WO2022004872A1 - チョップド炭素繊維束及びチョップド炭素繊維束の製造方法 - Google Patents

チョップド炭素繊維束及びチョップド炭素繊維束の製造方法 Download PDF

Info

Publication number
WO2022004872A1
WO2022004872A1 PCT/JP2021/025108 JP2021025108W WO2022004872A1 WO 2022004872 A1 WO2022004872 A1 WO 2022004872A1 JP 2021025108 W JP2021025108 W JP 2021025108W WO 2022004872 A1 WO2022004872 A1 WO 2022004872A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
fiber bundle
sizing agent
compound
chopped carbon
Prior art date
Application number
PCT/JP2021/025108
Other languages
English (en)
French (fr)
Inventor
顕治 兼田
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2022534122A priority Critical patent/JPWO2022004872A1/ja
Publication of WO2022004872A1 publication Critical patent/WO2022004872A1/ja
Priority to US18/148,186 priority patent/US20230147906A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins

Definitions

  • the present invention relates to a chopped carbon fiber bundle and a method for manufacturing a chopped carbon fiber bundle.
  • thermoplastic resin As a means for improving the mechanical strength of the thermoplastic resin, a method of blending a fibrous filler such as carbon fiber is generally known.
  • a method of blending carbon fibers with the thermoplastic resin there is a method of melt-kneading the chopped carbon fiber bundle and the thermoplastic resin using an extruder.
  • the chopped carbon fiber bundle used here is manufactured by attaching a sizing agent to a long carbon fiber bundle and then cutting the bundle.
  • thermoplastic resins (super engineering plastics) with excellent mechanical strength and heat resistance have begun to be put into practical use.
  • the temperature of super engineering plastics when melt-kneaded with an extruder is about 300 to 400 ° C., which is higher than that of general-purpose thermoplastic resins.
  • the sizing agent adhering to the carbon fiber bundle may be thermally decomposed and gas may be generated in the extruder.
  • the gas generated by the thermal decomposition of the sizing agent hinders stable extrusion molding and causes deterioration of the mechanical properties of the obtained molded product. Therefore, the sizing agent adhering to the chopped carbon fiber bundle is required to be less likely to generate gas by thermal decomposition (heat resistance).
  • the sizing agent is used to prevent the fiber bundles in the chopped carbon fiber bundles from falling apart from the fiber bundles to the carbon fiber filaments. If the carbon fiber bundles are weakly focused by the sizing agent and the chopped carbon fiber bundles are loosened, the separated carbon fiber filaments may cause bridges between the chopped carbon fiber bundles. This bridge can make it difficult to quantitatively supply chopped carbon fiber bundles from the hopper to the feeder and from the feeder to the extruder. The bridge also causes the entangled carbon fiber filaments to interfere with the screw transfer of the extruder. For this reason, the chopped carbon fiber bundle is also required to have a high focusing property due to the sizing agent and to be easily fed to the extruder (feeding property).
  • Patent Document 1 describes a technique relating to a sizing agent having excellent heat resistance, which comprises an epoxy resin and an aromatic polyimide resin having a functional group in a side chain.
  • Patent Document 2 describes a technique for obtaining chopped strands in which decomposition gas and free fibers are less generated during molding by heat-treating the chopped strands in a specific temperature range.
  • One of the objects of the present invention is to obtain a chopped carbon fiber bundle having excellent heat resistance and mechanical properties of a molded product with high productivity.
  • the present inventor has found that the above-mentioned problems can be solved by containing a specific compound having a maleimide group in the chopped carbon fiber bundle.
  • the present invention includes the following aspects.
  • a chopped carbon fiber bundle containing carbon fibers and a sizing agent wherein the sizing agent contains a compound having a maleimide group, and the compound having the maleimide group is liquid at 25 ° C. ..
  • a chopped carbon fiber bundle containing carbon fibers and a sizing agent wherein the sizing agent contains a compound having a maleimide group, and the compound having a maleimide group has an aliphatic hydrocarbon group having 2 or more carbon atoms. Has a chopped carbon fiber bundle.
  • X 1 is an alicyclic hydrocarbon group having 1-8 good 5 carbon atoms which may have a substituent.
  • Q 1 is an aliphatic hydrocarbon group having a carbon number of 4 to 50.
  • n is 1 or 2.
  • Q 3 and Q 4 are each independently an aliphatic hydrocarbon group having a carbon number of 6 to 100 (including alicyclic hydrocarbon groups).
  • X 3 is an alkylene group having 2 to 20 carbon atoms, a cycloalkylene group having 5 to 8 carbon atoms,-(C q H 2q O) t- (C r H 2r O) u- C s H 2s- ( However, q, r and s are independently integers of 2 to 6.
  • t is 0 or 1.
  • u is an integer of 1 to 30.) Polyoxyalkylene group and carbon.
  • a chopped carbon fiber bundle containing carbon fibers and a sizing agent wherein the sizing agent contains a compound having a maleimide group, and the viscosity of the compound having a maleimide group at 25 ° C. is 100,000 mPa ⁇ s or less. , Chopped carbon fiber bundle.
  • a chopped carbon fiber bundle containing a carbon fiber and a compound having a maleimide group wherein the content of the compound having a maleimide group in the chopped carbon fiber bundle is 10% by mass or less and has the maleimide group.
  • the compound is a chopped carbon fiber bundle having an aliphatic hydrocarbon group having 2 or more carbon atoms.
  • An aqueous dispersion of a secondary sizing agent containing a compound having a maleimide group is added to a long carbon fiber bundle to which a primary sizing agent is attached, and an aqueous dispersion of the secondary sizing agent is further applied.
  • a method for producing a chopped carbon fiber bundle comprising a step of obtaining a long carbon fiber bundle containing the carbon fiber bundle and a step of cutting the long carbon fiber bundle containing the aqueous dispersion of the secondary sizing agent.
  • a method for producing a chopped carbon fiber bundle which comprises a step of cutting a long carbon fiber bundle to which the sizing agent is attached.
  • the chopped carbon fiber bundle of the present invention is excellent in heat resistance, mechanical properties of the molded product, and feedability.
  • the chopped carbon fiber bundle of the present invention can be produced with high productivity and efficiency with a small number of steps. Since the method for producing a chopped carbon fiber bundle of the present invention can be produced using an aqueous dispersion of a sizing agent without using a solvent, the load on the environment is low and no large-scale equipment is required.
  • the chopped carbon fiber bundle according to one aspect of the present invention is a chopped carbon fiber bundle containing carbon fibers and a sizing agent, wherein the sizing agent contains a compound having a maleimide group, and the compound having a maleimide group is 25. It is characterized by being liquid at ° C.
  • the chopped carbon fiber bundle according to another aspect of the present invention is a chopped carbon fiber bundle containing carbon fibers and a sizing agent, wherein the sizing agent contains a compound having a maleimide group, and the compound having the maleimide group is It is characterized by having an aliphatic hydrocarbon group having 2 or more carbon atoms.
  • the chopped carbon fiber bundle according to another aspect of the present invention is a chopped carbon fiber bundle containing carbon fibers and a sizing agent, wherein the sizing agent contains a compound having a maleimide group, and the compound having the maleimide group. It is characterized in that the viscosity at 25 ° C. is 100,000 mPa ⁇ s or less.
  • the chopped carbon fiber bundle according to another aspect of the present invention is a chopped carbon fiber bundle containing carbon fibers and a compound having a maleimide group, and the content of the compound having the maleimide group in the chopped carbon fiber bundle is 10. It is characterized by having a mass% or less.
  • the carbon fiber bundle is a form in which a single fiber (filament) of carbon fiber is focused.
  • the chopped carbon fiber bundle is a carbon fiber bundle cut into a predetermined length.
  • the fiber length of the single fiber in the chopped carbon fiber bundle is preferably 1 to 50 mm, more preferably 3 to 30 mm. When the fiber length is within the above range, the melt-kneadability with the thermoplastic resin is excellent. It is preferably a weighted average fiber length. If the chopped carbon fiber bundle is made of a single fiber having a fiber length of 1 to 15 mm, the chopped carbon fiber bundle can be observed with an optical microscope to measure the fiber length. If the chopped carbon fiber bundle is made of a single fiber having a fiber length of 15 to 50 mm, the fiber length can be measured with a ruler or a caliper.
  • the number of filaments in the chopped carbon fiber bundle is usually about 1000 to 100,000. From the viewpoint of the focusing property of carbon fibers, the number of filaments is preferably 3000 to 60,000.
  • the bulk density of the chopped carbon fiber bundle represents the weight of the chopped carbon fiber bundle per fixed volume.
  • the chopped carbon fiber bundle with high focusing power is less likely to cause a bridge between the chopped carbon fiber bundles, has excellent feedability, and can be stably supplied to the extruder.
  • the bulk density of the chopped carbon fiber bundle of the present invention is preferably 200 g / L or more, and more preferably 400 g / L or more.
  • the upper limit of the bulk density of the chopped carbon fiber bundle of the present invention is not particularly limited, but the chopped carbon fiber bundle of 600 g / L or less does not require an operation of reducing the voids in the carbon fiber bundle, so that production is easy.
  • the bulk density of the chopped carbon fiber bundle is measured by the following method.
  • the measurement environment is 25 ⁇ 3 ° C. for temperature and 50 ⁇ 20% RH for humidity.
  • a 2 L graduated cylinder is filled with 300 g of chopped carbon fiber bundles and tapped up and down 10 times with a stroke of 5 mm to read the volume of the chopped carbon fiber bundles. After that, tap the chopped carbon fiber bundle 10 times up and down, and then read the volume of the chopped carbon fiber bundle. read. The operation of reading the volume of the chopped carbon fiber bundle is repeated after tapping up and down 10 times until the volume of the chopped carbon fiber bundle does not change.
  • the scale of the measuring cylinder at the same height as the chopped carbon fiber bundle at the highest position in the measuring cylinder is read as the volume V (L) of the chopped carbon fiber bundle.
  • the content of the sizing agent in the chopped carbon fiber bundle is preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 2% by mass or more, from the viewpoint of focusing property.
  • the content of the sizing agent in the chopped carbon fiber bundle of the present invention is preferably 10% by mass or less, more preferably 5% by mass or less. It is preferable, and 4% by mass or less is more preferable.
  • the content of the sizing agent can be measured by JIS R7604 (1999).
  • the content of the compound having a maleimide group in the chopped carbon fiber bundle is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less, from the viewpoint of achieving both heat resistance and focusing property.
  • the content of carbon fibers in the chopped carbon fiber bundle is preferably 95% by mass or more, preferably 96% by mass or more, from the viewpoint of facilitating the dispersion of the chopped carbon fiber bundle when the thermoplastic resin and the chopped carbon fiber bundle are melt-kneaded. Is more preferable.
  • the carbon fiber content of the chopped carbon fiber bundle of the present invention is preferably 99% by mass or less, more preferably 98% by mass or less.
  • the carbon fiber content is a value obtained by subtracting the content (mass%) of the sizing agent from 100% by mass of the chopped carbon fiber bundle.
  • Examples of the carbon fiber used in the chopped carbon fiber bundle of the present invention include those obtained from raw materials such as pitch-based, rayon-based, and polyacrylonitrile-based materials. Of these, polyacrylonitrile-based carbon fibers are preferable because they are excellent in productivity and mechanical properties.
  • the diameter of the carbon fiber (filament) is preferably 4 to 12 ⁇ m, more preferably 5 to 8 ⁇ m. From the viewpoint of price and versatility, the tensile elastic modulus of the carbon fiber is preferably 230 to 350 GPa.
  • the chopped carbon fiber bundle contains a sizing agent containing a compound having a maleimide group (hereinafter, may be referred to as “the present sizing agent”).
  • the sizing agent is preferably attached to the carbon fiber.
  • a compound having a plurality of maleimide groups in one molecule is generally "maleimide” because even if it is a low molecular weight compound, the molecular weight is increased by heating and it becomes a resin. It is called “resin”. The same applies to the "epoxy resin” described later.
  • the compound having a maleimide group is preferably liquid at 25 ° C., that is, has a softening point or a melting point of less than 25 ° C., because it is easily dissolved and mixed with other resins and has excellent water dispersibility.
  • a compound having a liquid maleimide group at 25 ° C in the chopped carbon fiber bundle the compound having a liquid maleimide group at 25 ° C is difficult to decompose even at a high temperature, so that the chopped carbon is used as a molding material for a matrix resin having a high melting temperature. Even when a fiber bundle is used, it is possible to prevent deterioration of the mechanical properties of the molded product of the molding material. Further, since it is a liquid, the compound having a maleimide group is well-adapted to the carbon fiber bundle, and a chopped carbon fiber bundle having excellent focusing property can be obtained.
