WO2022007522A1 - 供液系统及供液方法 - Google Patents
供液系统及供液方法 Download PDFInfo
- Publication number
- WO2022007522A1 WO2022007522A1 PCT/CN2021/095611 CN2021095611W WO2022007522A1 WO 2022007522 A1 WO2022007522 A1 WO 2022007522A1 CN 2021095611 W CN2021095611 W CN 2021095611W WO 2022007522 A1 WO2022007522 A1 WO 2022007522A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- concentration
- mixing tank
- pipeline
- injection
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67075—Apparatus for fluid treatment for etching for wet etching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/80—Forming a predetermined ratio of the substances to be mixed
- B01F35/83—Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices
- B01F35/831—Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices using one or more pump or other dispensing mechanisms for feeding the flows in predetermined proportion, e.g. one of the pumps being driven by one of the flows
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/20—Measuring; Control or regulation
- B01F35/21—Measuring
- B01F35/211—Measuring of the operational parameters
- B01F35/2111—Flow rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/20—Measuring; Control or regulation
- B01F35/21—Measuring
- B01F35/2132—Concentration, pH, pOH, p(ION) or oxygen-demand
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/20—Measuring; Control or regulation
- B01F35/22—Control or regulation
- B01F35/2201—Control or regulation characterised by the type of control technique used
- B01F35/2202—Controlling the mixing process by feed-back, i.e. a measured parameter of the mixture is measured, compared with the set-value and the feed values are corrected
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/20—Measuring; Control or regulation
- B01F35/22—Control or regulation
- B01F35/2201—Control or regulation characterised by the type of control technique used
- B01F35/2203—Controlling the mixing process by feed-forward, i.e. a parameter of the components to be mixed is measured and the feed values are calculated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/80—Forming a predetermined ratio of the substances to be mixed
- B01F35/82—Forming a predetermined ratio of the substances to be mixed by adding a material to be mixed to a mixture in response to a detected feature, e.g. density, radioactivity, consumed power or colour
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/80—Forming a predetermined ratio of the substances to be mixed
- B01F35/83—Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices
- B01F35/833—Flow control by valves, e.g. opening intermittently
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D11/00—Control of flow ratio
- G05D11/02—Controlling ratio of two or more flows of fluid or fluent material
- G05D11/13—Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
- G05D11/131—Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring the values related to the quantity of the individual components
- G05D11/132—Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring the values related to the quantity of the individual components by controlling the flow of the individual components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
- H01L21/6704—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67253—Process monitoring, e.g. flow or thickness monitoring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2101/00—Mixing characterised by the nature of the mixed materials or by the application field
- B01F2101/58—Mixing semiconducting materials, e.g. during semiconductor or wafer manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0436—Operational information
- B01F2215/045—Numerical flow-rate values
Definitions
- the present application relates to the field of semiconductors, and in particular, to a liquid supply system and a liquid supply method.
- the etching material of the single-chip wet cleaning and etching machine is mainly diluted hydrofluoric acid (DHF), and the single-chip wet cleaning and etching machine will use DHF for a long time in the process, so the concentration of DHF fluctuates It will seriously affect the etching amount of the wafer, which will directly affect the yield of the product.
- DHF diluted hydrofluoric acid
- the DHF required by the single-wafer wet cleaning and etching machine is derived from a mixture of 49% concentration of hydrofluoric acid (49% HF) and deionized water (DIW).
- the embodiment of the present application provides a liquid supply system and a liquid supply method, which stabilize the supply amount of the first liquid and the second liquid through the additionally provided supplementary pipeline, so that the stability of the concentration of the first liquid in the formed mixed solution is high.
- the embodiment of the present application provides a liquid supply system, including: a mixing tank, the mixing tank is connected to at least a first injection pipeline, a second injection pipeline and a supplementary pipeline; the first injection pipeline and the second injection pipeline are respectively It is used to inject the first liquid and the second liquid into the mixing tank to form a mixed liquid; the parameter acquisition module is used to acquire the concentration of the first liquid in the mixed liquid; the processing module is based on the acquired concentration of the first liquid and a preset For the first liquid concentration, control the supplementary pipeline to inject the first liquid with the first flow rate into the mixing tank, or inject the second liquid with the second flow rate into the mixing tank, so that the concentration of the first liquid in the mixed liquid is close to at the preset first liquid concentration.
- the first injection pipeline injects the first liquid into the mixing tank
- the second injection pipeline injects the second liquid into the mixing tank
- the first liquid and the second liquid are mixed in the mixing tank to obtain a mixed solution, which is passed through the mixing tank.
- the parameter acquisition module acquires the concentration of the first liquid in the mixed solution and compares it with the preset first liquid concentration.
- the concentration of the liquid is fine-tuned in real time, so that the concentration of the mixed liquid formed by mixing has high stability.
- the supplementary pipeline includes a third injection pipeline and a fourth injection pipeline; wherein, the supplementary pipeline is controlled to inject the first liquid with the first flow rate into the mixing tank, or, inject the second liquid with the second flow rate into the mixing tank,
- the method includes: controlling the third injection pipeline to inject the first liquid with the first flow rate into the mixing tank, or controlling the fourth injection pipeline to inject the second liquid with the second flow rate into the mixing tank.
- the parameter acquisition module includes at least one of a flow meter and a concentration meter.
- the flowmeter includes: a first flowmeter, the first flowmeter is arranged on the first injection pipe, and is used to obtain a third flow rate of the first liquid injected by the first injection pipe into the mixing tank; a second flowmeter, the second flow rate The meter is arranged on the second injection pipe, and is used to obtain the fourth flow rate of the second liquid injected by the second injection pipe into the mixing tank;
- the parameter acquisition module further includes: a parameter calculation unit, which calculates the mixed liquid based on the third flow rate and the fourth flow rate The concentration of the first liquid in the mixed liquid or the concentration of the second liquid in the mixed liquid.
- the first liquid flow rate and the second liquid flow rate injected into the mixing tank are obtained through the flowmeter on the injection pipeline, and then calculated by the parameter calculation unit, the concentration of the first liquid or the concentration of the second liquid in the mixed liquid can be accurately obtained.
- a densitometer is provided in the mixing tank for acquiring the concentration of the first liquid in the mixed liquid or the concentration of the second liquid in the mixed liquid. The concentration is obtained directly through the densitometer, which avoids the calculation of data.
- the first restrictor valve is installed on the third injection pipeline, and is used to adjust the flow rate of the first liquid allowed to pass through;
- the second restrictor valve is installed on the fourth injection pipeline to adjust the flow rate of the second liquid allowed to pass through The flow rate of the liquid;
- the third restrictor valve, installed on the first injection pipe is used to adjust the flow rate of the first liquid allowed to pass;
- the fourth restrictor valve installed on the second injection pipe, is used to adjust the allowable flow rate The flow rate of the second liquid.
- the allowable flow range of the first restrictor valve is 0.5L/min ⁇ 4L/min; the allowable flow range of the second restrictor valve is 0 ⁇ 15ml/min; the allowable flow range of the third restrictor valve is 15L/min ⁇ 25L/min; the allowable flow range of the fourth restrictor valve is 20ml/min ⁇ 250ml/min.
- first restrictor valve, the second restrictor valve, the third restrictor valve and the fourth restrictor valve include needle valves or motor needle feedback valves.
- the fifth injection pipeline and the sixth injection pipeline are connected to the mixing tank; the fifth injection pipeline is used to inject the third liquid into the mixing tank to form the mixed liquid; the parameter acquisition module is also used to acquire the third liquid in the mixed liquid The concentration of the liquid; the processing module further controls the sixth injection pipeline to inject the third liquid with the fifth flow rate into the mixing tank based on the obtained concentration of the third liquid and the preset third liquid concentration, so that the second mixed liquid is The concentration of the third liquid is close to the preset third liquid concentration.
- the pipe diameter of the third injection pipe is smaller than the pipe diameter of the first injection pipe
- the pipe diameter of the fourth injection pipe is smaller than the pipe diameter of the second injection pipe.
- the third injection pipe and the fourth injection pipe are used as supplementary pipes, and the flow rate of the liquid is small, and is made of pipes with smaller pipe diameters, so as to solve the manufacturing cost.
- the liquid supply system further includes: a mixing valve, one end is connected to the mixing tank, and one end is connected to the first injection pipeline, the second injection pipeline and the supplementary pipeline, for mixing the liquid injected by the first injection pipeline, the second injection pipeline and the supplementary pipeline Pour into the mixing tank after homogenization.
- a mixing valve one end is connected to the mixing tank, and one end is connected to the first injection pipeline, the second injection pipeline and the supplementary pipeline, for mixing the liquid injected by the first injection pipeline, the second injection pipeline and the supplementary pipeline Pour into the mixing tank after homogenization.
- the embodiment of the present application also provides a liquid supply method, including: acquiring the concentration of the first liquid in the mixed liquid and the preset first liquid concentration; and controlling the replenishment based on the acquired concentration of the first liquid and the preset first liquid concentration
- the pipeline injects the first liquid or the second liquid with the first flow rate into the mixing tank, so that the concentration of the first liquid in the mixed liquid is close to the preset first liquid concentration.
- the first liquid or the second liquid is supplemented through the supplementary pipeline, that is, the concentration of the first liquid or the concentration of the second liquid in the mixed liquid in the mixing tank is fine-tuned, so that the mixing The concentration of the formed mixed liquid has high stability.
- 1 to 6 are schematic structural diagrams of a liquid supply system provided by an embodiment of the application.
- FIG. 7 is a schematic structural diagram of a liquid supply system provided by another embodiment of the present application.
- FIG. 8 is a schematic structural diagram of a liquid supply system provided by yet another embodiment of the present application.
- FIG. 9 is a schematic structural diagram of a liquid supply system according to another embodiment of the present application.
