WO2022004462A1 - オルガノポリシロキサン硬化物フィルムからなる積層体、その用途、およびその製造方法 - Google Patents

オルガノポリシロキサン硬化物フィルムからなる積層体、その用途、およびその製造方法 Download PDF

Info

Publication number
WO2022004462A1
WO2022004462A1 PCT/JP2021/023398 JP2021023398W WO2022004462A1 WO 2022004462 A1 WO2022004462 A1 WO 2022004462A1 JP 2021023398 W JP2021023398 W JP 2021023398W WO 2022004462 A1 WO2022004462 A1 WO 2022004462A1
Authority
WO
WIPO (PCT)
Prior art keywords
organopolysiloxane
cured product
product film
composition
film
Prior art date
Application number
PCT/JP2021/023398
Other languages
English (en)
French (fr)
Inventor
弘 福井
香子 外山
昌保 赤坂
武明 津田
Original Assignee
ダウ・東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダウ・東レ株式会社 filed Critical ダウ・東レ株式会社
Priority to KR1020237002722A priority Critical patent/KR20230029868A/ko
Priority to EP21833403.5A priority patent/EP4173821A1/en
Priority to CN202180061316.XA priority patent/CN116194294A/zh
Priority to US18/013,879 priority patent/US20230295432A1/en
Priority to JP2022533877A priority patent/JPWO2022004462A1/ja
Publication of WO2022004462A1 publication Critical patent/WO2022004462A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2383/00Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups

Definitions

  • the present invention relates to a laminate in which at least two types of organopolysiloxane cured film are laminated, an application thereof, a method for producing the same, and an apparatus for producing the same.
  • the cured organopolysiloxane having a polysiloxane skeleton is excellent in transparency, electrical insulation, heat resistance, cold resistance, etc., and if desired, the electrical activity is improved by introducing a highly dielectric functional group such as a fluoroalkyl group. Since it can be easily processed into a film or sheet, it is used in various applications such as adhesive films used in various electric and electronic devices and electroactive films used in transducer devices such as actuators. These organopolysiloxane cured products are classified into hydrosilylation reaction curing type, condensation reaction curing type, dielectric curing type and the like according to the curing mechanism.
  • an organopolysiloxane cured product film using a hydrosilylation reaction-curable curable organopolysiloxane composition is widely used because it cures rapidly when left at room temperature or heated and does not generate by-products.
  • an electrode layer is placed on the electroactive film as a dielectric layer. Need to be provided.
  • Non-Patent Documents 1 and 2 it is possible to form an electrode layer having excellent followability to a dielectric layer by forming an electrode layer in which a conductive filler is added in a silicone elastomer matrix having excellent flexibility. Proposed.
  • the dielectric is particularly accompanied by displacement of the dielectric layer (for example, expansion and contraction of an actuator or the like). Interfacial peeling between the layer and the electrode layer may occur, leading to poor energization and a decrease in reliability as an actuator.
  • the present invention has been made to solve the above problems, and since the required functions are different such as the dielectric layer and the electrode layer, two or more obtained by curing curable organopolysiloxane compositions having different compositions from each other.
  • This is a laminate in which the organopolysiloxane cured product film of No. 1 is laminated, and is unlikely to cause problems of peeling and defects due to insufficient adhesive strength and followability at the interface of the cured product film constituting the laminate. , The purpose of which is to provide its use and manufacturing method.
  • an organopolysiloxane cured product obtained by curing a curable organopolysiloxane composition having a different composition from each other and having at least a part of the functional groups involved in the curing reaction in common.
  • a laminated body having a structure in which two or more layers of films are laminated and a structure in which the laminated organopolysiloxane cured film has a chemically bonded structure at the interface thereof.
  • the present invention has been reached.
  • At least one of the laminated organopolysiloxane cured film is an electrode layer formed by curing a composition containing conductive fine particles, and the other is provided with a dielectric functional group or has conductive fine particles. It may be a dielectric layer obtained by curing a composition that does not contain the particles. Further, the compositions having different compositions which give the organopolysiloxane cured product laminated to each other contain a curing reactive group which is cured by a hydrosilylation reaction, and the carbon-carbon double bond in the composition is contained.
  • the amount of silicon atom-bonded hydrogen atom in this component differs depending on the total amount of 1 mol, and the laminated organopolysiloxane cured product film has a structure chemically bonded by a hydrosilylation reaction at its interface. Is preferable.
  • the present invention is a laminate in which two or more organopolysiloxane cured films having different compositions before curing are alternately laminated, and the adhesive strength and followability are insufficient at the interface of the cured film. It is possible to provide a laminate that is less likely to cause problems of peeling and defects, its use, and a manufacturing method.
  • the film is cured by a hydrosilylation reaction and has a structure in which organopolysiloxane cured films having the functions of an electrode layer and a dielectric layer are alternately laminated. It is possible to provide a laminated body having excellent reliability in use as a defect and an actuator, and a method for manufacturing the same.
  • the laminate according to the present invention is an organopolysiloxane cured product film obtained by curing a curable organopolysiloxane composition having a different composition from each other and having at least a part of functional groups involved in the curing reaction in common. It is characterized by having a structure in which layers or more are laminated, and the laminated organopolysiloxane cured product film has a chemically bonded structure at the interface thereof.
  • the organopolysiloxane cured product film may be laminated with three or more layers, and three or more different types of organopolysiloxane cured product films may be laminated as long as the compositions before curing are different from each other.
  • the laminate according to the present invention may have a multilayer structure of two or more layers, and as long as it has a structure in which two kinds of organopolysiloxane cured films having different compositions are laminated on at least a part thereof, other laminated portions. However, it does not prevent it from having a structure in which the same kind of organopolysiloxane cured product film is laminated (for example, a partial structure in which a cured product film having a function of a dielectric layer is laminated in order to increase the thickness).
  • a part or all of the laminated body is particularly provided with a structure in which two types of cured organopolysiloxane films having different compositions (for example, a cured product film which is a dielectric layer and an electrode layer) are alternately laminated.
  • two types of cured organopolysiloxane films having different compositions for example, a cured product film which is a dielectric layer and an electrode layer
  • a cured product film which is a dielectric layer and an electrode layer are alternately laminated.
  • n means a laminated structure in which the structure in parentheses is repeated n times or more, and n is an independently number of 0 or more.
  • “/" means that the layers face each other in the stacking direction of the laminated body (generally, the thickness direction perpendicular to the surface of each functional layer).
  • the organopolysiloxane cured product film which is an electrode layer is formed on at least one surface of the organopolysiloxane cured product film which is a dielectric layer. It is preferable that the laminated organopolysiloxane cured film has a chemically bonded structure at its interface.
  • L1 is an organopolysiloxane cured product film having a dielectric layer
  • L2 is an organopolysiloxane cured product film having an electrode layer
  • the dielectric layer of L1 may be replaced with a multilayer structure of one layer or two or more layers, such as L1 / [L1 /] n. Needless to say, the multilayer dielectric layer may have a chemically bonded structure at its interface, and is preferable.
  • the laminate according to the present invention may include an electrode layer, a single-layer or multi-layered dielectric layer, a pressure-sensitive adhesive layer used for the purpose of arranging in the transducer, and optionally a peeling surface.
  • a silicone-based thermoplastic resin layer may be provided.
  • the dielectric layer and the electrode layer, the dielectric layer and the pressure-sensitive adhesive layer, or the electrode layer and the pressure-sensitive adhesive layer are used. It is preferable to have a chemically bonded structure at the interface (“/”).
  • Example 1 PSA / EAP / PSA
  • Example 2 PSA / EL / EAP / EL / PSA
  • Example 3 PSA / PF / EAP / PF / PSA
  • Example 4 PSA / EL / PF / EAP / PF / EL / PSA
  • Example 5 PSA / PF / EL / EAP / EL / PF / PSA
  • Example 6 PF / PSA / EL / EAP / EL / PSA / PF
  • Example 7 EL / PSA / EAP / PSA / EL
  • Example 8 PF / PSA / EL / EAP / PF / PSA / EL
  • Example 9 EL / PSA / EAP / EL
  • Example 10 EL / PSA / EAP / EAP / EL / PSA
  • Example 11 PF / PSA /
  • the laminate may be treated as a member for an electronic device including these resin layers, and these resin layers may be treated. It may be treated as a peelable laminate having a peelable surface on the inner surface of the laminate.
  • a particularly preferable form is a laminate having a structure in which a single layer or a multilayer dielectric layer (EAP) and an electrode layer (EL) are chemically bonded at the interface thereof, and (EL / EAP / )
  • EAP multilayer dielectric layer
  • EL electrode layer
  • nEL it is a laminated body having a whole or partial structure in which these layers are alternately laminated and an electrode layer is arranged on the outside.
  • n is a number of 1 or more, and may be laminated by an arbitrary number of repetitions according to the thickness of the laminated body required for the transducer or the like.
  • the laminate according to the present invention is characterized by having a structure in which cured organopolysiloxane films having different compositions before curing have a chemically bonded structure at the interface thereof.
  • the structure is formed by reacting the curing reactive functional groups contained in each film or its precursor at the interface of films having different compositions before curing. Therefore, the above-mentioned organopolysiloxane is formed.
  • the cured film needs to have at least a part of the functional groups involved in the curing reaction in common.
  • the type of curing reaction described later is not limited, and may be one type or two or more types, but an organopolysiloxane cured product film laminated by a hydrosilylation reaction with an alkenyl group and a silicon atom-bonded hydrogen atom. Is particularly preferred to have a chemically bonded structure at its interface. It should be noted that such a bond can be suitably realized by adjusting the content of the silicon atom-bonded hydrogen atom in the composition, a production method by coating and curing the curable organopolysiloxane composition, or a combination thereof, which will be described later.
  • Cured organopolysiloxane film constituting the laminate is not particularly limited in its composition and physical properties, at least one of, a volume resistivity of preferably not more than 10 2 ⁇ ⁇ cm, later It is preferable to contain conductive fine particles (particularly preferably, fine particles containing at least one conductive carbon selected from conductive carbon black, graphite and gas phase growth carbon (VGCF)).
  • conductive fine particles particularly preferably, fine particles containing at least one conductive carbon selected from conductive carbon black, graphite and gas phase growth carbon (VGCF)
  • An organopolysiloxane cured product film having such conductivity is suitable for an electrode layer.
  • At least one of the organopolysiloxane cured film constituting the laminate has a shear storage elastic modulus (G') at 120 ° C. in the range of 5.0 ⁇ 10 4 to 1.5 ⁇ 10 5 Pa. ..
  • G' shear storage elastic modulus
  • An organopolysiloxane cured film having such a shear storage modulus is particularly suitable for an electrode layer.
  • the compressive residual strain (%) of the organopolysiloxane cured film according to the present invention is preferably less than 10%, more preferably less than 5%, and 4% or less. Is particularly preferred.
  • compositions for giving the organopolysiloxane cured product film according to the present invention when heat-molded into a sheet having a thickness of 2.0 mm, it can be designed to have the following mechanical characteristics measured based on JIS K 6249. be. Compositions that provide such properties are particularly suitable, but not limited to, dielectric layers.
  • Young's modulus (MPa) can be 0.001 to 10 MPa at room temperature, preferably 0.001 to 2 MPa, and a particularly suitable range is 0.001 to 1.5 MPa.
  • the tear strength (N / mm) can be 1 N / mm or more at room temperature, and a particularly preferable range is 2 N / mm or more.
  • the tensile strength (MPa) can be 1 MPa or more at room temperature, and a particularly preferable range is 2 MPa or more.
  • the elongation at break (%) can be 50% or more, and a particularly suitable range is 100 to 100. It is in the range of 1000%.
  • the cured organopolysiloxane of the present invention is obtained by curing a curable organopolysiloxane composition into a film.
  • the curing reaction mechanism is not particularly limited, but for example, a hydrosilylation reaction curing type using an alkenyl group and a silicon atom-bonded hydrogen atom; a dehydration condensation reaction curing type using a silanol group and / or a silicon atom-bonded alkoxy group, and dealcoholization.
  • Examples include a condensation reaction curing type; a peroxide curing reaction type by using an organic peroxide; and a radical reaction curing type by irradiating a mercapto group with a high energy ray, and the whole is cured relatively quickly and the reaction is easy. It is desirable to use a hydrosilylation reaction-curable type, a peroxide-curing reaction type, a radical reaction-curable type, or a combination thereof, and it is preferable to use a hydrosilylation reaction-curable curable organopolysiloxane composition. .. These curing reactions proceed with respect to heating, irradiation with high energy rays or a combination thereof.
  • the curable organopolysiloxane composition that provides the organopolysiloxane cured product film is a curable organopolysiloxane composition.
  • A An organopolysiloxane having a cure-reactive group containing at least two carbon-carbon double bonds in the molecule.
  • B With respect to 1 mol of the total amount of alkenyl groups in the organohydrogenpolysiloxane composition having at least two silicon-bonded hydrogen atoms in the molecule, the amount of silicon-bonded hydrogen atoms in this component is 0.5 to 0.5.
  • an effective amount of the catalyst for the hydrosilylation reaction At least contains.
  • the component (A) is particularly contained.
  • (A1) A linear or branched organopolysiloxane having an alkenyl group only at the end of the molecular chain, and
  • the above component (A) is an organopolysiloxane having a curing reactive group containing a carbon-carbon double bond, and is an alkenyl group having 2 to 20 carbon atoms such as a vinyl group; 3-acryloxypropyl group, 3-.
  • Examples thereof include linear, branched, cyclic, or resinous (network-like) organopolysiloxanes containing a cure-reactive group selected from (meth) acrylic-containing groups such as a methacryloxypropyl group in the molecule.
  • the organopolysiloxane as the component (A) may contain a monovalent hydrocarbon group having no carbon-carbon double bond in the molecule, a hydroxyl group, and a group selected from an alkoxy group having 1 to 3 carbon atoms. Further, the monovalent hydrocarbon group may have a part of its hydrogen atom substituted with a halogen atom or a hydroxyl group, and when used as a dielectric layer, a dielectric functional group described later may be introduced. .. Industrially, a methyl group, a phenyl group, a hydroxyl group, an alkoxy group and a dielectric functional group described later are preferable. When the component (A) contains a hydroxyl group or the like, the component has a condensation reaction in addition to the hydrosilylation reaction curability.
  • the component (A) is preferably composed of the following average composition formula: R 1 a R 2 b SiO (4-ab) / 2 It may be an organopolysiloxane represented by, or a mixture thereof.
  • R 1 is a curing reactive group containing the above carbon-carbon double bond.
  • R 2 is a group selected from the above-mentioned monovalent hydrocarbon group, hydroxyl group and alkoxy group having no carbon-carbon double bond.
  • a and b are numbers that satisfy the following conditions: 1 ⁇ a + b ⁇ 3 and 0.001 ⁇ a / (a + b) ⁇ 0.33, and preferably the following conditions: 1.5 ⁇ a + b ⁇ 2.5 and It is a number satisfying 0.005 ⁇ a / (a + b) ⁇ 0.2.
  • the component (A) according to the present invention is particularly preferably.
  • (A1) A linear or branched organopolysiloxane having an alkenyl group only at the end of the molecular chain, and
  • the component (a1) has (Alk) R 2 2 SiO 1/2 at the end of its molecular chain.
  • Alk is an alkenyl group having 2 or more carbon atoms
  • a siloxane unit represented by other siloxane units consist substantially only siloxane units represented by R 2 2 SiO 2/2 straight It is a chain or branched organopolysiloxane.
  • R 2 represents the same group as described above.
  • the degree of siloxane polymerization of the component (A1-1) is in the range of 7 to 1002 and may be in the range of 102 to 902, including the terminal siloxane unit.
  • Such a component (A1-1) is particularly preferably a linear organopolysiloxane in which both ends of the molecular chain are sealed with a siloxane unit represented by (Alk) R 2 2 SiO 1/2. be.
  • the component (a2) is an alkenyl group-containing organopolysiloxane resin.
  • An alkenyl group-containing organopolysiloxane resin represented by is exemplified by.
  • R is a group selected from the alkenyl group and the monovalent hydrocarbon group having no carbon-carbon double bond
  • X is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 3 SiO 1/2 is an alkenyl group.
  • (o + r) is a positive number
  • p is 0 or a positive number
  • q is 0 or a positive number
  • s is 0 or a positive number
  • p / (o + r) is 0 to It is a number in the range of 10
  • q / (o + r) is a number in the range of 0 to 5
  • (o + r) / (o + p + q + r) is a number in the range of 0.3 to 0.9
  • s. / (O + p + q + r) is a number in the range of 0 to 0.4.
  • ⁇ (Alk) R 2 2 SiO 1/2 ⁇ q1 (R 2 3 SiO 1/2 ) q2 (SiO 4/2 ) r (In the formula, Alk and R 2 are the same groups as described above, q1 + q2 + r is a number in the range of 50 to 500, (q1 + q2) / r is a number in the range of 0.1 to 2.0, and q2 is a number in the range of 0.1 to 2.0.
  • An example thereof is an MQ organopolysiloxane resin containing an alkenyl group represented by.
  • the composition as a whole has excellent curability and is excellent in curability. It is possible to provide a cured reaction product having excellent mechanical strength and flexibility, and to provide an organopolysiloxane cured product film which is particularly suitable for an adhesive layer or a dielectric layer in the above-mentioned electronic parts and the like.
  • the component (B) is an organohydrogenpolysiloxane having at least two silicon-bonded hydrogen atoms in the molecule, and is a component that functions as a cross-linking agent for the component (A).
  • Such components (B) include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris (dimethylhydrogensiloxy) methylsilane, and tris (dimethylhydrogen).
  • the amount of the component (B) used is preferably in the range of 0.1 to 10 mol of the silicon-bonded hydrogen atom with respect to 1 mol of the carbon-carbon double bond in the component (A).
  • the amount is preferably in the range of 0.5 to 2.5 mol, and particularly preferably in the range of 0.5 to 2.0 mol. If the amount of the component (B) used is less than the lower limit, it may cause curing failure, and if the content of the component (B) exceeds the upper limit, the mechanical strength of the cured product becomes too high, and the electrode layer, It may not be possible to obtain suitable physical properties as a dielectric layer or an adhesive layer.
  • silicon is used for 1 mol of carbon-carbon double bond in the component (A). It does not prevent the use of bonded hydrogen atoms in the range of more than 20 mol.
  • the laminated organopolysiloxane cured film according to the present invention has a different composition from each other and is chemically chemically subjected to a hydrosilylation reaction between the above-mentioned components (A) and (B) at the interface thereof. It has a combined structure.
  • the reaction between the component (A) and the component (B) at the interface is the cured product film or the cured product film at the interface between the two cured products films or their precursors (including the uncured / semi-cured coated state).
  • SiH / Vi ratio silicon atom-bonded hydrogen atom in an organohydrogenpolysiloxane component
  • the SiH / Vi ratio in the composition (I) exceeds 1.0 mol and 2.0 mol. Both are cured by the following (that is, excess SiH) and the SiH / Vi ratio in the other composition (II) of 0.5 mol or more and 1.0 mol or less (that is, lack of SiH).
  • the reaction between the common cure-reactive functional groups is promoted between the interfaces of the cured product film to be formed, and a strong chemical bond is formed.
  • the value of [SiH / Vi] II / [SiH / Vi] I is preferably in the range of 0.33 to 0.85, and is 0. It is particularly preferably in the range of .50 to 0.75 and 0.58 to 0.67.
  • the composition (I) having an excess of SiH may be a dielectric layer, and the composition (II) lacking SiH may be an electrode layer, but vice versa (composition (I): electrode layer, composition (II)). : Dielectric layer), and is not particularly limited.
  • a strong chemical bond is formed between the electrode layer and the organopolysiloxane cured product film which is a dielectric layer, so that the above composition (I) forms a dielectric layer.
  • the composition (II) provides an electrode layer
  • the difference in composition surface is determined not only by the SiH / Vi ratio but also by the presence or absence of conductive fine particles.
  • the composition (II) forming the electrode layer contains conductive fine particles, and its SiH / Vi ratio ([SiH / Vi] Elec ) is 0.5 mol or more and 1.0 mol or less.
  • a composition forming a dielectric layer (I) Does not contain conductive fine particles, and its SiH / Vi ratio ([SiH / Vi] DEAP ) has a value of [SiH / Vi] Elec / [SiH / Vi] DEAP of 0.33 to 0.85. It is particularly preferable that the range is 0.50 to 0.75 and 0.58 to 0.67. That is, a combination in which the composition forming the dielectric layer has an excess of SiH to some extent is particularly preferable.
  • the component (C) is a catalyst that promotes the hydrosilylation reaction of the component (A) and the component (B), and is a platinum-based catalyst, a rhodium-based catalyst, a palladium-based catalyst, a nickel-based catalyst, an iridium-based catalyst, a ruthenium-based catalyst, and a catalyst.
  • An iron-based catalyst is exemplified, and a platinum-based catalyst is preferable.
  • the platinum-based catalyst includes platinum fine powder, platinum chloride acid, an alcohol solution of platinum chloride acid, a platinum-alkenylsiloxane complex, a platinum-olefin complex, a platinum-carbonyl complex, and these platinum-based catalysts are made of silicone resin and polycarbonate.
  • catalysts are dispersed or encapsulated in a thermoplastic resin such as a resin or an acrylic resin, and a platinum-alkenylsiloxane complex is particularly preferable.
  • a thermoplastic resin such as a resin or an acrylic resin
  • a platinum-alkenylsiloxane complex is particularly preferable.
  • it is preferably a 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum, and it is preferable to add it in the form of an alkenylsiloxane solution of the complex.
  • a fine-grained platinum-containing hydrosilylation reaction catalyst dispersed or encapsulated in a thermoplastic resin may be used from the viewpoint of improving handling workability and pot life of the composition.
  • a non-platinum metal catalyst such as iron, ruthenium, or iron / cobalt may be used as the catalyst for promoting the hydrosilylation reaction.
  • the catalyst for the hydrosilylation reaction which is the component (C) does not show activity without irradiation with high energy rays, but the catalyst for hydrosilylation reaction which shows activity in the composition by irradiation with high energy rays, so-called. It may be a high energy ray activation catalyst or a photoactivation catalyst.
  • the composition as a whole can be cured even at a low temperature triggered by irradiation with high energy rays, has excellent storage stability, and is easy to control the reaction. , It is possible to realize the characteristic of being excellent in handling workability.
  • high energy rays examples include ultraviolet rays, gamma rays, X-rays, ⁇ rays, electron beams and the like.
  • ultraviolet rays, X-rays, and electron beams irradiated from a commercially available electron beam irradiator are mentioned.
  • ultraviolet rays are preferable from the viewpoint of efficiency of catalyst activation, and ultraviolet rays having a wavelength in the range of 280 to 380 nm are preferable. It is preferable from the viewpoint of industrial use.
  • the irradiation amount varies depending on the type of the high energy ray active catalyst, but in the case of ultraviolet rays, the integrated irradiation amount at a wavelength of 365 nm is preferably in the range of 100 mJ / cm 2 to 100 J / cm 2.
  • component (C) examples include (methylcyclopentadienyl) trimethylplatinum (IV), (cyclopentadienyl) trimethylplatinum (IV), and (1,2,3,4,5-pentamethylcyclopenta). Dienyl) trimethyl platinum (IV), (cyclopentadienyl) dimethylethyl platinum (IV), (cyclopentadienyl) dimethylacetyl platinum (IV), (trimethylsilylcyclopentadienyl) trimethyl platinum (IV), (methoxy) Methylcyclopentadienyl) trimethylplatinum (IV), (dimethylphenylsilylcyclopentadienyl) trimethylcyclopentadienyl platinum (IV), trimethyl (acetylacetonato) platinum (IV), trimethyl (3,5-heptandio) Nate) Platinum (IV), trimethyl (Methylacetacetate) Platinum (IV), Bis (2,4-pentandionato) Platinum
  • the amount of the component (C) used is an effective amount and is not particularly limited, but is not particularly limited as long as it is an amount that promotes the curing of the curable organopolysiloxane composition of the present invention.
  • the metal atom in this catalyst is 0.01 to 1,000 ppm in mass unit, preferably (preferably (1).
  • the amount of platinum metal atoms in the component is in the range of 0.1 to 500 ppm. This is because if the content of the component (C) is less than the lower limit of the above range, curing may be insufficient, and if it exceeds the upper limit of the above range, it is uneconomical and the obtained cured product is colored. , May adversely affect transparency.
  • the laminated organopolysiloxane cured product film is an organopolysiloxane cured product film obtained by curing curable organopolysiloxane compositions having different compositions from each other, and is functional in order to realize its function. It is preferable to add a filler.
  • the organopolysiloxane cured product film, which is a dielectric layer is composed not only of the above-mentioned difference in the suitable SiH / Vi ratio, but also in that it does not contain conductive fine particles, unlike the organopolysiloxane cured product film, which is an electrode layer. Is very different.
  • the curable organopolysiloxane composition that gives the cured product film that is the electrode layer contains (E) conductive fine particles
  • the curable organopolysiloxane composition that gives the cured product film that is the dielectric layer is (E).
  • the functional filler may be surface-treated for hydrophobization.
  • the surface treatment agent for hydrophobization include at least one surface treatment agent selected from the group consisting of an organic titanium compound, an organic silicon compound, an organic zirconium compound, an organic aluminum compound and an organic phosphorus compound.
  • the conductive fine particles are not particularly limited as long as they can impart conductivity to the organopolysiloxane cured product film, and the cured product film containing the conductive fine particles can be suitably used as an electrode layer.
  • the electrode layer containing the conductive fine particles is proposed, for example, in International Patent Publication No. WO2014 / 105959 of the applicants.
  • conductive carbons such as conductive carbon black, graphite and gas phase growth carbon (VGCF); metal powders such as platinum, gold, silver, copper, nickel, tin, zinc, iron and aluminum.
  • metal powders such as platinum, gold, silver, copper, nickel, tin, zinc, iron and aluminum.
  • antimonated tin oxide, phosphorus-doped tin oxide, tin oxide / antimonate-coated acicular titanium oxide, tin oxide, indium oxide, antimony oxide, zinc antimonate, carbon and graphite whiskers include conductive carbons such as conductive carbon black, graphite and gas phase growth carbon (VGCF); metal powders such as platinum, gold, silver, copper, nickel, tin, zinc, iron and aluminum.
  • a pigment whose surface is coated with tin oxide or the like; at least one conductive metal oxide selected from the group consisting of tin-doped tin oxide (ITO), fluorine-doped tin oxide (FTO), phosphorus-doped tin oxide and nickel oxide is coated.
