の乾燥度合いを定量的に調べる手段としては、硬化促進部に塗布した後のプレス加工油に含まれる硬化促進剤の有効成分の含有量を検出することにより、判断できる。
 帯状鋼板Mの上面は、硬化促進剤が殆ど塗布されていないため、ほぼ、絶縁被膜が露出したままの状態になっている。
 拭き取りローラー224は、主に帯状鋼板Mの上面に残った硬化促進剤を余剰として拭き取る。これにより、拭き取りローラー224を経た後の帯状鋼板Mの上面は、硬化促進剤が完全に拭き取られて絶縁被膜が露出したままの状態になっている。
 前記駆動部は、硬化促進部形成部220とプレス加工油塗布部230との間の位置Dに配置されている。前記駆動部は、帯状鋼板Mを、硬化促進部形成部220からプレス加工油塗布部230に向かう紙面右方向に向けて間欠的に送り出す。なお、硬化促進部形成部220から送り出された帯状鋼板Mの下面には、前記駆動部に入る前に、硬化促進剤が乾燥した硬化促進層が既に形成されている。一方、前記駆動部に入る前における帯状鋼板Mの上面は、上述の通り硬化促進層がなく、絶縁被膜が露出したままの状態になっている。
 プレス加工油塗布部230は、塗布ローラー231とオイルパン232とを備える。
 オイルパン232は、塗布ローラー231の下方に配置されており、プレス加工油が貯留されている。塗布ローラー231は帯状鋼板Mをその上下より間に挟み込むように保持する一対のローラーであり、帯状鋼板Mの上面及び下面に接してプレス加工油を塗布しながら下流側に送り出す。プレス加工油塗布部230でプレス加工油を塗布した際、帯状鋼板Mの下面には乾燥済みの硬化促進層が形成されているため、この硬化促進層上に、混ざることなくプレス加工油の層が全面にわたって形成される。すなわち、硬化促進層の表面が、プレス加工油の層により隙間無く被覆される。同時に、帯状鋼板Mの上面(絶縁被膜)上にも、プレス加工油の層が全面にわたって形成される。
 プレス加工部240は、第1段打ち抜き部241と第2段打ち抜き部242と第3段打ち抜き部243とを備えた順送金型である。
 第1段打ち抜き部241は、プレス加工油塗布部230の下流側に配置され、雄金型241a及び雌金型241bを有する。雄金型241a及び雌金型241bは、鉛直方向に沿って同軸配置されており、これらの間を帯状鋼板Mが挿通する。よって、帯状鋼板Mの上面に対して雄金型241aが対向し、帯状鋼板Mの下面に対して雌金型241bが対向する。そして、帯状鋼板Mの送り出しを一時停止させた状態で、図示されない油圧機構により、雄金型241aを下方に向けて移動させて雌金型241b内に至らせることで、帯状鋼板Mのうち、電磁鋼板40を形成するために必要な1回目の打ち抜き加工を行う。この時、帯状鋼板Mの上下面にはプレス加工油が塗布されているので、焼き付き等を生じることなく打ち抜くことができる。
 さらに言うと、硬化促進層の表面がプレス加工油で被覆されているため、硬化促進層が雄金型241a及び雌金型241bに付着することを抑制できる。よって、硬化促進層が剥がれて雄金型241a及び雌金型241bに堆積する虞を抑制できるので、これから製造するステータ用接着積層コア21の構造強度や磁気特性の低下を抑制できる。
 帯状鋼板Mを打ち抜き加工した後、今度は雄金型241aを上方に移動させて雌金型241bから引き抜き、帯状鋼板Mを再び下流側に向けて送り出す。
 第2段打ち抜き部242は、第1段打ち抜き部241の下流側に配置され、雄金型242a及び雌金型242bを有する。雄金型242a及び雌金型242bは、鉛直方向に沿って同軸配置されており、これらの間を、1回目の打ち抜き加工を終えた後の帯状鋼板Mが挿通する。よって、帯状鋼板Mの上面に対して雄金型242aが対向し、帯状鋼板Mの下面に対して雌金型242bが対向する。そして、帯状鋼板Mの送り出しを再び一時停止させた状態で、図示されない油圧機構により、雄金型242aを下方に向けて移動させて雌金型242b内に至らせることで、帯状鋼板Mのうち、電磁鋼板40を形成するために必要な2回目の打ち抜き加工を行う。この時も、帯状鋼板Mの上下面にはプレス加工油が塗布されているので、焼き付き等を生じることなく打ち抜くことができる。
 この時も、硬化促進層の表面がプレス加工油で被覆されているため、硬化促進層が雄金型242a及び雌金型242bに付着することを抑制できる。よって、硬化促進層が剥がれて雄金型242a及び雌金型242bに堆積する虞を抑制できるので、これから製造するステータ用接着積層コア21の構造強度や磁気特性の低下を抑制できる。
 帯状鋼板Mを打ち抜き加工した後、今度は雄金型242aを上方に移動させて雌金型242bから引き抜き、帯状鋼板Mを再び下流側に向けて送り出す。
 第3段打ち抜き部243は、第2段打ち抜き部242の下流側に配置され、雄金型243a及び雌金型243bを有する。雄金型243a及び雌金型243bは、鉛直方向に沿って同軸配置されており、これらの間を、2回目の打ち抜き加工を終えた後の帯状鋼板Mが挿通する。よって、帯状鋼板Mの上面に対して雄金型243aが対向し、帯状鋼板Mの下面に対して雌金型243bが対向する。そして、帯状鋼板Mの送り出しを再び一時停止させた状態で、図示されない油圧機構により、雄金型243aを下方に向けて移動させて雌金型243b内に至らせることで、帯状鋼板Mのうち、電磁鋼板40を形成するために必要な3回目の打ち抜き加工を行う。この時も、帯状鋼板Mの上下面にはプレス加工油が塗布されているので、焼き付き等を生じることなく打ち抜くことができる。この打ち抜き加工の後、今度は雄金型243aを上方に移動させて雌金型243bから引き抜き、帯状鋼板Mを再び下流側に向けて送り出す。
 接着剤塗布部250は、プレス加工部240の下流側にある積層接着部260内に組み込まれている。接着剤塗布部250は、空気圧送機251と、シリンジ252と、ノズル253とを備える。
 シリンジ252は、接着剤を貯留する容器であり、空気圧送機251とノズル253との間に配管を介して接続されている。接着剤は、上記第1実施形態で説明したものを使用できる。
 ノズル253は、帯状鋼板Mの上方に配置されている。よって、ノズル253の吐出口は、帯状鋼板Mの上面に対向している。
 積層接着部260は、プレス加工部240の下流側でかつ接着剤塗布部250と同じ位置に配置されている。積層接着部260は、外周打ち抜き雄金型261と、外周打ち抜き雌金型262と、スプリング263と、加熱器264と、を備える。
 外周打ち抜き雄金型261は、円形の底面を有する円柱形状の金型であり、その上端にはスプリング263の下端が接続されている。そして、外周打ち抜き雄金型261は、スプリング263で支持された状態で、スプリング263と共に上下動可能とされている。外周打ち抜き雄金型261は、前記ステータ用接着積層コア21の外径寸法と略同じ外径寸法を有している。外周打ち抜き雄金型261内には、前記ノズル253が内蔵されている。そして、ノズル253の前記吐出口が、外周打ち抜き雄金型261の前記底面に形成されている。
 外周打ち抜き雌金型262は、円柱形状の内部空間を有する金型であり、前記ステータ用接着積層コア21の外径寸法と略同じ内径寸法を有している。
 加熱器264は、外周打ち抜き雌金型262に、一体に組み込まれている。加熱器264は、外周打ち抜き雌金型262内に積層された各電磁鋼板(鋼板部品)40をその周囲より加熱する。前記接着剤として加熱硬化型を用いる場合、この接着剤は、加熱器264からの熱を受けて硬化する。一方、接着剤として常温硬化型を用いる場合、この接着剤は、加熱を要することなく室温にて硬化する。