  • the compound having a maleimide group is preferably a compound having a plurality of maleimide groups in one molecule because it causes a cross-linking reaction at a high temperature and the heat resistance is improved.
  • the compound having a maleimide group preferably has a viscosity at 25 ° C. of 100,000 mPa ⁇ s or less.
  • the compound having a maleimide group may be a low molecular weight compound having a molecular weight of 90 to 1000, or a maleimide resin having a viscosity at 25 ° C. of 1000 to 100,000 mPa ⁇ s. From the viewpoint of heat resistance, a maleimide resin having a viscosity at 25 ° C. of 1000 to 100,000 mPa ⁇ s is preferable. Viscosity can be measured by "conical-viscosity measuring method using a plate-shaped rotational viscometer" in JIS Z8803 (2011).
  • the compound having a maleimide group preferably has an aliphatic hydrocarbon group having 2 or more carbon atoms from the viewpoint of water dispersibility. Since the compound having a maleimide group is easily dissolved and mixed with other resins, it is preferable to have an aliphatic moiety having 5 or more carbon atoms.
  • maleimide resin examples include alkylene bismaleimide, triethylene glycol bis (maleimide ethyl carbonate), 1,13-bismaleimide-4,7,10-trioxatridecane, and 1,11-bismaleimide-3.
  • 6,9-Aliphatic maleimide resin having an aliphatic moiety such as an aliphatic hydrocarbon group having 2 or more carbon atoms such as trioxaundecane and an alicyclic hydrocarbon group, N, N'-m-phenylene bismaleimide , 4,4'-Diphenylmethane bismaleimide, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenylsulfone bismaleimide, 4,4'-diphenylsulfide bismaleimide, 4-methyl-1,3-phenylene bismaleimide , 1,3-Phenylene bismaleimide, 2,2'-bis [4- (4-maleimide phenoxy) phenyl] propane, 1,3-bis (4-maleimide phenoxy) benzene, 1,3-bis (3-maleimide) Phenoxy) Aromatic maleimide resins such as benzene, aliphatic moieties and aromatics having 2 or more carbon atoms
  • An aliphatic maleimide resin or an aliphatic maleimide resin (including an alicyclic maleimide resin) having an aliphatic moiety and an aromatic moiety is preferable because it is easily compatible with other resins and has excellent water dispersibility. Is more preferable.
  • aliphatic bismaleimide resin examples include N, N'-methylene bismaleimide, N, N'-ethylene bismaleimide, N, N'-trimethylene bismaleimide, N, N'-as alkylene bismaleimide. Tetramethylene bismaleimide, N, N'-pentamethylene bismaleimide, N, N'-hexamethylene bismaleimide, N, N'-heptamethylene bismaleimide, N, N'-octamethylene bismaleimide, N, N'- Examples thereof include decamethylene bismaleimide, N, N'-(2,2,4-trimethylhexamethylene) bismaleimide, N, N'-(oxydimethylene) bismaleimide and the like.
  • Examples of the aliphatic bismaleimide resin include a compound represented by the following formula (m1) (hereinafter, also referred to as “compound (m1)”).
  • X 1 is an alicyclic hydrocarbon group having 5 to 8 carbon atoms which may have a substituent.
  • Q 1 is an aliphatic hydrocarbon group having a carbon number of 4 to 50.
  • n is 1 or 2.
  • Aliphatic hydrocarbon group for Q 1 may be linear, but may be branched, straight chain is preferable in view of compatibility with other resins.
  • the substituent of the alicyclic hydrocarbon group include a hydrocarbon group having 2 to 50 carbon atoms, a hydroxyl group, a carboxyl group and an alkoxy group, and an aliphatic hydrocarbon group having 5 to 25 carbon atoms is preferable.
  • the hydrocarbon group of the substituent may contain an unsaturated bond, may be linear, or may be branched, but is linear from the viewpoint of compatibility with other resins. Hydrocarbon groups in the form are preferable.
  • the number of substituents of the alicyclic hydrocarbon group may be a plurality, but is preferably 0 to 2 from the viewpoint of ease of synthesis of the compound (m1).
  • compound (m1) a compound represented by the following formula (m11) (hereinafter, also referred to as “compound (m11)”) is preferable.
  • an unsaturated bond may be contained in the cyclohexane ring.
  • Q 1 is the same as to Q 1 in the formula (m1).
  • R 1 is an aliphatic hydrocarbon group having 2 to 50 carbon atoms.
  • a is 1 or 2.
  • b is an integer of 1 to 4.
  • the aliphatic hydrocarbon group of R 1 may be linear or branched.
  • the aliphatic hydrocarbon group of R 1 is preferably linear.
  • the number of carbon atoms of the aliphatic hydrocarbon group of R 1 is preferably 5 to 25. If the number of R 1 is 2 or more, plural R 1 may be the same group or may be different groups. 2 is preferable for a. b is preferably 1 to 2.
  • maleimide resin aliphatic aromatic maleimide resin having an aliphatic moiety and an aromatic moiety
  • m2 a compound represented by the following formula (m2)
  • compound (m3) a compound represented by the following formula (m3) (hereinafter, “compound (m3)”. ) ”)
  • compound (m3) is more preferable.
  • Q 2 is an aliphatic hydrocarbon group having a carbon number of 6 to 100 (including alicyclic hydrocarbon groups).
  • X 2 is an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 3 to 6 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms, a monovalent aromatic group having 6 to 12 carbon atoms, and benzyl.
  • F is an integer of 1 to 30.
  • Polyoxyalkyl group —O—C 6 H 4 ⁇ Q 5 ⁇ C 6 H 5 (where Q 5 is ⁇ CH 2).
  • -, -C (CH 3 ) 2- -CO-, -O-, -S-, or -SO 2- ), or 1 to 3 hydrogen atoms in these groups.
  • aliphatic hydrocarbon group Q 2 (including an alicyclic hydrocarbon group), preferably an aliphatic hydrocarbon group represented by the following formula (x1).
  • an unsaturated bond may be contained in the cyclohexane ring.
  • Q 10 the formula (m1) in include the same groups as the aliphatic hydrocarbon group for Q 1 of the preferred embodiment are also the same.
  • R 2 is the formula (m11) in the same groups as the aliphatic hydrocarbon group R 1 include for, and their preferred embodiments are also the same.
  • q is an integer of 1 to 3.
  • the formula (m3), Q 3 and Q 4 are each independently an aliphatic hydrocarbon group having a carbon number of 6 to 100 (including alicyclic hydrocarbon groups).
  • X 3 is an alkylene group having 2 to 20 carbon atoms, a cycloalkylene group having 5 to 8 carbon atoms,-(C q H 2q O) t- (C r H 2r O) u- C s H 2s- ( However, q, r and s are independently integers of 2 to 6.
  • t is 0 or 1.
  • u is an integer of 1 to 30.) Polyoxyalkylene group and carbon.
  • Aliphatic hydrocarbon group of Q 3 and Q 4 include the same groups as the aliphatic hydrocarbon group Q 2 (including alicyclic hydrocarbon groups), and their preferred embodiments are also the same.
  • X 3 a group represented by -OC 6 H 4- Q 6- C 6 H 4- O- is preferable, and -OC 6 H 4- C (CH 3 ) 2- C 6 H 4 Groups represented by —O— are particularly preferred.
  • the compound having a maleimide group contained in this sizing agent may be one kind, or two or more kinds having different structures, molecular weights, or viscosities.
  • the sizing agent may contain other components other than the compound having a maleimide group.
  • examples of other components include epoxy resin, polyester resin, phenol resin, polyamide resin, polyurethane resin, polycarbonate resin, silane coupling agent, antistatic agent, lubricant, smoothing agent, and surfactant.
  • the other components contained in the sizing agent may be one kind or two or more kinds.
  • the sizing agent contains, in addition to the compound having a maleimide group, a compound having an epoxy group having no maleimide group (hereinafter, may be simply referred to as "a compound having an epoxy group"). It is preferable to do so.
  • a compound having an epoxy group By containing the compound having an epoxy group, the mechanical properties of the molded product obtained by using the chopped carbon fiber bundle of the present invention can be enhanced.
  • Examples of the compound having an epoxy group include an epoxy resin.
  • the epoxy resin is not particularly limited, and for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, naphthalene skeleton type.
  • Examples thereof include an epoxy resin, an aliphatic epoxy resin, a dicyclopentadiene type epoxy resin, a glycidylamine type epoxy resin, and a DPP novolak type epoxy resin.
  • an epoxy resin having a melting point (softening point if no melting point is present) of 50 ° C. or higher is more preferable from the viewpoint of heat resistance and feedability of the chopped carbon fiber bundle.
  • An epoxy resin having a melting point (a softening point when the melting point does not exist) of 70 ° C. or higher is more preferable.
  • the epoxy resin contained in this sizing agent may be one kind or two or more kinds.
  • a maleimide resin and an epoxy resin liquid at 25 ° C. As a combination of a compound having a maleimide group and a compound having an epoxy group contained in this sizing agent, from the viewpoint of compatibility, a maleimide resin and an epoxy resin liquid at 25 ° C., and a maleimide resin liquid at 25 ° C. and a 25 ° C. A combination of solid epoxy resins is preferred.
  • the sizing agent preferably contains a surfactant having no maleimide group in addition to the compound having a maleimide group.
  • a surfactant having no maleimide group By containing the surfactant, it becomes easy to prepare an aqueous dispersion of the sizing agent, and the environmental load when the sizing agent is attached to the carbon fiber bundle can be reduced.
  • the surfactant may be any as long as it can disperse a compound having a maleimide group in water, and examples thereof include nonionic surfactants and anionic surfactants.
  • nonionic surfactant examples include an aliphatic nonionic surfactant, a phenolic nonionic surfactant, and a pluronic type surfactant.
  • examples of the aliphatic nonionic surfactant include higher alcohol ethylene oxide adduct, fatty acid ethylene oxide adduct, polyhydric alcohol fatty acid ester ethylene oxide adduct, glycerol fatty acid ester, sorbitol and sorbitan fatty acid ester, and pentaerythritol fatty acid ester.
  • phenol-based nonionic surfactant examples include an alkylphenol-based nonionic surfactant and a polycyclic phenol-based nonionic surfactant.
  • pluronic type surfactant examples include polyoxyethylene polyoxypropylene polymer (ethylene oxide and propylene oxide may be random, block, or reverse) and the like.
  • anionic surfactant examples include carboxylates such as aliphatic carboxylates and polyoxyethylene alkyl ether carboxylates, and sulfate esters such as alkylbenzene polyethylene glycol ether sulfates and polycyclic phenyl ether polyethylene glycol ether sulfates. Examples thereof include salts, polyoxyethylene alkyl ether phosphates, polyoxyethylene alkyl phenyl ether phosphates and other phosphates. Moreover, ammonium ion is mentioned as a counter cation.
  • surfactant a commercially available product can be used.
  • nonionic surfactants include “Newcol 707”, “Newcol 723”, “Newcol 707-F” manufactured by Nippon Embroidery Co., Ltd., and “ADEKA PLRONIC F-88” manufactured by ADEKA. Be done.
  • anionic surfactant include “Newcol 707-SF” and “Newcol 723-SF” manufactured by Nippon Embroidery Co., Ltd., "High Tenor NF-13” and “High Tenor NF” manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. -17 ".
  • the surfactant contained in this sizing agent may be one kind or two or more kinds.
  • the content of the compound having a maleimide group in the sizing agent is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, still more preferably 30 to 70% by mass, based on the total mass of the sizing agent. ..
  • the content of the compound having a maleimide group is at least the above lower limit value, the heat resistance can be enhanced.
  • the content of the compound having a maleimide group is not more than the above upper limit value, the water dispersibility can be enhanced.
  • the content thereof is preferably 10 to 80% by mass, more preferably 30 to 70% by mass, and 40 to 60% by mass with respect to the total mass of the sizing agent. Is even more preferable.
  • the content of the compound having an epoxy group is at least the above lower limit value, the mechanical properties of the obtained molded product can be enhanced.
  • the content of the compound having an epoxy group is not more than the above upper limit value, the heat resistance can be enhanced.
  • the content thereof is preferably 1 to 30% by mass, more preferably 5 to 20% by mass, based on the total mass of the present sizing agent. 10 to 15% by mass is more preferable.
  • the content of the surfactant is at least the above lower limit value, the water dispersibility can be enhanced.
  • the content of the surfactant is not more than the above upper limit value, the heat resistance can be enhanced.
  • the chopped carbon fiber bundle can be produced by applying an aqueous dispersion of a sizing agent containing a compound having a maleimide group to the carbon fiber or the carbon fiber bundle, drying the carbon fiber bundle, and adhering the sizing agent to the carbon fiber bundle.
  • the chopped carbon fiber bundle obtained by the above-mentioned production method can be blended with a thermoplastic resin, for example, and used as a fiber-reinforced composite material used in a molding method such as injection molding.
  • the number of times the sizing agent is attached to the carbon fiber bundle is not limited to once, but may be two or more times.
  • a carbon fiber bundle to which a primary sizing agent is attached is wound around a bobbin to form a roll body, and the carbon fiber bundle is unwound from this roll body to be attached by applying an aqueous dispersion of a secondary sizing agent.
  • the primary sizing agent and the secondary sizing agent may have different compositions or may have the same composition.
  • the solid content concentration of the aqueous dispersion of this sizing agent is not particularly limited, and may be selected according to the stability of the aqueous dispersion and the viscosity that is easy to handle.