- the supply of the first liquid and the second liquid is stabilized by the additionally provided supplementary pipeline, so that the stability of the concentration of the first liquid in the formed mixed solution is high.
- an embodiment of the present application provides a liquid supply system, including: a mixing tank, the mixing tank is connected to at least a first injection pipeline, a second injection pipeline and a supplementary pipeline; the first injection pipeline and the second injection pipeline are respectively It is used to inject the first liquid and the second liquid into the mixing tank to form a mixed liquid; the parameter acquisition module is used to acquire the concentration of the first liquid in the mixed liquid; the processing module is based on the acquired concentration of the first liquid and a preset For the first liquid concentration, control the supplementary pipeline to inject the first liquid with the first flow rate into the mixing tank, or inject the second liquid with the second flow rate into the mixing tank, so that the concentration of the first liquid in the mixed liquid is close to at the preset first liquid concentration.
- 1 to 5 are schematic structural diagrams of a liquid supply system provided by an embodiment of the application, and the liquid supply system of this embodiment will be described in detail below.
- the liquid supply system includes: a mixing tank 100 .
- the mixing tank 100 is connected to at least a first injection pipe 101 , a second injection pipe 102 and a supplementary pipe.
- the first injection pipe 101 and the second injection pipe 102 are respectively used for injecting the first liquid and the second liquid into the mixing tank 100 to form a mixed solution.
- the first injection pipe 101 is used for injecting the first liquid into the mixing tank 100 ;
- the second injection pipe 102 is used for injecting the second liquid into the mixing tank 100 .
- the supplementary pipeline may include a third injection pipeline 103 and a fourth injection pipeline 104 .
- the third injection pipeline 103 is used to supplement the first liquid into the mixing tank 100
- the fourth injection pipeline 104 is used to supply the mixing tank 100 with the first liquid. Medium and micro supplement the second liquid.
- the supplementary conduit may also be provided as one injection conduit or multiple injection conduits.
- the supplementary pipeline when the supplementary pipeline is set as an injection pipeline, when the first liquid in the supplementary pipeline is switched to the second liquid (or when the second liquid in the supplementary pipeline is switched to be the first liquid), the supplementary pipeline is first cleaned with the cleaning liquid. Cleaning, to prevent the difference in concentration caused by the residual liquid in the replenishment pipeline.
- the first liquid is deionized water (DIW)
- the second liquid is hydrofluoric acid (49% HF)
- the mixed solution formed in the mixing tank 100 is diluted hydrofluoric acid ( DHF).
- the first liquid and the second liquid may be any liquid, that is, the mixed solution in the mixing tank is a mixed solution composed of any first liquid and the second liquid.
- a mixing valve is further connected between the mixing tank and the injection pipeline (including the first injection pipeline, the second injection pipeline and the supplementary pipeline), for mixing the first injection pipeline, the third injection pipeline and the second injection pipeline , The liquid injected by the fourth injection pipe is mixed evenly and injected into the mixing tank.
- the parameter acquisition module 110 is configured to acquire the concentration of the first liquid in the mixed liquid.
- the parameter acquisition module 110 includes at least one of a flow meter or a concentration meter.
- the flow meter is set on the injection pipeline.
- the flow meter is provided in the first injection pipe 101 and the second injection pipe 102, according to the first injection pipe 101 and the second injection pipe 102 respectively injected into the mixing tank 100 of the first liquid and the second liquid
- the flow rate is used to calculate the concentration of the first liquid in the mixed liquid in the mixing tank 100 .
- the concentration meter is arranged in the mixing tank 100 to directly measure the concentration of the first liquid in the mixed solution, thereby avoiding the calculation of data, and obtaining data more conveniently and quickly. save costs.
- the total amount of the injected liquid in the injection pipeline and the flow fluctuation information can be obtained through the flowmeter, so as to supplement and adjust the mixed liquid in the mixing tank 100 in time, thereby ensuring the stability of the concentration of the first liquid in the mixing tank 100 or stabilization of the concentration of the second liquid.
- the first injection pipe 101 and the second injection pipe 102 can respectively inject the total amount of the first liquid and the second liquid into the mixing tank 100 within a preset period of time through a flow meter, and then calculate the total amount of the first liquid and the second liquid in the mixing tank 100.
- the concentration of the first liquid in the mixed liquid may be 30 seconds, 25 seconds, 20 seconds, 15 seconds, 10 seconds or 5 seconds.
- the processing module 111 controls the supplementary pipeline to inject the first liquid with the first flow rate into the mixing tank 100 , or injects the mixing tank 100 with the first liquid with the second flow rate. the second liquid, so that the concentration of the first liquid in the mixed liquid is close to the preset first liquid concentration.
- the third injection pipe 103 can be controlled to inject the first liquid with the first flow rate into the mixing tank 100
- the fourth injection pipe 104 can be controlled to inject the second liquid with the second flow rate into the mixing tank 100 .
- the concentration of the first liquid in the mixed liquid is within ⁇ 5% of the value of the preset first liquid concentration; for example, within ⁇ 4%, within ⁇ 3%, within ⁇ 2%, or within ⁇ 1% within ⁇ 0.5%.
- control the fourth injection pipeline 104 to inject the second liquid with the second flow rate into the mixing tank 100; if the first liquid concentration is less than the preset first liquid concentration, control The third injection pipe 103 injects the first liquid at the first flow rate into the mixing tank 100 .
- the parameter acquisition module 110 and the processing module 111 can also fine-tune the concentration of the mixed liquid according to the concentration of the second liquid in the mixed liquid.
- the details are as follows: the parameter acquisition module 110 is used to acquire the concentration of the second liquid in the mixed liquid.
- the processing module 111 controls the supplementary pipeline to inject the first liquid into the mixing tank 100, or injects the second liquid into the mixing tank 100, so that the mixed liquid is filled with the first liquid.
- the concentration of the second liquid is close to the preset second liquid concentration.
- the supplemental conduits may include a third injection conduit 103 and a fourth injection conduit 104 .
- the third injection pipeline 103 is controlled to inject the first liquid into the mixing tank 100; if the second liquid concentration is less than the preset second liquid concentration, the fourth injection pipeline is controlled 104 injects the second liquid into the mixing tank 100 .
- fine-tuning can also be performed by combining the concentration of the first liquid and the concentration of the second liquid in the mixed liquid; Under the double verification of the second liquid concentration, the accuracy of the fine-tuning direction is guaranteed.
- the third injection pipe 103 is controlled to inject DIW into the mixing tank 100, or the fourth injection pipe 104 is controlled to inject DIW into the mixing tank 100.
- HF is injected into the tank 100 .
- the fourth injection pipeline 104 is controlled to inject HF into the mixing tank 100 at a speed of 6 ml/min.
- the concentration obtained by real-time calculation is 5470 ppm (the concentration fluctuates downward by 30 ppm)
- the fourth injection pipeline 104 is controlled to inject HF into the mixing tank 100 at a speed of 6 ml/min.
- the concentration obtained by real-time calculation is 5530ppm (the concentration fluctuates upward by 30ppm)
- the third injection pipeline 103 is controlled to inject DIW into the mixing tank 100 at a speed of 0.5L/min.
- the supplement of 0.22L DIW can be approximately The concentration of the mixed solution is reduced by 30 ppm.
- the third injection pipe 103 needs to inject DIW for about 26.4 s.
- the injection flow rate needs to be controlled to obtain the mixed solution of the desired concentration.
- This embodiment provides three methods for controlling traffic, as follows:
- Method 1 Control the flow through a flow-limiting valve.
- the first restrictor valve 121 is installed on the third injection pipe 103 for adjusting the flow rate of the first liquid allowed to pass through; the second restrictor valve 122 is installed on the fourth injection pipe 104 for adjusting the allowable flow rate of the first liquid.
- the flow rate of the second liquid passing through; the third restrictor valve 123 is installed on the first injection pipe 101 to adjust the flow rate of the first liquid allowed to pass through; the fourth restrictor valve 124 is installed on the fourth injection pipe 104, Used to adjust the flow rate of the second liquid allowed to pass through.
- the first restrictor valve 121 , the second restrictor valve 122 , the third restrictor valve 123 and the fourth restrictor valve 124 include at least a needle valve or a motor needle feedback valve.
- the needle valve is manually adjusted by the relevant staff, so as to adjust the opening of the needle valve to realize flow control.
- the motor needle feedback valve can be adjusted through the operation platform, which realizes the remote control of the valve by the staff.
- the motor needle has high precision, allowing a smaller error range of the flow through, and the motor needle feedback valve has high precision, which can slow down the flow fluctuation caused by changes in system pressure, thereby further ensuring the concentration of the first liquid in the mixed solution or Stability of the concentration of the second liquid.
- the first restrictor valve 121 is used as an example of a motor needle feedback valve.
- the motor needle feedback valve (ie, the first restrictor valve 121 ) includes an acquisition unit 131 , a control unit 132 and an operation unit 133 .
- the acquisition unit 131 is used to acquire the liquid flow through the motor needle feedback valve;
- the control unit 132 is connected to the acquisition unit 131, and controls the operation unit 133 to adjust the valve of the motor needle feedback valve based on the liquid flow and preset flow through the motor needle feedback valve Opening degree;
- the operation unit 133 is connected to the control unit 132 for controlling the valve opening degree of the motor needle feedback valve. That is, the motor needle feedback valve includes a feedback flow rate, which is used to adjust the liquid flow rate through the motor needle feedback valve in real time to be close to the preset flow rate.
- the allowable flow range of the third restrictor valve 123 is 15L/min ⁇ 25L/min; the allowable flow range of the first restrictor valve 121 is 0.1L/min ⁇ 0.4L/min; The allowable flow range of the flow valve 124 is 20ml/min-250ml/min; the allowable flow range of the second restrictor valve 123 is 0-15ml/min.
- Method 2 Control the flow through the liquid supply device.