 上記積層接着部260によれば、帯状鋼板Mの送り出しを一時停止させた状態で、外周打ち抜き雄金型261を降下させて帯状鋼板Mを外周打ち抜き雌金型262との間に挟み込み、さらに外周打ち抜き雄金型261を外周打ち抜き雌金型262内に押し込むことで、帯状鋼板Mから外周打ち抜きされた電磁鋼板40が得られる。
 この時も、硬化促進層の表面がプレス加工油で被覆されているため、硬化促進層が外周打ち抜き雄金型261及び外周打ち抜き雌金型262に付着することを抑制できる。よって、硬化促進層が剥がれて外周打ち抜き雄金型261及び外周打ち抜き雌金型262に堆積する虞を抑制できるので、これから製造するステータ用接着積層コア21の構造強度や磁気特性の低下を抑制できる。
 さらに、この外周打ち抜きの際、前記空気圧送機251を起動させて適量の空気をシリンジ252へ圧送すると、シリンジ252内の接着剤がノズル253へ送られる。その結果、外周打ち抜き雄金型261の前記底面に形成された前記吐出口から適量の接着剤が吐出され、帯状鋼板Mの上面に塗布される。ここで塗布された接着剤は、次に外周打ち抜きされて積層される他の電磁鋼板40を接着するために用いられる。
 今回、外周打ち抜き雄金型261により外周打ち抜きされた電磁鋼板40は、前回に打ち抜かれて外周打ち抜き雌金型262内に積層及び接着された他の電磁鋼板40の上面に積層される。この積層により、前記他の電磁鋼板40の上面に前回形成された接着剤が、今回外周打ち抜きされた電磁鋼板40の下面に形成された硬化促進層と混合する。さらに外周打ち抜き雄金型261からの加圧力と、加熱器264からの加熱とが、積層された各電磁鋼板40に加えられる。この時、外周打ち抜き雄金型261から電磁鋼板40に加えられる加圧力は、前記スプリング263の付勢力によって常に一定に維持される。
 以上により、今回打ち抜いた電磁鋼板40が、前回に打ち抜かれた電磁鋼板40の上面に対して接着固定される。一方、今回打ち抜いた電磁鋼板40の上面に塗布された接着剤は、この時点ではまだ硬化促進層と混合していないため、硬化せず、液状のままになっている。
 以上説明のような外周打ち抜き、加圧、そして加熱の各工程を各電磁鋼板40の積層枚数分の回数、繰り返すことで、外周打ち抜き雌金型262内にステータ用接着積層コア21が形成される。
 図5に示すように、前記雌金型241b、前記雌金型242b、前記雌金型243b、前記外周打ち抜き雌金型262、及び前記加熱器264は、共通の固定基台271上に固定されている。したがって、これら雌金型241b、雌金型242b、雌金型243b、外周打ち抜き雌金型262、及び前記加熱器264は、水平方向及び上下方向の相対位置が固定されている。
 同様に、前記雄金型241a、前記雄金型242a、前記ノズル253、及び前記外周打ち抜き雄金型261も、共通の可動基台272の下面に固定されている。したがって、これら雄金型241a、雄金型242a、ノズル253、及び外周打ち抜き雄金型261も、水平方向及び上下方向の相対位置が固定されている。
 前記駆動部が帯状鋼板Mを下流側に向かって送り出し、一時停止させた時に可動基台272を下降させることで、電磁鋼板40の外周打ち抜き及び積層及び接着ならびに次工程のための接着剤塗布と、帯状鋼板Mで次に外周打ち抜きされる位置への前記3回目の打ち抜き加工と、帯状鋼板Mで次に前記3回目の打ち抜き加工を行う位置への前記2回目の打ち抜き加工と、帯状鋼板Mで次に前記2回目の打ち抜き加工を行う位置への前記1回目の打ち抜き加工と、が同時に行われる。
 続いて、可動基台272を上昇させて帯状鋼板Mの上方に退避させた後、前記駆動部により帯状鋼板Mを再び下流側に所定距離だけ送り出し、そして再び一時停止させる。この状態で可動基台272を再び下降させ、各位置での加工を継続して行う。このように、前記駆動部により帯状鋼板Mを間欠的に送りながら、一時停止時に可動基台272を上下動させる工程を繰り返すことにより、ステータ用接着積層コア21が製造される。
 以上説明の構成を有する接着積層コア製造装置200を用いた接着積層コア製造方法について、図6を用いて以下に説明する。
 図6に示すように、本実施形態の接着積層コア製造方法は、鋼板送り出し工程S11と、硬化促進剤塗布乾燥工程S12と、余剰分拭き取り工程S13と、加工油塗布工程S14と、1回目打ち抜き工程S15と、2回目打ち抜き工程S16と、3回目打ち抜き工程S17と、接着剤塗布及びステータ用接着積層コア形成工程S18と、取り出し工程S19と、を有する。
 鋼板送り出し工程S11では、フープ材Fから下流側に向けて帯状鋼板Mを送り出す。
 続く硬化促進剤塗布乾燥工程S12では、ノズル222から帯状鋼板Mの下面の全面に、硬化促進剤aを塗布及び乾燥させて硬化促進層a’を形成する。この硬化促進層a’は固体である。
 続く余剰分拭き取り工程S13では、帯状鋼板Mの上面における余剰の硬化促進剤が拭き取られる。よって、帯状鋼板Mの上面には硬化促進層a’が形成されていない。
 続く加工油塗布工程S14では、塗布ローラー231により、帯状鋼板Mの上下面にプレス加工油bが塗布されて層を形成する。この時、硬化促進層a’は予め乾燥されているので、プレス加工油bと混ざって濃度が下がることはなく、ほぼ元の状態を維持する。
 続く1回目打ち抜き工程S15では、第1段打ち抜き部241により帯状鋼板Mの1回目の打ち抜きが行われる。この時、帯状鋼板Mにはプレス加工油bが予め塗布されているため、雄金型241a及び雌金型241b間における焼き付き等、プレス加工上の不具合が生じない。
 続く2回目打ち抜き工程S16では、第2段打ち抜き部242により帯状鋼板Mの2回目の打ち抜きが行われる。この時も、帯状鋼板Mにはプレス加工油bが予め塗布されているため、雄金型242a及び雌金型242b間における焼き付き等、プレス加工上の不具合が生じない。
 続く3回目打ち抜き工程S17では、第3段打ち抜き部243により帯状鋼板Mの3回目の打ち抜きが行われる。この時も、帯状鋼板Mにはプレス加工油bが予め塗布されているため、雄金型243a及び雌金型243b間における焼き付き等、プレス加工上の不具合が生じない。
 以上の1回目打ち抜き工程S15~3回目打ち抜き工程S17により、外形部分を除き、図1に示したコアバック部22及びティース部23が帯状鋼板Mに形成される。
 続く接着剤塗布及びステータ用接着積層コア形成工程S18では、外周打ち抜き雄金型261によって帯状鋼板Mから外周が打ち抜かれた電磁鋼板40が、先に打ち抜かれた他の電磁鋼板40の上面に積層される。この時、前記他の電磁鋼板40の上面には、プレス加工油bを介して接着剤cが塗布されている。また、その上に積層される電磁鋼板40の下面には、プレス加工油bで被覆された硬化促進層a’が形成されている。これら電磁鋼板40が積層及び加圧された状態で加熱する。すると、前回外周打ち抜きをした前記他の電磁鋼板40の上面にある接着剤cが、今回外周打ち抜きをした電磁鋼板40の下面側にあるプレス加工油bを押しのけてその上にある硬化促進層a’と混ざり合いながら瞬時に硬化する。
 一方、今回外周打ち抜きを行った電磁鋼板40を前記他の電磁鋼板40に積層すると同時に、今回外周打ち抜きを行った電磁鋼板40の上面に、プレス加工油bを介して、ノズル253から接着剤cが塗布される。この接着剤cは、電磁鋼板40の上面側にあってまだ硬化促進層a’と混ざっていないため、液状をなしている。
