WO2022007450A1 - 一种水泥窑铊中毒scr脱硝催化剂的再生方法 - Google Patents

一种水泥窑铊中毒scr脱硝催化剂的再生方法 Download PDF

Info

Publication number
WO2022007450A1
WO2022007450A1 PCT/CN2021/085754 CN2021085754W WO2022007450A1 WO 2022007450 A1 WO2022007450 A1 WO 2022007450A1 CN 2021085754 W CN2021085754 W CN 2021085754W WO 2022007450 A1 WO2022007450 A1 WO 2022007450A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
titanium
tungsten
vanadium
concentration
Prior art date
Application number
PCT/CN2021/085754
Other languages
English (en)
French (fr)
Inventor
张涛
刘安阳
邓立锋
罗春云
任英杰
Original Assignee
江苏龙净科杰环保技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏龙净科杰环保技术有限公司 filed Critical 江苏龙净科杰环保技术有限公司
Publication of WO2022007450A1 publication Critical patent/WO2022007450A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment

Definitions

  • Nitrogen oxides are an important pollutant of air pollution, and the treatment of nitrogen oxides in coal power plants has matured to meet the requirements of ultra-low emissions. Cement kiln flue gas nitrogen oxides are the third largest source of pollution after thermal power and automobile exhaust.
  • SCR denitration technology is one of the most widely used and most mature and effective flue gas denitration technologies.
  • the SCR denitration device in coal-fired power plants is mainly installed between the economizer and the air preheater, and contains a large amount of fly ash and high concentration of SO 2 gas. After 24,000 hours of operation, problems such as poisoning, ash blockage, and wear will occur. The SCR catalyst is deactivated and replaced to waste.
  • the problem of catalyst poisoning is relatively common, and the main substances causing poisoning are alkali metals, heavy metals, H 2 O and SO 2 and so on.
  • Most of the coal types in my country contain thallium element, and the thallium in the flue gas is deposited on the surface of the catalyst during denitration of the flue gas, which causes the catalyst to be poisoned and the activity decreases.
  • the deactivation mechanism and regeneration methods of thallium poisoned denitration catalysts are rarely studied at present.
  • Zhou Yanling et al. studied the effect of thallium contained in cement dust on the performance of denitration catalysts, especially when the dust is medium and low (Cement, 2015).
  • the research on the regeneration method of thallium poisoning catalyst can prolong the service life of the catalyst and recycle the deactivated catalyst after regeneration.
  • the invention aims at the SCR denitration catalyst which is poisoned and deactivated by heavy metal thallium in the flue gas of the cement kiln. According to the chemical properties and characteristics of thallium, an effective thallium poisoning catalyst regeneration technical scheme is obtained.
  • the invention provides a regeneration method of a thallium poisoning SCR denitration catalyst in a cement kiln, comprising the following steps:
  • the cleaning solution in the step (2) includes EDTA, dilute sulfuric acid and water.
  • the dust on the surface is removed by vacuuming with negative pressure, which facilitates the overall contact between the cleaning liquid and the thallium in the subsequent steps.
  • the weak acid cleaning solution of EDTA and dilute sulfuric acid can effectively remove the thallium metal adhering to the catalyst surface and pores, remove the substances that block the internal and external pores and occupy the active sites of the catalyst, increase the specific surface area of the catalyst, and restore the active sites of the catalyst without reducing the The original active component of the catalyst.
  • the implantation of the vanadium-tungsten active component and the subsequent calcination step can effectively restore the catalyst activity and low SO 2 conversion rate.
  • the negative pressure is -0.098 to -0.090 MPa.
  • the concentration of EDTA in the cleaning solution is 0.1-0.4 mol/l, and the concentration of dilute sulfuric acid is 0.05-0.2 mol/l.
  • step (2) soak with cleaning solution for 20min-40min.
  • step (3) in the solution 2, in step (3), rinse with deionized water for 5min-10min.
  • drying is performed in a ventilated environment with a temperature of 80°C-140°C for 3-5 hours.
  • the titanium in the titanium vanadium tungsten solution comes from one or more of titanium dioxide sol, titanium sulfate, and metatitanic acid
  • the vanadium comes from vanadyl oxalate, vanadyl acetylacetonate, and vanadyl sulfate.
  • one or more of ammonium metavanadate, and tungsten comes from one or more of ammonium paratungstate and ammonium metatungstate.