  • the solid content concentration of the aqueous dispersion of the sizing agent is preferably 1 to 50% by mass, more preferably 3 to 45% by mass, still more preferably 5 to 40% by mass. If the solid content concentration of this sizing agent is equal to or higher than the above lower limit, the transportation cost will be low. When the solid content concentration of the aqueous dispersion of this sizing agent is not more than the above upper limit, the handleability is excellent.
  • water When adhering to the carbon fiber bundle, water may be appropriately added to the aqueous dispersion to further reduce the solid content concentration to about 1 to 20% by mass in order to adjust the adhering amount.
  • the environmental load can be reduced as compared with the sizing agent using an organic solvent.
  • Specific examples of the method for producing the chopped carbon fiber bundle include a method having the following steps (1) to (3).
  • a step of applying an aqueous dispersion of a sizing agent to obtain a long carbon fiber bundle to which the sizing agent is attached (2)
  • a step of cutting the carbon fiber bundle (3) Applying an aqueous dispersion of a sizing agent Step of drying the carbon fiber bundle
  • step (1) for example, an aqueous dispersion of a sizing agent is applied to a long carbon fiber bundle drawn from a roll body.
  • the method of applying the aqueous dispersion of the sizing agent to the long carbon fiber bundle is not particularly limited.
  • a touch roll method in which a part of the roll is immersed in an aqueous dispersion of a sizing agent, the aqueous dispersion of the sizing agent is applied to the surface of the roll, and then the carbon fiber bundle is brought into contact with the roll to give the sizing agent.
  • a dipping method in which the carbon fiber bundle is immersed in the aqueous dispersion of the sizing agent may be used.
  • step (2) the carbon fiber bundle is cut.
  • the method for cutting the carbon fiber bundle is not particularly limited, and examples thereof include a method using a rotary cutter, a guillotine cutter, a roving cutter, and the like.
  • the length of the carbon fiber bundle at the time of cutting is preferably set to 1 to 50 mm, more preferably 3 to 30 mm.
  • the length of the carbon fiber bundle at the time of cutting is set within the above range, the obtained chopped carbon fiber bundle and the thermoplastic resin can be easily melt-kneaded.
  • the carbon fiber bundle to which the aqueous dispersion of the sizing agent is applied is dried.
  • the drying method include a method using a known heating device such as a hot air dryer, a panel heater dryer, a muffle furnace, and a heating roll.
  • the carbon fiber bundle to which the aqueous dispersion of the sizing agent is applied may be naturally dried without heating. In the case of heat drying, the heating temperature is preferably about 100 to 200 ° C.
  • the steps (1) to (3) may be performed in a continuous manner or in a batch manner.
  • the order of steps (1) to (3) is not particularly limited, and steps (1), steps (2), and steps (3) may be performed in this order, and steps (1), steps (3), and steps ( You may go in the order of 2).
  • steps (1), (2), and (3) are performed in this order, in the step (3), it is preferable to dry the chopped strands while vibrating them while transferring them in order to prevent the chopped strands from adhering to each other. ..
  • the method of performing the step (1), the step (3), and the step (2) in this order is advantageous in that a heating device having a relatively simple structure can be used in the step (2).
  • the amount of sizing agent attached to the chopped carbon fiber bundle can be set as appropriate.
  • the amount of the sizing agent adhered to the chopped carbon fiber bundle is preferably 0.1 to 10% by mass, more preferably 1 to 5% by mass, and 2 to 4% by mass with respect to the total mass of the sizing agent and the carbon fiber bundle. Is even more preferable.
  • the amount of the sizing agent adhered is at least the above lower limit, the chopped carbon fiber bundle has excellent focusing property.
  • the amount of the sizing agent adhered is not more than the above upper limit, the chopped strands after cutting are likely to be dispersed.
  • the amount of the sizing agent attached can be adjusted by adjusting the solid content concentration of the aqueous dispersion of the sizing agent used in step (1), adjusting the pressing pressure (squeezing amount) when the carbon fiber bundle is brought into contact with the roll, and the like.
  • An aqueous dispersion of a secondary sizing agent containing a compound having a maleimide group is applied to a long carbon fiber bundle to which a primary sizing agent is attached, and a long length containing the aqueous dispersion of the secondary sizing agent. It is preferable to produce a chopped carbon fiber bundle by going through a step of obtaining the carbon fiber bundle of the above and a step of cutting the carbon fiber bundle containing the aqueous dispersion of the secondary sizing agent. This is because the carbon fiber bundle can be easily cut.
  • the primary sizing agent a sizing agent containing a compound having an epoxy group is preferable, and a sizing agent containing a compound having an epoxy group and not containing a compound having a maleimide group is particularly preferable.
  • the solid-liquid content concentration of the aqueous dispersion of the primary sizing agent (which may contain other components such as a surfactant in addition to the compound having an epoxy group) used for adhering the primary sizing agent is 0. It is preferably 1 to 50% by mass, preferably 0.5 to 30% by mass, and even more preferably 1 to 20% by mass.
  • the steps (1) and (3) are performed to obtain a long carbon fiber bundle to which the primary sizing agent is attached.
  • the amount of the primary sizing agent adhered is preferably 0.05 to 2% by mass, more preferably 0.1 to 1.5% by mass, and 0.2 to 0.2 to the total mass of the primary sizing agent and the carbon fiber bundle. 1.4% by mass is more preferable.
  • an aqueous dispersion of a secondary sizing agent containing a compound having a maleimide group is applied to the carbon fiber bundle to which the primary sizing agent is attached, and the above steps (1) to (3) are performed to chop the carbon fiber bundle. To get.
  • the secondary sizing agent may contain a compound having a maleimide group and may not contain a compound having an epoxy group.
  • the secondary sizing agent may contain a compound having a maleimide group and a compound having an epoxy group.
  • the secondary sizing agent preferably contains a compound having a maleimide group and a compound having an epoxy group from the viewpoint of heat resistance.
  • the solid content concentration of the aqueous dispersion of the secondary sizing agent (which may contain other components such as a surfactant) used for adhering the secondary sizing agent is preferably 1 to 50% by mass, preferably 3 to 45.
  • the mass% is preferable, and 5 to 40% by mass is more preferable.
  • the content of the compound having a maleimide group in 100% by mass of the solid content is 10 to 80% by mass, particularly 20 to 60% by mass.
  • the content of the compound having an epoxy group is preferably 10 to 80% by mass, particularly preferably 30 to 70% by mass, from the viewpoint of achieving both heat resistance and focusing property.
  • the amount of the secondary sizing agent adhered is preferably such that the ratio of the total sizing agent adhered to the carbon fiber bundle to the total mass of the carbon fiber bundle is within the above-mentioned preferable range.
  • the chopped carbon fiber bundle can be used as a reinforcing material for a matrix resin made of various thermoplastic resins or thermosetting resins.
  • it can be a pellet composed of a chopped carbon fiber bundle and a matrix resin.
  • a molded product can be obtained using these pellets.
  • thermoplastic resin includes polycarbonate resin, nylon resin, polyester resin, ABS resin, polystyrene resin, polyphenylene ether resin, polyoxyethylene resin, polyolefin resin, polyetherimide resin or other industrially useful supermarkets.
  • thermosetting resin examples include unsaturated polyester resin, vinyl ester resin and phenol resin.
  • the aspect of the chopped carbon fiber bundle described above is useful as a reinforcing material for super engineering plastics that requires a high melt-kneading temperature due to its excellent heat resistance.
  • the method for molding the carbon fiber reinforced resin composition containing the chopped carbon fiber bundle is not particularly limited, and a known method can be used.
  • the matrix resin is a thermoplastic resin
  • an injection molding method is adopted.
  • the matrix resin is a thermosetting resin
  • a press molding method, a sheet molding compound, or a high pressure press molding method using a bulk molding compound is adopted.
  • the sizing agent was measured under the following conditions using a thermogravimetric measuring device Q500 (manufactured by TA Instruments), and a loss on ignition curve was obtained. Atmosphere: In nitrogen Heating rate: 20 ° C / min Temperature range: 30-500 ° C From the heat loss curve, the mass W100 of the sizing agent at 100 ° C. and the mass W400 of the sizing agent at 400 ° C. were obtained, and the heat loss ratio Q (%) was obtained from the following formula.
  • the sizing agent used for the heat weight loss measurement was obtained by removing water by heating the aqueous dispersion of the secondary sizing agent of each example described later at 110 ° C. for 1 hour.
  • the solution obtained by vacuum drying at 130 ° C. for 1 hour to remove the solvent was used for the heat weight loss measurement.
  • a long polyacrylonitrile-based carbon fiber bundle (manufactured by Mitsubishi Chemical Corporation, trade name: Pyrofil (registered trademark) TR50S15L, number of filaments 15,000, tensile modulus 240 GPa) to which a sizing agent is not attached is solidified as a primary sizing agent.
  • the product was immersed in an aqueous dispersion whose concentration was adjusted to 1.5% by mass, and passed through a nip roll.
  • the carbon fiber bundle was brought into contact with a heating roll having a surface temperature of 140 ° C. for 10 seconds and dried to obtain a carbon fiber bundle to which a primary sizing agent was applied.
  • the amount of the primary sizing agent adhered was adjusted to 0.2% by mass with respect to the total mass of the primary sizing agent and the carbon fiber bundle.
  • Example 1 (Preparation of secondary sizing agent aqueous dispersion)
  • the raw materials shown in Table 1 are mixed with the compounding composition (parts by mass) shown in the column of Example 1 in Table 2, and 15 parts by mass of Hytenol NF-17, which is an anionic surfactant, is added thereto.
  • the mixture was heated to 110 ° C. and stirred until uniform to obtain a secondary sizing agent.
  • Ion-exchanged water was added while stirring the obtained secondary sizing agent, and phase inversion emulsification was performed using a homomixer.
  • Ion-exchanged water is dropped at 20 mL / min while stirring the secondary sizing agent with a homomixer, and the amount of water dropped after passing the phase inversion point is increased to 100 mL / min, and the secondary sizing agent is dispersed in water. An agent dispersion was obtained. The amount of ion-exchanged water added to the secondary sizing agent was adjusted so that the concentration of the secondary sizing agent in the secondary sizing agent dispersion was 30% by mass.
  • the carbon fiber bundle to which the primary sizing agent is attached is immersed in the aqueous dispersion of the secondary sizing agent prepared in the above procedure, passed through a nip roll, and then the wet carbon fiber bundle is 6 mm with a roving cutter. Cut to length. Then, the cut carbon fiber bundle was dried in a hot air drying oven at 130 ° C. to obtain a chopped carbon fiber bundle.
  • the total amount of the sizing agent which is the sum of the primary sizing agent and the secondary sizing agent, is 3% by mass with respect to the total mass of the sizing agent and the carbon fiber bundle. Adjusted the concentration and the throttle of the nip roll. Table 2 shows the evaluation results of the secondary sizing agent and the obtained chopped carbon fiber bundle.
  • Examples 2 to 5, Comparative Example 1 An aqueous dispersion of the secondary sizing agent was prepared in the same manner as in Example 1 except that the raw materials shown in Table 1 were mixed with the compounding composition (part by mass) shown in Table 2 to prepare a secondary sizing agent. , A chopped carbon fiber bundle was obtained. Table 2 shows the evaluation results of the secondary sizing agent and the obtained chopped carbon fiber bundle.
  • the carbon fiber bundle to which the primary sizing agent is attached is immersed in the secondary sizing agent solution prepared in the above procedure, passed through a nip roll, and then the wet carbon fiber bundle is reduced to a length of 6 mm with a roving cutter. I disconnected. Then, the cut carbon fiber bundle was dried in a hot air drying oven at 180 ° C. to obtain a chopped carbon fiber bundle.
  • the concentration of the secondary sizing agent solution and the nip roll so that the total amount of the sizing agent, which is the sum of the primary sizing agent and the secondary sizing agent, is 3% by mass with respect to the total mass of the sizing agent and the carbon fiber bundle. I adjusted the aperture of. Table 2 shows the evaluation results of the secondary sizing agent and the obtained chopped carbon fiber bundle.
  • Example 1 the heating weight loss ratio Q of the sizing agent shows a small value, and it is presumed that the heat resistance as a chopped carbon fiber bundle is excellent. In Examples 1 to 3 and 5, the feedability was also good. Reference Example 1 is inferior in emulsifying property, but has good heat resistance and feedability.
  • Comparative Example 1 it was found that the heating weight loss ratio of the sizing agent showed a large value and was inferior in heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