 以上の工程を順次繰り返すことで必要枚数の電磁鋼板40を積層及び接着し、ステータ用接着積層コア21が完成する。具体的に言うと、電磁鋼板40の積層枚数が所定枚数に達するまで、鋼板送り出し工程S11~ステータ用接着積層コア形成工程S18の各工程を順番に繰り返していく。そして、ステータ用接着積層コア形成工程S18後における電磁鋼板40の積層枚数が前記所定枚数に達した時点で、鋼板送り出し工程S11には戻らずに取り出し工程S19へと進む。
 続く取り出し工程S19では、完成したステータ用接着積層コア21を外周打ち抜き雌金型262内から取り出すことで、接着積層コア製造方法の全工程が終了する。
 以上説明の接着積層コア製造装置200を用いた接着積層コア製造方法の骨子は、上記第1実施形態で説明したものと基本的に同じであり、図4のステータ用接着積層コア形成工程S8に示した電磁鋼板40の積層構造と、図6の接着剤塗布及びステータ用接着積層コア形成工程S18に示した電磁鋼板40の積層構造との上下関係を逆さにしたものである。そして、この工程を実現する本実施形態の接着積層コア製造装置200は、硬化促進部形成部220を帯状鋼板Mの下方に配置するとともに、接着剤塗布部250を帯状鋼板Mの上方に配置している。すなわち、本実施形態では、帯状鋼板Mに対する硬化促進層a’の形成位置と、接着剤cの塗布位置とを、上記第1実施形態とは上下逆にしている。
 本実施形態の場合も、帯状鋼板Mに設けられた硬化促進層a’が予め乾燥させて形成されているため、後加工で塗布されるプレス加工油bと混ざり合うことが抑制されている。したがって、各電磁鋼板40を積層して接着する際に、硬化促進層a’が元々と同じ高い濃度を維持したまま接着剤cと混ざり合えるため、高い接着強度を早期に発現できる。よって、十分な接着強度を確保した上でより高い生産性を得ることが可能である。
 なお、本実施形態の場合も、プレス加工油bの塗布は、帯状鋼板Mの両面に限らず、硬化促進層a’が形成された片面だけとしてもよい。同様に、硬化促進剤aの塗布は、帯状鋼板Mの片面に限らず、両面としてもよい。また、硬化促進剤aの塗布は帯状鋼板Mの全面塗布に限らず、点状塗布としてもよい。ただし、この場合は、前記接着剤塗布及びステータ用接着積層コア形成工程S18で点状の接着剤cと点状の硬化促進層(硬化促進部)a’とが正しく重なって混合するために、前工程で塗布される接着剤cとの相対位置関係を正しく調整する必要がある。
[第3実施形態]
 図7及び図8を用いて本発明の第3実施形態を以下に説明する。図7は、本実施形態に係る接着積層コア製造装置の側面図である。また、図8は、本実施形態に係る接着積層コア製造方法を説明するための、フローチャートである。
 図7に示すように、本実施形態の接着積層コア製造装置300は、帯状鋼板供給部310と、硬化促進部形成部320と、駆動部(不図示)と、プレス加工油塗布部330と、プレス加工部340と、接着剤塗布部350と、積層接着部360とを備える。これらのうち、プレス加工部340と、接着剤塗布部350と、積層接着部360との組み合わせにより、順送金型(Progressive Die)が構成される。
 帯状鋼板供給部310には、電磁鋼板(鋼板部品)40の素材となる帯状鋼板Mを巻回したフープ材Fが軸支されており、図7の紙面右側に向かって帯状鋼板Mを送り出す。以下の説明において、帯状鋼板Mの送り方向である紙面右側を下流側(あるいは下流方向)、その逆方向である紙面左側を上流側(あるいは上流方向)という場合がある。この帯状鋼板供給部310より下流側に向けて送られる帯状鋼板Mは、上述した化学組成を有する鋼板であり、その両面が上述した絶縁被膜で被覆されている。
 硬化促進部形成部320は、硬化促進剤タンク321と、ノズル322と、乾燥機323とを有する。
 硬化促進剤タンク321には、硬化促進剤が貯留されている。この硬化促進剤としては、上記第1実施形態で例示したものが使用できる。硬化促進剤は、嫌気性接着剤または2-シアノアクリレート系接着剤と混ざり合うことで、接着剤の瞬時硬化を促す。
 ノズル322は、硬化促進剤タンク321に接続されている。ノズル322は、そのノズル口が帯状鋼板Mの上面に向いており、硬化促進剤タンク321内の硬化促進剤を、適量をもって前記上面に塗布する。硬化促進剤は、本実施形態では前記上面に対してその全面を覆うように塗布されるが、この形態のみに限らず、例えば点状など部分的に塗布するように構成してもよい。
 乾燥機323は、一対のローラー323aと、ドライヤー323bとを有する。
 一対のローラー323aは、ノズル322の下流側に配置されている。一対のローラー323aは、これらの間を通過していく帯状鋼板Mが常に水平に保たれるように保持する。
 ドライヤー323bは、一対のローラー323a間に挟まれる位置に配置されている。ドライヤー323bは、帯状鋼板Mの上面及び下面に空気を吹き付けることで硬化促進剤を乾燥させる。これにより、帯状鋼板Mは、一対のローラー323aのうちの上流側の方を超えた時点で空気の吹き付けを受けて硬化促進剤が乾燥し始め、そして一対のローラー323aのうちの下流側の方に至る前に乾燥が完了している。したがって、一対のローラー323aの下流側を経た後の帯状鋼板Mの上面には、硬化促進剤が乾燥した硬化促進層(硬化促進部)が均等厚かつ全面にわたって形成されている。硬化促進層の厚みとしては、0.1μmを例示できる。なお、硬化促進層(硬化促進剤)の乾燥度合いとしては、溶剤が完全に揮発するまで乾燥させることが最も好ましいが、これに加えて、硬化促進剤を、プレス加工油と混ざり合わない程度に乾燥させて硬化促進層とした場合も含めて、「乾燥」と言う。
 上述したように、硬化促進層の乾燥度合いを定量的に調べる手段としては、硬化促進部に塗布した後のプレス加工油に含まれる硬化促進剤の有効成分の含有量を検出することにより、判断できる。
 帯状鋼板Mの下面は、硬化促進剤が塗布されていないため、絶縁被膜が露出したままの状態になっている。
 前記駆動部は、硬化促進部形成部320とプレス加工油塗布部330との間の位置Dに配置されている。前記駆動部は、帯状鋼板Mを、硬化促進部形成部320からプレス加工油塗布部330に向かう紙面右方向に向けて間欠的に送り出す。なお、硬化促進部形成部320から送り出された帯状鋼板Mの上面には、前記駆動部に入る前に、硬化促進剤が乾燥した硬化促進層が既に形成されている。一方、前記駆動部に入る前における帯状鋼板Mの下面は、上述の通り硬化促進層がなく、絶縁被膜が露出したままの状態になっている。
 プレス加工油塗布部330は、塗布ローラー331とオイルパン332とを備える。
 オイルパン332は、塗布ローラー331の下方に配置されており、プレス加工油が貯留されている。塗布ローラー331は帯状鋼板Mをその上下より間に挟み込むように保持する一対のローラーであり、帯状鋼板Mの上面及び下面に接してプレス加工油を塗布しながら下流側に送り出す。プレス加工油塗布部330でプレス加工油を塗布した際、帯状鋼板Mの上面には乾燥済みの硬化促進層が形成されているため、この硬化促進層上に、混ざることなくプレス加工油の層が全面にわたって形成される。すなわち、硬化促進層の表面が、プレス加工油の層により隙間無く被覆される。同時に、帯状鋼板Mの下面(絶縁被膜)上にも、プレス加工油の層が全面にわたって形成される。