  • Pigment examples thereof include a conductive pigment containing tin oxide and phosphorus on the surface of titanium dioxide particles, and these may be treated with various surface treatment agents. These can be used alone or in combination of two or more. Further, in order to uniformly disperse these conductive fine particles in the curable organopolysiloxane composition, a part or all of the component (A) or the component (B) used in the composition is kneaded in advance. It may be incorporated into a curable organopolysiloxane composition in the form of a compound.
  • the conductive inorganic fine particles include fibers such as glass fiber, silica-alumina fiber, alumina fiber and carbon fiber, and needle-like reinforcing materials such as aluminum borate whiskers and potassium titanate whiskers, glass beads, talc and mica.
  • the surface of an inorganic filler such as graphite, wollastonite, or dolomite may be coated with a conductive substance such as metal.
  • the curable organopolysiloxane composition that gives a cured film as a dielectric layer is surface-treated with one or more organosilicon compounds, and reinforcing fine particles or composites thereof having different average BET specific surface areas are contained in the composition. It is preferable that the sum of the components forming a non-volatile solid content by the curing reaction is contained within a certain range.
  • the reinforcing fine particles are preferably one or more kinds of reinforcing inorganic fine particles having an average primary particle diameter of less than 50 nm from the viewpoint of the mechanical strength of the cured product, and are fumed silica, wet silica, and pulverized silica.
  • Calcium carbonate, diatomaceous earth, finely pulverized quartz, various metal oxide powders other than alumina / zinc oxide, glass fiber, carbon fiber, etc. are exemplified, and those treated with one or more kinds of organic silicon compounds described later are used.
  • the shape is not particularly limited, and any shape such as a particle shape, a plate shape, a needle shape, and a fibrous shape can be used.
  • the average primary particle size is 10 nm or less, the particles are partially aggregated, and the BET specific surface area thereof is different from each other in hydrophilicity or hydrophobicity as described later.
  • examples thereof include fumed silica or a metal oxide composite thereof.
  • fumed silica or a metal oxide complex thereof is preferably treated with disilazan or a silane coupling agent described later.
  • the reinforcing filler used for the dielectric layer is (F1) Reinforcing fine particles or a composite thereof having an average BET specific surface area of more than 100 m 2 / g, which was surface-treated with one or more kinds of organosilicon compounds, and (F2) one or more kinds of organosilicon compounds were surface-treated.
  • the mass ratio of the component (F1) to the component (F2) is in the range of 50:50 to 99: 1, may be in the range of 70:30 to 97: 3, and is preferably in the range of 70:30 to 95: 5. .. If it is out of the above mass ratio range, the viscosity of the curable organopolysiloxane composition before curing may increase, and the mechanical strength and dielectric breakdown strength after curing may decrease.
  • the blending amount of these fillers is, as the sum of the (F1) component and the (F2) component, 10 to 40% by mass with respect to the sum of the components forming a non-volatile solid content by the curing reaction in the composition. It is within the range, may be in the range of 15 to 35% by mass, and is particularly preferably in the range of 15 to 30% by mass.
  • the reinforcing fillers which are the components (F1) and (F2) are surface-treated with one or more kinds of organosilicon compounds.
  • the surface treatment with the organosilicon compound is a sulphation treatment
  • the reinforcing filler surface-treated with the organosilicon compound can be uniformly dispersed in the organopolysiloxane composition with a high filling ratio.
  • the increase in the viscosity of the composition is suppressed, and the molding processability is improved.
  • organosilicon compounds are low molecular weight organosilicon compounds such as silane, silazan, siloxane, or the like, and organosilicon polymers or oligomers such as polysiloxane, polycarbosiloxane, or the like.
  • the organosilicon compound used for the surface treatment is selected from at least hexamethyldisilazane and 1,3-bis (3,3,3-trifluoropropyl) -1,1,3,3-tetramethyldisilazane. It is most preferable to contain one or more of these.
  • the ratio of the surface treatment agent to the total amount of the filler is preferably in the range of 0.1% by mass or more and 50% by mass or less, and more preferably in the range of 0.3% by mass or more and 40% by mass or less.
  • the treatment amount is the charging ratio of the filler and the surface treatment agent, and it is preferable to remove the excess treatment agent after the treatment. In addition, there is no problem even if an additive or the like that promotes or assists the reaction is used in the treatment as needed.
  • the fixed amount of the surface treatment agent can be analyzed by reacting a composition containing an excess of tetraethoxysilane under alkaline conditions with a filler and detecting the reaction product by gas chromatography.
  • the amount of the component of the surface treatment agent fixed on the surface of the filler is preferably 1.0 part by mass or more, preferably 3.0 parts by mass or more with respect to 100 parts by mass of the filler.
  • the organosilicon compounds used for the surface treatment of the (F1) component and the (F2) component according to the present invention are hexamethyldisilazane and 1,3-bis (3,3,3-trifluoropropyl) -1,1.
  • the fixing ratio of each filler on the surface can be changed as needed.
  • the highly dielectric functional group is (C p F 2p + 1 ) -R- (R has 1 to 10 carbon atoms) in a part or all of the component (A) or the component (B).
  • a fluoroalkyl group represented by (which is an alkylene group of 1 or more and p is an integer of 1 or more and 8 or less) can be introduced.
  • the weight fixed to the filler surface of the treatment component derived from hexamethyldisilazane and 1,3-bis (3,3,3-trifluoropropyl) -1,1,3,3-tetramethyldisilazane.
  • the ratio is 0 or more and 10 or less, preferably 0 or more and 5 or less. If it is out of this range, the affinity between the component (A) or the component (B) and the surface of the filler is deteriorated, and the processability and the physical properties after curing may be deteriorated.
  • fillers may or may not be used as desired, and may be used, for example, high dielectric fillers, thermally conductive inorganic fine particles, insulating fillers and the like. These inorganic fine particles may have two or more kinds of functions such as a function as a reinforcing filler.
  • Examples of preferred dielectric inorganic microparticles are titanium oxide, barium titanate, strontium titanate, lead zirconate titanate, and barium and part of the titanium moiety of barium titanate calcium, strontium, ittrium, neodymium, samarium, dysprosium.
  • Examples thereof include one or more inorganic fine particles selected from the group consisting of an alkaline earth metal such as, zirconium, or a composite metal oxide substituted with a rare earth metal, such as titanium oxide, barium titanate, barium titanate calcium titanate, and the like.
  • strontium titanate are more preferred, and titanium oxide and barium titanate are even more preferred.
  • the dielectric inorganic fine particles is a dielectric inorganic fine particle having a relative permittivity of 10 or more at room temperature and 1 kHz.
  • the upper limit of the preferable size (average primary particle diameter) of the inorganic fine particles is 20,000 nm (20 ⁇ m), but in consideration of processability to a thin film for a transducer described later, 10,000 nm (10 ⁇ m) is preferable. More preferred.
  • the use of the dielectric inorganic fine particles may further improve the mechanical and / or electrical properties of the cured organopolysiloxane, especially its relative permittivity.
  • the insulating inorganic fine particles that can be used in the present invention are not limited as long as they are particles of a generally known insulating inorganic material, that is, particles of an inorganic material having a volume resistivity of 10 10 to 10 18 ⁇ ⁇ cm, and are in the form of particles.
  • Flakes, and fibers can be used. Specific examples thereof include ceramic spherical particles, plate-like particles, and fibers, and metal silicates such as alumina, iron oxide, copper oxide, mica and talc, and particles such as quartz, amorphous silica, and glass are preferably used. Take as an example. Further, these may be treated with various surface treatment agents described later. These can be used alone or in combination of two or more.
  • By blending the insulating inorganic fine particles in the composition it is possible to increase the mechanical strength and the dielectric breakdown strength of the cured organopolysiloxane, and the relative permittivity may also be increased.
  • the thermally conductive inorganic fine particles that can be used in the present invention include metal oxide particles such as magnesium oxide, zinc oxide, nickel oxide, vanadium oxide, copper oxide, iron oxide, and silver oxide, and aluminum nitride, boron nitride, and silicon carbide.
  • metal oxide particles such as magnesium oxide, zinc oxide, nickel oxide, vanadium oxide, copper oxide, iron oxide, and silver oxide
  • aluminum nitride such as aluminum nitride
  • boron nitride such as silicon nitride, boron carbide, titanium carbide, diamond, diamond-like carbon, and zinc oxide, boron nitride, silicon carbide, and silicon nitride are preferable.
  • the average particle size of these inorganic particles can be measured by a measuring method ordinary in the art. For example, when the average particle size is 50 nm or more and about 500 nm or less, a transmission electron microscope (TEM), an electric field radiation transmission electron microscope (FE-TEM), a scanning electron microscope (SEM), and an electric field radiation type scanning electron microscope.
  • the average primary particle size can be measured by measuring the particle size by observing with a microscope (FE-SEM) or the like and obtaining the average value.
  • the average particle size is about 500 nm or more
  • the value of the average primary particle size can be directly obtained by a laser diffraction / scattering type particle size distribution measuring device or the like.
  • the curable organopolysiloxane composition according to the present invention can be subjected to a curing reaction as it is, but on the other hand, when the composition or a part of its components (for example, organopolysiloxane resin) is solid or sticky.
  • organopolysiloxane resin for example, organopolysiloxane resin
  • an organic solvent can be used if necessary in order to improve its miscibility and handleability.
  • the viscosity may be adjusted using a solvent within a range of 100 to 50,000 mPa ⁇ s, and the viscosity may be adjusted with the solvent.
  • the solvent When diluting, it can be used in the range of 0 to 2000 parts by mass with respect to the sum (100 parts by mass) of the above components (A) to (C). That is, in the composition of the present invention, the solvent may be 0 parts by mass, and is preferably a solvent-free type.
  • the film obtained by curing can contain a fluorine-based solvent, an organic solvent, etc.
  • the amount of the solvent used is 10 parts by mass or less, preferably 5 parts by mass or less, based on the sum (100 parts by mass) of the above components (A) to (C). It may and is preferable. Further, in particular, the composition used for the electrode layer may be diluted with a solvent and applied in a thin film by spray coating as in the examples described later.
  • such an organic solvent is (E1) Organic polar solvent, (E2) Small molecule siloxane solvent and (E3)
  • organic solvents selected from halogen-based solvents or a mixed solvent thereof, and those having a boiling point of 80 ° C. or higher and lower than 200 ° C. are preferably used.
  • it may be a mixed solvent of arbitrary ratios of different organic solvents of different kinds or the same kind.
  • the organic solvent contains at least one low molecular weight siloxane solvent selected from hexamethyldisiloxane and octamethyltrisiloxane and a mixed solvent thereof, which are OST-10, OST-20 and It is marketed by Dow Silicones Corporation under the name of OST-2.
  • OST-10, OST-20 and It is marketed by Dow Silicones Corporation under the name of OST-2.
  • fluoroalkyl group content in the curable elastomer composition is high, it is also included in the preferred embodiment of the present invention to optionally use these small molecule siloxane-based solvents in combination with the above-mentioned halogen-based solvents. ..
  • the curable organopolysiloxane composition used in the present invention preferably has an overall viscosity in the range of 5 to 500,000 mPa ⁇ s measured at 25 ° C. and a share rate of 10.0 (S- 1).
  • the range of 000 to 10,000 mPa ⁇ s is particularly preferable.
  • the composition used for the electrode layer may be diluted with a solvent and applied in a thin film by spray coating, as in the examples described later, and is preferable.
  • the curable organopolysiloxane composition of the present invention preferably has excellent fluidity and does not exhibit thixotropic behavior. As a result, it is possible to realize the property that the overall viscosity is low and the uniform coatability is excellent. Specifically, the viscosity of the entire composition measured at a share rate of 0.1 (S -1 ) and the viscosity of the entire composition measured at a share rate of 10.0 (S -1 ) (S -1 ) for the composition. It is particularly preferable that the thixotropic ratio, which is the ratio of viscosity, is 10.0 or less.
  • Solid content In the curable organopolysiloxane composition according to the present invention, the content of a component that is cured to form a cured organopolysiloxane that is a non-volatile solid content (in the present invention, it may be simply referred to as "solid content"). Is preferably in the range of 5 to 100% by mass, more preferably in the range of 50 to 100% by mass, 75 to 100% by mass or 85 to 100% by mass of the entire composition.
  • organopolysiloxane cured product film according to the present invention is used as an electroactive film (for example, a dielectric film) used for a transducer such as an actuator, a highly dielectric functional group may be introduced into the cured product.
  • an organopolysiloxane cured film that does not contain a highly dielectric functional group can be used as an electroactive film.
  • the introduction of these highly dielectric functional groups and the improvement of the relative permittivity are proposed, for example, in the International Patent Publication No. WO2014 / 105959 of the applicants.
  • the introduction of the highly dielectric functional group may be carried out by using an organic polysiloxane or an organohydrogenpolysiloxane having a highly dielectric functional group as a part or all of the component (A) or the component (B), or by using a highly dielectric polysiloxane.
  • This can be done by adding an organic additive having a functional group, a non-reactive organic silicon compound having a highly dielectric functional group, or the like to the curable composition.
  • the organopolysiloxane or organohydrogenpolysiloxane which is the component (A) or the component (B) all on the silicon atom thereof. It is preferable that 10 mol% or more, preferably 20 mol% or more, more preferably 40 mol% or more of the substituent is substituted with a highly dielectric functional group.
  • the type of the highly dielectric functional group introduced into the organopolysiloxane cured product film is not particularly limited, but a) halogen atoms and halogen atoms typified by 3,3,3-trifluoropropyl groups and the like. Containing group, b) nitrogen atom-containing group represented by cyanopropyl group, c) oxygen atom-containing group represented by carbonyl group, d) heterocyclic group such as imidazole group, e) boron such as borate ester group.
  • Examples thereof include a containing group, f) a phosphorus-containing group such as a phosphine group, and g) a sulfur-containing group such as a thiol group, and it is preferable to use a halogen atom containing a fluorine atom and a halogen atom-containing group.
  • the highly dielectric functional group is (C p F 2p + 1 ) -R- (R is an alkylene group having 1 to 10 carbon atoms in a part or all of the component (A) or the component (B). , P is an integer of 1 or more and 8 or less), and it is preferable that a fluoroalkyl group represented by the above is introduced.
  • a fluoroalkyl group gives a cured product having an excellent relative permittivity, and since each component has a fluorine atom, the compatibility of each component is improved, and a cured product having excellent transparency is given.
  • fluoroalkyl group examples include a trifluoropropyl group, a pentafluorobutyl group, a heptafluoropentyl group, a nonafluorohexyl group, an undecafluoroheptyl group, a tridecafluorooctyl group, and a pentadecafluorononyl group. It is a heptadecafluorodecyl group.
  • a group having p 1, that is, a trifluoropropyl group is preferable from the viewpoints of dielectric properties, economy, ease of manufacture, and moldability of the obtained curable organopolysiloxane composition.
  • other components may be added to the curable organopolysiloxane composition according to the present invention as needed, as long as the object of the present invention is not impaired.
  • other components include hydrosilylation reaction inhibitors, mold release agents, insulating additives, adhesiveness improvers, heat resistance improvers, fillers, pigments and other conventionally known additives. These specific examples are, for example, the same as those proposed in the above-mentioned International Patent Publication No. WO2014 / 105959.
  • the curable organopolysiloxane composition of the present invention is obtained by uniformly mixing the curable organopolysiloxane and a component that promotes a curing reaction, preferably the above components (A) to (C), and if necessary. It can be prepared by adding any other component and mixing it uniformly. It may be mixed at room temperature using various stirrers or kneaders, but it may be mixed under heating as long as it is a combination of components that do not cure during mixing.
  • each component is not particularly limited as long as it does not cure during mixing.
  • store in a plurality of containers so that the cross-linking agent (for example, component (B)) and the curing reaction promoting component (for example, component (C)) do not exist in the same container.
  • the ingredients in all the containers may be mixed immediately before use.
  • the curing reaction of the curable organopolysiloxane composition according to the present invention proceeds at room temperature in the curing reaction based on the condensation reaction such as dehydration and dealcoholization, but the organopolysiloxane cured product film is produced by an industrial production process. If so, it is usually achieved by heating or exposing the composition to active energy rays.
  • the curing reaction temperature by heat is not particularly limited, but is preferably 50 ° C. or higher and 200 ° C. or lower, more preferably 60 ° C. or higher and 200 ° C. or lower, and further preferably 80 ° C. or higher and 180 ° C. or lower.
  • the time required for the curing reaction depends on the structures of the components (A), (B), and (C), but is usually 1 second or more and 3 hours or less. Generally, a cured product can be obtained by holding in the range of 90 to 180 ° C. for 10 seconds to 30 minutes. The film manufacturing method will be described later.
  • Examples of the active energy ray that can be used in the curing reaction include ultraviolet rays, electron beams, radiation, and the like, but ultraviolet rays are preferable from the viewpoint of practicality.
  • a catalyst for hydrosilylation reaction having high activity against the ultraviolet rays used for example, a bis (2,4-pentandionato) platinum complex, a (methylcyclopentadienyl) trimethyl platinum complex, etc. Is desirable to add.
  • a high-pressure mercury lamp, a medium-pressure mercury lamp, an Xe-Hg lamp, a deep UV lamp and the like are suitable, and the irradiation amount at that time is preferably 100 to 8,000 mJ / cm 2.
  • a laminate according to the present invention which has a structure in which two or more layers of cured organopolysiloxane films having different compositions are laminated, and has a structure in which the laminated organopolysiloxane cured films are chemically bonded at the interface thereof.
  • the body is Step I: Of two or more types of curable organopolysiloxane compositions that share at least a part of the functional groups involved in the curing reaction and have different compositions, one type of curable organopolysiloxane composition is in the form of a film.
  • a curable organopolysiloxane composition different from that of Step I is applied in a film form on the organopolysiloxane cured product film or a precursor thereof at the same time as or after Step I, and cured. It can be obtained by a method for producing a laminated body, which comprises a step of laminating a different organopolysiloxane cured product film on the organopolysiloxane cured product film according to the step I by advancing the reaction.
  • the organopolysiloxane cured product film according to the above step I is a dielectric layer
  • the organopolysiloxane cured product film according to the above step II is an electrode layer, but vice versa. May be good.
  • step I or step II as a method of applying the curable organopolysiloxane composition in the form of a film, a gravure coat, an offset coat, an offset gravure, a roll coat using an offset transfer roll coater, a reverse roll coat, and an air knife are used.
  • a coat, a curtain coat using a curtain flow coater or the like, a comma coat, a Meyer bar, and other methods used for the purpose of forming a known cured layer can be used without limitation.
  • a plurality of layers of the curable organopolysiloxane composition of the present invention can be applied.
  • the laminate according to the present invention has a structure in which the laminated organopolysiloxane cured product film is chemically bonded at the interface thereof, and the structure is such that the organopolysiloxane cured product film is formed after or before curing.
  • the reaction between the curable reactive groups proceeds at the interface of the cured product film to form the cured product film.
  • the curing reaction may be advanced and laminated layer by layer, and a thin layer of a plurality of curing reactive curable organopolysiloxane compositions may be laminated in advance. After that, the whole may be completely cured by means such as heating.
  • the coated layer of the curable organopolysiloxane composition is uncured or semi-cured.
  • the organopolysiloxane cured product film or its precursor and its precursor are uncured.
  • the curing reaction of the curable organopolysiloxane composition different from Step I to the coated layer is completely completed.
  • An example is a method for producing a laminated body, which comprises a step of laminating a different organopolysiloxane cured product film on the organopolysiloxane cured product film according to the step I by advancing and curing the laminate.
  • a curable organopolysiloxane composition containing conductive fine particles is applied in a film form on an organopolysiloxane cured product film which is a dielectric layer, and in an uncured or semi-cured state, further in a dielectric layer.
  • Laminate a certain organopolysiloxane cured film repeat the same procedure below, Dielectric layer (cured film) / uncured to semi-cured electrode layer / dielectric layer (cured film) / uncured to semi-cured electrode layer / ...
  • the cured dielectric layer and the electrode layer were alternately laminated by curing the whole by heating or the like, and the interface between the two layers was chemically bonded. A laminate can be obtained.
  • This manufacturing method is particularly useful as a method for forming an electrode layer in a transducer member, and the dielectric layer and the electrode layer are firmly bonded to each other, and problems of peeling and defects due to insufficient adhesive strength and followability are unlikely to occur.
  • a laminate, an electronic component or a member of a display device can be easily provided industrially.
  • the laminate of the organopolysiloxane cured film according to the present invention is useful as an electronic material, a member for a display device or a member for a transducer (including for a sensor, a speaker, an actuator, and a generator), and particularly includes an electrode layer.
  • an electroactive film including a highly dielectric film
  • it can be suitably used as an electronic component or a member of a display device.
  • the electroactive film having high dielectric breakdown strength is suitable for a transducer member such as an actuator in the form of a single layer or a laminated film, and has a structure in which the electrode layers are firmly bonded. It is especially useful for actuator applications that start under high voltage.
  • each curable organopolysiloxane composition is heated at a curing temperature of 150 ° C. for the cured product film as the electrode layer (ELEC) and at a curing temperature of 110 ° C. for the cured product film as the dielectric layer (DEAP) for 1 hour.
  • a cured product film was prepared by the above. The thickness of the cured sample was about 6 mm.
  • the hardness of each Shore A of the obtained cured film was measured using DD2 (manufactured by Polymer Meter Co., Ltd.) by a method according to JIS K 6249. The results are shown in Table 1. If the curing was insufficient or too soft, it was judged as "not measurable” for each reason.
  • Table 1 shows the storage elastic modulus (G') 60 minutes after the start of temperature rise as the elastic modulus.
  • G' storage elastic modulus
  • Measuring device name Measured at room temperature using Lorester GP (manufactured by Mitsubishi Chemical Analytech). A PSP (manufactured by Mitsubishi Chemical Analytech) was used as the probe. As described below, measurements were made with at least 14 electrodes on an electrode layer made on a cured organopolysiloxane film, which is a dielectric layer, and stable values were read using the average value, electrode thickness, and correction coefficient. The calculated values are shown in Table 1.
  • -Component (a1) Vinyl dimethylsiloxy group blockade at both ends, dimethylsiloxane polymer (vinyl group content: 0.24% by mass, siloxane degree of polymerization: 300)
  • -Component (a2) vinyl dimethylsiloxy group blockade at both ends, 3,3,3-trifluoropropylmethyl, dimethylsiloxane copolymer (vinyl group content: 0.26% by mass, siloxane degree of polymerization 193)
  • -Component (b3) Sealed trimethylsiloxy group at both ends
  • the amount of the silicon atom-bonded hydrogen atom (Si—H): (SiH / Vi) DEAP of the component (b) was about 1.2 mol per 1 mol of unsaturated hydrocarbon group in the composition. ..
  • the hardness of the obtained organopolysiloxane cured product was Shore A 37.
  • the amount of the silicon atom-bonded hydrogen atom (Si—H): (SiH / Vi) DEAP of the component (b) was about 1.2 mol per 1 mol of unsaturated hydrocarbon group in the composition. ..
  • the hardness of the obtained organopolysiloxane cured product was Shore A 39.
  • the curable organopolysiloxane composition providing the electrode layer shown in Table 1 was diluted with a low molecular weight siloxane solvent (OST-20, manufactured by Dow Silicones) so that the electrode material concentration was 10% by weight.
  • a circular mask is attached to one side of the dielectric layer (film) having a thickness of 0.1 mm prepared above, and a diluted solution is sprayed from the mask so that 16 circular electrodes having a diameter of 13.5 mm are formed. Applied. After coating, it was left at 60 ° C. under vacuum for about 12 hours. Then, a PET substrate provided with a release liner was put on the electrode and pressed at room temperature. The film of the base material PET was peeled off and heated at 120 ° C. for 60 minutes to form an electrode having a thickness of 10-13 ⁇ m.
  • OST-20 low molecular weight siloxane solvent
  • the dielectric layer / electrode layer according to Examples 1 to 3 had a structure in which the electrode layer did not peel off in the peel test and both were firmly adhered to each other.
  • Comparative Examples 1 to 7 in which the SiH / Vi ratios of both layers were not designed in a suitable range, the electrode layer was peeled off in the peel test, and the adhesion and followability between the two were insufficient. Conceivable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[課題]誘電層と電極層のように求められる機能が異なるため、その組成が互いに異なる硬化性オルガノポリシロキサン組成物を硬化して得られる2以上のオルガノポリシロキサン硬化物フィルムが積層された積層体であって、当該積層体を構成する硬化物フィルムの界面において、その接着強度および追従性の不足に伴う剥離や欠陥の問題を生じ難い積層体、その用途および製造方法を提供する。 [解決手段]組成が異なり、硬化反応に関与する官能基の少なくとも一部が共通するオルガノポリシロキサン硬化物フィルムを2層以上積層した構造を有し、かつ、積層された硬化物フィルムがその界面において、化学的に結合した構造を有する、積層体。好適には、前記組成物は、共に、ヒドロシリル化反応性基を含み、かつ、その組成物中のSiH/Vi比において異なり、積層された硬化物フィルムがその界面において、ヒドロシリル化反応により化学的に結合した構造を有する。

