WO2022004041A1 - 点火制御装置 - Google Patents

点火制御装置 Download PDF

Info

Publication number
WO2022004041A1
WO2022004041A1 PCT/JP2021/005154 JP2021005154W WO2022004041A1 WO 2022004041 A1 WO2022004041 A1 WO 2022004041A1 JP 2021005154 W JP2021005154 W JP 2021005154W WO 2022004041 A1 WO2022004041 A1 WO 2022004041A1
Authority
WO
WIPO (PCT)
Prior art keywords
energization
ignition
time
calculation unit
ignition signal
Prior art date
Application number
PCT/JP2021/005154
Other languages
English (en)
French (fr)
Inventor
貴和 松下
修 向原
康平 鈴木
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to JP2022533671A priority Critical patent/JP7316457B2/ja
Priority to CN202180040381.4A priority patent/CN115702289A/zh
Priority to US17/927,992 priority patent/US11754033B2/en
Publication of WO2022004041A1 publication Critical patent/WO2022004041A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1516Digital data processing using one central computing unit with means relating to exhaust gas recirculation, e.g. turbo
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/08Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having multiple-spark ignition, i.e. ignition occurring simultaneously at different places in one engine cylinder or in two or more separate engine cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/153Digital data processing dependent on combustion pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an ignition control device.
  • a secondary current (negative current in the direction opposite to the primary current) is generated in the secondary coil, and the secondary is induced in the secondary coil.
  • An ignition control device is known in which a voltage is applied to a spark plug to cause a spark discharge.
  • this ignition control device for example, techniques such as a coil that applies high energy to the electrodes of a spark plug and a coil that superimposes energization on a primary coil have been proposed.
  • Patent Document 1 In an ignition device for an internal combustion engine that forcibly shuts off the spark discharge of a spark plug, the spark discharge cutoff control operates when the secondary current generated in the secondary coil becomes a desired value or less. Let me do it. "
  • the present invention has been made in view of such a situation, and an object thereof is to suppress the wear of the spark plug due to the generation of wrist-like.
  • the present invention energizes and energizes the primary current flowing through the primary coil by an ignition signal input to an ignition coil having a primary coil arranged on the primary side and a secondary coil arranged on the secondary side.
  • the cutoff is controlled, and the secondary voltage and secondary current induced in the secondary coil due to the cutoff of the primary current are mixed by the spark discharge generated by applying it to the ignition plug connected to the secondary coil.
  • It is an ignition control device that controls the ignition of the internal combustion engine in which the air is ignited in the combustion chamber in the cylinder.
  • An ignition signal calculation unit that determines whether or not re-energization is performed by comparing the end time with the time when the frequency of re-energization decreases, and an ignition signal for generating at least one spark discharge in the ignition process.
  • an ignition signal is generated and the ignition signal is output to the ignition coil at the start time of re-energization to calculate the ignition signal. It is provided with an ignition signal generation unit that does not generate an ignition signal when it is determined by the unit that re-energization is not performed.
  • FIG. 1 is a diagram showing an overall configuration example of the internal combustion engine 100.
  • the internal combustion engine 100 has a configuration that employs ultra-lean combustion that can be burned with an air-fuel mixture leaner than the stoichiometric air-fuel ratio, and EGR that burns the air-fuel mixture that takes in EGR gas into the intake air.
  • a combustion chamber is formed at the top of the cylinder 101 included in the internal combustion engine 100.
  • an ignition plug 102 to which an ignition voltage is applied an ignition coil 103 to apply an ignition voltage to the spark plug 102, and a fuel injection valve 104 are installed.
  • the in-cylinder pressure sensor 105 measures the pressure inside the cylinder 101 (in-cylinder pressure) and outputs the in-cylinder pressure to the ECU (Engine Control Unit) 123.
  • the crank angle sensor 108 measures the degree of angular rotation (crank angle) of the crankshaft 107 and outputs the crank angle to the ECU 123.
  • An airflow sensor 110, a throttle valve 111, a throttle position sensor 112, and the like are installed in the intake pipe 109 constituting the intake system.
  • the air flow sensor 110 measures the intake air amount and the intake air temperature of the air sucked into the cylinder 101 from the intake pipe 109.
  • the throttle valve 111 adjusts the amount of air flowing into the intake pipe 109 and the pressure of the intake pipe in the intake pipe 109.
  • the throttle position sensor 112 detects the opening degree of the throttle valve 111. Then, the air in the intake pipe 109 is sucked into the combustion chamber by opening the intake valve 113.
  • a catalyst upstream air-fuel ratio sensor 115 is an aspect of the air-fuel ratio detector, and detects the air-fuel ratio of the exhaust gas on the upstream side of the exhaust gas purification catalyst 116.
  • the exhaust gas purification catalyst 116 is a catalyst that purifies the exhaust gas.
  • the catalyst downstream air-fuel ratio sensor 117 is an aspect of the air-fuel ratio detector, and detects the air-fuel ratio of the exhaust gas on the downstream side of the exhaust gas purification catalyst 116.
  • the exhaust gas burned in the combustion chamber is discharged from the combustion chamber to the exhaust pipe 114 by opening the exhaust valve 118, and the exhaust gas is post-treated.
  • the EGR pipe 119 is connected to the exhaust pipe 114 and the intake pipe 109. By opening the EGR valve 120, the exhaust gas in the EGR pipe 119 is returned to the intake pipe 109.
  • the EGR flow rate sensor 121 measures the flow rate (EGR flow rate) of the exhaust gas recirculated to the intake pipe 109, and outputs the EGR flow rate to the ECU 123.
  • a water temperature sensor 122 is installed in the internal combustion engine 100.
  • the water temperature sensor 122 measures the water temperature of the cooling water that cools the cylinder 101 and the like, and outputs the water temperature of the cooling water to the ECU 123.
  • the ECU 123 manages the operating status of the actuator based on the values measured by various sensors. Therefore, the ECU 123 is used as an example of an internal combustion engine control device that controls the operation of the internal combustion engine 100. However, in this embodiment, paying particular attention to controlling the ignition timing of the spark plug 102, the ECU 123 is used as an example of the ignition control device.
  • the fuel injection valve 104 may be installed in the intake pipe 109.
  • the fuel injection valve 104 By installing the fuel injection valve 104 in the intake pipe 109, it is possible to apply the present invention to a port injection type internal combustion engine.
  • FIG. 2 is a block diagram showing a configuration example of the ECU 123.
  • the ECU 123 includes a CPU (Central Processing Unit) 201, a memory 202, an ignition signal generation unit 204, and a top dead point detection unit 205.
  • the ECU 123 controls the spark plug 102 by transmitting an ignition signal to the ignition coil 103.
  • the CPU 201 reads a program from the memory 202 and executes this program to control the operation of each part in the ECU 123.
  • the memory 202 is composed of a RAM (RandomAccessMemory) for temporarily storing data necessary for executing a program, a ROM (ReadOnlyMemory) for storing the program, and the like.
  • the CPU 201 includes an ignition signal calculation unit 203.
  • the EGR flow rate measured by the EGR flow rate sensor 121, the crank angle measured by the crank angle sensor 108, the in-cylinder pressure measured by the in-cylinder pressure sensor 105, and the water temperature measured by the water temperature sensor 122 are input to the ignition signal calculation unit 203.
  • the ignition signal calculation unit 203 calculates the ignition signal based on various information read from the memory 202 in addition to the EGR flow rate, the crank angle, the in-cylinder pressure and the water temperature input from each sensor.
  • the detailed internal configuration and processing of the ignition signal calculation unit 203 will be described with reference to FIG. 3, which will be described later.
  • the ignition signal calculation result calculated by the ignition signal calculation unit 203 is output to the ignition signal generation unit 204.
  • the ignition signal generation unit 204 generates an ignition signal based on the ignition signal calculation result and transmits the ignition signal to the ignition coil 103.
  • the ignition control device calculates the start time and end time of the re-energization of the primary current in one ignition process, and the end time of the re-energization and the time when the frequency of occurrence of re-energization decreases.
  • the ignition signal calculation unit (ignition signal calculation unit 203) that determines whether or not re-energization is performed by comparing with the ignition signal and the ignition coil that generates an ignition signal for generating spark discharge at least once in the ignition process.
  • the ignition signal calculation unit 203 After outputting to 103, when it is determined by the ignition signal calculation unit 203 to perform re-energization, an ignition signal is generated, an ignition signal is output to the ignition coil 103 at the start time of re-energization, and the ignition signal calculation unit 203 outputs the ignition signal. It includes an ignition signal generation unit (ignition signal generation unit 204) that does not generate an ignition signal when it is determined that re-energization is not performed.
  • the ignition signal calculation unit 203 sets the time when the frequency of occurrence of wrist-like decreases is the time when the flow velocity of the air-fuel mixture between the electrodes of the spark plug 102 decreases, and is after the time of the top dead center.
  • the ignition control device includes a top dead center detection unit (top dead center detection unit 205) that detects the top dead center of the piston 106 moving in the cylinder 101.
  • the top dead point detection unit 205 is composed of a crank angle sensor 108 and information stored in the memory 202. When the crank angle sensor 108 detects the crank angle of the crankshaft 107, the crank angle value [deg] is written in time series in the memory 202. Then, the top dead center detection unit 205 can detect the top dead center of the piston 106 based on the crank angle read from the memory 202.
  • FIG. 3 is a block diagram showing a configuration example of the ignition signal calculation unit 203.
  • the ignition signal calculation unit 203 includes an ignition timing 1 calculation unit 301, an energization time 1 calculation unit 302, an energization 2 start time calculation unit 303, an ignition timing 2 calculation unit 304, and an energization 2 execution presence / absence determination unit 305.
  • the ignition signal calculation unit (ignition signal calculation unit 203) calculates the start time of re-energization, the end time of re-energization, and the timing of top dead center based on the rotation angle of the piston 106.
  • the first ignition timing calculation unit (ignition timing 1 calculation unit 301) of the ignition signal calculation unit (ignition signal calculation unit 203) reduces the retard command value from the basic ignition timing to set the first ignition timing (ignition timing 1).
  • the ignition timing 1 calculation unit 301 calculates the ignition timing 1 based on the basic ignition timing stored in the memory 202 and the retard command value.
  • the ignition timing 1 represents, for example, the timing at which the ignition signal turned on at the beginning (first time) of the combustion cycle is turned off. When the ignition signal is turned off, a spark discharge is generated between the electrodes of the spark plug 102, and the air-fuel mixture is ignited.
  • the primary current energized in the ignition coil 103 from ON to OFF of the ignition signal at the beginning (first time) of the combustion cycle is referred to as "energization 1". Further, the time when the energization 1 is started is called “energization 1 start time”.
  • the energization 1 represents a primary current for re-energization for which the presence or absence of implementation is determined, which will be described later, and is not limited to the first (first time) of the combustion cycle, but may be the second or third time.
  • the first energization time calculation unit (energization time 1 calculation unit 302) of the ignition signal calculation unit (ignition signal calculation unit 203) is based on the basic energization time and the water temperature of the cooling water for cooling the internal combustion engine (internal combustion engine 100). Then, the first energization time (energization time 1) is calculated. In the first energization time calculation unit (energization time 1 calculation unit 302), the basic energization time, the water temperature, and a part of the exhaust gas after combustion are returned from the exhaust pipe 114 to the intake pipe 109 as EGR gas.
  • the energization time 1 calculation unit 302 calculates the energization time 1 from the water temperature, the EGR flow rate, and the basic energization time stored in the memory 202.
  • the energization time 1 represents the time when the ignition signal is turned on from the energization 1 start time to the ignition timing 1.