 プレス加工部340は、第1段打ち抜き部341と第2段打ち抜き部342と第3段打ち抜き部343とを備えた順送金型である。
 第1段打ち抜き部341は、プレス加工油塗布部330の下流側に配置され、雄金型341a及び雌金型341bを有する。雄金型341a及び雌金型341bは、鉛直方向に沿って同軸配置されており、これらの間を帯状鋼板Mが挿通する。よって、帯状鋼板Mの上面に対して雄金型341aが対向し、帯状鋼板Mの下面に対して雌金型341bが対向する。そして、帯状鋼板Mの送り出しを一時停止させた状態で、図示されない油圧機構により、雄金型341aを下方に向けて移動させて雌金型341b内に至らせることで、帯状鋼板Mのうち、電磁鋼板40を形成するために必要な1回目の打ち抜き加工を行う。この時、帯状鋼板Mの上下面にはプレス加工油が塗布されているので、焼き付き等を生じることなく打ち抜くことができる。
 さらに言うと、硬化促進層の表面がプレス加工油で被覆されているため、硬化促進層が雄金型341a及び雌金型341bに付着することを抑制できる。よって、硬化促進層が剥がれて雄金型341a及び雌金型341bに堆積する虞を抑制できるので、これから製造するステータ用接着積層コア21の構造強度や磁気特性の低下を抑制できる。
 帯状鋼板Mを打ち抜き加工した後、今度は雄金型341aを上方に移動させて雌金型341bから引き抜き、帯状鋼板Mを再び下流側に向けて送り出す。
 第2段打ち抜き部342は、第1段打ち抜き部341の下流側に配置され、雄金型342a及び雌金型342bを有する。雄金型342a及び雌金型342bは、鉛直方向に沿って同軸配置されており、これらの間を、1回目の打ち抜き加工を終えた後の帯状鋼板Mが挿通する。よって、帯状鋼板Mの上面に対して雄金型342aが対向し、帯状鋼板Mの下面に対して雌金型342bが対向する。そして、帯状鋼板Mの送り出しを再び一時停止させた状態で、図示されない油圧機構により、雄金型342aを下方に向けて移動させて雌金型342b内に至らせることで、帯状鋼板Mのうち、電磁鋼板40を形成するために必要な2回目の打ち抜き加工を行う。この時も、帯状鋼板Mの上下面にはプレス加工油が塗布されているので、焼き付き等を生じることなく打ち抜くことができる。
 この時も、硬化促進層の表面がプレス加工油で被覆されているため、硬化促進層が雄金型342a及び雌金型342bに付着することを抑制できる。よって、硬化促進層が剥がれて雄金型342a及び雌金型342bに堆積する虞を抑制できるので、これから製造するステータ用接着積層コア21の構造強度や磁気特性の低下を抑制できる。
 帯状鋼板Mを打ち抜き加工した後、今度は雄金型342aを上方に移動させて雌金型342bから引き抜き、帯状鋼板Mを再び下流側に向けて送り出す。
 第3段打ち抜き部343は、第2段打ち抜き部342の下流側に配置され、雄金型343a及び雌金型343bを有する。雄金型343a及び雌金型343bは、鉛直方向に沿って同軸配置されており、これらの間を、2回目の打ち抜き加工を終えた後の帯状鋼板Mが挿通する。よって、帯状鋼板Mの上面に対して雄金型343aが対向し、帯状鋼板Mの下面に対して雌金型343bが対向する。そして、帯状鋼板Mの送り出しを再び一時停止させた状態で、図示されない油圧機構により、雄金型343aを下方に向けて移動させて雌金型343b内に至らせることで、帯状鋼板Mのうち、電磁鋼板40を形成するために必要な3回目の打ち抜き加工を行う。この時も、帯状鋼板Mの上下面にはプレス加工油が塗布されているので、焼き付き等を生じることなく打ち抜くことができる。この打ち抜き加工の後、今度は雄金型343aを上方に移動させて雌金型343bから引き抜き、帯状鋼板Mを再び下流側に向けて送り出す。
 接着剤塗布部350は、プレス加工部340の下流側にある積層接着部360内に組み込まれている。接着剤塗布部350は、空気圧送機351と、シリンジ352と、ノズル353とを備える。
 シリンジ352は、接着剤を貯留する容器であり、空気圧送機351とノズル353との間に配管を介して接続されている。接着剤は、上記第1実施形態で説明したものを使用できる。
 ノズル353は、帯状鋼板Mの上方に配置されている。よって、ノズル353の吐出口は、帯状鋼板Mの上面に対向している。
 積層接着部360は、プレス加工部340の下流側でかつ接着剤塗布部350と同じ位置に配置されている。積層接着部360は、外周打ち抜き雄金型361と、外周打ち抜き雌金型362と、スプリング363と、加熱器364と、を備える。
 外周打ち抜き雄金型361は、円形の底面を有する円柱形状の金型であり、その上端にはスプリング363の下端が接続されている。そして、外周打ち抜き雄金型361は、スプリング363で支持された状態で、スプリング363と共に上下動可能とされている。外周打ち抜き雄金型361は、前記ステータ用接着積層コア21の外径寸法と略同じ外径寸法を有している。外周打ち抜き雄金型361内には、前記ノズル353が内蔵されている。そして、ノズル353の前記吐出口が、外周打ち抜き雄金型361の前記底面に形成されている。
 外周打ち抜き雌金型362は、円柱形状の内部空間を有する金型であり、前記ステータ用接着積層コア21の外径寸法と略同じ内径寸法を有している。
 加熱器364は、外周打ち抜き雌金型362に、一体に組み込まれている。加熱器364は、外周打ち抜き雌金型362内に積層された各電磁鋼板(鋼板部品)40をその周囲より加熱する。前記接着剤として加熱硬化型を用いる場合、この接着剤は、加熱器364からの熱を受けて硬化する。一方、接着剤として常温硬化型を用いる場合、この接着剤は、加熱を要することなく室温にて硬化する。
 上記積層接着部360によれば、帯状鋼板Mの送り出しを一時停止させた状態で、外周打ち抜き雄金型361を降下させて帯状鋼板Mを外周打ち抜き雌金型362との間に挟み込み、さらに外周打ち抜き雄金型361を外周打ち抜き雌金型362内に押し込むことで、帯状鋼板Mから外周打ち抜きされた電磁鋼板40が得られる。
 この時も、硬化促進層の表面がプレス加工油で被覆されているため、硬化促進層が外周打ち抜き雄金型361及び外周打ち抜き雌金型362に付着することを抑制できる。よって、硬化促進層が剥がれて外周打ち抜き雄金型361及び外周打ち抜き雌金型362に堆積する虞を抑制できるので、これから製造するステータ用接着積層コア21の構造強度や磁気特性の低下を抑制できる。
 外周打ち抜き雄金型361により外周打ち抜きをする際、前記空気圧送機351を起動させて適量の空気をシリンジ352へ圧送すると、シリンジ352内の接着剤がノズル353へ送られる。その結果、外周打ち抜き雄金型361の前記底面に形成された前記吐出口から適量の接着剤が吐出され、帯状鋼板Mの上面に塗布される。より具体的には、帯状鋼板Mの上面に形成された硬化促進層の全面を覆うプレス加工油上に、接着剤が塗布される。この接着剤は、硬化促進層の上方に塗布されるものの、両者の間にプレス加工油が介在するため、この時点で接着剤の硬化は始まらない。なお、ここで塗布された接着剤は、次に外周打ち抜きされて積層される他の電磁鋼板40を接着するために用いられる。
 今回外周打ち抜きされた電磁鋼板40は、前回に打ち抜かれて外周打ち抜き雌金型362内に積層及び接着された他の電磁鋼板40の上面に積層される。この積層により、前記他の電磁鋼板40の上面に前回形成された接着剤と硬化促進層とが同上面にあるプレス加工油を押し退けて互いに混合する。さらに外周打ち抜き雄金型361からの加圧力と、加熱器364からの加熱とが、積層された各電磁鋼板40に加えられる。この時、外周打ち抜き雄金型361から電磁鋼板40に加えられる加圧力は、前記スプリング363の付勢力によって常に一定に維持される。
