WO2022004263A1 - 印刷物 - Google Patents

印刷物 Download PDF

Info

Publication number
WO2022004263A1
WO2022004263A1 PCT/JP2021/021196 JP2021021196W WO2022004263A1 WO 2022004263 A1 WO2022004263 A1 WO 2022004263A1 JP 2021021196 W JP2021021196 W JP 2021021196W WO 2022004263 A1 WO2022004263 A1 WO 2022004263A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
coating layer
ink
polyester film
seconds
Prior art date
Application number
PCT/JP2021/021196
Other languages
English (en)
French (fr)
Inventor
紀志 ▲高▼木
博 多喜
功 瀧井
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to KR1020237001887A priority Critical patent/KR20230034304A/ko
Priority to JP2021543442A priority patent/JPWO2022004263A1/ja
Priority to CN202180045768.9A priority patent/CN115803198A/zh
Publication of WO2022004263A1 publication Critical patent/WO2022004263A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/26Printing on other surfaces than ordinary paper
    • B41M1/30Printing on other surfaces than ordinary paper on organic plastics, horn or similar materials

Definitions

  • the present invention relates to a printed matter having excellent adhesion to various ink layers. More specifically, the present invention relates to a printed matter having an easily adhesive coating layer suitable for all kinds of ink layers such as ultraviolet (UV) curable ink, solvent type ink, oxidation polymerization type ink, thermal transfer ink ribbon, and LBP toner.
  • UV ultraviolet
  • solvent type ink solvent type ink
  • oxidation polymerization type ink thermal transfer ink ribbon
  • LBP toner LBP toner
  • Biaxially stretched polyester film is widely used for various industrial materials and consumer applications due to its mechanical strength, heat resistance, chemical resistance, dimensional stability, and balance with price. In particular, it has become indispensable for various commercial printing applications that print on transparent films, lighting plates, dummy cans, labels, and the like.
  • the polyester film generally has poor adhesiveness to the printing ink, it is common to provide an anchor coating layer using a resin having easy adhesiveness.
  • it has been proposed to use a water-soluble or water-dispersible polyester resin or an acrylic resin for a relatively highly polar film centered on polyester (for example, Patent Document 1, Patent Document 1 and Patent Document). 2. See Patent Document 3 and Patent Document 4).
  • the polyester resin has a drawback that it tends to be inferior in blocking resistance in a film roll state
  • the acrylic resin has a drawback that it tends to be inferior in adhesiveness to a base film and printing ink. Therefore, in order to improve these, it has been proposed to use the polyester resin and the acrylic resin in combination (see, for example, Patent Document 5), but it cannot be said that the improvement of the defects is sufficient. Further, it has been proposed to use various modified polyesters mainly for graft modification. Further, it is disclosed that a resin obtained by grafting an unsaturated bond-containing compound onto a water-soluble or water-dispersible hydrophilic group-containing polyester resin is suitable as an anchor coating agent for a polyester film (for example, Patent Document 6 and Patent Document 6).
  • the printing industry has been increasing the speed of printing for the purpose of improving productivity.
  • speeding up printing using UV curable ink the time required from ink application to UV irradiation and the amount of UV integrated light are reduced. That is, the interaction between the ink and the polyester film and the coating layer is weakened. Therefore, the coating layer is required to have higher adhesion to the UV curable ink.
  • an object of the present invention is to provide a UV curable ink having high transparency, blocking resistance, good adhesion to various ink compositions, and particularly during low-dose processing or high-speed printing. It is an object of the present invention to provide a printed matter using an easily adhesive polyester film having good adhesion to various ink compositions including the above.
  • the present inventor has applied a cross-linking agent, a urethane resin having a polycarbonate structure, and a polyester resin on at least one surface of the polyester film base material. It has a layer, and the problem of the present invention can be solved when the nitrogen atom ratio in the coating layer and the OCOO bond ratio on the surface of the coating layer on the opposite side of the polyester film base material satisfy specific conditions. The finding has led to the completion of the present invention.
  • a UV curable ink, a solvent type ink, an oxidation polymerization type ink, a thermal transfer ink ribbon, and an LBP toner are selected on the coating layer of the easily adhesive polyester film having a coating layer on at least one surface of the polyester film substrate.
  • the nitrogen atom ratio on the surface of the coating layer on the opposite side of the polyester film substrate is A (at%), and the maximum nitrogen atom ratio.
  • the etching time indicating the maximum value B (at%) of the nitrogen atom ratio is b (seconds), and the nitrogen atom ratio becomes 1 / 2B (at%) after b (seconds).
  • the peak area derived from each binding species in the C1s spectral region in the surface analysis spectrum that satisfies the following formulas (i) to (iii) and is measured by X-ray photoelectron spectroscopy.
  • a printed matter satisfying the following formula (iv) when the total is 100 (%) and the peak area derived from the OCOO bond is X (%).
  • the present invention various printed matter having good adhesion between the base material and the ink layer can be obtained.
  • it has good adhesion to various ink compositions such as UV curable ink during low-dose processing or high-speed printing.
  • the easily adhesive polyester film of the present invention has high transparency and excellent blocking resistance.
  • 6 is a distribution curve of nitrogen elements based on element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the easily adhesive polyester film of Example 2. It is explanatory drawing for obtaining BA, b, and cb from the distribution curve of a nitrogen element based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy.
  • 5 is a distribution curve of nitrogen elements based on element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the easily adhesive polyester film of Example 5.
  • 6 is a distribution curve of nitrogen elements based on element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the easily adhesive polyester film of Experimental Example 6.
  • the polyester resin constituting the polyester film base material is polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polytrimethylene terephthalate and the like, as well as the diol component or dicarboxylic acid of the polyester resin as described above.
  • It is a copolymerized polyester resin in which a part of the components is replaced with the following copolymerized components.
  • diol components such as diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, and polyalkylene glycol are used.
  • dicarboxylic acid components such as adipic acid, sebatic acid, phthalic acid, isophthalic acid, 5-sodium isophthalic acid, and 2,6-naphthalenedicarboxylic acid.
  • the polyester resin preferably used in the present invention is mainly selected from polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene-2,6-naphthalate.
  • polyethylene terephthalate is most preferable from the viewpoint of the balance between physical properties and cost.
  • the polyester film base material composed of these polyester resins is preferably a biaxially stretched polyester film, and can improve chemical resistance, heat resistance, mechanical strength and the like.
  • the catalyst for polycondensation used in the production of polyester resin is not particularly limited, but ammon trioxide is suitable because it is inexpensive and has excellent catalytic activity. It is also preferable to use a germanium compound or a titanium compound. Further preferable polycondensation catalysts include catalysts containing aluminum and / or its compounds and phenolic compounds, catalysts containing aluminum and / or its compounds and phosphorus compounds, and catalysts containing aluminum salts of phosphorus compounds.
  • the polyester film base material in the present invention may be a single-layer polyester film or a two-layer structure having different components from each other, and is a polyester film base material having at least three layers having an outer layer and an inner layer. There may be.
  • the easily adhesive polyester film in the present invention preferably has a coating layer on at least one surface of the polyester film base material as described above.
  • the coating layer is formed by curing a composition containing a urethane resin having a polycarbonate structure, a cross-linking agent, and a polyester resin.
  • the expression "the composition is cured” is used in a state in which a urethane resin having a polycarbonate structure, a cross-linking agent, and a polyester resin are cured by forming a cross-linked structure with the cross-linking agent. This is because it is extremely difficult to accurately express the chemical composition of.
  • the fact that the maximum value of the nitrogen element distribution curve based on the element distribution measurement in the depth direction of the coating layer exists near the surface of the coating layer on the opposite side of the polyester film substrate is transparency and blocking. It is preferable because it can improve resistance. Further, it is preferable that an appropriate amount of the polycarbonate structure is present on the surface of the coating layer opposite to the polyester film base material because it is possible to improve the UV ink adhesion during low-dose processing and high-speed printing.
  • the distribution curve of the nitrogen element based on the element distribution measurement in the depth direction of the coating layer is drawn by X-ray photoelectron spectroscopy (ESCA). That is, the spectrum is collected every 30 seconds until the etching time is 120 seconds, and every 60 seconds thereafter. Then, as shown in FIG. 2, the ratio of the amount of nitrogen atom to the total amount of carbon atom, oxygen atom, nitrogen atom, and silicon atom (nitrogen atom) with the etching time (unit: second) from the surface of the coating layer as the horizontal axis.
  • ESA X-ray photoelectron spectroscopy
  • Ratio, unit: at%) is on the vertical axis
  • the nitrogen atom ratio on the surface of the coating layer on the opposite side of the polyester film substrate is A (at%)
  • the maximum value of the nitrogen atom ratio is B (at%)
  • the nitrogen atom is the nitrogen atom.
  • b (seconds) be the etching time showing the maximum value B (at%) of the ratio
  • c (seconds) be the etching time when the nitrogen atom ratio becomes 1 / 2B (at%) after b (seconds).
  • BA (at%) and bc (seconds) are calculated from the read data to obtain the data.
  • the nitrogen atom ratio A (at%) on the surface of the coating layer opposite to the polyester film substrate is the nitrogen atom ratio when the etching time is 0 (seconds).
  • the lower limit of BA is preferably 0.5 at%, more preferably 0.6 at%, still more preferably 0.7 at%, particularly preferably 0.8 at%, and most preferably 0. It is 9 at%. When it is 0.5 at% or more, the amount of the urethane resin component having toughness is satisfied, blocking resistance is obtained, and adhesion to the solvent type ink layer is excellent and preferable.
  • the upper limit of BA is preferably 3.0 at%, more preferably 2.9 at%, further preferably 2.8 at%, particularly preferably 2.7 at%, and most preferably 2. It is 5 at%. When it is 3.0 at% or less, haze is low and transparency is obtained, which is preferable.
  • the lower limit of b is preferably 30 seconds, and when it is 30 seconds or more, the toughness of the surface of the coating layer on the opposite side to the polyester film base material is maintained, and blocking resistance is obtained, which is preferable.
  • the upper limit of b is preferably 180 seconds, more preferably 120 seconds, still more preferably 90 seconds, and particularly preferably 60 seconds. When it is 180 seconds or less, the toughness of the surface of the coating layer on the opposite side to the polyester film base material is maintained, and the blocking resistance is good, which is preferable.
  • the upper limit of cb is preferably 300 seconds, more preferably 240 seconds, and even more preferably 180 seconds. When it is 300 seconds or less, the urethane resin component in the coating layer does not become excessive, haze is low, and transparency is obtained, which is preferable.
  • the lower limit of cb is 30 seconds or more because the spectrum acquisition is every 30 seconds from the start of measurement to the etching time of 120 seconds.
  • a polycarbonate polyol is used when synthesizing and polymerizing a urethane resin having a polycarbonate structure forming a coating layer.
  • Synthesized and polymerized including the component and the polyisocyanate component, the mass ratio of the polycarbonate polyol component and the polyisocyanate component is in the range of 0.5 to 2.5, and the molecular weight of the polycarbonate polyol component is 500 to 1800.
  • the total solid content of the polyester resin, urethane resin and the cross-linking agent in the coating liquid is 100% by mass, it can be mentioned that the solid content of the cross-linking agent is 10 to 50% by mass.
  • a blocked isocyanate as the cross-linking agent and using a blocked isocyanate having a trifunctional or higher functional isocyanate group, it is possible to efficiently adjust BA.
  • the polycarbonate structural portions in the urethane resin in the coating layer in the present invention are present in a certain ratio on the surface of the coating layer on the opposite side to the polyester film base material.
  • the total peak area derived from each bond species in the C1s spectrum region is 100 (%), and the peak area derived from the OCOO bond (polycarbonate structure). Is expressed as a percentage of X (%).
  • FIGS. 5 and 6 are examples of graphs showing the analysis results of the C1s spectrum of the surface region of the easily adhesive polyester film of Example 6 and Experimental Example 1 described later, respectively.
  • the gray solid line represents the measured data of the C1s spectrum.
  • the peak of the obtained measured spectrum is separated into a plurality of peaks, and the binding species corresponding to each peak is identified from each peak position and shape. Furthermore, curve fitting can be performed on the peaks derived from each binding species, and the peak area can be calculated.
  • the coating layer in the present invention contains a urethane resin having a polycarbonate structure, a cross-linking agent typified by a blocked isocyanate having a trifunctional or higher-functional isocyanate group, and a polyester resin.
  • the peak in Table 1 Peaks of the binding species (1) to (6) can be detected.
  • the binding species of the peaks (1) to (6) in Table 1 may include not only the binding species shown in Table 1 but also a small amount of similar binding species.
  • the ratio X (%) of OCOO bonds in the surface region is the area ratio of the peak (5) expressed as a percentage (%) when the entire peak area from the peaks (1) to (6) is taken as 100%. I can say.
  • the preferred range of the peak area X (%) derived from the OCOO bond is as follows.
  • the lower limit of X is preferably 2.0%, more preferably 2.5%, still more preferably 3.0%, particularly preferably 3.5%, and most preferably 4.0%. Is. When it is 2.0% or more, the ink adhesion can be effectively satisfied, which is preferable.
  • the upper limit of X is preferably 10.0%, more preferably 9.0%, still more preferably 8.0%, particularly preferably 7.5%, and most preferably 7%. .. When it is 10.0% or less, the flexibility of the surface layer does not become too high, and blocking resistance is easily obtained, which is preferable.
  • the mass ratio of the polycarbonate polyol component and the polyisocyanate component is 0.5 or more.
  • the urethane resin content is 5% by mass to 50% by mass in the C1s spectrum region. It is preferable because the X characteristic value based on the above can be effectively realized in the range of 2.0 to 10.0%.
  • the easily adhesive polyester film in the present invention is coated with a composition containing a urethane resin having a polycarbonate structure, a cross-linking agent, and a polyester resin on at least one side thereof in order to improve the adhesion to the ink layer. It is preferable that the layers are laminated.
  • the coating layer may be provided on both sides of the polyester film, or may be provided on only one side of the polyester film, and a different type of resin coating layer may be provided on the other side.
  • the urethane resin having a polycarbonate structure in the present invention has at least a urethane bonding portion derived from a polycarbonate polyol component and a polyisocyanate component, and further contains a chain extender, if necessary.
  • the lower limit of the mass ratio of the polycarbonate polyol component and the polyisocyanate component is preferably 0.5. It is more preferably 0.6, still more preferably 0.7, particularly preferably 0.8, and most preferably 1.0. When it is 0.5 or more, the ratio X of OCOO bonds on the surface of the coating layer can be efficiently adjusted to 2% or more, which is preferable.
  • the upper limit of the mass ratio of the polycarbonate polyol component and the polyisocyanate component when synthesizing and polymerizing the urethane resin having a polycarbonate structure in the present invention is preferably 2.5, more preferably 2.2, and further preferably 2. It is 0.0, particularly preferably 1.7, and most preferably 1.5.
  • the ratio X of OCOO bonds on the surface of the coating layer can be efficiently adjusted to 10% or less, which is preferable.
  • BA can be effectively adjusted to 0.5 at% or more, and cb can be effectively adjusted to 300 seconds or less. be able to.
  • the polycarbonate polyol component used for synthesizing and polymerizing the urethane resin having a polycarbonate structure in the present invention preferably contains an aliphatic polycarbonate polyol having excellent heat resistance and hydrolysis resistance.
  • the aliphatic polycarbonate polyol include an aliphatic polycarbonate diol and an aliphatic polycarbonate triol, and an aliphatic polycarbonate diol can be preferably used.
  • Examples of the aliphatic polycarbonate diol used for synthesizing and polymerizing the urethane resin having a polycarbonate structure in the present invention include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,5.
  • -Pentanediol 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,8-nonanediol, neopentyl glycol, diethylene glycol, dipropylene glycol and other diols
  • examples thereof include aliphatic polycarbonate diols obtained by reacting one or more of them with carbonates such as dimethyl carbonate, ethylene carbonate and phosgene.
  • the number average molecular weight of the polycarbonate polyol in the present invention is preferably 500 to 1800. It is more preferably 600 to 1700, and most preferably 700 to 1500. When it is 500 or more, the ratio X of OCOO bonds on the surface of the coating layer can be effectively adjusted to 10% or less, which is preferable. When it is 1800 or less, it is preferable that BA can be effectively adjusted to 0.5 or more and bc to 300 seconds or less in the nitrogen distribution curve based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy. ..
  • Examples of the polyisocyanate used for the synthesis and polymerization of the urethane resin having a polycarbonate structure in the present invention include aromatic aliphatic diisocyanates such as xylylene diisocyanate, isophorone diisocyanate, 4,4-dicyclohexylmethane diisocyanate, and 1,3-bis.
  • aromatic aliphatic diisocyanates such as xylylene diisocyanate, isophorone diisocyanate, 4,4-dicyclohexylmethane diisocyanate, and 1,3-bis.
  • (Isocyanate Methyl) Alicyclic diisocyanates such as cyclohexane, hexamethylene diisocyanates, and aliphatic diisocyanates such as 2,2,4-trimethylhexamethylene diisocyanates, or a single or a plurality of these compounds with trimethyl propane and the like.
  • Examples thereof include polyisocyanates added in advance.
  • polyisocyanates added in advance.
  • aromatic aliphatic diisocyanates, alicyclic diisocyanates, or aliphatic diisocyanates are used, there is no problem of yellowing and it is preferable. Further, the coating film is not too hard, the stress due to heat shrinkage of the polyester film base material can be relaxed, and the adhesiveness is good, which is preferable.
  • chain extender examples include glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol and 1,6-hexanediol, polyhydric alcohols such as glycerin, trimethylolpropane, and pentaerythritol, and ethylenediamine. , Hexamethylenediamine, diamines such as piperazine, aminoalcohols such as monoethanolamine and diethanolamine, thiodiglycols such as thiodiethyleneglycol, and water.
  • glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol and 1,6-hexanediol
  • polyhydric alcohols such as glycerin, trimethylolpropane, and pentaerythritol
  • ethylenediamine Hexamethylenediamine
  • diamines such as piperazine
  • the coating layer in the present invention is preferably provided by an in-line coating method described later using a water-based coating liquid. Therefore, it is desirable that the urethane resin of the present invention has water solubility or water dispersibility.
  • water-soluble or water-dispersible means that water or a water-soluble organic solvent is dispersed in an aqueous solution containing less than 50% by mass.
  • a sulfonic acid (salt) group or a carboxylic acid (salt) group can be introduced (copolymerized) into the urethane molecular skeleton.
  • a weakly acidic carboxylic acid (salt) group it is preferable to introduce a nonionic group such as a polyoxyalkylene group.
  • a polyol compound having a carboxylic acid group such as dimethylolpropaneic acid or dimethylolbutanoic acid is introduced as a copolymerization component to form a salt.
  • the salt forming agent include trialkylamines such as ammonia, trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine and tri-n-butylamine, and N such as N-methylmorpholine and N-ethylmorpholine.
  • N-dialkylalkanolamines such as -alkylmorpholines, N-dimethylethanolamine and N-diethylethanolamine. These can be used alone or in combination of two or more.
  • the composition molar ratio of the polyol compound having a carboxylic acid (salt) group in the urethane resin is the urethane resin.
  • the total polyisocyanate component of the above is 100 mol%, it is preferably 3 to 60 mol%, and preferably 5 to 40 mol%. If the composition molar ratio is less than 3 mol%, water dispersibility may be difficult. Further, when the composition molar ratio exceeds 60 mol%, the water resistance is lowered, so that the moisture resistance and heat resistance may be lowered.
  • the urethane resin of the present invention may have a blocked isocyanate bonded to the end in order to improve the hardness.
  • the cross-linking agent contained in the coating layer forming composition is preferably a blocked isocyanate, more preferably a trifunctional or higher functional blocked isocyanate, and particularly preferably a tetrafunctional or higher functional blocked isocyanate. These improve blocking resistance. It is preferable to use a blocked isocyanate cross-linking agent because BA can be effectively adjusted to 0.5 at% or more in the nitrogen distribution curve based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy.
  • the lower limit of the boiling point of the blocking agent for the blocked isocyanate is preferably 150 ° C., more preferably 160 ° C., still more preferably 180 ° C., particularly preferably 200 ° C., and most preferably 210 ° C.
  • the higher the boiling point of the blocking agent the more the volatilization of the blocking agent is suppressed by heat addition in the drying step after coating of the coating liquid or in the case of the in-line coating process, and the generation of minute unevenness on the coated surface is suppressed. , The transparency of the film is improved.
  • the upper limit of the boiling point of the blocking agent is not particularly limited, but it seems that the upper limit is about 300 ° C. from the viewpoint of productivity.
  • the boiling point is related to the molecular weight
  • the molecular weight of the blocking agent is preferably 50 or more, more preferably 60 or more, and further 80 or more. preferable.
  • the upper limit of the dissociation temperature of the blocking agent is preferably 200 ° C, more preferably 180 ° C, still more preferably 160 ° C, particularly preferably 150 ° C, and most preferably 120 ° C.
  • the blocking agent dissociates from the functional group by heat addition in the drying step after the coating liquid is applied or in the case of the in-line coating method in the film forming step, and a regenerated isocyanate group is generated. Therefore, the cross-linking reaction with the urethane resin or the like proceeds, and the adhesiveness is improved.
  • the dissociation temperature of the blocked isocyanate is equal to or lower than the above temperature, the dissociation of the blocking agent proceeds sufficiently, so that the adhesiveness, particularly the moisture and heat resistance is good.
  • Examples of the blocking agent in the present invention in which the dissociation temperature of the blocked isocyanate is 120 ° C. or lower and the boiling point of the blocking agent is 150 ° C. or higher include a malonic acid-based compound: sodium bisulfite and the like, and a pyrazole-based compound: 3,5-dimethyl.
  • Active methylene compounds such as pyrazole, 3-methylpyrazole, 4-bromo-3,5-dimethylpyrazole, 4-nitro-3,5-dimethylpyrazole: malonic acid diesters (dimethyl malonate, diethyl malonate, din-butyl malonate, etc.
  • pyrazole-based compounds are preferable from the viewpoint of moisture resistance and heat resistance and yellowing.
  • Polyisocyanate which is a precursor of blocked isocyanate in the present invention, is obtained by introducing diisocyanate.
  • diisocyanate for example, a urethane modified product of diisocyanate, an allophanate modified product, a urea modified product, a biuret modified product, a uretdione modified product, a uretoimine modified product, an isocyanurate modified product, a carbodiimide modified product and the like can be mentioned.
  • diisocyanate examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, and 1,5-naphthylene diisocyanate.
  • the blocked isocyanate in the present invention can introduce a hydrophilic group into the precursor polyisocyanate in order to impart water solubility or water dispersibility.
  • the hydrophilic group include (1) a quaternary ammonium salt of a dialkylaminoalcohol, a quaternary ammonium salt of a dialkylaminoalkylamine, (2) a sulfonate, a carboxylate, a phosphate, and the like, and (3) an alkoxy group.
  • examples thereof include polyethylene glycol and polypropylene glycol that are sealed at one end.
  • anionic and nonionic resins that can be easily compatible with each other are preferable. Further, since the anionic property has excellent compatibility with other resins and the nonionic property does not have an ionic hydrophilic group, it is also preferable for improving the moisture resistance and heat resistance.
  • the anionic hydrophilic group preferably has a hydroxyl group for introduction into polyisocyanate and a carboxylic acid group for imparting hydrophilicity.
  • a hydroxyl group for introduction into polyisocyanate and a carboxylic acid group for imparting hydrophilicity.
  • examples thereof include glycolic acid, lactic acid, tartrate acid, citric acid, oxybutyric acid, oxyvaleric acid, hydroxypivalic acid, dimethylolacetic acid, dimethylolpropanoic acid, dimethylolbutanoic acid, and polycaprolactone having a carboxylic acid group.
  • Organic amine compounds are preferred for neutralizing carboxylic acid groups.
  • ammonia methylamine, ethylamine, propylamine, isopropylamine, butylamine, 2-ethylhexylamine, cyclohexylamine, dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, trimethylamine, triethylamine, triisopropylamine, tributylamine.
  • Linear, branched 1,2 or tertiary amines with 1 to 20 carbon atoms such as ethylenediamine, cyclic amines such as morpholin, N-alkylmorpholin, pyridine, monoisopropanolamine, methylethanolamine, methylisopropanolamine, Examples thereof include hydroxyl group-containing amines such as dimethylethanolamine, diisopropanolamine, diethanolamine, triethanolamine, diethylethanolamine and triethanolamine.
  • the repeating unit of polyethylene glycol one-ended sealed with an alkoxy group, ethylene oxide of polypropylene glycol and / or propylene oxide is preferably 3 to 50, and more preferably 5 to 30. If the repeating unit is small, the compatibility with the resin is poor and the haze is increased, and if it is large, the adhesiveness under high temperature and high humidity may be lowered.
  • the blocked isocyanate of the present invention can be added with a nonionic, anionic, cationic or amphoteric surfactant in order to improve water dispersibility.
  • nonionic systems such as polyethylene glycol and polyhydric alcohol fatty acid esters
  • anionic systems such as fatty acid salts, alkyl sulfate esters, alkylbenzene sulfonates, sulfosuccinates and alkyl phosphates
  • cationic systems such as alkylamine salts and alkylbetaines.
  • surfactants such as carboxylic acid amine salts, sulfonic acid amine salts, and sulfate ester salts.
  • water in addition to water, it can also contain a water-soluble organic solvent.
  • the organic solvent used in the reaction or it can be removed and another organic solvent can be added.
  • the polyester resin used to form the coating layer in the present invention may be linear, but more preferably a polyester resin containing a dicarboxylic acid and a branched glycol as constituents. preferable.
  • the main component of the dicarboxylic acid referred to here is terephthalic acid, isophthalic acid or 2,6-naphthalenedicarboxylic acid, as well as aliphatic dicarboxylic acids such as adipic acid and sebacic acid, terephthalic acid, isophthalic acid, phthalic acid, 2, Examples include aromatic dicarboxylic acids such as 6-naphthalenedicarboxylic acid.
  • the branched glycol is a diol having a branched alkyl group, for example, 2,2-dimethyl-1,3-propanediol, 2-methyl-2-ethyl-1,3-propanediol, 2-.
  • Methyl-2-butyl-1,3-propanediol 2-methyl-2-propyl-1,3-propanediol, 2-methyl-2-isopropyl-1,3-propanediol, 2-methyl-2-n -Hexyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-ethyl-2-n-butyl-1,3-propanediol, 2-ethyl-2-n-hexyl- 1,3-Propanediol, 2,2-di-n-butyl-1,3-propanediol, 2-n-butyl-2-propyl-1,3-propanediol, and 2,2-di-n- Examples thereof include hexyl-1,3-propanediol.
  • the polyester resin contains the branched glycol component, which is a more preferable embodiment, in the total glycol component in a proportion of preferably 10 mol% or more, more preferably 20 mol% or more.
  • Ethylene glycol is most preferable as the glycol component other than the above compounds.
  • diethylene glycol, propylene glycol, butanediol, hexanediol, 1,4-cyclohexanedimethanol or the like may be used.
  • terephthalic acid or isophthalic acid is most preferable.
  • other dicarboxylic acids particularly aromatic dicarboxylic acids such as diphenylcarboxylic acid and 2,6-naphthalenedicarboxylic acid, may be added and copolymerized.
  • 5-sulfoisophthalic acid is preferably copolymerized in the range of 1 to 10 mol% in order to impart water dispersibility to the copolymerized polyester resin, for example, sulfoterephthalic acid, 5-.
  • examples thereof include sulfoisophthalic acid, 4-sulfonaphthalene isophthalic acid-2,7-dicarboxylic acid, 5- (4-sulfophenoxy) isophthalic acid and salts thereof.
  • the lower limit of the content of the cross-linking agent is preferably 5% by mass, more preferably 7% by mass. %, More preferably 10% by mass, and most preferably 12% by mass.
  • the upper limit of the content of the cross-linking agent is preferably 50% by mass, more preferably 40% by mass, still more preferably 35% by mass, and most preferably 30% by mass.
  • it is 50% by mass or less it is easy to adjust cb to 300 seconds or less in the nitrogen distribution curve based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy, which is preferable.
  • the lower limit of the content of the urethane resin having a polycarbonate structure is preferably 5% by mass. When it is 5% by mass or more, the ratio X of OCOO bonds on the surface of the coating layer can be easily adjusted to 2.0% or more, which is preferable.
  • the upper limit of the content of the urethane resin having a polycarbonate structure is preferably 50% by mass, more preferably 40% by mass, still more preferably 30% by mass, and most preferably 20% by mass. When the content of the urethane resin is 50% by mass or less, the ratio X of OCOO bonds on the surface of the coating layer can be easily adjusted to 10.0% or less, which is preferable.
  • the lower limit of the polyester resin content is preferably 10% by mass, more preferably 20% by mass, and further. It is preferably 30% by mass, particularly preferably 35% by mass, and most preferably 40% by mass.
  • the upper limit of the content of the polyester resin is preferably 70% by mass, more preferably 67% by mass, further preferably 65% by mass, particularly preferably 62% by mass, and most preferably 60% by mass. be.
  • the content of the polyester resin is 70% by mass or less, the moisture and heat resistance of the printed matter after UV ink processing is good, which is preferable.
  • additives such as surfactants, antioxidants, heat-resistant stabilizers, weather-resistant stabilizers, ultraviolet absorbers, organic lubricants, and pigments are used as long as the effects of the present invention are not impaired.
  • Dyes, organic or inorganic particles, antistatic agents, nucleating agents and the like may be added.
  • the particles contained in the coating layer include, for example, titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay and the like, or a mixture thereof, and other general ones.
  • Inorganic particles such as calcium phosphate, mica, hectrite, zirconia, tungsten oxide, lithium fluoride, calcium fluoride and others, and organic particles such as styrene, acrylic, melamine, benzoguanamine and silicone. Examples include polymer particles.
  • the average particle size of the particles in the coating layer is preferably 0.04 to 2.0 ⁇ m, more preferably 0.1 to 1.0 ⁇ m. Is.
  • the average particle size of the inert particles is 0.04 ⁇ m or more, it becomes easy to form irregularities on the film surface, so that the handleability such as slipperiness and winding property of the film is improved, and the film is bonded. It has good workability and is preferable.
  • the average particle size of the inert particles is 2.0 ⁇ m or less, the particles are less likely to fall off, which is preferable.
  • the particle concentration in the coating layer is preferably 1 to 20% by mass in the solid component.
  • the average particle size of the particles was measured by observing the particles in the cross section of the easily adhesive polyester film with a scanning electron microscope, observing 30 particles, and using the average value as the average particle size.
  • the shape of the particles is not particularly limited as long as it satisfies the object of the present invention, and spherical particles and amorphous non-spherical particles can be used.
  • the particle size of the amorphous particles can be calculated as the equivalent circle diameter.
  • the equivalent circle diameter is a value obtained by dividing the observed particle area by ⁇ , calculating the square root, and doubling it.
  • PET polyethylene terephthalate
  • the PET resin After the PET resin is sufficiently vacuum-dried, it is supplied to an extruder, and the molten PET resin at about 280 ° C. is melt-extruded into a sheet on a rotary cooling roll, cooled and solidified by an electrostatic application method, and unstretched PET. Get a sheet.
  • the unstretched PET sheet may have a single-layer structure or a multi-layer structure by a coextrusion method.
  • the obtained unstretched PET sheet is uniaxially stretched or biaxially stretched to orient the crystals.
  • a roll heated to 80 to 120 ° C. is stretched 2.5 to 5.0 times in the longitudinal direction to obtain a uniaxially stretched PET film, and then the end of the film is gripped with a clip. Then, it is guided to a hot air zone heated to 80 to 180 ° C. and stretched 2.5 to 5.0 times in the width direction.
  • uniaxial stretching it is stretched 2.5 to 5.0 times in the tenter. After stretching, it is continuously guided to the heat treatment zone and heat-treated to complete the crystal orientation. It was
  • the lower limit of the temperature of the heat treatment zone is preferably 170 ° C, more preferably 180 ° C.
  • the upper limit of the temperature of the heat treatment zone is preferably 230 ° C, more preferably 200 ° C.
  • the temperature of the heat treatment zone is 230 ° C. or lower, the physical characteristics of the film are not likely to deteriorate, which is preferable.
  • the coating layer can be provided after the film is manufactured or in the manufacturing process.
  • any known method can be used as the method for applying this coating liquid to the PET film.
  • reverse roll coat method gravure coat method, kiss coat method, die coater method, roll brush method, spray coat method, air knife coat method, wire bar coat method, pipe doctor method, impregnation coat method, curtain coat method, etc. Be done. These methods can be applied alone or in combination.
  • the thickness of the coating layer can be appropriately set in the range of 0.001 to 2.00 ⁇ m, but the range of 0.01 to 1.00 ⁇ m is preferable in order to achieve both workability and adhesiveness. It is more preferably 0.02 to 0.80 ⁇ m, and even more preferably 0.05 to 0.50 ⁇ m.
  • the thickness of the coating layer is 0.001 ⁇ m or more, the adhesiveness is good and it is preferable.
  • the thickness of the coating layer is 2.00 ⁇ m or less, blocking is less likely to occur, which is preferable.
  • the upper limit of the haze of the easily adhesive polyester film in the present invention is preferably 1.5%, more preferably 1.3%, still more preferably 1.2%, and particularly preferably 1.0%. be.
  • the haze is 1.5% or less, it is preferable in terms of transparency, and it can also be suitably used for an optical film that requires transparency.
  • the UV curable ink in the present invention is a general term for inks that are cured by ultraviolet light.
  • the composition is an ink containing a pigment (dye), an oligomer and a monomer, a photopolymerization initiator and an accelerator, an auxiliary agent, and the like. Oligomers and monomers act as fluid components in this component, are spread on the object to be printed, and then are cured by radicals generated from the photopolymerization initiator in an ultraviolet lamp.
  • the content ratio of the oligomer and the monomer species varies depending on the printing method described later. Basically, the solvent is not contained except for the purpose of adjusting the viscosity, and even if it is contained, it is preferably about 10 at most.
  • UV curable ink in the present invention a light resistant UV curable ink and a UV curable screen ink are particularly preferably used.
  • the light-resistant UV curable ink in the present invention preferably contains an ultraviolet absorber.
  • the ultraviolet absorber absorbs the irradiated ultraviolet rays to prevent deterioration of the coating film due to the ultraviolet rays.
  • the content of the ultraviolet absorber is preferably 0.5 to 10 parts by weight, more preferably 1 to 3% by weight, based on the total amount of the ink.
  • the content of the ultraviolet absorber is less than 0.5%, the laminate strength tends to deteriorate due to the deterioration of the coating film after irradiation with ultraviolet rays, and when the content is 10% by weight or more, the flexibility of the resin contained in the ink is impaired.
  • the ultraviolet absorber can be used alone or in combination of two or more.
  • the UV absorber includes a benzotriazole-based UV absorber containing a benzotriazole skeleton having an ethylenically unsaturated bond, a benzophenone-based UV absorber containing a benzophenone skeleton, a salicylic acid-based UV absorber containing salicylic acid in the skeleton, and a cyanoacrylate skeleton.
  • Either a cyanoacrylate-based UV absorber, a hindered-phenol-based UV absorber containing a hindered phenol skeleton, a triazine-based UV absorber containing triazine in the skeleton, or two or more of them can be used in combination.
  • products packaged with a laminate may be stored under light irradiation for a long period of time. Due to the influence of radicals generated under these conditions, the cohesive force or adhesion of the printing ink coating film is reduced, which leads to a decrease in the laminating strength. Since there is concern about the problem of interphase separation, light resistance is required.
  • the UV curable screen ink in the present invention preferably contains an acrylic resin acrylate.
  • the acrylic resin acrylate may have an acid value. Having an acid value can promote dispersibility with a colorant. As a result, it is possible to prevent clogging during screen printing and provide a print layer with high design.
  • the acid value of the acrylic resin acrylate is preferably 10 mgKOH / g or more.
  • a method of imparting an acid value to the acrylic resin acrylate a method of copolymerizing including a monomer having an acid value as a monomer can be exemplified.
  • the acid-valued monomers include (meth) acrylic acid, maleic anhydride, 2- (meth) acryloyloxyethyl-succinic acid, 2- (meth) acryloyloxyethyl-hexahydrophthalic acid, and 2- (meth) acryloyl.
  • examples thereof include oxyethyl-phthalic acid and 2- (meth) acryloyloxyethyl acid phosphate, and among them, (meth) acrylic acid is preferably used.
  • Screen printing is a type of stencil printing in which ink is placed on a plate with holes and extruded to the opposite side using a spatula called a squeegee to apply ink to the printed matter. This is a method with a high degree of freedom in the ink that can be printed and the printed matter when compared with other printing methods.
  • Another feature of screen printing is that the thickness of the ink (printing film thickness) at the time of printing can be adjusted more widely than other printing methods.
  • the solvent-based ink in the present invention is a general term for inks that are cured by evaporation and drying.
  • the composition is an ink containing a pigment (dye), a resin component, a diluting solvent, an auxiliary agent, and the like. It is an ink in which resin and pigments remain and adhere to the surface to be printed due to the rapid evaporation of the solvent after printing, and the drying speed is extremely fast, so it is suitable for high-speed and large-volume printing.
  • Oxidation polymerization type ink (oxidation polymerization type ink)
  • the oxidative polymerization type ink in the present invention contains a drying oil that is polymerizable and curable by oxygen in the air as a main component, and also contains a pigment (dye), a polymerization accelerator, an auxiliary agent, and the like. Drying oil acts as a fluid component, and the viscosity is adjusted according to the printing method. Recently, there is also a composite type containing both an ultraviolet curable component and a dry oil.
  • the solvent described above mainly refers to an organic solvent, and is a hydrocarbon such as hexane, heptane, and an ester such as acetate.
  • chill ethyl acetate, acetone which is a ketone, MEK and the like, and examples thereof include a single substance thereof, a mixture thereof, and a mixture with alcohols.
  • Polymerizable / curable monomers, oligomers and oils are not contained in organic solvents. Printing methods using these include flexographic printing, screen printing, and offset printing. The latter is set to have a higher ink viscosity.
  • the thermal transfer ink in the present invention is a heat-meltable pigment ink, and is used in a thermal transfer method in which an ink applied to an ink ribbon is melted by heat and transferred to paper for printing.
  • the composition is an ink containing colorants such as pigments and dyes, binders for waxes and thermoplastic resins, and various additives such as softeners and dispersants.
  • a resin type or a wax type is used as the ink used in the thermal transfer method.
  • the resin type is preferably used because it has excellent weather resistance. It is used for monochrome document output of word processors, tape writers, barcode printers, etc. It is also partially used in color printers and video printers by using color ribbons.
  • LBP toner The LBP toner in the present invention is a powder for coloring used in a laser printer or a copying machine, and is a mixture of chargeable fine particles (polymer resin), wax, pigment and the like. For color printing, use four colors: blue-green, magenta, yellow, and black. LBP is a page printer that charges the drum with laser light and adheres toner with static electricity.
  • an ethylene glycol solution of antimony trioxide was added as a polymerization catalyst so as to be 0.04 mol% as an antimony atom with respect to the acid component in the polyester, and continued under normal pressure under a nitrogen atmosphere.
  • the pressure of the reaction system was gradually lowered to 13.3 Pa (0.1 Torr) while raising the temperature to 280 ° C. over 60 minutes, and the polycondensation reaction was further carried out at 280 ° C. and 13.3 Pa.
  • the resin under slight pressure is discharged into cold water in a strand shape to quench it, and then it is held in cold water for 20 seconds and then cut to obtain cylinder-shaped pellets with a length of about 3 mm and a diameter of about 2 mm. rice field.
  • polyester pellets obtained by melt polymerization were dried under reduced pressure (13.3 Pa or less, 80 ° C., 12 hours) and then subsequently crystallized (13.3 Pa or less, 130 ° C., 3 hours, further 13.3 Pa or less, 160 ° C. for 3 hours).
  • the polyester pellets after allowing to cool were subjected to solid phase polymerization in a solid phase polymerization reactor while keeping the inside of the system at 13.3 Pa or less and 215 ° C. to obtain polyester pellets having an intrinsic viscosity of 0.62 dl / g. ..
  • polyester pellet P-2 (Preparation of aluminum compound) Basic aluminum acetate (hydroxyaluminum diacetate; manufactured by Aldrich), which was prepared by heat treatment at 80 ° C. under stirring for 2 hours and whose peak position of the 27Al-NMR spectrum was confirmed to be chemically shifted to the low magnetic field side.
  • Basic aluminum acetate hydroxyaluminum diacetate; manufactured by Aldrich
  • the mixture was stirred at room temperature for 6 hours, and then stirred under reduced pressure (133 Pa) at 90 to 110 ° C. for several hours from the system. Water was distilled off to prepare an ethylene glycol solution of 20 g / l of an aluminum compound.
  • polyester pellet P-1 As the polycondensation catalyst, a mixture of the ethylene glycol solution of the aluminum compound and the ethylene glycol solution of the phosphorus compound was used, and 0.014 mol% and 0.028 mol% of the aluminum atom and the phosphorus atom were used as the aluminum atom and the phosphorus atom, respectively, with respect to the acid component in the polyester.
  • the same operation as in the production of the polyester pellet P-1 was carried out except that the addition was made so as to become.
  • Polyester pellets P-2 having an intrinsic viscosity of 0.65 dl / g were obtained.
  • reaction solution reached a predetermined amine equivalent. It was confirmed.
  • the reaction solution was cooled to 40 ° C., and then 5.17 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution.
  • 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, adjusted to 25 ° C., and the polyurethane prepolymer solution was added and water-dispersed while stirring and mixing at 2000 min-1. .. Then, under reduced pressure, acetone and a part of water were removed to prepare a water-dispersible urethane resin solution (A-1) having a solid content of 34%.
  • reaction solution was cooled to 40 ° C., and then 5.17 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution.
  • 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, adjusted to 25 ° C., and the polyurethane prepolymer solution was added and water-dispersed while stirring and mixing at 2000 min-1. .. Then, under reduced pressure, acetone and a part of water were removed to prepare a water-dispersible urethane resin solution (A-2) having a solid content of 35%.
  • reaction solution was cooled to 40 ° C. to obtain a polyurethane prepolymer solution.
  • 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, adjusted to 25 ° C., and the polyurethane prepolymer solution was added and water-dispersed while stirring and mixing at 2000 min-1. .. Then, under reduced pressure, acetone and a part of water were removed to prepare a water-dispersible urethane resin solution (A-3) having a solid content of 35%.
  • reaction solution was cooled to 40 ° C., and then 8.77 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution.
  • 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, adjusted to 25 ° C., and the polyurethane prepolymer solution was added and water-dispersed while stirring and mixing at 2000 min-1. .. Then, a water-dispersible urethane resin solution (A-4) having a solid content of 34% by mass was prepared by removing acetone and a part of water under reduced pressure.
  • urethane resin A-6 having a polycarbonate structure 54 parts by mass of 4,4-dicyclohexylmethane diisocyanate and 16 parts by mass of polyethylene glycol monomethyl ether having a number average molecular weight of 700 in a four-necked flask equipped with a stirrer, a Dimroth condenser, a nitrogen introduction tube, a silica gel drying tube, and a thermometer.
  • a water-dispersible urethane resin solution (A-6) having a solid content of 34% by mass was prepared by removing acetone and a part of water under reduced pressure.
  • a blocked polyisocyanate aqueous dispersion (B-1) was obtained.
  • the blocked isocyanate cross-linking agent has 4 functional groups.
  • Polymerization of blocked isocyanate cross-linking agent B-2 100 parts by mass of a polyisocyanate compound (Duranate TPA manufactured by Asahi Kasei Chemicals Co., Ltd.) using hexamethylene diisocyanate as a raw material in a flask equipped with a stirrer, a thermometer, and a reflux cooling tube, 55 parts by mass of propylene glycol monomethyl ether acetate, polyethylene. 30 parts by mass of glycol monomethyl ether (average molecular weight 750) was charged and kept at 70 ° C. for 4 hours under a nitrogen atmosphere.
  • a polyisocyanate compound Duranate TPA manufactured by Asahi Kasei Chemicals Co., Ltd.
  • the temperature of the reaction solution was lowered to 50 ° C., and 47 parts by mass of methyl ethyl ketooxime was added dropwise.
  • the infrared spectrum of the reaction solution was measured, and it was confirmed that the absorption of the isocyanate group had disappeared, and an oxime-blocked isocyanate cross-linking agent (B-2) having a solid content of 40% by mass was obtained.
  • the blocked isocyanate cross-linking agent has 3 functional groups.
  • Polymer resin polymerization C-1 194.2 parts by mass of dimethylterephthalate, 184.5 parts by mass of dimethylisophthalate, 14.8 parts by mass of dimethyl-5-sodium sulfoisophthalate in a stainless steel autoclave equipped with a stirrer, a thermometer, and a partial reflux condenser. , 185 parts by mass of neopentyl glycol, 188 parts by mass of ethylene glycol, and 0.2 parts by mass of tetra-n-butyl titanate were charged, and a transesterification reaction was carried out at a temperature of 160 ° C to 220 ° C for 4 hours.
  • the obtained copolymerized polyester resin (C-1) was pale yellow and transparent.
  • the reduced viscosity of the copolymerized polyester resin (C-3) was measured and found to be 0.40 dl / g.
  • Example 1 Preparation of coating liquid The following coating liquid is mixed with a mixed solvent of water and isopropanol to prepare a urethane resin solution (A-1) / cross-linking agent (B-1) / polyester aqueous dispersion (Cw-1). A coating liquid having a solid content mass ratio of 25/26/49 was prepared.
  • Urethane resin solution (A-1) 3.55 parts by mass Crosslinker (B-1) 3.16 parts by mass Polyester aqueous dispersion (Cw-1) 16.05 parts by mass Particles 0.47 parts by mass (average particle size 200 nm) Dry method silica, solid content concentration 3.5%) Particles 1.85 parts by mass (silica sol with an average particle size of 40 to 50 nm, solid content concentration of 30% by mass) Surfactant 0.30 parts by mass (silicone type, solid content concentration 10% by mass)
  • polyester pellet P-1 was dried at 135 ° C. for 6 hours under a reduced pressure of 133 Pa. Then, it was supplied to an extruder, melt-extruded into a sheet at about 280 ° C., and rapidly cooled and adhered and solidified on a rotary cooling metal roll maintained at a surface temperature of 20 ° C. to obtain an unstretched PET sheet.
  • This unstretched PET sheet was heated to 100 ° C. with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a peripheral speed difference to obtain a uniaxially stretched PET film.
  • the coating liquid which had been allowed to stand at room temperature for 5 hours or more was applied to one side of the PET film by a roll coating method, and then dried at 80 ° C. for 20 seconds.
  • the final (after biaxial stretching) coating amount after drying was adjusted to 0.15 g / m 2 (coating layer thickness after drying 150 nm).
  • the film was stretched 4.0 times in the width direction at 120 ° C., heated at 230 ° C. for 5 seconds with the length of the film fixed in the width direction, and further heated at 100 ° C. for 10 seconds at 3%. Relaxation treatment in the width direction was performed to obtain a 100 ⁇ m easy-adhesive polyester film.
  • UV161 indigo S 100 parts by mass Benzophenone-based UV absorber (Chemisorb 11, Chemipro Kasei) 4 parts by mass
  • Printing was performed on the coating layer of the easily adhesive polyester film by a central impression type printing machine using a light-resistant UV curable ink having the following composition.
  • the ink was weighed with an Anilox roll having a cell volume of 11 cm 3 / m 2 , and then transferred to a solid plate and further transferred to a film.
  • the transferred ink on the film was cured with a 160 W / cm metal halide UV lamp to obtain a printed matter (3) having a light-resistant UV curable ink layer.
  • the time from ink transfer to the film to UV light irradiation was 0.94 seconds.
  • UV161 indigo S 100 parts by mass Benzophenone-based UV absorber (Chemisorb 11, Chemipro Kasei) 4 parts by mass
  • Example 2 An easily adhesive polyester film and a printed matter were obtained in the same manner as in Example 1 except that the urethane resin was changed to (A-2).
  • Example 3 An easily adhesive polyester film and a printed matter were obtained in the same manner as in Example 1 except that the urethane resin was changed to (A-3).
  • Example 4 An easily adhesive polyester film and a printed matter were obtained in the same manner as in Example 1 except that the cross-linking agent was changed to (B-2).
  • Example 5 The following coating material is mixed with a mixed solvent of water and isopropanol, and the solid content mass ratio of the urethane resin solution (A-1) / cross-linking agent (B-1) / polyester aqueous dispersion (Cw-1) is 22 /.
  • An easily adhesive polyester film and a printed matter were obtained in the same manner as in Example 1 except that the content was changed to 10/68.
  • Urethane resin solution (A-1) 2.71 parts by mass Crosslinker (B-1) 1.00 parts by mass Polyester aqueous dispersion (Cw-1) 19.05 parts by mass Particles 0.47 parts by mass (average particle size 200 nm) Dry method silica, solid content concentration 3.5%) Particles 1.85 parts by mass (silica sol with an average particle size of 40 to 50 nm, solid content concentration of 30% by mass) Surfactant 0.30 parts by mass (silicone type, solid content concentration 10% by mass)
  • Example 6 An easily adhesive polyester film and a printed matter were obtained in the same manner as in Example 5 except that the urethane resin was changed to (A-2).
  • Example 7 An easily adhesive polyester film and a printed matter were obtained in the same manner as in Example 1 except that the polyester pellet was changed to (P-2) as the film raw material polymer.
  • Example 1 The following coating material was mixed with a mixed solvent of water and isopropanol, and the solid content ratio of the urethane resin solution (A-5) / polyester aqueous dispersion (Cw-1) was changed to 29/71. Except for the above, an easily adhesive polyester film and a printed matter were obtained in the same manner as in Example 1.
  • Urethane resin solution (A-5) 6.25 parts by mass Polyester aqueous dispersion (Cw-1) 20.00 parts by mass Elastron catalyst 0.50 parts by mass Particles 1.02 parts by mass (dry silica with an average particle size of 200 nm) , Solid content concentration 3.5%) 2.15 parts by mass of particles (silica sol with an average particle size of 40 nm, solid content concentration of 20% by mass) Surfactant 0.30 parts by mass (fluorine-based, solid content concentration 10% by mass)
  • Example 2 An easily adhesive polyester film and a printed matter were obtained in the same manner as in Example 1 except that the urethane resin was changed to (A-4).
  • Example 3 An easily adhesive polyester film and a printed matter were obtained in the same manner as in Example 1 except that the urethane resin was changed to (A-4) and the cross-linking agent was changed to (B-2).
  • Example 4 The following coatings were mixed with a mixed solvent of water and isopropanol, except that the solid content ratio of the urethane resin solution (A-4) / cross-linking agent (B-1) was changed to 70/30. , An easily adhesive polyester film and a printed matter were obtained in the same manner as in Example 1.
  • Urethane resin solution (A-4) 9.03 parts by mass Crosslinker (B-1) 3.38 parts by mass Particles 0.52 parts by mass (dry silica with average particle size of 200 nm, solid content concentration 3.5%) 1.80 parts by mass of particles (silica sol with an average particle size of 40 nm, solid content concentration of 30% by mass) Surfactant 0.30 parts by mass (silicone type, solid content concentration 10% by mass)
  • Example 5 The following coatings were mixed with a mixed solvent of water and isopropanol, except that the solid content ratio of the urethane resin solution (A-4) / cross-linking agent (B-1) was changed to 20/80. , An easily adhesive polyester film and a printed matter were obtained in the same manner as in Example 1.
  • Urethane resin solution (A-4) 2.58 parts by mass Crosslinker (B-1) 9.00 parts by mass Particles 0.52 parts by mass (dry silica with an average particle size of 200 nm, solid content concentration 3.5%) 1.80 parts by mass of particles (silica sol with an average particle size of 40 nm, solid content concentration of 30% by mass) Surfactant 0.30 parts by mass (silicone type, solid content concentration 10% by mass)
  • Example 6 An easily adhesive polyester film and a printed matter were obtained in the same manner as in Example 5 except that the urethane resin was changed to (A-2) and the cross-linking agent was changed to (B-3).
  • Example 7 An easily adhesive polyester film and a printed matter were obtained in the same manner as in Example 5 except that the urethane resin was changed to (A-6).
  • the element distribution measurement in the depth direction of the coating layer was performed by X-ray photoelectron spectroscopy (ESCA).
  • ESA X-ray photoelectron spectroscopy
  • Ar clusters which are expected to have low damage to organic materials, were used.
  • the sample was rotated during etching so that uniform etching could be performed.
  • the spectrum was collected at each etching time in the snapshot mode, which enables evaluation in a short time. For the convenience of evaluation, the spectrum was collected every 30 seconds until the etching time was 120 seconds, and every 60 seconds thereafter. Details of the measurement conditions are shown below.
  • the background was removed by the shirley method.
  • the horizontal axis is the etching time from the surface of the coating layer
  • the vertical axis is the ratio of the amount of nitrogen atoms to the total amount of carbon atoms, oxygen atoms, nitrogen atoms, and silicon atoms (nitrogen atom ratio).
  • the nitrogen atom ratio on the surface of the coating layer opposite to the polyester film substrate is A (at%), the maximum value of the nitrogen atom ratio is B (at%), and the nitrogen atom ratio is the maximum value B (.
  • the etching time to be at%) is read as b (seconds), and the etching time when the nitrogen atom ratio becomes 1 / 2B (at%) after b (seconds) is read as c (seconds), and BA (at%) is read. ), Cb (seconds) is calculated and obtained.
  • the nitrogen atom ratio on the surface of the coating layer opposite to the polyester film substrate refers to the nitrogen atom ratio when the etching time is 0 (seconds) in the figure. (Note that the "s" described as "etching time s" on the horizontal axis in FIGS. 1 to 4 means the unit "second".)
  • OCOO bond ratio in the surface region was evaluated by X-ray photoelectron spectroscopy (ESCA).
  • the device used was K-Alpha + (manufactured by Thermo Fisher Scientific). Details of the measurement conditions are shown below.
  • the background was removed by the shirley method.
  • the calculation of X was the average value of the measurement results of three or more points.
  • the total peak area derived from each bond species in the C1s spectral region refers to the total peak area of peaks (1) to (6), and the peak area derived from OCOO bonds is the peak of peak (5). Refers to the area.
  • X (%) represents the ratio of the area of the peak (5) as a percentage (%).
  • Table 4 shows the peak area calculation results of the peaks (1) to (6) of Example 6 and Experimental Example 1. As described above, the percentage data of the peak (5) is the data of X (%). The peak (3) and peak (6) of Example 6 and the peak (3) and peak (5) of Experimental Example 1 did not appear.
  • Table 5 summarizes the evaluation results of each example and experimental example.
  • the easy-adhesive polyester film in the present invention has excellent adhesion to UV curable ink, solvent type ink, oxidation polymerization type ink, heat transfer ink ribbon, and LBP toner, and is UV curable especially during low-dose processing or high-speed printing. It is suitable as a base film for a wide variety of printed matter having good adhesion to ink.

Landscapes

  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

透明性が高く、ブロッキング耐性を有し、多様なインキ組成物に対して良好な密着性を有し、特に低線量加工時あるいは高速印刷時においてUV硬化型インキに対しての密着性が良好である易接着性ポリエステルフィルムを用いた印刷物を提供する。ポリエステルフィルム基材の少なくとも一方の面に塗布層を有する易接着性ポリエステルフィルムの前記塗布層上に、UV硬化型インキ、溶剤型インキ、酸化重合型インキ、熱転写インキリボン、LBPトナーから選択される少なくとも1層のインキ層を積層してなる印刷物であって、前記塗布層がポリカーボネート構造を有するウレタン樹脂、架橋剤、及びポリエステル樹脂を含有する組成物が硬化されてなり、特定の特性を有する印刷物。

Description

印刷物
 本発明は、種々インキ層との密着性に優れた印刷物に関する。更に詳しくは、紫外線(UV)硬化型インキ、溶剤型インキ、酸化重合型インキ、熱転写インキリボン、LBPトナーなどあらゆる種類のインキ層に最適な易接着性の塗布層を有する印刷物に関する。
 二軸延伸ポリエステルフィルムは、その機械的強度、耐熱性、耐薬品性、寸法安定性、価格とのバランスから各種産業資材用途、民生用途などに広範囲で使用されている。特に透明フィルムに印刷を施す各種商業印刷用途、電飾版、ダミー缶、ラベルなどでは不可欠な存在となっている。しかしながら一般的にポリエステルフィルムは印刷インキとの接着性が悪いため、易接着性を有する樹脂を用いたアンカー塗布層を設けることが一般的である。なかでもポリエステルを中心とした比較的極性の高いフィルムに対しては、水溶性あるいは水分散性のポリエステル系樹脂や、アクリル系樹脂を用いることが提案されている(例えば、特許文献1、特許文献2、特許文献3および特許文献4参照)。しかし上記ポリエステル系樹脂はフィルムロール状態での耐ブロッキング性に劣りやすく、また上記アクリル系樹脂はベースフィルムおよび印刷インキに対する接着性に劣りやすい欠点がある。そこでこれらの改善のため上記ポリエステル系樹脂と上記アクリル系樹脂とを混合して用いることも提案されているが(例えば、特許文献5参照)、欠点の改善は充分とは言い難い。さらにグラフト変性を中心とした種々の変性ポリエステルを使用することも提案されている。また、水溶化あるいは水分散できる親水基含有ポリエステル樹脂に不飽和結合含有化合物をグラフト化させた樹脂がポリエステルフィルムのアンカーコート剤として好適であることが開示されている(例えば、特許文献6、特許文献7および特許文献8参照)。しかし、接着性、耐水性の面ではまだ性能不充分であった。さらに、ポリエステルのグラフト変性樹脂が開示されているが(例えば、特許文献9および特許文献10参照)、凝集力に乏しいため脱落、傷等に問題を残している。
 これらは、印刷用途ではスクラッチ傷の発生、塗膜・滑剤粒子の脱落、インキの転移不良・剥離をもたらす致命的な欠陥につながる。とくに枚葉オフセット印刷用途では、給紙・搬送時に強い摩擦を受けること、UV硬化型インキの使用により高度な易接着性の要求があること、などにより不可欠な特性である。
 近年、印刷業界においては、生産性の向上を目的に印刷の高速化が進んでいる。UV硬化型インキを用いた印刷が高速化することでは、インキ塗布からUV照射までにかかる時間やUV積算光量が減少する。すなわち、インキとポリエステルフィルム、及び塗布層との相互作用が弱くなる。そのため、塗布層には、UV硬化型インキに対するより高い密着性が求められる。
特開昭54-43017号 公報 特公昭49-10243号公報 特開昭52-19786号公報 特開昭52-19787号公報 特開昭58-124651号公報 特開平2-3307号公報 特開平2-171243号公報 特開平2-310048号公報 特開平3-273015号公報 特開平3-67626号公報
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、透明性が高く、ブロッキング耐性を有し、多様なインキ組成物に対して良好な密着性を有し、特に低線量加工時あるいは高速印刷時におけるUV硬化型インキをはじめとする種々のインキ組成物に対しての密着性が良好である易接着性ポリエステルフィルムを用いた印刷物を提供することにある。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、ポリエステルフィルム基材の少なくとも一方の面に架橋剤、ポリカーボネート構造を有するウレタン樹脂、及びポリエステル樹脂を含有する塗布層を有しており、当該塗布層内の窒素原子比率と、ポリエステルフィルム基材とは反対側の当該塗布層表面のOCOO結合比率が特定の条件を満たす場合に本発明の課題を解決できることを見出し、本発明の完成に至った。
 前記の課題は以下の解決手段により達成することができる。
1. ポリエステルフィルム基材の少なくとも一方の面に塗布層を有する易接着性ポリエステルフィルムの前記塗布層上に、UV硬化型インキ、溶剤型インキ、酸化重合型インキ、熱転写インキリボン、LBPトナーから選択される少なくとも1層のインキ層を積層してなる印刷物であって、前記塗布層が、ポリカーボネート構造を有するウレタン樹脂、架橋剤、及びポリエステル樹脂を含有する組成物が硬化されてなり、前記塗布層についてのX線光電子分光法による深さ方向の元素分布測定に基づく窒素元素の分布曲線において、ポリエステルフィルム基材とは反対側の塗布層表面の窒素原子比率をA(at%), 窒素原子比率の最大値をB(at%)、窒素原子比率が最大値B(at%)を示すエッチング時間をb(秒)、b(秒)以降に窒素原子比率が1/2B(at%)となるときのエッチング時間をc(秒)とするとき、下記式(i)~(iii)を満たし、かつ、X線光電子分光法により測定した表面分析スペクトルにおいて、C1sスペクトル領域の各結合種に由来するピーク面積合計を100(%)とし、OCOO結合に由来するピーク面積をX(%)とするとき、下記式(iv)を満たす印刷物。
 (i) 0.5 ≦ B-A(at%)  ≦ 3.0
 (ii) 30 ≦  b(秒) ≦ 180
 (iii) 30 ≦ c-b(秒) ≦ 300
 (iv) 2.0≦ X(%) ≦ 10.0
2. 上記第1に記載の易接着性ポリエステルフィルムのヘイズが1.5(%)以下である印刷物。
 本発明により、基材とインキ層との密着性が良好な様々な印刷物を得ることができる。特に低線量加工時あるいは高速印刷時においてUV硬化型インキをはじめとする種々のインキ組成物との密着性が良好である。さらに、本発明の易接着性ポリエステルフィルムは透明性が高く、耐ブロッキング性に優れている。
実施例2の易接着性ポリエステルフィルムについてのX線光電子分光法による深さ方向の元素分布測定に基づく窒素元素の分布曲線である。 X線光電子分光法による深さ方向の元素分布測定に基づく窒素元素の分布曲線から、B-A、b、及びc-bを求めるための説明図である。 実施例5の易接着性ポリエステルフィルムについてのX線光電子分光法による深さ方向の元素分布測定に基づく窒素元素の分布曲線である。 実験例6の易接着性ポリエステルフィルムについてのX線光電子分光法による深さ方向の元素分布測定に基づく窒素元素の分布曲線である。 実施例6の易接着性ポリエステルフィルムの塗布層表面領域のC1sスペクトルの解析結果を示すグラフである。 実験例1の易接着性ポリエステルフィルムの塗布層表面領域のC1sスペクトルの解析結果を示すグラフである。
(ポリエステルフィルム基材)
 本発明において、ポリエステルフィルム基材を構成するポリエステル樹脂は、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリトリメチレンテレフタレートなどのほか、前記のようなポリエステル樹脂のジオール成分又はジカルボン酸成分の一部を以下のような共重合成分に置き換えた共重合ポリエステル樹脂であり、例えば、共重合成分として、ジエチレングリコール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、ポリアルキレングリコールなどのジオール成分や、アジピン酸、セバチン酸、フタル酸、イソフタル酸、5-ナトリウムイソフタル酸、2,6-ナフタレンジカルボン酸などのジカルボン酸成分などを挙げることができる。
 本発明において好適に用いられるポリエステル樹脂は、主に、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートから選ばれるものである。これらのポリエステル樹脂の中でも、物性とコストのバランスからポリエチレンテレフタレートが最も好ましい。また、これらのポリエステル樹脂から構成されたポリエステルフィルム基材は二軸延伸ポリエステルフィルムであることが好ましく、耐薬品性、耐熱性、機械的強度などを向上させることができる。
 ポリエステル樹脂の製造の際に用いられる重縮合のための触媒としては特に限定されないが、三酸化アンモンが安価で、かつ優れた触媒活性をもつ触媒であるため好適である。また、ゲルマニウム化合物、又はチタン化合物を用いることも好ましい。さらに好ましい重縮合触媒としては、アルミニウム及び/又はその化合物とフェノール系化合物を含有する触媒、アルミニウム及び/又はその化合物とリン化合物を含有する触媒、リン化合物のアルミニウム塩を含有する触媒が挙げられる。
 また、本発明におけるポリエステルフィルム基材は、単層のポリエステルフィルムであってもよいし、相互に成分が異なる2層構成でもよく、外層と内層を有する、少なくとも3層からなるポリエステルフィルム基材であってもよい。
(本発明における特性値の説明)
 本発明における易接着性ポリエステルフィルムは、上記のようなポリエステルフィルム基材の少なくとも一方の面に塗布層を有するものであることが好ましい。前記塗布層は、ポリカーボネート構造を有するウレタン樹脂、架橋剤、及びポリエステル樹脂を含有する組成物が硬化されてなるものである。ここで、「組成物が硬化されてなる」との表現を用いているのは、ポリカーボネート構造を有するウレタン樹脂、架橋剤、及びポリエステル樹脂が、架橋剤によって架橋構造を形成して硬化された状態の化学組成を正確に表現することが極めて困難であるからである。そして、前記塗布層の深さ方向の元素分布測定に基づく窒素元素の分布曲線の最大値が、ポリエステルフィルム基材とは反対側の塗布層表面近傍に存在していることが、透明性、ブロッキング耐性の向上を実現でき、好ましい。さらに、ポリエステルフィルム基材とは反対側の塗布層表面にポリカーボネート構造が適量存在することが、低線量加工時や高速印刷時のUVインキ密着性の向上を実現でき、好ましい。
 上記の易接着性ポリエステルフィルムにおける塗布層の特性について説明する。まず、塗布層の深さ方向の元素分布測定に基づく窒素元素の分布曲線をX線光電子分光法(ESCA)にて描く。即ち、スペクトル収集は、エッチング時間120秒までは30秒ごとに、以降は60秒ごとに行う。そして、図2に示すように、塗布層表面からのエッチング時間(単位:秒)を横軸に、炭素原子、酸素原子、窒素原子、ケイ素原子の合計量に対する窒素原子の量の比率(窒素原子比率、単位:at%)を縦軸にとり、ポリエステルフィルム基材とは反対側の塗布層表面の窒素原子比率をA(at%), 窒素原子比率の最大値をB(at%)、窒素原子比率が最大値B(at%)を示すエッチング時間をb(秒)、b(秒)以降に窒素原子比率が1/2B(at%)となるときのエッチング時間をc(秒)とする。読み取ったデータからB-A(at%)、c-b(秒)を計算して求める。ポリエステルフィルム基材とは反対側の塗布層表面の窒素原子比率A(at%)は、エッチング時間0(秒)時の窒素原子比率である。
 そして、上記の塗布層の深さ方向の元素分布測定に基づく窒素元素の分布曲線から読み取られる各特性値が以下の関係にある時、透明性、ブロッキング耐性、溶剤型インキ層への密着性に優れた易接着性ポリエステルフィルムが得られるものである。
 (i) 0.5 ≦ B-A(at%)  ≦ 3.0
 (ii) 30 ≦  b(秒) ≦ 180
 (iii) 30 ≦ c-b(秒) ≦ 300
 B-Aの下限は好ましくは0.5at%であり、より好ましくは0.6at%であり、さらに好ましくは0.7at%であり、特に好ましくは0.8at%であり、最も好ましくは0.9at%である。0.5at%以上であると強靭性を有するウレタン樹脂成分量が充足し、耐ブロッキング性が得られ、さらに溶剤型インキ層への密着性に優れて好ましい。B-Aの上限は好ましくは3.0at%であり、より好ましくは2.9at%であり、さらに好ましくは2.8at%であり、特に好ましくは2.7at%であり、最も好ましくは2.5at%である。3.0at%以下であると、ヘイズが低く、透明性が得られて好ましい。
 bの下限は好ましくは30秒であり、30秒以上であると、ポリエステルフィルム基材とは反対側の塗布層表面の強靭性が保たれ、耐ブロッキング性が得られて好ましい。bの上限は好ましくは180秒であり、より好ましくは120秒であり、さらに好ましくは90秒であり、特に好ましくは60秒である。180秒以下であると、ポリエステルフィルム基材とは反対側の塗布層表面の強靭性が保持され、耐ブロッキング性が良好となり好ましい。
 c-bの上限は好ましくは300秒であり、より好ましくは240秒であり、さらに好ましくは180秒である。300秒以下であると、塗布層中のウレタン樹脂成分が過剰になることがなく、ヘイズが低く透明性が得られて好ましい。c-bの下限は、スペクトル収集が、測定開始からエッチング時間120秒までは30秒ごとである関係で、30秒以上となる。
 本発明において、易接着性ポリエステルフィルムを構成する塗布層におけるウレタン樹脂中のポリカーボネート構造部分の多くは、ポリエステルフィルム基材とは反対側の塗布層表面に局在していることが好ましい。適量のポリカーボネート構造部分が当該表面に存在していることで、多様なインキ組成物への密着性が向上するためである。一方、ポリカーボネート構造部分が当該表面に存在することは、柔軟性が高くなりブロッキング耐性が必ずしも十分ではない場合があることも見出した。そこで、上記のように、塗布層の深さ方向の元素分布測定に基づく窒素元素の分布曲線から読み取られる各特性値が以下の関係にある時、透明性、ブロッキング耐性をも具備した優れた易接着性ポリエステルフィルムが得られるものである。
 (i) 0.5 ≦ B-A(at%)  ≦ 3.0
 (ii) 30 ≦  b(秒) ≦ 180
 (iii) 30 ≦ c-b(秒) ≦ 300
 本発明における易接着性ポリエステルフィルムにおいて、上記の(i)~(iii)の式を満足させるための手段としては、塗布層を形成するポリカーボネート構造を有するウレタン樹脂を合成、重合する際、ポリカーボネートポリオール成分とポリイソシアネート成分とを含んで合成、重合され、ポリカーボネートポリオール成分とポリイソシアネート成分の質量比が0.5~2.5の範囲内であり、ポリカーボネートポリオール成分の分子量が500~1800であり、塗布液中のポリエステル樹脂、ウレタン樹脂及び架橋剤の固形分の総和を100質量%とするとき、架橋剤の固形分の含有率が10~50質量%であることを挙げることができる。そして、架橋剤としてはブロックイソシアネートを用い、3官能以上のイソシアネート基を有するブロックイソシアネートを用いることにより、B-Aの効率的な調節が可能となる。
 また、上記のように、本発明における塗布層におけるウレタン樹脂中のポリカーボネート構造部分の多くは、ポリエステルフィルム基材とは反対側の塗布層表面に一定割合存在していることが好ましい。本発明においては、X線光電子分光法により測定した表面分析スペクトルにおいて、C1sスペクトル領域の各結合種に由来するピーク面積合計を100(%)、(ポリカーボネート構造である)OCOO結合に由来するピーク面積をX(%)として、その百分率で表している。
 ここで表面領域の(ポリカーボネート構造である)OCOO結合の比率 X(%)はX線光電子分光法(ESCA)にて評価する。図5、6はそれぞれ、後述の実施例6、実験例1の易接着性ポリエステルフィルムの表面領域のC1sスペクトルの解析結果を示すグラフの例である。灰色実線はC1sスペクトルの実測データを表している。得られた実測スペクトルのピークを複数のピークに分離し、各ピーク位置及び形状から各ピークに対応する結合種を同定する。さらに各結合種由来のピークでカーブフィッティングを実施し、ピーク面積を算出することができる。本発明における塗布層は、ポリカーボネート構造を有するウレタン樹脂、3官能以上のイソシアネート基を有するブロックイソシアネートに代表される架橋剤、及びポリエステル樹脂を含有しており、かかる塗布層の場合、表1のピーク(1)~(6)の結合種のピークが検出され得る。表1のピーク(1)~(6)の結合種は、必ずしも表1中に示した結合種だけではなく類似する結合種をわずかに含む場合もある。ここで、実施例6に関する図5においては、表1の(3)のC=O結合ピークと(6)のπ-π*結合ピークは現れていない。また、実験例1に関する図6においては、表1の(3)のC=O結合ピークと(5)のOCOO結合ピークは現れていない。表面領域のOCOO結合の比率X(%)は、ピーク(1)~(6)までのピーク面積全体を100%とした時のピーク(5)の面積比率を百分率(%)で表したものと言える。
Figure JPOXMLDOC01-appb-T000001
 OCOO結合に由来するピーク面積X(%)の好適な範囲は以下のようである。Xの下限は好ましくは2.0%であり、より好ましくは2.5%であり、さらに好ましくは3.0%であり、特に好ましくは3.5%であり、最も好ましくは4.0%である。2.0%以上であると、インキ密着性を効果的に満足させることはでき好ましい。Xの上限は好ましくは10.0%であり、より好ましくは9.0%であり、さらに好ましくは8.0%であり、特に好ましくは7.5%であり、最も好ましくは7%である。10.0%以下であると、表層の柔軟性が高くなり過ぎず、耐ブロッキング性が得られ易く好ましい。
 本発明における易接着性ポリエステルフィルムの製造方法としては、塗布層を形成するポリカーボネート構造を有するウレタン樹脂を合成、重合する際、ポリカーボネートポリオール成分とポリイソシアネート成分の質量比が0.5以上であり、塗布液中のポリエステル樹脂、ポリカーボネート構造を有するウレタン樹脂及び架橋剤の固形分の総和を100質量%とするとき、ウレタン樹脂含有率が5質量%~50質量%であることが、前記C1sスペクトル領域に基づくX特性値を2.0~10.0%の範囲を効果的に実現できるために好ましい。
(塗布層)
 本発明における易接着性ポリエステルフィルムは、インキ層への密着性を向上させるために、その少なくとも片面に、ポリカーボネート構造を有するウレタン樹脂、架橋剤、及びポリエステル樹脂を含有する組成物から形成される塗布層が積層されていることが好ましい。塗布層はポリエステルフィルムの両面に設けてもよく、ポリエステルフィルムの片面のみに設け、他方の面には異種の樹脂被覆層を設けてもよい。
 以下、塗布層の各組成について詳説する。
(ウレタン樹脂)
 本発明におけるポリカーボネート構造を有するウレタン樹脂は、少なくともポリカーボネートポリオール成分とポリイソシアネート成分に由来するウレタン結合部分を有し、さらに必要に応じて鎖延長剤を含む。
 本発明におけるポリカーボネート構造を有するウレタン樹脂を合成、重合する際のポリカーボネートポリオール成分とポリイソシアネート成分の質量比(ポリカーボネートポリオール成分の質量/ポリイソシアネート成分の質量)の下限は好ましくは0.5であり、より好ましくは0.6であり、さらに好ましくは0.7であり、特に好ましくは0.8であり、最も好ましくは1.0である。0.5以上であると、塗布層表面のOCOO結合の割合Xを2%以上に効率的に調節できて好ましい。本発明におけるポリカーボネート構造を有するウレタン樹脂を合成、重合する際のポリカーボネートポリオール成分とポリイソシアネート成分の質量比の上限は好ましくは2.5であり、より好ましくは2.2であり、さらに好ましくは2.0であり、特に好ましくは1.7であり、最も好ましくは1.5である。2.5以下であると塗布層表面のOCOO結合の割合Xが10%以下に効率的に調節できて好ましい。さらにX線光電子分光法による深さ方向の元素分布測定に基づく窒素分布曲線において、B-Aを0.5at%以上に効果的に調節でき、c-bを300秒以下に効果的に調節することができる。
 本発明におけるポリカーボネート構造を有するウレタン樹脂を合成、重合するために用いるポリカーボネートポリオール成分には、耐熱、耐加水分解性に優れる脂肪族系ポリカーボネートポリオールを含有することが好ましい。脂肪族系ポリカーボネートポリオールとしては、脂肪族系ポリカーボネートジオール、脂肪族系ポリカーボネートトリオールなどが挙げられるが、好適には脂肪族系ポリカーボネートジオールを用いることができる。本発明におけるポリカーボネート構造を有するウレタン樹脂を合成、重合するために用いる脂肪族系ポリカーボネートジオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,8-ノナンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコールなどのジオール類の1種または2種以上と、例えば、ジメチルカーボネート、エチレンカーボネート、ホスゲンなどのカーボネート類とを反応させることにより得られる脂肪族系ポリカーボネートジオールなどが挙げられる。
 本発明における前記のポリカーボネートポリオールの数平均分子量としては、好ましくは500~1800である。より好ましくは600~1700、最も好ましくは700~1500である。500以上であると、塗布層表面のOCOO結合の割合Xが10%以下に効果的に調節できて好ましい。1800以下であると、X線光電子分光法による深さ方向の元素分布測定に基づく窒素分布曲線において、B-Aを0.5以上、c-bを300秒以下に効果的に調節できて好ましい。
 本発明におけるポリカーボネート構造を有するウレタン樹脂の合成、重合に用いるポリイソシアネートとしては、例えば、キシリレンジイソシアネート等の芳香族脂肪族ジイソシアネート類、イソホロンジイソシアネート及び4,4-ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン等の脂環式ジイソシアネート類、ヘキサメチレンジイソシアネート、および2,2,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート類、あるいはこれらの化合物を単一あるいは複数でトリメチロールプロパン等とあらかじめ付加させたポリイソシアネート類が挙げられる。前記の芳香族脂肪族ジイソシアネート類、脂環式ジイソシアネート類、または、脂肪族ジイソシアネート類等を使用した場合、黄変の問題がなく好ましい。また、強硬な塗膜になり過ぎず、ポリエステルフィルム基材の熱収縮による応力を緩和でき、接着性が良好となり好ましい。
 鎖延長剤としては、エチレングリコール、ジエチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール及び1,6-ヘキサンジオール等のグリコール類、グリセリン、トリメチロールプロパン、およびペンタエリスリトール等の多価アルコール類、エチレンジアミン、ヘキサメチレンジアミン、およびピペラジン等のジアミン類、モノエタノールアミンおよびジエタノールアミン等のアミノアルコール類、チオジエチレングルコール等のチオジグリコール類、あるいは水が挙げられる。
 本発明における塗布層は、水系の塗布液を用い後述のインラインコート法により設けることが好ましい。そのため、本発明のウレタン樹脂は水溶性又は水分散性を持つことが望ましい。なお、前記の「水溶性又は水分散性」とは、水、または水溶性の有機溶剤を50質量%未満含む水溶液に対して分散することを意味する。
 ウレタン樹脂に水分散性を付与させるためには、ウレタン分子骨格中にスルホン酸(塩)基又はカルボン酸(塩)基を導入(共重合)することができる。耐湿性を維持するために、弱酸性であるカルボン酸(塩)基を導入するのが好適である。また、ポリオキシアルキレン基などのノニオン性基を導入することもできる。
 ウレタン樹脂にカルボン酸(塩)基を導入するためには、例えば、ポリオール成分として、ジメチロールプロパン酸、ジメチロールブタン酸などのカルボン酸基を有するポリオール化合物を共重合成分として導入し、塩形成剤により中和する。塩形成剤の具体例としては、アンモニア、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミンなどのトリアルキルアミン類、N-メチルモルホリン、N-エチルモルホリンなどのN-アルキルモルホリン類、N-ジメチルエタノールアミン、N-ジエチルエタノールアミンなどのN-ジアルキルアルカノールアミン類が挙げられる。これらは単独で使用できるし、2種以上併用することもできる。
 水分散性を付与するために、カルボン酸(塩)基を有するポリオール化合物を共重合成分として用いる場合は、ウレタン樹脂中のカルボン酸(塩)基を有するポリオール化合物の組成モル比は、ウレタン樹脂の全ポリイソシアネート成分を100モル%としたときに、3~60モル%であることが好ましく、5~40モル%であることが好ましい。前記組成モル比が3モル%未満の場合は、水分散性が困難になる場合がある。また、前記組成モル比が60モル%を超える場合は、耐水性が低下するため耐湿熱性が低下する場合がある。
 本発明のウレタン樹脂は、強硬性向上のため末端にブロックイソシアネートを結合させてもよい。
(架橋剤) 
 本発明において、塗布層形成用組成物が含有する架橋剤としてはブロックイソシアネートが好ましく、3官能以上のブロックイソシアネートがさらに好ましく、4官能以上のブロックイソシアネートが特に好ましい。これらによりブロッキング耐性が向上する。ブロックイソシアネート架橋剤を用いると、X線光電子分光法による深さ方向の元素分布測定に基づく窒素分布曲線において、B-Aを0.5at%以上に効果的に調節できて好ましい。
 前記ブロックイソシアネートのブロック剤の沸点の下限は好ましくは150℃であり、より好ましくは160℃であり、さらに好ましくは180℃であり、特に好ましくは200℃であり、最も好ましくは210℃である。ブロック剤の沸点が高い程、塗布液の塗布後の乾燥工程やインラインコート法の場合はフィルム製膜工程における熱付加によってもブロック剤の揮発が抑制され、微小な塗布面凹凸の発生が抑制され、フィルムの透明性が向上する。ブロック剤の沸点の上限は特に限定しないが、生産性の点から300℃程度が上限であると思われる。沸点は分子量と関係するため、ブロック剤の沸点を高くするためには、分子量の大きなブロック剤を用いることが好ましく、ブロック剤の分子量は50以上が好ましく、60以上がより好ましく、80以上がさらに好ましい。
 ブロック剤の解離温度の上限は好ましくは200℃であり、より好ましくは180℃であり、さらに好ましくは160℃であり、特に好ましくは150℃であり、最も好ましくは120℃である。ブロック剤は塗布液の塗布後の乾燥工程やインラインコート法の場合はフィルム製膜工程における熱付加により官能基と解離し、再生イソシアネート基が生成される。そのため、ウレタン樹脂などとの架橋反応が進行し、接着性が向上する。ブロックイソシアネートの解離温度が上記温度以下である場合は、ブロック剤の解離が十分進行するため、接着性、特に耐湿熱性が良好となる。
 本発明におけるブロックイソシアネートの解離温度が120℃以下、かつ、ブロック剤の沸点が150℃以上であるブロック剤としては、重亜硫酸塩系化合物:重亜硫酸ソーダなど、ピラゾール系化合物:3,5-ジメチルピラゾール、3-メチルピラゾール、4-ブロモー3,5-ジメチルピラゾール、4-ニトロー3,5-ジメチルピラゾールなど、活性メチレン系:マロン酸ジエステル(マロン酸ジメチル、マロン酸ジエチル、マロン酸ジn-ブチル、マロン酸ジ2-エチルヘキシル)、メチルエチルケトンなど、トリアゾール系化合物:1,2,4-トリアゾールなどが挙げられる。なかでも、耐湿熱性、黄変の点から、ピラゾール系化合物が好ましい。
 本発明におけるブロックイソシアネートの前駆体であるポリイソシアネートは、ジイソシアネートを導入して得られる。例えば、ジイソシアネートのウレタント変性体、アロファネート変性体、ウレア変性体、ビウレット変性体、ウレトジオン変性体、ウレトイミン変性体、イソシアヌレート変性体、カルボジイミド変性体等が挙げられる。
 ジイソシアネートとしては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、2,4′-ジフェニルメタンジイソシアネート、2,2′-ジフェニルメタンジイソシアネート、1,5-ナフチレンジイソシアネート、1,4-ナフチレンジイソシアネート、フェニレンジイソシアネート、テトラメチルキシリレンジイソシアネート、4,4′-ジフェニルエーテルジイソシアネート、2-ニトロジフェニル-4,4′-ジイソシアネート、2,2′-ジフェニルプロパン-4,4′-ジイソシアネート、3,3′-ジメチルジフェニルメタン-4,4′-ジイソシアネート、4,4′-ジフェニルプロパンジイソシアネート、3,3′-ジメトキシジフェニル-4,4′-ジイソシアネート等の芳香族ジイソシアネート類、キシリレンジイソシアネート等の芳香族脂肪族ジイソシアネート類、イソホロンジイソシアネート及び4,4-ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン等の脂環式ジイソシアネート類、ヘキサメチレンジイソシアネート、および2,2,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート類が挙げられる。透明性、接着性、耐湿熱性の点から、脂肪族、脂環式イソシアネートやこれらの変性体が好ましく、黄変がなく高い透明性が要求される光学用として好ましい。
 本発明におけるブロックイソシアネートは、水溶性、または、水分散性を付与するために前駆体であるポリイソシアネートに親水基を導入することができる。親水基としては、(1)ジアルキルアミノアルコールの四級アンモニウム塩やジアルキルアミノアルキルアミンの四級アンモニウム塩など、(2)スルホン酸塩、カルボン酸塩、リン酸塩など、(3)アルコキシ基で片末端封鎖されたポリエチレングリコール、ポリプロピレングリコールなどが挙げられる。親水性部位を導入した場合は(1)カチオン性、(2)アニオン性、(3)ノニオン性となる。なかでも、他の水溶性樹脂はアニオン性のものが多いため、容易に相溶できるアニオン性やノニオン性が好ましい。また、アニオン性は他の樹脂との相溶性に優れ、ノニオン性はイオン性の親水基をもたないため、耐湿熱性を向上させるためにも好ましい。
 アニオン性の親水基としては、ポリイソシアネートに導入するための水酸基、親水性を付与するためのカルボン酸基を有するものが好ましい。例えば、グリコール酸、乳酸、酒石酸、クエン酸、オキシ酪酸、オキシ吉草酸、ヒドロキシピバリン酸、ジメチロール酢酸、ジメチロールプロパン酸、ジメチロールブタン酸、カルボン酸基を有するポリカプロラクトンが挙げられる。カルボン酸基を中和するには、有機アミン化合物が好ましい。例えば、アンモニア、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、2-エチルヘキシルアミン、シクロヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリブチルアミン、エチレンジアミンなどの炭素数1から20の直鎖状、分岐状の1,2または3級アミン、モルホリン、N-アルキルモルホリン、ピリジンなどの環状アミン、モノイソプロパノールアミン、メチルエタノールアミン、メチルイソプロパノールアミン、ジメチルエタノールアミン、ジイソプロパノールアミン、ジエタノールアミン、トリエタノールアミン、ジエチルエタノールアミン、トリエタノールアミンなどの水酸基含有アミンなどが挙げられる。
 ノニオン性の親水基としては、アルコキシ基で片末端封鎖されたポリエチレングリコール、ポリプロピレングリコールのエチレンオキサイドおよび/またはプロピレンオキサイドの繰り返し単位が3~50が好ましく、より好ましくは、5~30である。繰り返し単位が小さい場合は、樹脂との相溶性が悪くなり、ヘイズが上昇し、大きい場合は、高温高湿下の接着性が低下する場合がある。本発明のブロックイソシアネートは水分散性向上のために、ノニオン系、アニオン系、カチオン系、両性界面活性剤を添加することができる。例えばポリエチレングリコール、多価アルコール脂肪酸エステル等のノニオン系、脂肪酸塩、アルキル硫酸エステル、アルキルベンゼンスルホン酸塩、スルホコハク酸塩、アルキルリン酸塩等のアニオン系、アルキルアミン塩、アルキルベタイン等のカチオン系、カルボン酸アミン塩、スルホン酸アミン塩、硫酸エステル塩等の界面活性剤などが挙げられる。
 また、水以外にも水溶性の有機溶剤を含有することができる。例えば、反応に使用した有機溶剤やそれを除去し、別の有機溶剤を添加することもできる。
(ポリエステル樹脂)
 本発明における塗布層を形成するのに用いるポリエステル樹脂は、直鎖上のものであってもよいが、より好ましくは、ジカルボン酸と、分岐したグリコールとを構成成分とするポリエステル樹脂であることが好ましい。ここで言うジカルボン酸は、その主成分がテレフタル酸、イソフタル酸又は2,6-ナフタレンジカルボン酸である他アジピン酸、セバシン酸等の脂肪族ジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸が、挙げられる。また、分岐したグリコールとは枝分かれしたアルキル基を有するジオールであって、例えば、2,2-ジメチル-1,3-プロパンジオール、2-メチル-2-エチル-1,3-プロパンジオール、2-メチル-2-ブチル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2-メチル-2-イソプロピル-1,3-プロパンジオール、2-メチル-2-n-ヘキシル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-エチル-2-n-ブチル-1,3-プロパンジオール、2-エチル-2-n-ヘキシル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、2-n-ブチル-2-プロピル-1,3-プロパンジオール、及び2,2-ジ-n-ヘキシル-1,3-プロパンジオールなどが挙げられる。
 ポリエステル樹脂は、上記のより好ましい態様である分岐したグリコール成分は全グリコール成分の中に、好ましくは10モル%以上の割合で、さらに好ましくは20モル%以上の割合で含有されるものと言える。上記化合物以外のグリコール成分としてはエチレングリコールが最も好ましい。少量であれば、ジエチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオールまたは1,4-シクロヘキサンジメタノールなどを用いても良い。
 上記ポリエステル樹脂の構成成分としてのジカルボン酸としては、テレフタル酸又はイソフタル酸であるのが最も好ましい。少量であれば他のジカルボン酸、特に、ジフェニルカルボン酸、2,6-ナフタレンジカルボン酸などの芳香族ジカルボン酸を加えて共重合させてもよい。上記ジカルボン酸の他に、共重合ポリエステル系樹脂に水分散性を付与させるため、5-スルホイソフタル酸を1~10モル%の範囲で共重合させるのが好ましく、例えば、スルホテレフタル酸、5-スルホイソフタル酸、4-スルホナフタレンイソフタル酸-2,7-ジカルボン酸、5-(4-スルホフェノキシ)イソフタル酸及びその塩類等を挙げることができる。
 塗布液中のポリエステル樹脂、ポリカーボネート構造を有するウレタン樹脂及び架橋剤の固形分の総和を100質量%とするとき、架橋剤の含有率の下限は好ましくは5質量%であり、より好ましくは7質量%であり、さらに好ましくは10質量%であり、最も好ましくは12質量%である。5質量%以上であると、X線光電子分光法による深さ方向の元素分布測定に基づく窒素分布曲線において、B-Aを0.5at%以上に調節しやすく好ましい。架橋剤の含有率の上限は好ましくは50質量%であり、より好ましくは40質量%であり、さらに好ましくは35質量%であり、最も好ましくは30質量%である。50質量%以下であると、X線光電子分光法による深さ方向の元素分布測定に基づく窒素分布曲線において、c-bを300秒以下に調節しやすく好ましい。
 塗布液中のポリエステル樹脂、ポリカーボネート構造を有するウレタン樹脂及び架橋剤の固形分の総和を100質量%とするとき、ポリカーボネート構造を有するウレタン樹脂の含有率の下限は好ましくは5質量%である。5質量%以上であると、塗布層表面のOCOO結合の割合Xを2.0%以上に調節しやすく好ましい。ポリカーボネート構造を有するウレタン樹脂の含有率の上限は好ましくは50質量%であり、より好ましくは40質量%であり、さらに好ましくは30質量%であり、最も好ましくは20質量%である。ウレタン樹脂の含有率が50質量%以下であると、塗布層表面のOCOO結合の割合Xを10.0%以下に調節し易く好ましい。
 塗布液中のポリエステル樹脂、ウレタン樹脂及び架橋剤の固形分の総和を100質量%とするとき、ポリエステル樹脂含有率の下限は好ましくは10質量%であり、より好ましくは20質量%であり、さらに好ましくは30質量%であり、特に好ましくは35質量%であり、最も好ましくは40質量%である。ポリエステル樹脂の含有率は10質量%以上であると、塗布層とポリエステルフィルム基材の密着性が良好となり好ましい。ポリエステル樹脂の含有率の上限は好ましくは70質量%であり、より好ましくは67質量%であり、さらに好ましくは65質量%であり、特に好ましくは62質量%であり、最も好ましくは60質量%である。ポリエステル樹脂の含有率が70質量%以下であると、UVインキ加工後の印刷物の耐湿熱性が良好となり好ましい。
(添加剤)
 本発明における塗布層中には、本発明の効果を阻害しない範囲において公知の添加剤、例えば界面活性剤、酸化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、有機の易滑剤、顔料、染料、有機または無機の粒子、帯電防止剤、核剤等を添加しても良い。
 本発明においては、塗布層の耐ブロッキング性をより向上させるために、塗布層に粒子を添加することも好ましい態様である。本発明において塗布層中に含有させる粒子としては、例えば、酸化チタン、硫酸バリウム、炭酸カルシウム、硫酸カルシウム、シリカ、アルミナ、タルク、カオリン、クレーなど或いはこれらの混合物であり、更に、他の一般的無機粒子、例えばリン酸カルシウム、雲母、ヘクトライト、ジルコニア、酸化タングステン、フッ化リチウム、フッ化カルシウムその他と併用、等の無機粒子や、スチレン系、アクリル系、メラミン系、ベンゾグアナミン系、シリコーン系等の有機ポリマー系粒子等が挙げられる。
 塗布層中の粒子の平均粒径(走査型電子顕微鏡(SEM)による個数基準の平均粒径。以下同じ)は、0.04~2.0μmが好ましく、さらに好ましくは0.1~1.0μmである。不活性粒子の平均粒径が0.04μm以上であると、フィルム表面への凹凸の形成が容易となるため、フィルムの滑り性や巻き取り性などのハンドリング性が向上し、貼り合せの際の加工性が良好であって好ましい。一方、不活性粒子の平均粒径が2.0μm以下であると、粒子の脱落が生じ難く好ましい。塗布層中の粒子濃度は、固形成分中1~20質量%であることが好ましい。
  粒子の平均粒径の測定方法は、易接着性ポリエステルフィルムの断面の粒子を走査型電子顕微鏡で観察を行い、粒子30個を観察し、その平均値をもって平均粒径とする方法で行った。
  本発明の目的を満たすものであれば、粒子の形状は特に限定されるものでなく、球状粒子、不定形の球状でない粒子を使用できる。不定形の粒子の粒径は円相当径として計算することができる。円相当径は、観察された粒子の面積をπで除し、平方根を算出し2倍した値である。
(易接着性ポリエステルフィルムの製造)
 本発明における易接着性ポリエステルフィルムの製造方法について、ポリエチレンテレフタレート(以下、PETと略記する場合がある)フィルム基材を用いた例を挙げて説明するが、当然これに限定されるものではない。
 PET樹脂を十分に真空乾燥した後、押出し機に供給し、Tダイから約280℃の溶融PET樹脂を回転冷却ロールにシート状に溶融押出しし、静電印加法により冷却固化して未延伸PETシートを得る。前記未延伸PETシートは、単層構成でもよいし、共押出し法による複層構成であってもよい。
 得られた未延伸PETシートを一軸延伸、もしくは二軸延伸を施すことで結晶配向化させる。例えば二軸延伸の場合は、80~120℃に加熱したロールで長手方向に2.5~5.0倍に延伸して、一軸延伸PETフィルムを得たのち、フィルムの端部をクリップで把持して、80~180℃に加熱された熱風ゾーンに導き、幅方向に2.5~5.0倍に延伸する。また、一軸延伸の場合は、テンター内で2.5~5.0倍に延伸する。延伸後引き続き、熱処理ゾーンに導き、熱処理を行ない、結晶配向を完了させる。 
 熱処理ゾーンの温度の下限は好ましくは170℃であり、より好ましくは180℃である。熱処理ゾーンの温度が170℃以上であると硬化が十分となり、液体の水存在下でのブロッキング性が良好となり好ましく、乾燥時間を長くする必要ない。一方、熱処理ゾーンの温度の上限は好ましくは230℃であり、より好ましくは200℃である。熱処理ゾーンの温度が230℃以下であると、フィルムの物性が低下するおそれがなく好ましい。
 塗布層はフィルムの製造後、もしくは製造工程において設けることができる。特に、生産性の点からフィルム製造工程の任意の段階、すなわち未延伸あるいは一軸延伸後のPETフィルムの少なくとも片面に、塗布液を塗布し、塗布層を形成することが好ましい。
 この塗布液をPETフィルムに塗布するための方法は、公知の任意の方法を用いることができる。例えば、リバースロールコート法、グラビアコート法、キスコート法、ダイコーター法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、含浸コート法、カーテンコート法、などが挙げられる。これらの方法を単独で、あるいは組み合わせて塗工することができる。
 本発明において塗布層の厚みは、0.001~2.00μmの範囲で適宜設定することができるが、加工性と接着性とを両立させるには0.01~1.00μmの範囲が好ましく、より好ましくは0.02~0.80μm、さらに好ましくは0.05~0.50μmである。塗布層の厚みが0.001μm以上であると、接着性が良好であり好ましい。塗布層の厚みが2.00μm以下であると、ブロッキングを生じ難く好ましい。
 本発明における易接着性ポリエステルフィルムのヘイズの上限は好ましくは1.5%であり、より好ましくは1.3%であり、さらに好ましくは1.2%であり、特に好ましくは1.0%である。ヘイズが1.5%以下であると、透明性の点で好ましく、透明性が求められる光学フィルムへも好適に用いることができる。
(UV硬化型インキ)
 本発明におけるUV硬化型インキとは、紫外線光で硬化するインキの総称である。組成としては顔料( 染料) 、オリゴマーおよびモノマー、光重合開始剤および促進剤、補助剤等を含んでなるインキである。オリゴマーおよびモノマーは本成分中で流動成分として働き、被印刷体に展着された後、紫外線ランプで光重合開始剤から発生するラジカルにより、硬化するものである。オリゴマーおよびモノマー種の含有する割合については、後述する印刷方式によって異なる。基本的には、粘度の調整目的以外で溶剤を含まないし、含んだとしても多くて10 程度であることが好ましい。
 本発明におけるUV硬化型インキとしては、耐光性UV硬化型インキ、UV硬化型スクリーンインキが特に好ましく用いられる。
(耐光性UV硬化型インキ)
 本発明における耐光性UV硬化型インキは紫外線吸収剤を含有することが好ましい。紫外線吸収剤は、照射される紫外線を吸収することで、紫外線に起因とする塗膜の劣化を防ぐものである。紫外線吸収剤の含有量は、インキの総量に対して0.5~10重量部%が好ましく、更に好ましくは1~3重量%である。紫外線吸収剤の含有量が0.5%未満の場合、紫外線照射後、塗膜の劣化によりラミネート強度が劣化する傾向にあり、10重量%以上の場合、インキに含有する樹脂の柔軟性を阻害する事で、印刷物への初期密着を阻害する場合がある。該紫外線吸収剤は単独で、または2種以上を併用して用いることができる。紫外線吸収剤は、エチレン性不飽和結合を有するベンゾトリアゾール骨格を含むベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン骨格を含むベンゾフェノン系紫外線吸収剤、サリチル酸を骨格に含むサリチル酸系紫外線吸収剤、シアノアクリレート骨格を含むシアノアクリレート系紫外線吸収剤、ヒンダードフェノール骨格を含むヒンダードフェノール系紫外線吸収剤、トリアジンを骨格に含むトリアジン系紫外線吸収剤のいずれか、または2種類以上併用して使用できる。
 例えば、ラミネート物により包装された製品は、長期にわたり光照射下で保存されるケースもみられる。こうした条件下において発生するラジカルの影響で印刷インキ塗膜の凝集力低下、あるいは密着力低下が発生しラミネート強度の低下を招き、光照射下で長期保存されたラミネート物を開封する際に、積層の相間剥離が発生するという問題が懸念されるため、耐光性が求められている。
(UV硬化型スクリーンインキ)
 本発明におけるUV硬化型スクリーンインキはアクリル樹脂アクリレートを含有することが好ましい。アクリル樹脂アクリレートは酸価を有していてもよい。酸価を有することで、着色剤との分散性を促進させることができる。その結果、スクリーン印刷の際の目詰まりを防止して意匠性の高い印刷層を提供できる。顔料分散性を高める観点から、アクリル樹脂アクリレートの酸価は10mgKOH/g以上であることが好ましい。
 アクリル樹脂アクリレートに酸価を付与する方法としては、単量体として酸価を有するモノマーを含めて共重合する方法が例示できる。酸価を有するモノマーとしては、(メタ)アクリル酸、無水マレイン酸、2-(メタ)アクリロイルオキシエチル-コハク酸、2-(メタ)アクリロイルオキシエチル-ヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシエチル-フタル酸、2-(メタ)アクリロイルオキシエチルアシッドフォスフェートなどが挙げられ、中でも(メタ)アクリル酸を用いることが好ましい。
(スクリーン印刷)
 スクリーン印刷は、穴(孔)のあいた版にインキをのせて、スキージと呼ばれるヘラを使って反対側へ押し出して、被印刷物にインキをつける孔版印刷の一種である。他の印刷方式と比較した場合に印刷可能なインキと被印刷物の自由度が高い方式である。また、印刷した際のインキの厚み(印刷膜厚)を他の印刷方式と比べて幅広く調整出来るのもスクリーン印刷の特徴である。
(溶剤型インキ)
 本発明における溶剤型インキとは、蒸発乾燥で硬化するインキの総称である。組成としては顔料( 染料) 、樹脂分、希釈溶剤、補助剤等を含んでなるインキである。印刷後に溶剤が急速に蒸発することによって,被印刷面に樹脂分や顔料分が残って固着するインキであり、乾燥速度はきわめて速いため,高速・多量印刷に適している。
酸化重合型インキ
(酸化重合型インキ)
 本発明における酸化重合型インキとは、空気中の酸素によって重合・硬化性のある乾性油を主成分とするもので、他に顔料(染料) 、重合促進剤、補助剤等を含んでなる。乾性油が流動成分として働き、印刷方式に応じて、粘度の調整がなされる。最近は、紫外線硬化成分と乾性油の両方を含む複合タイプもあるなお、上記に記載する溶剤とは、主に有機溶剤のことを示し、炭化水素類であるヘキサン、ヘプタン、エステル類である酢酸チル、酢酸エチル、ケトン類であるアセトン、MEK 等があり、これら単独もしくはこれらの混合物、アルコール類との混合物が挙げられる。重合・硬化性のあるモノマーやオリゴマー、油分は有機溶剤に含まれない。これらを用いる印刷方法としては、フレキソ印刷、スクリーン印刷、オフセット印刷がある。後者ほどインキの粘度は高く設定される。
(熱転写インキ)
 本発明における熱転写インキとは、熱溶融性顔料インキであり、インキリボンに塗布されたインキを熱で溶かして用紙に転写して印刷する熱転写方式に用いられる。組成としては顔料・染料などの着色剤,ワックス・熱可塑性樹脂のバインダ,柔軟剤・分散剤などの各種添加剤等を含んでなるインキである。熱転写方式に用いられるインキとしては、レジンタイプやワックスタイプが用いられる。中でもレジンタイプは耐候性に優れることから好適に用いられる。用途はワードプロセッサのモノクロ文書出力用,テープライタ,バーコードプリンタなどにつかわれている。また,カラーリボンを使用することによりカラープリンタ,ビデオプリンタにも一部使用されている。
(LBPトナー)
 本発明におけるLBPトナーとはレーザープリンターやコピー機で使われる着色のための粉体であり、帯電性を持つ微粒子(高分子樹脂)、ワックス、顔料等を配合したものである。カラー印刷の場合、青緑・赤紫・黄・黒の4色を用いる。LBPとはレーザー光でドラムを帯電させ、静電気でトナーを付着させる方式のページプリンタのことである。
 次に、実施例および実験例を用いて本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。
〔ポリエステル樹脂ペレットP-1の製造〕
 攪拌機付き2リッターステンレススチール製オートクレーブに高純度テレフタル酸とその2倍モル量のエチレングリコールを仕込み、トリエチルアミンを酸成分に対して0.3モル%加え、0.25MPaの加圧下250℃にて水を系外に留去しながらエステル化反応を行いエステル化率が約95%のビス(2-ヒドロキシエチル)テレフタレートおよびオリゴマーの混合物(以下BHET混合物という)を得た。次いで、このBHET混合物を撹拌しながら、重合触媒として三酸化アンチモンのエチレングリコール溶液をポリエステル中の酸成分に対してアンチモン原子として0.04モル%となるように加え、引き続き窒素雰囲気下、常圧にて250℃で10分間攪拌した。その後、60分間かけて280℃まで昇温しつつ反応系の圧力を徐々に下げて13.3Pa(0.1Torr)として、さらに280℃、13.3Paで重縮合反応を実施した。放圧に続き、微加圧下のレジンを冷水にストランド状に吐出して急冷し、その後20秒間冷水中で保持した後、カティングして長さ約3mm、直径約2mmのシリンダー形状のペレットを得た。
 溶融重合で得られたポリエステルペレットを、減圧乾燥(13.3Pa以下、80℃、12時間)した後、引き続き結晶化処理(13.3Pa以下、130℃、3時間、さらに、13.3Pa以下、160℃、3時間)を行った。放冷後のこのポリエステルペレットレを固相重合反応器内で、系内を13.3Pa以下、215℃に保ちながら固相重合を行い、固有粘度が0.62dl/gのポリエステルペレットを得た。
〔ポリエステルペレットP-2の製造〕
(アルミニウム化合物の調製)  
 撹拌下80℃で2時間加熱処理して調製され、かつ、27Al-NMRスペクトルのピーク位置が低磁場側へケミカルシフトしたことが確認された塩基性酢酸アルミニウム(ヒドロキシアルミニウムジアセテート;Aldrich社製)の20g/l水溶液に対して、等量(容量比)のエチレングリコールをともにフラスコに仕込み、室温で6時間攪拌した後、減圧(133Pa)下、90~110℃で数時間攪拌しながら系から水を留去し、20g/lのアルミニウム化合物のエチレングリコール溶液を調製した。  
 (リン化合物の調製)  
 リン化合物としてIrganox1222(チバ・スペシャルティーケミカルズ社製)をエチレングリコールとともにフラスコに仕込み、窒素置換下攪拌しながら液温160℃で25時間加熱し、50g/lのリン化合物のエチレングリコール溶液を調製した。31P-NMRスペクトルの測定により約60モル%が水酸基に変換していることを確認した。  
 (アルミニウム化合物のエチレングリコール溶液/リン化合物のエチレングリコール溶液の混合物の調製)  
 上記アルミニウム化合物の調製および上記リン化合物の調製で得られたそれぞれのエチレングリコール溶液をフラスコに仕込み、アルミニウム原子とリン原子がモル比で1:2となるように室温で混合し、1日間攪拌して触媒溶液を調製した。該混合溶液の27Al-NMRスペクトおよび31P-NMRスペクトルの測定結果は、いずれの場合もケミカルシフトが確認された。
 重縮合触媒として、上記アルミニウム化合物のエチレングリコール溶液/リン化合物のエチレングリコール溶液の混合物を用い、ポリエステル中の酸成分に対してアルミニウム原子およびリン原子としてそれぞれ0.014モル%および0.028モル%になるように加えたこと以外はポリエステルペレットP-1の製造と同様の操作を行った。固有粘度が0.65dl/gのポリエステルペレットP-2を得た。
(ポリカーボネート構造を有するウレタン樹脂A-1の重合)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、1,3-シクロヘキシルジイソシアネート32質量部、ジメチロールプロパン酸7質量部、数平均分子量800のポリヘキサメチレンカーボネートジオール58質量部、ネオペンチルグリコール3質量部及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン5.17質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分34%の水分散性ウレタン樹脂溶液(A-1)を調製した。
(ポリカーボネート構造を有するウレタン樹脂A-2の重合)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4-ジシクロヘキシルメタンジイソシアネート38質量部、ジメチロールプロパン酸9質量部、数平均分子量1000のポリヘキサメチレンカーボネートジオール53質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン5.17質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分35%の水分散性ウレタン樹脂溶液(A-2)を調製した。
(ポリカーボネート構造を有するウレタン樹脂A-3の重合)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4-ジシクロヘキシルメタンジイソシアネート30質量部、数平均分子量700のポリエチレングリコールモノメチルエーテル16質量部、数平均分子量1200のポリヘキサメチレンカーボネートジオール50質量部、ネオペンチルグリコール4質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分35%の水分散性ウレタン樹脂溶液(A-3)を調製した。
(ポリカーボネート構造を有するウレタン樹脂A-4の重合)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4-ジシクロヘキシルメタンジイソシアネート24質量部、ジメチロールブタン酸4質量部、数平均分子量2000のポリヘキサメチレンカーボネートジオール71質量部、ネオペンチルグリコール1質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン8.77質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分34質量%の水分散性ウレタン樹脂溶液(A-4)を調製した。
(ポリカーボネートポリオール成分を含有しないウレタン樹脂A-5の重合)
 ポリエーテルポリオール、有機ポリイソシアネート、鎖伸長剤としてジエチレングリコールを用いた多段式イソシアネート重付加方法により、70~120℃の温度において、2時間反応させた。得られたウレタンプレポリマーは、重亜硫酸塩水溶液と混合し、約1時間、よく攪拌しながら反応を進行させ、ブロック化した。反応温度は60℃以下とした。その後、水で希釈して、固形分20質量%の熱反応型水分散性ウレタン樹脂溶液(A-5)を調製した。
(ポリカーボネート構造を有するウレタン樹脂A-6の重合) 
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4-ジシクロヘキシルメタンジイソシアネート54質量部、数平均分子量700のポリエチレングリコールモノメチルエーテル16質量部、数平均分子量1200のポリヘキサメチレンカーボネートジオール18質量部、ネオペンチルグリコール12質量部及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン8.77質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分34質量%の水分散性ウレタン樹脂溶液(A-6)を調製した。
 下記の2項目を表2に示す。
イ. 塗布層を形成するウレタン樹脂を合成、重合する際の、ポリカーボネートポリオール成分とポリイソシアネート成分の質量比(ポリカーボネートポリオール成分/ポリイソシアネート成分)
ロ. ポリカーボネートポリオール成分の分子量
Figure JPOXMLDOC01-appb-T000002
(ブロックイソシアネート架橋剤B-1の重合)
 撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネートを原料としたイソシアヌレート構造を有するポリイソシアネート化合物(旭化成ケミカルズ製、デュラネートTPA)66.04質量部、N-メチルピロリドン17.50質量部に3,5-ジメチルピラゾール(解離温度:120℃、沸点:218℃)25.19質量部を滴下し、窒素雰囲気下、70℃で1時間保持した。その後、ジメチロールプロパン酸5.27質量部を滴下した。反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認後、N,N-ジメチルエタノールアミン5.59質量部、水132.5質量部を加え、固形分40質量%のブロックポリイソシアネート水分散液(B-1)を得た。当該ブロックイソシアネート架橋剤の官能基数は4である。
(ブロックイソシアネート架橋剤B-2の重合)
 攪拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネートを原料としたイソシアヌレート構造を有するポリイソシアネート化合物(旭化成ケミカルズ製、デュラネートTPA)100質量部、プロピレングリコールモノメチルエーテルアセテート55質量部、ポリエチレングリコールモノメチルエーテル(平均分子量750)30質量部を仕込み、窒素雰囲気下、70℃で4時間保持した。その後、反応液温度を50℃に下げ、メチルエチルケトオキシム47質量部を滴下した。反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認し、固形分40質量%のオキシムブロックイソシアネート架橋剤(B-2)を得た。当該ブロックイソシアネート架橋剤の官能基数は3である。
(カルボジイミドB-3の重合)
 攪拌機、温度計、還流冷却器を備えたフラスコにヘキサメチレンジイソシアネート168質量部とポリエチレングリコールモノメチルエーテル(M400、平均分子量400)220質量部を仕込み、120℃で1時間、攪拌し、更に4,4’-ジシクロヘキシルメタンジイソシアネート26質量部とカルボジイミド化触媒として3-メチル-1-フェニル-2-ホスホレン-1-オキシド3.8質量部(全イソシアネートに対して2質量%)を加え、窒素気流下185℃で更に5時間撹拌した。反応液の赤外スペクトルを測定し、波長220~2300cm-1の吸収が消失したことを確認した。60℃まで放冷し、イオン交換水を567質量部加え、固形分40質量%のカルボジイミド水性樹脂液(B-3)を得た。
(ポリエステル樹脂の重合 C-1)
 攪拌機、温度計、および部分還流式冷却器を具備するステンレススチール製オートクレーブに、ジメチルテレフタレート194.2質量部、ジメチルイソフタレート184.5質量部、ジメチル-5-ナトリウムスルホイソフタレート14.8質量部、ネオペンチルグリコール185質量部、エチレングリコール188質量部、およびテトラ-n-ブチルチタネート0.2質量部を仕込み、160℃から220℃の温度で4時間かけてエステル交換反応を行なった。次いで255℃まで昇温し、反応系を徐々に減圧した後、30Paの減圧下で1時間30分反応させ、共重合ポリエステル樹脂(C-1)を得た。得られた共重合ポリエステル樹脂(C-1)は、淡黄色透明であった。共重合ポリエステル樹脂(C-3)の還元粘度を測定したところ,0.40dl/gであった。DSCによるガラス転移温度は65℃であった。 
(ポリエステル水分散体の調製 Cw-1)
 攪拌機、温度計と還流装置を備えた反応器に、ポリエステル樹脂(C-1)25質量部、エチレングリコールn-ブチルエーテル10質量部を入れ、110℃で加熱、攪拌し樹脂を溶解した。樹脂が完全に溶解した後、水65質量部をポリエステル溶液に攪拌しつつ徐々に添加した。添加後、液を攪拌しつつ室温まで冷却して、固形分25質量%の乳白色のポリエステル水分散体(Cw-1)を作製した。
(実施例1)
(1)塗布液の調製
 水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、ウレタン樹脂溶液(A-1)/架橋剤(B-1)/ポリエステル水分散体(Cw-1)の固形分質量比が25/26/49になる塗布液を作製した。
 
ウレタン樹脂溶液(A-1)             3.55質量部
架橋剤(B-1)                  3.16質量部
ポリエステル水分散体(Cw-1)        16.05質量部
粒子                        0.47質量部
 (平均粒径200nmの乾式法シリカ、 固形分濃度3.5%)
粒子                       1.85質量部
 (平均粒径40~50nmのシリカゾル、固形分濃度30質量%)
界面活性剤                    0.30質量部
 (シリコーン系、固形分濃度10質量%)    
(2)易接着性ポリエステルフィルムの製造
 フィルム原料ポリマーとして、ポリエステルペレットP-1を、133Paの減圧下、135℃で6時間乾燥した。その後、押し出し機に供給し、約280℃でシート状に溶融押し出しして、表面温度20℃に保った回転冷却金属ロール上で急冷密着固化させ、未延伸PETシートを得た。
 この未延伸PETシートを加熱されたロール群及び赤外線ヒーターで100℃に加熱し、その後周速差のあるロール群で長手方向に3.5倍延伸して、一軸延伸PETフィルムを得た。
 次いで、室温で5時間以上静置した前記塗布液をロールコート法でPETフィルムの片面に塗布した後、80℃で20秒間乾燥した。なお、最終(二軸延伸後)の乾燥後の塗布量が0.15g/m(乾燥後の塗布層厚み150nm)になるように調整した。引続いてテンターで、120℃で幅方向に4.0倍に延伸し、フィルムの幅方向の長さを固定した状態で、230℃で5秒間加熱し、さらに100℃で10秒間3%の幅方向の弛緩処理を行ない、100μmの易接着性ポリエステルフィルムを得た。
(3)印刷物の製造
(UV硬化型インキ層を有する印刷物(1):低線量)
 易接着性ポリエステルフィルムの塗布層上に、下記組成の耐光性UV硬化型インキを用いて、印刷機[(株)明製作所製、商品名「RIテスター」]にて印刷を施した。次いで、印刷から30秒後に、インキ層を塗布したフィルムに高圧水銀灯を用いて積算光量40mJ/cmの紫外線を照射し、UV硬化型オフセットインキを硬化させ、耐光性UV硬化型インキ層を有する印刷物(1)を得た。
(耐光性UV硬化型インキ)
 T&K TOKA(株)製、商品名「BEST CURE(登録商標) UV161藍S」100質量部
 ベンゾフェノン系紫外線吸収剤 (ケミソーブ11、ケミプロ化成製)4質量部
(UV硬化型インキ層を有する印刷物(2):スクリーン印刷)
 易接着性ポリエステルフィルムの塗布層上に、UV硬化型スクリーンインキ[TOYOINK(株)製、商品名「TU240 FDSS 911 墨」]を用いて、テトロン・スクリーン(#250メッシュ) にて印刷を施し、次いで、インキ層を塗布したフィルムに高圧水銀灯を用いて500mJ/cmの紫外線を照射し、UV硬化型スクリーンインキを硬化させ、UV硬化型スクリーンインキ層を有する印刷物(2)を得た。
(UV硬化型インキ層を有する印刷物(3):高速印刷)
 易接着性ポリエステルフィルムの塗布層上に、下記組成の耐光性UV硬化型インキを用いて、セントラルインプレッション型印刷機にて印刷を施した。セル容積が11cm3/m2であるアニロックスロールでインキを計量した後、ベタ版へ転写させ、さらにフィルムへと転写させた。フィルム上の転写させたインキは160W/cmメタルハライドUVランプにて硬化させ、耐光性UV硬化型インキ層を有する印刷物(3)を得た。フィルムへのインキ転写からUV光照射までの時間は0.94秒で実施した。
(耐光性UV硬化型インキ)
 T&K TOKA(株)製、商品名「BEST CURE(登録商標) UV161藍S」100質量部
 ベンゾフェノン系紫外線吸収剤 (ケミソーブ11、ケミプロ化成製)4質量部
(溶剤型インキ層を有する印刷物)
 易接着性ポリエステルフィルムの塗布層上に、溶剤型インキ[十條インキ社製、900シリーズテトロンインキ]を用いて、テトロン・スクリーン(#250メッシュ) にて印刷を施し、次いで、インキ層を塗布したフィルムを24時間放置乾燥後、溶剤型インキ層を有する印刷物を得た。
(酸化重合型インキ層を有する印刷物)
 酸化重合型インキ( 十条化工株式会社製、黒) を希釈溶剤( 十条加工株式会社製、テトン) をインキ: 希釈溶剤= 4 : 1 ( 体積比) で希釈し、フィルム表面( 被覆層が設けられている場合は、被覆層表面) にテトロン・スクリーン( # 2 5 0 メッシュ) によって印刷した後、24時間放置乾燥後、酸化重合型インキ層を有する印刷物を得た。
(熱転写インキ層を有する印刷物)
 熱転写リボン(リコー株式会社製、B-110Cレジンタイプ黒色)を用い、ボン電気株式会社製BLP-323に装着し、易接着性ポリエステルフィルムの塗布層上に任意に作成したバーコード柄を印刷し、熱転写インキ層を有する印刷物を得た。
(LBPトナー層を有する印刷物)
 FUJI XEROX株式会社ApeosPort-V C3376を用い、易接着性ポリエステルフィルムの塗布層上に任意に作成した図柄を印刷し、LBPトナー層を有する印刷物を得た。
 評価結果を表5に示す。
(実施例2)
 ウレタン樹脂を(A-2)に変更した以外は、実施例1と同様にして、易接着性ポリエステルフィルム及び印刷物を得た。
(実施例3)
 ウレタン樹脂を(A-3)に変更した以外は、実施例1と同様にして、易接着性ポリエステルフィルム及び印刷物を得た。
(実施例4)
 架橋剤を(B-2)に変更した以外は、実施例1と同様にして、易接着性ポリエステルフィルム及び印刷物を得た。
(実施例5)
 水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、ウレタン樹脂溶液(A-1)/架橋剤(B-1)/ポリエステル水分散体(Cw-1)の固形分質量比が22/10/68になるになるように変更した以外は、実施例1と同様にして、易接着性ポリエステルフィルム及び印刷物を得た。
 