炭素繊維とサイジング剤とを含むチョップド炭素繊維束であって、該サイジング剤がマレイミド基を有する化合物を含有し、該マレイミド基を有する化合物は25℃において液状である、チョップド炭素繊維束。1次サイジング剤を付着させた長尺の炭素繊維束に、マレイミド基を有する化合物を含む2次サイジング剤の水分散液を付与して更に該2次サイジング剤の水分散液を含んだ長尺の炭素繊維束を得る工程、および該2次サイジング剤の水分散液を含んだ長尺の炭素繊維束を切断する工程を含む、チョップド炭素繊維束の製造方法。耐熱性とフィード性を改良したチョップド炭素繊維束であって、高い生産性で製造可能なチョップド炭素繊維束が提供される。

Description

チョップド炭素繊維束及びチョップド炭素繊維束の製造方法
 本発明は、チョップド炭素繊維束及びチョップド炭素繊維束の製造方法に関する。
 熱可塑性樹脂の機械強度向上の手段として、炭素繊維などの繊維状の充填剤を配合する手法が一般的に知られている。熱可塑性樹脂に炭素繊維を配合する方法として、チョップド炭素繊維束と熱可塑性樹脂とを、押出機を用いて溶融混練する方法がある。ここで使用されるチョップド炭素繊維束は、長尺の炭素繊維束にサイジング剤を付着させた後切断して製造されている。
 近年、機械強度と耐熱性に優れる熱可塑性樹脂(スーパーエンジニアリングプラスチック)が実用され始めている。スーパーエンジニアリングプラスチックは押出機で溶融混練する際の温度が300~400℃程度と、汎用の熱可塑性樹脂に比べて溶融混練温度が高い。チョップド炭素繊維束とスーパーエンジニアリングプラスチックとを300~400℃程度で溶融混練すると、炭素繊維束に付着しているサイジング剤が熱分解して、押出機内でガスが発生することがある。
 サイジング剤の熱分解により発生したガスは、安定して押出成形することを妨げ、得られる成形物の機械特性が低下する原因となる。このため、チョップド炭素繊維束に付着しているサイジング剤には熱分解によりガスを発生させにくいこと(耐熱性)が求められる。
 サイジング剤は、チョップド炭素繊維束における繊維束から炭素繊維フィラメントにばらけないようにするために使用される。サイジング剤による炭素繊維束の集束力が弱く、チョップド炭素繊維束がばらけると、離脱した炭素繊維フィラメントが原因となってチョップド炭素繊維束の間でブリッジを起こすことがある。このブリッジは、ホッパーからフィーダー、フィーダーから押出機へのチョップド炭素繊維束の定量供給を困難にすることがある。ブリッジは、絡み合った炭素繊維フィラメントが押出機のスクリューによる搬送を阻害する原因ともなる。このため、チョップド炭素繊維束には、サイジング剤による集束性が高く、押出機へのフィードがしやすいこと(フィード性)も求められる。
 このような背景から、耐熱性とフィード性の両方に優れたチョップド炭素繊維束を得るための試みがなされている。
 特許文献1には、エポキシ樹脂と側鎖に官能基を有する芳香族ポリイミド樹脂とを含む、耐熱性に優れるサイジング剤に関する技術が記載されている。
 特許文献2には、チョップドストランドを特定の温度範囲で加熱処理することにより、成形時に分解ガスとフリーファイバーの発生が少ないチョップドストランドを得る技術が記載されている。
特開2014-125688号公報 特開平10-1877号公報
 本発明の目的の一つは、耐熱性および成形物の機械特性に共に優れるチョップド炭素繊維束を生産性高く得ることである。
 本発明者は、チョップド炭素繊維束がマレイミド基を有する特定の化合物を含有することによって、上記課題を解決し得ることを見出した。
 本発明は以下の態様を含むものである。
[1] 炭素繊維とサイジング剤とを含むチョップド炭素繊維束であって、該サイジング剤がマレイミド基を有する化合物を含有し、該マレイミド基を有する化合物は25℃において液状である、チョップド炭素繊維束。
[2] 炭素繊維とサイジング剤とを含むチョップド炭素繊維束であって、該サイジング剤がマレイミド基を有する化合物を含有し、該マレイミド基を有する化合物は炭素数が2以上の脂肪族炭化水素基を有する、チョップド炭素繊維束。
[3] 前記マレイミド基を有する化合物の25℃における粘度が100000mPa・s以下である、[1]または[2]に記載のチョップド炭素繊維束。
[4] 前記マレイミド基を有する化合物は、下記式m1または下記式m3で表される化合物である、[1]~[3]のいずれかに記載のチョップド炭素繊維束。
Figure JPOXMLDOC01-appb-C000003
 式(m1)中、Xは、置換基を有してもよい炭素原子数5~8の脂環式炭化水素基である。Qは、炭素原子数4~50の脂肪族炭化水素基である。nは、1又は2である。
Figure JPOXMLDOC01-appb-C000004
 式(m3)中、Q及びQは、それぞれ独立に、炭素原子数6~100の脂肪族炭化水素基(脂環式炭化水素基を含む)である。Xは、炭素原子数2~20のアルキレン基、炭素原子数5~8のシクロアルキレン基、-(C2qO)-(C2rO)-C2s-(ただし、q、r及びsは、それぞれ独立に2~6の整数である。tは0又は1である。uは、1~30の整数である。)で表されるポリオキシアルキレン基、炭素原子数6~12の2価の芳香族基、-O-C-Q-C-O-(ただし、Qは、-CH-、-C(CH-、-CO-、-O-、-S-、又は-SO-である。)で表される基、又はこれらの基における1~3個の水素原子がヒドロキシ基で置換された基である。
[5] 前記チョップド炭素繊維束の嵩密度が200g/L以上である、[1]~[4]のいずれかに記載のチョップド炭素繊維束。
[6] 前記チョップド炭素繊維束の嵩密度が600g/L以下である、[1]~[5]のいずれかに記載のチョップド炭素繊維束。
[7]前記マレイミド基を有する化合物が1分子中に複数のマレイミド基を有する、[1]~[6]のいずれかに記載のチョップド炭素繊維束。
[8]前記マレイミド基を有する化合物が、炭素数が5以上の脂肪族部位を有する、[1]~[7]のいずれかに記載のチョップド炭素繊維束。
[9]前記サイジング剤が、更にマレイミド基を有さないエポキシ基を有する化合物を含有する、[1]~[8]のいずれかに記載のチョップド炭素繊維束。
[10] 炭素繊維とサイジング剤とを含むチョップド炭素繊維束であって、該サイジング剤がマレイミド基を有する化合物を含有し、該マレイミド基を有する化合物の25℃における粘度が100000mPa・s以下である、チョップド炭素繊維束。
[11] 前記チョップド炭素繊維束の嵩密度が200g/L以上である、[10]に記載のチョップド炭素繊維束。
[12] 前記マレイミド基を有する化合物が、炭素数が5以上の脂肪族部位を有する、[10]または[11]に記載のチョップド炭素繊維束。
[13] 前記サイジング剤が、更にマレイミド基を有さないエポキシ基を有する化合物を含有する、[10]~[12]のいずれかに記載のチョップド炭素繊維束。
[14] 炭素繊維とマレイミド基を有する化合物とを含むチョップド炭素繊維束であって、チョップド炭素繊維束中の該マレイミド基を有する化合物の含有量が10質量%以下であり、該マレイミド基を有する化合物は炭素数が2以上の脂肪族炭化水素基を有する、チョップド炭素繊維束。
[15] 前記チョップド炭素繊維束の嵩密度が200g/L以上である、[14]に記載のチョップド炭素繊維束。
[16] 前記マレイミド基を有する化合物が、炭素数が5以上の脂肪族部位を有する、[14]または[15]に記載のチョップド炭素繊維束。
[17] 前記サイジング剤が、更にマレイミド基を有さないエポキシ基を有する化合物を含有する、[14]~[16]のいずれかに記載のチョップド炭素繊維束。
[18] [1]~[17]のいずれかに記載のチョップド炭素繊維束とマトリックス樹脂とからなるペレット。
[19] [18]に記載のペレットからなる成形品。
[20] 1次サイジング剤を付着させた長尺の炭素繊維束に、マレイミド基を有する化合物を配合した2次サイジング剤の水分散液を付与して更に該2次サイジング剤の水分散液を含んだ長尺の炭素繊維束を得る工程、および該2次サイジング剤の水分散液を含んだ長尺の炭素繊維束を切断する工程を含む、チョップド炭素繊維束の製造方法。
[21]長尺の炭素繊維束に、25℃において液状であるマレイミド基を有する化合物を配合したサイジング剤の水分散液を付与して該サイジング剤が付着した長尺の炭素繊維束を得る工程、および該サイジング剤が付着した長尺の炭素繊維束を切断する工程を含む、チョップド炭素繊維束の製造方法。
[22]25℃において液状であるマレイミド基を有する化合物とエポキシ樹脂とを含むサイジング剤。
 本発明のチョップド炭素繊維束は、耐熱性、成形物の機械特性、およびフィード性に優れる。本発明のチョップド炭素繊維束は、少ない工程数で、生産性高く効率的に製造することができる。本発明のチョップド炭素繊維束の製造方法は、溶剤を用いることなくサイジング剤の水分散液を用いて、製造することができることから、環境に対する負荷が低く、大がかりな設備も不要である。
 以下に本発明について詳述する。本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。
 本明細書において「~」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いる。
[チョップド炭素繊維束]
 本発明の一態様に係るチョップド炭素繊維束は、炭素繊維とサイジング剤とを含むチョップド炭素繊維束であって、該サイジング剤がマレイミド基を有する化合物を含有し、該マレイミド基を有する化合物は25℃において液状であることを特徴とする。
 本発明の別の態様に係るチョップド炭素繊維束は、炭素繊維とサイジング剤とを含むチョップド炭素繊維束であって、該サイジング剤がマレイミド基を有する化合物を含有し、該マレイミド基を有する化合物は炭素数が2以上の脂肪族炭化水素基を有することを特徴とする。
 本発明の別の態様に係るチョップド炭素繊維束は、炭素繊維とサイジング剤とを含むチョップド炭素繊維束であって、該サイジング剤がマレイミド基を有する化合物を含有し、該マレイミド基を有する化合物の25℃における粘度が100000mPa・s以下であることを特徴とする。
 本発明の別の態様に係るチョップド炭素繊維束は、炭素繊維とマレイミド基を有する化合物とを含むチョップド炭素繊維束であって、チョップド炭素繊維束中の該マレイミド基を有する化合物の含有量が10質量%以下であることを特徴とする。
 炭素繊維束とは、炭素繊維の単繊維(フィラメント)が集束された形態である。
 チョップド炭素繊維束とは、炭素繊維束を所定の長さに切断したものである。
 チョップド炭素繊維束中の単繊維の繊維長は、1~50mmであることが好ましく、3~30mmがより好ましい。繊維長が上記範囲内であれば、熱可塑性樹脂との溶融混練性に優れる。加重平均繊維長であることが好ましい。
繊維長が1~15mmの単繊維からなるチョップド炭素繊維束であれば、チョップド炭素繊維束を光学顕微鏡で観察して繊維長を測定することができる。繊維長が15~50mmの単繊維からなるチョップド炭素繊維束であれば、定規もしくはノギスにより繊維長を測定することができる。
 チョップド炭素繊維束のフィラメント数は、通常1000~100000本程度である。炭素繊維の集束性の観点から、フィラメント数3000~60000本が好ましい。
 チョップド炭素繊維束の嵩密度は、一定体積あたりのチョップド炭素繊維束の重さを表している。チョップド炭素繊維束の集束力が高いほど、嵩密度は小さくなる傾向にある。これは集束力の高いチョップド炭素繊維束は、繊維束から炭素繊維フィラメントにばらけにくく、チョップド炭素繊維束同士が接した際の摩擦抵抗が小さくなるためである。