  • the concentration of titanium in the titanium vanadium tungsten solution is 100-200 g/l, the concentration of vanadium is 0.05-0.3 g/l, and the concentration of tungsten is 55-85 g/l.
  • step (5) soaking in a solution containing titanium vanadium tungsten for 10-30 min.
  • step (6) the treatment is performed in a ventilated environment with a temperature of 380° C.-450° C. for 2-4 hours.
  • Drying and calcination are carried out together during the treatment under the above-mentioned temperature and ventilation environment.
  • the cleaning liquid is weakly acidic, which can effectively remove the thallium metal adhering to the catalyst surface and pores, increase the specific surface area of the catalyst, restore the active site of the catalyst, and will not reduce the catalyst.
  • the original active component, ETDA in the cleaning solution has high removal efficiency for thallium metal.
  • the titanium vanadium tungsten soluble active material is implanted on the catalyst to effectively replenish the lost vanadium and tungsten active components, and effectively restore the catalyst activity and low SO 2 conversion rate. After regeneration, the activity of the catalyst recovers more than 99.5%, prolongs the service life of the catalyst after regeneration, and has a good promotion prospect.
  • Fig. 1 is the detection result of catalyst denitration efficiency before and after regeneration of the present invention
  • Fig. 2 is the detection result of SO 2 conversion rate of the catalyst before and after regeneration of the present invention.
  • the cement kiln deactivated SCR denitration catalyst is the same batch of catalyst from a cement plant.
  • a method for regenerating a thallium poisoned SCR denitration catalyst in a cement kiln which specifically comprises the following steps:
  • Negative pressure vacuuming use a negative pressure vacuum cleaner -0.090MPa to absorb the deactivated denitration catalyst until the surface ash is removed;
  • step (2) cleaning: under the bubbling auxiliary condition, soak the catalyst in step (1) with cleaning solution for 40min to clean the poisoned thallium metal of the catalyst; the concentration of EDTA is 0.4mol/l, and the concentration of dilute sulfuric acid is 0.05mol/l;
  • step (4) Active implantation: under the condition of bubbling assistance, the catalyst of step (4) is placed in a titanium-vanadium-tungsten solution for 10 minutes to supplement active components; wherein titanium is titanium dioxide sol, the concentration is 200g/l, and vanadium is oxalic acid Vanadyl with a concentration of 0.05g/l and tungsten as ammonium paratungstate with a concentration of 55g/l;
  • step (5) Calcination: the catalyst treated in step (5) was dried in a ventilated environment with a temperature of 380° C. for 4 hours; the regeneration was completed.
  • a method for regenerating a thallium poisoned SCR denitration catalyst in a cement kiln which specifically comprises the following steps:
  • Negative pressure vacuuming use a negative pressure vacuum cleaner -0.098MPa to absorb the deactivated denitration catalyst until the surface ash is removed;
  • step (2) cleaning: under the bubbling auxiliary condition, soak the catalyst in step (1) with cleaning solution for 40min to clean the poisoned thallium metal of the catalyst; the concentration of EDTA is 0.1mol/l, and the concentration of dilute sulfuric acid is 0.2mol/l;
  • step (4) Active implantation: under the condition of bubbling assistance, the catalyst of step (4) is placed in a titanium-vanadium-tungsten solution for 30 minutes to supplement active components; wherein titanium is titanium sulfate, the concentration is 100g/l, and vanadium is acetyl Vanadyl acetonate, the concentration is 0.3g/l, tungsten is ammonium metatungstate, the concentration is 85g/l;
  • step (5) Calcination: the catalyst treated in step (5) was dried in a ventilated environment with a temperature of 400° C. for 2 hours; the regeneration was completed.
  • a method for regenerating a thallium poisoned SCR denitration catalyst in a cement kiln which specifically comprises the following steps:
  • Negative pressure vacuuming use a negative pressure vacuum cleaner -0.095MPa to absorb the deactivated denitration catalyst until the surface ash is removed;
  • step (2) cleaning: under the bubbling auxiliary condition, soak the catalyst in step (1) with cleaning solution for 30min to clean the poisoned thallium metal of the catalyst; the concentration of EDTA is 0.2mol/l, and the concentration of dilute sulfuric acid is 0.1mol/l;
  • step (4) Active implantation: under the condition of bubbling assistance, the catalyst of step (4) is placed in a titanium-vanadium-tungsten solution for 20 minutes to supplement active components; wherein titanium is metatitanic acid with a concentration of 150 g/l, and vanadium is Vanadyl sulfate, the concentration is 0.2g/l, tungsten is ammonium metatungstate, the concentration is 75g/l;