Description

オルガノポリシロキサン硬化物フィルムからなる積層体、その用途、およびその製造方法
本発明は少なくとも2種のオルガノポリシロキサン硬化物フィルムが積層された積層体、その用途、その製造方法および製造装置に関する。
ポリシロキサン骨格を有するオルガノポリシロキサン硬化物は、透明性、電気絶縁性、耐熱性、耐寒性等に優れ、所望によりフルオロアルキル基等の高誘電性官能基を導入することで電気活性を改善することができ、かつフィルム状またはシート状に容易に加工できることから、各種の電気・電子デバイスに用いる接着剤フィルムやアクチュエーター等のトランスデューサーデバイスに用いる電気活性フィルムをはじめ、様々な用途に使用されている、これらのオルガノポリシロキサン硬化物は、その硬化機構により、ヒドロシリル化反応硬化型、縮合反応硬化型、パーオキサイド硬化型などに分類される。特に、室温放置もしくは加熱によって速やかに硬化し、副生物を発生しないので、ヒドロシリル化反応硬化型の硬化性オルガノポリシロキサン組成物を用いるオルガノポリシロキサン硬化物フィルムが汎用されている。
一方、タッチパネル等の電子材料、表示装置用電子部材、特にセンサー、アクチュエーター等のトランスデューサー材料として、オルガノポリシロキサン硬化物フィルムを使用する場合、誘電層としての電気活性フィルム上には、電極層を設ける必要がある。例えば、非特許文献1、2には、柔軟性に優れるシリコーンエラストマーマトリックス中に導電性充填剤を添加した電極層を形成することで、誘電層に対する追従性に優れた電極層を形成することが提案されている。
しかしながら、電気活性フィルムであるオルガノポリシロキサン硬化物フィルム上に導電性充填剤を添加した電極層を形成しようとする場合、特に、誘電層の変位(例えば、アクチュエーター等の伸縮)に伴って、誘電層と電極層の界面剥離が生じ、通電不良およびアクチュエーターとしての信頼性の低下につながる場合がある。本件出願人らは、特許文献3等において、電気活性フィルムであるオルガノポリシロキサン硬化物フィルム上に、導電性充填剤を含む硬化性オルガノポリシロキサン組成物を塗布することで、同電気活性フィルム(=誘電層)上に、オルガノポリシロキサン硬化物フィルムである電極層を形成することを提案しているが、アクチュエーター等のトランスデューサー材料として、電極面の追従性不足に伴う剥離の問題を完全に解決するには至らず、未だ改善の余地を残している。
Kujawski, M.; Pearse, J. D.; Smela, E. Carbon 2010, 48, 2409-2417. Rosset, S.; Shea, H. R. Appl. Phys. A 2013, 110, 281-307.
国際特許公開WO2014/105959号公報
本発明は上記課題を解決すべくなされたものであり、誘電層と電極層のように求められる機能が異なるため、その組成が互いに異なる硬化性オルガノポリシロキサン組成物を硬化して得られる2以上のオルガノポリシロキサン硬化物フィルムが積層された積層体であって、当該積層体を構成する硬化物フィルムの界面において、その接着強度および追従性の不足に伴う剥離や欠陥の問題を生じ難い積層体、その用途および製造方法を提供することを目的とする。
鋭意検討の結果、本発明者らは、互いに組成が異なり、かつ、硬化反応に関与する官能基の少なくとも一部が共通する硬化性オルガノポリシロキサン組成物を硬化して得られるオルガノポリシロキサン硬化物フィルムを2層以上積層した構造を有し、かつ、積層されたオルガノポリシロキサン硬化物フィルムがその界面において、化学的に結合した構造を有する、積層体により、上記課題を解決できる事を見出し、本発明に到達した。
ここで、積層されたオルガノポリシロキサン硬化物フィルムの、少なくとも一方は、導電性微粒子を含む組成物を硬化させてなる電極層であり、他方が誘電性官能基を備える、あるいは、導電性微粒子を含まない組成物を硬化してなる誘電層であってよい。さらに、互いに積層されるオルガノポリシロキサン硬化物を与える互いに組成の異なる組成物は、共に、ヒドロシリル化反応により硬化する硬化反応性基を含み、かつ、その組成物中の炭素-炭素二重結合の合計量1モルに対して、本成分中のケイ素原子結合水素原子の物質量において異なり、積層されたオルガノポリシロキサン硬化物フィルムがその界面において、ヒドロシリル化反応により化学的に結合した構造を有することが好ましい。
本発明により、硬化前の組成が互いに異なる2以上のオルガノポリシロキサン硬化物フィルムが交互に積層された積層体であって、当該硬化物フィルムの界面において、その接着強度および追従性の不足に伴う剥離や欠陥の問題を生じ難い積層体、その用途および製造方法を提供することができる。特に、本発明により、ヒドロシリル化反応により硬化し、各々電極層および誘電層の機能を備えるオルガノポリシロキサン硬化物フィルムが交互に積層された構造を備え、当該フィルム間の界面剥離が生じ難く、通電不良およびアクチュエーター等としての用途における信頼性に優れた積層体およびその製造方法を提供できる。
[積層体]
本発明にかかる積層体は、互いに組成が異なり、かつ、硬化反応に関与する官能基の少なくとも一部が共通する硬化性オルガノポリシロキサン組成物を硬化して得られるオルガノポリシロキサン硬化物フィルムを2層以上積層した構造を備え、かつ、積層されたオルガノポリシロキサン硬化物フィルムがその界面において、化学的に結合した構造を有することを特徴とする。オルガノポリシロキサン硬化物フィルムは、3層以上積層されていてもよく、互いにその硬化前の組成が異なる限り、3種類以上の異なるオルガノポリシロキサン硬化物フィルムを積層してもよい。本発明に係る積層体は、2層以上の多層構造を備えてもよく、その少なくとも一部に2種類の組成が異なるオルガノポリシロキサン硬化物フィルムが積層された構造を備える限り、その他の積層部分が、同種のオルガノポリシロキサン硬化物フィルムを積層した構造(例えば、厚みを増すために、誘電層の機能を有する硬化物フィルムを積層した部分構造)を有していることを妨げない。特に、積層体の一部または全部において、2種類の組成が異なるオルガノポリシロキサン硬化物フィルム(例えば、誘電層と電極層である硬化物フィルム)が交互に積層された構造を備えることが、特に好ましい。
一例として、硬化前の組成の異なる、オルガノポリシロキサン硬化物フィルムL1、L2、L3・・・を積層する場合、その界面を「/」で表現すると、以下のような積層体全体の構成または部分的な構成が好適に例示される。なお、[]nは括弧内の構造がn回以上繰り返される積層構造を意味し、nは独立に0以上の数である。また、「/」は積層体の積層方向(一般に各機能層の表面に対して垂直な厚み方向)について、各層が対向していることを意味する。
L1/L2;L1/[L2/L1]n/L2/L1;L2/[L1/L2]n/L1/L2;L2/L1/[L1/]n/L2;L1/L2/L3;L1/L2/L3/L4
本発明にかかる積層体を、トランスデューサー(センサー、アクチュエーター、ジェネレーター)用途に使用する場合、誘電層であるオルガノポリシロキサン硬化物フィルムの少なくとも一方の面に、電極層であるオルガノポリシロキサン硬化物フィルムが積層され、かつ、積層されたオルガノポリシロキサン硬化物フィルムがその界面において、化学的に結合した構造を有することが好ましい。具体的には、先の積層体の構成において、L1が誘電層であるオルガノポリシロキサン硬化物フィルムであり、L2が電極層であるオルガノポリシロキサン硬化物フィルムであり、L2/[L1/L2]n/L1/L2で表される、これらの層が交互に積層され、外側に電極層が配置された全体または部分構造を備えることが好ましい。なお、L1である誘電層は、L1/[L1/]nのように、1層又は2層以上の多層構造に置き換えられていてもよい。いうまでもなく、多層の誘電層は、その界面において、化学的に結合した構造を有してもよく、かつ、好ましい。
さらに、本発明に係る積層体は、電極層と、単層または多層の誘電層のほか、トランスデューサー内に配置する目的で使用する感圧接着層や、任意で剥離面を備えてもよい非シリコーン系の熱可塑性樹脂層を備えてもよい。特に電子装置用部材として用いる場合、積層体の構造として以下のような組み合わせが例示でき、本発明においては、誘電層と電極層、誘電層と感圧接着層または電極層と感圧接着層がその界面(「/」)において、化学的に結合した構造を有することが好ましい。なお、以下の組み合わせは例示であって、これに制限されるものではないことは言うまでもなく、一部例示の通り対称性のある積層体でなくてもよい。さらに、例示において、各機能層の例示は以下のとおりであり、「/」は前記同様の意味である。
(L1)単層または複層の誘電性官能基を有するポリマー硬化物を含む高誘電性シート:(EAP)
(L2)シリコーン系感圧接着層:(PSA)
(L3)電極層:(EL)
(L4)非シリコーン系の熱可塑性樹脂層:(PF)
例1: PSA/EAP/PSA
例2: PSA/EL/EAP/EL/PSA
例3: PSA/PF/EAP/PF/PSA
例4: PSA/EL/PF/EAP/PF/EL/PSA
例5: PSA/PF/EL/EAP/EL/PF/PSA
例6: PF/PSA/EL/EAP/EL/PSA/PF
例7: EL/PSA/EAP/PSA/EL
例8: PF/PSA/EL/EAP/PF/PSA/EL
例9: EL/PSA/EAP/EL
例10: EL/PSA/EAP/EL/PSA
例11: PF/PSA/EAP/PF
例12: PF/PSA/EAP/PF/PSA
例13: EL/PSA/PF/EAP/PF/PSA/EL
なお、例7、例13等のPSA上に電極層を形成した積層体については、PSA上にセパレータを含む剥離性積層体の状態で出荷し、後からセパレータを剥がしてPSA上に電極層を設けてもよい。また、例6、例11の非シリコーン系の熱可塑性樹脂層が外層を形成する積層体にあっては、これらの樹脂層を含めた電子装置用部材として扱ってもよく、これらの樹脂層の積層体内面に剥離面を備えた、剥離性積層体として扱ってもよい。
本発明において、特に好適な形態は、単層または多層の誘電層(EAP)と電極層(EL)がその界面において化学的に結合した構造を有する積層体であり、かつ、(EL/EAP/)nELのように、これらの層が交互に積層され、外側に電極層が配置された全体または部分構造を備える積層体である。ここで、nは1以上の数であり、トランスデューサー等に求められる積層体の厚みに応じ、任意の繰り返し数で積層してよい。
本発明にかかる積層体は、硬化前の組成の異なるオルガノポリシロキサン硬化物フィルムがその界面において、化学的に結合した構造を有することを特徴とする。本発明において、当該構造は、硬化前の組成が異なるフィルムの界面において、各々のフィルムまたはその前駆体中に含まれる硬化反応性の官能基が反応して形成されるため、上記のオルガノポリシロキサン硬化物フィルムは、硬化反応に関与する官能基の少なくとも一部が共通している必要がある。なお、後述する硬化反応の種類は限定されず、1種類または2種類以上の反応であってよいが、アルケニル基とケイ素原子結合水素原子によるヒドロシリル化反応により、積層されたオルガノポリシロキサン硬化物フィルムがその界面において、化学的に結合した構造を有することが特に好ましい。なお、このような結合は、後述する、組成物中のケイ素原子結合水素原子の含有量の調整、硬化性オルガノポリシロキサン組成物の塗布および硬化による製造方法またはそれらの組み合わせにより好適に実現できる。
積層体を構成するオルガノポリシロキサン硬化物フィルムは、その組成および物性において特に制限されるものではないが、少なくとも一方が、その体積抵抗率が10Ω・cm以下であることが好ましく、後述する導電性微粒子(特に好適には、導電性カーボンブラック、グラファイトおよび気相成長カーボン(VGCF)から選ばれる少なくとも1種の導電性カーボンを含む微粒子)を含むことが好ましい。このような導電性を備えるオルガノポリシロキサン硬化物フィルムは電極層に適する。
積層体を構成するオルガノポリシロキサン硬化物フィルムは、少なくとも一方が、120℃におけるせん断貯蔵弾性率(G′)が5.0×10~1.5×10Paの範囲にあることが好ましい。このようなせん断貯蔵弾性率を備えるオルガノポリシロキサン硬化物フィルムは電極層に特に適する。
その他の機械的物性としては、本発明に係るオルガノポリシロキサン硬化物フィルムの圧縮残留ひずみ(%)が10%未満であることが好ましく、5%未満であることがより好ましく、4%以下であることが特に好ましい。
さらに、本発明に係るオルガノポリシロキサン硬化物フィルムを与える組成物を、2.0mm厚のシート状に加熱成形した場合、JIS K 6249に基づいて測定される以下の力学物性を有するように設計可能である。このような特性を与える組成物は、誘電層に特に適するが、これに限定されない。
(1)ヤング率(MPa)は、室温下において、0.001~10MPaとすることができ、好適には0.001~2MPa、特に好適な範囲は、0.001~1.5MPaである。
(2)引き裂き強さ (N/mm) は、室温下において、1N/mm以上とすることができ、特に好適な範囲は、2N/mm以上である。
(3)引っ張り強さ (MPa) は、室温下において、1MPa以上とすることができ、特に好適な範囲は、2MPa以上である。
(4)破断伸び (%) は、50%以上とすることができ、特に好適な範囲は、100~
1000%の範囲である。
[オルガノポリシロキサン硬化物フィルム]
本発明のオルガノポリシロキサン硬化物は、硬化性オルガノポリシロキサン組成物をフィルム状に硬化させてなる。その硬化反応機構は特に限定されるものではないが、例えば、アルケニル基とケイ素原子結合水素原子によるヒドロシリル化反応硬化型;シラノール基および/またはケイ素原子結合アルコキシ基による脱水縮合反応硬化型、脱アルコール縮合反応硬化型;有機過酸化物の使用による過酸化物硬化反応型;およびメルカプト基等に対する高エネルギー線照射によるラジカル反応硬化型等が挙げられ、比較的速やかに全体が硬化し、反応を容易にコントロールできることから、ヒドロシリル化反応硬化型、過酸化物硬化反応型、ラジカル反応硬化型およびこれらの組み合わせであることが望ましく、ヒドロシリル化反応硬化性の硬化性オルガノポリシロキサン組成物を用いることが好ましい。これらの硬化反応は、加熱、高エネルギー線の照射またはこれらの組み合わせに対して進行する。
好適には、本発明において、オルガノポリシロキサン硬化物フィルムを与える硬化性オルガノポリシロキサン組成物は、
(A)分子内に少なくとも2個の炭素-炭素二重結合を含む硬化反応性基を有するオルガノポリシロキサン、
(B)分子中に少なくとも2個のケイ素結合水素原子を有するオルガノハイドロジェンポリシロキサン 組成物中のアルケニル基の合計量1モルに対して、本成分中のケイ素原子結合水素原子が0.5~2.5モルとなる量、および
(C)有効量のヒドロシリル化反応用触媒、
を少なくとも含有するものである。
なお、誘電層として利用するオルガノポリシロキサン硬化物フィルムを与える組成物においては、特に、前記成分(A)が、
(a1)分子鎖末端のみにアルケニル基を有する直鎖状または分岐鎖状のオルガノポリシロキサン、および、
(a2)分子内に少なくとも1つの分岐シロキサン単位を有し、ビニル(CH2=CH―)基の含有量が1.0~5.0質量%の範囲内にあるアルケニル基含有オルガノポリシロキサン樹脂を含有するオルガノポリシロキサン混合物であることがより好ましい。
上記の成分(A)は、炭素-炭素二重結合を含む硬化反応性基を有するオルガノポリシロキサンであり、ビニル基等の炭素数2~20のアルケニル基;3-アクリロキシプロピル基、3-メタクリロキシプロピル基等の(メタ)アクリル含有基から選ばれる硬化反応性基を分子内に含有する、直鎖状、分岐鎖状、環状、または樹脂状(ネットワーク状)のオルガノポリシロキサンが例示される。
成分(A)であるオルガノポリシロキサンは、分子内に炭素-炭素二重結合を有しない一価炭化水素基、水酸基および炭素原子数1~3のアルコキシ基から選ばれる基を含んでもよい。また、一価炭化水素基は、その水素原子の一部がハロゲン原子または水酸基で置換されていてもよく、誘電層として使用する場合には、後述する誘電性官能基が導入されていてもよい。工業的には、メチル基、フェニル基、水酸基、アルコキシ基および後述する誘電性官能基が好ましい。なお、成分(A)が、水酸基等を含む場合、当該成分は、ヒドロシリル化反応硬化性に加えて、縮合反応性を有する。
誘電層に用いる場合、好適には、成分(A)は、下記の平均組成式:
SiO(4-a―b)/2 
で表されるオルガノポリシロキサン、またはその混合物であってよい。
式中、Rは、上記の炭素-炭素二重結合を含む硬化反応性基であり、
は、上記の炭素-炭素二重結合を有しない一価炭化水素基、水酸基およびアルコキシ基から選ばれる基であり、
aおよびbは次の条件:1≦a+b≦3及び0.001≦a/(a+b)≦0.33を満たす数であり、好ましくは、次の条件:1.5≦a+b≦2.5及び0.005≦a/(a+b)≦0.2を満たす数である。これは、a+bが上記範囲の下限以上であると、硬化物の柔軟性が高くなるからであり、一方上記範囲の上限以下であると、硬化物の機械強度が高くなるからであり、a/(a+b)が上記範囲の下限以上であると、硬化物の機械強度が高くなるからであり、一方上記範囲の上限以下であると、硬化物の柔軟性が高くなるからである。
誘電層に用いる場合、本発明にかかる成分(A)は、特に好適には、
(a1)分子鎖末端のみにアルケニル基を有する直鎖状または分岐鎖状のオルガノポリシロキサン、および、
(a2)分子内に少なくとも1つの分岐シロキサン単位を有し、ビニル(CH2=CH―)基の含有量が1.0~5.0質量%の範囲内にあるアルケニル基含有オルガノポリシロキサン樹脂
を含むオルガノポリシロキサン混合物である。
成分(a1)は、その分子鎖末端に
(Alk)R SiO1/2