 集束力の高いチョップド炭素繊維束は、チョップド炭素繊維束の間でブリッジを起こしにくく、フィード性に優れ、押出機へ安定供給できる。フィード性の観点から、本発明のチョップド炭素繊維束の嵩密度は好ましくは200g/L以上であり、より好ましくは400g/L以上である。本発明のチョップド炭素繊維束の嵩密度の上限は特に制限はないが、600g/L以下のチョップド炭素繊維束は炭素繊維束内の空隙を減らす操作が不要のため生産が容易である。
 チョップド炭素繊維束の嵩密度は、以下の方法により測定される。
 測定環境は温度を25±3℃、湿度を50±20%RHとする。2Lのメスシリンダーに、300gのチョップド炭素繊維束を充填し、5mmのストロークで上下に10回タップさせ、チョップド炭素繊維束の体積を読み取る。その後、さらに上下に10回タップさせてからチョップド炭素繊維束の体積を読み取り、タップの前後で体積の変化があれば、再度5mmのストロークで上下に10回タップさせ、チョップド炭素繊維束の体積を読み取る。チョップド炭素繊維束の体積の変化がなくなるまで、上下に10回タップさせてからチョップド炭素繊維束の体積を読み取る操作を繰り返す。チョップド炭素繊維束の体積に変化が無くなったら、メスシリンダー内で一番高い位置にあるチョップド炭素繊維束と同じ高さのメスシリンダーの目盛をチョップド炭素繊維束の体積V(L)として読み取る。この体積とチョップド炭素繊維束の重量300gとを用いて、次式から嵩密度を算出する。
  嵩密度=300/V
 チョップド炭素繊維束中のサイジング剤の含有量は、集束性の観点から、0.1質量%以上が好ましく、1質量%以上がより好ましく、2質量%以上がさらに好ましい。熱可塑性樹脂とチョップド炭素繊維束を溶融混練する際の炭素繊維の分散性の観点から、本発明のチョップド炭素繊維束のサイジング剤の含有量は10質量%以下が好ましく、5質量%以下がより好ましく、4質量%以下がさらに好ましい。サイジング剤の含有量はJIS R7604(1999)により測定できる。チョップド炭素繊維束中のマレイミド基を有する化合物の含有量は、耐熱性と集束性との両立の観点から10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましい。
 チョップド炭素繊維束中の炭素繊維の含有量は、熱可塑性樹脂とチョップド炭素繊維束を溶融混練する際にチョップド炭素繊維束を分散させやすくする観点から、95質量%以上が好ましく、96質量%以上がより好ましい。一方、集束性の観点から、本発明のチョップド炭素繊維束の炭素繊維の含有量は99質量%以下が好ましく、98質量%以下がより好ましい。炭素繊維の含有量は、チョップド炭素繊維束100質量%から前記サイジング剤の含有量(質量%)を引いた値である。
<炭素繊維>
 本発明のチョップド炭素繊維束に用いる炭素繊維は、ピッチ系、レーヨン系あるいはポリアクリロニトリル系などの原料物質から得られたものが挙げられる。中でもポリアクリロニトリル系の炭素繊維は生産性及び機械特性に優れるため好ましい。
 炭素繊維(フィラメント)の直径は、4~12μmが好ましく、より好ましくは5~8μmである。価格および汎用性の観点から、炭素繊維の引張弾性率は230~350GPaが好ましい。
<サイジング剤>
 チョップド炭素繊維束は、マレイミド基を有する化合物を含有するサイジング剤(以下、「本サイジング剤」と称す場合がある。)を含む。サイジング剤は炭素繊維に付着していることが好ましい。サイジング剤中にマレイミド基を有する化合物を含有することにより、高い耐熱性を有するチョップド炭素繊維束となる。
 マレイミド基を有する化合物のうち、1分子中にマレイミド基を複数有する化合物は、低分子量の化合物であっても、加熱により高分子量化が進行して樹脂状となることから、一般的に「マレイミド樹脂」と呼称されている。後述の「エポキシ樹脂」についても同様である。
(マレイミド基を有する化合物)
 マレイミド基を有する化合物は、他の樹脂と溶解混合しやすく、水分散性にも優れる点から、25℃で液状、すなわち軟化点又は融点が25℃未満であることが好ましい。チョップド炭素繊維束に25℃で液状のマレイミド基を有する化合物を含むことで、25℃で液状のマレイミド基を有する化合物が高温でも分解しにくいことから溶融温度の高いマトリクス樹脂の成形材料にチョップド炭素繊維束を用いる場合でも成形材料の成形物の機械特性の低下を防ぐことができる。また、液状であることからマレイミド基を有する化合物が炭素繊維束によくなじみ集束性に優れたチョップド炭素繊維束を得ることができる。
 マレイミド基を有する化合物は、高温で架橋反応を起こし、耐熱性が向上することから、1分子中に複数のマレイミド基を有する化合物であることが好ましい。
 マレイミド基を有する化合物は、25℃における粘度が100000mPa・s以下であることが好ましい。マレイミド基を有する化合物は、分子量が90~1000の低分子量化合物であってもよいし、25℃における粘度が1000~100000mPa・sのマレイミド樹脂であってもよい。耐熱性の観点から、25℃における粘度が1000~100000mPa・sのマレイミド樹脂であることが好ましい。
 粘度はJIS Z8803(2011)における「円すい-板形回転粘度計による粘度測定方法」によって測定できる。
 マレイミド基を有する化合物は、炭素数が2以上の脂肪族炭化水素基を有することが水分散性の観点から好ましい。
 マレイミド基を有する化合物は他の樹脂と溶解混合しやすいことから、炭素数が5以上の脂肪族部位を有することが好ましい
 マレイミド樹脂としては、具体的には、アルキレンビスマレイミド、トリエチレングリコールビス(マレイミドエチルカーボネート)、1,13-ビスマレイミド-4,7,10-トリオキサトリデカン、1,11-ビスマレイミド-3,6,9-トリオキサウンデカン等の炭素数が2以上の脂肪族炭化水素基や脂環式炭化水素基等の脂肪族部位を有する脂肪族マレイミド樹脂、N,N’-m-フェニレンビスマレイミド、4,4’-ジフェニルメタンビスマレイミド、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルホンビスマレイミド、4,4’-ジフェニルスルフィドビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,3-フェニレンビスマレイミド、2,2’-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、1,3-ビス(3-マレイミドフェノキシ)ベンゼン等の芳香族マレイミド樹脂、炭素数が2~100の脂肪族炭化水素基や炭素数が3~100の脂環式炭化水素基等の炭素数が2以上の脂肪族部位および芳香族部位を有するマレイミド樹脂(脂肪族芳香族マレイミド樹脂)が挙げられる。
 他の樹脂と相溶しやすく、水分散性に優れる点から、脂肪族部位および芳香族部位を有するマレイミド樹脂、或いは脂肪族マレイミド樹脂(脂環式マレイミド樹脂を含む)が好ましく、脂肪族マレイミド樹脂がより好ましい。
 脂肪族ビスマレイミド樹脂の具体例としては、アルキレンビスマレイミドとしては、N,N’-メチレンビスマレイミド、N,N’-エチレンビスマレイミド、N,N’-トリメチレンビスマレイミド、N,N’-テトラメチレンビスマレイミド、N,N’-ペンタメチレンビスマレイミド、N,N’-ヘキサメチレンビスマレイミド、N,N’-ヘプタメチレンビスマレイミド、N,N’-オクタメチレンビスマレイミド、N,N’-デカメチレンビスマレイミド、N,N’-(2,2,4-トリメチルヘキサメチレン)ビスマレイミド、N,N’-(オキシジメチレン)ビスマレイミド等が挙げられる。
 脂肪族ビスマレイミド樹脂(脂環式マレイミド樹脂を含む)としては、下記式(m1)で表される化合物(以下、「化合物(m1)」とも記す。)が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 上記式(m1)中、Xは、置換基を有してもよい炭素原子数5~8の脂環式炭化水素基である。Qは、炭素原子数4~50の脂肪族炭化水素基である。nは、1又は2である。
 Qの脂肪族炭化水素基は、直鎖状であってもよく、分岐鎖状であってもよいが、他の樹脂との相溶性の観点から直鎖状が好ましい。Qの脂肪族炭化水素基の炭素原子数は、他の樹脂との相溶性の観点から、5~25が好ましく、6~10がより好ましい。
 Xの脂環式炭化水素基の炭素原子数は、化合物の合成の容易さの観点から、5~6が好ましく、6がより好ましい。
 脂環式炭化水素基が有する置換基としては、炭素原子数2~50の炭化水素基、水酸基、カルボキシル基、アルコキシ基を例示でき、炭素原子数5~25の脂肪族炭化水素基が好ましい。置換基の炭化水素基は、不飽和結合を含んでいてもよく、直鎖状であってもよく、分岐鎖状であってもよいが、他の樹脂との相溶性の観点から、直鎖状の炭化水素基が好ましい。
 脂環式炭化水素基が有する置換基の数は、複数であってもよいが、化合物(m1)の合成の容易さの観点から0~2であることが好ましい。
 化合物(m1)としては、下記式(m11)で表される化合物(以下、「化合物(m11)」とも記す。)が好ましい。
Figure JPOXMLDOC01-appb-C000006
 上記式(m11)中、シクロヘキサン環中に不飽和結合を含んでいてもよい。Qは、前記式(m1)中のQと同じである。Rは、炭素原子数2~50の脂肪族炭化水素基である。aは、1又は2である。bは、1~4の整数である。
 Rの脂肪族炭化水素基は、直鎖状であってもよく、分岐鎖状であってもよい。Rの脂肪族炭化水素基は、直鎖状が好ましい。Rの脂肪族炭化水素基の炭素原子数は、5~25が好ましい。Rの数が2以上の場合、複数のRは、同じ基であってもよく、異なる基であってもよい。aは、2が好ましい。bは、1~2が好ましい。
 化合物(m11)の市販品としては、例えば、Designer Molecules Inc.製の「BMI-689」が挙げられる。
 脂肪族部位および芳香族部位を有するマレイミド樹脂(脂肪族芳香族マレイミド樹脂)としては、下記式(m2)で表される化合物、下記式(m3)で表される化合物(以下、「化合物(m3)」とも記す。)が好ましく、化合物(m3)がより好ましい。
Figure JPOXMLDOC01-appb-C000007
 上記式(m2)中、Qは、炭素原子数6~100の脂肪族炭化水素基(脂環式炭化水素基を含む)である。Xは、炭素原子数1~12のアルキル基、炭素原子数3~6のアルケニル基、炭素原子数5~8のシクロアルキル基、炭素原子数6~12の1価の芳香族基、ベンジル基、-(C2cO)-(C2eO)-C2g+1(ただし、c、e及びgは、それぞれ独立に2~6の整数である。dは0又は1である。fは、1~30の整数である。)で表されるポリオキシアルキル基、-O-C-Q-C(ただし、Qは、-CH-、-C(CH-、-CO-、-O-、-S-、又は-SO-である。)で表される基、又はこれらの基における1~3個の水素原子がヒドロキシ基で置換された基である。
 Qの脂肪族炭化水素基(脂環式炭化水素基を含む)としては、下記式(x1)で表される脂肪族炭化水素基が好ましい。
Figure JPOXMLDOC01-appb-C000008
 上記式(x1)中、シクロヘキサン環中に不飽和結合を含んでいてもよい。Q10は、前記式(m1)中のQの脂肪族炭化水素基と同じ基が挙げられ、好ましい態様も同じである。Rは、前記式(m11)中のRの脂肪族炭化水素基と同じ基が挙げられ、好ましい態様も同じである。qは1~3の整数である。
Figure JPOXMLDOC01-appb-C000009