 以上により、今回打ち抜いた電磁鋼板40が、前回に打ち抜かれた電磁鋼板40の上面に対して接着固定される。一方、今回打ち抜いた電磁鋼板40の上面に塗布された接着剤は、この時点では同上面上にある硬化促進層とまだ混合していないため、硬化せず、液状のままになっている。
 以上説明のような外周打ち抜き、加圧、そして加熱の各工程を各電磁鋼板40の積層枚数分の回数、繰り返すことで、外周打ち抜き雌金型262内にステータ用接着積層コア21が形成される。
 図7に示すように、前記雌金型341b、前記雌金型342b、前記雌金型343b、前記外周打ち抜き雌金型362、及び前記加熱器364は、共通の固定基台371上に固定されている。したがって、これら雌金型341b、雌金型342b、雌金型343b、外周打ち抜き雌金型362、及び前記加熱器364は、水平方向及び上下方向の相対位置が固定されている。
 同様に、前記雄金型341a、前記雄金型342a、前記ノズル353、及び前記外周打ち抜き雄金型361も、共通の可動基台372の下面に固定されている。したがって、これら雄金型341a、雄金型342a、ノズル353、及び外周打ち抜き雄金型361も、水平方向及び上下方向の相対位置が固定されている。
 前記駆動部が帯状鋼板Mを下流側に向かって送り出し、一時停止させた時に可動基台372を下降させることで、電磁鋼板40の外周打ち抜き及び積層及び接着ならびに次工程のための接着剤塗布と、帯状鋼板Mで次に外周打ち抜きされる位置への前記3回目の打ち抜き加工と、帯状鋼板Mで次に前記3回目の打ち抜き加工を行う位置への前記2回目の打ち抜き加工と、帯状鋼板Mで次に前記2回目の打ち抜き加工を行う位置への前記1回目の打ち抜き加工と、が同時に行われる。
 続いて、可動基台372を上昇させて帯状鋼板Mの上方に退避させた後、前記駆動部により帯状鋼板Mを再び下流側に所定距離だけ送り出し、そして再び一時停止させる。この状態で可動基台372を再び下降させ、各位置での加工を継続して行う。このように、前記駆動部により帯状鋼板Mを間欠的に送りながら、一時停止時に可動基台372を上下動させる工程を繰り返すことにより、ステータ用接着積層コア21が製造される。
 以上説明の構成を有する接着積層コア製造装置300を用いた接着積層コア製造方法について、図8を用いて以下に説明する。
 図8に示すように、本実施形態の接着積層コア製造方法は、鋼板送り出し工程S21と、硬化促進剤塗布工程S22と、硬化促進剤乾燥工程S23と、加工油塗布工程S24と、1回目打ち抜き工程S25と、2回目打ち抜き工程S26と、3回目打ち抜き工程S27と、接着剤塗布及びステータ用接着積層コア形成工程S28と、取り出し工程S29と、を有する。
 鋼板送り出し工程S21では、フープ材Fから下流側に向けて帯状鋼板Mを送り出す。
 続く硬化促進剤塗布工程S22では、ノズル322から帯状鋼板Mの上面の全面に、硬化促進剤aを塗布する。この時点の硬化促進剤aは液状である。
 続く硬化促進剤乾燥工程S23では、ドライヤー323bからの空気を帯状鋼板Mの上下面に吹き付け、液状であった硬化促進剤aを乾燥させて硬化促進層(硬化促進部)a’を形成する。この硬化促進層a’は固体である。
 続く加工油塗布工程S24では、塗布ローラー331により、帯状鋼板Mの上下面にプレス加工油bが塗布されて層を形成する。この時、硬化促進層a’は予め乾燥されているので、プレス加工油bと混ざって濃度が下がることはなく、ほぼ元の状態を維持する。
 続く1回目打ち抜き工程S25では、第1段打ち抜き部341により帯状鋼板Mの1回目の打ち抜きが行われる。この時、帯状鋼板Mにはプレス加工油bが予め塗布されているため、雄金型341a及び雌金型341b間における焼き付き等、プレス加工上の不具合が生じない。
 続く2回目打ち抜き工程S26では、第2段打ち抜き部342により帯状鋼板Mの2回目の打ち抜きが行われる。この時も、帯状鋼板Mにはプレス加工油bが予め塗布されているため、雄金型342a及び雌金型342b間における焼き付き等、プレス加工上の不具合が生じない。
 続く3回目打ち抜き工程S27では、第3段打ち抜き部343により帯状鋼板Mの3回目の打ち抜きが行われる。この時も、帯状鋼板Mにはプレス加工油bが予め塗布されているため、雄金型343a及び雌金型343b間における焼き付き等、プレス加工上の不具合が生じない。
 以上の1回目打ち抜き工程S25~3回目打ち抜き工程S27により、外形部分を除き、図1に示したコアバック部22及びティース部23が帯状鋼板Mに形成される。
 続く接着剤塗布及びステータ用接着積層コア形成工程S28では、外周打ち抜き雄金型361によって帯状鋼板Mから外周が打ち抜かれた電磁鋼板40が、先に打ち抜かれた他の電磁鋼板40の上面に積層される。この時、前記他の電磁鋼板40の上面には、硬化促進層a’が形成され、さらにその上にプレス加工油bを介して接着剤cが塗布されている。したがって、これら電磁鋼板40が積層及び加圧されることにより、前記他の電磁鋼板40の上面におけるプレス加工油bを押し退けて同上面にある硬化促進層a’と接着剤cとが混ざり合い、さらに加熱器364によって加熱されるため、瞬時に硬化する。
 一方、今回外周打ち抜きを行った電磁鋼板40を前記他の電磁鋼板40に積層すると同時に、今回外周打ち抜きを行った電磁鋼板40の上面に、ノズル353から接着剤cが塗布される。この接着剤cは、電磁鋼板40の上面にあってまだ硬化促進層a’と混ざっていないため、液状をなしている。
 以上の工程を順次繰り返すことで必要枚数の電磁鋼板40を積層及び接着し、ステータ用接着積層コア21が完成する。具体的に言うと、電磁鋼板40の積層枚数が所定枚数に達するまで、鋼板送り出し工程S21~ステータ用接着積層コア形成工程S28の各工程を順番に繰り返していく。そして、ステータ用接着積層コア形成工程S28後における電磁鋼板40の積層枚数が前記所定枚数に達した時点で、鋼板送り出し工程S21には戻らずに取り出し工程S29へと進む。
 続く取り出し工程S29では、完成したステータ用接着積層コア21を外周打ち抜き雌金型362内から取り出すことで、接着積層コア製造方法の全工程が終了する。
 以上説明の接着積層コア製造装置200を用いた接着積層コア製造方法の骨子は、上記第2実施形態で説明したものと基本的に同じであり、硬化促進層a’の形成位置を、電磁鋼板40の下面から上面に変えたものである。そして、この工程を実現する本実施形態の接着積層コア製造装置300は、硬化促進部形成部220を帯状鋼板Mの上方に配置している。
 すなわち、各電磁鋼板40が、先に打ち抜かれた電磁鋼板(第1鋼板部品)40及び後に打ち抜かれた電磁鋼板(第2鋼板部品)40を含む。そして、本実施形態の接着積層コア製造方法は、上面(第1面)と、前記上面上に形成された硬化促進層(硬化促進部)a’と、硬化促進層a’上に配置されたプレス加工油bと、プレス加工油b上に配置された接着剤cとを有する電磁鋼板40を先に打ち抜いて準備する工程(第4の工程)と、下面(第2面)を有する電磁鋼板40を続いて打ち抜いて準備する工程(第5の工程)と、前記上面及び前記下面が互いに対向するように、先に打ち抜いた電磁鋼板40の上に、後に打ち抜いた電磁鋼板40を重ね合わせて接着する工程(第6の工程)とを行う。