- the first liquid supply device 201 is connected to the first injection pipeline 101 and the third injection pipeline 103 ; the second liquid supply device 202 is connected to the second injection pipeline 102 and the fourth injection pipeline 104 .
- the first liquid supply device 201 is used to supply the first liquid to the first injection pipe 101 and the third injection pipe 103, and to adjust the flow rate of the first liquid supplied to the first injection pipe 101 and the third injection pipe 103; the second liquid supply The device 202 is used to provide the second liquid to the second injection pipe 102 and the fourth injection pipe 104 and to adjust the flow rate of the second liquid to the second injection pipe 102 and the fourth injection pipe 104 .
- Method 3 The flow control is realized through the liquid supply device and the flow limiting valve.
- the third injection pipe 103 and the fourth injection pipe 104 are supplementary pipes, the flow rate of the liquid to be passed through is relatively small, and a relatively small pipe diameter can be set. That is, the pipe diameter of the third injection pipe 103 is smaller than the pipe diameter of the first injection pipe 101 , and the pipe diameter of the fourth injection pipe 104 is smaller than the pipe diameter of the second injection pipe 102 .
- the inner diameter of the first injection pipe 101 is 10-15 mm, and the outer diameter is 15-20 mm; the inner diameter of the third injection pipe 103 is 3-5 mm, and the outer diameter is 6-8 mm; the inner diameter of the second injection pipe 102 8 ⁇ 12mm, the outer diameter is 12 ⁇ 16mm; the inner diameter of the fourth injection pipe 104 is 2 ⁇ 4mm, and the outer diameter is 3 ⁇ 5mm, the supplementary pipeline is set with small flow and small diameter, which is conducive to the control of supplementary flow and improves the supplementary accuracy , so as to avoid large concentration fluctuations in the main pipeline due to changes in the external environment.
- the allowable flow range of the first injection pipe 101 is 15L/min ⁇ 25L/min; the flow rate allowed by the third injection pipe 103 is 0.1L/min ⁇ 0.4L/min; the second injection pipe 102 is allowed to pass through
- the flow rate range of the fourth injection pipe 104 is 20ml/min ⁇ 250ml/min; the flow rate range allowed by the fourth injection pipe 104 is 0 ⁇ 15ml/min.
- the first injection pipe 101 , the third injection pipe 103 , the second injection pipe 102 , and the fourth injection pipe 104 are all provided with on-off valves.
- the on-off valves are respectively used to conduct the first injection pipe 101 , the third injection pipe 103 , the second injection pipe 102 , and the fourth injection pipe 104 .
- the fourth on-off valve 144 on the fourth injection line 104 .
- the liquid supply system further includes a first liquid storage tank 301 , and the first liquid storage tank 301 is connected to the second injection pipeline 102 and the fourth injection pipeline 104 .
- the first liquid storage tank 301 is also connected to at least an air inlet pipe and a liquid inlet pipe (the liquid inlet pipe is the first liquid inlet pipe 311, the air inlet pipe is the first air inlet pipe 331, and the first liquid discharge pipe 321 and the first liquid inlet pipe 331 are also correspondingly included.
- the liquid supply system further includes a second liquid storage tank 302 , and the second liquid storage tank 302 is connected to the first injection pipeline 101 and the third injection pipeline 103 .
- the second liquid storage tank 302 is also connected to at least an air inlet pipe and a liquid inlet pipe (the liquid inlet pipe is the second liquid inlet pipe 312, the air inlet pipe is the second air inlet pipe 332, and the second liquid discharge pipe 322 and the second liquid inlet pipe 332 are also correspondingly included.
- Two exhaust pipes 342), the second liquid inlet pipe 312 is used for injecting the first liquid into the second liquid storage tank 302, and the second intake pipe 332 is used for injecting the discharge gas into the second liquid storage tank 302.
- the first liquid in the second liquid storage tank 302 is pressed into the first injection pipe 101 and the third injection pipe 103 .
- the mixed liquid is input through the liquid outlet pipeline.
- the liquid outlet pipeline is respectively connected to the water outlet tank 401 , the mixing tank 100 and the premixing tank 403 .
- the mixing valve 402 delivers the mixed liquid to the mixing tank 100
- the mixed liquid is firstly delivered to the water outlet tank 401, and the mixed liquid is delivered only after the concentration of the first liquid or the concentration of the second liquid in the mixed liquid is stable.
- the mixing tank 100 is a mixed liquid with a stable concentration of the first liquid or the second liquid, which is directly used in the semiconductor process.
- the pre-mixing tank 403 is equivalent to the expansion container of the mixing tank 100.
- the third injection pipe may be used as a branch pipe of the first injection pipe
- the fourth injection pipe may be used as a branch of the second injection pipe.
- the first injection pipeline can be communicated with the second injection pipeline and the second injection pipeline through the cleaning pipeline, and is used for injecting cleaning liquid from one injection pipeline to clean the entire liquid supply system.
- the first injection pipeline injects the first liquid into the mixing tank
- the second injection pipeline injects the second liquid into the mixing tank
- the first liquid and the second liquid are mixed in the mixing tank to obtain a mixed solution
- the concentration of the first liquid in the mixed solution is obtained through the parameter acquisition module and compared with the preset first liquid concentration, and according to the comparison result, the first liquid or the second liquid is supplemented through the supplementary pipeline, that is, the first liquid in the mixed liquid in the mixing tank is adjusted.
- the concentration of a liquid is fine-tuned, so that the concentration of the mixed liquid formed by mixing has higher stability.
- each unit involved in this embodiment is a logical unit.
- a logical unit may be a physical unit, a part of a physical unit, or multiple physical units.
- a composite implementation of the unit in order to highlight the innovative part of the present application, this embodiment does not introduce units that are not closely related to solving the technical problem raised by the present application, but this does not mean that there are no other units in this embodiment.
- Another embodiment of the present application relates to a liquid supply system.
- This embodiment is substantially the same as the above-mentioned embodiment, except that in this embodiment, the parameter acquisition module is a flowmeter as an example for description, and the same parts as the above-mentioned embodiment are: In this embodiment, details will not be repeated, and the liquid supply system of this embodiment will be specifically described below with reference to the accompanying drawings.
- the liquid supply system further includes a first flowmeter 151 , a second flowmeter 152 , a third flowmeter 153 and a fourth flowmeter 154 .
- the first flow meter 151 is arranged on the first injection pipe 101 to obtain the third flow rate of the first liquid injected by the first injection pipe 101 into the mixing tank 100 ;
- the second flow meter 152 is arranged on the second injection pipe 102 , which is used to obtain the fourth flow rate of the second liquid injected by the second injection pipeline 102 into the mixing tank 100 .
- the parameter acquisition module 110 further includes a parameter calculation unit (not shown), which calculates the concentration of the first liquid or the concentration of the second liquid in the mixed liquid based on the third flow rate and the fourth flow rate.
- the total amount of the first liquid and the second liquid injected into the mixing tank 100 by the first injection pipeline 101 and the second injection pipeline 102 can be counted by a flow meter within a preset time, and then the total amount of the first liquid and the second liquid injected into the mixing tank 100 can be calculated.
- the preset time may be 30 seconds, 25 seconds, 20 seconds, 15 seconds, 10 seconds or 5 seconds.
- the processing module 111 controls the supplementary pipeline to inject the first liquid with the first flow rate into the mixing tank 100, or inject the first liquid with the second flow rate into the mixing tank 100.
- the supplementary pipeline includes the third injection pipeline 103 and the fourth injection pipeline 104, so the third injection pipeline 103 can be controlled to inject the first liquid with the first flow rate into the mixing tank 100, or the fourth injection pipeline 104 can be controlled to inject into the mixing tank 100.
- a second liquid having a second flow rate is injected into the mixing tank 100 .
- the concentration of the first liquid in the mixed liquid is within ⁇ 5% of the value of the preset first liquid concentration; for example, within ⁇ 4%, within ⁇ 3%, within ⁇ 2%, or within ⁇ 1% within ⁇ 0.5%.
- the processing module 111 controls the supplementary pipeline to inject the first liquid into the mixing tank 100, or inject the second liquid into the mixing tank 100, so that the mixed liquid is The concentration of the second liquid is close to the preset second liquid concentration.
- the third injection pipe 103 can be controlled to inject the first liquid into the mixing tank 100
- the fourth injection pipe 104 can be controlled to inject the second liquid into the mixing tank 100 .
- the concentration of the second liquid in the mixed liquid is within ⁇ 5% of the value of the preset second liquid concentration; for example, within ⁇ 4%, within ⁇ 3%, within ⁇ 2%, or within ⁇ 1% within ⁇ 0.5%.
- the flow rate of the micro-supplemented first liquid or the second liquid can be observed in real time through the third flow meter 153 and the fourth flow meter 154 .
- the third flow meter 153 is arranged on the third injection pipeline 103, and is used to obtain the flow rate of the third injection pipeline 103 injecting the first liquid into the mixing tank 100;
- the fourth flow meter 154 is arranged on the fourth injection pipeline 104, using The flow rate of the second liquid injected into the mixing tank 100 by the fourth injection pipeline 104 is obtained.
- Yet another embodiment of the present application relates to a liquid supply system.
- This embodiment is substantially the same as the above-mentioned embodiment, except that in this embodiment, the parameter acquisition module is a concentration meter as an example for description, and the same parts as the above-mentioned embodiment are: In this embodiment, details will not be repeated, and the liquid supply system of this embodiment will be specifically described below with reference to the accompanying drawings.
- the liquid supply system further includes a first concentration meter 161 disposed in the mixing tank 100 for obtaining the concentration of the first liquid in the mixed liquid or the concentration of the second liquid in the mixed liquid.