 上記式(m3)中、Q及びQは、それぞれ独立に、炭素原子数6~100の脂肪族炭化水素基(脂環式炭化水素基を含む)である。Xは、炭素原子数2~20のアルキレン基、炭素原子数5~8のシクロアルキレン基、-(C2qO)-(C2rO)-C2s-(ただし、q、r及びsは、それぞれ独立に2~6の整数である。tは0又は1である。uは、1~30の整数である。)で表されるポリオキシアルキレン基、炭素原子数6~12の2価の芳香族基、-O-C-Q-C-O-(ただし、Qは、-CH-、-C(CH-、-CO-、-O-、-S-、又は-SO-である。)で表される基、又はこれらの基における1~3個の水素原子がヒドロキシ基で置換された基である。
 Q及びQの脂肪族炭化水素基は、Qの脂肪族炭化水素基(脂環式炭化水素基を含む)と同じ基が挙げられ、好ましい態様も同じである。Xとしては、-O-C-Q-C-O-で表される基が好ましく、-O-C-C(CH-C-O-で表される基が特に好ましい。
 脂肪族部位および芳香族部位を有するマレイミド樹脂の市販品としては、Designer Molecules Inc.製の「BMI-1400」、「BMI-1500」、「BMI-1700」等が挙げられる。
 本サイジング剤に含まれるマレイミド基を有する化合物は、1種であってもよく、構造、分子量、または粘度が異なる2種以上であってもよい。
(その他の成分)
 本サイジング剤は、マレイミド基を有する化合物以外の他の成分を含んでもよい。他の成分としては、例えば、エポキシ樹脂、ポリエステル樹脂、フェノール樹脂、ポリアミド系樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、シランカップリング剤、帯電防止剤、潤滑剤、平滑剤、界面活性剤が挙げられる。本サイジング剤に含まれる他の成分は、1種であってもよく、2種以上であってもよい。
 他の成分として、本サイジング剤は、マレイミド基を有する化合物に加えて、マレイミド基を有さないエポキシ基を有する化合物(以下、単に「エポキシ基を有する化合物」と称す場合がある。)を含有することが好ましい。エポキシ基を有する化合物を含有することにより、本発明のチョップド炭素繊維束を用いて得られる成形物の機械的物性を高めることができる。
 エポキシ基を有する化合物としてはエポキシ樹脂が挙げられる。エポキシ樹脂としては、特に限定されず、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン骨格型エポキシ樹脂、脂肪族系エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、DPPノボラック型エポキシ樹脂が挙げられる。
 エポキシ樹脂としては、チョップド炭素繊維束の耐熱性及びフィード性の点から、25℃で固形のエポキシ樹脂が好ましく、融点(融点が存在しない場合は軟化点)が50℃以上のエポキシ樹脂がより好ましく、融点(融点が存在しない場合は軟化点)が70℃以上のエポキシ樹脂がさらに好ましい。
 本サイジング剤に含まれるエポキシ樹脂は、1種であってもよく、2種以上であってもよい。
 本サイジング剤に含まれるマレイミド基を有する化合物とエポキシ基を有する化合物の組み合わせとしては、相溶性の観点から、25℃で液状のマレイミド樹脂とエポキシ樹脂、特に25℃で液状のマレイミド樹脂と25℃で固形のエポキシ樹脂の組み合わせが好ましい。
 他の成分として、本サイジング剤は、マレイミド基を有する化合物に加えて、マレイミド基を有さない界面活性剤を含むことが好ましい。界面活性剤を含むことにより、本サイジング剤の水分散液の調製が容易となり、炭素繊維束に本サイジング剤を付着させる際の環境負荷を低減できる。
 界面活性剤としては、マレイミド基を有する化合物を水中に分散できるものであればよく、例えば、ノニオン系界面活性剤、アニオン系界面活性剤が挙げられる。
 ノニオン系界面活性剤としては、例えば、脂肪族ノニオン系界面活性剤、フェノール系ノニオン系界面活性剤、プルロニック型界面活性剤が挙げられる。
 脂肪族ノニオン系界面活性剤としては、高級アルコールエチレンオキサイド付加物、脂肪酸エチレンオキサイド付加物、多価アルコール脂肪酸エステルエチレンオキサイド付加物、グリセロールの脂肪酸エステル、ソルビトール及びソルビタンの脂肪酸エステル、ペンタエリスリトールの脂肪酸エステルが挙げられる。
 フェノール系ノニオン界面活性剤としては、アルキルフェノール系ノニオン界面活性剤、多環フェノール系ノニオン界面活性剤が挙げられる。
 プルロニック型界面活性剤としては、ポリオキシエチレンポリオキシプロピレンポリマー(エチレンオキシドとプロピレンオキシドはランダム、ブロック、リバースの何れでもよい)等が挙げられる。
 アニオン系界面活性剤としては、脂肪族カルボン酸塩やポリオキシエチレンアルキルエーテルカルボン酸塩などのカルボン酸塩、アルキルベンゼンポリエチレングリコールエーテル硫酸エステル塩や多環フェニルエーテルポリエチレングリコールエーテル硫酸エステル塩などの硫酸エステル塩、ポリオキシエチレンアルキルエーテルリン酸塩やポリオキシエチレンアルキルフェニルエーテルリン酸エステル塩などリン酸塩が挙げられる。また、対カチオンとしてはアンモニウムイオンが挙げられる。
 界面活性剤としては、市販品を用いることができる。
 ノニオン系界面活性剤の市販品としては、例えば、日本乳化剤社製の「ニューコール707」、「ニューコール723」、「ニューコール707-F」、ADEKA社製「アデカプルロニックF-88」が挙げられる。
 アニオン系界面活性剤としては、例えば、日本乳化剤社製の「ニューコール707-SF」、「ニューコール723-SF」、第一工業製薬社製の「ハイテノールNF-13」、「ハイテノールNF-17」が挙げられる。
 本サイジング剤に含まれる界面活性剤は、1種であってもよく、2種以上であってもよい。
(各成分の含有量)
 本サイジング剤中のマレイミド基を有する化合物の含有量は、本サイジング剤の合計質量に対して、10~90質量%が好ましく、20~80質量%がより好ましく、30~70質量%がさらに好ましい。マレイミド基を有する化合物の含有量が上記下限値以上であれば、耐熱性を高めることができる。マレイミド基を有する化合物の含有量が上記上限値以下であれば、水分散性を高めることができる。
 本サイジング剤中にエポキシ基を有する化合物を含む場合、その含有量は、サイジング剤の合計質量に対して、10~80質量%が好ましく、30~70質量%がより好ましく、40~60質量%がさらに好ましい。エポキシ基を有する化合物の含有量が上記下限値以上であれば、得られる成形物の機械的物性を高めることができる。エポキシ基を有する化合物の含有量が上記上限値以下であれば、耐熱性を高めることができる。
 本サイジング剤中にマレイミド基を有さない界面活性剤を含む場合、その含有量は、本サイジング剤の合計質量に対して、1~30質量%が好ましく、5~20質量%がより好ましく、10~15質量%がさらに好ましい。界面活性剤の含有量が上記下限値以上であれば、水分散性を高めることができる。界面活性剤の含有量が上記上限値以下であれば、耐熱性を高めることができる。
[チョップド炭素繊維束の製造方法]
 チョップド炭素繊維束は、炭素繊維または炭素繊維束にマレイミド基を有する化合物を含むサイジング剤の水分散液を付与して乾燥させ、炭素繊維束にサイジング剤を付着させることで製造することができる。
 前記製造方法によって得られるチョップド炭素繊維束は、例えば、熱可塑性樹脂に配合し、射出成形等の成形方法に用いる繊維強化複合材料とすることができる。
 炭素繊維束にサイジング剤を付着させる回数は、1回には限定されず、2回以上であってもよい。例えば、1次サイジング剤を付着させた炭素繊維束をボビンに巻き取ってロール体とし、このロール体から炭素繊維束を巻き出して2次サイジング剤の水分散液を付与することで付着させることもできる。1次サイジング剤と2次サイジング剤は異なる組成のものを用いてもよいし、同一の組成のものを用いてもよい。
 本サイジング剤の水分散液の固形分濃度は、特に限定はなく、水分散液としての安定性や、取扱いしやすい粘度に応じて選択すればよい。本サイジング剤の水分散液の固形分濃度は、1~50質量%が好ましく、3~45質量%がより好ましく、5~40質量%がさらに好ましい。本サイジング剤の固形分濃度が上記下限値以上であれば、輸送コストが低くなる。本サイジング剤の水分散液の固形分濃度が上記上限値以下であれば、取扱い性に優れる。
 炭素繊維束に付着させる際には、付着量を調整するために水分散液に適宜水を加えて固形分濃度を更に低くして1~20質量%程度としてもよい。
 チョップド炭素繊維束の製造方法は、水系のサイジング剤を用いることで、有機溶剤を用いるサイジング剤に比べて環境負荷を小さくすることができる。
 チョップド炭素繊維束の製造方法の具体例としては、例えば、下記の工程(1)~(3)を有する方法が挙げられる。
 (1)サイジング剤の水分散液を付与して該サイジング剤が付着した長尺の炭素繊維束を得る工程
 (2)前記炭素繊維束を切断する工程
 (3)サイジング剤の水分散液を付与された前記炭素繊維束を乾燥する工程
 工程(1)では、例えば、ロール体から引き出した長尺の炭素繊維束にサイジング剤の水分散液を付与する。
 長尺の炭素繊維束にサイジング剤の水分散液を付与する方法は、特に限定されない。例えば、サイジング剤の水分散液にロールの一部を浸漬させ、ロール表面にサイジング剤の水分散液を塗布した後、このロールに炭素繊維束を接触させてサイジング剤を付与するタッチロール方式が挙げられる。また、炭素繊維束をサイジング剤の水分散液中に浸漬させる浸漬方式を用いてもよい。
 工程(2)では、炭素繊維束を切断する。
 炭素繊維束を切断する方法は、特に限定されず、ロータリーカッター、ギロチンカッター、ロービングカッター等を用いる方法が挙げられる。
 炭素繊維束の切断時の長さは1~50mmに設定することが好ましく、3~30mmがより好ましい。切断時の炭素繊維束の長さの設定が前記範囲内であれば、得られるチョップド炭素繊維束と熱可塑性樹脂との溶融混練が容易になる。
 工程(3)では、サイジング剤の水分散液が付与された炭素繊維束を乾燥する。
 乾燥方法としては、熱風式乾燥機、パネルヒーター乾燥機、マッフル炉、加熱ロールの公知の加熱装置を用いる方法が挙げられる。サイジング剤の水分散液が付与された炭素繊維束を加熱せずに自然乾燥させてもよい。加熱乾燥の場合、加熱温度は100~200℃程度が好ましい。
 工程(1)~(3)は、連続式で行ってもよく、バッチ式で行ってもよい。
 工程(1)~(3)の順序は、特に限定されず、工程(1)、工程(2)、工程(3)の順に行ってもよく、工程(1)、工程(3)、工程(2)の順に行ってもよい。
 工程(1)、工程(2)、工程(3)の順に行う場合、工程(3)では、チョップドストランド同士の接着を防止するために、チョップドストランドを振動させつつ移送させながら乾燥することが好ましい。工程(1)、工程(3)、工程(2)の順に行う方法は、工程(2)において比較的単純な構造の加熱装置を使用できる点で有利である。
 チョップド炭素繊維束へのサイジング剤の付着量は、適宜設定できる。チョップド炭素繊維束へのサイジング剤の付着量は、サイジング剤と炭素繊維束の総質量に対して、0.1~10質量%が好ましく、1~5質量%がより好ましく、2~4質量%がさらに好ましい。サイジング剤の付着量が上記下限値以上であれば、チョップド炭素繊維束の集束性に優れる。サイジング剤の付着量が上記上限値以下であれば、切断後のチョップドストランドが分散しやすい。
 サイジング剤の付着量は、工程(1)で用いるサイジング剤の水分散液の固形分濃度の調整や、炭素繊維束をロールに接触させる時の押し付け圧力(絞り量)の調整等によって調節できる。
 1次サイジング剤を付着させた長尺の炭素繊維束に、マレイミド基を有する化合物を含む2次サイジング剤の水分散液を付与して更に該2次サイジング剤の水分散液を含んだ長尺の炭素繊維束を得る工程、および該2次サイジング剤の水分散液を含んだ炭素繊維束を切断する工程を経ることによりチョップド炭素繊維束を製造することが好ましい。炭素繊維束を容易に切断することができるためである。