 本実施形態の場合も、帯状鋼板Mに設けられた硬化促進層a’が予め乾燥させて形成されているため、後加工で塗布されるプレス加工油bと混ざり合うことが抑制されている。したがって、各電磁鋼板40を積層して接着する際に、硬化促進層a’が元々と同じ高い濃度を維持したまま接着剤cと混ざり合えるため、高い接着強度を早期に発現できる。よって、十分な接着強度を確保した上でより高い生産性を得ることが可能である。
 なお、本実施形態の場合も、プレス加工油bの塗布は、帯状鋼板Mの両面に限らず、硬化促進層a’が形成された片面だけとしてもよい。ただし、片面とする場合には、このプレス加工油bが硬化促進層a’と接着剤cとの間に挟まれるように塗布する必要がある。
 また、硬化促進剤aの塗布は帯状鋼板Mの全面塗布に限らず、点状塗布としてもよい。ただし、この場合は、他の実施形態と同様に、前記接着剤塗布及びステータ用接着積層コア形成工程S28で点状の接着剤cと点状の硬化促進層(硬化促進部)a’とが正しく重なって混合するために、前工程で塗布される接着剤cとの相対位置関係を正しく調整する必要がある。
[第4実施形態]
 図9を用いて本発明の第4実施形態を以下に説明する。図9は、本実施形態に係る接着積層コア製造装置の側面図である。
 本実施形態は、図3及び図4を用いて説明した上記第1実施形態について一点だけ変えた変形例に相当するものであるので、以下の説明では、上記第1実施形態と同一構成要素については同一符号を用いてそれらの詳細説明を省略する。
 本実施形態の接着積層コア製造装置400は、前記硬化促進部形成部120を有する第1ステージAと、第1ステージAから移された帯状鋼板Mをプレス加工油塗布部130に向けて送り出す搬送部を有する第2ステージBとを備える。第2ステージBには、帯状鋼板Mの送り方向に沿って、前記搬送部と、プレス加工油塗布部130と、プレス加工部140と、接着剤塗布部150と、積層接着部160とが、この順に並んで配置されている。これらのうち、プレス加工部140と、接着剤塗布部150と、積層接着部160との組み合わせにより、順送金型(Progressive Die)が構成される。
 第1ステージAは、フープ材Fを送り出す搬送部と、硬化促進部形成部120と、硬化促進層を形成した後の帯状鋼板Mを巻き取ってフープ材F1とする巻き取り部とを有する。第1ステージAで製造された中間材であるフープ材F1は、ステージAの巻き取り部から取り外され、他の場所に移動される。これを複数回行うことで、複数のフープ材F1を作り置きすることができる。
 第2ステージBは、作り置きされたフープ材F1を受け入れてプレス加工油塗布部130に向けて送り出す他の搬送部と前記駆動部(不図示)と、プレス加工油塗布部130と、プレス加工部140と、接着剤塗布部150と、積層接着部160とを備える。前記他の搬送部から送り出される帯状鋼板Mは、前記駆動部によりプレス加工油塗布部130に向けて送り出される。
 なお、第1ステージAにおける硬化促進層(硬化促進剤)は、溶剤を完全に揮発させるまで乾燥させることが好ましいが、プレス加工油と混じり合わず、なおかつフープ材F1から帯状鋼板Mを引き出して使用する際に不都合が生じない程度の乾燥度合いであってもよい。
 以上説明の接着積層コア製造装置400を用いた接着積層コア製造方法においても、上記第1実施形態と同様の作用効果を得ることが可能である。
 また、図示を省略するが、上記第1実施形態の他の変形例として、積層先の電磁鋼板40の上面とこれから積層する電磁鋼板40の下面との双方に接着剤cを塗布してもよい。
 この場合の接着積層コア製造方法は、先に打ち抜いた電磁鋼板(第1鋼板部品)40を準備する工程(第7の工程)をまず行う。同工程では、上面(第1面)と、この上面上に形成された硬化促進層(硬化促進部)a’と、硬化促進層a’上に塗布して配置されたプレス加工油bと、プレス加工油b上に塗布して配置された接着剤cとを有する電磁鋼板(第1鋼板部品)40を準備する。
 続いて、後に打ち抜いた電磁鋼板(第2鋼板部品)40を準備する工程(第8の工程)をまず行う。同工程では、下面(第2面)と、この下面上に塗布して配置された接着剤cとを有する電磁鋼板(第2鋼板部品)40を準備する。
 そして、最後の工程(第9の工程)として、前記第1面及び前記第2面が互いに対向するように、先に打ち抜いた電磁鋼板40と後に打ち抜いた電磁鋼板40とを重ね合わせて接着する。
 以上の各工程を繰り返し行うことで、ステータ用接着積層コア21が製造される。
 以上、本発明の各実施形態について説明した。ただし、本発明の技術的範囲は前記実施形態及び実施例のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、ステータ用接着積層コア21の形状は、各実施形態で示した形態のみに限定されるものではない。具体的には、ステータ用接着積層コア21の外径および内径の寸法、積厚、スロット数、ティース部23の周方向と径方向の寸法比率、ティース部23とコアバック部22との径方向の寸法比率等は、所望の回転電機の特性に応じて任意に設計可能である。
 各実施形態におけるロータ30では、2つ1組の永久磁石32が1つの磁極を形成しているが、本発明の製造対象はこの形態のみに限られない。例えば、1つの永久磁石32が1つの磁極を形成していてもよく、3つ以上の永久磁石32が1つの磁極を形成していてもよい。
 各実施形態では、回転電機10として、永久磁石界磁型電動機を一例に挙げて説明したが、回転電機10の構造は、以下に例示するようにこれのみに限られず、更には以下に例示しない種々の公知の構造も採用可能である。
 各実施形態では、回転電機10として、永久磁石界磁型電動機を一例に挙げて説明したが、本発明はこれのみに限られない。例えば、回転電機10がリラクタンス型電動機や電磁石界磁型電動機(巻線界磁型電動機)であってもよい。
 各実施形態では、交流電動機として、同期電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機10が誘導電動機であってもよい。
 各実施形態では、回転電機10として、交流電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機10が直流電動機であってもよい。
 各実施形態では、回転電機10として、電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機10が発電機であってもよい。
 その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。
 本発明の上記各態様によれば、接着積層コアの製造に際し、十分な接着強度を確保した上でより高い生産性が得られる、接着積層コア製造方法及び接着積層コア製造装置を提供できる。よって、産業上の利用可能性は大である。
 21 ステータ用接着積層コア(接着積層コア、回転電機用の固定子)
 40 電磁鋼板(鋼板部品、第1鋼板部品、第2鋼板部品)
 100,200,300,400 接着積層コア製造装置
 120,220,320 硬化促進部形成部
 130,230,330 プレス加工油塗布部
 140,240,340 プレス加工部
 150,250,350 接着剤塗布部
 A 第1ステージ
 a 硬化促進剤
 a’ 硬化促進部
 B 第2ステージ
 b プレス加工油
 c 接着剤
 M 帯状鋼板

