US20070221250A1 - Method of cleaning and/or regenerating wholly or partially de-activated catalysts for stack-gas nitrogen scrubbing - Google Patents

Method of cleaning and/or regenerating wholly or partially de-activated catalysts for stack-gas nitrogen scrubbing Download PDF

Info

Publication number
US20070221250A1
US20070221250A1 US11/761,018 US76101807A US2007221250A1 US 20070221250 A1 US20070221250 A1 US 20070221250A1 US 76101807 A US76101807 A US 76101807A US 2007221250 A1 US2007221250 A1 US 2007221250A1
Authority
US
United States
Prior art keywords
catalytic
scrubbing
accordance
regenerating
devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/761,018
Inventor
Gunter Schneider
Jochen Benz
Peter Buck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EnBW Energy Solutions GmbH
Original Assignee
EnBW Energy Solutions GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE19628212.8 priority Critical
Priority to DE19628212A priority patent/DE19628212B4/en
Priority to PCT/EP1997/003650 priority patent/WO1998002248A1/en
Priority to US09/147,477 priority patent/US6232254B1/en
Priority to US09/842,621 priority patent/US6631727B2/en
Priority to US10/654,450 priority patent/US20050119109A1/en
Application filed by EnBW Energy Solutions GmbH filed Critical EnBW Energy Solutions GmbH
Priority to US11/761,018 priority patent/US20070221250A1/en
Publication of US20070221250A1 publication Critical patent/US20070221250A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/86Other features combined with waste-heat boilers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/92Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/485Impregnating or reimpregnating with, or deposition of metal compounds or catalytically active elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1838Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines the hot gas being under a high pressure, e.g. in chemical installations
    • F22B1/1846Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines the hot gas being under a high pressure, e.g. in chemical installations the hot gas being loaded with particles, e.g. waste heat boilers after a coal gasification plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

The invention concerns a method of cleaning and/or regenerating wholly or partially de-activated catalysts for stack-gas nitrogen scrubbing, in which the catalysts are treated with a washing and/or regenerating liquid, characterized by the washing or regenerating liquid consisting wholly or in part of demineralized water.