 この方法において、1次サイジング剤としては、エポキシ基を有する化合物を含むサイジング剤が好ましく、特にエポキシ基を有する化合物を含み、マレイミド基を有する化合物を含まないサイジング剤が好ましい。1次サイジング剤の付着に用いる1次サイジング剤(エポキシ基を有する化合物の他、界面活性剤等の他の成分を含んでいてもよい。)の水分散液の固液分濃度は、0.1~50質量%が好ましく、0.5~30質量%が好ましく、1~20質量%がさらに好ましい。
 1次サイジング剤の水分散液を用いて、前記工程(1)と工程(3)を行って、1次サイジング剤を付着させた長尺の炭素繊維束を得る。
 1次サイジング剤の付着量は、1次サイジング剤と炭素繊維束の総質量に対して0.05~2質量%が好ましく、0.1~1.5質量%がより好ましく、0.2~1.4質量%がさらに好ましい。
 次いで、1次サイジング剤を付着させた炭素繊維束にマレイミド基を有する化合物を含む2次サイジング剤の水分散液を付与して、前記工程(1)~(3)を行ってチョップド炭素繊維束を得る。
 2次サイジング剤は、マレイミド基を有する化合物を含み、エポキシ基を有する化合物を含まないものであってもよい。2次サイジング剤は、マレイミド基を有する化合物とエポキシ基を有する化合物を含むものであってもよい。2次サイジング剤は、耐熱性の観点からマレイミド基を有する化合物とエポキシ基を有する化合物を含むことが好ましい。
 2次サイジング剤の付着に用いる2次サイジング剤(界面活性剤等の他の成分を含んでいてもよい。)の水分散液の固形分濃度は、1~50質量%が好ましく、3~45質量%が好ましく、5~40質量%がさらに好ましい。
 2次サイジング剤がマレイミド基を有する化合物とエポキシ基を有する化合物を含む場合、固形分100質量%中のマレイミド基を有する化合物の含有量は10~80質量%、特に20~60質量%で、エポキシ基を有する化合物の含有量は10~80質量%、特に30~70質量%であることが、耐熱性と集束性の両立の面から好ましい。
 2次サイジング剤の付着量は、炭素繊維束に付着した全サイジング剤と炭素繊維束の総質量に対する全サイジング剤の割合が前述の好適範囲となる量であることが好ましい。
[用途]
 チョップド炭素繊維束は、各種の熱可塑性樹脂又は熱硬化性樹脂よりなるマトリックス樹脂の補強材として用いることができる。
 例えばチョップド炭素繊維束とマトリックス樹脂とからなるペレットとすることができる。このペレットを用いて成形品を得ることができる。
 マトリックス樹脂としては、公知の熱可塑性樹脂又は熱硬化性樹脂等が用いられる。例えば、熱可塑性樹脂としては、ポリカーボネート樹脂、ナイロン樹脂、ポリエステル樹脂、ABS樹脂、ポリスチレン系樹脂、ポリフェニレンエーテル系樹脂、ポリオキシエチレン樹脂、ポリオレフィン樹脂、ポリエーテルイミド樹脂又はその他の工業的に有用なスーパーエンジニアリングプラスチック及びこれらのポリマーアロイ樹脂等が挙げられる。熱硬化性樹脂としては、不飽和ポリエステル樹脂、ビニルエステル樹脂又はフェノール樹脂等が挙げられる。
 先に説明したチョップド炭素繊維束の態様は、その優れた耐熱性から高い溶融混練温度を必要とするスーパーエンジニアリングプラスチックの補強材として有用である。
 チョップド炭素繊維束を配合した炭素繊維強化樹脂組成物の成形方法としては、特に制限はなく、公知の方法を用いていることができる。一般的には、マトリックス樹脂が熱可塑性樹脂である場合においては、射出成形法が採用される。マトリックス樹脂が熱硬化性樹脂である場合においては、プレス成形法、シートモールディングコンパウンド又はバルクモールディングコンパウンドによる高圧プレス成形法が採用される。
 以下、実施例によって本発明をより具体的に説明する。本発明は以下の記載によっては限定されない。
[サイジング剤原料]
 以下の実施例及び比較例において、サイジング剤に使用した原料を下記表1に示す。
Figure JPOXMLDOC01-appb-T000010
 以下に使用したマレイミド基を有する化合物の分子量、粘度、構造式を示す。
<BMI-689>
分子量:689
25℃における粘度:1500mPa・s
Figure JPOXMLDOC01-appb-C000011
<BMI-1700>
分子量:1715
25℃における粘度:37500mPa・s
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
[測定・評価方法]
(嵩密度の測定)
 前述の嵩密度の測定方法に従って、2Lのメスシリンダーに、300gのチョップド炭素繊維束を充填し、衝撃を与えてチョップド炭素繊維束の体積に変化が無くなったときの体積を求め、この体積とチョップド炭素繊維束の重量とを用いて嵩密度を算出した。
(フィード性の評価)
 得られたチョップド炭素繊維束1kgを、スクリュー部の直径が30mmの重量式スクリューフィーダーにホッパーから投入し、毎時15kgの速度で搬送し、以下の基準でフィード性を判定した。
〇:1kgすべてを搬送できた。
△:ホッパーにおいてチョップド炭素繊維束のブリッジが見られたが、1kgすべてを搬送できた。
×:搬送中にチョップド炭素繊維束がブリッジを起こして搬送不良を起こした。
(サイジング剤の加熱減量の測定)
 サイジング剤に対して熱重量測定装置Q500(ティー・エー・インスツルメント社製)を用いて以下の条件で測定を行い、熱減量曲線を取得した。
 雰囲気:窒素中
 昇温速度:20℃/分
 温度範囲:30~500℃
 熱減量曲線より、100℃におけるサイジング剤の質量W100と、400℃におけるサイジング剤の質量W400とを求め、下記式から加熱減量比Q(%)を求めた。
  Q={(W100-W400)/W100}×100
 加熱減量測定に用いたサイジング剤は後述する各実施例の2次サイジング剤の水分散液を110℃で1時間加熱することで水分を除去して得られたものである。2次サイジング剤溶液を用いた場合においては130℃で1時間真空乾燥を行うことで溶媒を除去して得られたものを、加熱減量測定に用いた。
(乳化性の評価)
 後述する各実施例の2次サイジング剤の水分散液の調製において、転相乳化に水分散液を調製できた場合を「〇」、転相乳化により水分散液を調製できなかった場合を「×」として評価した。
[製造例1]
(1次サイジングが付着した炭素繊維束の製造)
 ホモミキサーを用いて、jER1001(40質量部)、jER828(40質量部)、アデカプルロニックF-88(20質量部)を110℃に加温しながら均一になるまで撹拌し、1次サイジング剤Aを得た。得られた1次サイジング剤をホモミキサーで撹拌しながらイオン交換水を毎分20mLで滴下し、転相点を通過した後に滴下する水量を毎分100mLに増加させ、1次サイジング剤の水分散液を得た。サイジング剤分散液におけるサイジング剤の濃度が30質量%となるように、サイジング剤へのイオン交換水の添加量を調整した。
 サイジング剤が付着していない長尺のポリアクリロニトリル系炭素繊維束(三菱ケミカル社製、商品名:パイロフィル(登録商標)TR50S15L、フィラメント数15000本、引張弾性率240GPa)を、1次サイジング剤の固形分濃度を1.5質量%に調整した水分散液に浸漬させ、ニップロールを通過させた。次いで、表面温度が140℃の加熱ロールに炭素繊維束を10秒間接触させて乾燥し、1次サイジング剤が付与された炭素繊維束を得た。1次サイジング剤の付着量は、1次サイジング剤と炭素繊維束の総質量に対して0.2質量%となるようにニップロールでの絞り量を調整した。
[実施例1]
(2次サイジング剤水分散液の調製)
 表1に示した原料を表2の実施例1の欄に示した配合組成(質量部)で混合し、そこにアニオン系界面活性剤であるハイテノールNF-17を15質量部添加して、110℃に加温しながら均一になるまで撹拌し、2次サイジング剤を得た。
 得られた2次サイジング剤を撹拌しながらイオン交換水を加え、ホモミキサーを用いて転相乳化を行った。2次サイジング剤をホモミキサーで撹拌しながらイオン交換水を毎分20mLで滴下し、転相点を通過した後に滴下する水量を毎分100mLに増加させ、2次サイジング剤が水に分散したサイジング剤分散液を得た。2次サイジング剤分散液における2次サイジング剤の濃度が30質量%となるように、2次サイジング剤へのイオン交換水の添加量を調整した。
(チョップド炭素繊維束の製造)
 1次サイジング剤が付着した炭素繊維束を、上述の手順で調製した2次サイジング剤の水分散液中に浸漬させ、ニップロールを通過させた後に、湿潤状態の炭素繊維束をロービングカッターで6mmの長さに切断した。その後、切断した炭素繊維束を130℃の熱風乾燥炉で乾燥させて、チョップド炭素繊維束を得た。1次サイジング剤と2次サイジング剤を合わせたサイジング剤の合計の付着量は、サイジング剤と炭素繊維束の総質量に対して、3質量%となるように2次サイジング剤の水分散液の濃度とニップロールの絞りを調整した。
 2次サイジング剤及び得られたチョップド炭素繊維束の評価結果を表2に示す。
[実施例2~5、比較例1]
 表1に示した原料を表2に示した配合組成(質量部)で混合して2次サイジング剤を調製した以外は、実施例1と同様にして2次サイジング剤の水分散液を調製し、チョップド炭素繊維束を得た。
 2次サイジング剤及び得られたチョップド炭素繊維束の評価結果を表2に示す。
[参考例1]
(2次サイジング剤水分散液の調製)
 表1に示した原料を表2の参考例1の欄に示した配合組成(質量部)で混合し、そこに界面活性剤であるハイテノールNF-17を15質量部添加して、110℃に加温しながら撹拌して2次サイジング剤を得た。しかし、原料の樹脂及び界面活性剤が相溶しなかった。
 得られた2次サイジング剤をホモミキサーで撹拌しながらイオン交換水を毎分20mLで滴下した。しかし、転相点を通過せず、水と樹脂が分離した状態となり、水分散液が得られなかった。
 水分散液が得られなかったため、以下の手順にて2次サイジング剤溶液を調製した。
(2次サイジング剤溶液の調製)
 表1に示した原料を表2の参考例1の欄に示した配合組成(質量部)で混合して、2次サイジング剤を得た。得られた2次サイジング剤にN-メチル-2-ピロリドンを加えて溶解させ、2次サイジング剤溶液を得た。2次サイジング剤溶液における2次サイジング剤の濃度が50質量%となるようにN-メチル-2-ピロリドンの添加量を調整した。
(チョップド炭素繊維束の製造)
 1次サイジング剤が付着した炭素繊維束を、上述の手順で調製した2次サイジング剤溶液中に浸漬させ、ニップロールを通過させた後に、湿潤状態の炭素繊維束をロービングカッターで6mmの長さに切断した。その後、切断した炭素繊維束を180℃の熱風乾燥炉で乾燥させて、チョップド炭素繊維束を得た。1次サイジング剤と2次サイジング剤を合わせたサイジング剤の合計の付着量は、サイジング剤と炭素繊維束の総質量に対して、3質量%となるように2次サイジング剤溶液の濃度とニップロールの絞りを調整した。
 2次サイジング剤及び得られたチョップド炭素繊維束の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000014
 実施例1~5のいずれもサイジング剤の加熱減量比Qは小さな値を示し、チョップド炭素繊維束としての耐熱性に優れることが推測される。実施例1~3,5ではフィード性も良好な結果であった。参考例1は乳化性に劣るが、耐熱性とフィード性は良好である。
 比較例1では、サイジング剤の加熱減量比が大きな値を示し、耐熱性に劣ることが分かった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2020年7月3日付で出願された日本特許出願2020-115761に基づいており、その全体が引用により援用される。