  • step (5) Calcination: the catalyst treated in step (5) was dried in a ventilated environment with a temperature of 400° C. for 4 hours; the regeneration was completed.
  • a method for regenerating a thallium poisoned SCR denitration catalyst in a cement kiln which specifically comprises the following steps:
  • Negative pressure vacuuming use a negative pressure vacuum cleaner -0.098MPa to absorb the deactivated denitration catalyst until the surface ash is removed;
  • step (2) cleaning: under the bubbling auxiliary condition, soak the catalyst in step (1) with cleaning solution for 40min to clean the poisoned thallium metal of the catalyst; the concentration of EDTA is 0.3mol/l, and the concentration of dilute sulfuric acid is 0.15mol/l;
  • step (4) Active implantation: under the condition of bubbling assistance, the catalyst of step (4) is placed in a titanium-vanadium-tungsten solution for 8 minutes to supplement active components; wherein titanium is a titanium dioxide sol with a concentration of 100 g/l, and vanadium is a partial Ammonium vanadate with a concentration of 0.1g/l and tungsten as ammonium metatungstate with a concentration of 65g/l;
  • step (5) Calcination: the catalyst treated in step (5) was dried in a ventilated environment with a temperature of 400° C. for 5 hours; the regeneration was completed.
  • a method for regenerating a thallium poisoned SCR denitration catalyst in a cement kiln which specifically comprises the following steps:
  • Negative pressure vacuuming use a negative pressure vacuum cleaner -0.090MPa to absorb the deactivated denitration catalyst until the surface ash is removed;
  • step (4) Active implantation: under the condition of bubbling assistance, the catalyst of step (4) is placed in a titanium-vanadium-tungsten solution for 10 minutes to supplement active components; wherein titanium is titanium dioxide sol, the concentration is 200g/l, and vanadium is oxalic acid Vanadyl with a concentration of 0.05g/l and tungsten as ammonium paratungstate with a concentration of 55g/l;
  • step (5) Calcination: the catalyst treated in step (5) was dried in a ventilated environment with a temperature of 380° C. for 4 hours; the regeneration was completed.
  • a method for regenerating a thallium poisoned SCR denitration catalyst in a cement kiln which specifically comprises the following steps:
  • Negative pressure vacuuming use a negative pressure vacuum cleaner -0.090MPa to absorb the deactivated denitration catalyst until the surface ash is removed;
  • step (2) cleaning: under the auxiliary condition of bubbling, soak the catalyst in step (1) with cleaning solution for 40min to clean the poisoned thallium metal of the catalyst; the concentration of dilute sulfuric acid is 0.05mol/l;
  • step (4) Active implantation: under the condition of bubbling assistance, the catalyst of step (4) is placed in a titanium-vanadium-tungsten solution for 10 minutes to supplement active components; wherein titanium is titanium dioxide sol, the concentration is 200g/l, and vanadium is oxalic acid Vanadyl with a concentration of 0.05g/l and tungsten as ammonium paratungstate with a concentration of 55g/l;
  • step (5) Calcination: the catalyst treated in step (5) was dried in a ventilated environment with a temperature of 380° C. for 4 hours; the regeneration was completed.
  • Test conditions are: NO 400mg/Nm 3 , NH 3 400Nm 3 , O 2 2.6%, SO 2 1000mg/Nm 3 , 5% H 2 O, N 2 as equilibrium gas, AV 8.04m/h, catalyst 13 ⁇ 13 holes , the length is 810mm, the temperature is 290°C, and the MRU flue gas analyzer is used for detection (the denitration efficiency is required to be 87.5%).
  • Example 1 1.34 4.06 0.0023 58.4
  • Example 2 1.36 4.09 0.0019 59.3
  • Example 3 1.38 4.07 0.0021 57.9
  • Example 4 1.37 4.08 0.0027 58.7
  • the regeneration method of the present invention can effectively remove the poisoned thallium element of the deactivated catalyst, and the original active components V 2 O 5 and WO 3 are not lost, restoring the specific surface area of the catalyst, denitration activity and low conversion rate of 2 SO, the activity of the regenerated catalyst can be recovered to 99.5% of the fresh catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种水泥窑铊中毒SCR脱硝催化剂的再生方法,包括如下步骤:(1)除尘;(2)用清洗液进行浸泡;(3)漂洗;(4)烘干;(5)钛钒钨可溶性活性物质植入;(6)煅烧;所述步骤(2)中的清洗液包括EDTA、稀硫酸和水。本发明的水泥窑铊中毒SCR脱硝催化剂的再生方法中,清洗液为弱酸性,可以有效去除粘附在催化剂表面及孔道的铊金属,恢复催化剂活性位,且不会降低催化剂原有活性组分,清洗液中的ETDA对铊金属的去除效率高。钛钒钨可溶性活性物质植入到催化剂上,有效补充流失的钒钨活性组份,有效恢复催化剂活性和低的SO 2转化率。