(式中、Alkは炭素原子数2以上のアルケニル基)で表されるシロキサン単位を有し、その他のシロキサン単位が実質的にR SiO2/2で表されるシロキサン単位のみからなる直鎖状または分岐鎖状のオルガノポリシロキサンである。なお、Rは前記同様の基を表す。また、成分(A1-1)のシロキサン重合度は、末端シロキサン単位を含めて、7~1002の範囲であり、102~902の範囲であってよい。このような成分(A1-1)は特に好適には、分子鎖の両末端が(Alk)R SiO1/2で表されるシロキサン単位で封鎖された、直鎖状のオルガノポリシロキサンである。
成分(a2)は、アルケニル基含有オルガノポリシロキサン樹脂であり、
平均単位式:
(RSiO3/2)o(RSiO2/2)p(RSiO1/2)q(SiO4/2)r(XO1/2)s
で表されるアルケニル基含有オルガノポリシロキサン樹脂が例示される。
上式中、Rは、アルケニル基および前記の炭素-炭素二重結合を有しない一価炭化水素基から選ばれる基であり、Xは水素原子または炭素原子数1~3のアルキル基である。ただし、全てのRのうち、少なくとも、当該オルガノポリシロキサン樹脂中のビニル(CH2=CH―)基の含有量が、1.0~5.0質量%の範囲を満たす範囲においてRはアルケニル基であり、特に、RSiO1/2で表されるシロキサン単位上のRの少なくとも一部はアルケニル基であることが好ましい。
上式中、(o+r)は正数であり、pは0又は正数であり、qは0又は正数であり、sは0又は正数であり、かつ、p/(o+r)は0~10の範囲内の数であり、q/(o+r)は0~5の範囲内の数であり、(o+r)/(o+p+q+r)は0.3~0.9の範囲内の数であり、s/(o+p+q+r)は0~0.4の範囲内の数である。
成分(a2)として、特に好適には、
{(Alk)R SiO1/2}q1(R SiO1/2)q2(SiO4/2)r
(式中、Alk、Rは前記同様の基であり、q1+q2+rは50~500の範囲の数であり、(q1+q2)/rは0.1~2.0の範囲の数であり、q2は当該オルガノポリシロキサン樹脂中のビニル(CH2=CH―)基の含有量が、1.0~5.0質量%の範囲を満たす範囲の数である)
で表されるアルケニル基含有MQオルガノポリシロキサン樹脂が例示される。
これらの分子鎖末端のみにアルケニル基を有する成分(a1)およびオルガノポリシロキサン樹脂であって一定量のアルケニル基を有する成分(a2)を併用することで、組成物全体として硬化性に優れ、かつ、機械的強度および柔軟性に優れる硬化反応物を与え、上記の電子部品等における接着層または誘電層に特に適合したオルガノポリシロキサン硬化物フィルムを提供することができる。
成分(B)は、分子中に少なくとも2個のケイ素結合水素原子を有するオルガノハイドロジェンポリシロキサンであり、成分(A)の架橋剤として機能する成分である。
このような成分(B)として、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ジメチルハイドロジェンシロキシ)メチルシラン、トリス(ジメチルハイドロジェンシロキシ)フェニルシラン、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、トリメトキシシランの加水分解縮合物、(CH)HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH)HSiO1/2単位とSiO4/2単位と(C)SiO3/2単位とからなる共重合体、およびこれらの2種以上の混合物が例示される。
成分(B)の使用量は、組成物中の、好適には、成分(A)中の炭素-炭素二重結合1モルに対して、珪素結合水素原子が0.1~10モルの範囲となる量であり、好適には、0.5~2.5モルの範囲となる量であり、特に好適には、0.5~2.0モルの範囲となる量である。成分(B)の使用量が前記下限以下では硬化不良の原因となる場合があり、成分(B)の含有量が前記上限を超えると、硬化物の機械的強度が高くなりすぎ、電極層、誘電層または接着層として好適な物性を得られなくなる場合がある。ただし、本発明にかかるオルガノポリシロキサン硬化物フィルムのガラス等の被着体に対する接着強度の向上等を目的とする場合、成分(A)中の炭素-炭素二重結合1モルに対して、珪素結合水素原子が20モルを超える範囲で使用することを妨げるものではない。
好適には、本発明に係る積層されたオルガノポリシロキサン硬化物フィルムは、互いにその組成が異なり、かつ、その界面において前記の成分(A)および成分(B)間のヒドロシリル化反応により化学的に結合した構造を有するものである。ここで、界面における成分(A)および成分(B)間の反応は、二つの硬化物フィルムまたはその前駆体(未硬化/半硬化の塗布状態を含む)の界面において、硬化物フィルムまたはそれを与える硬化性組成物中の炭素-炭素二重結合の合計量1モルに対して、オルガノハイドロジェンポリシロキサン成分中のケイ素原子結合水素原子(以下、「SiH/Vi比」と略すことがある)が異なる場合に、好適に進行する。逆に、両者のSiH/Vi比が一致してしまうと界面間での硬化反応性官能基の反応が促進されず、十分な化学結合が形成されない場合がある。
好適には、互いに組成の異なる硬化性オルガノポリシロキサン組成物(I)および(II)を使用する場合、組成物(I)中のSiH/Vi比が1.0モルを超え、2.0モル以下(すなわち、SiH過剰)であり、他方の組成物(II)中のSiH/Vi比が0.5モル以上であり1.0モル以下(すなわち、SiH不足)であることで、両者を硬化させてなる硬化物フィルムの界面間で、共通する硬化反応性官能基間の反応が促進され、強固な化学結合が形成される。なお、組成物(I)と(II)のSiH/Vi比について、[SiH/Vi]II/[SiH/Vi]の値が0.33~0.85の範囲にあることが好ましく、0.50~0.75、0.58~0.67の範囲にあることが特に好ましい。なお、SiH過剰の組成物(I)が誘電層であり、SiH不足の組成物(II)が電極層であってよいが、その逆(組成物(I):電極層、組成物(II):誘電層)であってもよく、特に制限されるものではない。
なお、本発明は、好適には、電極層と誘電層であるオルガノポリシロキサン硬化物フィルム間に強固な化学結合が形成されているものであるから、上記の組成物(I)が誘電層を与え、組成物(II)が電極層を与える場合、組成面の相違は、SiH/Vi比に加えて、導電性微粒子の有無によっても決定される。具体的には、電極層を形成する組成物(II)について、導電性微粒子を含み、そのSiH/Vi比([SiH/Vi]Elec)が0.5モル以上であり1.0モル以下であり、好適には、0.6モル以上であり0.9モル以下であり、より好適には、0.7モル以上であり0.8モル以下であり、誘電層を形成する組成物(I)について、導電性微粒子を含まず、そのSiH/Vi比([SiH/Vi]DEAP)について、[SiH/Vi]Elec/[SiH/Vi]DEAPの値が、0.33~0.85、0.50~0.75、0.58~0.67の範囲となることが、特に好ましい。すなわち、誘電層を形成する組成物が、ある程度SiH過剰である組み合わせが特に好ましい。
成分(C)は成分(A)および成分(B)のヒドロシリル化反応を促進する触媒であり、白金系触媒、ロジウム系触媒、パラジウム系触媒、ニッケル系触媒、イリジウム系触媒、ルテニウム系触媒、および鉄系触媒が例示され、好ましくは、白金系触媒である。この白金系触媒としては、白金微粉末、塩化白金酸、塩化白金酸のアルコール溶液、白金-アルケニルシロキサン錯体、白金-オレフィン錯体、白金-カルボニル錯体、およびこれらの白金系触媒を、シリコーン樹脂、ポリカーボネート樹脂、アクリル樹脂等の熱可塑性樹脂で分散あるいはカプセル化した触媒が例示され、特に、白金-アルケニルシロキサン錯体が好ましい。特に、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体であることが好ましく、当該錯体のアルケニルシロキサン溶液の形態で添加することが好ましい。加えて、取扱作業性および組成物のポットライフの改善の見地から、熱可塑性樹脂で分散あるいはカプセル化した微粒子状の白金含有ヒドロシリル化反応触媒を用いてもよい。なお、ヒドロシリル化反応を促進する触媒としては、鉄、ルテニウム、鉄/コバルトなどの非白金系金属触媒を用いてもよい。
また、成分(C)であるヒドロシリル化反応用触媒としては、高エネルギー線の照射がないと活性を示さないが、高エネルギー線の照射により組成物中で活性を示すヒドロシリル化反応用触媒、いわゆる高エネルギー線活性化触媒又は光活性化触媒であってもよい。このような成分(C)を使用することで、組成物全体として、高エネルギー線の照射をトリガーとして低温でも硬化が可能であり、保存安定性に優れ、かつ、反応のコントロールが容易であるため、取り扱い作業性に優れるという特性を実現することができる。
高エネルギー線は、紫外線、ガンマ線、X線、α線、電子線等が挙げられる。特に、紫外線、X線、及び、市販の電子線照射装置から照射される電子線が挙げられ、これらのうちでも紫外線が触媒活性化の効率の点から好ましく、波長280~380nmの範囲の紫外線が工業的利用の見地から好ましい。また、照射量は、高エネルギー線活性型触媒の種類により異なるが、紫外線の場合は、波長365nmでの積算照射量が100mJ/cm~100J/cmの範囲内であることが好ましい。
成分(C)の具体例としては、(メチルシクロペンタジエニル)トリメチル白金(IV)、(シクロペンタジエニル)トリメチル白金(IV)、(1,2,3,4,5-ペンタメチルシクロペンタジエニル)トリメチル白金(IV)、(シクロペンタジエニル)ジメチルエチル白金(IV)、(シクロペンタジエニル)ジメチルアセチル白金(IV)、(トリメチルシリルシクロペンタジエニル)トリメチル白金(IV)、(メトキシカルボニルシクロペンタジエニル)トリメチル白金(IV)、(ジメチルフェニルシリルシクロペンタジエニル)トリメチルシクロペンタジエニル白金(IV)、トリメチル(アセチルアセトナト)白金(IV)、トリメチル(3,5-ヘプタンジオネート)白金(IV)、トリメチル(メチルアセトアセテート)白金(IV)、ビス(2,4-ペンタンジオナト)白金(II)、ビス(2,4-へキサンジオナト)白金(II)、ビス(2,4-へプタンジオナト)白金(II)、ビス(3,5-ヘプタンジオナト)白金(II)、ビス(1-フェニル-1,3-ブタンジオナト)白金(II)、ビス(1,3-ジフェニル-1,3-プロパンジオナト)白金(II)、ビス(ヘキサフルオロアセチルアセトナト)白金(II)が挙げられ、これらのうちでも(メチルシクロペンタジエニル)トリメチル白金(IV)とビス(2,4-ペンタンジオナト)白金(II)が汎用性と入手の容易さの点から好ましい。
成分(C)の使用量は、有効量であり、特に制限されるものではないが、本発明の硬化性オルガノポリシロキサン組成物の硬化を促進する量であれば特に限定されない。具体的には、(A)~(C)成分の和(全体を100質量%とする)に対して、この触媒中の金属原子が質量単位で0.01~1,000ppm、好適には(C)成分中の白金金属原子が、0.1~500ppmの範囲内となる量である。これは、(C)成分の含有量が上記範囲の下限未満であると、硬化が不十分となる場合があり、上記範囲の上限を超えると、不経済であるほか得られる硬化物の着色等、透明性に悪影響を及ぼす場合がある。
[機能性充填剤の使用と硬化物フィルムの機能]
本発明において、積層されたオルガノポリシロキサン硬化物フィルムは、互いに組成の異なる硬化性オルガノポリシロキサン組成物を硬化して得られるオルガノポリシロキサン硬化物フィルムであり、その機能を実現すべく、機能性充填剤を配合することが好ましい。特に、誘電層であるオルガノポリシロキサン硬化物フィルムは、前記の好適なSiH/Vi比の相違だけでなく、電極層であるオルガノポリシロキサン硬化物フィルムと異なり、導電性微粒子を含まない点で組成が大きく異なる。一般的に、電極層である硬化物フィルムを与える硬化性オルガノポリシロキサン組成物は、(E)導電性微粒子を含み、誘電層である硬化物フィルムを与える硬化性オルガノポリシロキサン組成物は、(F)補強性充填剤を含むことが好ましく、導電性微粒子を含まず、かつ、任意でさらに高誘電性官能基を導入してもよい。なお、機能性充填剤は、疎水化用の表面処理がなされていてもよい。疎水化用の表面処理剤としては、有機チタン化合物、有機ケイ素化合物、有機ジルコニウム化合物、有機アルミニウム化合物及び有機リン化合物からなる群から選択される少なくとも1種の表面処理剤が挙げられる。
[(E)導電性微粒子]
導電性微粒子としては、オルガノポリシロキサン硬化物フィルムに導電性を付与することができるものであれば特に制限はなく、これを含む硬化物フィルムは電極層として好適に使用することができる。なお、導電性微粒子を含む電極層については、例えば、本件出願人らの国際特許公開WO2014/105959号公報等に提案されている。
具体的には、導電性カーボンブラック、グラファイト、気相成長カーボン(VGCF)等の導電性カーボン;白金、金、銀、銅、ニッケル、錫、亜鉛、鉄、アルミニウム等の金属粉が挙げられ、更に、アンチモンがドープされた酸化錫、リンがドープされた酸化錫、酸化錫/アンチモンで表面被覆された針状酸化チタン、酸化スズ、酸化インジウム、酸化アンチモン、アンチモン酸亜鉛、カーボンやグラファイトのウィスカー表面に酸化錫等を被覆した顔料;錫ドープ酸化インジウム(ITO)、フッ素ドープ酸化錫(FTO)、リンドープ酸化錫及び酸化ニッケルからなる群より選ばれる少なくとも1種の導電性金属酸化物を被覆した顔料;二酸化チタン粒子表面に酸化錫及びリンを含む導電性を有する顔料等が挙げられ、また、これらは、各種表面処理剤で処理したものであってもよい。これらはそれぞれ単独で又は2種以上組合せて用いることができる。また、これらの導電性微粒子を硬化性オルガノポリシロキサン組成物中に均一に分散するため、当該組成物に使用する成分(A)または成分(B)の一部または全部と事前に混錬し、コンパウンドの形態で硬化性オルガノポリシロキサン組成物中に配合してもよい。
さらに、導電性無機微粒子は、ガラス繊維、シリカアルミナ繊維、アルミナ繊維、炭素繊維等の繊維、並びに、ホウ酸アルミニウムウィスカー、チタン酸カリウムウィスカー等の針状の補強材、ガラスビーズ、タルク、マイカ、グラファイト、ウォラストナイト、ドロマイト等の無機充填材の表面に金属等の導電性物質を被覆したものでもよい。
[(F)補強性充填材]
誘電層である硬化物フィルムを与える硬化性オルガノポリシロキサン組成物は、1種類以上の有機ケイ素化合物により表面処理され、平均BET比表面積が異なる、補強性微粒子またはその複合体を、当該組成物中の、硬化反応により不揮発性の固形分を形成する成分の和に対して、一定の範囲内で含むことが好ましい。
ここで、補強性微粒子は、硬化物の機械的強度の見地から、平均一次粒子径が50nm未満である1種以上の補強性無機微粒子であることが好ましく、ヒュームドシリカ、湿式シリカ、粉砕シリカ、炭酸カルシウム、珪藻土、微粉砕石英、アルミナ・酸化亜鉛以外の各種金属酸化物粉末、ガラス繊維、炭素繊維等が例示され、これらを後述する1種類以上の有機ケイ素化合物で処理したものが使用される。その形状は、特に限定されるものではなく、粒子状、板状、針状、繊維状等の任意の形状のものを用いることができる。
好例としては、誘電層の機械的強度の向上の観点から、平均一次粒子径が10nm以下であり、部分的に凝集し、そのBET比表面積が、後述するとおり、互いに異なる親水性または疎水性のヒュームドシリカもしくはその金属酸化物複合体が挙げられる。更に、分散性の向上の点から、ヒュームドシリカもしくはその金属酸化物複合体をジシラザンまたは後述するシランカップリング剤で処理したものが好ましい。これら補強性無機粒子は、2種以上を組み合わせて使用してもよい。
本発明において、誘電層に用いる補強性充填材は、
(F1)1種類以上の有機ケイ素化合物により表面処理された、平均BET比表面積が100m/gを超える補強性微粒子またはその複合体と
(F2)1種類以上の有機ケイ素化合物により表面処理された、平均BET比表面積が10~100m/gの範囲にある補強性微粒子またはその複合体を含んでなり、かつ、
成分(F1)と成分(F2)の質量比が50:50~99:1の範囲であり、70:30~97:3の範囲であってよく、70:30~95:5の範囲が好ましい。上記の質量比範囲を外れた場合、硬化性オルガノポリシロキサン組成物の硬化前粘度が上昇したり、また硬化後の力学強度や絶縁破壊強度が低下する恐れがある。
上記の(F1)および(F2)成分である補強性充填材を組成物中に配合することにより、本発明に係る硬化性オルガノポリシロキサン組成物を硬化してなるオルガノポリシロキサン硬化物の力学強度、絶縁破壊強度を増加させることが可能となる。これら充填材の配合量は、(F1)成分と(F2)成分の和として、組成物中の、硬化反応により不揮発性の固形分を形成する成分の和に対して、10~40質量%の範囲内であり、15~35質量%の範囲であってよく、15~30質量%の範囲が特に好ましい。上記の質量%範囲の上限を超えると、均一かつ薄膜状の塗布が困難となる場合があり、上記の質量%範囲の下限未満では、硬化性オルガノポリシロキサン組成物の硬化後の物性が不十分となる恐れがある。
上記の(F1)および(F2)成分である補強性充填材は、1種類以上の有機ケイ素化合物により表面処理されていることが好ましい。有機ケイ素化合物により表面処理は疏水化処理であるが、かかる有機ケイ素化合物により表面処理された補強性充填剤はオルガノポリシロキサン組成物中に高充填率かつ均一に分散させることができる。また、組成物の粘度の増大が抑制され、成形加工性が向上する。
有機ケイ素化合物の例は、シラン、シラザン、シロキサン、又は同様物などの低分子量有機ケイ素化合物、及びポリシロキサン、ポリカルボシロキサン、又は同様物などの有機ケイ素ポリマー又はオリゴマーである。好適には、表面処理に用いる有機ケイ素化合物が、少なくともヘキサメチルジシラザンおよび1,3-ビス(3,3,3-トリフルオロプロピル)-1,1,3,3-テトラメチルジシラザンから選ばれる1種類以上を含有することが最も好ましい。
 前記表面処理において、充填剤総量に対する表面処理剤の割合は、0.1質量%以上、50質量%以下の範囲が好ましく、0.3質量%以上、40質量%以下の範囲がより好ましい。なお、処理量については、充填剤と表面処理剤の仕込み比であり、処理後に余剰の処理剤を除去することが好ましい。また、必要に応じて処理する際には反応を促進もしくは補助する添加剤等を使用しても問題ない。