Description

  • The invention relates to a method for scrubbing and/or regenerating of wholly or partially deactivated catalytic devices for nitrogen removal from stack gases; wherein the catalytic devices are treated with a scrubbing, or respectively regeneration fluid.
  • Such catalytic devices are also called SCR (selective catalytic reduction) catalytic devices. The deactivation of such catalytic devices has several different causes, mainly:
      • Clogging of the honeycomb structure, or respectively the free spaces in the catalytic device. Because of this, the stack gas does not reach the catalytic device and the clogged conduit of the catalytic device is not used for the catalytic reaction. In order to use the installed catalytic material as efficiently as possible, attempts are made to decrease the clogging of honeycomb channels or plate channels by cleaning measures, such as steam blowers in the DENOX installation or manual cleaning actions. In spite of this, some of these honeycombs, or respectively free spaces in the catalytic device, become clogged over time. With some installations the catalyst modules are removed and placed on an appropriate shaking device. The clogs are loosened by the shaking movements. In this way the stack gas again gains access to the catalytic material. The increase in activity does not constitute a regeneration, it only provides access to the clogged catalytic material. The surface layer being formed during operation remains untouched by this cleaning step.
      • Worsening of the gas diffusion at the surface of the wall of the catalytic device because of the growth of a thin surface layer of approximately 1 to 100 μm and clogging of pores. Because of this, the stack gas can only reach the pores of the catalytic material poorly or not at all. The formation of a thin surface layer worsens the chemical transformation of NOX and NH3 into. N2 and H2O, because the gas diffusion into the catalytic material is greatly hampered.
      • Clogging of the active catalytic centers on the surface of the catalytic devices by means of the accumulation of the so-called catalytic poisons, for example As, K, Na. The settling of catalytic poisons, such as arsenic, for example, on the active centers of the catalytic device makes the reaction at these centers impossible and in this way also aids in a reduction of the activities of the catalytic material.
      • Abrasion of catalytic material by solids, such as fly ash, contained in the stack gas. The catalytic material is reduced because of the loss of catalytic material and therefore of the surface available for the reaction. The abrasion of catalytic material is an irreversible process which results in a permanent loss of activity. The following actions can also simultaneously occur in the course of abrasion by fly ash:
        • Removal of catalytic material and of an existing surface layer,
        • Retention of components of the fly ash and therefore formation of a fresh gas diffusion-hindering surface layer.
  • A method is described in DE 38 16 600 C2 in which the regeneration of catalytic devices contaminated by arsenic is described. This method does not take into consideration the portion of the deactivation by a gas diffusion-hindering surface layer. Aqueous solutions of nitric acid, hydrochloric acid, sulfuric acid or acetic acid are employed as the scrubbing suspension in the method according to DE 38 16 600 C2. These scrubbing suspensions have the disadvantage that for one they are too expensive and also that the disposal of the acids contaminated by arsenic is elaborate.
  • A method is described in EP 0 136 966 B1, in which initially the dust adhering to the surface is removed with dry steam. The catalytic poisons are then intended to be dissolved and rinsed out in a second step by wet steam with a moisture content of ≦=0.4. Drying is performed with dry steam again. In the method in accordance with EP 0 136 966 B1, the thin, gas diffusion-hindering layer is not removed in a first step, instead clogged conduits are merely opened again. This has already been done on a large-scale basis for a long time in the form of so-called dust or soot blowers. The second step of this method can have an activity-increasing effect only with catalytic devices wherein the gas diffusion-hindering layer does not exist over the entire surface or not at all. Also, the generation of large amounts of dry and wet steam is very energy-intensive.
  • A method for the reactivation of catalytic devices is described in DE 30 20 698 C2, which removes the deactivating substances by means of a defined pressure and a defined temperature. Various gases, for example methane, propane, carbon dioxide or argon can be added in the process for optimizing the method. This method also does not consider the gas diffusion-hindering surface layer.
  • A great disadvantage of most of the mentioned methods is the fact that they can only be performed in a separate installation. To this end the removal of the catalytic devices and therefore an outage of the installation is required.
  • Accordingly, it is the object of the invention to further develop a method of the type mentioned above in such a way that gas diffusion on the surface of the catalytic devices is again made possible, wherein additionally the clogging of the active centers by catalytic poisons is reversed to the greatest extent possible, and which can be performed inside the nitrogen removal installation without the removal of the catalytic devices.
  • This object is attained in that the scrubbing, or respectively regenerating fluid is fully desalinated water.
  • The function of the invention is based on the dissolution and removal of the surface layer for restoring the gas diffusion and exposing of active centers for the nitrogen-removing reaction of the surface of the catalytic device. In this case the composition of the fluid must be selected in such a way that, along with a small consumption of regenerating suspension, the fastest possible dissolution of the surface layer is achieved. In connection with the regeneration of SCR catalytic devices it has surprisingly been shown to be useful to employ fully desalinated water, for example demineralized water, for dissolving the surface layer. The use of demineralized water as the scrubbing fluid prevents the introduction of catalytic poisons with the scrubbing fluid. In comparison with other possible fluids, demineralized water has the advantage that it is relatively inexpensive and that in most cases it can be produced at the location of the power plant itself. The cleaning and regeneration of the catalytic devices is performed at ambient temperatures, so that no energy is required for heating the fluid. By means of this method it is possible to drastically reduce the number of deactivated catalytic devices to be disposed. Above all, in large installations for the reduction of nitric oxides; so-called DENOX installations, this method is suitable for regenerating the used and deactivated catalytic devices, i.e. to again increase the reduced catalytic activities, without having to remove them.