Description

一种水泥窑铊中毒SCR脱硝催化剂的再生方法 技术领域
本发明属于脱硝催化剂技术领域,涉及一种水泥窑铊中毒SCR脱硝催化剂的再生方法。
背景技术
氮氧化物是大气污染的重要污染物,煤电厂氮氧化物治理已成熟,达到超低排放的要求。水泥窑烟气氮氧化物是继火电、汽车尾气之后的第三大污染源。目前,SCR脱硝技术作为应用最广且最成熟有效的烟气脱硝技术之一。燃煤电厂SCR脱硝装置主要安装在省煤器和空气预热器之间,并含有大量的飞灰和高浓度的SO 2气体,运行24000h后,会出现因中毒、灰分堵塞、磨损等问题造成SCR催化剂失活更换至废弃。其中催化剂中毒问题比较常见,造成中毒的主要物质:碱金属、重金属、H 2O和SO 2等。我国多数煤种中含有铊元素,烟气脱硝时烟气中的铊沉积在催化剂的表面,致使催化剂中毒,造成活性下降。
铊中毒脱硝催化剂的失活机理和再生方法目前研究几乎没有。周延伶等研究了水泥粉尘中含有的铊对脱硝催化剂的性能的影响,特别是中低尘时对催化剂更为严重(水泥,2015)。铊中毒催化剂再生方法研究,能延长催化剂使用寿命,失活催化剂再生后物循环利用。本发明针对水泥窑烟气中的重金属铊中毒失活的SCR脱硝催化剂,根据铊的化学性质和特征,并得到了有效铊中毒催化剂再生技术方案。
发明内容
本发明的目的是提供一种水泥窑铊中毒SCR脱硝催化剂的再生方法,该再生方法操作简单,经济有效,能够简单高效的去除催化剂表面铊金属,恢复催化剂活性。
本发明在于提供了一种水泥窑铊中毒SCR脱硝催化剂的再生方法,包括如下步骤:
(1)除尘,优选为负压吸尘;
(2)用清洗液进行浸泡;
(3)漂洗;
(4)烘干;
(5)钛钒钨可溶性活性物质植入;
(6)煅烧;
所述步骤(2)中的清洗液包括EDTA、稀硫酸和水。
本发明的再生方法,通过负压吸尘除掉表面的粉尘,便于后续步骤的清洗液与铊的全面接触。EDTA与稀硫酸的弱酸性清洗液,可以有效去除粘附在催化剂表面及孔道的铊金属,清除堵塞内外孔道及占据催化剂活性位的物质,增加催化剂比表面积,恢复催化剂活性位,且不会降低催化剂原有活性组分。钒钨活性组份的植入配合后续的煅烧步骤,可以、有效恢复催化剂活性和低的SO 2转化率。
在本发明的一些实施方式中,步骤(1)中,所述负压为-0.098至-0.090MPa。
在本发明的一些实施方式中,步骤(2)中,所述清洗液中EDTA浓度为0.1-0.4mol/l,稀硫酸的浓度为0.05-0.2mol/l。
在本发明的一些实施方式中,步骤(2)中,用清洗液浸泡20min-40min。
在本发明的一些实施方式中,所述溶液2中,步骤(3)中,用去离子水冲洗5min-10min。
在本发明的一些实施方式中,在温度80℃-140℃的通风环境中干燥3~5h。
在本发明的一些实施方式中,所述钛钒钨溶液中的钛来自二氧化钛溶胶、硫酸钛、偏钛酸中的一种或多种,钒来自草酸氧钒,乙酰丙酮氧钒、硫酸氧钒、偏钒酸铵中的一种或多种,钨来自仲钨酸铵、偏钨酸铵中的一种或多种。
在本发明的一些实施方式中,所述钛钒钨溶液中的钛的浓度为100-200g/l,钒的浓度为0.05-0.3g/l,钨的浓度为55-85g/l。
在本发明的一些实施方式中,步骤(5)中,在含钛钒钨溶液中浸泡10-30min。
在本发明的一些实施方式中,步骤(6)中,在温度380℃-450℃的通风环境中处理2-4h。
在上述温度和通风环境下的处理过程中,干燥和煅烧一起进行。
本发明的有益技术效果是:
本发明的水泥窑铊中毒SCR脱硝催化剂的再生方法中,清洗液为弱酸性,可以有效去除粘附在催化剂表面及孔道的铊金属,增加催化剂比表面积,恢复催化剂活性位,且不会降低催化剂原有活性组分,清洗液中的ETDA对铊金属的去除效率高。钛钒钨可溶性活性物质植入到催化剂上,有效补充流失的钒钨活性组份,有效恢复催化剂活性和低的SO 2转化率。再生后催化剂活性恢复99.5%以上,延长了再生后催化剂使用寿命,具有良好的推广前景。
附图说明
图1为本发明的再生前后催化剂脱硝效率检测结果;
图2为本发明的再生前后催化剂SO 2转化率检测结果。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
水泥窑失活SCR脱硝催化剂为来自某水泥厂的同一批次催化剂。
实施例1
一种水泥窑铊中毒SCR脱硝催化剂的再生方法,其具体包括如下步骤:
(1)负压吸尘:利用负压吸尘器-0.090MPa吸取失活的脱硝催化剂,直至去除表面积灰;
(2)清洗:在鼓泡辅助条件下,将步骤(1)处理催化剂用清洗液浸泡40min,清洗催化剂中毒的铊金属;EDTA浓度为0.4mol/l,稀硫酸的浓度为0.05mol/l;
(3)漂洗:用去离子水冲洗经步骤(2)处理的催化剂10min;
(4)烘干:将步骤(3)处理的催化剂在温度80℃的通风环境中干燥5h;
(5)活性植入:在鼓泡辅助条件下,将步骤(4)的催化剂在含钛钒钨溶液中10min,补充活性组分;其中钛为二氧化钛溶胶,浓度为200g/l,钒为草酸氧钒,浓度为0.05g/l,钨为仲钨酸铵,浓度为55g/l;
(6)煅烧:将步骤(5)处理的催化剂在温度380℃的通风环境中干燥4h;再生结束。
实施例2
一种水泥窑铊中毒SCR脱硝催化剂的再生方法,其具体包括如下步骤:
(1)负压吸尘:利用负压吸尘器-0.098MPa吸取失活的脱硝催化剂,直至去除表面积灰;
(2)清洗:在鼓泡辅助条件下,将步骤(1)处理催化剂用清洗液浸泡40min,清洗催化剂中毒的铊金属;EDTA浓度为0.1mol/l,稀硫酸的浓度为0.2mol/l;
(3)漂洗:用去离子水冲洗经步骤(2)处理的催化剂5min;
(4)烘干:将步骤(3)处理的催化剂在温度140℃的通风环境中干燥h;