 前記表面処理において、表面処理剤の成分が充填剤表面に化学的もしくは物理的に固定されているかは重要なパラメーターである。たとえば、表面処理剤の固定量は、アルカリ条件下過剰のテトラエトキシシランと充填剤を含めた組成物を反応させ、反応生成物をガスクロマトグラフィーで検出することにより分析できる。上記充填剤表面に固定された表面処理剤の成分量は、充填剤量100質量部に対して、1.0質量部以上、好ましくは3.0質量部以上がよい。中でも 本発明に関わる(F1)成分と(F2)成分の表面処理に用いる有機ケイ素化合物が、ヘキサメチルジシラザンおよび1,3-ビス(3,3,3-トリフルオロプロピル)-1,1,3,3-テトラメチルジシラザンを2種使用する場合には、それぞれの充填剤表面上への固定比率を必要に応じて変えることができる。たとえば、本発明においては、上述通り、成分(A)または成分(B)の一部又は全部に、高誘電性官能基は(C2p+1)-R- (Rは炭素原子数1~10のアルキレン基であり、pは1以上8以下の整数である)で表されるフルオロアルキル基が導入することができる。誘電特性、経済性、製造容易性、得られる硬化性オルガノポリシロキサン組成物の成形加工性の観点からp=1の基、すなわちトリフルオロプロピル基が好ましい基である。その場合、ヘキサメチルジシラザンおよび1,3-ビス(3,3,3-トリフルオロプロピル)-1,1,3,3-テトラメチルジシラザン由来の処理成分の充填剤表面に固定された重量比は0以上10以下であり、好ましくは0以上5以下がよい。この範囲を外れてしまうと、成分(A)または成分(B)と充填剤表面との親和性が悪くなり、加工性や硬化後の物性が低下する恐れがある。
[その他の機能性充填材]
本発明にかかる硬化性オルガノポリシロキサン組成物において、その他の充填材は、所望により用いても、用いなくてもよく、例えば、高誘電性充填剤、熱伝導性無機微粒子、絶縁性充填剤等が挙げられ、これらの無機微粒子は、補強性充填材としての機能等、2種類以上の機能を併せ持つ場合がある。
好ましい誘電性無機微粒子の例として、酸化チタン、チタン酸バリウム、チタン酸ストロンチウム、チタン酸ジルコン酸鉛、およびチタン酸バリウムのバリウムおよびチタン部位の一部をカルシウム、ストロンチウム、イットリウム、ネオジム、サマリウム、ジスプロシウムなどのアルカリ土類金属、ジルコニウム、または希土類金属で置換した複合金属酸化物からなる群から選択される1種以上の無機微粒子が挙げられ、酸化チタン、チタン酸バリウム、チタン酸ジルコン酸バリウムカルシウム、及びチタン酸ストロンチウムがより好ましく、酸化チタン、チタン酸バリウムがさらに好ましい。特に、誘電性無機微粒子は、その少なくとも一部が、室温、1kHzにおける比誘電率が10以上の誘電性無機微粒子であることが特に好ましい。なお、当該無機微粒子の好ましい大きさ(平均一次粒子径)の上限は、20,000nm(20μm)であるが、後述するトランスデューサー用薄膜への加工性を考慮すると、10,000nm(10μm)がより好ましい。当該誘電性無機微粒子の使用により、オルガノポリシロキサン硬化物について、機械特性及び/又は電気的特性、特にその比誘電率をさらに改善できる場合がある。
本発明で使用可能な絶縁性無機微粒子としては、一般に知られる絶縁型無機材料、すなわち、体積抵抗率が1010~1018Ω・cmである無機材料の粒子であれば制限が無く、粒子状、フレーク状、ファイバー(ウィスカー含む)状のいずれの形状でも使用することができる。具体的には、セラミックの球状粒子、板状粒子、又はファイバーが挙げられ、アルミナ、酸化鉄、酸化銅、マイカやタルク等の金属シリケート、石英、非晶質シリカ、ガラス等の粒子が好ましい使用例として挙げられる。また、これらを後述する各種表面処理剤で処理したものであってもよい。これらはそれぞれ単独で又は2種以上組合せて用いることができる。絶縁性無機微粒子を組成物中に配合することにより、オルガノポリシロキサン硬化物の力学強度、絶縁破壊強度を増加させることが可能となり、比誘電率の増加も見られる場合がある。
本発明で使用可能な熱伝導性無機微粒子としては、酸化マグネシウム、酸化亜鉛、酸化ニッケル、酸化バナジウム、酸化銅、酸化鉄、酸化銀等の金属酸化物粒子、および窒化アルミニウム、窒化ホウ素、炭化ケイ素、窒化ケイ素、炭化ホウ素、炭化チタン、ダイヤモンド、ダイヤモンドライクカーボン等の無機化合物粒子が挙げられ、酸化亜鉛、窒化ホウ素、炭化ケイ素、および窒化ケイ素が好ましい。これら熱伝導性無機微粒子の1種以上を組成物中に配合することにより、オルガノポリシロキサン硬化物の熱伝導率を増加させることが可能となる。
これらの無機粒子の平均粒子径の測定は当該分野で通常の測定方法により行うことができる。例えば、平均粒子径が50nm以上、500nm程度以下である場合は、透過型電子顕微鏡(TEM)、電界放射型透過電子顕微鏡(FE-TEM)、走査型電子顕微鏡(SEM)、電界放射型走査電子顕微鏡(FE-SEM)等の顕微鏡観察により粒子径を測定し、平均値を求めることで平均一次粒子径の測定ができる。一方、平均粒子径が500nm程度以上である場合は、レーザー回折・散乱式粒度分布測定装置等により平均一次粒子径の値を直接求めることができる。
[溶媒の使用]
本発明に係る硬化性オルガノポリシロキサン組成物は、そのまま硬化反応に供することができるが、一方、該組成物またはその成分の一部(例えば、オルガノポリシロキサンレジン)が固形状である場合や粘ちょう液状である場合には、その混和性および取り扱い性を向上させるため、必要に応じて有機溶媒を使用することもできる。特に、本発明の硬化性オルガノポリシロキサン組成物をフィルム状に塗工する場合、全体粘度が100~50,000mPa・sとなる範囲に、溶媒を用いて粘度調整をしてもよく、溶媒で希釈する場合、上記の(A)~(C)成分の和(100質量部)に対して、0~2000質量部の範囲で用いることができる。すなわち、本発明組成物において、溶媒は、0質量部であってもよく、無溶剤型となって好ましい。特に、本発明の硬化性オルガノポリシロキサン組成物に、低重合度のポリマーを選択することで、溶媒フリーとする設計が可能であり、硬化して得られるフィルム中にフッ素系溶媒、有機溶媒等が残留せず、環境負荷の問題および電子デバイスへの溶媒の影響を解消できる利点がある。また、溶媒の使用量が、上記の(A)~(C)成分の和(100質量部)に対して、10質量部以下、好適には5質量部以下の低溶剤型の組成物であってもよく、かつ、好ましい。また、特に、電極層に利用する組成物は、後述する実施例のように、溶剤で希釈し、スプレー塗布により薄膜状に塗布してもよい。
好適には、このような有機溶媒は、
(E1)有機系極性溶媒、
(E2)低分子シロキサン系溶媒、および
(E3)ハロゲン系溶媒
から選ばれる1種類以上の有機溶媒またはそれらの混合溶媒であり、沸点が80℃以上200℃未満のものが好ましく使用される。なお、異種または同種の異なる有機溶媒の任意の比率の混合溶媒であってもよい。好適には、有機溶媒は、ヘキサメチルジシロキサン及びオクタメチルトリシロキサンから選ばれる少なくとも1種の低分子シロキサン系溶媒及びそれらの混合溶媒を含むものであり、これらはOST-10、OST-20及びOST-2の名称で、ダウシリコーンズコーポレーションから市販されている。また、硬化性エラストマー組成物中のフルオロアルキル基含有量が高い場合には、任意でこれらの低分子シロキサン系溶媒と上記のハロゲン系溶媒を併用することも本発明の好適な形態に包含される。
[全体粘度]
本発明において使用する硬化性オルガノポリシロキサン組成物は、25℃かつシェアレート10.0(S-1)で測定した全体粘度が、5~500,000mPa・sの範囲であることが好ましく、1,000~10,000mPa・sの範囲が特に好ましい。好ましい粘度範囲に設定する目的で、上記の有機溶媒の使用量を調整することも可能であるが、低溶剤型または溶媒フリー(=無溶剤型)とすることもできる。なお、電極層に利用する組成物は、後述する実施例のように、溶剤で希釈し、スプレー塗布により薄膜状に塗布してもよく、かつ好ましい。
 [チキソ比]
本発明の硬化性オルガノポリシロキサン組成物は、流動性に優れ、チキソトロピックな挙動を示さないことが好ましい。これにより、全体粘度が低く、かつ、均一塗布性に優れる性質が実現可能である。具体的には、当該組成物についてシェアレート0.1(S-1)で測定した組成物全体の粘度とシェアレート10.0(S-1)(S-1)で測定した組成物全体の粘度の比であるチキソ比が10.0以下であることが特に好ましい。
[固形分量]
本発明にかかる硬化性オルガノポリシロキサン組成物において、硬化して不揮発性の固形分であるオルガノポリシロキサン硬化物を形成する成分の含有量(本発明において、単に「固形分」ということがある)が、組成物全体の5~100質量%の範囲であることが好ましく、50~100質量%の範囲、75~100質量%または85~100質量%の範囲であることがより好ましい。
[誘電性官能基の導入]
本発明にかかるオルガノポリシロキサン硬化物フィルムをアクチュエーター等のトランスデューサーに用いる電気活性フィルム(たとえば、誘電性フィルム)として用いる場合、硬化物に高誘電性官能基を導入してもよい。ただし、高誘電性官能基を含まないオルガノポリシロキサン硬化物フィルムであっても、電気活性フィルムとして利用することは可能である。なお、これらの高誘電性官能基の導入および比誘電率の向上については、例えば、本件出願人らの国際特許公開WO2014/105959号公報等に提案されている。
高誘電性官能基の導入は、前記成分(A)または成分(B)の一部又は全部として、高誘電性官能基を有するオルガノポリシロキサンまたはオルガノハイドロジェンポリシロキサンを用いることや、高誘電性官能基を有する有機添加剤、高誘電性官能基を有する非反応性の有機ケイ素化合物等を前記の硬化性組成物に添加することで行うことができる。硬化性組成物への混和性および硬化物の比誘電率の向上の見地から、前記成分(A)または成分(B)であるオルガノポリシロキサンまたはオルガノハイドロジェンポリシロキサンにおいて、そのケイ素原子上の全ての置換基の10モル%以上、好適には20モル%以上、より好適には、40モル%以上が、高誘電性官能基により置換されていることが好ましい。
オルガノポリシロキサン硬化物フィルムに導入される高誘電性官能基の種類は、特に制限されるものではないが、a)3,3,3-トリフルオロプロピル基等に代表されるハロゲン原子及びハロゲン原子含有基、b)シアノプロピル基等に代表される窒素原子含有基、c)カルボニル基等に代表される酸素原子含有基、d)イミダゾール基等の複素環基、e)ボレートエステル基等のホウ素含有基、f)ホスフィン基等のリン含有基、およびg)チオール基等の硫黄含有基が例示され、好適には、フッ素原子を含むハロゲン原子及びハロゲン原子含有基の使用が好ましい。
本発明においては、成分(A)または成分(B)の一部又は全部に、高誘電性官能基は(C2p+1)-R- (Rは炭素原子数1~10のアルキレン基であり、pは1以上8以下の整数である)で表されるフルオロアルキル基が導入されていることが好ましい。このようなフルオロアルキル基は、比誘電率に優れた硬化物を与え、かつ、各成分がフッ素原子を有することで各成分の相溶性を改善し、透明性に優れた硬化物を与える。このようなフルオロアルキル基の具体例としては、トリフルオロプロピル基、ペンタフルオロブチル基、ヘプタフルオロペンチル基、ノナフルオロヘキシル基、ウンデカフルオロヘプチル基、トリデカフルオロオクチル基、ペンタデカフルオロノニル基、ヘプタデカフルオロデシル基である。この中では、誘電特性、経済性、製造容易性、得られる硬化性オルガノポリシロキサン組成物の成形加工性の観点からp=1の基、すなわちトリフルオロプロピル基が好ましい基である。
本発明に係る硬化性オルガノポリシロキサン組成物には上記の成分の他に、本発明の目的を損なわない限り、必要に応じてこれら以外の成分を添加配合することができる。他の成分としては、ヒドロシリル化反応抑制剤、離型剤、絶縁性添加剤、接着性向上剤、耐熱性向上剤、充填剤、顔料その他従来公知の各種添加剤が例示される。これらの具体例は、例えば、上記の国際特許公開WO2014/105959号公報において提案されたものと同様である。
本発明の硬化性オルガノポリシロキサン組成物は、硬化性オルガノポリシロキサンおよび硬化反応の促進成分、好適には、上記成分(A)~(C)を均一に混合することにより、また、必要に応じてその他任意の成分を添加して、均一に混合することにより調製することができる。各種攪拌機あるいは混練機を用いて、常温で混合すればよいが、混合中に硬化しない成分の組合せであれば、加熱下で混合してもよい。
混合中に硬化しなければ、各成分の配合順序は特に制限されるものではない。混合後、直ちに使用しないときは、架橋剤(例えば、成分(B))と硬化反応の促進成分(例えば、成分(C))が同一の容器内に存在しないように複数の容器に分けて保管しておき、使用直前に全容器内の成分を混合してもよい。
本発明に係る、硬化性オルガノポリシロキサン組成物の硬化反応は、脱水、脱アルコール等の縮合反応に基づく硬化反応においては室温で進行するが、オルガノポリシロキサン硬化物フィルムを工業的生産プロセスで生産する場合、通常、該組成物を加熱あるいは活性エネルギー線にさらすことにより達成される。熱による硬化反応温度は、特に限定されないが、50℃以上200℃以下が好ましく、60℃以上200℃以下がより好ましく、80℃以上180℃以下がさらに好ましい。また、硬化反応にかける時間は、上記(A)、(B)、(C)成分の構造に依存するが、通常1秒以上3時間以下である。一般的には、90~180℃の範囲内で10秒~30分保持することにより硬化物を得ることができる。なお、フィルムの製造法については後述する。
硬化反応に使用され得る活性エネルギー線としては、紫外線、電子線、及び放射線等が挙げられるが、実用性の点で紫外線が好ましい。紫外線により硬化反応を行なう場合は、使用する紫外線に対して高い活性を有するヒドロシリル化反応用触媒、例えばビス(2,4-ペンタンジオナト)白金錯体、(メチルシクロペンタジエニル)トリメチル白金錯体、を添加することが望ましい。紫外線発生源としては高圧水銀ランプ、中圧水銀ランプ、Xe-Hgランプ、及びディープUVランプ等が好適であり、その際の照射量は、100~8,000mJ/cmが好ましい。
[積層体の製造方法]
本発明にかかる、組成の異なるオルガノポリシロキサン硬化物フィルムを2層以上積層した構造を有し、かつ、積層されたオルガノポリシロキサン硬化物フィルムがその界面において、化学的に結合した構造を有する積層体は、
工程I:硬化反応に関与する官能基の少なくとも一部が共通し、かつその組成の異なる2種類以上の硬化性オルガノポリシロキサン組成物のうち、1種類の硬化性オルガノポリシロキサン組成物をフィルム状に硬化させることにより、オルガノポリシロキサン硬化物フィルムを得る工程、
工程II:工程Iと同時または工程Iの後、工程Iにかかるオルガノポリシロキサン硬化物フィルム上またはその前駆体上に、工程Iと異なる硬化性オルガノポリシロキサン組成物をフィルム状に塗布し、硬化反応を進行させることにより工程Iにかかるオルガノポリシロキサン硬化物フィルム上に異なるオルガノポリシロキサン硬化物フィルムを積層する工程
を備える積層体の製造方法により得ることができる。
ここで、上記の工程Iに係るオルガノポリシロキサン硬化物フィルムが、誘電層であり、上記の工程IIに係るオルガノポリシロキサン硬化物フィルムが、電極層であることが好ましいが、その逆であってもよい。
工程Iまたは工程IIにおいて、硬化性オルガノポリシロキサン組成物をフィルム状に塗布する方法としては、グラビアコート、オフセットコート、オフセットグラビア、及びオフセット転写ロールコーター等を用いたロールコート、リバースロールコート、エアナイフコート、及びカーテンフローコーター等を用いたカーテンコート、コンマコート、マイヤーバー、並びにその他公知の硬化層を形成する目的で使用される方法が制限なく使用できる。また、本発明の硬化性オルガノポリシロキサン組成物を複数層塗布することもできる。
本発明に係る積層体は、積層されたオルガノポリシロキサン硬化物フィルムがその界面において、化学的に結合した構造を有するものであり、当該構造は、硬化後または硬化前にオルガノポリシロキサン硬化物フィルム、またはその前駆体である未硬化乃至半硬化の状態にある硬化性オルガノポリシロキサン組成物の薄層(完全に硬化する前の状態)を接触させ、加熱等の手段を用いて完全に硬化することにより、当該硬化物フィルムの界面で硬化性反応基同士の反応が進行して形成される。当該プロセスは、工業的生産および生産効率の見地から、一層ごとに硬化反応を進行させて積層させていって良く、複数の硬化反応性の硬化性オルガノポリシロキサン組成物の薄層を事前に積層させた後、全体を加熱等の手段を用いて完全に硬化させてもよい。
好適には、上記の工程IIにおいて、工程Iと異なる硬化性オルガノポリシロキサン組成物をフィルム状に塗布した後、当該硬化性オルガノポリシロキサン組成物の塗布層が未硬化または半硬化の状態で、当該塗布層上に、さらに、他のオルガノポリシロキサン硬化物フィルムまたはその前駆体を積層し、任意で同様な工程を2回以上繰り返すことにより、オルガノポリシロキサン硬化物フィルムまたはその前駆体と未硬化または半硬化の状態にある硬化性オルガノポリシロキサン組成物の塗布層が1以上積層された積層体を形成した後に、工程Iと異なる硬化性オルガノポリシロキサン組成物の塗布層に対する硬化反応を完全に進行させて硬化させることにより、工程Iにかかるオルガノポリシロキサン硬化物フィルム上に異なるオルガノポリシロキサン硬化物フィルムを積層する工程を備えることを特徴とする積層体の製造方法が例示される。この場合、例えば、誘電層であるオルガノポリシロキサン硬化物フィルム上に導電性微粒子を含む硬化性オルガノポリシロキサン組成物をフィルム状に塗布し、未硬化乃至半硬化の状態で、さらに、誘電層であるオルガノポリシロキサン硬化物フィルムを積層氏、以下同様の手順を繰り返して、