Claims (22)

  1.  炭素繊維とサイジング剤とを含むチョップド炭素繊維束であって、該サイジング剤がマレイミド基を有する化合物を含有し、該マレイミド基を有する化合物は25℃において液状である、チョップド炭素繊維束。
  2.  炭素繊維とサイジング剤とを含むチョップド炭素繊維束であって、該サイジング剤がマレイミド基を有する化合物を含有し、該マレイミド基を有する化合物は炭素数が2以上の脂肪族炭化水素基を有する、チョップド炭素繊維束。
  3.  前記マレイミド基を有する化合物の25℃における粘度が100000mPa・s以下である、請求項1または2に記載のチョップド炭素繊維束。
  4.  前記マレイミド基を有する化合物は、下記式m1または下記式m3で表される化合物である、請求項1~3のいずれか一項に記載のチョップド炭素繊維束。
    Figure JPOXMLDOC01-appb-C000001
     
     式(m1)中、Xは、置換基を有してもよい炭素原子数5~8の脂環式炭化水素基である。Qは、炭素原子数4~50の脂肪族炭化水素基である。nは、1又は2である。
    Figure JPOXMLDOC01-appb-C000002
     式(m3)中、Q及びQは、それぞれ独立に、炭素原子数6~100の脂肪族炭化水素基(脂環式炭化水素基を含む)である。Xは、炭素原子数2~20のアルキレン基、炭素原子数5~8のシクロアルキレン基、-(C2qO)-(C2rO)-C2s-(ただし、q、r及びsは、それぞれ独立に2~6の整数である。tは0又は1である。uは、1~30の整数である。)で表されるポリオキシアルキレン基、炭素原子数6~12の2価の芳香族基、-O-C-Q-C-O-(ただし、Qは、-CH-、-C(CH-、-CO-、-O-、-S-、又は-SO-である。)で表される基、又はこれらの基における1~3個の水素原子がヒドロキシ基で置換された基である。
  5.  前記チョップド炭素繊維束の嵩密度が200g/L以上である、請求項1~4のいずれか一項に記載のチョップド炭素繊維束。
  6.  前記チョップド炭素繊維束の嵩密度が600g/L以下である、請求項1~5のいずれか一項に記載のチョップド炭素繊維束。
  7.  前記マレイミド基を有する化合物が1分子中に複数のマレイミド基を有する、請求項1~6のいずれか一項に記載のチョップド炭素繊維束。
  8.  前記マレイミド基を有する化合物が、炭素数が5以上の脂肪族部位を有する、請求項1~7のいずれか一項に記載のチョップド炭素繊維束。
  9.  前記サイジング剤が、更にマレイミド基を有さないエポキシ基を有する化合物を含有する、請求項1~8のいずれか一項に記載のチョップド炭素繊維束。
  10.  炭素繊維とサイジング剤とを含むチョップド炭素繊維束であって、該サイジング剤がマレイミド基を有する化合物を含有し、該マレイミド基を有する化合物の25℃における粘度が100000mPa・s以下である、チョップド炭素繊維束。
  11.  前記チョップド炭素繊維束の嵩密度が200g/L以上である、請求項10に記載のチョップド炭素繊維束。
  12.  前記マレイミド基を有する化合物が、炭素数が5以上の脂肪族部位を有する、請求項110または11に記載のチョップド炭素繊維束。
  13.  前記サイジング剤が、更にマレイミド基を有さないエポキシ基を有する化合物を含有する、請求項10~12のいずれか一項に記載のチョップド炭素繊維束。
  14.  炭素繊維とマレイミド基を有する化合物とを含むチョップド炭素繊維束であって、チョップド炭素繊維束中の該マレイミド基を有する化合物の含有量が10質量%以下であり、該マレイミド基を有する化合物は炭素数が2以上の脂肪族炭化水素基を有する、チョップド炭素繊維束。
  15.  前記チョップド炭素繊維束の嵩密度が200g/L以上である、請求項14に記載のチョップド炭素繊維束。
  16.  前記マレイミド基を有する化合物が、炭素数が5以上の脂肪族部位を有する、請求項14または15に記載のチョップド炭素繊維束。
  17.  前記サイジング剤が、更にマレイミド基を有さないエポキシ基を有する化合物を含有する、請求項14~16のいずれか一項に記載のチョップド炭素繊維束。
  18.  請求項1~17のいずれか一項に記載のチョップド炭素繊維束とマトリックス樹脂とからなるペレット。
  19.  請求項18に記載のペレットからなる成形品。
  20.  1次サイジング剤を付着させた長尺の炭素繊維束に、マレイミド基を有する化合物を配合した2次サイジング剤の水分散液を付与して更に該2次サイジング剤の水分散液を含んだ長尺の炭素繊維束を得る工程、および該2次サイジング剤の水分散液を含んだ長尺の炭素繊維束を切断する工程を含む、チョップド炭素繊維束の製造方法。
  21.  長尺の炭素繊維束に、25℃において液状であるマレイミド基を有する化合物を配合したサイジング剤の水分散液を付与して該サイジング剤が付着した長尺の炭素繊維束を得る工程、および該サイジング剤が付着した長尺の炭素繊維束を切断する工程を含む、チョップド炭素繊維束の製造方法。
  22.  25℃において液状であるマレイミド基を有する化合物とエポキシ樹脂とを含むサイジング剤。
PCT/JP2021/025108 2020-07-03 2021-07-02 チョップド炭素繊維束及びチョップド炭素繊維束の製造方法 WO2022004872A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022534122A JPWO2022004872A1 (ja) 2020-07-03 2021-07-02
US18/148,186 US20230147906A1 (en) 2020-07-03 2022-12-29 Chopped carbon fiber bundle and method for producing chopped carbon fiber bundle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020115761 2020-07-03
JP2020-115761 2020-07-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/148,186 Continuation US20230147906A1 (en) 2020-07-03 2022-12-29 Chopped carbon fiber bundle and method for producing chopped carbon fiber bundle

Publications (1)

Publication Number Publication Date
WO2022004872A1 true WO2022004872A1 (ja) 2022-01-06

Family

ID=79316453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025108 WO2022004872A1 (ja) 2020-07-03 2021-07-02 チョップド炭素繊維束及びチョップド炭素繊維束の製造方法

Country Status (3)

Country Link
US (1) US20230147906A1 (ja)
JP (1) JPWO2022004872A1 (ja)
WO (1) WO2022004872A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7429828B1 (ja) 2022-09-12 2024-02-08 松本油脂製薬株式会社 繊維用サイジング剤及びその用途
WO2024057700A1 (ja) * 2022-09-12 2024-03-21 松本油脂製薬株式会社 繊維用サイジング剤及びその用途

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0138911B2 (ja) * 1985-07-18 1989-08-17 Toho Rayon Kk
JPH07506836A (ja) * 1992-05-28 1995-07-27 コモンウェルス・サイエンティフィック・アンド・インダストリアル・リサーチ・オーガニゼイション ビスマレイミド化合物
JPH08156110A (ja) * 1994-12-06 1996-06-18 Agency Of Ind Science & Technol 炭素繊維強化炭素複合材料の製造方法
US20050136237A1 (en) * 2003-12-19 2005-06-23 Henri Beerda Sizing composition and glass fiber reinforced thermoplastic resin
JP2013142120A (ja) * 2012-01-11 2013-07-22 Dic Corp 樹脂組成物ならびにそれを含む繊維集束剤及びコーティング剤
JP2014231652A (ja) * 2013-05-29 2014-12-11 三菱レイヨン株式会社 炭素繊維チョップドストランドの製造方法、及び成型品の製造方法
CN104695228A (zh) * 2015-03-30 2015-06-10 济南大学 一种碳纤维用热塑性乳液上浆剂及其制备方法和应用
JP2020125559A (ja) * 2019-02-05 2020-08-20 三菱ケミカル株式会社 サイジング剤及び強化繊維束の製造方法
JP2021095532A (ja) * 2019-12-18 2021-06-24 Dic株式会社 ガラス繊維含有樹脂組成物、及び、硬化物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0138911B2 (ja) * 1985-07-18 1989-08-17 Toho Rayon Kk
JPH07506836A (ja) * 1992-05-28 1995-07-27 コモンウェルス・サイエンティフィック・アンド・インダストリアル・リサーチ・オーガニゼイション ビスマレイミド化合物
JPH08156110A (ja) * 1994-12-06 1996-06-18 Agency Of Ind Science & Technol 炭素繊維強化炭素複合材料の製造方法
US20050136237A1 (en) * 2003-12-19 2005-06-23 Henri Beerda Sizing composition and glass fiber reinforced thermoplastic resin
JP2013142120A (ja) * 2012-01-11 2013-07-22 Dic Corp 樹脂組成物ならびにそれを含む繊維集束剤及びコーティング剤
JP2014231652A (ja) * 2013-05-29 2014-12-11 三菱レイヨン株式会社 炭素繊維チョップドストランドの製造方法、及び成型品の製造方法
CN104695228A (zh) * 2015-03-30 2015-06-10 济南大学 一种碳纤维用热塑性乳液上浆剂及其制备方法和应用
JP2020125559A (ja) * 2019-02-05 2020-08-20 三菱ケミカル株式会社 サイジング剤及び強化繊維束の製造方法
JP2021095532A (ja) * 2019-12-18 2021-06-24 Dic株式会社 ガラス繊維含有樹脂組成物、及び、硬化物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7429828B1 (ja) 2022-09-12 2024-02-08 松本油脂製薬株式会社 繊維用サイジング剤及びその用途
WO2024057700A1 (ja) * 2022-09-12 2024-03-21 松本油脂製薬株式会社 繊維用サイジング剤及びその用途

Also Published As

Publication number Publication date
US20230147906A1 (en) 2023-05-11
JPWO2022004872A1 (ja) 2022-01-06

Similar Documents

Publication Publication Date Title
JP6856157B2 (ja) シートモールディングコンパウンド、および繊維強化複合材料
KR101650352B1 (ko) 섬유 강화 수지 복합체, 및 섬유 강화 수지용의 강화 매트릭스 수지
JP5319673B2 (ja) エポキシ樹脂組成物及びそれを用いたプリプレグ
JP2010013636A (ja) 繊維強化複合材料用樹脂組成物およびそれを用いた繊維強化複合材料
WO2022004872A1 (ja) チョップド炭素繊維束及びチョップド炭素繊維束の製造方法
JP6163958B2 (ja) エポキシ樹脂組成物、繊維強化複合材料及び成形品
JPWO2011118106A1 (ja) 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JPWO2019225442A1 (ja) トウプレグおよびその製造方法、ならびに圧力容器の製造方法
JP2010202727A (ja) 繊維強化複合材料用エポキシ樹脂組成物およびそれを用いた繊維強化複合材料
JP2006291095A (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP2014108990A (ja) 炭素繊維強化ポリプロピレン樹脂組成物
JP2010174073A (ja) 繊維強化複合材料用エポキシ樹脂組成物およびそれを用いた繊維強化複合材料
CN107207750B (zh) 预浸料和纤维增强复合材料
JP2016020446A (ja) 樹脂組成物、繊維強化複合材料及び成形品
JP6555006B2 (ja) エポキシ樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料
JP7163805B2 (ja) サイジング剤、炭素繊維束及び強化繊維束の製造方法
JP6520256B2 (ja) 炭素繊維強化熱可塑性プラスチック、電気・電子機器用筐体
WO2019208040A1 (ja) 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグ、炭素繊維強化複合材料
JP2006291093A (ja) 繊維強化複合材料用エポキシ樹脂組成物
JPS634000B2 (ja)
JP5468819B2 (ja) エポキシ樹脂組成物及びそれをマトリックス樹脂とするプリプレグ
JP2002020459A (ja) エポキシ樹脂組成物
EP3129433B1 (en) Sizing compositions for carbon fibers
JP7276622B2 (ja) 水性エポキシ樹脂組成物、繊維集束剤、繊維束、成形材料、及び成形品
JP2004300222A (ja) 気相法炭素繊維含有プリプレグ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534122

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21834196

Country of ref document: EP

Kind code of ref document: A1