(5)活性植入:在鼓泡辅助条件下,将步骤(4)的催化剂在含钛钒钨溶液中30min,补充活性组分;其中钛为硫酸钛,浓度为100g/l,钒为乙酰丙酮氧钒,浓度为0.3g/l,钨为偏钨酸铵,浓度为85g/l;
(6)煅烧:将步骤(5)处理的催化剂在温度400℃的通风环境中干燥2h;再生结束。
实施例3
一种水泥窑铊中毒SCR脱硝催化剂的再生方法,其具体包括如下步骤:
(1)负压吸尘:利用负压吸尘器-0.095MPa吸取失活的脱硝催化剂,直至去除表面积灰;
(2)清洗:在鼓泡辅助条件下,将步骤(1)处理催化剂用清洗液浸泡30min,清洗催化剂中毒的铊金属;EDTA浓度为0.2mol/l,稀硫酸的浓度为0.1mol/l;
(3)漂洗:用去离子水冲洗经步骤(2)处理的催化剂30min;
(4)烘干:将步骤(3)处理的催化剂在温度120℃的通风环境中干燥5h;
(5)活性植入:在鼓泡辅助条件下,将步骤(4)的催化剂在含钛钒钨溶液中20min,补充活性组分;其中钛为偏钛酸,浓度为150g/l,钒为硫酸氧钒,浓度为0.2g/l,钨为偏钨酸铵,浓度为75g/l;
(6)煅烧:将步骤(5)处理的催化剂在温度400℃的通风环境中干燥4h;再生结束。
实施例4
一种水泥窑铊中毒SCR脱硝催化剂的再生方法,其具体包括如下步骤:
(1)负压吸尘:利用负压吸尘器-0.098MPa吸取失活的脱硝催化剂,直至去除表面积灰;
(2)清洗:在鼓泡辅助条件下,将步骤(1)处理催化剂用清洗液浸泡40min,清洗催化剂中毒的铊金属;EDTA浓度为0.3mol/l,稀硫酸的浓度为0.15mol/l;
(3)漂洗:用去离子水冲洗经步骤(2)处理的催化剂10min;
(4)烘干:将步骤(3)处理的催化剂在温度130℃℃的通风环境中干燥5h;
(5)活性植入:在鼓泡辅助条件下,将步骤(4)的催化剂在含钛钒钨溶液中8min,补充活性组分;其中钛为二氧化钛溶胶,浓度为100g/l,钒为偏钒酸铵,浓度为0.1g/l,钨为偏钨酸铵,浓度为65g/l;
(6)煅烧:将步骤(5)处理的催化剂在温度400℃的通风环境中干燥5h;再生结束。
对比例1
一种水泥窑铊中毒SCR脱硝催化剂的再生方法,其具体包括如下步骤:
(1)负压吸尘:利用负压吸尘器-0.090MPa吸取失活的脱硝催化剂,直至去除表面积灰;
(2)清洗:在鼓泡辅助条件下,将步骤(1)处理催化剂用清洗液浸泡40min,清洗催化剂中毒的铊金属;EDTA浓度为0.4mol/l;
(3)漂洗:用去离子水冲洗经步骤(2)处理的催化剂10min;
(4)烘干:将步骤(3)处理的催化剂在温度80℃的通风环境中干燥5h;
(5)活性植入:在鼓泡辅助条件下,将步骤(4)的催化剂在含钛钒钨溶液中10min,补充活性组分;其中钛为二氧化钛溶胶,浓度为200g/l,钒为草酸氧钒,浓度为0.05g/l,钨为仲钨酸铵,浓度为55g/l;
(6)煅烧:将步骤(5)处理的催化剂在温度380℃的通风环境中干燥4h;再生结束。
对比例2
一种水泥窑铊中毒SCR脱硝催化剂的再生方法,其具体包括如下步骤:
(1)负压吸尘:利用负压吸尘器-0.090MPa吸取失活的脱硝催化剂,直至去除表面积灰;
(2)清洗:在鼓泡辅助条件下,将步骤(1)处理催化剂用清洗液浸泡40min,清洗催化剂中毒的铊金属;稀硫酸的浓度为0.05mol/l;
(3)漂洗:用去离子水冲洗经步骤(2)处理的催化剂10min;
(4)烘干:将步骤(3)处理的催化剂在温度80℃的通风环境中干燥5h;
(5)活性植入:在鼓泡辅助条件下,将步骤(4)的催化剂在含钛钒钨溶液中10min,补充活性组分;其中钛为二氧化钛溶胶,浓度为200g/l,钒为草酸氧钒,浓度为0.05g/l,钨为仲钨酸铵,浓度为55g/l;
(6)煅烧:将步骤(5)处理的催化剂在温度380℃的通风环境中干燥4h;再生结束。
实验例
取实施例1-4和对比例1、2及铊中毒失活SCR脱硝催化剂(再生前的催化剂)在日本理学ZSXII荧光分析仪上进行化学成分检测、美国贝克曼比表面积分析检测催化剂比表面积(BET),在固定床反应器中检测脱硝性能测试,
测试条件为:NO 400mg/Nm 3,NH 3 400Nm 3,O 2 2.6%,SO 2 1000mg/Nm 3,5%H 2O,N 2为平衡气,AV 8.04m/h,催化剂13×13孔,长度810mm,温度290℃,采用MRU烟气分析仪进行检测(脱硝效率要求87.5%)。
表1不同催化剂的化学成分和BET检测结果
名称 V 2O 5/% WO 3/% Tl 2O 3/% BET/m 2/g
失活催化剂 1.35 4.08 0.1261 49.3
实施例1 1.34 4.06 0.0023 58.4
实施例2 1.36 4.09 0.0019 59.3
实施例3 1.38 4.07 0.0021 57.9
实施例4 1.37 4.08 0.0027 58.7
对比例1 1.38 4.08 0.085 52.3
对比例2 1.36 4.07 0.054 55.6
从表1和图1、2可以看出:本发明再生方法可以有效去除失活催化剂中毒的铊元素,并且原有活性组分V 2O 5和WO 3不流失,恢复催化剂的比表面积、脱硝活性和低的SO 2转化率,再生催化剂后的活性可以恢复至新鲜催化剂的99.5%以上。
研究发现,EDTA和稀硫酸组合的清洗液,能够有效的清除失活催化剂中的铊,而且EDTA和稀硫酸对于铊的清洗具有协同作用。在表2中,实施例1-4中的铊含量远远小于再生前的失活催化剂。而且,对比例1、2的铊含量远远高于实施例1-4。
以上对本发明优选的具体实施方式和实施例作了详细说明,但是本发明并不限于上述实施方式和实施例,在本领域技术人员所具备的知识范围内,还可以在不脱离本发明构思的前提下作出各种变化。

Claims (10)

  1. 一种水泥窑铊中毒SCR脱硝催化剂的再生方法,包括如下步骤:
    (1)除尘,优选为负压吸尘;
    (2)用清洗液进行浸泡;
    (3)漂洗;
    (4)烘干;
    (5)钛钒钨可溶性活性物质植入;
    (6)煅烧;
    所述步骤(2)中的清洗液包括EDTA、稀硫酸和水。
  2. 根据权利要求1所述的方法,其特征在于,步骤(1)中,所述负压为-0.098至-0.090MPa。
  3. 根据权利要求1或2所述的方法,其特征在于,步骤(2)中,所述清洗液中EDTA浓度为0.1-0.4mol/l,稀硫酸的浓度为0.05-0.2mol/l。
  4. 根据权利要求1-3任一所述的方法,其特征在于,步骤(2)中,用清洗液浸泡20min-40min。
  5. 根据权利要求1-4任一所述的方法,其特征在于,步骤(3)中,用去离子水冲洗5min-10min。
  6. 根据权利要求1-5任一所述的方法,其特征在于,步骤(4)中,在温度80℃-140℃的通风环境中干燥3~5h。
  7. 根据权利要求1-6任一所述的方法,其特征在于,步骤(5)中,所述钛钒钨溶液中的钛来自二氧化钛溶胶、硫酸钛、偏钛酸中的一种或多种,钒来自草酸氧钒,乙酰丙酮氧钒、硫酸氧钒、偏钒酸铵中的一种或多种,钨来仲钨酸铵、偏钨酸铵中的一种或多种。
  8. 根据权利要求1-7任一所述的方法,其特征在于,步骤(5)中,所述钛钒钨溶液中的钛的浓度为100-200g/l,钒的浓度为0.05-0.3g/l,钨的浓度为55-85g/l。
  9. 根据权利要求1-8任一所述的方法,其特征在于,步骤(5)中,在含钛钒钨溶液中浸泡10-30min。
  10. 根据权利要求1-9任一所述的方法,其特征在于,步骤(6)中,在温度380℃-450℃的通风环境中处理2-4h。
PCT/CN2021/085754 2020-07-09 2021-04-07 一种水泥窑铊中毒scr脱硝催化剂的再生方法 WO2022007450A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010654293.0 2020-07-09
CN202010654293.0A CN111715210A (zh) 2020-07-09 2020-07-09 一种水泥窑铊中毒scr脱硝催化剂的再生方法

Publications (1)

Publication Number Publication Date
WO2022007450A1 true WO2022007450A1 (zh) 2022-01-13

Family

ID=72572105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085754 WO2022007450A1 (zh) 2020-07-09 2021-04-07 一种水泥窑铊中毒scr脱硝催化剂的再生方法

Country Status (2)

Country Link
CN (1) CN111715210A (zh)
WO (1) WO2022007450A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114558625A (zh) * 2022-03-14 2022-05-31 龙净科杰环保技术(上海)有限公司 一种钢铁行业scr脱硝催化剂再生工艺
CN115487822A (zh) * 2022-10-18 2022-12-20 重庆科技学院 铅中毒Mn-Ce低钛高炉渣脱硝催化剂的再生方法
CN115869938A (zh) * 2023-03-08 2023-03-31 国能龙源环保有限公司 废弃脱硝催化剂的处理方法和脱硝催化剂的制备方法及其应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111715210A (zh) * 2020-07-09 2020-09-29 江苏龙净科杰环保技术有限公司 一种水泥窑铊中毒scr脱硝催化剂的再生方法
CN112827354B (zh) * 2020-12-28 2023-04-07 安徽元琛环保科技股份有限公司 一种铊中毒脱硝催化剂的再生方法
CN113533245A (zh) * 2021-06-29 2021-10-22 苏州西热节能环保技术有限公司 一种scr脱硝催化剂铊中毒的诊断方法
CN113600248A (zh) * 2021-08-19 2021-11-05 苏州西热节能环保技术有限公司 一种铊中毒脱硝催化剂再生方法
CN115212893A (zh) * 2022-08-04 2022-10-21 苏州西热节能环保技术有限公司 一种可实现同步脱硝脱甲醇的再生催化剂及其制备方法
CN117899945A (zh) * 2024-01-04 2024-04-19 天河(保定)环境工程有限公司 一种用于铊中毒催化剂的再生方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070221250A1 (en) * 1996-07-12 2007-09-27 Enbw Energy Solutions Gmbh, A German Corporation Method of cleaning and/or regenerating wholly or partially de-activated catalysts for stack-gas nitrogen scrubbing
CN102764675A (zh) * 2011-05-05 2012-11-07 中国科学院城市环境研究所 一种用于燃煤烟气脱硝催化剂活性再生的配方
CN103736527A (zh) * 2014-01-12 2014-04-23 高同柱 一种蜂窝状scr脱硝催化剂再生复活清洗剂制造方法及工艺装置
CN105709861A (zh) * 2014-12-05 2016-06-29 中国石油化工股份有限公司 一种scr脱硝催化剂的再生方法
CN105797789A (zh) * 2016-03-22 2016-07-27 浙江海亮环境材料有限公司 一种脱硝催化剂的再生方法
CN106807401A (zh) * 2015-11-30 2017-06-09 神华集团有限责任公司 一种脱硝催化剂的再生方法和一种再生脱硝催化剂及其应用
CN111715210A (zh) * 2020-07-09 2020-09-29 江苏龙净科杰环保技术有限公司 一种水泥窑铊中毒scr脱硝催化剂的再生方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658545A (en) * 1995-03-29 1997-08-19 The Regents Of California Metal regeneration of iron chelates in nitric oxide scrubbing
CN103350004B (zh) * 2013-08-02 2016-05-11 张权 一种scr脱硝催化剂的再生方法及用于scr脱硝催化剂再生液的混合物
CN106947864B (zh) * 2016-01-07 2019-06-04 中国科学院过程工程研究所 一种从废弃scr催化剂中回收重金属的系统及其处理方法
CN110354915B (zh) * 2019-08-09 2020-09-22 华北电力大学 一种碱金属中毒scr脱硝催化剂回收再利用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070221250A1 (en) * 1996-07-12 2007-09-27 Enbw Energy Solutions Gmbh, A German Corporation Method of cleaning and/or regenerating wholly or partially de-activated catalysts for stack-gas nitrogen scrubbing
CN102764675A (zh) * 2011-05-05 2012-11-07 中国科学院城市环境研究所 一种用于燃煤烟气脱硝催化剂活性再生的配方
CN103736527A (zh) * 2014-01-12 2014-04-23 高同柱 一种蜂窝状scr脱硝催化剂再生复活清洗剂制造方法及工艺装置
CN105709861A (zh) * 2014-12-05 2016-06-29 中国石油化工股份有限公司 一种scr脱硝催化剂的再生方法
CN106807401A (zh) * 2015-11-30 2017-06-09 神华集团有限责任公司 一种脱硝催化剂的再生方法和一种再生脱硝催化剂及其应用
CN105797789A (zh) * 2016-03-22 2016-07-27 浙江海亮环境材料有限公司 一种脱硝催化剂的再生方法
CN111715210A (zh) * 2020-07-09 2020-09-29 江苏龙净科杰环保技术有限公司 一种水泥窑铊中毒scr脱硝催化剂的再生方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU HUANG ET AL.: "Severe deactivation and artificial enrichment of thallium on commercial SCR catalysts installed in cement kiln", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 277, 31 May 2020 (2020-05-31), XP086222747, ISSN: 0926-3373, DOI: 10.1016/j.apcatb.2020.119194 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114558625A (zh) * 2022-03-14 2022-05-31 龙净科杰环保技术(上海)有限公司 一种钢铁行业scr脱硝催化剂再生工艺
CN114558625B (zh) * 2022-03-14 2024-05-14 龙净科杰环保技术(上海)有限公司 一种钢铁行业scr脱硝催化剂再生工艺
CN115487822A (zh) * 2022-10-18 2022-12-20 重庆科技学院 铅中毒Mn-Ce低钛高炉渣脱硝催化剂的再生方法
CN115869938A (zh) * 2023-03-08 2023-03-31 国能龙源环保有限公司 废弃脱硝催化剂的处理方法和脱硝催化剂的制备方法及其应用
CN115869938B (zh) * 2023-03-08 2023-04-28 国能龙源环保有限公司 废弃脱硝催化剂的处理方法和脱硝催化剂的制备方法及其应用