誘電層(硬化物フィルム)/未硬化乃至半硬化の電極層/誘電層(硬化物フィルム)/未硬化乃至半硬化の電極層/・・・・

のような積層体前駆体を形成させた後、全体を加熱等により硬化することで、硬化済みの誘電層と電極層が交互に積層され、かつ、両層の界面が化学的に結合された積層体を得ることができる。
当該製造方法は、トランスデューサー用部材における電極層の形成方法として特に有用であり、誘電層と電極層が強固に接合され、その接着強度および追従性の不足に伴う剥離や欠陥の問題を生じ難い積層体、電子部品または表示装置の部材を工業的に容易に提供できる。
本発明にかかるオルガノポリシロキサン硬化物フィルムの積層体は、電子材料、表示装置用部材またはトランスデューサー用部材(センサー、スピーカー、アクチュエーター、およびジェネレーター用を含む)として有用であり、特に電極層を備えた電気活性フィルム(高誘電性フィルムを含む)として、電子部品または表示装置の部材として好適に使用可能である。さらに、前記の通り、絶縁破壊強度の高い電気活性フィルムは、単層または積層フィルムの形態としてアクチュエーター等のトランスデューサー用部材に好適であり、かつ、電極層が強固に接合した構造を備えるので、高電圧下で起動するアクチュエーター用途に特に有用である。
以下、本発明に関して実施例を挙げて説明するが、本発明は、これらによって限定されるものではない。以下に示す実施例および比較例では下記の化合物を用いた。また、各硬化物フィルムの物性は、以下の方法で測定した。
[Shore A 硬度]
電極層(ELEC)である硬化物フィルムについては硬化温度150℃にて、誘電層(DEAP)である硬化物フィルムについては硬化温度110℃にて、各硬化性オルガノポリシロキサン組成物を1時間加熱することで硬化物フィルムを調製した。なお、硬化サンプルの厚みは約6mmとした。得られた硬化物フィルムを、JIS K 6249 に準じた方法でDD2(高分子計器社製)を用いて各々のShore A 硬度を測定した。結果を表1に示す。なお、硬化不十分または柔らかすぎる場合には各々の理由により「測定不可」とした。
[弾性率]
電極層を与える各硬化性オルガノポリシロキサン組成物の弾性率を、粘弾性測定装置(アントンパール社製、型番MCR302)で測定した。ペルチェ素子温度制御システムおよび直径15mmのパラレルプレートを使用してサンプルを500μm厚みとなるようにセットした。25℃から120℃まで2.8分かけて昇温し、その後120℃を維持して硬化させた。昇温開始から60分後の貯蔵弾性率(G’)を弾性率とし表1に示す。
[体積抵抗率測定]
測定装置名:ロレスターGP(三菱ケミカルアナリテック社製)を用いて室温にて測定した。プローブにはPSP(三菱ケミカルアナリテック社製)を使用した。下記に記載の通り、誘電層であるオルガノポリシロキサン硬化物フィルム上に作製した電極層上の最低14個以上で測定し、安定した数値を読み取ったその平均値と電極厚みと補正係数を用いて算出した値を表1に示す。
・成分(a1):両末端ビニルジメチルシロキシ基封鎖、ジメチルシロキサンポリマー(ビニル基含有量:0.24質量%、シロキサン重合度:300)
・成分(a2):両末端ビニルジメチルシロキシ基封鎖、3,3,3-トリフルオロプロピルメチル、ジメチルシロキサンコポリマー(ビニル基含有量:0.26質量%、シロキサン重合度193)
・成分(b1):両末端トリメチルシロキシ基封鎖、ジメチルシロキシ-メチルヒドロシロキシ-シロキサンコポリマー(ケイ素原子結合水素含有量:0.71質量%)
・成分(b2):両末端ジメチルヒドロシロキシ基封鎖、ジメチルシロキサンポリマー(ケイ素原子結合水含有量:0.02質量%)
・成分(b3):両末端トリメチルシロキシ基封鎖、ジメチルシロキサン・3,3,3-トリフルオロプロピルメチルシロキサン・メチルハイドロジェンシロキサンコポリマー(ケイ素原子結合水素の含有量:約0.23質量%)
・成分(b4):両末端ジメチルヒドロシロキシ基封鎖、ジメチルシロキサン・3,3,3-トリフルオロプロピルメチルシロキサンコポリマー(ケイ素原子結合水素の含有量:約0.014質量%)
・成分(c1):白金-1,3-ジビニル1,1,3,3-テトラメチルジシロキサン錯体の両末端ビニルジメチルシロキシ基封鎖ジメチルシロキサンポリマー溶液(白金濃度で約0.6質量%)
・成分(d):アセチレンブラック(デンカ社製、100%プレス品)
・成分(e1):ヘキサメチルジシラザンと1,3-ビス(3,3,3-トリフルオロプロピル)-1,1,3,3-テトラメチルジシラザンで処理したヒュームドシリカ(処理前の製品名:アエロジル200、BET比表面積200 m2/g)
・成分(e2):ヘキサメチルジシラザンと1,3-ビス(3,3,3-トリフルオロプロピル)-1,1,3,3-テトラメチルジシラザンで処理したヒュームドシリカ(処理前の製品名:アエロジル50、BET比表面積50 m2/g)
・成分(e3):ヘキサメチルジシラザンで処理したヒュームドシリカ(処理前の製品名:アエロジル200、BET比表面積200m/g)
・成分(e4):ヘキサメチルジシラザンで処理したヒュームドシリカ(処理前の製品名:アエロジル50、BET比表面積50m/g)
・成分(f1):1-エチニル-1-シクロヘキサノール
・成分(f2):1,3,5,7-テトラメチル-1,3,5,7-テトラビニル-シクロテトラシロキサン
[実施例1~3、比較例1~7に係る電極層を与える硬化性オルガノポリシロキサン組成物]
液状の硬化性オルガノポリシロキサン組成物として、上記の各成分を表1に記載の通り重量%で配合した。その際、組成物中の不飽和炭化水素基1モル当たり 、成分(b)のケイ素原子結合水素原子(Si-H)が表1に示した量:(SiH/Vi)ELECとなるように用いた。各成分の混合に当たっては、触媒である成分(c1)以外の材料を自転・公転ミキサー(製品名ARE-310、シンキ―株式会社製)で混合し、成分(c1)を添加後さらに真空下にて、自転・公転ミキサーで混合調製した。各種物性も併せて表1に示す。  。
[実施例1、3、比較例1~7に係る誘電層を与える硬化性オルガノポリシロキサン組成物1]<DEAPシート例1に使用>
液状の硬化性オルガノポリシロキサン組成物として、上記の成分(a2)を68.34質量%、成分(b3)を5.06質量%、成分(b4)を5.06質量%、成分(c1)を0.10質量%、成分(e1)を18.69質量%、成分(e2)を2.46質量%、成分(f2)を0.28質量%となるように配合し調製する。その際、組成物中の不飽和炭化水素基1モル当たり 、成分(b)のケイ素原子結合水素原子(Si-H):(SiH/Vi)DEAPが約1.2モルとなる量で用いた。得られたオルガノポリシロキサン硬化物の硬度はShore A 37であった。
[実施例2に係る誘電層を与える硬化性オルガノポリシロキサン組成物2]<DEAPシート例2に使用>
液状の硬化性オルガノポリシロキサン組成物として、上記の成分(a1)を70.59質量%、成分(b1)を0.99質量%、成分(b2)を3.83質量%、成分(c1)を0.10質量%、成分(e3)を20.10質量%、成分(e4)を4.35質量%、成分(f1)を0.04質量%となるように配合し調製した。その際、組成物中の不飽和炭化水素基1モル当たり 、成分(b)のケイ素原子結合水素原子(Si-H):(SiH/Vi)DEAPが約1.2モルとなる量で用いた。得られたオルガノポリシロキサン硬化物の硬度はShore A 39であった。
[実施例/比較例の誘電層(フィルム)の形成]
誘電層を与える硬化性オルガノポリシロキサン組成物を、コーターを用いて、剥離層(リリースライナー)を備えたPET基材の上に薄膜状に塗布し、110℃、60分間オーブン中で硬化させることで、厚さ0.1mmのフィルムを作製した。
[実施例/比較例の電極層の形成]
表1に記載の電極層を与える硬化性オルガノポリシロキサン組成物を低分子シロキサン系溶媒(OST-20、ダウシリコーンズ製)を用いて、電極材料濃度が10重量%となるように希釈した。上記で作製した厚さ0.1mmの誘電層(フィルム)片面上に、円形のマスクを貼り付け、直径13.5mmの円状電極が16個形成されるように、マスク上から希釈液をスプレーで塗布した。塗布後、60℃、 真空下にて約12時間放置した。その後、電極上に剥離層(リリースライナー)を備えたPET基材を被せ、室温にてプレスした。基材PETのフィルムを剥離し、120℃、60分加熱することで厚さ10-13μmの電極を形成した。
[誘電層/電極層の密着性評価:ピール試験]
上記の方法で、誘電層(フィルム)片面上に形成させた円状の電極層上にテープ(日東電工製、商品名:ニトフロン(登録商標)0.08)を貼り付け、10分間室温にて放置した後に引き剥がし、誘電層と電極層の密着性を評価した。その際、テープと共に電極層が引きはがされず、誘電層(フィルム)上に電極層がほぼ残っていれば「使用可」と評価し、テープと共に電極層が引き剥がされてしまった場合は、「使用不可」と評価し、表1に記入した。なお、電極層が誘電層表面からテープ側に引きはがされて転写されてしまう場合、電極層と誘電層表面の界面において十分な化学的結合が形成されておらず、密着および結合力が弱いと考えられる。
Figure JPOXMLDOC01-appb-T000001

実施例1~3に係る誘電層/電極層は、ピール試験において電極層の剥離が発生せず、両者が強固に密着した構造を有していた。他方、両層のSiH/Vi比が好適な範囲に設計されていない比較例1~7にあっては、ピール試験において電極層が剥離し、両者の密着性および追従性が不十分であると考えられる。

Claims (17)

  1. 互いに組成が異なり、かつ、硬化反応に関与する官能基の少なくとも一部が共通する硬化性オルガノポリシロキサン組成物を硬化して得られるオルガノポリシロキサン硬化物フィルムを2層以上積層した構造を有し、かつ、積層されたオルガノポリシロキサン硬化物フィルムがその界面において、化学的に結合した構造を有する、積層体。
  2. 積層されたオルガノポリシロキサン硬化物フィルムの少なくとも一方が、その体積抵抗率が10Ω・cm以下である、請求項1に記載の積層体。
  3. 積層されたオルガノポリシロキサン硬化物フィルムの少なくとも一方が、120℃におけるせん断貯蔵弾性率(G′)が5.0×10~1.5×10Paの範囲にある、請求項1または請求項2に記載の積層体。
  4. 積層されたオルガノポリシロキサン硬化物フィルムの少なくとも一方が、導電性微粒子を含むことを特徴とする、請求項1~3のいずれか1項に記載の積層体。
  5. 導電性微粒子が、導電性カーボンブラック、グラファイトおよび気相成長カーボン(VGCF)から選ばれる少なくとも1種の導電性カーボンを含む微粒子であることを特徴とする、請求項4に記載の積層体。
  6. 積層されたオルガノポリシロキサン硬化物フィルムの、少なくとも一方が電極層であり、他方が誘電層である、請求項1~5のいずれか1項に記載の積層体。
  7. 硬化によりオルガノポリシロキサン硬化物フィルムを与える硬化性オルガノポリシロキサン組成物が、
    (A)分子内に少なくとも2個の炭素-炭素二重結合を含む硬化反応性基を有するオルガノポリシロキサン、
    (B)分子中に少なくとも2個のケイ素結合水素原子を有するオルガノハイドロジェンポリシロキサン 組成物中の炭素-炭素二重結合の合計量1モルに対して、本成分中のケイ素原子結合水素原子が0.5~2.5モルとなる量、および
    (C)有効量のヒドロシリル化反応用触媒、
    を少なくとも含有し、かつ、積層されたオルガノポリシロキサン硬化物フィルムがその界面において、前記の成分(A)および成分(B)間のヒドロシリル化反応により化学的に結合した構造を有する、請求項1~6のいずれか1項に記載の積層体。
  8. 積層されたオルガノポリシロキサン硬化物フィルムが、互いに組成の異なる硬化性オルガノポリシロキサン組成物を硬化して得られるオルガノポリシロキサン硬化物フィルムであり、
    一方のオルガノポリシロキサン硬化物フィルムが、(I)組成物中の炭素-炭素二重結合の合計量1モルに対して、オルガノハイドロジェンポリシロキサン成分中のケイ素原子結合水素原子が1.0モルを超え、2.0モル以下である硬化性オルガノポリシロキサン組成物を硬化して得られる硬化物フィルムであり、
    他方のオルガノポリシロキサン硬化物フィルムが、(II)組成物中の炭素-炭素二重結合の合計量1モルに対して、オルガノハイドロジェンポリシロキサン成分中のケイ素原子結合水素原子が0.5モル以上であり1.0モル以下である硬化性オルガノポリシロキサン組成物を硬化して得られる硬化物フィルムであることを特徴とする、請求項7に記載の積層体。
  9. 積層されたオルガノポリシロキサン硬化物フィルムが、互いに組成の異なる硬化性オルガノポリシロキサン組成物を硬化して得られるオルガノポリシロキサン硬化物フィルムであり、
    一方のオルガノポリシロキサン硬化物フィルムが、導電性微粒子を含み、組成物中の炭素-炭素二重結合の合計量1モルに対する、オルガノハイドロジェンポリシロキサン成分中のケイ素原子結合水素原子の物質量[SiH/Vi]Elecが0.5モル以上であり1.0モル以下であり、
    他方のオルガノポリシロキサン硬化物フィルムが誘電層であり、導電性微粒子を含まず、組成物中の炭素-炭素二重結合の合計量1モルに対して、オルガノハイドロジェンポリシロキサン成分中のケイ素原子結合水素原子の物質量[SiH/Vi]DEAPについて、
    [SiH/Vi]Elec/[SiH/Vi]DEAPの値が、0.33~0.85の範囲にあることを特徴とする、請求項7または請求項8に記載の積層体。
  10. 誘電層であるオルガノポリシロキサン硬化物フィルムの少なくとも一方の面に、電極層であるオルガノポリシロキサン硬化物フィルムが積層され、かつ、積層されたオルガノポリシロキサン硬化物フィルムがその界面において、化学的に結合した構造を有する、請求項1~9のいずれか1項に記載の積層体。
  11. 請求項1~10のいずれか1項に記載の積層体からなるトランスデューサー用部材。
  12. 請求項1~10のいずれか1項に記載の積層体を含む、トランスデューサー。
  13. 請求項1~10のいずれか1項に記載の積層体を含む、電子部品または表示装置。
  14. 工程I:硬化反応に関与する官能基の少なくとも一部が共通し、かつその組成の異なる2種類以上の硬化性オルガノポリシロキサン組成物のうち、1種類の硬化性オルガノポリシロキサン組成物をフィルム状に硬化させることにより、オルガノポリシロキサン硬化物フィルムを得る工程、
    工程II:工程Iと同時または工程Iの後、工程Iにかかるオルガノポリシロキサン硬化物フィルム上またはその前駆体上に、工程Iと異なる硬化性オルガノポリシロキサン組成物をフィルム状に塗布し、硬化反応を進行させることにより工程Iにかかるオルガノポリシロキサン硬化物フィルム上に異なるオルガノポリシロキサン硬化物フィルムを積層する工程
    を備える、請求項1~10のいずれか1項に記載の積層体の製造方法。
  15. 上記の工程Iに係るオルガノポリシロキサン硬化物フィルムが、誘電層であり、上記の工程IIに係るオルガノポリシロキサン硬化物フィルムが、電極層である、請求項14に記載の積層体の製造方法。
  16. 上記の工程IIにおいて、工程Iと異なる硬化性オルガノポリシロキサン組成物をフィルム状に塗布した後、当該硬化性オルガノポリシロキサン組成物の塗布層が未硬化または半硬化の状態で、当該塗布層上に、さらに、他のオルガノポリシロキサン硬化物フィルムまたはその前駆体を積層し、任意で同様な工程を2回以上繰り返すことにより、オルガノポリシロキサン硬化物フィルムまたはその前駆体と未硬化または半硬化の状態にある硬化性オルガノポリシロキサン組成物の塗布層が1以上積層された積層体を形成した後に、工程Iと異なる硬化性オルガノポリシロキサン組成物の塗布層に対する硬化反応を完全に進行させて硬化させることにより、工程Iにかかるオルガノポリシロキサン硬化物フィルム上に異なるオルガノポリシロキサン硬化物フィルムを積層する工程を備えることを特徴とする、請求項14または請求項15に記載の積層体の製造方法。
  17. 請求項14~16のいずれか1項に記載の積層体の製造方法を含む、トランスデューサー用部材における電極層の形成方法。
PCT/JP2021/023398 2020-06-30 2021-06-21 オルガノポリシロキサン硬化物フィルムからなる積層体、その用途、およびその製造方法 WO2022004462A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237002722A KR20230029868A (ko) 2020-06-30 2021-06-21 오가노폴리실록산 경화물 필름으로 이루어진 적층체, 그의 용도 및 그의 제조 방법
EP21833403.5A EP4173821A1 (en) 2020-06-30 2021-06-21 Multilayer body composed of cured organopolysiloxane films, use of same, and method for producing same
CN202180061316.XA CN116194294A (zh) 2020-06-30 2021-06-21 由聚有机硅氧烷固化物膜构成的层叠体、其用途及其制造方法
US18/013,879 US20230295432A1 (en) 2020-06-30 2021-06-21 Multilayer body composed of cured organopolysiloxane films, use of same, and method for producing same
JP2022533877A JPWO2022004462A1 (ja) 2020-06-30 2021-06-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-112309 2020-06-30
JP2020112309 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022004462A1 true WO2022004462A1 (ja) 2022-01-06

Family

ID=79316177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023398 WO2022004462A1 (ja) 2020-06-30 2021-06-21 オルガノポリシロキサン硬化物フィルムからなる積層体、その用途、およびその製造方法

Country Status (7)

Country Link
US (1) US20230295432A1 (ja)
EP (1) EP4173821A1 (ja)
JP (1) JPWO2022004462A1 (ja)
KR (1) KR20230029868A (ja)
CN (1) CN116194294A (ja)
TW (1) TW202206550A (ja)
WO (1) WO2022004462A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071152A1 (ja) * 2022-09-29 2024-04-04 ダウ・東レ株式会社 電極層形成性硬化性オルガノポリシロキサン組成物、電極層を備えた積層体、その用途、およびその製造方法
WO2024071151A1 (ja) * 2022-09-29 2024-04-04 ダウ・東レ株式会社 ホットメルト型電極層形成性オルガノポリシロキサン組成物、電極層を備えた積層体、その用途、およびその製造方法
WO2024071150A1 (ja) * 2022-09-29 2024-04-04 ダウ・東レ株式会社 電極層形成性硬化性オルガノポリシロキサン組成物、電極層を備えた積層体、その用途、およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020116440A1 (ja) * 2018-12-07 2021-10-21 ダウ・東レ株式会社 硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えたトランスデューサー等

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120279A (ja) * 2011-12-07 2013-06-17 Canon Inc 電子写真用部材の製造方法
WO2014105959A1 (en) 2012-12-28 2014-07-03 Dow Corning Corporation Curable organopolysiloxane composition for transducers and applications of such curable silicone composition for transducers
JP2019504918A (ja) * 2016-02-23 2019-02-21 ダウ シリコーンズ コーポレーション 高硬度の硬化性シリコーン組成物及びそれから製造した複合物品
JP2019195950A (ja) * 2018-05-10 2019-11-14 ダウ・東レ株式会社 積層体、その製造方法およびその積層体を含むトランスデューサー等

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120279A (ja) * 2011-12-07 2013-06-17 Canon Inc 電子写真用部材の製造方法
WO2014105959A1 (en) 2012-12-28 2014-07-03 Dow Corning Corporation Curable organopolysiloxane composition for transducers and applications of such curable silicone composition for transducers
JP2016503108A (ja) * 2012-12-28 2016-02-01 ダウ コーニング コーポレーションDow Corning Corporation トランスデューサーのための硬化性オルガノポリシロキサン組成物及びかかる硬化性シリコーン組成物のトランスデューサーへの使用
JP2019504918A (ja) * 2016-02-23 2019-02-21 ダウ シリコーンズ コーポレーション 高硬度の硬化性シリコーン組成物及びそれから製造した複合物品
JP2019195950A (ja) * 2018-05-10 2019-11-14 ダウ・東レ株式会社 積層体、その製造方法およびその積層体を含むトランスデューサー等

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUJAWSKI, M.PEARSE, J. D.SMELA, E, CARBON, vol. 48, 2010, pages 2409 - 2417
ROSSET, S.SHEA, H. R., APPL. PHYS. A, vol. 110, 2013, pages 281 - 307

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071152A1 (ja) * 2022-09-29 2024-04-04 ダウ・東レ株式会社 電極層形成性硬化性オルガノポリシロキサン組成物、電極層を備えた積層体、その用途、およびその製造方法
WO2024071151A1 (ja) * 2022-09-29 2024-04-04 ダウ・東レ株式会社 ホットメルト型電極層形成性オルガノポリシロキサン組成物、電極層を備えた積層体、その用途、およびその製造方法
WO2024071150A1 (ja) * 2022-09-29 2024-04-04 ダウ・東レ株式会社 電極層形成性硬化性オルガノポリシロキサン組成物、電極層を備えた積層体、その用途、およびその製造方法

Also Published As

Publication number Publication date
EP4173821A1 (en) 2023-05-03
JPWO2022004462A1 (ja) 2022-01-06
US20230295432A1 (en) 2023-09-21
TW202206550A (zh) 2022-02-16
CN116194294A (zh) 2023-05-30
KR20230029868A (ko) 2023-03-03

Similar Documents

Publication Publication Date Title
WO2022004462A1 (ja) オルガノポリシロキサン硬化物フィルムからなる積層体、その用途、およびその製造方法
JP7100631B2 (ja) フルオロアルキル基含有硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えたトランスデューサー等
CN115038757B (zh) 固化性弹性体组合物及换能器设备的设计方法
KR20210132084A (ko) 오가노폴리실록산 경화물 필름, 그의 용도, 제조 방법 및 제조 장치
CN113330073B (zh) 膜形成用固化性聚有机硅氧烷组合物以及聚有机硅氧烷固化物膜的制造方法
JP7453155B2 (ja) フィルム形成用硬化性オルガノポリシロキサン組成物およびオルガノポリシロキサン硬化物フィルムの製造方法
JPWO2020017480A1 (ja) オルガノポリシロキサン硬化物フィルム、その用途および製造方法
WO2020116440A1 (ja) 硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えたトランスデューサー等
WO2023282270A1 (ja) トランスデューサー用オルガノポリシロキサン組成物、その硬化物フィルムからなる積層体、その用途、およびその製造方法
WO2024075661A1 (ja) トランスデューサー用硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えたトランスデューサー等
WO2024071150A1 (ja) 電極層形成性硬化性オルガノポリシロキサン組成物、電極層を備えた積層体、その用途、およびその製造方法
WO2024071151A1 (ja) ホットメルト型電極層形成性オルガノポリシロキサン組成物、電極層を備えた積層体、その用途、およびその製造方法
WO2024071152A1 (ja) 電極層形成性硬化性オルガノポリシロキサン組成物、電極層を備えた積層体、その用途、およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833403

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533877

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021833403

Country of ref document: EP

Effective date: 20230130