  • An advantageous further development of this method provides, that the catalytic devices are first mechanically cleaned by vacuuming or blowing the deposits out, which is then followed by a scrubbing cycle, which removes the surface layer by means of a regenerating suspension and dissolves the clogs of the active centers to a great extent. It has been shown to be advantageous for the consumption of regenerating suspension if only a small portion of the regenerating suspension is continuously removed and regenerated, i.e. the larger part can be employed in a recirculating operation.
  • An additional opportunity for reducing the scrubbing water is the use of a suitable abrasive which only removes the surface layer. This method can also be practiced inside the nitrogen removal installation. The abrasive (for example small glass spheres), together with the parts of the gas diffusion-hindering surface layer, can then be disposed of together with the fly ash from the electronic filter.
  • Further advantageous developments of the invention are defined in the dependent claims.
  • An exemplary embodiment for the use of a suitable regeneration device will be described in greater detail in what follows, making reference to the attached drawings. Represented are in:
  • FIG. 1, a schematic structure of a catalytic device strip with surface layers,
  • FIG. 2, the enlargement of a portion of FIG. 1,
  • FIG. 3, a method flow graph for the cleaning of catalytic devices inside a DENOX installation,
  • FIG. 4, a schematic view of the cleaning of the catalytic device by means of an abrasive.
  • FIGS. 1 and 2 show an enlarged sectional view through a catalytic device strip 60 of a catalytic device 6. A catalytic device strip 60 of a honeycomb catalytic device with pores 61 is represented. A surface layer 62 of a thickness of approximately 1 to 100 μm grows with increasing length of operation which, with increasing thickness, more and more hinders the diffusion of the stack gas to be cleaned into the catalytic material, in particular the pores 61.
  • An exemplary embodiment of the present invention becomes clear by means of the flow graph of the method represented in FIG. 3.
  • A container 11 is filled with desalted water, for example demineralized water, from the complete desalination installation of a power plant, via a line 1. Additives can be supplied to the scrubbing fluid via lines 2 and 3, for example hydrochloric acid for lowering the pH value, or regenerating substances, such as vanadium, molybdenum or tungsten, for example. The pump 4 conveys the regenerating suspension through the line 5 into the DENOX installation 17, where the catalytic devices 6 are scrubbed. The scrubbing fluid with the materials contained in the surface layer and the catalytic poisons are conducted via a suitable catching device, for example a funnel, and a pump 7 to a separating device 8. There, the materials contained are separated in a suitable manner from the scrubbing fluid. A hydrocyclone, for example, is suitable for this. However, filters or the like are also conceivable. The underflow from the separating device 8, which is heavily loaded with solids, is conveyed via the pump 16 to a settling tank 9. The solid components are further concentrated in this settling tank 9, are drawn off in a partial flow via a line 10, and conveyed to a suitable waste water treatment, not represented here. The overflow of the settling tank 9 and the upper flow of the separating device 8 are conveyed to the container 11 via the lines 12 and 13 and pumps 14 and 15.
  • This structure can be expanded by suitable precipitation stages, in which dissolved noxious matter, such as the catalytic poison arsenic, for example, is precipitated, so that it can be separated by means of the separating device 8 and removed from the scrubbing fluid. The scrubbing, or respectively regenerating fluid is conveyed in circulation in this way, from which only a defined volume of fluid with the concentrated noxious matter, is removed per circuit. This volume is replenished through the lines 1, 2 and 3.
  • A further possibility for execution is closing the honeycombs of the catalytic device, or respectively of the reactor, below the catalytic device 6. The catalytic devices are thereafter filled with the scrubbing, or respectively regenerating fluid. During this bath in the regenerating fluid, first the gas diffusion-hindering surface layer is loosened. The catalytic poisons inside the pores of the catalytic device are then loosened from the active centers on the surface of the catalytic device and are transferred into the regenerating fluid. Because of the concentration drop between the regenerating fluid inside the pores of the catalytic device and the regenerating fluid in the honeycomb channels, the dissolved catalytic poisons move to the honeycomb channels. After a defined period of time the regenerating fluid with the components of the gas diffusion-hindering surface layer and the catalytic poisons is drained. The catalytic devices are thereafter dried by means of stack gas or hot air. The advantage of this embodiment lies in the low consumption of regenerating fluid.
  • Complementing the mentioned exemplary embodiments it is also possible to connect the regeneration of catalytic devices directly with drying. In large nitrogen-removing installations it can occur that some tons of regenerating fluid still remain in the catalytic devices 6. The structural steel for receiving the catalytic modules must be designed for this additional weight. This is not the case in some installations. It is then necessary to dry a partial section immediately after the regeneration of this section. In the course of this, the catalytic devices 6 are first regenerated as described. Following regeneration, the regenerated section is dried by means of hot air or hot gas. By means of this the regenerating suspension remaining in the catalytic devices 6 is evaporated and removed.
  • FIG. 4 shows in a schematic representation a complementing option for removing the surface layer 62 from the catalytic devices 6. An abrasive 63, for example sand or glass, is used for mechanically removing the surface layer 62. The abrasive 63 is blasted through a tube 64 or the like on the surface 65 of the catalytic device 6. The abrasive material 66, which has been contaminated with portions of the surface layer, is blown out of the catalytic device 6, or rinsed out during cleaning with the scrubbing fluid, for example.
  • Example:
  • The invention was tested on used and deactivated catalytic devices. To this end, a deactivated catalytic element of a total length of 84.0 mm and edges of the length of 150×150 mm was removed from a DENOX installation and treated in accordance with the regenerating method. Prior to regeneration with demineralized water, the catalytic element was examined in a test stand. The catalytic element was thereafter rinsed for 5 minutes with demineralized water and subsequently dried with hot air. A subsequent examination showed that the NOX precipitation rate was increased by approximately 5% to 6% over the entire mol ratio range of NH2/NOX of 0.8 to 1.2, as shown in the following table.
    Mol ratio NH2/NOX
    0.8 0.9 1.0 1.1 1.2
    NOX precipitation rate 64.8 70.6 73.7 75.2 76.4
    before regeneration
    NOX precipitation rate 70.4 75.8 78.9 80.6 81.8
    after regeneration