  • the second energization start time calculation unit (energization 2 start time calculation unit 303) of the ignition signal calculation unit (ignition signal calculation unit 203) is a rotation speed detection unit (crank) that detects the rotation speed of the internal combustion engine (internal combustion engine 100). The number of revolutions detected by the angle sensor 108), the in-cylinder pressure detected by the in-cylinder pressure detection unit (in-cylinder pressure sensor 105) that detects the in-cylinder pressure in the combustion chamber, and before re-energization for determining whether or not to perform the operation.
  • the second energization start time for calculating the second energization start time (energization 2 start time), which is the re-energization start time, based on the cutoff time of the energized primary current and the preset list-like generation threshold. It has a calculation unit (energization 2 start time calculation unit 303). That is, the energization 2 start time calculation unit 303 energizes based on the energization time 1, the crank angle, the in-cylinder pressure, the coil design information stored in the memory 202, and the rest-like generation threshold calculated by the energization time 1 calculation unit 302. 2 Calculate the start time.
  • the coil design information is information that is the basis for calculating the wrist-like generation threshold value.
  • the primary current that is re-energized to the ignition coil 103 at the ignition timing 2 is called “energization 2". Further, the time when the energization 2 is started is called “energization 2 start time”.
  • the air-fuel mixture is ignited by the spark discharge generated by interrupting the re-energization.
  • the ignition timing 2 calculation unit 304 calculates the ignition timing 2 based on the top dead center detected by the top dead center detection unit 205 and the flow velocity reduction margin amount read from the memory 202.
  • the ignition timing 2 represents a timing when the ignition signal turned on after the ignition timing 1 (second and subsequent times) is turned off. Since this ignition timing 2 is a value before being corrected by the energization 2 execution presence / absence determination unit 305, it is also referred to as “pre-correction ignition timing 2”.
  • the re-energization execution determination unit (energization 2 execution presence / absence determination unit 305) possessed by the ignition signal calculation unit (ignition signal calculation unit 203) has a second energization start timing (energization 2 start timing) and a second ignition timing (ignition timing). Based on 2), it is determined whether or not re-energization is performed, and the ignition signal calculation result is output. That is, the energization 2 execution presence / absence determination unit 305 is based on the energization 2 start time calculated by the energization 2 start time calculation unit 303 and the correction value of the pre-correction ignition timing 2 input from the ignition timing 2 calculation unit 304. 2 is calculated. The energization time 2 represents the time until the ignition signal turned on at the ignition timing 2 is turned off. Then, the energization 2 implementation presence / absence determination unit 305 determines whether or not the energization 2 is implemented.
  • Ignition timing 1 Ignition timing 1 calculated by the calculation unit 301, energization time 1 energization time calculated by the calculation unit 302, ignition timing 2 ignition timing 2 calculated by the calculation unit 304, energization 2 energization calculated by the execution presence / absence determination unit 305
  • the time 2 is input to the ignition signal generation unit 204 that generates an ignition signal as a result of the ignition signal calculation.
  • the ignition signal generation unit (ignition signal generation unit 204) has a first ignition timing (ignition timing 1), which is the ignition timing immediately before re-energization, and a first energization time (energization) of the primary current that is energized immediately before re-energization.
  • the ignition signal generated based on the time 1), the second ignition timing (ignition timing 2), and the ignition signal calculation result is output to the ignition coil (ignition coil 103).
  • FIG. 4 is a diagram showing a configuration example of the ignition coil 103.
  • the ignition coil 103 includes a power supply 401, a primary coil 402, a switching device 403, and a secondary coil 404.
  • the power supply 401 supplies the primary current and the primary voltage to the primary coil 402.
  • the switching device 403 switches energization or de-energization of the primary coil 402 according to ON or OFF of the ignition signal transmitted from the ECU 123 (ignition signal generation unit 204).
  • the secondary coil 404 is installed in parallel with the primary coil 402. One end of the secondary coil 404 is grounded and the other end is connected to the electrode of the spark plug 102.
  • the ignition coil 103 may be configured as an ignition control circuit provided with one or more primary coils 402 and one or more secondary coils 404. It is also possible to apply the present invention to the ignition coil 103 having such a configuration.
  • the ignition control device (ECU 123) according to the present embodiment has a primary coil (primary coil 402) arranged on the primary side and a secondary coil (secondary coil) arranged on the secondary side.
  • the ignition signal input to the ignition coil (ignition coil 103) having the coil 404) controls the energization and cutoff of the primary current flowing through the primary coil 402, and the secondary coil is cut off when the primary current is cut off.
  • the internal combustion engine 100 in which the air-fuel mixture is ignited in the combustion chamber in the cylinder by the spark discharge generated by applying the secondary voltage and the secondary current induced in the 404 to the ignition plug 102 connected to the secondary coil 404. It is configured to control the ignition of.
  • the ECU 123 determines whether or not re-energization is performed based on the relationship between the end time of re-energization and the time when the frequency of occurrence of re-energization decreases (for example, after top dead center). Therefore, it is possible to suppress an increase in product cost due to the addition of a secondary current measuring device to the ECU 123 and the addition of a component that switches the circuit configuration according to the secondary current. Further, since the ignition signal generation unit 204 does not generate an ignition signal when the ignition signal calculation unit 203 determines that the re-energization is not performed, extra energy consumption due to the re-energization can be suppressed.
  • the ignition signal generation unit 204 Since the ignition signal generation unit 204 generates an ignition signal only when the ignition signal calculation unit 203 determines that re-energization is to be performed, it is possible to suppress the generation of wrist-like with the minimum necessary energy consumption, and the spark plug. The wear of 102 can be reduced.
  • FIG. 5 is a flowchart showing an example of ignition control processing.
  • the ignition timing 1 calculation unit 301 calculates the ignition timing 1 according to the control flow shown in FIG. 6 (S1).
  • the energization time 1 calculation unit 302 calculates the energization time 1 according to the control flow shown in FIG. 7 (S2).
  • the energization 2 start time calculation unit 303 calculates the energization 2 start time according to the control flow shown in FIG. 8 (S3).
  • the ignition timing 2 calculation unit 304 calculates the pre-correction ignition timing 2 according to the control flow shown in FIG. 10 (S4).
  • the energization 2 implementation / non-execution determination unit 305 determines whether or not the energization 2 is implemented according to the control flow shown in FIG. 11, and calculates the energization time 2 (S5).
  • the ignition signal generation unit 204 generates an ignition signal according to the timing chart shown in FIG. 12 (S6).
  • FIG. 6 is a flowchart showing an example of the ignition timing 1 calculation process in step S1 of FIG.
  • the ignition timing 1 calculation unit 301 acquires the basic ignition timing and the retard command value from the memory 202 (S11).
  • FIG. 7 is a flowchart showing an example of the energization time 1 calculation process in step S2 of FIG.
  • the energization time 1 calculation unit 302 acquires the basic energization time, water temperature, and EGR flow rate (S21).
  • the energization time 1 calculation unit 302 uses a value set in advance for each specification of the internal combustion engine 100 and the ignition coil 103 as the basic energization time. Further, since the spark discharge becomes less likely to fly as the water temperature becomes lower, the energization time 1 calculation unit 302 sets the water temperature coefficient so that the energization time becomes longer as the water temperature becomes lower. Further, since higher energy is required to skip the spark discharge as the EGR flow rate increases, the energization time 1 calculation unit 302 sets the EGR coefficient so that the energization time becomes longer as the EGR flow rate increases.
  • FIG. 8 is a flowchart showing an example of the energization 2 start timing calculation process in step S3 of FIG.
  • FIG. 9 is a diagram showing the characteristics of the peak secondary current and the secondary current slope, as well as an example of the energization 2 start timing, the peak secondary current, the secondary current slope, and the wrist-like generation threshold value.
  • FIG. 9A shows an example of a graph 901 in which the horizontal axis is the in-cylinder pressure and the vertical axis is the peak secondary current value.
  • FIG. 9B shows an example of a graph 902 in which the horizontal axis is the in-cylinder pressure and the vertical axis is the secondary current slope.
  • FIG. 9C shows an example of ignition timing 1t903, peak secondary current 904, secondary current slope 905, and energization 2 start timing t907.
  • the energization 2 start time calculation unit 303 acquires the energization time 1, the crank angle, the in-cylinder pressure, the coil design information, and the wrist-like generation threshold value (S31).
  • the wrist-like generation threshold value is stored in the memory 202 in a state calculated in advance by the energization 2 start time calculation unit 303, but may be calculated in accordance with the execution of step S31.
  • the energization 2 start time calculation unit 303 calculates the peak secondary current and the secondary current slope (S32).
  • the graph 901 of FIG. 9A shows the peak secondary current value characteristic in which the high peak secondary current value decreases as the in-cylinder pressure increases. Therefore, the energization 2 start time calculation unit 303 measures and calculates the peak secondary current value according to the in-cylinder pressure in advance.
  • the graph 902 of FIG. 9B shows the secondary current slope characteristic in which the gentle secondary current slope becomes steeper as the in-cylinder pressure increases. Therefore, the energization 2 start time calculation unit 303 measures and calculates the secondary current gradient according to the in-cylinder pressure in advance.
  • the energization 2 start time calculation unit 303 calculates the energization 2 start time by the following equation (1) (S33), and returns the process to FIG.
  • Energization 2 start time ignition timing 1t903 + ⁇ (peak secondary current 904-restrict generation threshold 906) ⁇ secondary current slope 905 ⁇ ⁇ time angle conversion coefficient ... (1)
  • the time-angle conversion coefficient in the formula (1) is, for example, when the internal combustion engine 100 has four cylinders 101 and each cylinder 101 repeats a cycle of intake, compression, combustion, and exhaust every 720 deg, the following formula ( It is calculated by 2).
  • Time angle conversion coefficient (rotation speed [rpm] x 720 [deg]) ⁇ 2 x 60 [s] ... (2)
  • the ECU 123 measures the secondary current, which is the current of the secondary coil 404, in advance, and sets the threshold value of the secondary current at which the restlike occurs frequently as the wristlike generation threshold value 906.
  • the ignition signal calculation unit sets the time when the secondary current exceeds the preset wrist-like generation threshold value as the wrist-like generation time, and sets the start time of re-energization to the wrist-like generation time. Then, the ignition signal generation unit 204 of the ECU 123 generates an ignition signal so that the secondary current becomes 0 at the energization 2 start time t907 when the value of the secondary current becomes less than the wrist-like generation threshold value 906. Therefore, the occurrence of wrist-like is suppressed.
  • the second energization start time calculation unit (energization 2 start time calculation unit 303) is based on the first energization time (energization time 1), the number of revolutions of the internal combustion engine (internal current engine 100), and the in-cylinder pressure.
  • the peak value of the secondary current and the gradient of the secondary current that decreases from the peak value are calculated, and the peak value of the secondary current and the gradient of the secondary current with respect to the first ignition timing (ignition timing 1) are calculated.
  • the time calculated based on the rest-like generation threshold is added to calculate the second energization start time (energization 2 start time).
  • the energization 2 start time calculation unit 303 can suppress the occurrence of multiple discharges and reduce the wear of the spark plug 102 by setting the energization 2 start time so as to avoid the region where the restoric occurs frequently. Will be.
  • FIG. 10 is a flowchart showing an example of the ignition timing 2 calculation process in step S4 of FIG.