ウレタン樹脂溶液(A-1)            2.71質量部
架橋剤(B-1)                  1.00質量部
ポリエステル水分散体(Cw-1)        19.05質量部
粒子                        0.47質量部
 (平均粒径200nmの乾式法シリカ、 固形分濃度3.5%)
粒子                       1.85質量部
 (平均粒径40~50nmのシリカゾル、固形分濃度30質量%)
界面活性剤                    0.30質量部
 (シリコーン系、固形分濃度10質量%)    
(実施例6)
 ウレタン樹脂を(A-2)に変更した以外は、実施例5と同様にして、易接着性ポリエステルフィルム及び印刷物を得た。
 表5に示すように、実施例1~6では、「B-A」、「b」、「c-b」がそれぞれ下記式の範囲を満たしており、ヘイズ、ブロッキング耐性が満足できるものであった。
(i) 0.5 ≦ B-A(at%) ≦ 3.0
(ii) 30 ≦ b(秒) ≦ 180
(iii) 30 ≦ c-b(秒) ≦ 300
 
また、「X」が下記式を満たしており、各インキ層への密着性が満足できるものであった。さらに低線量加工時、高速印刷時のUV硬化型インキに対する密着性にも優れていることがわかる。
(iv)2.0 ≦ X(%) ≦ 10.0
(実施例7)
 フィルム原料ポリマーとして、ポリエステルペレットを(P-2)に変更した以外は、実施例1と同様にして、易接着性ポリエステルフィルム及び印刷物を得た。
 表5に示すように、実施例7では「B-A」、「b」、「c-b」がそれぞれ下記式の範囲を満たしており、ブロッキング耐性が満足できるものであった。
(i) 0.5 ≦ B-A(at%) ≦ 3.0
(ii) 30 ≦ b(秒) ≦ 180
(iii) 30 ≦ c-b(秒) ≦ 300
また、「X」が下記式を満たしており、各インキ層への密着性が満足できるものであった。さらに特に低線量加工時、高速印刷時のUV硬化型インキに対する密着性にも優れていることがわかる。
(iv)2.0 ≦ X(%) ≦ 10.0
さらに、ポリエステルペレットP-1を使用した実施例1~6と比較してヘイズ値が小さく、フィルムの透明性が向上することを確認した。
(実験例1)
 水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、ウレタン樹脂溶液(A-5)/ポリエステル水分散体(Cw-1)の固形分比が29/71になるになるように変更した以外は、実施例1と同様にして、易接着性ポリエステルフィルム及び印刷物を得た。
 
ウレタン樹脂溶液(A-5)             6.25質量部
ポリエステル水分散体(Cw-1)        20.00質量部
エラストロン用触媒                0.50質量部
粒子                        1.02質量部
 (平均粒径200nmの乾式法シリカ、 固形分濃度3.5%)
粒子                       2.15質量部
 (平均粒径40nmのシリカゾル、固形分濃度20質量%)
界面活性剤                    0.30質量部
 (フッ素系、固形分濃度10質量%)  
 表5に示すように、実験例1では、「X」が2.0%未満であるため、各インキ層への密着性が満足できるものではなかった。また、「b」が180秒を超えているため、ブロッキング耐性も満足できるものではなかった。
(実験例2)
 ウレタン樹脂を(A-4)に変更した以外は、実施例1と同様にして、易接着性ポリエステルフィルム及び印刷物を得た。
(実験例3)
 ウレタン樹脂を(A-4)に、架橋剤を(B-2)に変更した以外は、実施例1と同様にして、易接着性ポリエステルフィルム及び印刷物を得た。
 表5に示すように、実験例2、3では、「B-A」が0.5at%未満であるため、溶剤型インキ層への密着性が満足できるものではなかった。
(実験例4)
 水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、ウレタン樹脂溶液(A-4)/架橋剤(B-1)の固形分比が70/30になるになるように変更した以外は、実施例1と同様にして、易接着性ポリエステルフィルム及び印刷物を得た。
 
ウレタン樹脂溶液(A-4)             9.03質量部
架橋剤(B-1)                  3.38質量部
粒子                        0.52質量部
 (平均粒径200nmの乾式法シリカ、 固形分濃度3.5%)
粒子                       1.80質量部
 (平均粒径40nmのシリカゾル、固形分濃度30質量%)
界面活性剤                    0.30質量部
 (シリコーン系、固形分濃度10質量%)    
 表5に示すように、実験例4では、「c-b」が300秒を超えているためヘイズが満足できるものではなかった。
(実験例5)
 水とイソプロパノールの混合溶媒に、下記の塗剤を混合し、ウレタン樹脂溶液(A-4)/架橋剤(B-1)の固形分比が20/80になるになるように変更した以外は、実施例1と同様にして、易接着性ポリエステルフィルム及び印刷物を得た。
 
ウレタン樹脂溶液(A-4)            2.58質量部
架橋剤(B-1)                  9.00質量部
粒子                        0.52質量部
 (平均粒径200nmの乾式法シリカ、 固形分濃度3.5%)
粒子                       1.80質量部
 (平均粒径40nmのシリカゾル、固形分濃度30質量%)
界面活性剤                    0.30質量部
 (シリコーン系、固形分濃度10質量%)    
 表5に示すように、実験例5では、「c-b」が300秒を超えているためヘイズが満足できるものではなかった。
(実験例6)
 ウレタン樹脂を(A-2)に、架橋剤を(B-3)に変更した以外は、実施例5と同様にして、易接着性ポリエステルフィルム及び印刷物を得た。
 表5に示すように、実験例6では、「B-A」が0.5at%未満であるため、ブロッキング耐性及び溶剤型インキ層への密着性が満足できるものではなかった。
(実験例7)
 ウレタン樹脂を(A-6)に変更した以外は、実施例5と同様にして、易接着性ポリエステルフィルム及び印刷物を得た。
 表5に示すように、実験例7では、「X」が2.0%未満であるため、各インキ層への密着性が満足できるものではなかった。
 以下に本発明で用いた評価方法について説明する。
(1)ヘイズ
 得られた易接着性ポリエステルフィルムのヘイズはJIS K 7136:2000に準拠し、濁度計(日本電色製、NDH5000)を用いて測定した。
(2)ブロッキング耐性
 2枚のフィルム試料を塗布層面同士が対向するように重ね合わせ、98kPaの荷重を掛け、これを50℃の雰囲気下で24時間密着させ、放置した。その後、フィルムを剥離し、その剥離状態を下記の基準で判定した。
   ○:塗布層の転移がなく軽く剥離できる。
   △:塗布層は維持されているが、部分的に塗布層の表層が相手面に転移している。
   ×:2枚のフィルムが固着し剥離できないもの、あるいは剥離できてもフィルム基材が劈開している。
(3)密着性
 得られた印刷物のインキ層に、隙間間隔2mmのカッターガイドを用いて、インキ層を貫通して基材フィルムに達する100個のマス目状の切り傷をつける。次いで、セロハン粘着テープ(ニチバン社製、405番;24mm幅)をマス目状の切り傷面に貼り付け、消しゴムでこすって完全に密着させた。その後、垂直にセロハン粘着テープをインキ層が積層された易接着性ポリエステルフィルムのインキ層面から引き剥がす作業を5回行った後、印刷物のインキ層面から剥がれたマス目の数を目視で数え、下記の式からインキ層とフィルム基材との密着性を求める。なお、マス目の中で部分的に剥離しているものも剥がれたマス目として数える。密着性は95(%)以上を合格とする。
 密着性(%)=(1-剥がれたマス目の数/100)×100
(4)深さ方向の元素分布測定
 塗布層の深さ方向の元素分布測定はX線光電子分光法(ESCA)にて行った。エッチングを行うイオン源には有機材料に関して低損傷性が期待できるArクラスターを用いた。また、均一なエッチングができるようエッチング時は試料を回転させた。X線照射によるダメージを極力小さくするため、各エッチング時間でのスペクトル収集は短時間での評価が可能なsnapshotモードにて行った。また、スペクトル収集は評価の都合上、エッチング時間120秒までは30秒ごとに、以降は60秒ごとに行った。測定条件の詳細は以下に示した。なお、解析の際、バックグラウンドの除去はshirley法にて行った。
 
 ・装置: K-Alpha (Thermo Fisher Scientific社製)
 ・測定条件
    励起X線 : モノクロ化Al Kα線
    X線出力 : 12 kV、2.5 mA
    光電子脱出角度 : 90 °
    スポットサイズ : 200 μmφ
        パスエネルギー : 150 eV (Snapshotモード)
    イオン銃の加速電圧 : 6kV
    クラスターサイズ : Large
    エッチングレート : 10 nm/min(ポリスチレン換算)
    エッチング時の試料回転 : 有
 
(エッチングレートの算出には、分子量Mn:91000(Mw/Mn=1.05)の単分散ポリスチレンをトルエン中に溶解させた後、スピンコート法によりシリコンウェハー上に作製した膜厚155nmのもの用いた。)
 こうして評価したデータに基づいて、塗布層表面からのエッチング時間を横軸に、炭素原子、酸素原子、窒素原子、ケイ素原子の合計量に対する窒素原子の量の比率(窒素原子比率)を縦軸にとり、窒素分布曲線を描く。後述の易接着性ポリエステルフィルム試料(実施例2、5、及び実験例6)の窒素分布曲線をそれぞれ図1、3、4に示した。図1に示される実施例2の窒素分布曲線に基づき本発明の特性値の求め方を図2を用いて説明する。図2のように、ポリエステルフィルム基材とは反対側の塗布層表面の窒素原子比率をA(at%), 窒素原子比率の最大値をB(at%)、窒素原子比率が最大値B(at%)となるエッチング時間をb(秒)、b(秒)以降に窒素原子比率が1/2B(at%)となるときのエッチング時間をc(秒)を読み取り、B-A(at%)、c-b(秒)を計算して求める。ポリエステルフィルム基材とは反対側の塗布層表面の窒素原子比率とは図のエッチング時間0(秒)時の窒素原子比率を指す。(なお、図1~4中の横軸に「エッチング時間s」と記載している「s」は単位の「秒」を意味している。)
(5)表面領域のOCOO結合比率の測定
 表面領域のOCOO結合の比率(X)はX線光電子分光法(ESCA)にて評価した。装置にはK-Alpha (Thermo Fisher Scientific社製)を用いた。測定条件の詳細は以下に示した。なお、解析の際、バックグラウンドの除去はshirley法にて行った。また、Xの算出は3箇所以上の測定結果の平均値とした。
 
   ・測定条件
    励起X線 : モノクロ化Al Kα線
    X線出力:: 12 kV、6mA
    光電子脱出角度 : 90 °
    スポットサイズ : 400 μmφ
    パスエネルギー : 50eV
    ステップ : 0.1eV
エネルギー分解能 : Ag3d(5/2)スペクトルのFWHM=0.75eV
 
 図5、6はそれぞれ、実施例6、実験例1の易接着性ポリエステルフィルムの表面領域のC1sスペクトルの解析結果を示すグラフである。灰色実線はC1sスペクトルの実測データを表している。得られた実測スペクトルのピークを複数のピークに分離し、各ピーク位置及び形状から各ピークに対応する結合種を同定した。さらに各結合種由来のピークでカーブフィッティングを実施し、ピーク面積を算出した。現れる得る各ピーク(1)~(6)の結合種を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 C1sスペクトル領域の各結合種に由来するピーク面積の合計とは、ピーク(1)~(6)のピーク面積の合計のことを指し、OCOO結合に由来するピーク面積とはピーク(5)のピーク面積のことを指す。C1sスペクトル領域の各結合種に由来するピーク面積の合計を100%とするとき、X(%)はピーク(5)の面積の割合を百分率で表す(%)。
 表4に実施例6及び実験例1のピーク(1)~(6)のピーク面積算出結果を表4に示す。前記のようにピーク(5)の百分率データがX(%)のデータである。実施例6のピーク(3)、ピーク(6)、実験例1のピーク(3)、ピーク(5)は現れなかった。
Figure JPOXMLDOC01-appb-T000004
(6)ポリカーボネートポリオールの数平均分子量の測定方法
ポリカーボネート構造を有するウレタン樹脂をプロトン核磁気共鳴スペクトル(1H-NMR)により測定すると、4.1ppm付近にOCOO結合に隣接するメチレン基由来のピークが観測される。また、当該ピークより0.2ppm程高磁場に、ポリイソシアネートとポリカーボネートポリオールとの反応で生じたウレタン結合に隣接するメチレン基由来のピークが観測される。これら2種類のピークの積分値とポリカーボネートポリオールを構成するモノマーの分子量からポリカーボネートポリオールの数平均分子量を算出した。
 表5に各実施例、実験例の評価結果を整理する。
Figure JPOXMLDOC01-appb-T000005
 本発明における易接着性ポリエステルフィルムは、UV硬化型インキ、溶剤型インキ、酸化重合型インキ、熱転写インキリボン、LBPトナーとの密着性が優れ、特に低線量加工時あるいは高速印刷時においてUV硬化型インキに対しての密着性が良好である多種多様な印刷物の基材フィルムとして好適である。
 

Claims (2)

  1.  ポリエステルフィルム基材の少なくとも一方の面に塗布層を有する易接着性ポリエステルフィルムの前記塗布層上に、UV硬化型インキ、溶剤型インキ、酸化重合型インキ、熱転写インキリボン、LBPトナーから選択される少なくとも1層のインキ層を積層してなる印刷物であって、前記塗布層が、ポリカーボネート構造を有するウレタン樹脂、架橋剤、及びポリエステル樹脂を含有する組成物が硬化されてなり、前記塗布層についてのX線光電子分光法による深さ方向の元素分布測定に基づく窒素元素の分布曲線において、ポリエステルフィルム基材とは反対側の塗布層表面の窒素原子比率をA(at%), 窒素原子比率の最大値をB(at%)、窒素原子比率が最大値B(at%)を示すエッチング時間をb(秒)、b(秒)以降に窒素原子比率が1/2B(at%)となるときのエッチング時間をc(秒)とするとき、下記式(i)~(iii)式を満たし、かつ、X線光電子分光法により測定した表面分析スペクトルにおいて、C1sスペクトル領域の各結合種に由来するピーク面積合計を100(%)とし、OCOO結合に由来するピーク面積をX(%)とするとき、下記式(iv)を満たす印刷物。
     (i) 0.5 ≦ B-A(at%)  ≦ 3.0
     (ii) 30 ≦  b(秒) ≦ 180
     (iii) 30 ≦ c-b(秒) ≦ 300
     (iv) 2.0≦ X(%) ≦ 10.0
  2.  請求項1に記載の易接着性ポリエステルフィルムのヘイズが1.5(%)以下である印刷物。
     
PCT/JP2021/021196 2020-07-02 2021-06-03 印刷物 WO2022004263A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237001887A KR20230034304A (ko) 2020-07-02 2021-06-03 인쇄물
JP2021543442A JPWO2022004263A1 (ja) 2020-07-02 2021-06-03
CN202180045768.9A CN115803198A (zh) 2020-07-02 2021-06-03 印刷物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-115131 2020-07-02
JP2020115131 2020-07-02

Publications (1)

Publication Number Publication Date
WO2022004263A1 true WO2022004263A1 (ja) 2022-01-06

Family

ID=79315990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021196 WO2022004263A1 (ja) 2020-07-02 2021-06-03 印刷物

Country Status (5)

Country Link
JP (1) JPWO2022004263A1 (ja)
KR (1) KR20230034304A (ja)
CN (1) CN115803198A (ja)
TW (1) TW202212442A (ja)
WO (1) WO2022004263A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274646A (ja) * 2009-04-28 2010-12-09 Toyobo Co Ltd 成型用積層ポリエステルフィルム
JP2013023611A (ja) * 2011-07-22 2013-02-04 Adeka Corp 水系ポリウレタン樹脂組成物、これを塗布してなる易接着性ポリエステルフィルム
JP2014224268A (ja) * 2014-08-06 2014-12-04 東洋紡株式会社 易接着性ポリエステルフィルム
JP2019044073A (ja) * 2017-09-01 2019-03-22 宇部興産株式会社 エマルジョン組成物
JP2019137072A (ja) * 2019-05-27 2019-08-22 三菱ケミカル株式会社 積層フィルムおよび製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910243A (ja) 1972-05-26 1974-01-29
GB1497101A (en) 1975-08-04 1978-01-05 Ici Ltd Coated film assemblies
JPS5443017A (en) 1977-09-12 1979-04-05 Toray Industries Substrate for information recording material
JPS58124651A (ja) 1982-01-20 1983-07-25 ダイアホイル株式会社 塗布層を有するポリエステルフィルム
JPH0624765B2 (ja) 1988-12-24 1994-04-06 東レ株式会社 積層ポリエステルフィルム
JP2523178B2 (ja) 1989-05-25 1996-08-07 東レ株式会社 積層体
US5015169A (en) 1989-06-08 1991-05-14 General Electric Company Apparatus for die forming thermoplastic sheet material
JPH03273015A (ja) 1990-03-20 1991-12-04 Teijin Ltd 易接着性ポリエステルフイルム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274646A (ja) * 2009-04-28 2010-12-09 Toyobo Co Ltd 成型用積層ポリエステルフィルム
JP2013023611A (ja) * 2011-07-22 2013-02-04 Adeka Corp 水系ポリウレタン樹脂組成物、これを塗布してなる易接着性ポリエステルフィルム
JP2014224268A (ja) * 2014-08-06 2014-12-04 東洋紡株式会社 易接着性ポリエステルフィルム
JP2019044073A (ja) * 2017-09-01 2019-03-22 宇部興産株式会社 エマルジョン組成物
JP2019137072A (ja) * 2019-05-27 2019-08-22 三菱ケミカル株式会社 積層フィルムおよび製造方法

Also Published As

Publication number Publication date
CN115803198A (zh) 2023-03-14
JPWO2022004263A1 (ja) 2022-01-06
KR20230034304A (ko) 2023-03-09
TW202212442A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
CN102648094B (zh) 易粘接性热塑性树脂膜
JP7405103B2 (ja) 積層ポリエステルフィルム
KR20220041087A (ko) 백색 적층 폴리에스테르 필름
JP2024045365A (ja) 積層ポリエステルフィルム
WO2021182150A1 (ja) 白色易接着性ポリエステルフィルム
JP7207589B2 (ja) 積層ポリエステルフィルム
WO2022004263A1 (ja) 印刷物
WO2021261174A1 (ja) 光学用積層ポリエステルフィルム
TWI840500B (zh) 積層聚酯膜
KR20230047076A (ko) 적층 폴리에스테르 필름
WO2021256224A1 (ja) 積層ポリエステルフィルム
CN118238492A (zh) 层叠聚酯膜
KR20230170953A (ko) 대전 방지 폴리에스테르 필름
JP2022070213A (ja) 易接着性ポリエステルフィルム
WO2022091645A1 (ja) 易接着性ポリエステルフィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021543442

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237001887

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832257

Country of ref document: EP

Kind code of ref document: A1