Claims (13)

1. A method for scrubbing and/or regenerating of wholly or partially deactivated catalytic devices for nitrogen removal from stack gases, wherein the catalytic devices are treated with a scrubbing, or respectively regenerating fluid, characterized in that the scrubbing, or respectively regenerating fluid is partially or wholly desalinated water.
2. The method in accordance with claim 1, characterized in that the scrubbing, or respectively regenerating fluid is moved in circulation, wherein a partial flow is removed downstream of the catalytic device and replaced by fresh scrubbing, or respectively regenerating fluid.
3. The method in accordance with one of the preceding claims, characterized in that a scrubbing, or respectively regenerating fluid with a pH value of ≦7 is used.
4. The method in accordance with one of the preceding claims, characterized in that the surface of the catalytic device is additionally treated with an abrasive.
5. The method in accordance with one of the preceding claims, characterized in that at least one catalytically active component is added to the scrubbing, or respectively regenerating fluid.
6. The method in accordance with one of the preceding claims, characterized in that prior to treatment coarse dust deposits are removed manually or by means of suitable cleaning devices, for example steam blowers.
7. The method in accordance with one of the preceding claims, characterized in that following treatment the catalytic devices are cleaned by air or stack gas.
8. The method in accordance with claim 7, characterized in that drying of the catalytic devices is performed immediately following the treatment of a partial section.
9. The method in accordance with one of claims 7 or 8, characterized in that the treatment and drying of the catalytic devices is performed by means of a unit.
10. The method in accordance with one of the preceding claims, characterized in that existing steam or air blowing devices used for removing flying dust are employed for introducing the scrubbing, or respectively regenerating fluid.
11. The method in accordance with one of the preceding claims, characterized in that the catalytic devices are subjected to a bath in the scrubbing, or respectively regenerating fluid.
12. The method in accordance with claim 11, characterized in that the honeycombs of the catalytic device or respectively the nitrogen removal reactor are closed at their bottom, and the catalytic devices are filled with the scrubbing, or respectively regenerating fluid.
13. The method in accordance with one of the preceding claims, characterized in that tap water is used as the scrubbing, or respectively regenerating fluid.
US11/761,018 1996-07-12 2007-06-11 Method of cleaning and/or regenerating wholly or partially de-activated catalysts for stack-gas nitrogen scrubbing Abandoned US20070221250A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE19628212.8 1996-07-12
DE19628212A DE19628212B4 (en) 1996-07-12 1996-07-12 Process for purifying and / or regenerating completely or partially deactivated catalysts for denitrification of flue gases
PCT/EP1997/003650 WO1998002248A1 (en) 1996-07-12 1997-07-10 Method of cleaning and/or regenerating wholly or partially de-activated catalysts for stack-gas nitrogen scrubbing
US09/147,477 US6232254B1 (en) 1996-07-12 1997-07-10 Method of cleaning and/or regenerating wholly or partially de-activated catalysts for stack-gas nitrogen scrubbing
US09/842,621 US6631727B2 (en) 1996-07-12 2001-04-27 Method of cleaning and/or regenerating wholly or partially de-activated catalysts of stack-gas nitrogen scrubbing
US10/654,450 US20050119109A1 (en) 1996-07-12 2003-09-04 Method of cleaning and/or regenerating wholly or partially de-activated catalysts of stack-gas nitrogen scrubbing
US11/761,018 US20070221250A1 (en) 1996-07-12 2007-06-11 Method of cleaning and/or regenerating wholly or partially de-activated catalysts for stack-gas nitrogen scrubbing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/761,018 US20070221250A1 (en) 1996-07-12 2007-06-11 Method of cleaning and/or regenerating wholly or partially de-activated catalysts for stack-gas nitrogen scrubbing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/654,450 Continuation US20050119109A1 (en) 1996-07-12 2003-09-04 Method of cleaning and/or regenerating wholly or partially de-activated catalysts of stack-gas nitrogen scrubbing

Publications (1)