Claims (17)

  1.  帯状鋼板を送りながら複数枚の鋼板部品を打ち抜き、前記各鋼板部品を、接着剤を介して積層させることにより接着積層コアを製造する方法であって、
     プレス加工油を塗布する前の前記帯状鋼板の片面又は両面に、硬化促進剤を塗布及び乾燥させて硬化促進部を形成する工程と、
     前記硬化促進部の表面に前記プレス加工油を塗布する工程と、
    を有することを特徴とする接着積層コア製造方法。
  2.  前記各鋼板部品が、第1鋼板部品及び第2鋼板部品を含み、
     第1面と、前記第1面上に形成された前記硬化促進部と、前記硬化促進部の前記表面上に配置された前記プレス加工油とを有する前記第1鋼板部品を準備する第1の工程と、
     第2面と、前記第2面上に配置された前記接着剤と、を有する前記第2鋼板部品を準備する第2の工程と、
     前記第1面及び前記第2面が互いに対向するように、前記第1鋼板部品及び前記第2鋼板部品を重ね合わせて接着する第3の工程と、
    を有することを特徴とする請求項1に記載の接着積層コア製造方法。
  3.  前記各鋼板部品が、第1鋼板部品及び第2鋼板部品を含み、
     第1面と、前記第1面上に形成された前記硬化促進部と、前記硬化促進部の前記表面上に配置された前記プレス加工油と、前記プレス加工油上に配置された前記接着剤とを有する前記第1鋼板部品を準備する第4の工程と、
     第2面を有する前記第2鋼板部品を準備する第5の工程と、
     前記第1面及び前記第2面が互いに対向するように、前記第1鋼板部品及び前記第2鋼板部品を重ね合わせて接着する第6の工程と、
    を有することを特徴とする請求項1に記載の接着積層コア製造方法。
  4.  前記各鋼板部品が、第1鋼板部品及び第2鋼板部品を含み、
     第1面と、前記第1面上に形成された前記硬化促進部と、前記硬化促進部の前記表面上に配置された前記プレス加工油と、前記プレス加工油上に配置された前記接着剤とを有する前記第1鋼板部品を準備する第7の工程と、
     第2面と、前記第2面上に配置された前記接着剤と、を有する前記第2鋼板部品を準備する第8の工程と、
     前記第1面及び前記第2面が互いに対向するように、前記第1鋼板部品及び前記第2鋼板部品を重ね合わせて接着する第9の工程と、
    を有することを特徴とする請求項1に記載の接着積層コア製造方法。
  5.  前記接着剤が、嫌気性接着剤または2-シアノアクリレート系接着剤である
    ことを特徴とする請求項1~4の何れか1項に記載の接着積層コア製造方法。
  6.  前記嫌気性接着剤の硬化促進剤が、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、バナジウム、モリブデン、ルテニウム、サッカリン及びそれらの組み合わせから選択される嫌気硬化を促進する有効成分を含む
    ことを特徴とする請求項5に記載の接着積層コア製造方法。
  7.  前記2-シアノアクリレート系接着剤の硬化促進剤が、ジメチルアニリン、ジエチルアミン、o-フェニレンジアミン、ジメチルパラトルイジン、ジエチルパラトルイジン及びN,N-ジエチルアニリン等の有機アミン類、トリクロルアセトアミド等の酸アミド類、コハク酸イミド等の有機イミド類、テトラメチルアンモニウムクロライド及びベンジルトリメチルアンモニウムクロライド等の第4級アンモニウム塩等、並びにそれらの組み合わせから選択される前記2-シアノアクリレート系接着剤の硬化を促進する有効成分を含む
    ことを特徴とする請求項5に記載の接着積層コア製造方法。
  8.  前記嫌気性接着剤または前記2-シアノアクリレート系接着剤の硬化促進剤が、ケトン系溶剤、アルコール系溶剤、エステル系溶剤、グリコールエーテル系溶剤、炭化水素系溶剤、ハロゲン化炭化水素系溶剤、エーテル系溶剤、グリコール系溶剤、アミン系溶剤等の溶剤により希釈した嫌気硬化を促進する有効成分または前記2-シアノアクリレート系接着剤の硬化を促進する有効成分を含む
    ことを特徴とする請求項5に記載の接着積層コア製造方法。
  9.  前記接着積層コアが、回転電機用の固定子である
    ことを特徴とする請求項1~8の何れか1項に記載の接着積層コア製造方法。
  10.  帯状鋼板を送りながら前記帯状鋼板から打ち抜いた複数枚の鋼板部品を、接着剤を介して積層することで接着積層コアを製造する装置であって、
     前記帯状鋼板の片面又は両面に硬化促進剤を塗布及び乾燥させて硬化促進部を形成する硬化促進部形成部と、
     前記硬化促進部形成部よりも下流側に配置され、少なくとも前記硬化促進部の表面にプレス加工油を塗布するプレス加工油塗布部と、
     前記プレス加工油塗布部よりも下流側に配置され、前記帯状鋼板にプレス加工を加えるプレス加工部と、
     前記帯状鋼板の前記片面に前記接着剤を塗布する接着剤塗布部と、
    備えることを特徴とする接着積層コア製造装置。
  11.  前記帯状鋼板の送り方向に沿って、前記硬化促進部形成部と、前記プレス加工油塗布部と、前記プレス加工部及び前記接着剤塗布部とが、この順に並んでいる
    ことを特徴とする請求項10に記載の接着積層コア製造装置。
  12.  前記硬化促進部形成部を有する第1ステージと、
     前記第1ステージから移された前記帯状鋼板を前記プレス加工油塗布部に向かって送る搬送部を有する第2ステージと、
    を備え、
     前記第2ステージに、前記帯状鋼板の送り方向に沿って、前記搬送部と、前記プレス加工油塗布部と、前記プレス加工部及び前記接着剤塗布部とが、この順に並んで配置されている
    ことを特徴とする請求項10に記載の接着積層コア製造装置。
  13.  前記接着剤が、嫌気性接着剤または2-シアノアクリレート系接着剤である
    ことを特徴とする請求項10~12の何れか1項に記載の接着積層コア製造装置。
  14.  前記嫌気性接着剤の硬化促進剤が、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、バナジウム、モリブデン、ルテニウム、サッカリン及びそれらの組み合わせから選択される嫌気硬化を促進する有効成分を含む
    ことを特徴とする請求項13に記載の接着積層コア製造装置。
  15.  前記2-シアノアクリレート系接着剤の硬化促進剤が、ジメチルアニリン、ジエチルアミン、o-フェニレンジアミン、ジメチルパラトルイジン、ジエチルパラトルイジン及びN,N-ジエチルアニリン等の有機アミン類、トリクロルアセトアミド等の酸アミド類、コハク酸イミド等の有機イミド類、テトラメチルアンモニウムクロライド及びベンジルトリメチルアンモニウムクロライド等の第4級アンモニウム塩等、並びにそれらの組み合わせから選択される前記2-シアノアクリレート系接着剤の硬化を促進する有効成分を含む
    ことを特徴とする請求項13に記載の接着積層コア製造装置。
  16.  前記嫌気性接着剤または前記2-シアノアクリレート系接着剤の硬化促進剤が、ケトン系溶剤、アルコール系溶剤、エステル系溶剤、グリコールエーテル系溶剤、炭化水素系溶剤、ハロゲン化炭化水素系溶剤、エーテル系溶剤、グリコール系溶剤、アミン系溶剤等の溶剤により希釈した嫌気硬化を促進する有効成分または前記2-シアノアクリレート系接着剤の硬化を促進する有効成分を含む
    ことを特徴とする請求項13に記載の接着積層コア製造装置。
  17.  前記接着積層コアが、回転電機用の固定子である
    ことを特徴とする請求項10~16の何れか1項に記載の接着積層コア製造装置。
PCT/JP2021/025452 2020-07-07 2021-07-06 接着積層コア製造方法及び接着積層コア製造装置 WO2022009878A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237000073A KR20230019931A (ko) 2020-07-07 2021-07-06 접착 적층 코어 제조 방법 및 접착 적층 코어 제조 장치
JP2022535343A JP7467634B2 (ja) 2020-07-07 2021-07-06 接着積層コア製造方法及び接着積層コア製造装置
EP21837998.0A EP4181365A1 (en) 2020-07-07 2021-07-06 Method for manufacturing adhered laminate core and adhered laminate core manufacturing device
CN202180048749.1A CN115803997A (zh) 2020-07-07 2021-07-06 粘接层叠铁芯制造方法及粘接层叠铁芯制造装置
MX2023000269A MX2023000269A (es) 2020-07-07 2021-07-06 Metodo de fabricacion de nucleo laminado adhesivamente y dispositivo de fabricacion de nucleo laminado adhesivamente.
US18/014,352 US20230253140A1 (en) 2020-07-07 2021-07-06 Adhesively-laminated core manufacturing method and adhesively-laminated core manufacturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020117265 2020-07-07
JP2020-117265 2020-07-07