- the concentration of the mixed solution in the mixing tank 100 is directly obtained through the concentration meter, which avoids the operation of data, and the concentration value is obtained more quickly and conveniently. Meanwhile, compared with the setting method of the first densitometer, the mixing time of the first liquid and the second liquid is longer, the mixing is more sufficient, and the obtained data is more accurate.
- Yet another embodiment of the present application relates to a liquid supply system.
- This embodiment is substantially the same as the above-mentioned embodiment, except that the mixed solution obtained in this embodiment has more than two components.
- the example will not be repeated, and the liquid supply system of this embodiment will be specifically described below with reference to the accompanying drawings.
- the liquid supply system further includes a fifth injection pipe 105 and a sixth injection pipe 106. Similar to the above-mentioned embodiment, the fifth injection pipe 105 further includes a fifth switch valve 145 and a fifth restrictor valve 125; the sixth The injection pipeline also includes a sixth switch valve 146 and a sixth restrictor valve 126 .
- the fifth injection pipe 105 is used to inject the third liquid into the mixing tank 100 to form a mixed liquid.
- the parameter acquisition module (not shown) is further configured to acquire the concentration of the third liquid in the mixed liquid.
- the processing module (not shown) is further configured to, based on the obtained concentration of the third liquid and the preset third liquid concentration, control the sixth injection pipeline 126 to inject the third liquid with the fifth flow rate into the mixing tank 100, so that the The concentration of the third liquid in the mixed liquid is close to the preset third liquid concentration.
- the concentration of the third liquid in the mixed liquid is within ⁇ 5% of the value of the preset third liquid concentration; for example, within ⁇ 4%, within ⁇ 3%, within ⁇ 2%, or within ⁇ 1% within ⁇ 0.5%.
- liquid mixing of the three components is achieved through the fifth injection pipeline 105 and the sixth injection pipeline 106, while ensuring the stability of the respective concentrations of the three components in the mixed liquid.
- the same can be applied to liquid blends of four, five, or even more ingredients. At the same time, it ensures the stability of the respective concentrations of various components in the mixed liquid.
- the first injection pipeline injects the first liquid into the mixing tank
- the second injection pipeline injects the second liquid into the mixing tank
- the first liquid and the second liquid are mixed in the mixing tank to obtain a mixed solution
- the concentration of the first liquid in the mixed liquid in the mixing tank is fine-tuned in real time, so that the concentration of the mixed liquid formed by mixing has high stability.
- the fifth embodiment of the present application relates to a liquid supply method.
- the liquid supply method provided in this embodiment will be described in detail below, and the parts that are the same as or corresponding to the above embodiment will not be described in detail below.
- the liquid supply method includes: acquiring the concentration of the first liquid in the mixed liquid and the preset first liquid concentration; based on the acquired concentration of the first liquid and the preset first liquid concentration, controlling the supplementary pipeline to inject the first liquid into the mixing tank. flow rate of the first liquid or the second liquid, so that the concentration of the first liquid in the mixed liquid is close to the preset first liquid concentration.
- the supplementary pipeline may include a third injection pipeline and a fourth injection pipeline, the third injection pipeline is used to supplement the first liquid into the mixing tank 100 , and the fourth injection pipeline is used to slightly supplement the second liquid into the mixing tank 100 . liquid.
- the supplementary conduit may also be provided as one injection conduit or multiple injection conduits.
- the supplementary pipeline is set as an injection pipeline, when the first liquid in the supplementary pipeline is switched to the second liquid (or when the second liquid in the supplementary pipeline is switched to be the first liquid), the supplementary pipeline is first cleaned with the cleaning liquid. Cleaning, to prevent the difference in concentration caused by the residual liquid in the replenishment pipeline.
- the concentration of the first liquid in the mixed liquid is within ⁇ 5% of the value of the preset first liquid concentration; for example, within ⁇ 4%, within ⁇ 3%, within ⁇ 2%, or within ⁇ 1% within ⁇ 0.5%.
- the third injection pipeline is controlled to inject the first liquid with the first flow rate into the mixing tank, or the fourth injection pipeline is controlled to inject into the mixing tank
- the second liquid with the second flow rate includes: if the concentration of the first liquid in the mixed liquid is greater than the preset first liquid concentration, controlling the fourth injection pipeline to inject the second liquid into the mixing tank; if the concentration of the first liquid in the mixed liquid is less than The first liquid concentration is preset, and the third injection pipeline is controlled to inject the first liquid into the mixing tank.
- the concentration of the second liquid in the mixed liquid and the preset second liquid concentration obtain the concentration of the second liquid in the mixed liquid and the preset second liquid concentration; based on the obtained second liquid concentration and the preset second liquid concentration, control the third injection pipeline to inject the first liquid into the mixing tank, Or, the fourth injection pipeline is controlled to inject the second liquid into the mixing tank, so that the concentration of the second liquid in the mixed liquid is close to the preset second liquid concentration.
- the concentration of the second liquid in the mixed liquid is within ⁇ 5% of the value of the preset second liquid concentration; for example, within ⁇ 4%, within ⁇ 3%, within ⁇ 2%, or within ⁇ 1% within ⁇ 0.5%.
- controlling the third injection pipeline to inject the first liquid into the mixing tank, or controlling the fourth injection pipeline to inject the second liquid into the mixing tank including : if the second liquid concentration in the mixed liquid is greater than the preset second liquid concentration, control the third injection pipeline to inject the second liquid into the mixing tank; if the second liquid concentration in the mixed liquid is less than the preset second liquid concentration, control the fourth The injection line injects the first liquid into the mixing tank.
- the first liquid is deionized water (DIW)
- the second liquid is hydrofluoric acid (49% HF)
- the mixed solution formed in the mixing tank 100 is diluted hydrofluoric acid ( DHF).
- the first liquid and the second liquid can be any liquid, that is, the mixed solution in the mixing tank is a mixed solution composed of any first liquid and the second liquid.
- the first injection pipe 101 injects DIW into the mixing tank 100 with a flow rate of 20.25L/min
- the second injection pipe 102 The flow rate of HF injected into the mixing tank 100 is 176.5ml/min.
- the second liquid concentration of the mixed solution in the mixing tank 100 is 5500ppm, and the 5500ppm concentration is used as the preset second liquid concentration. If When the second liquid concentration of the mixed solution in the mixing tank 100 obtained by real-time calculation changes, the third injection pipe 103 is controlled to inject DIW into the mixing tank 100 , or the fourth injection pipe 104 is controlled to inject HF into the mixing tank 100 .
- the fourth injection pipeline 104 is controlled to inject HF into the mixing tank 100 at a speed of 6 ml/min.
- the concentration obtained by real-time calculation is 5470 ppm (the concentration fluctuates downward by 30 ppm)
- the fourth injection pipeline 104 is controlled to inject HF into the mixing tank 100 at a speed of 6 ml/min.
- the concentration obtained by real-time calculation is 5530ppm (the concentration fluctuates upward by 30ppm)
- the third injection pipeline 103 is controlled to inject DIW into the mixing tank 100 at a speed of 0.5L/min.
- the supplement of 0.22LDIW can make The concentration of the mixed solution drops back by 30 ppm, and at this time, the third injection pipe 103 needs to inject DIW for about 26.4 s.
- the first liquid is supplemented through the third injection pipe, or the second liquid is supplemented through the fourth injection pipe, that is, the concentration of the first liquid in the mixed liquid in the mixing tank is fine-tuned, so that the The concentration of the mixed liquid formed by mixing has high stability.