Publication Number Publication Date
US20070221250A1 true US20070221250A1 (en) 2007-09-27

Family

ID=7799704

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/147,477 Expired - Lifetime US6232254B1 (en) 1996-07-12 1997-07-10 Method of cleaning and/or regenerating wholly or partially de-activated catalysts for stack-gas nitrogen scrubbing
US09/842,621 Expired - Lifetime US6631727B2 (en) 1996-07-12 2001-04-27 Method of cleaning and/or regenerating wholly or partially de-activated catalysts of stack-gas nitrogen scrubbing
US10/654,450 Abandoned US20050119109A1 (en) 1996-07-12 2003-09-04 Method of cleaning and/or regenerating wholly or partially de-activated catalysts of stack-gas nitrogen scrubbing
US11/761,018 Abandoned US20070221250A1 (en) 1996-07-12 2007-06-11 Method of cleaning and/or regenerating wholly or partially de-activated catalysts for stack-gas nitrogen scrubbing

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/147,477 Expired - Lifetime US6232254B1 (en) 1996-07-12 1997-07-10 Method of cleaning and/or regenerating wholly or partially de-activated catalysts for stack-gas nitrogen scrubbing
US09/842,621 Expired - Lifetime US6631727B2 (en) 1996-07-12 2001-04-27 Method of cleaning and/or regenerating wholly or partially de-activated catalysts of stack-gas nitrogen scrubbing
US10/654,450 Abandoned US20050119109A1 (en) 1996-07-12 2003-09-04 Method of cleaning and/or regenerating wholly or partially de-activated catalysts of stack-gas nitrogen scrubbing

Country Status (11)

Country Link
US (4) US6232254B1 (en)
EP (1) EP0910472B1 (en)
JP (2) JP2000514351A (en)
AT (1) AT183947T (en)
CZ (1) CZ294663B6 (en)
DE (2) DE19628212B4 (en)
ES (1) ES2140244T3 (en)
HU (1) HU221612B (en)
PL (1) PL190914B1 (en)
SK (1) SK282677B6 (en)
WO (1) WO1998002248A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070264179A1 (en) * 2006-05-11 2007-11-15 Gadkaree Kishor P Methods and systems for the regeneration of activated carbon catalyst beds

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19628212B4 (en) * 1996-07-12 2008-06-05 Enbw Energy Solutions Gmbh Process for purifying and / or regenerating completely or partially deactivated catalysts for denitrification of flue gases
DE19723796C2 (en) * 1997-06-06 2003-07-17 Saar En Gmbh Process for reactivating honeycomb-shaped catalyst elements for the denitrification of flue gases
DE19829916B4 (en) * 1998-07-06 2005-03-24 Envica Gmbh Process for the regeneration of catalysts and regenerated catalysts
US6863019B2 (en) 2000-06-13 2005-03-08 Applied Materials, Inc. Semiconductor device fabrication chamber cleaning method and apparatus with recirculation of cleaning gas
EP1266689A1 (en) * 2001-06-15 2002-12-18 Siemens Aktiengesellschaft Regeneration process of denitrification catalysts
DE10222915B4 (en) * 2002-05-24 2013-03-28 Steag Power Saar Gmbh Process for the re-activation of honeycombed catalyst elements for the denitrification of flue gases
JP4578048B2 (en) * 2002-06-21 2010-11-10 中国電力株式会社 Denitration catalyst regeneration method
DE10241004A1 (en) 2002-09-05 2004-03-11 Envica Gmbh Process for the regeneration of iron-loaded Denox catalysts
US6913026B2 (en) * 2003-02-25 2005-07-05 Enerfab, Inc. Methods for cleaning catalytic converters
US7559993B1 (en) 2003-06-03 2009-07-14 Scr-Tech Llc Process for decoating a washcoat catalyst substrate
US6929701B1 (en) 2003-06-03 2005-08-16 Scr-Tech Llc Process for decoating a washcoat catalyst substrate
DE10325779A1 (en) * 2003-06-05 2005-01-05 Envica Gmbh Unblocking power station catalytic converter, comprises ultrasonic or electromagnetic loosening action and high pressure liquid scouring
DE102005000873A1 (en) 2005-01-05 2006-07-13 Blohm, Maik Method and apparatus for purifying SCR catalysts to regain activity
AT497408T (en) 2005-12-16 2011-02-15 Evonik Energy Services Gmbh Method for the treatment of smoke gas catalysts
DE102007020855A1 (en) 2007-05-02 2008-11-06 Evonik Energy Services Gmbh Process for purifying flue gases from incineration plants
DK2033702T3 (en) 2007-09-04 2011-05-02 Evonik Energy Services Gmbh Method of removing mercury from combustion gases
US7741239B2 (en) 2008-03-11 2010-06-22 Evonik Energy Services Llc Methods of regeneration of SCR catalyst poisoned by phosphorous components in flue gas
US7723251B2 (en) 2008-03-11 2010-05-25 Evonik Energy Services Llc Method of regeneration of SCR catalyst
DE102009008686A1 (en) 2009-02-06 2010-08-12 Enbw Kraftwerke Ag Method for reactivation or optimization of activity of selective catalytic reduction catalytic converter in power station, involves treating selective catalytic reduction catalytic converter with aqueous reactivating or optimization fluid
JP5349359B2 (en) * 2010-02-09 2013-11-20 中国電力株式会社 Denitration catalyst regeneration method
US8268743B2 (en) * 2011-05-04 2012-09-18 Steag Energy Services Gmbh Pluggage removal method for SCR catalysts and systems
JP5701185B2 (en) 2011-09-09 2015-04-15 三菱重工業株式会社 Method for reducing SO2 oxidation rate increase of denitration catalyst
EP2772293B1 (en) * 2013-03-01 2020-06-03 W.L. Gore & Associates GmbH Textile Filter System and method for regenerating a textile filter
KR101446142B1 (en) * 2013-08-01 2014-10-06 주식회사 아주엔비씨 A method of semi-insitu regenerating scr catalyst
FR3041546B1 (en) * 2015-09-25 2019-06-07 Renault S.A.S Method and system for cleaning a particle filter
KR101819283B1 (en) * 2015-10-26 2018-01-17 주식회사 포스코 Method for regenerating catalyst for selective catalytic reduction