  • the ignition timing 2 calculation unit 304 acquires the top dead center from the top dead center detection unit 205, and acquires the flow velocity reduction margin from the memory 202 or the like (S41).
  • the top dead center is set in advance by the top dead center detection unit 205 based on the specifications of the internal combustion engine 100. Further, it is desirable to set the flow velocity reduction margin amount to a value at which the flow velocity or the frequency of occurrence of the restorike is sufficiently reduced from the result of measuring the operating state of the internal combustion engine 100 and the flow velocity or the frequency of occurrence of the restorike after the top dead center in advance. ..
  • the ignition control device includes the top dead center detection unit 205 for detecting the top dead center of the internal combustion engine 100.
  • the ignition signal calculation unit 203 sets the ignition timing 2 at least after the top dead center, and after the top dead center, the flow velocity between the electrodes of the spark plug 102 is reduced, so that the frequency of restoration is reduced, so that the spark plug 102 Wear can be reduced.
  • FIG. 11 is a flowchart showing an example of the energization 2 execution presence / absence determination process in step S5 of FIG.
  • the energization 2 implementation presence / absence determination unit 305 acquires the energization 2 start time from the energization 2 start time calculation unit 303, and acquires the ignition timing 2 from the ignition timing 2 calculation unit 304 (S51).
  • the energization 2 implementation presence / absence determination unit 305 determines whether or not the energization 2 start timing is on the advance angle side of the ignition timing 2 (S52).
  • the energization time 2 is set using (S53), and the process is returned to FIG.
  • the energization 2 execution presence / absence determination unit 305 determines that the energization 2 start timing is not on the advance angle side of the ignition timing 2 (NO in S52), the energization time 2 is set to 0 (S54), as shown in FIG. Return the process.
  • the ignition signal calculation unit determines that the re-energization is performed when the re-energization start time is on the advance side of the re-energization end time, and the re-energization ends. If the start time of re-energization is on the retard side rather than the timing, it is determined that re-energization is not performed. Since it is determined whether or not re-energization is performed in this way, the ignition signal is generated only when the ignition signal calculation unit 203 determines that re-energization is performed.
  • the energization 2 execution presence / absence determination unit 305 outputs a determination result of re-energization to the ignition signal generation unit 204 when the energization 2 start timing is on the advance angle side with respect to the ignition timing 2. Since the ignition signal generation unit 204 outputs the ignition signal generated based on this determination result to the ignition coil 103, the ignition coil 103 can ignite the spark plug 102. In this way, the ECU 123 can suppress the generation of wrist-like with the minimum necessary energy consumption, and can reduce the wear of the spark plug 102.
  • the energization 2 execution presence / absence determination unit 305 outputs a determination result of not performing re-energization to the ignition signal generation unit 204 when the energization 2 start time is on the retard side of the ignition timing 2. Since the ignition signal generation unit 204 does not generate an ignition signal based on this determination result, the ignition coil 103 does not ignite the spark plug 102. Here, at the start time of energization 2 set after the top dead center, the flow velocity between the electrodes of the spark plug 102 is reduced so that restoration does not occur, so that the ignition signal generation unit 204 does not generate an ignition signal. The ignition coil 103 does not energize 2. Therefore, it is possible to suppress unnecessary energy consumption in the ignition coil 103 due to the energization 2.
  • FIG. 12 is a timing chart showing an example of the ignition signal generation process in step S6 of FIG. This timing chart shows the ignition signal, the primary current, the secondary current, and the flow velocity.
  • the flow velocity represents the flow velocity of the air-fuel mixture between the electrodes of the spark plug 102.
  • the ignition timing 1, energization time 1, ignition timing 2, and energization time 2 generated in steps S1 to S5 of FIG. 5 are input to the ignition signal generation unit 204.
  • the ignition signal generation unit 204 generates an ignition signal so that the ignition timing 1 is time t1202, the energization time 1 is time t1202-hour t1201, the ignition timing 2 is time t1204, and the energization time 2 is time t1204-hour t1203. .
  • the time t1201 represents the energization 1 start timing of the primary current (energization 1) energized in the ignition coil 103 in accordance with the ignition timing 1.
  • the time t1203 represents the start time of the energization 2 of the primary current (energization 2).
  • the ignition signal generation process performed by the ignition signal generation unit 204 will be described.
  • the ignition signal changes from OFF to ON at the time t1201 (energization 1 start timing)
  • energization to the primary coil 402 is started.
  • the primary current flowing through the primary coil 402 increases, and the magnetic field formed between the primary coil 402 and the secondary coil 404 becomes stronger.
  • the time t1202 is set so that the flow velocity between the electrodes of the spark plug 102 is large. Since the flow velocity between the electrodes is large, the spark discharge generated between the electrodes is extended for a long time, and the feasibility of combustion is enhanced. Therefore, in the vicinity of time t1202, the flow velocity between the electrodes of the spark plug 102 becomes the largest before the top dead center. After that, due to the tumble collapse occurring in the combustion chamber, the flow velocity between the electrodes of the spark plug 102 decreases with the passage of time.
  • the ignition signal changes from OFF to ON again, and when the primary coil 402 is energized, a current opposite to the secondary current flows in the primary coil 402, and the secondary current is 0. It becomes.
  • the energization 2 start time calculation unit 303 coincides with the occurrence time of this time t1203 with the time when the secondary current, which is equal to or less than the wrist-like generation threshold value, exceeds the wrist-like generation threshold value. Let me. By adjusting the generation time of the time t1203 by the energization 2 start time calculation unit 303 in this way, it is possible to prevent the frequent occurrence of wrist-like and suppress the wear of the spark plug 102.
  • spark discharge timing 2 ignition timing 2
  • the primary current becomes 0
  • the secondary current rapidly increases, and spark discharge is generated from the spark plug 102.
  • the tumble collapse is progressing after the top dead center in step S4, and the flow velocity between the electrodes of the spark plug 102 is decreasing. Therefore, the spark discharge generated between the electrodes of the spark plug 102 is blown out, the multiple discharge such that the spark discharge is generated again does not occur, and the spark plug 102 is not worn due to the multiple discharge.
  • FIG. 13 is a timing chart showing an example of the energization 2 implementation presence / absence determination process according to the present embodiment.
  • the top dead center time t1301 shown in FIG. 13 represents the time of the top dead center.
  • 13 (a) shows the case where the ignition timing 1 is BTDC 30 deg
  • FIG. 13 (b) shows the case where the ignition timing 1 is BTDC 10 deg
  • FIG. 13 (c) shows the case where the ignition timing 1 is ATDC (After Top Dead). Center) Represents the case of 10 deg.
  • FIG. 14 shows an example of the time from the ignition timing 1 to the top dead center timing t1301 at the rotation speeds of 1000, 2000, 4000, and 6000 rpm in FIG.
  • FIG. 13 (a) shows the time from ignition timing 1 (t1302) to top dead center time t1301
  • FIG. 13 (b) shows the time from ignition timing 1 (t1307) to top dead center time t1301. show.
  • FIG. 13C the time from the ignition timing 1 (t1312) to the top dead center timing t1301 is shown.
  • the rotation speeds are different, the time between the ignition timing 1 (fixed angle) and the top dead center (fixed angle) changes. Therefore, from FIG. 14, when the rotation speed is low, the time from the ignition timing 1 to the top dead center time t1301 is long, and when the rotation speed is high, the time from the ignition timing 1 to the top dead center time t1301 is short. Is shown.
  • FIGS. 13 (a) to 13 (c) are timing charts describing the results of determination by the energization 2 execution presence / absence determination unit 305 whether or not the energization 2 is executed when the ignition timing 1 and the rotation speed are different. Is. Further, in FIGS. 13 (a) to 13 (c), the top dead center time t1301 coincides with the ignition timing 2. Further, in FIGS. 13 (a) to 13 (c), the time from the ignition timing 1 to the time when the secondary current falls below the wrist-like generation threshold is 0.7 ms, and the time when the secondary current decreases to 0 is 1.0 ms. The timing chart is described assuming the case of.
  • the energization 2 start timing is timing t1303 for 1000 rpm, timing t1304 for 2000 rpm, timing t1305 for 4000 rpm, and timing t1306 for 4000 rpm. expressed.
  • the time from the ignition timing 1t1302 to the top dead center timing t1301 at each rotation speed at the BTDC 30deg in FIG. 14 is positive. Further, as shown in FIG. 13A, the time t1303 to the time t1306 are on the advance angle side with respect to the top dead center time t1301. Therefore, the energization 2 execution presence / absence determination unit 305 executes the energization 2 from the start time of each energization 2 to the top dead center time t1301.
  • the energization 2 start timing is time t1308 for 1000 rpm, time t1309 for 2000 rpm, time t1310 for 4000 rpm, and time t1311 for 4000 rpm. expressed.
  • the time from the ignition timing 1t1307 to the top dead center timing t1301 at each rotation speed at the BTDC 10deg in FIG. 14 is positive. Further, as shown in FIG. 13B, the time t1308 and t1309 are on the advance angle side with respect to the top dead center time t1301. Therefore, the energization 2 execution presence / absence determination unit 305 performs the energization 2 from the start time of each energization 2 to the top dead center time t1301 based on the energization 2 execution presence / absence determination process (YES in step S52) shown in FIG. implement. On the other hand, it is shown from FIG.
  • the energization 2 implementation presence / absence determination unit 305 does not execute the energization 2 based on the energization 2 implementation / presence / absence determination process (NO in step S52) shown in FIG.
  • the case where the ignition timing 1t1312 shown in FIG. 13C is ATDC10deg is shown.
  • the energization 2 start time is represented by the time t1313 in the case of 1000 rpm, the time t1314 in the case of 2000 rpm, and the time t1315 in the case of 4000 rpm, and the time t1316 in the case of 6000 rpm.
  • the time from the ignition timing 1t1312 to the top dead center timing t1301 at each rotation speed at ATDC 10deg in FIG. 14 is negative. Further, as shown in FIG. 13 (c), it is shown that the period t1313 to the period t1316 is on the retard side of the top dead center period t1301. Therefore, the energization 2 execution presence / absence determination unit 305 does not carry out the energization 2 based on the flowchart of FIG.
  • the wear of the spark plug 102 can be further suppressed by setting the top dead center, which reduces the frequency of restoration due to the reduction of the flow velocity between the electrodes of the spark plug 102, as the start time of the energization 2.
  • the top dead center time t1301 has already passed. Since the flow velocity between the electrodes of the spark plug 102 is reduced, the frequency of restoration is low. Therefore, the energization 2 implementation presence / absence determination unit 305 can suppress unnecessary energy consumption by not energizing the energization 2.
  • the ECU 123 it is determined whether or not re-energization is performed based on the relationship between the end time of re-energization by internal processing and the time when the frequency of occurrence of re-energization decreases. Therefore, it is not necessary to add circuit components for controlling the operation of the ignition coil 103 to increase the product cost. Further, when it is determined that the re-energization is performed, the ignition signal is generated, and when it is determined that the re-energization is not performed, the ignition signal is not generated. Since the ignition signal is not always generated in this way, the generation of wrist-like can be suppressed with the minimum necessary energy consumption, and the wear of the spark plug 102 can be reduced.
  • the technique according to the present embodiment contributes to extending the life of the spark plug 102.
  • the internal combustion engine 100 may be configured not to carry out EGR.
  • the present invention is not limited to the above-described embodiment, and it goes without saying that various other application examples and modifications can be taken as long as they do not deviate from the gist of the present invention described in the claims.
  • the above-described embodiment describes in detail and concretely the configurations of the internal combustion engine and the ignition control device in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those including all the configurations described.
  • the control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all the control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

部品の追加をすることなく、リストライクの発生による点火プラグの摩耗を抑制することが可能な点火制御装置を提供する。 点火制御装置として用いられるECU123は、1回の点火工程内で1次電流の再通電の開始時期及び終了時期を演算し、再通電の終了時期と、リストライクの発生頻度が低下する時期とを比較して再通電の実施有無を判定する点火信号演算部203と、点火工程内で少なくとも1回以上の火花放電を発生させるための点火信号を生成して点火コイルに出力した後、点火信号演算部により再通電を実施すると判定された場合に点火信号を生成して再通電の開始時期に点火信号を点火コイルに出力し、点火信号演算部により再通電を実施しないと判定された場合に点火信号を生成しない点火信号生成部204と、を備える。

Description

点火制御装置
 本発明は、点火制御装置に関する。
 近年、車両の燃費向上のため、理論空燃比よりも希薄な混合気で運転する技術(超希薄燃焼)や、燃焼後の排気ガスの一部を取り入れ、再度吸気させる技術(例えば、EGR(Exhaust Gas Recirculation))などを取り入れた内燃機関の制御装置が開発されている。このような技術では、希薄な混合気を気筒内で十分に拡散させて点火プラグによる着火性を向上させる必要がある。その技術の一つとして、気筒内へ供給する空気に乱流(タンブル)を発生させるものがあった。
 また、1次コイルに流れる1次電流を通電又は遮断することで2次コイルに2次電流(1次電流とは逆方向のマイナスの電流)を発生させて2次コイルに誘起された2次電圧が点火プラグに印加されて火花放電を起こす点火制御装置が知られている。この点火制御装置に関して、例えば、点火プラグの電極に高エネルギを印加するコイルや、1次コイルへの通電を重畳するコイル等の技術が提案されている。
 しかし、前述のようなコイルを使用した場合、点火コイルが火花放電を発生する点火工程の後半には、混合気が乱流を起こしやすくなると共に、点火コイルの放電エネルギが低下する。この乱流により、点火プラグの電極間に生じる火花放電が吹き消え、再び火花放電が発生するといった、本来の仕様でない多重放電が引き起こされていた。このように火花放電が吹き消えた後、点火コイルに残った放電エネルギにより再度火花放電が発生する現象を「リストライク」と呼ぶ。リストライクが発生すると、点火プラグの電極間には容量(アーク)放電が発生し、点火プラグの電極が摩耗する。そして、1回の点火工程内で多重放電(複数回のリストライク)が発生すると点火プラグの電極摩耗が促進されてしまう。そこで、多重放電の発生時に点火プラグの電極摩耗を防ぐための技術として、以下の特許文献1に開示された技術が知られていた。
 この特許文献1には、「点火プラグの火花放電を強制的に遮断する内燃機関用の点火装置において、火花放電遮断制御は、2次コイルに発生する2次電流が所望の値以下になると動作させる」と記載されている。
特開2015-132170号公報
 特許文献1に開示された技術では、火花放電を発生させている最中に2次電流が所定値を下回った場合、1次コイルに2次電流と逆方向に通電するよう回路構成を切り替えることにより、多重放電が遮断される。しかしながら、この技術を用いるためには、従来の点火回路に比べて、2次電流の計測装置の追加、及び2次電流に応じて回路構成を切り替える部品の追加が必要である。このため、点火回路の部品点数が増え、製品コストが増加していた。
 また、特許文献1に開示された技術と同様の挙動を、点火回路への部品追加無しで実現しようとする場合は、1次コイルへ再通電することが想定される。しかし、リストライクの発生有無を判断しなければ、リストライクが発生しない状況でも再通電することとなり、点火回路が不要なエネルギを消費する恐れがあった。
 本発明はこのような状況に鑑みて成されたものであり、リストライクの発生による点火プラグの摩耗を抑制することを目的とする。
 本発明は、1次側に配置された1次コイルと、2次側に配置された2次コイルとを有する点火コイルに入力される点火信号により、1次コイルに流れる1次電流の通電及び遮断が制御され、1次電流が遮断されたことで2次コイルに誘起された2次電圧及び2次電流が、2次コイルに接続される点火プラグに印加されて発生した火花放電により、混合気が気筒内の燃焼室で点火される内燃機関の点火を制御する点火制御装置であり、1回の点火工程内で1次電流の再通電の開始時期及び終了時期を演算し、再通電の終了時期と、リストライクの発生頻度が低下する時期とを比較して再通電の実施有無を判定する点火信号演算部と、点火工程内で少なくとも1回以上の火花放電を発生させるための点火信号を生成して点火コイルに出力した後、点火信号演算部により再通電を実施すると判定された場合に点火信号を生成して再通電の開始時期に点火信号を点火コイルに出力し、点火信号演算部により再通電を実施しないと判定された場合に点火信号を生成しない点火信号生成部と、を備える。
 本発明によれば、点火制御装置に点火制御のための部品を追加しなくても、必要最小限のエネルギ消費でリストライクの発生を抑えるため、点火プラグの摩耗を抑制することができる。
 上記した以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。
本発明の一実施の形態に係る内燃機関の全体構成例を示す図である。 本発明の一実施の形態に係るECUの構成例を示すブロック図である。 本発明の一実施の形態に係る点火信号演算部の構成例を示すブロック図である。 本発明の一実施の形態に係る点火コイルの構成例を示す図である。 本発明の一実施の形態に係る点火制御処理の例を示すフローチャートである。 図5のステップS1における点火時期1演算処理の一例を示すフローチャートである。 図5のステップS2における通電時間1演算処理の一例を示すフローチャートである。 図5のステップS3における通電2開始時期演算処理の一例を示すフローチャートである。 ピーク2次電流及び2次電流傾きの特性、並びに通電2開始時期、ピーク2次電流、2次電流傾き及びリストライク発生閾値の一例を示す図である。 図5のステップS4における点火時期2演算処理の一例を示すフローチャートである。 図5のステップS5における通電2実施有無判定処理の一例を示すフローチャートである。 図5のステップS6における点火信号生成処理の一例を示すタイミングチャートである。 本発明の一実施の形態に係る通電2実施有無判定処理の一例を示すタイミングチャートである。 図13における回転数1000、2000、4000、6000rpmでの点火時期1から上死点時期までの時間の一例を示す。
 以下、本発明を実施するための形態について、添付図面を参照して説明する。本明細書及び図面において、実質的に同一の機能又は構成を有する構成要素については、同一の符号を付することにより重複する説明を省略する。
[一実施の形態]
 始めに、本発明の一実施の形態に係る内燃機関の一例について説明する。
 図1は、内燃機関100の全体構成例を示す図である。内燃機関100は、理論空燃比よりも希薄な混合気で燃焼することが可能な超希薄燃焼や、EGRガスを吸気に取り込んだ混合気を燃焼するEGRを採用した構成としている。
 内燃機関100が備える気筒101の頂部に燃焼室が形成される。この燃焼室には、点火電圧が印加される点火プラグ102、点火プラグ102へ点火電圧を印加する点火コイル103、燃料噴射弁104が設置されている。気筒101では、ピストン106がクランクシャフト107の回転角度に応じて上下することにより気筒101内部の圧力が変化する。そこで、筒内圧センサ105は、気筒101内部の圧力(筒内圧)を計測し、ECU(Engine Control Unit)123に筒内圧を出力する。クランク角センサ108は、クランクシャフト107の角回転度(クランク角)を計測し、ECU123にクランク角を出力する。
 吸気系を構成する吸気管109には、エアフローセンサ110、スロットル弁111、スロットルポジションセンサ112等が設置される。
 エアフローセンサ110は、吸気管109から気筒101に吸入される空気の吸入空気量及び吸気温度を計測する。
 スロットル弁111は、吸気管109に流入する空気量、及び吸気管109内の吸気管圧力を調整する。
 スロットルポジションセンサ112は、スロットル弁111の開度を検出する。
 そして、吸気管109内の空気は、吸気弁113が開くことによって燃焼室内に吸入される。
 また、排気系を構成する排気管114には、触媒上流空燃比センサ115、排気ガス浄化触媒116、触媒下流空燃比センサ117等が設置される。
 触媒上流空燃比センサ115は、空燃比検出器の一態様であって、排気ガス浄化触媒116の上流側にて排気ガスの空燃比を検出する。
 排気ガス浄化触媒116は、排気ガスを浄化する触媒である。
 触媒下流空燃比センサ117は、空燃比検出器の一態様であって、排気ガス浄化触媒116の下流側にて排気ガスの空燃比を検出する。
 燃焼室で燃焼した排気ガスは、排気弁118が開くことによって燃焼室から排気管114に排出され、排気ガスの後処理が行われる。
 EGR管119は、排気管114と吸気管109に接続される。EGR弁120が開くことによって、EGR管119内の排気ガスが吸気管109へ還流される。EGR流量センサ121は、吸気管109へ還流される排気ガスの流量(EGR流量)を計測し、ECU123にEGR流量を出力する。
 また、内燃機関100内には、水温センサ122が設置される。水温センサ122は、気筒101等を冷却する冷却水の水温を計測し、ECU123に冷却水の水温を出力する。
 これらの内燃機関100に設置された各種のセンサおよびアクチュエータはECU123と接続され、制御されている。ECU123は、各種のセンサが計測した値に基づいて、アクチュエータの動作状況を管理する。このため、ECU123は、内燃機関100の動作を制御する内燃機関制御装置の一例として用いられる。ただし、本実施の形態では、特に点火プラグ102の点火時期を制御することに注目し、ECU123が点火制御装置の一例として用いられるものとする。
 また、上記の構成において、燃料噴射弁104は吸気管109内に設置してもよい。燃料噴射弁104を吸気管109内に設置した構成とすることで、ポート噴射式の内燃機関に本発明を適用することも可能となる。
<ECUの構成例>
 図2は、ECU123の構成例を示すブロック図である。
 ECU123は、CPU(Central Processing Unit)201、メモリ202、点火信号生成部204及び上死点検出部205を備える。ECU123は、点火コイル103へ点火信号を送信することにより、点火プラグ102を制御している。
 CPU201は、メモリ202からプログラムを読み出し、このプログラムを実行することで、ECU123内の各部の動作を制御する。メモリ202は、プログラムの実行に際して必要なデータを一時記憶するRAM(Random Access Memory)、プログラムが記憶されるROM(Read Only Memory)等により構成されている。
 CPU201は、点火信号演算部203を備える。点火信号演算部203には、EGR流量センサ121が計測したEGR流量、クランク角センサ108が計測したクランク角、筒内圧センサ105が計測した筒内圧、水温センサ122が計測した水温が入力する。
そして、点火信号演算部203は、各センサから入力した、EGR流量、クランク角、筒内圧及び水温に加えて、メモリ202から読み出した各種の情報に基づいて点火信号を演算する。点火信号演算部203の詳細な内部構成及び処理については、後述する図3にて説明する。点火信号演算部203が演算した点火信号演算結果は、点火信号生成部204に出力される。
 点火信号生成部204は、点火信号演算結果に基づいて点火信号を生成し、点火コイル103に点火信号を送信する。
 ここで、点火制御装置(ECU123)は、1回の点火工程内で1次電流の再通電の開始時期及び終了時期を演算し、再通電の終了時期と、リストライクの発生頻度が低下する時期とを比較して再通電の実施有無を判定する点火信号演算部(点火信号演算部203)と、点火工程内で少なくとも1回以上の火花放電を発生させるための点火信号を生成して点火コイル103に出力した後、点火信号演算部203により再通電を実施すると判定された場合に点火信号を生成して再通電の開始時期に点火信号を点火コイル103に出力し、点火信号演算部203により再通電を実施しないと判定された場合に点火信号を生成しない点火信号生成部(点火信号生成部204)と、を備える。この点火信号演算部203は、リストライクの発生頻度が低下する時期を、点火プラグ102の電極間における混合気の流速が低減する時期であって、上死点の時期以降とする。
 また、点火制御装置(ECU123)は、気筒101内を運動するピストン106の上死点を検出する上死点検出部(上死点検出部205)を備える。上死点検出部205は、クランク角センサ108と、メモリ202に格納された情報により構成される。クランク角センサ108がクランクシャフト107のクランク角を検出すると、メモリ202に対して時系列にクランク角の値[deg]を書き込む。そして、上死点検出部205は、メモリ202から読み出したクランク角に基づいてピストン106の上死点を検出することが可能である。
<点火信号演算部の構成例>
 図3は、点火信号演算部203の構成例を示すブロック図である。
 点火信号演算部203は、点火時期1演算部301、通電時間1演算部302、通電2開始時期演算部303、点火時期2演算部304及び通電2実施有無判定部305を備える。点火信号演算部(点火信号演算部203)は、再通電の開始時期、再通電の終了時期、及び上死点の時期を、ピストン106の回転角度に基づいて演算する。
 点火信号演算部(点火信号演算部203)が有する第1点火時期演算部(点火時期1演算部301)は、基本点火時期からリタード指令値を減じて、第1点火時期(点火時期1)を演算する。すなわち、点火時期1演算部301は、メモリ202に格納された基本点火時期、及びリタード指令値に基づいて点火時期1を演算する。点火時期1は、例えば、燃焼サイクルの最初(1回目)にONされた点火信号がOFFされる時期を表す。点火信号がOFFされると、点火プラグ102の電極間に火花放電が発生し、混合気が点火される。なお、燃焼サイクルの最初(1回目)に点火信号がONからOFFされるまでに点火コイル103に通電される1次電流を「通電1」と呼ぶ。また、通電1が開始される時期を「通電1開始時期」と呼ぶ。通電1は、後述する実施有無が判定される再通電に対する1次電流を表しており、燃焼サイクルの最初(1回目)に限らず、2回目、3回目の場合もある。
 点火信号演算部(点火信号演算部203)が有する第1通電時間演算部(通電時間1演算部302)は、基本通電時間、及び内燃機関(内燃機関100)を冷却する冷却水の水温に基づいて、第1通電時間(通電時間1)を演算する。なお、第1通電時間演算部(通電時間1演算部302)は、基本通電時間、水温、及び燃焼後の排気ガスの一部がEGRガスとして排気管114から吸気管109に還流されるように接続されるEGR管119内のEGRガスの流量に基づいて第1通電時間(通電時間1)を演算することが可能である。すなわち、通電時間1演算部302は、水温、EGR流量、メモリ202に格納された基本通電時間から通電時間1を演算する。通電時間1は、通電1開始時期から点火時期1まで点火信号がONされる時間を表す。
 点火信号演算部(点火信号演算部203)が有する第2通電開始時期演算部(通電2開始時期演算部303)は、内燃機関(内燃機関100)の回転数を検出する回転数検出部(クランク角センサ108)が検出した回転数と、燃焼室内の筒内圧力を検出する筒内圧力検出部(筒内圧センサ105)が検出した筒内圧力と、実施有無が判定される再通電の前に通電された1次電流の遮断時期と、予め設定されたリストライク発生閾値とに基づいて、再通電の開始時期である第2通電開始時期(通電2開始時期)を演算する第2通電開始時期演算部(通電2開始時期演算部303)を有する。すなわち、通電2開始時期演算部303は、通電時間1演算部302により演算された通電時間1、クランク角、筒内圧、メモリ202に格納されたコイル設計情報及びリストライク発生閾値に基づいて、通電2開始時期を演算する。コイル設計情報は、リストライク発生閾値の算出に際して元となる情報である。点火時期2に合わせて点火コイル103に再通電される1次電流を「通電2」と呼ぶ。また、通電2が開始される時期を「通電2開始時期」と呼ぶ。
 また、点火信号演算部(点火信号演算部203)が有する第2点火時期演算部(点火時期2演算部304)は、再通電が遮断されて発生する火花放電により混合気が点火される第2点火時期(点火時期2)を演算する。すなわち、点火時期2演算部304は、上死点検出部205により検出された上死点、メモリ202から読み出された流速低減余裕量に基づいて点火時期2を演算する。点火時期2は、点火時期1の次(2回目以降)にONされた点火信号がOFFされる時期を表す。この点火時期2は、通電2実施有無判定部305により補正される前の値であるため、「補正前点火時期2」とも呼ぶ。
 また、点火信号演算部(点火信号演算部203)が有する再通電実施判定部(通電2実施有無判定部305)は、第2通電開始時期(通電2開始時期)及び第2点火時期(点火時期2)に基づいて、再通電の実施有無を判定して点火信号演算結果を出力する。すなわち、通電2実施有無判定部305は、通電2開始時期演算部303が演算した通電2開始時期と、点火時期2演算部304から入力した補正前点火時期2の補正値とに基づいて通電時間2を演算する。通電時間2は、点火時期2でONされた点火信号がOFFされるまでの時間を表す。そして、通電2実施有無判定部305は、通電2の実施有無を判定する。
 点火時期1演算部301により演算した点火時期1、通電時間1演算部302により演算した通電時間1、点火時期2演算部304により演算した点火時期2、通電2実施有無判定部305により演算した通電時間2は、点火信号演算結果として点火信号を生成する点火信号生成部204に入力される。
 点火信号生成部(点火信号生成部204)は、再通電の直前の点火時期である第1点火時期(点火時期1)、再通電の直前に通電される1次電流の第1通電時間(通電時間1)、第2点火時期(点火時期2)、及び点火信号演算結果に基づいて生成した点火信号を点火コイル(点火コイル103)に出力する。
<点火コイルの構成例>
 図4は、点火コイル103の構成例を示す図である。
 点火コイル103は、電源401と、1次コイル402と、スイッチングデバイス403と、2次コイル404とを備える。
 電源401は、1次コイル402に1次電流及び1次電圧を供給する。
 スイッチングデバイス403は、ECU123(点火信号生成部204)から送信される点火信号のON又はOFFに応じて1次コイル402の通電又は非通電を切り替える。
 2次コイル404は、1次コイル402と並列に設置される。2次コイル404の一端は接地され、他端は点火プラグ102の電極に接続される。
 1次コイル402への通電/非通電に応じて1次コイル402と2次コイル404との間で相互誘導が生じ、2次コイル404に高電圧(2次電圧)及び2次電流が発生する。
この2次電圧及び2次電流が点火プラグ102に印加されて、点火プラグ102の電極間で火花放電が発生する。
 なお、点火コイル103は、一つ以上の1次コイル402、及び一つ以上の2次コイル404を設けた点火制御回路として構成してもよい。このような構成とした点火コイル103に対して、本発明を適用することも可能である。
 以上のように、本実施の形態に係る点火制御装置(ECU123)は、1次側に配置された1次コイル(1次コイル402)と、2次側に配置された2次コイル(2次コイル404)とを有する点火コイル(点火コイル103)に入力される点火信号により、1次コイル402に流れる1次電流の通電及び遮断が制御され、1次電流が遮断されたことで2次コイル404に誘起された2次電圧及び2次電流が、2次コイル404に接続される点火プラグ102に印加されて発生した火花放電により、混合気が気筒内の燃焼室で点火される内燃機関100の点火を制御する構成としている。
 このようにECU123では、再通電の終了時期と、リストライクの発生頻度が低下する時期(例えば、上死点以降)との関係に基づいて再通電の実施有無が判定される。このため、ECU123に2次電流の計測装置の追加、及び2次電流に応じて回路構成を切り替える部品の追加による製品コストの増加を抑えることができる。また、点火信号生成部204は、点火信号演算部203が再通電を実施しないと判定した場合に点火信号を生成しないので、再通電に伴う余計なエネルギ消費が抑えられる。点火信号生成部204は、点火信号演算部203が再通電を実施すると判定した場合にだけ点火信号を生成するので、必要最小限のエネルギ消費でリストライクの発生を抑制することができ、点火プラグ102の摩耗を低減することができる。
<点火制御処理の例>
 次に、ECU123で行われる点火制御処理の例について、図5~図12を参照して説明する。
 図5は、点火制御処理の例を示すフローチャートである。
 始めに、点火時期1演算部301は、図6に示す制御フローに従い、点火時期1を演算する(S1)。
 次に、通電時間1演算部302は、図7に示す制御フローに従い、通電時間1を演算する(S2)。
 次に、通電2開始時期演算部303は、図8に示す制御フローに従い、通電2開始時期を演算する(S3)。
 次に、点火時期2演算部304は、図10に示す制御フローに従い、補正前点火時期2を演算する(S4)。
 次に、通電2実施有無判定部305は、図11に示す制御フローに従い、通電2の実施有無を判定し、通電時間2を演算する(S5)。
 次に、点火信号生成部204は、図12に示すタイミングチャートに従い、点火信号を生成する(S6)。
 図6は、図5のステップS1における点火時期1演算処理の一例を示すフローチャートである。
 始めに、点火時期1演算部301は、メモリ202から基本点火時期、リタード指令値を取得する(S11)。
 次に、点火時期1演算部301は、「点火時期1=基本点火時期+リタード指令値」の式を用いて点火時期1を演算し(S12)、図5に処理を戻す。点火時期1演算部301は、予め内燃機関100の仕様毎に設定した値を使用し、例えば、「基本点火時期=上死点-所定進角量(10deg等)」の式を用いて基本点火時期を設定する。また、点火時期1演算部301は、内燃機関100の運転状態に応じて、基本点火時期からの遅角量をリタード指令値として設定する。
 図7は、図5のステップS2における通電時間1演算処理の一例を示すフローチャートである。
 始めに、通電時間1演算部302は、基本通電時間、水温、EGR流量を取得する(S21)。
 次に、通電時間1演算部302は、「通電時間1=基本通電時間-水温×水温係数+EGR流量×EGR係数」の式を用いて通電時間1を演算し(S22)、図5に処理を戻す。通電時間1演算部302は、予め内燃機関100と点火コイル103の仕様毎に設定された値を基本通電時間として使用する。また、水温が低くなるほど火花放電が飛びにくくなるため、通電時間1演算部302は、水温が低くなるほど通電時間を長くするように水温係数を設定する。また、EGR流量が多いほど火花放電を飛ばす際に高エネルギが必要となるため、通電時間1演算部302は、EGR流量が多いほど通電時間を長くするようにEGR係数を設定する。
 図8は、図5のステップS3における通電2開始時期演算処理の一例を示すフローチャートである。
 図9は、ピーク2次電流及び2次電流傾きの特性、並びに通電2開始時期、ピーク2次電流、2次電流傾き及びリストライク発生閾値の一例を示す図である。図9(a)には、横軸を筒内圧、縦軸をピーク2次電流値としたグラフ901の例が示される。図9(b)には、横軸を筒内圧、縦軸を2次電流傾きとしたグラフ902の例が示される。図9(c)には、点火時期1t903、ピーク2次電流904、2次電流傾き905、通電2開始時期t907の例が示される。
 始めに、通電2開始時期演算部303は、通電時間1、クランク角、筒内圧、コイル設計情報、リストライク発生閾値を取得する(S31)。リストライク発生閾値は、通電2開始時期演算部303により予め算出された状態でメモリ202に格納されているが、ステップS31の実行に合わせて算出されてもよい。
 次に、通電2開始時期演算部303は、ピーク2次電流、2次電流傾きを演算する(S32)。図9(a)のグラフ901は、筒内圧が高くなるにつれて、高かったピーク2次電流値が低くなるピーク2次電流値特性を表している。そこで、通電2開始時期演算部303は、筒内圧に応じたピーク2次電流値を予め計測しておき、演算する。
 また、図9(b)のグラフ902は、筒内圧が高くなるにつれて、なだらかだった2次電流傾きが急になる2次電流傾き特性を表している。そこで、通電2開始時期演算部303は、筒内圧に応じた2次電流傾きを予め計測しておき、演算する。
 次に、通電2開始時期演算部303は、通電2開始時期を次式(1)によって演算し(S33)、図5に処理を戻す。
 通電2開始時期=点火時期1t903+{(ピーク2次電流904-リストライク発生閾値906)÷2次電流傾き905}×時間角度変換係数・・・(1)
 式(1)における時間角度変換係数は、例えば、4つの気筒101を有し、各気筒101が吸気、圧縮、燃焼、排気のサイクルを720deg毎に繰り返す内燃機関100である場合は、次式(2)によって演算される。
 時間角度変換係数=(回転数[rpm]×720[deg])÷2×60[s]・・・(2)
 図9(c)の点火時期1t903で2次コイル404に大きなピーク2次電流904が通電されると、点火コイル103の電極で放電が発生する。その後、2次電流傾き905に示すように一定の減少率で2次電流が減少していく。ここで、点火時期t908まで放置すると、2次電流が0になる。しかし、リストライクが発生しやすくなる。
 そこで、ECU123は、予め2次コイル404の電流である2次電流を計測し、リストライクが頻発する2次電流の閾値をリストライク発生閾値906として設定する。点火信号演算部(点火信号演算部203)は、2次電流が予め設定されたリストライク発生閾値を超える時期をリストライク発生時期とし、再通電の開始時期をリストライク発生時期に合わせる。そして、ECU123の点火信号生成部204は、2次電流の値がリストライク発生閾値906未満になる通電2開始時期t907にて2次電流が0となるように点火信号を生成する。このため、リストライクの発生が抑えられる。
 以上のように、第2通電開始時期演算部(通電2開始時期演算部303)は、第1通電時間(通電時間1)、内燃機関(内燃機関100)の回転数、筒内圧力に基づいて、2次電流のピーク値、及びピーク値から減少する2次電流の傾きを演算し、第1点火時期(点火時期1)に対して、2次電流のピーク値、及び2次電流の傾き、及びリストライク発生閾値に基づいて演算した時間を加算して、第2通電開始時期(通電2開始時期)を演算する。そして、通電2開始時期演算部303は、リストライクが頻発する領域を避けるように通電2開始時期を設定することで、多重放電の発生を抑制して点火プラグ102の摩耗を低減することが可能となる。
 図10は、図5のステップS4における点火時期2演算処理の一例を示すフローチャートである。
 始めに、点火時期2演算部304は、上死点検出部205から上死点を取得し、メモリ202等から流速低減余裕量を取得する(S41)。上死点は予め内燃機関100の仕様に基づいて上死点検出部205により設定される。また、流速低減余裕量は予め内燃機関100の運転状態と上死点以降の流速又はリストライク発生頻度を計測した結果から、流速又はリストライク発生頻度が十分に低下する値を設定することが望ましい。
 次に、点火時期2演算部304は、「点火時期2=上死点+流速低減余裕量」の式を用いて点火時期2を設定し(S42)、図5に処理を戻す。
 以上のように、本実施の形態に係る点火制御装置は、内燃機関100の上死点を検出する上死点検出部205を備える。点火信号演算部203は、点火時期2を、少なくとも上死点以降に設定し、上死点以降は点火プラグ102の電極間の流速が低減することでリストライク頻度が低くなるため、点火プラグ102の摩耗を低減することができる。
 図11は、図5のステップS5における通電2実施有無判定処理の一例を示すフローチャートである。
 始めに、通電2実施有無判定部305は、通電2開始時期演算部303から通電2開始時期を取得し、点火時期2演算部304から点火時期2を取得する(S51)。
 次に、通電2実施有無判定部305は、通電2開始時期が点火時期2よりも進角側であるか否かを判定する(S52)。
 通電2実施有無判定部305は、通電2開始時期が点火時期2よりも進角側であると判定した場合(S52のYES)、「通電時間2=点火時期2-通電2開始時期」の式を用いて通電時間2を設定し(S53)、図5に処理を戻す。
 一方、通電2実施有無判定部305は、通電2開始時期が点火時期2よりも進角側でないと判定した場合(S52のNO)、通電時間2に0を設定し(S54)、図5に処理を戻す。なお、通電2実施有無判定部305は、通電2開始時期=点火時期2の場合にも、ステップS54に進み、通電時間2に0を設定する。
 以上のように、点火信号演算部(点火信号演算部203)は、再通電の終了時期よりも再通電の開始時期が進角側である場合に再通電を実施すると判定し、再通電の終了時期よりも再通電の開始時期が遅角側である場合に再通電を実施しないと判定する。このように再通電の実施有無が判定されるので、点火信号演算部203が再通電を実施すると判定した場合にだけ点火信号を生成する。ここで、通電2実施有無判定部305は、点火時期2よりも通電2開始時期が進角側である場合は再通電を実施する判定結果を点火信号生成部204に出力する。点火信号生成部204は、この判定結果に基づいて生成した点火信号を点火コイル103に出力するので、点火コイル103が点火プラグ102を点火することができる。このようにECU123は、必要最小限のエネルギ消費でリストライクの発生を抑制することができ、点火プラグ102の摩耗を低減することができる。
 また、通電2実施有無判定部305は、点火時期2よりも通電2開始時期が遅角側である場合は再通電を実施しない判定結果を点火信号生成部204に出力する。点火信号生成部204は、この判定結果に基づいて点火信号を生成しないので、点火コイル103が点火プラグ102を点火することはない。ここで、上死点以降に設定された通電2開始時期では点火プラグ102の電極間の流速が低減することでリストライクが発生しなくなるので、点火信号生成部204は点火信号を生成せず、点火コイル103が通電2を実施しない。このため、通電2に伴う点火コイル103での不要なエネルギ消費を抑制することができる。
 図12は、図5のステップS6における点火信号生成処理の一例を示すタイミングチャートである。このタイミングチャートには、点火信号、1次電流、2次電流及び流速の様子が示される。なお、流速とは、点火プラグ102の電極間における混合気の流速を表す。
 点火信号生成部204には、図5のステップS1~S5により生成された点火時期1、通電時間1、点火時期2、通電時間2が入力される。点火信号生成部204は、点火時期1を時間t1202、通電時間1を時間t1202-時間t1201、点火時期2を時間t1204、通電時間2を時間t1204-時間t1203となるように、点火信号を生成する。ここで、時間t1201は、点火時期1に合わせて点火コイル103に通電される1次電流(通電1)の通電1開始時期を表す。また、時間t1203は、1次電流(通電2)の通電2開始時期を表す。
 以下、点火信号生成部204により行われる点火信号の生成処理について説明する。
 時間t1201(通電1開始時期)において、点火信号がOFFからONになると、1次コイル402への通電が開始される。1次コイル402への通電継続と共に、1次コイル402に流れる1次電流が増加し、1次コイル402と2次コイル404との間に形成される磁界が強くなっていく。
 時間t1202(点火時期1)において、点火信号がONからOFFになると、1次コイル402に通電される1次電流が0になる。1次電流が0になると同時に、1次コイル402と2次コイル404との間の相互誘導に伴い、2次コイル404に流れる2次電流が急増し、点火プラグ102から火花放電を発生させる。この2次電流は、時間t1202後、時間経過と共に減少していく。
 一般的に、時間t1202は点火プラグ102の電極間の流速が大きいタイミングとなるように設定される。電極間の流速が大きいので、電極間で発生した火花放電が長く伸びることで燃焼成立性が高まる。よって、時間t1202の付近では上死点手前で点火プラグ102の電極間の流速が最も大きい状態となる。その後、燃焼室内にてタンブル崩壊が発生することにより、点火プラグ102の電極間の流速は時間経過と共に減少していく。
 時間t1203(通電2開始時期)において、点火信号が再度OFFからONとなり、1次コイル402に通電することで、1次コイル402に2次電流と逆向きの電流が流れ、2次電流が0となる。
 ステップS3における通電2開始時期演算処理にて、通電2開始時期演算部303は、この時間t1203の発生時期を、リストライク発生閾値以下である2次電流が、リストライク発生閾値を超える時間と一致させる。このように通電2開始時期演算部303が、時間t1203の発生時期を調整することにより、リストライクの頻発を防ぎ、点火プラグ102の摩耗を抑制することができる。
 また、時間t1204(点火時期2)において、点火信号が再度ONからOFFになると、1次電流が0になると共に、2次電流が急増し、点火プラグ102から火花放電が発生する。しかし、時間t1204はステップS4により上死点以降となって、タンブル崩壊が進んでおり、点火プラグ102の電極間の流速が減少している。このため、点火プラグ102の電極間に生じる火花放電が吹き消え、再び火花放電が発生するといった多重放電は発生せず、多重放電による点火プラグ102の摩耗も発生しない。
 図13は、本実施の形態に係る通電2実施有無判定処理の一例を示すタイミングチャートである。図13に示す上死点時期t1301は、上死点の時期を表す。図13(a)は、点火時期1がBTDC30degである場合を表し、図13(b)は点火時期1がBTDC10degである場合を表し、図13(c)は点火時期1がATDC(After Top Dead Center)10degである場合を表す。
 図14は、図13における回転数1000、2000、4000、6000rpmでの点火時期1から上死点時期t1301までの時間の一例を示す。例えば、図13(a)では、点火時期1(t1302)から上死点時期t1301までの時間を表し、図13(b)では、点火時期1(t1307)から上死点時期t1301までの時間を表す。また、図13(c)では、点火時期1(t1312)から上死点時期t1301までの時間を表す。回転数が異なる場合、点火時期1(固定角)と上死点(固定角)間の時間が変化する。そこで、図14より、低い回転数であれば、点火時期1から上死点時期t1301までの時間が長く、高い回転数であれば、点火時期1から上死点時期t1301までの時間が短くなることが示される。
 図13(a)から図13(c)は、点火時期1及び回転数が異なる場合において、通電2実施有無判定部305が、通電2を実施するか否かを判定した結果を記載したタイミングチャートである。また、図13(a)から図13(c)において、上死点時期t1301は点火時期2に一致する。また、図13(a)から図13(c)では、点火時期1から2次電流がリストライク発生閾値を下回るまでの時間が0.7ms、2次電流が0まで減少する時間が1.0msである場合を想定してタイミングチャートが記載される。
 図13(a)に示す点火時期1t1302がBTDC30degである場合の通電2開始時期は、1000rpmの場合が時期t1303、2000rpmの場合が時期t1304、4000rpmの場合が時期t1305、6000rpmの場合が時期t1306で表される。
 図14のBTDC30degでの各回転数における点火時期1t1302から上死点時期t1301までの時間は、いずれもプラスである。また、図13(a)に示すように、時期t1303から時期t1306は、上死点時期t1301よりも進角側である。このため、通電2実施有無判定部305は、各通電2開始時期から上死点時期t1301までの間、通電2を実施する。
 図13(b)に示す点火時期1t1307がBTDC10degである場合の通電2開始時期は、1000rpmの場合が時期t1308、2000rpmの場合が時期t1309、4000rpmの場合が時期t1310、6000rpmの場合が時期t1311で表される。
 図14のBTDC10degでの各回転数における点火時期1t1307から上死点時期t1301までの時間は、いずれもプラスである。また、図13(b)に示すように、時期t1308、t1309は、上死点時期t1301よりも進角側である。このため、通電2実施有無判定部305は、図11に示した通電2実施有無判定処理(ステップS52のYES)に基づき、各通電2開始時期から上死点時期t1301までの間、通電2を実施する。一方、図13(b)より時期t1310,t1311は上死点時期t1301よりも遅角側であることが示される。このため、通電2実施有無判定部305は、図11に示した通電2実施有無判定処理(ステップS52のNO)に基づき、通電2を実施しない。
 図13(c)に示す点火時期1t1312がATDC10degである場合を表す。通電2開始時期は、1000rpmの場合が時期t1313、2000rpmの場合が時期t1314、4000rpmの場合が時期t1315、6000rpmの場合が時期t1316で表される。
 図14のATDC10degでの各回転数における点火時期1t1312から上死点時期t1301までの時間は、いずれもマイナスである。また、図13(c)に示すように、時期t1313から時期t1316は、上死点時期t1301よりも遅角側であることが示される。このため、通電2実施有無判定部305は、図11のフローチャートに基づき、通電2を実施しない。
 以上の処理により、図13(a)に示す時期t1303から時期t1306、図13(b)に示す時期t1308、時期t1309において、通電2実施有無判定部305は、1次コイル402へ通電することにより、多重放電の発生を抑制して点火プラグ102の摩耗を低減することが可能となる。
 また、点火プラグ102の電極間の流速が低減することでリストライク頻度が低くなる上死点を通電2開始時期とすることにより、点火プラグ102の摩耗をさらに抑制することができる。また、図13(b)に示す時期t1310、時期t1311、図13(c)に示す時期t1313から時期t1316が通電2開始時期となった場合は、既に上死点時期t1301を通過しており、点火プラグ102の電極間の流速が低減することでリストライク頻度が低くなっている。このため、通電2実施有無判定部305は、通電2を実施しないことで不要なエネルギ消費を抑制することができる。
 以上説明した一実施の形態に係るECU123では、内部処理により再通電の終了時期と、リストライクの発生頻度が低下する時期との関係に基づいて再通電の実施有無を判定する。このため、点火コイル103の動作を制御するための回路部品を追加して製品コストを増加させなくてもよい。また、再通電を実施すると判定された場合に、点火信号の生成が行われ、再通電を実施しないと判定された場合には、点火信号の生成が行われない。
このように常に点火信号の生成が行われるわけではないので、必要最小限のエネルギ消費でリストライクの発生を抑制することができ、点火プラグ102の摩耗を低減することができる。
 また、超希薄燃焼やEGRを実施する場合でも、本実施の形態に係る再通電の実施有無の判定、及び点火信号の生成処理が行われるので、リストライクの発生を抑制し、さらに点火プラグ102の摩耗を抑制することが可能となる。このため、本実施の形態に係る技術は、点火プラグ102の長寿命化に寄与する。
 なお、内燃機関100は、EGRを実施しない構成としてもよい。
 なお、本発明は上述した実施の形態に限られるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りその他種々の応用例、変形例を取り得ることは勿論である。
 例えば、上述した実施の形態は本発明を分かりやすく説明するために内燃機関及び点火制御装置の構成を詳細かつ具体的に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、本実施の形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
 100…内燃機関、102…点火プラグ、103…点火コイル、106…ピストン、123…ECU、203…点火信号演算部、204…点火信号生成部、205…上死点検出部、301…点火時期1演算部、302…通電時間1演算部、303…通電2開始時期演算部、304…点火時期2演算部、305…通電2実施有無判定部、402…1次コイル、404…2次コイル

Claims (10)

  1.  1次側に配置された1次コイルと、2次側に配置された2次コイルとを有する点火コイルに入力される点火信号により、前記1次コイルに流れる1次電流の通電及び遮断が制御され、前記1次電流が遮断されたことで前記2次コイルに誘起された2次電圧及び2次電流が、前記2次コイルに接続される点火プラグに印加されて発生した火花放電により、混合気が気筒内の燃焼室で点火される内燃機関の点火を制御する点火制御装置において、
     1回の点火工程内で前記1次電流の再通電の開始時期及び終了時期を演算し、前記再通電の終了時期と、リストライクの発生頻度が低下する時期とを比較して前記再通電の実施有無を判定する点火信号演算部と、
     前記点火工程内で少なくとも1回以上の火花放電を発生させるための前記点火信号を生成して前記点火コイルに出力した後、前記点火信号演算部により前記再通電を実施すると判定された場合に前記点火信号を生成して前記再通電の開始時期に前記点火信号を前記点火コイルに出力し、前記点火信号演算部により前記再通電を実施しないと判定された場合に前記点火信号を生成しない点火信号生成部と、を備える
     点火制御装置。
  2.  前記気筒内を運動するピストンの上死点を検出する上死点検出部を備え、
     前記点火信号演算部は、前記リストライクの発生頻度が低下する時期を、前記点火プラグの電極間における前記混合気の流速が低減する時期であって、前記上死点の時期以降とする
     請求項1に記載の点火制御装置。
  3.  前記点火信号演算部は、前記再通電の開始時期、前記再通電の終了時期、及び前記上死点の時期を、前記ピストンの回転角度に基づいて演算し、前記再通電の終了時期よりも前記再通電の開始時期が進角側である場合に前記再通電を実施すると判定し、前記再通電の終了時期よりも前記再通電の開始時期が遅角側である場合に前記再通電を実施しないと判定する
     請求項2に記載の点火制御装置。
  4.  前記点火信号演算部は、前記2次電流が予め設定されたリストライク発生閾値を超える時期をリストライク発生時期とし、前記再通電の開始時期を前記リストライク発生時期に合わせる
     請求項3に記載の点火制御装置。
  5.  前記点火信号演算部は、前記内燃機関の回転数を検出する回転数検出部が検出した前記回転数と、前記燃焼室内の筒内圧力を検出する筒内圧力検出部が検出した前記筒内圧力と、実施有無が判定される前記再通電の前に通電された前記1次電流の遮断時期と、予め設定されたリストライク発生閾値とに基づいて、前記再通電の開始時期である第2通電開始時期を演算する第2通電開始時期演算部を有する
     請求項4に記載の点火制御装置。
  6.  前記点火信号演算部は、
     前記再通電が遮断されて発生する前記火花放電により前記混合気が点火される第2点火時期を演算する第2点火時期演算部と、
     前記第2通電開始時期及び前記第2点火時期に基づいて、前記再通電の実施有無を判定して点火信号演算結果を出力する再通電実施判定部と、を有し、
     前記点火信号生成部は、前記再通電の直前の点火時期である第1点火時期、前記再通電の直前に通電される前記1次電流の第1通電時間、前記第2点火時期、及び前記点火信号演算結果に基づいて生成した前記点火信号を前記点火コイルに出力する
     請求項5に記載の点火制御装置。
  7.  前記第2通電開始時期演算部は、前記第1通電時間、前記内燃機関の回転数、前記筒内圧力に基づいて、前記2次電流のピーク値、及び前記ピーク値から減少する前記2次電流の傾きを演算し、前記第1点火時期に対して、前記2次電流のピーク値、及び前記2次電流の傾き、及び前記リストライク発生閾値に基づいて演算した時間を加算して、前記第2通電開始時期を演算する
     請求項6に記載の点火制御装置。
  8.  前記点火信号演算部は、
     基本点火時期からリタード指令値を減じて、前記第1点火時期を演算する第1点火時期演算部と、
     基本通電時間、及び前記内燃機関を冷却する冷却水の水温に基づいて、前記第1通電時間を演算する第1通電時間演算部と、を有する
     請求項7に記載の点火制御装置。
  9.  前記第1通電時間演算部は、前記基本通電時間、前記水温、及び燃焼後の排気ガスの一部がEGRガスとして排気管から吸気管に還流されるように接続されるEGR管内の前記EGRガスの流量に基づいて前記第1通電時間を演算する
     請求項8に記載の点火制御装置。
  10.  前記内燃機関は、理論空燃比よりも希薄な混合気で超希薄燃焼する
     請求項9に記載の点火制御装置。
PCT/JP2021/005154 2020-06-30 2021-02-12 点火制御装置 WO2022004041A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022533671A JP7316457B2 (ja) 2020-06-30 2021-02-12 点火制御装置
CN202180040381.4A CN115702289A (zh) 2020-06-30 2021-02-12 点火控制装置
US17/927,992 US11754033B2 (en) 2020-06-30 2021-02-12 Ignition control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-112710 2020-06-30
JP2020112710 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022004041A1 true WO2022004041A1 (ja) 2022-01-06

Family

ID=79315232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005154 WO2022004041A1 (ja) 2020-06-30 2021-02-12 点火制御装置

Country Status (4)

Country Link
US (1) US11754033B2 (ja)
JP (1) JP7316457B2 (ja)
CN (1) CN115702289A (ja)
WO (1) WO2022004041A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193622A (ja) * 1999-02-19 2001-07-17 Ngk Spark Plug Co Ltd 内燃機関用点火装置
JP2015132170A (ja) * 2014-01-09 2015-07-23 ダイヤモンド電機株式会社 内燃機関用の点火装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3322862B2 (ja) * 1999-02-19 2002-09-09 日本特殊陶業株式会社 内燃機関用点火装置
JP2001140739A (ja) * 1999-11-15 2001-05-22 Ngk Spark Plug Co Ltd 内燃機関用点火装置
JP4521502B2 (ja) * 2001-01-25 2010-08-11 日本特殊陶業株式会社 内燃機関用点火装置
JP4127373B2 (ja) * 2002-09-19 2008-07-30 株式会社デンソー 内燃機関のイオン電流検出装置
JP5811068B2 (ja) * 2011-10-11 2015-11-11 株式会社デンソー 内燃機関の点火装置
JP6314617B2 (ja) * 2014-04-10 2018-04-25 株式会社デンソー 内燃機関用点火装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193622A (ja) * 1999-02-19 2001-07-17 Ngk Spark Plug Co Ltd 内燃機関用点火装置
JP2015132170A (ja) * 2014-01-09 2015-07-23 ダイヤモンド電機株式会社 内燃機関用の点火装置

Also Published As

Publication number Publication date
US11754033B2 (en) 2023-09-12
JPWO2022004041A1 (ja) 2022-01-06
CN115702289A (zh) 2023-02-14
JP7316457B2 (ja) 2023-07-27
US20230213013A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
US6425371B2 (en) Controller for internal combustion engine
WO2012144187A1 (ja) ガスエンジン、ガスエンジンの制御装置及び制御方法
JP4873250B2 (ja) 車両用エンジンのプリイグニッション検出装置
JP2012002088A (ja) 内燃機関の制御装置
JP5885767B2 (ja) 内燃機関の制御装置
JP2004003429A (ja) 内燃機関のノッキング抑制制御装置
JP4784467B2 (ja) 予混合圧縮着火内燃機関
JP2018178868A (ja) 内燃機関の異常燃焼検出装置
WO2022004041A1 (ja) 点火制御装置
JP2008025405A (ja) 内燃機関の制御装置
WO2022158038A1 (ja) 内燃機関制御装置及び内燃機関制御方法
JP6392535B2 (ja) 内燃機関の制御装置
JP2010025039A (ja) 燃焼異常状態判別装置
WO2015122003A1 (ja) 内燃機関の点火装置および点火方法
JP6421435B2 (ja) 内燃機関の制御装置
JP6411951B2 (ja) 内燃機関の制御装置
JP7432544B2 (ja) 点火制御装置
JP2008038672A (ja) 内燃機関の点火時期制御装置
WO2022269976A1 (ja) 内燃機関の制御装置
CN115163377B (zh) 一种车辆的发动机的点火能量的控制方法及控制系统
JP2016109100A (ja) 内燃機関の診断装置
KR100219862B1 (ko) 노킹 발생 억제 장치 및 방법
JP5936722B1 (ja) 内燃機関の制御装置
JP6485137B2 (ja) 内燃機関の制御装置
JP4454433B2 (ja) 内燃機関の点火時期制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21831774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533671

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21831774

Country of ref document: EP

Kind code of ref document: A1