Landscapes
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Fluid Mechanics (AREA)
- Automation & Control Theory (AREA)
- Accessories For Mixers (AREA)
Abstract
一种供液系统及供液方法,供液系统包括:混合槽(100),混合槽(100)至少连接第一注入管道(101)、第二注入管道(102)和补充管道;第一注入管道(101)以及第二注入管道(102)分别用于向混合槽(100)中注入第一液体和第二液体,以形成混合液体;参数获取模块(110),用于获取混合液体中第一液体的浓度;处理模块(111),基于获取的第一液体的浓度以及预设第一液体浓度,控制补充管道向混合槽(100)中注入具有第一流量的第一液体,或,向混合槽(100)中注入具有第二流量的第二液体,以使混合液体中的第一液体的浓度接近于预设第一液体浓度。
Description
交叉引用
本申请引用于2020年7月10日递交的名称为“供液系统及供液方法”的第202010663276.3号中国专利申请,其通过引用被全部并入本申请。
本申请涉及半导体领域,特别涉及一种供液系统及供液方法。
目前,单片式湿式清洗刻蚀机采用刻蚀材料主要为稀释的氢氟酸(DHF),且单片式湿式清洗刻蚀机在制程中会使用较长时间的DHF,因此DHF的浓度波动会严重影响晶圆的蚀刻量,从而直接影响产品的良率。
随着半导体工艺制程的进步,线宽越来越小,对单片式湿式清洗刻蚀机所需DHF的浓度的稳定性要求越来越高。而单片式湿式清洗刻蚀机所需DHF来源于49%浓度的氢氟酸(49%HF)与去离子水(DIW)的混合。
然而申请人发现,相关技术中,由于厂务端主系统压力波动,导致难以稳定49%HF与DIW的供给量,从而导致混合形成的DHF的浓度存在较大的波动,从而影响产品的良率。
发明内容
本申请实施例提供一种供液系统及供液方法,通过额外设置的补充管道稳定第一液体与第二液体的供给量,使形成的混合溶液中第一液体的浓度的稳定性较高。
为解决上述技术问题,本申请实施例提供了一种供液系统,包括:混合 槽,混合槽至少连接第一注入管道、第二注入管道和补充管道;第一注入管道以及第二注入管道分别用于向混合槽中注入第一液体和第二液体,以形成混合液体;参数获取模块,用于获取混合液体中第一液体的浓度;处理模块,基于获取的第一液体的浓度以及预设第一液体浓度,控制补充管道向混合槽中注入具有第一流量的第一液体,或,向混合槽中注入具有第二流量的第二液体,以使混合液体中的第一液体的浓度接近于预设第一液体浓度。
与相关技术相比,第一注入管道向混合槽内注入第一液体,第二注入管道向混合槽内注入第二液体,第一液体与第二液体在混合槽中进行混合得到混合溶液,通过参数获取模块获取混合溶液中第一液体的浓度并与预设第一液体浓度进行比较,根据比较结果,通过补充管道补充第一液体或第二液体,即对混合槽中的混合液体中第一液体的浓度进行实时微调,从而使得混合形成的混合液体的浓度具有较高的稳定性。
另外,补充管道包括第三注入管道和第四注入管道;其中,控制补充管道向混合槽中注入具有第一流量的第一液体,或,向混合槽中注入具有第二流量的第二液体,包括:控制第三注入管道向混合槽中注入具有第一流量的第一液体,或,控制第四注入管道向混合槽中注入具有第二流量的第二液体。
另外,参数获取模块至少包括流量计和浓度计的其中一种。
另外,流量计包括:第一流量计,第一流量计设置在第一注入管道上,用于获取第一注入管道向混合槽注入第一液体的第三流量;第二流量计,第二流量计设置在第二注入管道上,用于获取第二注入管道向混合槽注入第二液体的第四流量;参数获取模块还包括:参数计算单元,基于第三流量和第四流量,计算混合液体中第一液体的浓度或混合液体中第二液体的浓度。通过注入管道 上的流量计,获取注入混合槽的第一液体流量和第二液体流量,再通过参数计算单元进行计算,可以准确获取混合液体中第一液体的浓度或第二液体的浓度。
另外,浓度计设置在混合槽中,用于获取混合液体中第一液体的浓度或混合液体中第二液体的浓度。通过浓度计直接进行浓度的获取,避免了数据的计算。
另外,第一限流阀门,安装在第三注入管道上,用于调节允许通过的第一液体的流量;第二限流阀门,安装在第四注入管道上,用于调节允许通过的第二液体的流量;第三限流阀门,安装在第一注入管道上,用于调节允许通过的第一液体的流量;第四限流阀门,安装在第二注入管道上,用于调节允许通过的第二液体的流量。
另外,第一限流阀门允许通过的流量范围为0.5L/min~4L/min;第二限流阀门允许通过的流量范围为0~15ml/min;第三限流阀门允许通过的流量范围为15L/min~25L/min;第四限流阀门允许通过的流量范围为20ml/min~250ml/min。
另外,第一限流阀门、第二限流阀门、第三限流阀门和第四限流阀门包括针阀或电机针反馈阀。
另外,与混合槽连接的第五注入管道和第六注入管道;第五注入管道用于向混合槽中注入第三液体,以形成混合液体;参数获取模块,还用于获取混合液体中第三液体的浓度;处理模块,还基于获取的第三液体的浓度以及预设第三液体浓度,控制第六注入管道向混合槽中注入具有第五流量的第三液体,以使第二混合液体中的第三液体的浓度接近于预设第三液体浓度。应用于多种成分的液体混合装置。
另外,第三注入管道的管径小于第一注入管道的管径,第四注入管道的 管径小于第二注入管道的管径。第三注入管道和第四注入管道作为补充管道,液体的流量较小,采用管径较小的管道制成,解决制造成本。
另外,供液系统还包括:混合阀,一端连接混合槽,一端连接第一注入管道、第二注入管道和补充管道,用于将第一注入管道、第二注入管道和补充管道注入的液体混合均匀后注入混合槽中。
本申请实施例还提供了一种供液方法,包括:获取混合液体中第一液体的浓度和预设第一液体浓度;基于获取的第一液体的浓度以及预设第一液体浓度,控制补充管道向混合槽中注入具有第一流量的第一液体或第二液体,以使混合液体中的第一液体的浓度接近于预设第一液体浓度。
相比于相关技术而言,根据比较结果,通过补充管道补充第一液体或第二液体,即对混合槽中的混合液体中第一液体的浓度或第二液体的浓度进行微调,从而使得混合形成的混合液体的浓度具有较高的稳定性。
图1至图6为本申请一实施例提供的供液系统的结构示意图;
图7为本申请另一实施例提供的供液系统的结构示意图;
图8为本申请再一实施例提供的供液系统的结构示意图;
图9为本申请又一实施例提供的供液系统的结构示意图。
目前,对单片式湿式清洗刻蚀机的刻蚀材料进行补给的过程中,难以稳定49%HF与DIW的供给量,从而导致混合形成的DHF的浓度存在较大的波动,从而影响产品的良率。
本申请通过额外设置的补充管道稳定第一液体与第二液体的供给量,使 形成的混合溶液中第一液体的浓度的稳定性较高。
为解决上述问题,本申请一实施例提供了一种供液系统,包括:混合槽,混合槽至少连接第一注入管道、第二注入管道和补充管道;第一注入管道以及第二注入管道分别用于向混合槽中注入第一液体和第二液体,以形成混合液体;参数获取模块,用于获取混合液体中第一液体的浓度;处理模块,基于获取的第一液体的浓度以及预设第一液体浓度,控制补充管道向混合槽中注入具有第一流量的第一液体,或,向混合槽中注入具有第二流量的第二液体,以使混合液体中的第一液体的浓度接近于预设第一液体浓度。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合,相互引用。
图1至图5为本申请一实施例提供的供液系统的结构示意图,下面对本实施例的供液系统进行具体说明。
参考图1,供液系统,包括:混合槽100,混合槽100至少连接第一注入管道101、第二注入管道102和补充管道。其中,第一注入管道101以及第二注入管道102分别用于向混合槽100中注入第一液体和第二液体,以形成混合溶液。具体地,第一注入管道101用于向混合槽100中注入第一液体;第二注入管道102用于向混合槽100中注入第二液体。
在本实施例中,补充管道可以包括第三注入管道103和第四注入管道104,第三注入管道103用于向混合槽100中补充第一液体,第四注入管道104用于向混合槽100中微补第二液体。
在其它实施例中,补充管道也可以设置为一个注入管道或更多个注入管道。另外,补充管道设置为一个注入管道时,在切换补充管道中的第一液体为第二液体时(或切换补充管道中的第二液体为第一液体时),先采用清洗液对补充管道进行清洗,防止补充管道中残留的液体造成浓度的差异。
需要说明的是,在本实施例中,第一液体为去离子水(DIW),第二液体为氢氟酸(49%HF),混合槽100中形成的混合溶液为稀释的氢氟酸(DHF)。在其他实施例中,第一液体和第二液体可以是任何液体,即混合槽中的混合溶液为任意第一液体与第二液体构成的混合溶液。
在其它实施例中,混合槽与注入管道(包括第一注入管道、第二注入管道和补充管道)间还连接有混合阀,用于将第一注入管道、第三注入管道、第二注入管道、第四注入管道注入的液体混合均匀,并注入到混合槽中。
参数获取模块110,用于获取混合液体中第一液体的浓度。
具体地,参数获取模块110至少包括流量计或者浓度计的其中一种。其中,流量计设置在注入管道上。在一个例子中,流量计设置在第一注入管道101、和第二注入管道102中,根据第一注入管道101、和第二注入管道102分别注入混合槽100的第一液体和第二液体的流量,计算出混合槽100中混合液体中的第一液体的浓度。浓度计设置在混合槽100中,直接对混合溶液中第一液体的浓度进行测量,避免了数据的计算,获取数据更加方便快捷。节约成本。
在一个实施例中,可以通过流量计获取注入管道中注入液体的总量以及 流量波动信息,从而及时对混合槽100中的混合液体进行补充调节,从而保证混合槽100中第一液体浓度的稳定或第二液体浓度的稳定。在一个例子中,可以通过流量计统计预设时间内第一注入管道101和第二注入管道102分别向混合槽100中注入第一液体和第二液体的总量,然后计算出混合槽100中混合液体中的第一液体的浓度。其中,预设时间可以为30秒、25秒、20秒、15秒、10秒或5秒。
处理模块111,基于获取的第一液体浓度以及预设第一液体浓度,控制补充管道向混合槽100中注入具有第一流量的第一液体,或,向混合槽100中注入具有第二流量的第二液体,以使混合液体中的第一液体的浓度接近于预设第一液体浓度。具体的,可以控制第三注入管道103向混合槽100中注入具有第一流量的第一液体,或,控制第四注入管道104向混合槽100中注入具有第二流量的第二液体。在一个例子中,以使混合液体中的第一液体的浓度达到预设第一液体浓度的值的±5%以内;例如±4%以内、±3%以内、±2%以内或±1%以内,进一步可以为±0.5%以内。
具体地,若第一液体浓度大于预设第一液体浓度,控制第四注入管道104向混合槽100中注入第二流量的第二液体;若第一液体浓度小于预设第一液体浓度,控制第三注入管道103向混合槽100中注入第一流量的第一液体。
参数获取模块110和处理模块111还可以根据混合液体中第二液体的浓度进行混合液体的浓度微调,具体如下:参数获取模块110,用于获取混合液体中第二液体的浓度。处理模块111,基于获取的第二液体浓度以及预设第二液体浓度,控制补充管道向混合槽100中注入第一液体,或,向混合槽100中注入第二液体,以使混合液体中的第二液体的浓度接近于预设第二液体浓度。 补充管道可以包括第三注入管道103和第四注入管道104。具体地,若第二液体浓度大于预设第二液体浓度,控制第三注入管道103向混合槽100中注入第一液体;若第二液体浓度小于预设第二液体浓度,控制第四注入管道104向混合槽100中注入第二液体。
在其他实施例中,也可以采用结合混合液体中第一液体的浓度和第二液体的浓度进行微调;通过对第一液体的浓度与预设第一液体浓度、第二液体的浓度与预设第二液体浓度的双重验证下,保证微调方向的准确性。
以形成1:100的DHF(HF:DIW=1:100的稀释氢氟酸),以混合槽100体积为40L为例,若第一注入管道101向混合槽100中注入DIW的流量为20.25L/min,第二注入管道102向混合槽100中注入HF的流量为176.5ml/min,经过计算可以得出,此时混合槽100中的混合溶液的第二液体浓度为5500ppm,以5500ppm浓度作为预设第二液体浓度,若实时计算获取的混合槽100中混合溶液的第二液体浓度发生变化,则控制第三注入管道103向混合槽100中注入DIW,或控制第四注入管道104向混合槽100中注入HF。
例如,若实时计算获取的浓度为5470ppm(浓度向下波动30ppm),此时控制第四注入管道104以6ml/min的速度向混合槽100中注入HF,根据工程算法计算得知补充1mlHF,大约刻蚀混合溶液的浓度上升15ppm,此时第四注入管道104需要注入HF约20s。若实时计算获取的浓度为5530ppm(浓度向上波动30ppm),此时控制第三注入管道103以0.5L/min的速度向混合槽100中注入DIW,根据工程算法计算得知补充0.22L DIW大约可使混合溶液的浓度回落30ppm,此时第三注入管道103需要注入DIW约26.4s。
需要说明的是,上述具体数据为对本实施例的补充注入的原理进行具体 数量的举例说明,便于本领域技术人员理解本方案,并不构成对本实施例的限定。
基于上述论述,通过第一注入管道101、第三注入管道103、第二注入管道102、第四注入管道104中注入时,需要控制注入流量,才能获取所需浓度的混合溶液。本实施例给出了三种控制流量的方法,具体如下:
方法一:通过限流阀门实现流量的控制。
参考图1,第一限流阀门121安装在第三注入管道103上,用于调节允许通过的第一液体的流量;第二限流阀门122安装在第四注入管道104上,用于调节允许通过的第二液体的流量;第三限流阀门123安装在第一注入管道101上,用于调节允许通过的第一液体的流量;第四限流阀门124安装在第四注入管道104上,用于调节允许通过的第二液体的流量。
具体地,第一限流阀门121、第二限流阀门122、第三限流阀门123和第四限流阀门124至少包括针阀或电机针反馈阀。
其中,针阀通过相关工作人员手动调整,从而调整针阀的开度,以实现流量的控制。电机针反馈阀可以通过操作平台进行调整,实现了工作人员的阀门的远程控制。同时,相比于针阀(由于针阀的开度受到系统压力的变化,造成通过针阀的液体流量存在波动,从而导致混合液体中第一液体或第二液体的浓度不稳定),电机针反馈阀的精度较高,允许通过流量的误差范围更小,且电机针反馈阀的精度较高,可减缓由系统压力的变化导致的流量波动,从而进一步保证混合溶液中第一液体的浓度或者第二液体的浓度的稳定性。
在一个例子中,以第一限流阀门121为电机针反馈阀进行举例说明,电机针反馈阀(即第一限流阀门121)包括获取单元131、控制单元132和操作单 元133。其中,获取单元131用于获取通过电机针反馈阀的液体流量;控制单元132连接获取单元131,基于通过电机针反馈阀的液体流量与预设流量,控制操作单元133调节电机针反馈阀的阀门开度;操作单元133,连接控制单元132,用于控制电机针反馈阀的阀门开度。即电机针反馈阀内部包括一个反馈流量,用于实时调节通过电机针反馈阀的液体流量接近于预设流量。
在一个例子中,第三限流阀门123允许通过的流量范围为15L/min~25L/min;第一限流阀门121允许通过的流量范围为0.1L/min~0.4L/min;第四限流阀门124允许通过的流量范围为20ml/min~250ml/min;第二限流阀门123允许通过的流量范围为0~15ml/min。通过将第三注入管道、第四注入管道上的限流阀门的通过流量设置低于第一注入管道、第三注入管道上的通过流量,有利于补充液体量的控制,提高微补精度,从而进一步提高混合溶液中第一液体或第二液体浓度的稳定值。
方法二:通过供液装置实现流量的控制。
参考图3,第一供液装置201连接第一注入管道101和第三注入管道103;第二供液装置202连接第二注入管道102和第四注入管道104。第一供液装置201用于向第一注入管道101和第三注入管道103提供第一液体,并调节向第一注入管道101和第三注入管道103提供第一液体的流量;第二供液装置202用于向第二注入管道102和第四注入管道104提供第二液体,并调节向第二注入管道102和第四注入管道104提供第二液体的流量。
方法三:通过供液装置与限流阀门共同实现流量的控制。
参考图4,相关论述同上述方法一和方法二,在此不过多赘述。采用供液装置与限流阀门结合的方式,可以更加精确的实现各注入管道中的注入流量。
此外,由于第三注入管道103和第四注入管道104为补充管道,所需流经的液体的流量较小,可以设置较小的管径。即第三注入管道103的管径小于第一注入管道101的管径,第四注入管道104的管径小于第二注入管道102的管径。在一个例子中,第一注入管道101的内径为10~15mm,外径为15~20mm;第三注入管道103的内径为3~5mm,外径为6~8mm;第二注入管道102的内径8~12mm,外径为12~16mm;第四注入管道104的内径为2~4mm,外径为3~5mm,补充管道设置小流量和小管径,有利于补充流量的控制,提高补充精度,从而避免主管道因外界环境变换造成浓度波动较大。此时,第一注入管道101允许通过的流量范围为15L/min~25L/min;第三注入管道103允许通过的流量范围为0.1L/min~0.4L/min;第二注入管道102允许通过的流量范围为20ml/min~250ml/min;第四注入管道104允许通过的流量范围为0~15ml/min。
在本实施例中,第一注入管道101、第三注入管道103、第二注入管道102、第四注入管道104上均设置有开关阀门。开关阀门分别用于导通第一注入管道101、第三注入管道103、第二注入管道102、第四注入管道104。具体地,设置在第一注入管道101上的第一开关阀门141;设置在第三注入管道103上的第二开关阀门142;设置在第二注入管道102上的第三开关阀门143;设置在第四注入管道104上的第四开关阀门144。
在本实施例中,在向混合槽100注入液体的过程中,还可以新增储液管,保证第一液体和第二液体的持续供应。参考图5,供液系统还包括第一储液罐301,第一储液罐301连接第二注入管道102和第四注入管道104。第一储液罐301至少还连接进气管道和进液管道(进液管道为第一进液管道311、进气管道为第一进气管道331,也相应包括第一排液管道321和第一排气管道341),第 一进液管道311用于向第一储液罐301中注入第二液体,第一进气管道331用于向第一储液罐301中注入排液气体,用于将第一储液罐301的第二液体压入第二注入管道102和第四注入管道104中。供液系统还包括第二储液罐302,第二储液罐302连接第一注入管道101和第三注入管道103。第二储液罐302至少还连接进气管道和进液管道(进液管道为第二进液管道312、进气管道为第二进气管道332,也相应包括第二排液管道322和第二排气管道342),第二进液管道312用于向第二储液罐302中注入第一液体,第二进气管道332用于向第二储液罐302中注入排液气体,用于将第二储液罐302的第一液体压入第一注入管道101和第三注入管道103中。
参考图6,在一个例子中,通过混合阀402进行液体混合后,通过出液管道输入混合液体,具体地,出液管道分别连接出水槽401、混合槽100和预混合槽403。其中,在混合阀402向混合槽100输送混合液体时,会首先将混合液体输送到出水槽401中,待混合液体中第一液体的浓度或第二液体的浓度稳定后,才将混合液体输送的混合槽100中。混合槽100中为第一液体的浓度或第二液体的浓度稳定的混合液体,直接应用于半导体工艺制程中。预混合槽403相当于混合槽100的扩容容器,在混合阀402向混合槽100中输送混合液体时,同时向预混合槽403中输出混合液体,预混合槽403中的混合液体会回流到混合槽100中。
需要说明的是,在其他实施例中,第三注入管道可以作为第一注入管道的一个分支管道,第四注入管道可以作为第二注入管道的一个分支。第一注入管道可以通过清洗管道与第二注入管道和第二注入管道相连通,用于从一个注入管道中注入清洗液以清洗整个供液系统。
相对于相关技术而言,第一注入管道向混合槽内注入第一液体,第二注入管道向混合槽内注入第二液体,第一液体与第二液体在混合槽中进行混合得到混合溶液,通过参数获取模块获取混合溶液中第一液体的浓度并与预设第一液体浓度进行比较,根据比较结果,通过补充管道补充第一液体或第二液体,即对混合槽中的混合液体中第一液体的浓度进行微调,从而使得混合形成的混合液体的浓度具有较高的稳定性。
值得一提的是,本实施例中所涉及到的各单元均为逻辑单元,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施例中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施例中不存在其它的单元。
本申请另一实施例涉及一种供液系统,本实施例与上述实施例大致相同,不同的是本实施例中以参数获取模块为流量计为例进行说明,与上述实施例相同的部分,在本实施例中不再赘述,下面结合附图对本实施例的供液系统进行具体说明。
参考图7,供液系统还包括第一流量计151、第二流量计152、第三流量计153和第四流量计154。其中,第一流量计151设置在第一注入管道101上,用于获取第一注入管道101向混合槽100注入第一液体的第三流量;第二流量计152设置在第二注入管道102上,用于获取第二注入管道102向混合槽100注入第二液体的第四流量。
此时参数获取模块110还包括参数计算单元(未图示),基于第三流量和第四流量,计算混合液体中第一液体的浓度或第二液体的浓度。在一个实施例 中,可以通过流量计统计预设时间内第一注入管道101和第二注入管道102向混合槽100中注入第一液体和第二液体的总量,然后计算出混合槽100中混合液体中的第一液体的浓度。其中,预设时间可以为30秒、25秒、20秒、15秒、10秒或5秒。
处理模块111,基于获取的第一液体浓度以及预设第一液体浓度,控制补充管道向混合槽100中注入具有第一流量的第一液体,或向混合槽100中注入具有第二流量的第二液体,以使混合液体中的第一液体的浓度接近于预设第一液体浓度。具体的,补充管道包括第三注入管道103和第四注入管道104,因此可以控制第三注入管道103向混合槽100中注入具有第一流量的第一液体,或,控制第四注入管道104向混合槽100中注入具有第二流量的第二液体。在一个例子中,以使混合液体中的第一液体的浓度达到预设第一液体浓度的值的±5%以内;例如±4%以内、±3%以内、±2%以内或±1%以内,进一步可以为±0.5%以内。
或,处理模块111,基于获取的第二液体浓度以及预设第二液体浓度,控制补充管道向混合槽100中注入第一液体,或向混合槽100中注入第二液体,以使混合液体中的第二液体的浓度接近于预设第二液体浓度。具体的,可以控制第三注入管道103向混合槽100中注入第一液体,或,控制第四注入管道104向混合槽100中注入第二液体。在一个例子中,以使混合液体中的第二液体的浓度达到预设第二液体浓度的值的±5%以内;例如±4%以内、±3%以内、±2%以内或±1%以内,进一步可以为±0.5%以内。
此时通过第三流量计153和第四流量计154可以实时观察到微补的第一液体或第二液体的流量。其中,第三流量计153设置在第三注入管道103上, 用于获取第三注入管道103向混合槽100注入第一液体的流量;第四流量计154设置在第四注入管道104上,用于获取第四注入管道104向混合槽100注入第二液体的流量。
由于上述实施例与本实施例相互对应,因此本实施例可与上述实施例互相配合实施。上述实施例中提到的相关技术细节在本实施例中依然有效,在上述实施例中所能达到的技术效果在本实施例中也同样可以实现,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在上述实施例中。
本申请再一实施例涉及一种供液系统,本实施例与上述实施例大致相同,不同的是本实施例中以参数获取模块为浓度计为例进行说明,与上述实施例相同的部分,在本实施例中不再赘述,下面结合附图对本实施例的供液系统进行具体说明。
参考图8,供液系统还包括第一浓度计161,设置在混合槽100中,用于获取混合液体中第一液体的浓度或混合液体中第二液体的浓度。
直接通过浓度计获取混合槽100中混合溶液的浓度,避免了数据的运算,且浓度数值的获取更加快捷、方便。同时,第二种浓度计的设置方法相比第一种浓度计的设置方法而言,第一液体和第二液体的混合时间较长,混合较充分,所获取的数据更加准确。
由于上述实施例与本实施例相互对应,因此本实施例可与上述实施例互相配合实施。上述实施例中提到的相关技术细节在本实施例中依然有效,在上述实施例中所能达到的技术效果在本实施例中也同样可以实现,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在上述实施 例中。
本申请又一实施例涉及一种供液系统,本实施例与上述实施例大致相同,不同的是本实施例获取的混合溶液的成分大于两种,与上述实施例相同的部分,在本实施例中不再赘述,下面结合附图对本实施例的供液系统进行具体说明。
参考图9,供液系统还包括第五注入管道105和第六注入管道106,类似于上述实施例,第五注入管道105上还包括第五开关阀门145和第五限流阀门125;第六注入管道上还包括第六开关阀门146和第六限流阀门126。
第五注入管道105用于向混合槽100种注入第三液体,以形成混合液体。
参数获取模块(未图示),还用于获取混合液体中第三液体的浓度。
处理模块(未图示)还用于,基于获取的第三液体的浓度以及预设第三液体浓度,控制第六注入管道126向混合槽100种注入具有第五流量的第三液体,以时混合液体中的第三液体的浓度接近于预设的第三液体浓度。
在一个例子中,以使混合液体中的第三液体的浓度达到预设第三液体浓度的值的±5%以内;例如±4%以内、±3%以内、±2%以内或±1%以内,进一步可以为±0.5%以内。
本领域技术人员理解,在通过第五注入管道105和第六注入管道106实现三种成分的液体混合,同时保证混合液体中三种成分各自浓度的稳定性。同样可以应用到四种成分、五种成分,甚至更多种成分的液体混合。同时保证混合液体中多种成分各自浓度的稳定性,
相对于相关技术而言,第一注入管道向混合槽内注入第一液体,第二注入管道向混合槽内注入第二液体,第一液体与第二液体在混合槽中进行混合得到混合溶液,通过参数获取模块获取混合溶液中第一液体的浓度并与预设第一 液体浓度进行比较,根据比较结果,通过第三注入管道补充第一液体,或通过第四注入管道补充第二液体,即对混合槽中的混合液体中第一液体的浓度进行实时微调,从而使得混合形成的混合液体的浓度具有较高的稳定性。
由于上述实施例与本实施例相互对应,因此本实施例可与上述实施例互相配合实施。上述实施例中提到的相关技术细节在本实施例中依然有效,在上述实施例中所能达到的技术效果在本实施例中也同样可以实现,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在上述实施例中。
本申请第五实施例涉及一种供液方法。下面对本实施例提供的供液方法进行详细说明,与上述实施例相同或相应的部分,以下将不做详细赘述。
供液方法,包括:获取混合液体中第一液体的浓度和预设第一液体浓度;基于获取的第一液体的浓度以及预设第一液体浓度,控制补充管道向混合槽中注入具有第一流量的第一液体或第二液体,以使混合液体中的第一液体的浓度接近于预设第一液体浓度。
在本实施例中,补充管道可以包括第三注入管道和第四注入管道,第三注入管道用于向混合槽100中补充第一液体,第四注入管道用于向混合槽中微补第二液体。在其它实施例中,补充管道也可以设置为一个注入管道或更多个注入管道。另外,补充管道设置为一个注入管道时,在切换补充管道中的第一液体为第二液体时(或切换补充管道中的第二液体为第一液体时),先采用清洗液对补充管道进行清洗,防止补充管道中残留的液体造成浓度的差异。
在一个例子中,以使混合液体中的第一液体的浓度达到预设第一液体浓度的值的±5%以内;例如±4%以内、±3%以内、±2%以内或±1%以内,进 一步可以为±0.5%以内。
具体地,基于获取的第一液体的浓度以及预设第一液体浓度,控制第三注入管道向混合槽中注入具有第一流量的第一液体,或,控制第四注入管道向混合槽中注入具有第二流量的第二液体,包括:若混合液体中第一液体浓度大于预设第一液体浓度,控制第四注入管道向混合槽中注入第二液体;若混合液体中第一液体浓度小于预设第一液体浓度,控制第三注入管道向混合槽中注入第一液体。
或者,获取混合液体中第二液体的浓度和预设第二液体浓度;基于获取的第二液体的浓度以及预设第二液体浓度,控制第三注入管道向混合槽中注入的第一液体,或,控制第四注入管道向混合槽中注入第二液体,以使混合液体中的第二液体的浓度接近于预设第二液体浓度。
在一个例子中,以使混合液体中的第二液体的浓度达到预设第二液体浓度的值的±5%以内;例如±4%以内、±3%以内、±2%以内或±1%以内,进一步可以为±0.5%以内。
具体地,基于获取的第二液体的浓度以及预设第二液体浓度,控制第三注入管道向混合槽中注入第一液体,或,控制第四注入管道向混合槽中注入第二液体,包括:若混合液体中第二液体浓度大于预设第二液体浓度,控制第三注入管道向混合槽中注入第二液体;若混合液体中第二液体浓度小于预设第二液体浓度,控制第四注入管道向混合槽中注入第一液体。
需要说明的是,在本实施例中,第一液体为去离子水(DIW),第二液体为氢氟酸(49%HF),混合槽100中形成的混合溶液为稀释的氢氟酸(DHF)。在其他实施例中,第一液体和第二液体可以是任何液体,即混合槽中的混合溶 液为任意第一液体与第二液体构成的混合溶液。
以形成1:100的DHF为例(HF:DIW=1:100的稀释氢氟酸),若第一注入管道101向混合槽100中注入DIW的流量为20.25L/min,第二注入管道102向混合槽100中注入HF的流量为176.5ml/min,经过计算可以得出,此时混合槽100中的混合溶液的第二液体浓度为5500ppm,以5500ppm浓度作为预设第二液体浓度,若实时计算获取的混合槽100中混合溶液的第二液体浓度发生变化,则控制第三注入管道103向混合槽100中注入DIW,或控制第四注入管道104向混合槽100中注入HF。
例如,若实时计算获取的浓度为5470ppm(浓度向下波动30ppm),此时控制第四注入管道104以6ml/min的速度向混合槽100中注入HF,根据工程算法计算得知补充1mlHF,大约刻蚀混合溶液的浓度上升15ppm,此时第四注入管道104需要注入HF约20s。若实时计算获取的浓度为5530ppm(浓度向上波动30ppm),此时控制第三注入管道103以0.5L/min的速度向混合槽100中注入DIW,根据工程算法计算得知补充0.22LDIW大约可使混合溶液的浓度回落30ppm,此时第三注入管道103需要注入DIW约26.4s。
需要说明的是,上述具体数据为对本实施例的补充注入的原理进行具体数量的举例说明,便于本领域技术人员理解本方案,并不构成对本实施例的限定。
与相关技术相比,根据比较结果,通过第三注入管道补充第一液体,或通过第四注入管道补充第二液体,即对混合槽中的混合液体中第一液体的浓度进行微调,从而使得混合形成的混合液体的浓度具有较高的稳定性。
上面各种步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或 者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其流程的核心设计都在该专利的保护范围内。
由于上述实施例与本实施例相互对应,因此本实施例可与上述实施例互相配合实施。上述实施例中提到的相关技术细节在本实施例中依然有效,在上述实施例中所能达到的技术效果在本实施例中也同样可以实现,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在上述实施例中。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。
Claims (14)
- 一种供液系统,其特征在于,包括:混合槽,所述混合槽至少连接第一注入管道、第二注入管道和补充管道;所述第一注入管道以及所述第二注入管道分别用于向所述混合槽中注入第一液体和第二液体,以形成混合液体;参数获取模块,用于获取所述混合液体中所述第一液体的浓度;处理模块,基于获取的所述第一液体的浓度以及预设第一液体浓度,控制所述补充管道向所述混合槽中注入具有第一流量的第一液体,或,向所述混合槽中注入具有第二流量的第二液体,以使所述混合液体中的所述第一液体的浓度接近于所述预设第一液体浓度。
- 根据权利要求1所述的供液系统,其特征在于,所述补充管道包括第三注入管道和第四注入管道;其中,所述控制所述补充管道向所述混合槽中注入具有第一流量的第一液体,或,向所述混合槽中注入具有第二流量的第二液体,包括:控制所述第三注入管道向所述混合槽中注入具有第一流量的第一液体,或,控制所述第四注入管道向所述混合槽中注入具有第二流量的第二液体。
- 根据权利要求1所述的供液系统,其特征在于,所述参数获取模块至少包括流量计和浓度计的其中一种。
- 根据权利要求3所述的供液系统,其特征在于,所述流量计包括:第一流量计,所述第一流量计设置在所述第一注入管道上,用于获取所述第一注入管道向所述混合槽注入所述第一液体的第三流量;第二流量计,所述第二流量计设置在所述第二注入管道上,用于获取所述第二注入管道向所述混合槽注入所述第二液体的第四流量;所述参数获取模块还包括:参数计算单元,基于所述第三流量和所述第四流量,计算所述混合液体中所述第一液体的浓度或所述混合液体中所述第二液体的浓度。
- 根据权利要求3所述的供液系统,其特征在于,所述浓度计设置在所述混合槽中,用于获取所述混合液体中所述第一液体的浓度或所述混合液体中所述第二液体的浓度。
- 根据权利要求2所述的供液系统,其特征在于,包括:第一限流阀门,安装在所述第三注入管道上,用于调节允许通过的所述第一液体的流量;第二限流阀门,安装在所述第四注入管道上,用于调节允许通过的所述第二液体的流量;第三限流阀门,安装在所述第一注入管道上,用于调节允许通过的所述第一液体的流量;第四限流阀门,安装在所述第二注入管道上,用于调节允许通过的所述第二液体的流量。
- 根据权利要求6所述的供液系统,其特征在于,所述第一限流阀门允许通过的流量范围为0.1L/min~0.4L/min;所述第二限流阀门允许通过的流量范围为0~15ml/min。
- 根据权利要求6所述的供液系统,其特征在于,所述第三限流阀门允许通过的流量范围为15L/min~25L/min;所述第四限流阀门允许通过的流量范围为20ml/min~250ml/min。
- 根据权利要求6所述的供液系统,其特征在于,所述第一限流阀门、所述第二限流阀门、所述第三限流阀门和所述第四限流阀门包括针阀。
- 根据权利要求6所述的供液系统,其特征在于,所述第一限流阀门、所述第二限流阀门、所述第三限流阀门和所述第四限流阀门包括电机针反馈阀。
- 根据权利要求1所述的供液系统,其特征在于,还包括:与所述混合槽连接的第五注入管道和第六注入管道;所述第五注入管道用于向所述混合槽中注入第三液体,以形成所述混合液体;所述参数获取模块,还用于获取所述混合液体中所述第三液体的浓度;所述处理模块,还基于获取的所述第三液体的浓度以及预设第三液体浓度,控制所述第六注入管道向所述混合槽中注入具有第五流量的第三液体,以使所述混合液体中的所述第三液体的浓度接近于所述预设第三液体浓度。
- 根据权利要求2所述的供液系统,其特征在于,所述第三注入管道的管径小于所述第一注入管道的管径,所述第四注入管道的管径小于所述第二注入管道的管径。
- 根据权利要求1所述的供液系统,其特征在于,还包括:混合阀,一端连接所述混合槽,一端连接所述第一注入管道、所述第二注入管道和所述补充管道,用于将所述第一注入管道、所述第二注入管道和所述补充管道注入的液体混合均匀后注入所述混合槽中。
- 一种供液方法,根据权利要求1~13中任一项所述的供液系统,其特征在于,包括:获取混合液体中第一液体的浓度和预设第一液体浓度;基于获取的所述第一液体的浓度以及所述预设第一液体浓度,控制所述补充管道向所述混合槽中注入具有第一流量的第一液体或第二液体,以使所述混合液体中的所述第一液体的浓度接近于所述预设第一液体浓度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/595,528 US20220395792A1 (en) | 2020-07-10 | 2021-05-24 | Liquid supply system and liquid supply method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010663276.3 | 2020-07-10 | ||
CN202010663276.3A CN113921418A (zh) | 2020-07-10 | 2020-07-10 | 供液系统及供液方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022007522A1 true WO2022007522A1 (zh) | 2022-01-13 |
Family
ID=79232329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/095611 WO2022007522A1 (zh) | 2020-07-10 | 2021-05-24 | 供液系统及供液方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220395792A1 (zh) |
CN (1) | CN113921418A (zh) |
WO (1) | WO2022007522A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1713359A (zh) * | 2004-06-22 | 2005-12-28 | 茂德科技股份有限公司 | 蚀刻系统及其蚀刻液处理方法 |
CN106024615A (zh) * | 2015-03-26 | 2016-10-12 | 东京毅力科创株式会社 | 基板液体处理装置和基板液体处理方法 |
US20170062242A1 (en) * | 2015-09-01 | 2017-03-02 | Samsung Electronics Co., Ltd. | Chemical liquid supply apparatus and semiconductor processing apparatus having the same |
CN109621831A (zh) * | 2018-12-29 | 2019-04-16 | 安徽金大仪器有限公司 | 一种多液体自动配比的流量控制系统 |
CN209029336U (zh) * | 2018-11-15 | 2019-06-25 | 长江存储科技有限责任公司 | 晶圆清洗装置 |
CN110112085A (zh) * | 2019-05-23 | 2019-08-09 | 德淮半导体有限公司 | 一种液体浓度控制装置 |
-
2020
- 2020-07-10 CN CN202010663276.3A patent/CN113921418A/zh active Pending
-
2021
- 2021-05-24 US US17/595,528 patent/US20220395792A1/en active Pending
- 2021-05-24 WO PCT/CN2021/095611 patent/WO2022007522A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1713359A (zh) * | 2004-06-22 | 2005-12-28 | 茂德科技股份有限公司 | 蚀刻系统及其蚀刻液处理方法 |
CN106024615A (zh) * | 2015-03-26 | 2016-10-12 | 东京毅力科创株式会社 | 基板液体处理装置和基板液体处理方法 |
US20170062242A1 (en) * | 2015-09-01 | 2017-03-02 | Samsung Electronics Co., Ltd. | Chemical liquid supply apparatus and semiconductor processing apparatus having the same |
CN209029336U (zh) * | 2018-11-15 | 2019-06-25 | 长江存储科技有限责任公司 | 晶圆清洗装置 |
CN109621831A (zh) * | 2018-12-29 | 2019-04-16 | 安徽金大仪器有限公司 | 一种多液体自动配比的流量控制系统 |
CN110112085A (zh) * | 2019-05-23 | 2019-08-09 | 德淮半导体有限公司 | 一种液体浓度控制装置 |
Also Published As
Publication number | Publication date |
---|---|
US20220395792A1 (en) | 2022-12-15 |
CN113921418A (zh) | 2022-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6767877B2 (en) | Method and system for chemical injection in silicon wafer processing | |
US10276408B2 (en) | Flow-rate regulator device, diluted chemical-liquid supply device, liquid processing apparatus and its operating system | |
US11826713B2 (en) | Systems and methods for generating a conductive liquid comprising deionized water with ammonia gas dissolved therein | |
TWI525734B (zh) | And a raw material gas supply device for a semiconductor manufacturing apparatus | |
CN109220145A (zh) | 一种ec、ph可调的自适应管道流量的旁路式施肥机 | |
US8622073B2 (en) | Apparatus and method for controlling flow rate of liquid, and storage medium | |
TW202138128A (zh) | 隨選之化學品管道調和與供應 | |
WO2022007522A1 (zh) | 供液系统及供液方法 | |
JP2015046443A (ja) | 液処理装置、濃度補正方法及び記憶媒体 | |
CN209302567U (zh) | 改进的碱液调配控制装置 | |
JP7071414B2 (ja) | 化学液体希釈システムおよび方法 | |
CN111729524B (zh) | 化学液体稀释系统及方法 | |
CN109148338A (zh) | 一种提高腐蚀机混酸换液效率的方法及装置 | |
CN209643343U (zh) | 一种ec、ph可调的自适应管道流量的旁路式施肥机 | |
TWI759679B (zh) | 化學液體稀釋系統 | |
CN113144925A (zh) | 一种实时混气系统及其工作方法 | |
JP2003284936A (ja) | 混合装置 | |
JP2003154243A (ja) | 混合装置 | |
CN220823703U (zh) | 一种基于比例施肥器的双变频稳压施肥一体化首部 | |
JP2004230293A (ja) | 混合装置 | |
CN221665861U (zh) | 一种半导体加工设备及其匀分气装置 | |
JP2000124186A (ja) | 液体供給装置 | |
CN207401435U (zh) | 一种用于气相法白炭黑生产原料在线混合的装置 | |
JP2015105740A5 (zh) | ||
WO2019119594A1 (zh) | 显影设备及其显影液供应系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21837079 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21837079 Country of ref document: EP Kind code of ref document: A1 |