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2871201A (en) * 1951-07-06 1959-01-27 Union Oil Co Hydrocarbon conversion catalysts
US4210628A (en) * 1973-07-12 1980-07-01 Takeda Chemical Industries, Ltd. Removal of nitrogen oxides
US4572903A (en) * 1983-08-25 1986-02-25 Mitsubishi Jukogyo Kabushiki Kaisha Method for reactivating catalysts used for removing nitrogen oxides with steam
US4729975A (en) * 1985-05-17 1988-03-08 Mitsubishi Jukogyo Kabushiki Kaisha Method for regenerating a denitration catalyst for exhaust gases from coal-burning apparatus
US4992614A (en) * 1988-06-30 1991-02-12 Mobil Oil Corp. Reactivation of partially deactivated catalyst employing ultrasonic energy
US5308810A (en) * 1992-12-28 1994-05-03 Atlantic Richfield Company Method for treating contaminated catalyst
US5689798A (en) * 1991-12-21 1997-11-18 Olga Dietrich Method and apparatus for removing undesirable chemical substances from gases, exhaust gases, vapors, and brines
US5741748A (en) * 1992-09-17 1998-04-21 Imperial Chemical Industries Plc Catalyst production for use in a process for fluorination of hydrocarbons
US5817701A (en) * 1997-05-02 1998-10-06 Exxon Research And Engineering Company Slurry hydrocarbon synthesis with cyclic CO purge and catalyst rejuvenation
US5844005A (en) * 1997-05-02 1998-12-01 Exxon Research And Engineering Company Hydrocarbon synthesis using reactor tail gas for catalyst rejuvenation
US5882422A (en) * 1996-06-13 1999-03-16 Mitsubishi Heavy Industries, Ltd. Method for removing clogging dust in honeycomb catalyst
US6232254B1 (en) * 1996-07-12 2001-05-15 Energie-Versorgung Schwaben Ag Method of cleaning and/or regenerating wholly or partially de-activated catalysts for stack-gas nitrogen scrubbing
US6241826B1 (en) * 1998-07-06 2001-06-05 Sas Sonderabfallservice Gmbh Process for regenerating catalytic converters
US6395665B2 (en) * 1998-07-24 2002-05-28 Mitsubishi Heavy Industries, Ltd. Methods for the regeneration of a denitration catalyst