Publications (1)

Publication Number Publication Date
WO2022009878A1 true WO2022009878A1 (ja) 2022-01-13

Family

ID=79553198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025452 WO2022009878A1 (ja) 2020-07-07 2021-07-06 接着積層コア製造方法及び接着積層コア製造装置

Country Status (8)

Country Link
US (1) US20230253140A1 (ja)
EP (1) EP4181365A1 (ja)
JP (1) JP7467634B2 (ja)
KR (1) KR20230019931A (ja)
CN (1) CN115803997A (ja)
MX (1) MX2023000269A (ja)
TW (1) TWI782611B (ja)
WO (1) WO2022009878A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220264A1 (ja) * 2021-04-14 2022-10-20 日本製鉄株式会社 接着積層コア製造方法及び接着積層コア製造装置
WO2022220260A1 (ja) * 2021-04-14 2022-10-20 日本製鉄株式会社 接着積層コア製造方法及び接着積層コア製造装置
WO2024002627A1 (de) * 2022-06-29 2024-01-04 BAUER Lean-Engineering GmbH Verfahren und vorrichtung zum herstellen von blechpaketen aus blechlamellen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4648765B2 (ja) 2005-06-03 2011-03-09 黒田精工株式会社 金属薄板積層体の製造方法
JP6164029B2 (ja) 2013-10-08 2017-07-19 アイシン・エィ・ダブリュ株式会社 打抜き積層プレス機及び打抜き積層プレス方法
JP2018038119A (ja) * 2016-08-29 2018-03-08 本田技研工業株式会社 積層鋼板の製造方法および製造装置
WO2019123885A1 (ja) * 2017-12-18 2019-06-27 株式会社スリーボンド 接着積層鋼板用ラジカル重合性接着剤組成物、接着積層体、モータおよび接着積層体の製造方法
WO2020129813A1 (ja) * 2018-12-18 2020-06-25 株式会社スリーボンド 積層鋼板の製造方法、積層鋼板の製造装置およびこれらに用いられる硬化性組成物
JP2020117265A (ja) 2019-01-23 2020-08-06 ブラザー工業株式会社 層転写システムおよび層転写装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4600580B2 (ja) * 2008-04-21 2010-12-15 株式会社デンソー 固定子コイルの製造方法
US8760029B2 (en) * 2008-10-06 2014-06-24 Hitachi, Ltd. Stator core arrangements using heat-shrinkable tubing, for rotarty electric machines
CN201618814U (zh) * 2010-03-23 2010-11-03 刘江 薄壁金属圆筒体的生产设备
WO2013146886A1 (ja) * 2012-03-30 2013-10-03 日新製鋼株式会社 Ipmモータのロータ鉄心用鋼板の製造方法
JP5956277B2 (ja) * 2012-08-07 2016-07-27 山洋電気株式会社 永久磁石式モータ、および永久磁石式モータの製造方法
WO2018116881A1 (ja) 2016-12-22 2018-06-28 Jfeスチール株式会社 接着性絶縁被膜付き電磁鋼板の製造方法および積層電磁鋼板の製造方法
WO2019065827A1 (ja) * 2017-09-29 2019-04-04 日立金属株式会社 ラジアルギャップ型回転電機及びその製造方法、回転電機用ティース片の製造装置、回転電機用ティース部材の製造方法
KR102153382B1 (ko) * 2018-01-29 2020-09-08 미쓰비시덴키 가부시키가이샤 스테이터, 모터 및 스테이터의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4648765B2 (ja) 2005-06-03 2011-03-09 黒田精工株式会社 金属薄板積層体の製造方法
JP6164029B2 (ja) 2013-10-08 2017-07-19 アイシン・エィ・ダブリュ株式会社 打抜き積層プレス機及び打抜き積層プレス方法
JP2018038119A (ja) * 2016-08-29 2018-03-08 本田技研工業株式会社 積層鋼板の製造方法および製造装置
WO2019123885A1 (ja) * 2017-12-18 2019-06-27 株式会社スリーボンド 接着積層鋼板用ラジカル重合性接着剤組成物、接着積層体、モータおよび接着積層体の製造方法
WO2020129813A1 (ja) * 2018-12-18 2020-06-25 株式会社スリーボンド 積層鋼板の製造方法、積層鋼板の製造装置およびこれらに用いられる硬化性組成物
JP2020117265A (ja) 2019-01-23 2020-08-06 ブラザー工業株式会社 層転写システムおよび層転写装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220264A1 (ja) * 2021-04-14 2022-10-20 日本製鉄株式会社 接着積層コア製造方法及び接着積層コア製造装置
WO2022220260A1 (ja) * 2021-04-14 2022-10-20 日本製鉄株式会社 接着積層コア製造方法及び接着積層コア製造装置
WO2024002627A1 (de) * 2022-06-29 2024-01-04 BAUER Lean-Engineering GmbH Verfahren und vorrichtung zum herstellen von blechpaketen aus blechlamellen

Also Published As

Publication number Publication date
CN115803997A (zh) 2023-03-14
US20230253140A1 (en) 2023-08-10
EP4181365A1 (en) 2023-05-17
JP7467634B2 (ja) 2024-04-15
TW202209782A (zh) 2022-03-01
TWI782611B (zh) 2022-11-01
KR20230019931A (ko) 2023-02-09
MX2023000269A (es) 2023-02-09
JPWO2022009878A1 (ja) 2022-01-13

Similar Documents

Publication Publication Date Title
WO2022009878A1 (ja) 接着積層コア製造方法及び接着積層コア製造装置
JP7422679B2 (ja) ステータ用接着積層コアおよび回転電機
CN107776170B (zh) 层压钢板的制造方法及制造装置
JP7486434B2 (ja) ステータ用接着積層コアおよび回転電機
WO2020129951A1 (ja) 接着積層コア、その製造方法及び回転電機
WO2020129927A1 (ja) ステータ用接着積層コア、その製造方法、および回転電機
CN113228468A (zh) 定子用粘接层叠铁芯、其制造方法及旋转电机
WO2022220260A1 (ja) 接着積層コア製造方法及び接着積層コア製造装置
WO2022220262A1 (ja) 電磁鋼板及び接着積層コア製造方法
JP7176648B2 (ja) 積層コアの製造方法
WO2021256532A1 (ja) 電磁鋼板、積層コア及び回転電機
JP7222328B2 (ja) 積層コアおよび回転電機
WO2022220264A1 (ja) 接着積層コア製造方法及び接着積層コア製造装置
WO2021256531A1 (ja) 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機
JP7415198B2 (ja) 電磁鋼板用コーティング組成物、接着用表面被覆電磁鋼板及び積層鉄心
JP2021197860A (ja) 積層コアおよび積層コアの製造方法
JPWO2022220260A5 (ja)
JP2022000537A (ja) 電磁鋼板、積層コア及び回転電機、ならびに電磁鋼板の製造方法
JP2022000538A (ja) 電磁鋼板、積層コア及び回転電機、ならびに電磁鋼板の製造方法
JP2024000139A (ja) 積層体の製造方法
JP2024000138A (ja) 積層体、積層体の製造方法、および積層体の製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535343

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237000073

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021837998

Country of ref document: EP

Effective date: 20230207