Also Published As

Publication number Publication date
CN111715210A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2022007450A1 (zh) 一种水泥窑铊中毒scr脱硝催化剂的再生方法
CN102974368B (zh) 一种减活scr脱硝催化剂的再生方法
CN103878034B (zh) 一种砷和磷中毒选择性催化还原脱硝催化剂的再生方法
CN110354914B (zh) 一种失活scr脱硝催化剂再利用方法
JPH09103646A (ja) 燃焼排ガスの処理方法及び装置
CN102814201A (zh) 被烟道中砷成分毒化的scr脱硝催化剂清洗再生方法
CN102059156B (zh) 脱硝催化剂再生液及其再生方法
CN103894240B (zh) 一种砷中毒选择性催化还原脱硝催化剂的再生方法
CN104722206A (zh) 一种失活scr脱硝催化剂的再生方法
CN106732655B (zh) 一种砷中毒scr脱硝催化剂再生方法
CN103908892B (zh) 一种回转式hc-scr脱硝反应器
CN106040317B (zh) 失活脱硝催化剂结构增强及活性恢复的方法及再生催化剂
CN108671967B (zh) 一种烧结烟气失效scr脱硝催化剂的溶剂热绿色高效再生方法
CN111589474B (zh) 一种失活波纹板脱硝催化剂的再生方法
CN104028315A (zh) 一种硫中毒选择性催化还原脱硝催化剂的再生方法
CN104028316A (zh) 一种砷中毒选择性催化还原脱硝催化剂的再生方法
CN109092328A (zh) 一种scr脱硝废催化剂回收利用的方法
CN106861772A (zh) 一种负压结合超声波对失活scr脱硝催化剂进行再生的方法
CN103127926A (zh) 一种用于氮氧化物催化净化光催化材料及制备方法
CN106311287B (zh) 一种碱金属中毒脱硝催化剂再生方法
CN106000100A (zh) 一种负压条件下对失效scr催化剂进行再生的方法
JP2012024669A (ja) 脱硝触媒の再生方法
US11439997B2 (en) Neutral complex cleaning solution and regeneration method for denitration catalyst with calcium poisoning
CN104028317A (zh) 一种磷中毒选择性催化还原脱硝催化剂的再生方法
CN104549561A (zh) 一种烟气选择性还原脱硝催化剂再生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837141

Country of ref document: EP

Kind code of ref document: A1