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934899B1 (en) * 1970-01-31 1974-09-18
FR2123917A5 (en) * 1971-02-05 1972-09-15 Maltret Georges Co-current gas scrubbing tower - for recovery or neutralization of nitrogenous fumes
US3733788A (en) * 1972-05-10 1973-05-22 W Crowley Apparatus for removing particulate and gaseous pollutants from stack smoke
JPS5227091A (en) * 1975-08-27 1977-03-01 Kobe Steel Ltd Reproduction process of catalyst for removing nitrogen oxides in waste gas
JPS5228460A (en) * 1975-08-29 1977-03-03 Kobe Steel Ltd Catalytic reaction apparatus
JPS5326772A (en) * 1976-08-26 1978-03-13 Denka Engineering Method and apparatus for preventing dusttsticking
US4190554A (en) * 1976-12-22 1980-02-26 Osaka Gas Company, Ltd. Method for reactivation of platinum group metal catalyst with aqueous alkaline and/or reducing solutions
JPS6315023B2 (en) * 1979-09-03 1988-04-02 Kawasaki Jukogyo Kk
CA1163810A (en) * 1980-02-20 1984-03-20 Petrus J.W.M. Van Den Bosch Process for the removal of vanadium-containing acid from an acid-extracted deactivated demetallization catalyst
JPS5820234A (en) * 1981-07-29 1983-02-05 Mitsubishi Heavy Ind Ltd Method for washing catalyst
US4406775A (en) * 1982-02-01 1983-09-27 Exxon Research And Engineering Co. Catalyst regeneration process
JPS58189041A (en) * 1982-04-30 1983-11-04 Mitsubishi Heavy Ind Ltd Regeneration of catalyst
JPS6260941B2 (en) * 1982-09-13 1987-12-18 Nippon Gaishi Kk
US4575336A (en) * 1983-07-25 1986-03-11 Eco Industries, Inc. Apparatus for treating oil field wastes containing hydrocarbons
JPS6071079A (en) * 1983-09-29 1985-04-22 Mitsubishi Heavy Ind Ltd Treatment of washing waste water
JPH0148809B2 (en) * 1985-05-07 1989-10-20 Mitsubishi Heavy Ind Ltd
US4849095A (en) * 1985-11-01 1989-07-18 Uop Process for hydrogenating a hydrocarbonaceous charge stock
FR2590805B1 (en) * 1985-12-02 1990-02-09 Propiorga Process and plant for the neutralization of acid fumes, especially from the combustion of residues
JPH0714486B2 (en) * 1986-04-11 1995-02-22 川崎重工業株式会社 Dry regeneration method of catalyst
JPH0714487B2 (en) * 1986-12-12 1995-02-22 石川島播磨重工業株式会社 DeNOx catalyst regeneration processor
DE3816600C2 (en) * 1988-05-14 1992-02-20 Huels Ag, 4370 Marl, De
JP2994769B2 (en) * 1991-02-15 1999-12-27 三菱重工業株式会社 Treatment method for the denitration catalyst regeneration liquid
JPH08173764A (en) * 1994-12-28 1996-07-09 Fuji Electric Co Ltd Harmful gas removing apparatus
JPH08196920A (en) * 1995-01-25 1996-08-06 Nippon Steel Corp Regenerating method for denitrating catalyst
US6395664B1 (en) * 1998-02-19 2002-05-28 Uop Llc Process for reactivating a deactivated dehydrocyclodimerization catalyst with water

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2871201A (en) * 1951-07-06 1959-01-27 Union Oil Co Hydrocarbon conversion catalysts
US4210628A (en) * 1973-07-12 1980-07-01 Takeda Chemical Industries, Ltd. Removal of nitrogen oxides
US4572903A (en) * 1983-08-25 1986-02-25 Mitsubishi Jukogyo Kabushiki Kaisha Method for reactivating catalysts used for removing nitrogen oxides with steam
US4729975A (en) * 1985-05-17 1988-03-08 Mitsubishi Jukogyo Kabushiki Kaisha Method for regenerating a denitration catalyst for exhaust gases from coal-burning apparatus
US4992614A (en) * 1988-06-30 1991-02-12 Mobil Oil Corp. Reactivation of partially deactivated catalyst employing ultrasonic energy
US5689798A (en) * 1991-12-21 1997-11-18 Olga Dietrich Method and apparatus for removing undesirable chemical substances from gases, exhaust gases, vapors, and brines
US5741748A (en) * 1992-09-17 1998-04-21 Imperial Chemical Industries Plc Catalyst production for use in a process for fluorination of hydrocarbons
US5308810A (en) * 1992-12-28 1994-05-03 Atlantic Richfield Company Method for treating contaminated catalyst
US5882422A (en) * 1996-06-13 1999-03-16 Mitsubishi Heavy Industries, Ltd. Method for removing clogging dust in honeycomb catalyst
US6232254B1 (en) * 1996-07-12 2001-05-15 Energie-Versorgung Schwaben Ag Method of cleaning and/or regenerating wholly or partially de-activated catalysts for stack-gas nitrogen scrubbing
US5817701A (en) * 1997-05-02 1998-10-06 Exxon Research And Engineering Company Slurry hydrocarbon synthesis with cyclic CO purge and catalyst rejuvenation
US5844005A (en) * 1997-05-02 1998-12-01 Exxon Research And Engineering Company Hydrocarbon synthesis using reactor tail gas for catalyst rejuvenation
US6241826B1 (en) * 1998-07-06 2001-06-05 Sas Sonderabfallservice Gmbh Process for regenerating catalytic converters
US6395665B2 (en) * 1998-07-24 2002-05-28 Mitsubishi Heavy Industries, Ltd. Methods for the regeneration of a denitration catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070264179A1 (en) * 2006-05-11 2007-11-15 Gadkaree Kishor P Methods and systems for the regeneration of activated carbon catalyst beds
US7781361B2 (en) 2006-05-11 2010-08-24 Corning Incorporated Method for regeneration of activated carbon catalyst beds

Also Published As

Publication number Publication date
EP0910472A1 (en) 1999-04-28
AT183947T (en) 1999-09-15
US20050119109A1 (en) 2005-06-02
DE19628212B4 (en) 2008-06-05
CZ6399A3 (en) 1999-07-14
PL190914B1 (en) 2006-02-28
WO1998002248A1 (en) 1998-01-22
HU221612B (en) 2002-11-28
SK282677B6 (en) 2002-11-06
PL331169A1 (en) 1999-06-21
JP2008119695A (en) 2008-05-29
DE59700402D1 (en) 1999-10-07
US6232254B1 (en) 2001-05-15
JP2000514351A (en) 2000-10-31
CZ294663B6 (en) 2005-02-16
ES2140244T3 (en) 2000-02-16
HU9903256A3 (en) 2001-10-29
US6631727B2 (en) 2003-10-14
SK3199A3 (en) 1999-07-12
US20020006860A1 (en) 2002-01-17
DE19628212A1 (en) 1998-01-15
HU9903256A2 (en) 2000-02-28
EP0910472B1 (en) 1999-09-01

Similar Documents

Publication Publication Date Title
US4540490A (en) Apparatus for filtration of a suspension
CN101518718B (en) Functional filter felt for eliminating harmful constituents of fume, preparation method and application method thereof
JP5773756B2 (en) Spray drying apparatus and exhaust gas treatment system for dehydrated filtrate
US5895521A (en) Dust removing apparatus and dust removing method
JP4870666B2 (en) Filter for resuspension of solids
CN101039739B (en) Methods and apparatus for removing solids from a membrane module
KR100601035B1 (en) Method of regenerating nox removal catalyst
KR930008109B1 (en) Wet-type exit gas purifying method and apparatus
JP2012250140A (en) Spray drying apparatus for dehydrated filtrate and exhaust gas treatment system
JP4384310B2 (en) Membrane cleaning method
CZ292547B6 (en) Process for purifying flue gas containing nitrogen oxides and apparatus for purification flue gas
US20050013757A1 (en) Method and system for removing sulfur and dust from waste gases, particularly refinery waste gases
JP2016533872A (en) Method and apparatus for regenerating SCR denitration catalyst with microwave assistance
JP2014168775A (en) Fiber fabric filter system, regeneration method of fiber fabric filter and regeneration device of the same
GB1589222A (en) Process and apparatus for combustion gas scrubbing
JP6298579B2 (en) Denitration catalyst regeneration method, denitration catalyst regeneration system, and denitration catalyst cleaning agent
CN101708420A (en) Treatment technique for pollutants in sinter fume and spraying and absorbing tower thereof
KR100405222B1 (en) Equipment for purifying flue gas with different contents of acidic components and method of operation
US4572903A (en) Method for reactivating catalysts used for removing nitrogen oxides with steam
JP2825666B2 (en) Operation method of high pressure gas filter device and high pressure gas filter assembly
RU2701540C2 (en) Flue gas cleaning device comprising bag filter and catalyst
TWI457168B (en) Exhaust gas-processing method and exhaust gas-processing apparatus
TW200538686A (en) An apparatus for purifying gas
CZ298114B6 (en) Method for regenerating catalysts
US5288299A (en) Exhaust gas treating apparatus

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION