WO2022001401A1 - 接收装置的定位方法及装置、系统、存储介质和电子装置 - Google Patents

接收装置的定位方法及装置、系统、存储介质和电子装置 Download PDF

Info

Publication number
WO2022001401A1
WO2022001401A1 PCT/CN2021/093458 CN2021093458W WO2022001401A1 WO 2022001401 A1 WO2022001401 A1 WO 2022001401A1 CN 2021093458 W CN2021093458 W CN 2021093458W WO 2022001401 A1 WO2022001401 A1 WO 2022001401A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset direction
target
information
electromagnetic
reflection surface
Prior art date
Application number
PCT/CN2021/093458
Other languages
English (en)
French (fr)
Inventor
窦建武
方敏
陈艺戬
张楠
彭琳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US18/013,590 priority Critical patent/US20230292277A1/en
Priority to KR1020237001644A priority patent/KR20230030627A/ko
Priority to EP21832721.1A priority patent/EP4175328A4/en
Priority to AU2021301699A priority patent/AU2021301699A1/en
Priority to JP2022580533A priority patent/JP2023532073A/ja
Publication of WO2022001401A1 publication Critical patent/WO2022001401A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/426Scanning radar, e.g. 3D radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S13/48Indirect determination of position data using multiple beams at emission or reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/876Combination of several spaced transponders or reflectors of known location for determining the position of a receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/026Services making use of location information using location based information parameters using orientation information, e.g. compass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S2013/462Indirect determination of position data using multipath signals
    • G01S2013/464Indirect determination of position data using multipath signals using only the non-line-of-sight signal(s), e.g. to enable survey of scene 'behind' the target only the indirect signal is evaluated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/024Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using polarisation effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a positioning method and device, system, storage medium, and electronic device for a receiving device.
  • Direction of Arrival (DOA) estimation methods for traditional array beams include multiple signal classification (Multiple Signal Classification, MUSIC for short), Rotation Invariant Subspace (Estimating Signal parameter via Rotation Invariance Techniques, abbreviated as ESPRIT) and other methods, the basis of which is that the array element has an independent measurement function (such as measuring the phase of the incoming wave).
  • ESPRIT Rotation Invariant Subspace
  • other methods the basis of which is that the array element has an independent measurement function (such as measuring the phase of the incoming wave).
  • ESPRIT Rotation Invariant Subspace
  • the array element has an independent measurement function (such as measuring the phase of the incoming wave).
  • EM reflective surfaces also known as smart reflective surfaces, EM reflective surfaces
  • this addition of measurement capabilities reduces reflective efficiency and increases costs, so smart reflective surfaces typically do not have phase measurement with separate EM units function, resulting in the inability of traditional array DOA estimation methods in smart reflective surfaces.
  • the traditional non-line-of-sight positioning methods include the line-of-sight reconstruction positioning method, the non-line-of-sight weighted positioning method, the Time of Arrival (TOA) positioning method based on the combination of line-of-sight reconstruction and smoothing, and the inequality constraint-based positioning method.
  • the positioning method wherein either the non-line-of-sight method is converted into the line-of-sight by using the mirror principle, or the influence of the non-line-of-sight component is reduced by a statistical method, and the coordination of multiple base stations is required in this positioning method; and, the fingerprint in the related art
  • the deployment of another positioning system and related supporting facilities are required, which increases the cost and is limited in implementation in some scenarios. It can be seen that, in the related art, during positioning, multiple systems and the support of other related technologies need to be used, and the characteristics of the electromagnetic reflection surface itself cannot be used to locate the terminal.
  • Embodiments of the present application provide a positioning method, device, system, storage medium, and electronic device for a receiving device, so as to at least solve the technical problem in the related art that the characteristics of the electromagnetic reflection surface itself cannot be used to locate the terminal.
  • a method for locating a receiving device includes: transmitting a pilot signal to an electromagnetic reflection surface through a transmitting device; sending regulation information to an electromagnetic reflection surface control unit through the transmitting device, wherein the regulation The information includes timing information and regulation direction information, and the regulation information is used to instruct the electromagnetic reflection surface control unit to point the reflected beam formed by the target pilot signal on the electromagnetic reflection surface in a predetermined direction in a target time period, and the The preset direction is the direction indicated by the preset direction information corresponding to the target time period, and the preset direction points to the target area, the timing information includes the target time period, and the control direction information includes the preset direction information.
  • the pilot signal transmitted by the transmitting device includes the target pilot signal; the signal measurement result corresponding to the preset direction is determined by the transmitting device or the receiving device, and a signal measurement result corresponding to the preset direction is determined according to the preset direction. and the signal measurement result to locate the receiving device, wherein the signal measurement result is the target reflected along the preset direction received by the receiving device located in the target area The result obtained by measuring the pilot signal.
  • the method before the transmitting the pilot signal to the electromagnetic reflection surface by the transmitting device, the method further includes: determining, by the transmitting device, the regulation information according to the target area; Determining the control information for the target area includes: determining a plurality of the preset direction information according to a plurality of sub-areas obtained by dividing the target area, and determining a plurality of the target time periods according to the plurality of the preset direction information , wherein each of the preset direction information corresponds to each of the plurality of sub-regions one-to-one, the timing information includes a plurality of the target time periods, and each of the target time periods is associated with each of the target time periods.
  • the preset direction information is in one-to-one correspondence; or, multiple preset directions for pointing to the target area are determined, and each preset direction information is determined as one of the multiple preset directions a preset direction, and determining a plurality of the target time periods according to a plurality of the preset direction information, wherein the timing information includes a plurality of the target time periods, each of the target time periods and each of the The preset direction information of the target time period corresponds to each other.
  • the method further includes: determining, through the electromagnetic reflection surface control unit, a target according to the preset direction information reflection coefficient; the reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface is adjusted to the target reflection coefficient by the electromagnetic reflection surface control unit, so that the electromagnetic reflection surface forms a reflection beam in the preset direction; wherein , the reflection coefficient of each electromagnetic unit includes at least one of the following: amplitude, phase, and polarization.
  • the method further includes: adjusting the reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface to the target reflection coefficient through the electromagnetic reflection surface control unit, so that the electromagnetic reflection surface forms the desired reflection coefficient.
  • the The method further includes: determining a target reflection coefficient according to the input parameter by the electromagnetic reflection surface control unit, and adjusting the reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface to the target reflection coefficient, so that the electromagnetic reflection The reflection surface forms a reflection beam in the preset direction, wherein the input parameter is used to determine the target reflection coefficient, and the reflection coefficient of each electromagnetic unit includes at least one of the following: amplitude, phase, and polarization.
  • the regulation information further includes one of the following information: beam regulation start time, wherein the beam regulation start time is used to instruct the electromagnetic reflection surface control unit when the beam regulation start time , start to control each electromagnetic unit of the electromagnetic reflection surface to control the reflected beam direction of the electromagnetic reflection surface; the end time of beam regulation, wherein the end time of the beam regulation is used to indicate that the electromagnetic reflection surface control unit is in At the end time of the beam adjustment, the control of each electromagnetic unit of the electromagnetic reflection surface is ended.
  • the method further includes: receiving, by the transmitting device, a measurement result set sent by the receiving device, wherein the The measurement result set includes signal measurement results corresponding to the target time period; wherein the determining, by the transmitting device, the signal measurement results corresponding to the preset direction includes: determining according to the target time period For the preset direction indicated by the preset direction information corresponding to the target time period, the signal measurement result corresponding to the target time period is determined as the signal measurement result corresponding to the preset direction.
  • the method further includes: receiving, by the receiving device, the correspondence information sent by the transmitting device, wherein the The corresponding relationship information is the corresponding relationship between the preset direction and the target time period, or the corresponding relationship information is the corresponding relationship between the preset direction and the target pilot signal;
  • the receiving device determining the signal measurement result corresponding to the preset direction includes: in the case that the corresponding relationship information is the corresponding relationship between the preset direction and the target time period, converting the signal corresponding to the target time period
  • the signal measurement result is determined to be the signal measurement result corresponding to the preset direction; or, in the case that the correspondence information is the corresponding relationship between the preset direction and the target pilot signal,
  • the signal measurement result corresponding to the pilot signal is determined as the signal measurement result corresponding to the preset
  • the positioning of the receiving device according to the preset direction and the signal measurement result includes: according to the preset direction and the position and height of the electromagnetic reflection surface, Determine the position coordinates (xi, yi) of the reflected beam corresponding to each of the preset directions in the target area, and determine the value of the signal measurement result corresponding to the preset direction as the value corresponding to the position
  • the vertical axis coordinate zi corresponding to the coordinate (xi, yi), wherein the i is the identifier of the reflected beam corresponding to the preset direction; according to the coordinate range where the target area is located, the position coordinate (xi, yi) and the corresponding vertical axis coordinate zi carry out Gaussian function fitting, obtain the Gaussian function after fitting, and determine the positioning result that the receiving device is positioned according to the coordinates corresponding to the vertex of the Gaussian function after the fitting .
  • the Gaussian function fitting is performed according to the coordinate range where the target area is located, the position coordinates (xi, yi) and the corresponding vertical axis coordinate zi to obtain the fitted Gaussian function, and determine the positioning result of positioning the receiving device according to the coordinates corresponding to the vertices of the Gaussian function after fitting, including: the abscissa range and ordinate range where the target area is located according to preset coordinate intervals respectively Perform sampling to obtain a sampled abscissa set and ordinate set; determine the vertical axis corresponding to each abscissa xw in the abscissa set from the vertical axis coordinates zi corresponding to the position coordinates (xi, yi).
  • the axis coordinate zw, and the vertical axis coordinate zp corresponding to each vertical coordinate yp in the vertical coordinate set is determined from the vertical axis coordinate zi corresponding to the position coordinate (xi, yi), wherein the w and p is a positive integer in the interval [1,n], and the n is the number of samples to be sampled; according to the abscissa set and the vertical axis coordinate zw corresponding to each abscissa xw in the abscissa set
  • the coordinate set (xw, zw) is fitted with a one-dimensional Gaussian function to obtain the fitted first Gaussian function; and according to the vertical axis set and the vertical axis corresponding to each vertical coordinate yp in the vertical coordinate set
  • the coordinate set (yp, zp) composed of the coordinates zp is subjected to one-dimensional Gaussian curve fitting to obtain the second Gaussian function after fitting; the first coordinate xt corresponding to the vertex
  • the xt and the yt are respectively determined as the abscissa and the ordinate of the positioning result, wherein the xt is the abscissa within the range of the abscissa, and The yt is an ordinate within the range of the ordinate.
  • the positioning of the receiving device according to the preset direction and the signal measurement result includes: according to the preset direction and the position and height of the electromagnetic reflection surface, Determine the position coordinates (xi, yi) of the reflected beam corresponding to each of the preset directions in the target area, and determine the value of the signal measurement result corresponding to the preset direction as the value corresponding to the position
  • the method further includes: determining, by the transmitting device, target direction information according to a positioning result obtained by locating the receiving device, wherein the target direction information is used to instruct the electromagnetic reflection surface control unit to The target direction information controls the reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface, so that the reflected beam formed on the electromagnetic reflection surface by the radio frequency signal emitted by the transmitting device is directed to the receiving device.
  • the method further includes: determining, by the receiving device, target direction information according to a positioning result obtained by locating the receiving device, wherein the target direction information is used to instruct the electromagnetic reflection surface control unit to The target direction information controls the reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface, so that the reflected beam formed on the electromagnetic reflection surface by the radio frequency signal emitted by the transmitting device is directed to the receiving device.
  • a positioning device for a receiving device including: a transmitting module, configured to transmit a pilot signal to an electromagnetic reflection surface through the transmitting device; a regulating module, configured to transmit a pilot signal to an electromagnetic reflecting surface through the transmitting device;
  • the electromagnetic reflection surface control unit sends regulation information, wherein the regulation information includes timing information and regulation direction information, and the regulation information is used to instruct the electromagnetic reflection surface control unit to place the target pilot signal on the electromagnetic reflection surface during the target time period.
  • the reflected beam formed on the reflection surface points to a preset direction
  • the preset direction is the direction indicated by the preset direction information corresponding to the target time period, and the preset direction points to the target area
  • the timing information includes the target time period
  • the control direction information includes the preset direction information
  • the pilot signal transmitted by the transmitting device includes the target pilot signal
  • the positioning module is configured to be determined by the transmitting device or the receiving device.
  • the signal measurement result corresponding to the preset direction, and the receiving device is located according to the preset direction and the signal measurement result, wherein the signal measurement result is all the signals located in the target area.
  • a positioning system for a receiving device including: a transmitting device, an electromagnetic reflecting surface control unit, an electromagnetic reflecting surface, and a receiving device, wherein the transmitting device is configured to be directed toward the electromagnetic
  • the reflective surface transmits a pilot signal and is configured to send regulation information to the electromagnetic reflective surface control unit, wherein the regulation information includes timing information and regulation direction information, and the regulation information is used to instruct the electromagnetic reflective surface control unit at the target time
  • the regulation information includes timing information and regulation direction information
  • the regulation information is used to instruct the electromagnetic reflective surface control unit at the target time
  • the segment points the reflected beam formed by the target pilot signal on the electromagnetic reflection surface to a preset direction, the preset direction is the direction indicated by the preset direction information corresponding to the target time period, and the preset direction pointing to the target area, the timing information includes the target time period, the regulation direction information includes the preset direction information, the pilot signal transmitted by the transmitting device includes the target pilot signal; the electromagnetic reflection a surface control unit, configured to direct the reflected beam formed by the target pilot
  • a computer-readable storage medium is also provided, and a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to execute any one of the above methods when running steps in the examples.
  • an electronic device comprising a memory and a processor, wherein the memory stores a computer program, and the processor is configured to run the computer program to execute any one of the above Steps in Method Examples.
  • FIG. 1 is a block diagram of a hardware structure of an electronic device for a positioning method for a receiving device according to an embodiment of the present application
  • FIG. 2 is a network architecture diagram of a method for positioning a receiving device according to an embodiment of the present application
  • FIG. 3 is a flowchart of a positioning method for a receiving device according to an embodiment of the present application.
  • FIG. 4 is a schematic plan view of a deployment scene of an intelligent electromagnetic reflective surface according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of wireless signal quality recorded by a receiving device according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a corresponding relationship between a time slot corresponding to a wireless signal quality and a position coordinate in a target area according to an embodiment of the present application;
  • FIG. 7 is a schematic diagram of a two-dimensional display of wireless signal quality and position coordinates in a target area according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram illustrating a one-dimensional display of wireless signal quality and position coordinates in a target area according to an embodiment of the present application
  • FIG. 9 is a schematic diagram (1) of the wireless signal quality in the x-axis direction and a one-dimensional Gaussian curve fitting according to an embodiment of the present application;
  • 10 is a schematic diagram (2) of wireless signal quality in the y-axis direction and one-dimensional Gaussian curve fitting according to an embodiment of the present application;
  • FIG. 11 is a schematic diagram of wireless signal quality recorded by a receiving device according to another embodiment of the present application.
  • FIG. 12 is a schematic diagram of the correspondence between time slots corresponding to wireless signal quality and position coordinates in a target area according to another embodiment of the present application.
  • FIG. 13 is a two-dimensional display schematic diagram of wireless signal quality and position coordinates in a target area according to another embodiment of the present application.
  • FIG. 14 is a schematic diagram showing a one-dimensional display of wireless signal quality and position coordinates in a target area according to another embodiment of the present application.
  • 15 is a schematic diagram (1) of wireless signal quality in the x-axis direction and one-dimensional Gaussian curve fitting according to another embodiment of the present application;
  • 16 is a schematic diagram (2) of wireless signal quality in the y-axis direction and one-dimensional Gaussian curve fitting according to another embodiment of the present application;
  • FIG. 17 is a structural block diagram of a positioning apparatus of a receiving apparatus according to an embodiment of the present application.
  • FIG. 1 is a block diagram of a hardware structure of an electronic device for a method for positioning a receiving device according to an embodiment of the present application.
  • the electronic device may include one or more (only one is shown in FIG.
  • processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA) and a memory 104 configured to store data, wherein the above-mentioned electronic device may further include a transmission device 106 and an input/output device 108 configured as a communication function.
  • a processing device such as a microprocessor MCU or a programmable logic device FPGA
  • a memory 104 configured to store data
  • the above-mentioned electronic device may further include a transmission device 106 and an input/output device 108 configured as a communication function.
  • FIG. 1 is only a schematic diagram, which does not limit the structure of the above electronic device.
  • the electronic device may also include more or fewer components than shown in FIG. 1 , or have a different configuration than that shown in FIG. 1 .
  • the memory 104 may be configured to store computer programs, for example, software programs and modules of application software, such as computer programs corresponding to the positioning method of the receiving device in the embodiment of the present application, and the processor 102 runs the computer programs stored in the memory 104, Thereby, various functional applications and data processing are performed, that is, the above-mentioned method is realized.
  • Memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • memory 104 may further include memory located remotely from processor 102, which may be connected to the electronic device through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • Transmission means 106 are arranged to receive or transmit data via a network.
  • the specific example of the above-mentioned network may include a wireless network provided by a communication provider.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices so as to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, RF for short) module, which is configured to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • the embodiments of the present application may operate on the network architecture shown in FIG. 2 .
  • the network architecture includes: a transmitting device (for example, a base station), an intelligent electromagnetic reflective surface control unit (that is, a control unit corresponding to the embodiment of the present application) an electromagnetic reflection surface control unit), an intelligent electromagnetic reflection surface (ie, the electromagnetic reflection surface in the embodiment of the present application), and a receiving device (for example, a terminal).
  • the transmitting device includes a radio frequency unit or an antenna, and the transmitting device is set to plan, configure and transmit a specific wireless signal, for example, the transmitting device transmits a radio frequency signal (such as the pilot signal in the embodiment of the present application) to the intelligent electromagnetic reflective surface through the radio frequency unit ); an intelligent electromagnetic reflection surface control unit, which is set to control the reflection coefficient of each electromagnetic unit (or called an electromagnetic reflection unit) in the intelligent reflection surface; the intelligent electromagnetic reflection surface is composed of multiple groups of electromagnetic units whose reflection coefficients are controllable, By controlling the reflection coefficient of each electromagnetic unit, the intelligent electromagnetic reflecting surface can form a predetermined reflected beam antenna pattern (that is, a reflected beam in a predetermined direction is formed on the intelligent reflecting surface).
  • a radio frequency signal such as the pilot signal in the embodiment of the present application
  • an intelligent electromagnetic reflection surface control unit which is set to control the reflection coefficient of each electromagnetic unit (or called an electromagnetic reflection unit) in the intelligent reflection surface
  • the intelligent electromagnetic reflection surface is composed of multiple groups of electromagnetic units whose reflection coefficients are
  • Wireless signals are measured, recorded or analyzed.
  • the target pilot signal transmitted by the transmitting device is pre-planned and configured by the transmitting device (for example, a base station), and the transmitting device notifies the receiving device of the planned target pilot signal, so that the receiving device can know that the transmitting device will The target pilot signal transmitted.
  • FIG. 3 is a flowchart of a method for locating a receiving device according to an embodiment of the present application. As shown in FIG. 3 , the process includes the following steps: step:
  • Step S302 transmitting a pilot signal to the electromagnetic reflecting surface through the transmitting device
  • Step S304 sending regulation information to the electromagnetic reflection surface control unit through the transmitting device, wherein the regulation information includes timing information and regulation direction information, and the regulation information is used to instruct the electromagnetic reflection surface control unit in the target time period Point the reflected beam formed by the target pilot signal on the electromagnetic reflection surface in a preset direction, the preset direction is the direction indicated by the preset direction information corresponding to the target time period, and the preset direction points to a target area, the timing information includes the target time period, the control direction information includes the preset direction information, and the pilot signal transmitted by the transmitting device includes the target pilot signal;
  • Step S306 determining a signal measurement result corresponding to the preset direction by the transmitting device or the receiving device, and locating the receiving device according to the preset direction and the signal measurement result, wherein the The signal measurement result is a result obtained by the receiving apparatus located in the target area measuring the received target pilot signal reflected along the preset direction.
  • a pilot signal is transmitted to the electromagnetic reflection surface through the transmitting device; regulation information is sent to the electromagnetic reflection surface control unit through the transmitting device, wherein the regulation information includes timing information and regulation direction information, and the regulation information uses instructing the electromagnetic reflection surface control unit to point the reflected beam formed by the target pilot signal on the electromagnetic reflection surface to a preset direction during a target time period, and the preset direction is a preset corresponding to the target time period
  • the timing information includes the target time period
  • the control direction information includes the preset direction information
  • the pilot signal transmitted by the transmitting device Including the target pilot signal; determining the signal measurement result corresponding to the preset direction by the transmitting device or the receiving device, and positioning the receiving device according to the preset direction and the signal measurement result , wherein the signal measurement result is a result obtained by the receiving apparatus located in the target area measuring the received target pilot signal reflected along the preset direction. Therefore, the technical problem in the related art that the characteristics
  • a set of systems that is, using a base station and an electromagnetic reflection surface
  • the ability of the reflection surface itself can be used to realize the positioning of the receiving device.
  • the positioning of the receiving device can be completed by using the characteristics of the electromagnetic reflection surface itself.
  • the signal measurement result may be signal quality, signal field strength level or signal received power.
  • step S302 and step S304 can be interchanged, that is, step S304 may be executed first, and then step S302 may be executed.
  • the method before the transmitting the pilot signal to the electromagnetic reflection surface through the transmitting device, the method further includes: before the transmitting the pilot signal to the electromagnetic reflecting surface through the transmitting device, the method further comprises: The method includes: determining, by the transmitting device, the control information according to the target area; the determining the control information according to the target area includes: determining a plurality of the preset control information according to a plurality of sub-areas obtained by dividing the target area.
  • the timing information includes a plurality of the target time periods, and each of the target time periods is in one-to-one correspondence with each of the preset direction information; or, determining a plurality of the preset directions for pointing to the target area, Determining each of the preset direction information as one preset direction in a plurality of the preset directions, and determining a plurality of the target time periods according to the plurality of the preset direction information, wherein the time sequence
  • the information includes a plurality of the target time periods, and each of the target time periods is in one-to-one correspondence with each of the preset direction information.
  • the transmitting apparatus may divide the target area into multiple sub-areas, for example, divide the target area into sub-area 1, sub-area 2, and sub-area 3, etc., and determine the target area according to the divided sub-areas
  • Each sub-region corresponds to preset direction information, such as preset direction information 1, preset direction information 2, and preset direction information 3, and so on.
  • the preset direction information is used to instruct the electromagnetic reflection surface control unit to adjust the reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface, so that the reflected beam formed on the electromagnetic reflection surface is directed to the sub-region corresponding to the preset direction information, Therefore, by controlling the electromagnetic reflection surface, the reflected beams are directed to each sub-area in the target area in turn, so as to realize the scanning of the target area by the transmitting device.
  • the transmitting apparatus may determine the preset direction information corresponding to each sub-area according to the scanning sequence of the sub-areas in the target area, and determine the timing information according to the determined preset direction information (that is, the determined preset direction information multiple target time periods, wherein each target time period has corresponding preset direction information), for example, the determined multiple preset direction information is preset direction information 1, preset direction information 2, and preset direction information Information 3, the timing information includes target time period 1, target time period 2 and target time period 3, wherein, target time period 1 corresponds to preset direction information 1, target time period 2 corresponds to preset direction information 2, and target time period corresponds to preset direction information 2. 3 corresponds to preset direction information 3.
  • the transmitting device may directly determine a plurality of preset directions in the target area, for example, in the target area, determine a first preset direction pointing to a certain position in the target area, and determine another direction pointing to the target area
  • the second preset direction of the position that is, multiple preset directions are determined, and each preset direction information is determined as a preset direction among the multiple preset directions, that is, a preset direction itself can be used as a preset direction.
  • Set direction information After determining a plurality of preset direction information, the transmitting device may determine the target time period corresponding to the scanning sequence according to the scanning sequence of the position of the target area.
  • the timing information includes a target time period 1 and a target time period 2, wherein the target time period 1 corresponds to the preset direction information 1, and the target time period 2 corresponds to the preset direction information 2.
  • the target time period may be the time period corresponding to the time slot number (ie, the time slot sequence number)
  • the timing information may be the time period corresponding to the time slot number (that is, the time period corresponding to the corresponding time slot). ), that is, the timing information includes time periods corresponding to multiple time slots arranged in sequence.
  • the control direction information includes a plurality of preset direction information, wherein each target time period in the time sequence information corresponds to each preset direction information in the control direction information one-to-one.
  • the electromagnetic reflection surface control unit by sending the regulation information to the electromagnetic reflection surface control unit, the electromagnetic reflection surface control unit can be instructed to direct the reflected beam formed by the target pilot signal on the electromagnetic reflection surface in the target time period to the electromagnetic reflection surface.
  • the electromagnetic reflection surface control unit can control the emission beam of the electromagnetic reflection surface to point to the corresponding direction within a certain target time period in the timing information, wherein the corresponding direction is corresponding to the certain target time period.
  • the direction indicated by the preset direction information is not limited to the direction indicated by the preset direction information.
  • the method further includes: determining, through the electromagnetic reflection surface control unit, a target according to the preset direction information reflection coefficient; the reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface is adjusted to the target reflection coefficient by the electromagnetic reflection surface control unit, so that the electromagnetic reflection surface forms a reflection beam in the preset direction; wherein , the reflection coefficient of each electromagnetic unit includes at least one of the following: amplitude, phase, and polarization.
  • the method further includes: adjusting the reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface to the target reflection coefficient through the electromagnetic reflection surface control unit, so that the electromagnetic reflection surface forms the predetermined reflection coefficient.
  • a directional reflected beam is set, wherein the reflection coefficient of each electromagnetic unit includes at least one of the following: amplitude, phase, and polarization.
  • the The method further includes: determining a target reflection coefficient according to the input parameter by the electromagnetic reflection surface control unit, and adjusting the reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface to the target reflection coefficient, so that the electromagnetic reflection The reflection surface forms a reflection beam in the preset direction, wherein the input parameter is used to determine the target reflection coefficient, and the reflection coefficient of each electromagnetic unit includes at least one of the following: amplitude, phase, and polarization.
  • the regulation information further includes one of the following information: beam regulation start time, wherein the beam regulation start time is used to instruct the electromagnetic reflection surface control unit when the beam regulation start time , start to control each electromagnetic unit of the electromagnetic reflection surface to control the reflected beam direction of the electromagnetic reflection surface; the end time of beam regulation, wherein the end time of the beam regulation is used to indicate that the electromagnetic reflection surface control unit is in At the end time of the beam adjustment, the control of each electromagnetic unit of the electromagnetic reflection surface is ended.
  • the electromagnetic reflection surface control unit is further configured to adjust the reflection coefficient of the electromagnetic reflection surface to be the same as the first predetermined time period according to the first target time period in the timing information at the start time of the beam adjustment.
  • the target reflection coefficient corresponding to the direction is set, wherein the first preset direction is the direction indicated by the preset direction information corresponding to the first target time period.
  • each target time period in the timing information forms a continuous period of time
  • the start time of the first target time period in the timing information is the beam steering start time
  • the end time of the segment is the beam steering end time
  • the end time of each intermediate target time segment (that is, the target time segment located between the first target time segment and the last target time segment) is the next target time segment. start time.
  • the timing information includes target time period 1 to target time period 3, wherein the end time of target time period 1 is the start time of target time period 2, and the end time of target time period 2 is the start time of target time period 3.
  • the start time of the target time period 1 is the start time of the beam steering
  • the end time of the target time period 3 is the end time of the beam steering.
  • the above timing information may be a set of time periods corresponding to the time slots (for example, the time period corresponding to the first time slot to the time period corresponding to the 180th time slot), and the target time period is the target time sequence
  • the time period corresponding to the sequence number also called the target time slot, or the target time slot number, for example, one of the time slots from the 1st time slot to the 180th time slot
  • the transmitting device records the corresponding relationship between the target time period and the pilot signal transmitted in the target time period, and when the receiving device receives the target pilot signal, simultaneously records the target time period and receives the target time period.
  • the corresponding relationship of the target pilot signal is consistent.
  • the method further includes: receiving, by the transmitting device, a measurement result set sent by the receiving device, wherein the The measurement result set includes signal measurement results corresponding to the target time period; wherein the determining, by the transmitting device, the signal measurement results corresponding to the preset direction includes: determining according to the target time period For the preset direction indicated by the preset direction information corresponding to the target time period, the signal measurement result corresponding to the target time period is determined as the signal measurement result corresponding to the preset direction.
  • the method further includes: receiving, by the receiving device, the correspondence information sent by the transmitting device, wherein the The corresponding relationship information is the corresponding relationship between the preset direction and the target time period, or the corresponding relationship information is the corresponding relationship between the preset direction and the target pilot signal;
  • the receiving device determining the signal measurement result corresponding to the preset direction includes: in the case that the corresponding relationship information is the corresponding relationship between the preset direction and the target time period, converting the signal corresponding to the target time period
  • the signal measurement result is determined to be the signal measurement result corresponding to the preset direction; or, in the case that the correspondence information is the corresponding relationship between the preset direction and the target pilot signal,
  • the signal measurement result corresponding to the pilot signal is determined as the signal measurement result corresponding to the preset
  • the receiving device when receiving the target pilot signal reflected along the preset direction, the receiving device records the target time period corresponding to the target pilot signal (for example, the first time slot corresponding to the time period), and perform signal measurement on the target pilot signal to obtain a signal measurement result.
  • the signal measurement result can be signal quality, signal field strength level or signal received power.
  • the positioning of the receiving device according to the preset direction and the signal measurement result includes: according to the preset direction and the position and height of the electromagnetic reflection surface, Determine the position coordinates (xi, yi) of the reflected beam corresponding to each of the preset directions in the target area, and determine the value of the signal measurement result corresponding to the preset direction as the value corresponding to the position
  • the vertical axis coordinate zi corresponding to the coordinate (xi, yi), wherein the i is the identifier of the reflected beam corresponding to the preset direction; according to the coordinate range where the target area is located, the position coordinate (xi, yi) and the corresponding vertical axis coordinate zi carry out Gaussian function fitting, obtain the Gaussian function after fitting, and determine the positioning result that the receiving device is positioned according to the coordinates corresponding to the vertex of the Gaussian function after the fitting .
  • the Gaussian function fitting is performed according to the coordinate range where the target area is located, the position coordinates (xi, yi) and the corresponding vertical axis coordinate zi to obtain the fitted Gaussian function, and determine the positioning result of positioning the receiving device according to the coordinates corresponding to the vertices of the Gaussian function after fitting, including: the abscissa range and ordinate range where the target area is located according to preset coordinate intervals respectively Perform sampling to obtain a sampled abscissa set and ordinate set; determine the vertical axis corresponding to each abscissa xw in the abscissa set from the vertical axis coordinates zi corresponding to the position coordinates (xi, yi).
  • the axis coordinate zw, and the vertical axis coordinate zp corresponding to each vertical coordinate yp in the vertical coordinate set is determined from the vertical axis coordinate zi corresponding to the position coordinate (xi, yi), wherein the w and p is a positive integer in the interval [1,n], and the n is the number of samples to be sampled; according to the abscissa set and the vertical axis coordinate zw corresponding to each abscissa xw in the abscissa set
  • the coordinate set (xw, zw) is fitted with a one-dimensional Gaussian function to obtain the fitted first Gaussian function; and according to the vertical axis set and the vertical axis corresponding to each vertical coordinate yp in the vertical coordinate set
  • the coordinate set (yp, zp) composed of the coordinates zp is subjected to one-dimensional Gaussian curve fitting to obtain the second Gaussian function after fitting; the first coordinate xt corresponding to the vertex
  • the xt and the yt are respectively determined as the abscissa and the ordinate of the positioning result, wherein the xt is the abscissa within the range of the abscissa, and The yt is an ordinate within the range of the ordinate.
  • the target area is: the abscissa is within the range of [xs,xe], and the ordinate is within the range of [ys,ye], where xs, xe, ys, ye are all real numbers, and xe>xs, ye>ys, the abscissa range and ordinate range where the target area is located are sampled according to preset coordinate intervals, respectively, to obtain the sampled abscissa set and ordinate set, then in the above embodiment, xs ⁇ xw ⁇ xe, ys ⁇ yp ⁇ ye; and in the obtained positioning result, xs ⁇ xt ⁇ xe, ys ⁇ yt ⁇ ye.
  • the vertices That is, the maximum value of the Gaussian function is also the coordinate corresponding to the maximum value of the Gaussian curve corresponding to the Gaussian function (ie, the input corresponding to the maximum value of the Gaussian function), thereby determining the position coordinates of the receiving device (ie, the positioning result).
  • the vertical axis coordinate zw corresponding to each abscissa xw in the abscissa set is determined from the vertical axis coordinate zi corresponding to the position coordinate (xi, yi), and the vertical axis coordinate zw corresponding to the position In the vertical axis coordinates zi corresponding to the coordinates (xi, yi), determining the vertical axis coordinates zp corresponding to each vertical coordinate yp in the vertical coordinate set, including: determining that the abscissa in the position coordinates (xi, yi) is The vertical axis coordinates corresponding to all the position coordinates of xw, the maximum value among the vertical axis coordinates corresponding to all the position coordinates of xw is determined as the vertical axis coordinate zw corresponding to the abscissa xw; and determining the In the position coordinates (xi, yi), the vertical axis coordinates corresponding to all the position coordinates of which the ordinate
  • each one-dimensional Gaussian function corresponds to a Gaussian curve.
  • the coordinates corresponding to the vertex of each Gaussian curve that is, the maximum value of the Gaussian function corresponding to the Gaussian curve
  • the input corresponding to the maximum value of the Gaussian curve are respectively determined, thereby determining the position coordinates of the receiving device. .
  • the positioning of the receiving device according to the preset direction and the signal measurement result includes: according to the preset direction and the position and height of the electromagnetic reflection surface, Determine the position coordinates (xi, yi) of the reflected beam corresponding to each of the preset directions in the target area, and determine the value of the signal measurement result corresponding to the preset direction as the value corresponding to the position
  • the abscissa range corresponding to the target area is [xs, xe], and the ordinate range is [ys, ye], where xs, xe, ys, and ye are all real numbers, and xe>xs, ye>ys, then we get In the positioning result: xs ⁇ xt ⁇ xe, ys ⁇ yt ⁇ ye.
  • the position coordinates of the receiving device may be determined by fitting a two-dimensional Gaussian function (that is, fitting a Gaussian surface).
  • the least square method and the least mean square error method can be used to realize the fitting.
  • the method further includes: determining, by the transmitting device, target direction information according to a positioning result obtained by locating the receiving device, wherein the target direction information is used to instruct the electromagnetic reflection surface control unit to The target direction information controls the reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface, so that the reflected beam formed on the electromagnetic reflection surface by the radio frequency signal emitted by the transmitting device is directed to the receiving device.
  • the transmitting device sends the target direction information to the electromagnetic reflection surface control unit, so as to instruct the electromagnetic reflection surface control unit to control the electromagnetic reflection surface according to the target direction information
  • the reflection coefficient of each electromagnetic unit is determined, so that the reflected beam formed by the radio frequency signal on the electromagnetic reflection surface is directed to the receiving device.
  • the method further includes: determining, by the receiving device, target direction information according to a positioning result obtained by locating the receiving device, wherein the target direction information is used to instruct the electromagnetic reflection surface control unit to The target direction information controls the reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface, so that the reflected beam formed on the electromagnetic reflection surface by the radio frequency signal emitted by the transmitting device is directed to the receiving device.
  • the receiving device after determining the target direction information, sends the target direction information to the transmitting device, and the transmitting device sends the target direction information to the electromagnetic reflection surface control unit to indicate the
  • the electromagnetic reflection surface control unit controls the reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface according to the target direction information, so that the reflected beam formed by the radio frequency signal on the electromagnetic reflection surface is directed to the receiving device.
  • an intelligent metasurface also called an intelligent electromagnetic reflection surface, ie, the electromagnetic reflection surface in the above embodiment
  • This application will provide a related method, which can utilize the characteristics of the smart electromagnetic reflective surface itself to achieve the precise alignment of the target beam orientation, so that the deployment plan of the smart electromagnetic reflective surface is self-complete; In the direct radiation area, the precise positioning of the terminal position is realized. That is, in the embodiment of the present application, the deployment of the intelligent electromagnetic reflective surface realizes the use of a single station (ie, a single base station) to perform non-direct path terminal positioning.
  • the transmitting device is configured to determine the beam scanning plan, and based on the beam scanning plan, generate a pilot sequence (that is, the pilot signal in the above-mentioned embodiment) and send it to the radio frequency unit of the transmitting device; wherein, the determining the beam scanning plan refers to transmitting
  • the device performs grid division or target beam pointing planning on the target area, and converts the two-dimensional space domain plan of the target area into a one-dimensional time domain plan. For example, according to the scanning sequence of the grids in the target area (that is, the sub-areas in the above embodiment), the transmitting device determines each grid corresponding to the time sequence (the time sequence is the time sequence information in the above embodiment), And determine the preset direction information corresponding to each grid.
  • each preset direction information has a corresponding target time period.
  • the radio frequency unit of the transmitting device directs the direction of the radio frequency beam of the transmitting device to the intelligent electromagnetic reflection surface through beam regulation (that is, adjusts the beam to the intelligent electromagnetic reflection surface), and modulates the received pilot frequency sequence before transmitting.
  • the pilot sequence transmitted by the transmitting device is a coded sequence known in advance by both the transmitting device and the receiving device.
  • the coded sequence has good autocorrelation and cross-correlation characteristics, and the receiving device is based on the pilot sequence. Sequences can make measurements of wireless signal quality or strength.
  • the transmitting device sends a specific pilot sequence to the radio frequency unit of the transmitting device within a predetermined time window, and within the time window, the content of the pilot sequence may be the same or different in time division the coding sequence.
  • the time window is divided into segments, each segment in the time window corresponds to a distinguishable pilot sequence, and the pilot sequence is consistent with the preset direction information in the regulation information.
  • the pilot signal is synchronized with and corresponds to the target beam steering azimuth (ie, the preset direction in the above-mentioned embodiment) of the intelligent electromagnetic reflecting surface.
  • the predetermined time window is the time window between the beam steering start time and the beam steering end time; in an exemplary embodiment, the transmitting device also sends the beam steering start time and the beam steering end time to the receiving device.
  • the transmitting device is further configured to control the intelligent reflection surface through the intelligent electromagnetic reflection surface control unit, that is, to control the beam direction of the intelligent reflection surface, and to make the reflection beam formed by the intelligent reflection surface scan the target area;
  • the controlling of the intelligent reflecting surface by the intelligent electromagnetic reflecting surface control unit includes: the transmitting device sends the regulation information to the interface between the transmitting device and the intelligent reflecting surface control unit.
  • Intelligent reflector control unit the control information includes but is not limited to the following: beam control start time, beam control direction, target reflection coefficient of each electromagnetic unit, input parameters for determining the target reflection coefficient of each electromagnetic unit, timing information, Beam steering end time, etc.
  • the control information can be the beam target to be adjusted to, or it can be the control instructions of each electromagnetic unit of the intelligent electromagnetic reflection surface.
  • the electromagnetic unit of the intelligent electromagnetic reflection surface can be made to perform a reflection coefficient (also known as input reflection coefficient) change or adjustment, so that the main beam reflected on the electromagnetic reflection surface is directed to different target azimuths (that is, the above-mentioned default orientation in the examples).
  • a reflection coefficient also known as input reflection coefficient
  • the receiving device measures and records the wireless signal quality of a specific pilot or each pilot in the pilot group within a period of time (that is, the time period between the beam steering start time and the beam steering end time), that is, the receiving device is in the predetermined time window. Measure the signal quality of all received pilot signals or the signal quality of some pilot signals in all pilot signals based on the known pilot sequence or pilot sequence group, and record the quality of each signal and the corresponding target time period , that is, the signal measurement combination set composed of the signal measurement results recorded by the receiving device is the quality of each wireless signal arranged in the order of time periods (that is, the signal measurement result set is a time series data), and the signal measurement result set and the intelligent electromagnetic reflective surface (that is, the timing information composed of the target time period corresponding to each signal measurement result in the signal measurement result set is consistent with the timing information used for controlling the electromagnetic reflection surface).
  • the transmitting device, or the receiving device is further configured to estimate the direction of the target beam and position the receiving device based on the measurement result of the receiving device (ie, the signal measurement result in the above embodiment).
  • the estimation of the direction of the target beam based on the measurement result of the receiving device and the position positioning of the receiving device include the following steps: (1) Based on the measurement result of the receiving device and the beam regulation sequence of the intelligent electromagnetic reflective surface, determine the position on the intelligent electromagnetic reflective surface The wireless signal quality measured by the terminal when the main control beam points to different azimuths; (2) the terminal position estimation and the target beam azimuth estimation are performed based on the wireless signal quality of the main control beam in different azimuths. Wherein, the specific implementation of step (2) can be performed on the receiving device or the transmitting device.
  • step (2) When step (2) is performed at the receiving device, the transmitting device provides the receiving device with the corresponding relationship between the relevant beam azimuth and the target time period, or the corresponding relationship between the relevant beam azimuth and the pilot sequence, and the corresponding relationship can be passed through the common channel. or a dedicated channel.
  • step (2) is performed in the transmitting device, the receiving device reports the relevant measurement results to the transmitting device, so that the transmitting device can know the set of the beam azimuth of each smart electromagnetic reflection surface and the wireless signal quality measured by the terminal, wherein the wireless signal quality It can be the original measurement result or the quantized encoded result.
  • one-dimensional time data can be converted into two-dimensional spatial data based on the intelligent electromagnetic surface beam pointing and related measurement results, for example, through a two-dimensional surface fitting algorithm (that is, two-dimensional Gaussian function fitting, A fitted two-dimensional Gaussian function is obtained, wherein the two-dimensional Gaussian function corresponds to a Gaussian surface) to determine the terminal position.
  • a two-dimensional surface fitting algorithm that is, two-dimensional Gaussian function fitting, A fitted two-dimensional Gaussian function is obtained, wherein the two-dimensional Gaussian function corresponds to a Gaussian surface
  • the two-dimensional surface fitting algorithm includes but is not limited to two-dimensional Gaussian distribution surface, least squares method, least mean square error method, etc., or, using two independent dimensionality reduction to one-dimensional Gaussian curves for fitting (That is, one-dimensional Gaussian function fitting is performed in the X direction and the Y direction respectively, and two one-dimensional Gaussian functions after fitting are obtained, wherein each one-dimensional Gaussian function corresponds to a Gaussian curve).
  • FIG. 4 is a schematic plan view of a deployment scene of the smart electromagnetic reflective surface according to an embodiment of the present application, in which the beam scanning area (ie the target area in the above embodiment) and the smart electromagnetic reflective surface (ie the electromagnetic reflective surface in the above embodiment) are shown ).
  • the beam scanning area ie the target area in the above embodiment
  • the smart electromagnetic reflective surface ie the electromagnetic reflective surface in the above embodiment
  • the various deployment parameters of the launcher are as follows:
  • the antenna of the transmitting device (that is, the radio frequency unit) is installed on the top of the building with a hanging height of 43 meters (that is, the height of the antenna of the transmitting device is 43 meters);
  • the coordinates of the center point of the radio frequency transmitting unit of the transmitting device are: [0, 0, 43] (unit: m);
  • Elevation angle EL 10 degrees
  • Rotation angle SL 0 degrees.
  • the various deployment parameters of the smart electromagnetic reflective surface are as follows:
  • Rotation angle SL 0 degrees.
  • the parameters of the transmitting device and the intelligent electromagnetic reflecting surface are configured as follows:
  • Polarization vertical polarization
  • the size of the intelligent electromagnetic reflection surface length 20 ⁇ width 20 ⁇ , ⁇ is the wavelength of the carrier frequency;
  • Smart electromagnetic reflection surface phase control granularity 2-bits (that is, using 2 bits to indicate the phase of the metasurface, so there are 4 optional phases: [0, ⁇ /2, ⁇ , 3 ⁇ /2] (unit: radian );
  • Sub-Carrier Space 30kHz
  • Wireless frame length 10ms
  • the transmitter sets the scan beam update frequency: per time slot.
  • the receiving device in the target area whose position coordinates are [68, 88] (unit m) is used as a reference.
  • the positioning accuracy of the positioning method is tested.
  • the positioning method includes the following steps:
  • Step 1 the transmitting device determines the beam scanning plan: from the first time slot (the time period corresponding to the first time slot is the first target time period, and the start time of the first target time period also corresponds to the above-mentioned embodiment.
  • Beam control start time in starts to the 180th time slot (that is, the 180th target time period, which is also the last target time period in the timing information, and the end time of the last target time period also corresponds to the above-mentioned embodiment.
  • Beam regulation end time carry out the beam scanning of the beam scanning area in FIG. 4 (that is, the target area in the above-mentioned embodiment), the transmitting device generates a pilot sequence and sends it to the radio frequency unit;
  • Step 2 the radio frequency unit of the transmitting device adjusts the beam to the intelligent electromagnetic reflection surface, and modulates the received pilot frequency sequence and transmits it;
  • Step 3 The transmitting device controls the beam direction of the intelligent reflecting surface through the intelligent electromagnetic reflecting surface control unit.
  • the frequency of the azimuth update of the beam scanning of the intelligent electromagnetic reflecting surface is every time slot. Set the direction to reach the beam scanning area, and after each update, the beam will be aimed at the next new predetermined azimuth (ie, the preset direction in the above embodiment).
  • Step 4 the transmitting device sends the beam steering start time and the beam steering end time to the receiving device, and the receiving device sends the beam steering start time to the beam steering end time within this period of time (that is, the time period from the beam steering start time to the beam steering end time).
  • Figure 5 shows the received signal strength obtained by the receiving device measuring the target pilot signal transmitted by the receiving device, wherein , and the horizontal axis is the time slots arranged in sequence. Among them, since each time slot has a certain time length, each time slot can correspond to a time period (that is, the target time period in the above-mentioned embodiment).
  • the k-th target time period (that is, the time period corresponding to the k-th time slot) is the time period between t0+(k-1)a, t0+ka, where t0 is the beam steering start time (unit is milliseconds) , k is an integer greater than or equal to 1.
  • Step 5 Estimate the direction of the target beam and locate the receiving device based on the received measurement result.
  • the receiving device when positioning the receiving device, in this embodiment, reports the original measurement result in one measurement period to the transmitting device, and the format of the reported content is: (wherein, slotNo represents the time slot number (time slot) , that is, each target time period in the above embodiment, RxPwr represents the receiving level, that is, the signal measurement result in the above embodiment)
  • the transmitting device maps the time slot number (that is, the corresponding time slot, that is, the target time period corresponding to the time slot) as the target beam pointing, and combines the position of the center of the intelligent electromagnetic reflection surface and the hanging height (that is, the electromagnetic in the above embodiment).
  • the height of the reflecting surface convert the one-dimensional time data in Figure 6 into two-dimensional space data (Figure 7), and map the measurement results to the ground of the beam scanning area as shown in Figure 8 (that is, Figure 8 is the plan view of Figure 7) .
  • the horizontal and vertical axes of Fig. 6 represent the abscissa of the target area and the coordinate of the target area, respectively, and the number next to each point " ⁇ " in Fig.
  • FIG. 6 represents the time slot number (the time slot number is also used to indicate the The time period corresponding to the time slot number), for example, the two labels in the second row in Figure 6: 31, and 47, where "37" and "47” indicate that the corresponding time slot numbers are 31, and 47, respectively,
  • the position coordinates corresponding to each time slot number can be determined.
  • the horizontal and vertical axes in FIG. 7 represent the abscissa and the coordinate of the target area, respectively, and the vertical axis (z-axis) represents the received signal quality.
  • the horizontal and vertical axes in Figure 8 represent the abscissa of the target area and the coordinates of the target area, respectively.
  • Each point " ⁇ ” in Figure 8 indicates the presence of received signal quality, and the specific received signal quality is shown in Figure 7 in the vertical axis coordinates.
  • the label "predicted position of the receiving device” in the figure is the positioning result obtained by locating the receiving device (ie, the coordinates in the positioning result).
  • the X-coordinate and Y-coordinate of the receiving device are estimated independently, as follows:
  • Segment the X-axis direction that is, segment the abscissa
  • the interval between each segment is 2
  • the set of coordinates corresponding to the center points of all segments is: [62,64,66,...,80 ] (that is, the abscissa set in the above embodiment);
  • the dimension reduction reception corresponding to the coordinates of each center point For all the two-dimensional data, for the set [62, 64, 66, ..., 80] composed of the coordinates corresponding to the center points of the X-axis segments, determine the dimension reduction reception corresponding to the coordinates of each center point.
  • Level In an exemplary embodiment, the strongest wireless signal reception quality in each segment is determined as the unique dimensionality reduction reception level of the segment, that is, for the coordinate xw of a certain center point, the wireless signal corresponding to the coordinate xw is determined.
  • the maximum value (ie zw) of the signal reception quality (ie the reception level) the results are as follows:
  • the obtained coordinate set in the X-axis direction and the corresponding wireless signal quality are the actual measured data shown in FIG. 9 .
  • the wireless signal quality is classified into the respective segments, and the coordinate set of the center point of each segment on the Y-axis is: [80,82,84,... , 110], according to the strongest wireless channel reception quality in each section, determine the unique dimensionality reduction reception level of this section (that is, for each ordinate yp in the ordinate set, determine the zp corresponding to this yp; the specific determination method is the same as the above-mentioned
  • the X-axis direction is handled similarly), and the result is as follows:
  • the obtained coordinate set in the Y-axis direction and the corresponding wireless signal quality are the actual measured data shown in FIG. 10 .
  • a one-dimensional Gaussian function is selected as the fitting curve, and the one-dimensional Gaussian function fitting is performed in the X direction and the Y direction respectively (that is, the one-dimensional Gaussian function is obtained by fitting respectively); in an exemplary embodiment, the least squares fitting can be used.
  • the parameters of the one-dimensional Gaussian function corresponding to the X direction that is, a one-dimensional Gaussian curve, see the fitting result in FIG. 9
  • determine the corresponding x-coordinate of its vertex that is, xt in the above-mentioned embodiment
  • the parameters of the one-dimensional Gaussian function corresponding to the Y direction that is, the one-dimensional Gaussian curve, see the fitting result in FIG.
  • the determined position coordinates of the receiving device are: [68.3963, 88.3110] m, and the positioning error between the location and the real coordinate position [68, 88] of the receiving device as the reference target is: 0.50378 m. It can be seen that by using the positioning method of the embodiment of the present application, a relatively accurate positioning result can be obtained.
  • the positioning accuracy of the positioning method in the embodiment of the present application is tested by using the receiving device whose position coordinates in the target area are [64,102] (unit m) as a reference.
  • the positioning method includes the following steps:
  • Step 1 the transmitting device determines the beam scanning plan: from the 1st time slot to the 180th time slot, carry out the beam scan of the relevant area in Figure 4, and the transmitting device generates a pilot sequence and sends it to the radio frequency unit;
  • Step 2 the radio frequency unit adjusts the beam to the intelligent electromagnetic reflection surface, modulates the received pilot frequency sequence and transmits it;
  • Step 3 The transmitting device controls the beam orientation of the intelligent reflection surface through the control of the intelligent electromagnetic reflection surface control unit.
  • the frequency of the orientation update of the beam scanning is every time slot, and the beam will be aimed at the next new predetermined orientation after each update. ;
  • Step 4 The receiving device measures and records the wireless signal quality of the wireless pilot signal within this period of time, and the result is shown in Figure 11;
  • Step 5 Estimate the direction of the target beam and locate the terminal based on the measurement result of the transmitting device.
  • the receiving device reports the original measurement result in one measurement period to the transmitting device, and the format of the reported content is the time slot number and the corresponding signal measurement result (the specific format is the same as the format of the reported content in the above-mentioned embodiment)
  • Step 6 The transmitting device maps the time slot number to the target beam pointing, and combines the position and height of the center of the intelligent electromagnetic reflection surface to convert the one-dimensional time data (ie, the wireless signal quality corresponding to the time slot shown in Figure 12) Convert it into the two-dimensional spatial data shown in Figure 13, and map the measurement results to the ground in the beam scanning area (that is, to obtain a plan view corresponding to Figure 13, that is, Figure 14);
  • Step 7 Using the dimensionality reduction method, independently estimate the X and Y coordinates of the receiving device, and the estimation results are shown in Figure 15 and Figure 16 respectively;
  • Step 8 Positioning results and errors.
  • the least squares fitting is used to determine the parameters of the one-dimensional Gaussian function in the X direction and the Y direction respectively.
  • the vertices of the Gaussian curve in the X direction correspond to the horizontal
  • the coordinate is the abscissa of the positioning result (ie xt)
  • the ordinate corresponding to the vertex of the Gaussian curve in the Y direction is the ordinate of the positioning result (ie yt); the fitting results can be seen in Figure 15 and Figure 16 respectively.
  • the positioning result obtained in the embodiment of the present application is: [63.8170, 100.6145]m, and the positioning error between it and the real position coordinates of the receiving device as a reference is: 1.3975m.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM
  • This embodiment also provides a positioning device for a receiving device, the device is used to implement the above-mentioned embodiments and preferred implementations, and what has been described will not be repeated.
  • the term "module” may be a combination of software and/or hardware that implements a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, implementations in hardware, or a combination of software and hardware, are also possible and contemplated.
  • FIG. 17 is a structural block diagram of a positioning apparatus of a receiving apparatus according to an embodiment of the present application. As shown in FIG. 17 , the positioning apparatus includes:
  • the transmitting module 211 is configured to transmit the pilot signal to the electromagnetic reflection surface through the transmitting device;
  • the regulation module 213 is configured to send regulation information to the electromagnetic reflection surface control unit through the launching device, wherein, the regulation information includes timing information and regulation direction information, and the regulation information is used to instruct the electromagnetic reflection surface control unit in the
  • the target time period points the reflected beam formed by the target pilot signal on the electromagnetic reflection surface in a preset direction
  • the preset direction is the direction indicated by the preset direction information corresponding to the target time period
  • the preset direction is the direction indicated by the preset direction information corresponding to the target time period.
  • the direction is set to point to the target area
  • the timing information includes the target time period
  • the control direction information includes the preset direction information
  • the pilot signal transmitted by the transmitting device includes the target pilot signal;
  • the positioning module 215 is configured to determine a signal measurement result corresponding to the preset direction through the transmitting device or the receiving device, and locate the receiving device according to the preset direction and the signal measurement result, wherein , the signal measurement result is a result obtained by the receiving apparatus located in the target area measuring the received target pilot signal reflected along the preset direction.
  • a pilot signal is transmitted to the electromagnetic reflection surface through the transmitting device; regulation information is sent to the electromagnetic reflection surface control unit through the transmitting device, wherein the regulation information includes timing information and regulation direction information, and the regulation information is used instructing the electromagnetic reflection surface control unit to point the reflected beam formed by the target pilot signal on the electromagnetic reflection surface to a preset direction during a target time period, and the preset direction is a preset corresponding to the target time period
  • the timing information includes the target time period
  • the control direction information includes the preset direction information
  • the pilot signal transmitted by the transmitting device Including the target pilot signal; determining the signal measurement result corresponding to the preset direction by the transmitting device or the receiving device, and positioning the receiving device according to the preset direction and the signal measurement result , wherein the signal measurement result is a result obtained by the receiving apparatus located in the target area measuring the received target pilot signal reflected along the preset direction.
  • the device further includes: a first determination module, configured to determine the regulation information according to the target area by the transmitting device; the first determination module is further configured to: according to The plurality of sub-regions obtained by dividing the target area determine a plurality of the preset direction information, and determine a plurality of the target time periods according to the plurality of the preset direction information, wherein each of the preset direction information and Each sub-region in the plurality of sub-regions is in one-to-one correspondence, the timing information includes a plurality of the target time periods, and each of the target time periods is in a one-to-one correspondence with each of the preset direction information; or, determine set to point to a plurality of the preset directions of the target area, and determine each of the preset direction information as a preset direction in the multiple preset directions, and determine the preset direction according to the multiple preset directions
  • the direction information determines a plurality of the target time periods, wherein the timing information includes a plurality of the target time periods, and
  • the apparatus further includes: an adjustment module configured to: determine the target reflection coefficient according to the preset direction information by the electromagnetic reflection surface control unit; adjust the target reflection coefficient by the electromagnetic reflection surface control unit The reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface is adjusted to the target reflection coefficient, so that the electromagnetic reflection surface forms a reflected beam in the preset direction; wherein, the reflection coefficient of each electromagnetic unit includes at least one of the following One: amplitude, phase, polarization.
  • the apparatus further includes: an adjustment module configured to: when the preset direction information is the target reflection coefficient of each electromagnetic unit corresponding to the preset direction, pass the The electromagnetic reflection surface control unit adjusts the reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface to the target reflection coefficient, so that the electromagnetic reflection surface forms a reflection beam in the preset direction, wherein each electromagnetic unit The reflection coefficient includes at least one of the following: amplitude, phase, polarization.
  • the apparatus further includes: an adjustment module, configured to: when the preset direction information is an input parameter corresponding to the preset direction, control the unit through the electromagnetic reflection surface The target reflection coefficient is determined according to the input parameter, and the reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface is adjusted to the target reflection coefficient, so that the electromagnetic reflection surface forms a reflection beam in the preset direction, wherein , the input parameter is used to determine the target reflection coefficient, and the reflection coefficient of each electromagnetic unit includes at least one of the following: amplitude, phase, and polarization.
  • the regulation information further includes one of the following information: beam regulation start time, wherein the beam regulation start time is used to instruct the electromagnetic reflection surface control unit when the beam regulation start time , start to control each electromagnetic unit of the electromagnetic reflection surface to control the reflected beam direction of the electromagnetic reflection surface; the end time of beam regulation, wherein the end time of the beam regulation is used to indicate that the electromagnetic reflection surface control unit is in At the end time of the beam adjustment, the control of each electromagnetic unit of the electromagnetic reflection surface is ended.
  • the positioning module 215 is further configured to: determine the signal measurement result corresponding to the preset direction by the transmitting device, and determine the signal measurement result corresponding to the preset direction according to the preset direction and the signal measurement result , in the case of locating the receiving device, receiving the measurement result set sent by the receiving device through the transmitting device, wherein the measurement result set includes the signal measurement results corresponding to the target time period; wherein,
  • the determining, by the transmitting device, the signal measurement result corresponding to the preset direction includes: determining, according to the target time period, the signal indicated by the preset direction information corresponding to the target time period. The preset direction is determined, and the signal measurement result corresponding to the target time period is determined as the signal measurement result corresponding to the preset direction.
  • the positioning module 215 is further configured to: determine the signal measurement result corresponding to the preset direction by the receiving device, and determine the signal measurement result corresponding to the preset direction according to the preset direction and the signal measurement result , in the case of locating the receiving device, before the signal measurement result corresponding to the preset direction is determined by the receiving device, the corresponding relationship information sent by the transmitting device is received by the receiving device, wherein, the correspondence information is the correspondence between the preset direction and the target time period, or the correspondence information is the correspondence between the preset direction and the target pilot signal; wherein, the The determining, by the receiving device, the signal measurement result corresponding to the preset direction includes: in the case that the corresponding relationship information is the corresponding relationship between the preset direction and the target time period, The signal measurement result corresponding to the time period is determined to be the signal measurement result corresponding to the preset direction; or, in the case that the correspondence information is the correspondence between the preset direction and the target pilot signal, the The signal measurement result corresponding to the target pilot
  • the positioning module 215 is further configured to: determine the reflected beam corresponding to each of the preset directions according to the preset direction and the position and height of the electromagnetic reflection surface In the position coordinate (xi, yi) in the target area, the value of the signal measurement result corresponding to the preset direction is determined as the vertical axis coordinate zi corresponding to the position coordinate (xi, yi), wherein, The i is the identifier of the reflected beam corresponding to the preset direction; Gaussian function fitting is performed according to the coordinate range where the target area is located, the position coordinates (xi, yi) and the corresponding vertical axis coordinate zi. combined to obtain a fitted Gaussian function, and a positioning result of positioning the receiving device is determined according to the coordinates corresponding to the vertices of the fitted Gaussian function.
  • the positioning module 215 is further configured to: sample the abscissa range and ordinate range where the target area is located according to preset coordinate intervals, respectively, to obtain a sampled abscissa set and ordinate range. Coordinate set; determine the vertical axis coordinate zw corresponding to each abscissa xw in the abscissa set from the vertical axis coordinates zi corresponding to the position coordinates (xi, yi), and determine the vertical axis coordinate zw corresponding to each abscissa xw in the abscissa set, and from the position coordinates ( xi, yi) in the vertical axis coordinates zi corresponding to the vertical axis coordinates zp corresponding to each vertical coordinate yp in the vertical coordinate set, wherein the w and p are positive integers in the interval [1, n] , the n is the number of samples to be sampled; a one-dimensional Gaussian function is performed
  • the positioning module 215 is further configured to: determine the reflected beam corresponding to each of the preset directions according to the preset direction and the position and height of the electromagnetic reflection surface In the position coordinate (xi, yi) in the target area, the value of the signal measurement result corresponding to the preset direction is determined as the vertical axis coordinate zi corresponding to the position coordinate, wherein the i is the The identifier of the reflected beam corresponding to the preset direction; according to the coordinate set (xi, yi, zi) composed of the position coordinate (xi, yi) and the vertical axis coordinate zi, perform two-dimensional Gaussian function fitting to obtain The fitted two-dimensional Gaussian function; determine the coordinates (xt, yt) corresponding to the vertices of the two-dimensional Gaussian function, and determine the coordinates (xt, yt) as the positioning result obtained by locating the receiving device, Wherein, the xt is the abscissa within the range of the abscis
  • the device further includes a second determining module, configured to: determine, by the transmitting device, a signal measurement result corresponding to the preset direction, and determine the signal measurement result corresponding to the preset direction according to the preset direction and For the signal measurement result, after locating the receiving device, the transmitting device determines target direction information according to the positioning result obtained by locating the receiving device, wherein the target direction information is used to indicate the
  • the electromagnetic reflecting surface control unit controls the reflection coefficient of each electromagnetic unit of the electromagnetic reflecting surface according to the target direction information, so that the reflected beam formed on the electromagnetic reflecting surface by the radio frequency signal emitted by the transmitting device is directed to the receiving device device.
  • the device further includes a second determining module, configured to: determine, by the receiving device, a signal measurement result corresponding to the preset direction, and determine the signal measurement result corresponding to the preset direction according to the preset direction and For the signal measurement result, after locating the receiving device, the receiving device determines target direction information according to the positioning result obtained by locating the receiving device, wherein the target direction information is used to indicate the
  • the electromagnetic reflection surface control unit controls the reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface according to the target direction information, so that the reflected beam formed on the electromagnetic reflection surface by the radio frequency signal emitted by the transmitting device is directed to the receiving device device.
  • This embodiment also provides a positioning system for a receiving device, and the system is used to implement the above embodiments and preferred implementations, and what has been described will not be repeated.
  • the system includes: a transmitting device, an electromagnetic reflecting surface control unit, an electromagnetic reflecting surface, and a receiving device, wherein the transmitting device is configured to transmit a pilot signal to the electromagnetic reflecting surface and to send regulation information to the electromagnetic reflecting surface control unit , wherein the regulation information includes timing information and regulation direction information, and the regulation information is used to instruct the electromagnetic reflection surface control unit to point the reflected beam formed by the target pilot signal on the electromagnetic reflection surface at the target time period.
  • a preset direction is the direction indicated by the preset direction information corresponding to the target time period, and the preset direction points to the target area, the timing information includes the target time period, the control
  • the direction information includes the preset direction information, and the pilot signal transmitted by the transmitting device includes the target pilot signal;
  • the electromagnetic reflection surface control unit is configured to send the target time period according to the regulation information.
  • the reflected beam formed by the target pilot signal on the electromagnetic reflection surface points to the preset direction;
  • the receiving device is configured to receive the target pilot signal reflected along the preset direction.
  • the receiving device is located in the target area; the transmitting device or the receiving device is further configured to determine a signal measurement result corresponding to the preset direction, and according to the The predetermined direction and the signal measurement result corresponding to the predetermined direction are used to locate the receiving device.
  • a pilot signal is transmitted to the electromagnetic reflection surface through the transmitting device; regulation information is sent to the electromagnetic reflection surface control unit through the transmitting device, wherein the regulation information includes timing information and regulation direction information, and the regulation information is used instructing the electromagnetic reflection surface control unit to point the reflected beam formed by the target pilot signal on the electromagnetic reflection surface to a preset direction during a target time period, and the preset direction is a preset corresponding to the target time period
  • the timing information includes the target time period
  • the control direction information includes the preset direction information
  • the pilot signal transmitted by the transmitting device Including the target pilot signal; determining the signal measurement result corresponding to the preset direction by the transmitting device or the receiving device, and positioning the receiving device according to the preset direction and the signal measurement result , wherein the signal measurement result is a result obtained by the receiving apparatus located in the target area measuring the received target pilot signal reflected along the preset direction.
  • the transmitting device is further configured to determine the regulation information according to the target area; wherein the transmitting device is further configured to determine the regulation information according to the target area in the following manner: according to The plurality of sub-regions obtained by dividing the target area determine a plurality of the preset direction information, and determine a plurality of the target time periods according to the plurality of the preset direction information, wherein each of the preset direction information and Each sub-region in the plurality of sub-regions is in one-to-one correspondence, the timing information includes a plurality of the target time periods, and each of the target time periods is in a one-to-one correspondence with each of the preset direction information; or, determine set to point to a plurality of the preset directions of the target area, and determine each of the preset direction information as a preset direction in the multiple preset directions, and determine the preset direction according to the multiple preset directions
  • the direction information determines a plurality of the target time periods, wherein the timing information includes a plurality of the
  • the electromagnetic reflection surface control unit is further configured to: determine the target reflection coefficient according to the preset direction information; adjust the reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface to the target A reflection coefficient, so that the electromagnetic reflection surface forms a reflection beam in the preset direction; wherein, the reflection coefficient of each electromagnetic unit includes at least one of the following: amplitude, phase, and polarization.
  • the electromagnetic reflection surface control unit is further configured to: when the preset direction information is the target reflection coefficient of each electromagnetic unit corresponding to the preset direction, set the The reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface is adjusted to the target reflection coefficient, so that the electromagnetic reflection surface forms a reflected beam in the preset direction, wherein the reflection coefficient of each electromagnetic unit includes at least one of the following : Amplitude, Phase, Polarization.
  • the electromagnetic reflection surface control unit is further configured to: when the preset direction information is an input parameter corresponding to the preset direction, determine the target reflection according to the input parameter and adjust the reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface to the target reflection coefficient, so that the electromagnetic reflection surface forms a reflection beam in the preset direction, wherein the input parameter is used to determine
  • the target reflection coefficient and the reflection coefficient of each electromagnetic unit include at least one of the following: amplitude, phase, and polarization.
  • the regulation information further includes one of the following information: beam regulation start time, wherein the beam regulation start time is used to instruct the electromagnetic reflection surface control unit when the beam regulation start time , start to control each electromagnetic unit of the electromagnetic reflection surface to control the reflected beam direction of the electromagnetic reflection surface; the end time of beam regulation, wherein the end time of the beam regulation is used to indicate that the electromagnetic reflection surface control unit is in At the end time of the beam adjustment, the control of each electromagnetic unit of the electromagnetic reflection surface is ended.
  • the transmitting apparatus is further configured to receive a measurement result set sent by the receiving apparatus, wherein the measurement result set includes signal measurement results corresponding to the target time period; wherein the The transmitting device is further configured to determine the preset direction indicated by the preset direction information corresponding to the target time period according to the target time period, and determine the signal measurement result corresponding to the target time period is the signal measurement result corresponding to the preset direction.
  • the receiving apparatus is further configured to receive correspondence information sent by the transmitting apparatus, wherein the correspondence information is the correspondence between the preset direction and the target time period, Or, the corresponding relationship information is the corresponding relationship between the preset direction and the target pilot signal; wherein, the receiving device is further configured to set the corresponding relationship information to be the preset direction and the target pilot signal when the corresponding relationship information is the preset direction and the target
  • the signal measurement result corresponding to the target time period is determined as the signal measurement result corresponding to the preset direction; or, when the corresponding relationship information is the preset direction and the preset direction.
  • the signal measurement result corresponding to the target pilot signal is determined as the signal measurement result corresponding to the preset direction.
  • the transmitting device or the receiving device is further configured to: according to the preset direction and the position and height of the electromagnetic reflection surface, determine the corresponding to each preset direction
  • the position coordinates (xi, yi) of the reflected beam in the target area, and the value of the signal measurement result corresponding to the preset direction is determined as the vertical axis coordinates corresponding to the position coordinates (xi, yi) zi, wherein the i is the identifier of the reflected beam corresponding to the preset direction; according to the coordinate range where the target area is located, the position coordinates (xi, yi) and the corresponding vertical axis coordinate zi Gaussian function fitting is performed to obtain a fitted Gaussian function, and a positioning result for positioning the receiving device is determined according to the coordinates corresponding to the vertices of the fitted Gaussian function.
  • the Gaussian function fitting is performed according to the coordinate range where the target area is located, the position coordinates (xi, yi) and the corresponding vertical axis coordinate zi to obtain the fitted Gaussian function, and determine the positioning result of positioning the receiving device according to the coordinates corresponding to the vertices of the Gaussian function after fitting, including: the abscissa range and ordinate range where the target area is located according to preset coordinate intervals respectively Perform sampling to obtain a sampled abscissa set and ordinate set; determine the vertical axis corresponding to each abscissa xw in the abscissa set from the vertical axis coordinates zi corresponding to the position coordinates (xi, yi).
  • the axis coordinate zw, and the vertical axis coordinate zp corresponding to each vertical coordinate yp in the vertical coordinate set is determined from the vertical axis coordinate zi corresponding to the position coordinate (xi, yi), wherein the w and p is a positive integer in the interval [1,n], and the n is the number of samples to be sampled; according to the abscissa set and the vertical axis coordinate zw corresponding to each abscissa xw in the abscissa set
  • the coordinate set (xw, zw) is fitted with a one-dimensional Gaussian function to obtain the fitted first Gaussian function; and according to the vertical axis set and the vertical axis corresponding to each vertical coordinate yp in the vertical coordinate set
  • the coordinate set (yp, zp) composed of the coordinates zp is subjected to one-dimensional Gaussian curve fitting to obtain the second Gaussian function after fitting; the first coordinate xt corresponding to the vertex
  • the xt and the yt are respectively determined as the abscissa and the ordinate of the positioning result, wherein the xt is the abscissa within the range of the abscissa, and The yt is an ordinate within the range of the ordinate.
  • the transmitting device or the receiving device is further configured to: according to the preset direction and the position and height of the electromagnetic reflection surface, determine the corresponding to each preset direction
  • the position coordinates (xi, yi) of the reflected beam in the target area, the value of the signal measurement result corresponding to the preset direction is determined as the vertical axis coordinate zi corresponding to the position coordinates, wherein the The i is the identifier of the reflected beam corresponding to the preset direction;
  • the two-dimensional Gaussian function is performed according to the coordinate set (xi, yi, zi) composed of the position coordinates (xi, yi) and the vertical axis coordinates zi.
  • Fitting to obtain a fitted two-dimensional Gaussian function determining the coordinates (xt, yt) corresponding to the vertices of the two-dimensional Gaussian function, and determining the coordinates (xt, yt) to be obtained by locating the receiving device.
  • the positioning result of wherein the xt is the abscissa within the range of the abscissa where the target area is located, and the yt is the ordinate within the range of the ordinate where the target area is located.
  • the transmitting device is configured to determine a signal measurement result corresponding to the preset direction, and locate the receiving device according to the preset direction and the signal measurement result.
  • the transmitting device is further configured to: determine target direction information according to a positioning result obtained by locating the receiving device, wherein the target direction information is used to instruct the electromagnetic reflection surface control unit to determine the target direction according to the target
  • the direction information controls the reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface, so that the reflected beam formed on the electromagnetic reflection surface by the radio frequency signal emitted by the transmitting device is directed to the receiving device.
  • the receiving device is configured to determine a signal measurement result corresponding to the preset direction, and locate the receiving device according to the preset direction and the signal measurement result.
  • the receiving device is further configured to: determine target direction information according to a positioning result obtained by locating the receiving device, wherein the target direction information is used to instruct the electromagnetic reflection surface control unit according to the The target direction information controls the reflection coefficient of each electromagnetic unit of the electromagnetic reflection surface, so that the reflected beam formed on the electromagnetic reflection surface by the radio frequency signal emitted by the transmitting device is directed to the receiving device.
  • the above modules can be implemented by software or hardware, and the latter can be implemented in the following ways, but not limited to this: the above modules are all located in the same processor; or, the above modules can be combined in any combination The forms are located in different processors.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to execute the steps in any one of the above method embodiments when running.
  • the above-mentioned computer-readable storage medium may include, but is not limited to, a USB flash drive, a read-only memory (Read-Only Memory, referred to as ROM for short), and a random access memory (Random Access Memory, referred to as RAM for short) , mobile hard disk, magnetic disk or CD-ROM and other media that can store computer programs.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Embodiments of the present application further provide an electronic device, including a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to execute the steps in any one of the above method embodiments.
  • the above-mentioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the above-mentioned processor, and the input-output device is connected to the above-mentioned processor.
  • modules or steps of the present application can be implemented by a general-purpose computing device, and they can be centralized on a single computing device, or distributed in a network composed of multiple computing devices
  • they can be implemented in program code executable by a computing device, so that they can be stored in a storage device and executed by the computing device, and in some cases, can be performed in a different order than shown here.
  • the described steps, or they are respectively made into individual integrated circuit modules, or a plurality of modules or steps in them are made into a single integrated circuit module to realize.
  • the present application is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Aerials With Secondary Devices (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Indexing, Searching, Synchronizing, And The Amount Of Synchronization Travel Of Record Carriers (AREA)

Abstract

本申请实施例提供了一种接收装置的定位方法及装置、系统、存储介质和电子装置,该方法包括:通过发射装置向电磁反射面发射导频信号;通过发射装置向电磁反射面控制单元发送调控信息,调控信息包括时序信息以及调控方向信息,调控信息用于指示电磁反射面控制单元在目标时间段将目标导频信号在电磁反射面上形成的反射波束指向预设方向,预设方向为与目标时间段对应的预设方向信息指示的方向;通过发射装置或接收装置确定与预设方向对应的信号测量结果,并根据预设方向以及信号测量结果对接收装置定位。

Description

接收装置的定位方法及装置、系统、存储介质和电子装置 技术领域
本申请实施例涉及通信领域,具体而言,涉及一种接收装置的定位方法及装置、系统、存储介质和电子装置。
背景技术
传统阵列波束的波达方向(Direction of Arrival,简称为DOA)的估计方法包括基于多重信号分类(Multiple Signal Classification,简称为MUSIC)、旋转不变子空间(Estimating Signal parameter via Rotation Invariance Techniques,简称为ESPRIT)等方法,其基础是阵列阵子具有独立的测量功能(比如测量来波相位)。然而,对于智能电磁反射表面(又称为智能反射面,电磁反射面)而言,这种测量功能的增加会降低反射效率并会增加成本,因此智能反射表面通常不具备独立电磁单元的测相功能,从而导致在智能反射表面中传统阵列的DOA估计方法均不可用。
传统的非视距定位方法包括视距重构定位方法、非视距加权定位方法、基于视距重构与平滑处理相结合的到达时间(Time of Arrival,简称为TOA)定位方法以及基于不等式约束的定位方法,其中或将非视距利用镜面原理转换为视距,或利用统计方法减小非视距分量的影响,在该定位方法中需要多个基站的协同;并且,相关技术中的指纹地图或基于全球定位系统的定位方法中,都需要另外一套定位系统的部署及相关配套,增加了成本且在部分场景中实施受限。可见,相关技术中,在定位时,需要使用多套系统以及需要其他相关技术的支持,而无法利用电磁反射面本身的特性进行终端的定位。
针对相关技术中,无法利用电磁反射面本身的特性进行终端的定位的技术问题,尚未提出有效的技术方案。
发明内容
本申请实施例提供了一种接收装置的定位方法及装置、系统、存储介质和电子装置,以至少解决相关技术中无法利用电磁反射面本身的特性进行终端的定位的技术问题。
根据本申请的一个实施例,一种接收装置的定位方法,包括:通过发射装置向电磁反射面发射导频信号;通过所述发射装置向电磁反射面控制单元发送调控信息,其中,所述调控信息包括时序信息以及调控方向信息,所述调控信息用于指示所述电磁反射面控制单元在目标时间段将目标导频信号在所述电磁反射面上形成的反射波束指向预设方向,所述预设方向为与所述目标时间段对应的预设方向信息指示的方向,并且所述预设方向指向目标区域,所述时序信息包括所述目标时间段,所述调控方向信息包括所述预设方向信息,通过所述发射装置发射的导频信号包括所述目标导频信号;通过所述发射装置或接收装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位,其中,所述信号测量结果是位于所述目标区域中的所述接收装置对接收到的沿着所述预设方向反射的所述目标导频信号进行测量得到的结果。
在一个示例性实施例中,在所述通过发射装置向电磁反射面发射导频信号之前,所述方 法还包括:通过所述发射装置根据所述目标区域确定所述调控信息;所述根据所述目标区域确定所述调控信息,包括:根据所述目标区域划分得到的多个子区域确定多个所述预设方向信息,以及根据多个所述预设方向信息确定多个所述目标时间段,其中,每个所述预设方向信息与所述多个子区域中的每个子区域一一对应,所述时序信息包括多个所述目标时间段,每个所述目标时间段与每个所述预设方向信息一一对应;或者,确定用于指向所述目标区域的多个所述预设方向,并将每个所述预设方向信息确定为多个所述预设方向中的一个预设方向,以及根据多个所述预设方向信息确定多个所述目标时间段,其中,所述时序信息包括多个所述目标时间段,每个所述目标时间段与每个所述目标时间段预设方向信息一一对应。
在一个示例性实施例中,在所述通过所述发射装置向电磁反射面控制单元发送调控信息之后,所述方法还包括:通过所述电磁反射面控制单元根据所述预设方向信息确定目标反射系数;通过所述电磁反射面控制单元将所述电磁反射面的各电磁单元的反射系数调整至所述目标反射系数,以使所述电磁反射面形成所述预设方向的反射波束;其中,所述各电磁单元的反射系数包括以下至少之一:幅度、相位、极化。
在一个示例性实施例中,在所述预设方向信息为与所述预设方向对应的各电磁单元的目标反射系数的情况下,在所述通过所述发射装置向电磁反射面控制单元发送调控信息之后,所述方法还包括:通过所述电磁反射面控制单元将所述电磁反射面的所述各电磁单元的反射系数调整至所述目标反射系数,以使所述电磁反射面形成所述预设方向的反射波束,其中,所述各电磁单元的反射系数包括以下至少之一:幅度、相位、极化。
在一个示例性实施例中,在所述预设方向信息为与所述预设方向对应的输入参数的情况下,在所述通过所述发射装置向电磁反射面控制单元发送调控信息之后,所述方法还包括:通过所述电磁反射面控制单元根据所述输入参数确定目标反射系数,并将所述电磁反射面的各电磁单元的反射系数调整至所述目标反射系数,以使所述电磁反射面形成所述预设方向的反射波束,其中,所述输入参数用于确定所述目标反射系数,所述各电磁单元的反射系数包括以下至少之一:幅度、相位、极化。
在一个示例性实施例中,所述调控信息还包括以下信息之一:波束调控开始时间,其中,所述波束调控开始时间用于指示所述电磁反射面控制单元在所述波束调控开始时间时,开始控制所述电磁反射面的各电磁单元以对所述电磁反射面的反射波束方向进行控制;波束调控结束时间,其中,所述波束调控结束时间用于指示所述电磁反射面控制单元在所述波束调控结束时间时,结束对所述电磁反射面的各电磁单元的控制。
在一个示例性实施例中,在通过所述发射装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位的情况下,在所述通过所述发射装置确定与所述预设方向对应的信号测量结果之前,所述方法还包括:通过所述发射装置接收所述接收装置发送的测量结果集合,其中,所述测量结果集合包括与所述目标时间段对应的信号测量结果;其中,所述通过所述发射装置确定所述与所述预设方向对应的信号测量结果,包括:根据所述目标时间段确定出与所述目标时间段对应的所述预设方向信息所指示的所述预设方向,将与所述目标时间段对应的信号测量结果确定为与所述预设方向对应的信号测量结果。
在一个示例性实施例中,在通过所述接收装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位的情况下,在所述通过所述接收装置确定与所述预设方向对应的信号测量结果之前,所述方法还包括:通过所述接收装置接收所述发射装置发送的对应关系信息,其中,所述对应关系信息为所述预设方向与所述目标时间段的对应关系,或者,所述对应关系信息为所述预设方向与所述目标导频信号的对应关系;其中,所述通过所述接收装置确定与所述预设方向对应的信号测量结果包括:在所述对应关系信息为所述预设方向与所述目标时间段的对应关系的情况下,将与所述目标时间段对应的信号测量结果确定为与所述预设方向对应的信号测量结果;或者,在所述对应关系信息为所述预设方向与所述目标导频信号的对应关系的情况下,将与所述目标导频信号对应的信号测量结果确定为与所述预设方向对应的信号测量结果。
在一个示例性实施例中,所述根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位,包括:根据所述预设方向以及所述电磁反射面的位置及高度,确定与每个所述预设方向对应的所述反射波束在所述目标区域中的位置坐标(xi,yi),将与所述预设方向对应的信号测量结果的数值确定为与所述位置坐标(xi,yi)对应的竖轴坐标zi,其中,所述i为与所述预设方向对应的反射波束的标识符;根据所述目标区域所在的坐标范围、所述位置坐标(xi,yi)以及所述对应的竖轴坐标zi进行高斯函数拟合,得到拟合后的高斯函数,根据所述拟合后的高斯函数的顶点对应的坐标确定对所述接收装置进行定位的定位结果。
在一个示例性实施例中,所述根据所述目标区域所在的坐标范围、所述位置坐标(xi,yi)以及所述对应的竖轴坐标zi进行高斯函数拟合,得到拟合后的高斯函数,根据所述拟合后的高斯函数的顶点对应的坐标确定对所述接收装置进行定位的定位结果,包括:对所述目标区域所在的横坐标范围和纵坐标范围分别按照预设坐标间隔进行抽样,得到抽样后的横坐标集合和纵坐标集合;从与所述位置坐标(xi,yi)对应的竖轴坐标zi中确定与所述横坐标集合中的每个横坐标xw对应的竖轴坐标zw,以及从与所述位置坐标(xi,yi)对应的竖轴坐标zi中确定与所述纵坐标集合中的每个纵坐标yp对应的竖轴坐标zp,其中,所述w和p为区间[1,n]中的正整数,所述n为抽样的样本数;根据所述横坐标集合和与所述横坐标集合中的每个横坐标xw对应的竖轴坐标zw组成的坐标集合(xw,zw)进行一维高斯函数拟合,得到拟合后的第一高斯函数;并根据所述纵坐标集合和与所述纵坐标集合中的每个纵坐标yp对应的竖轴坐标zp组成的坐标集合(yp,zp)进行一维高斯曲线拟合,得到拟合后的第二高斯函数;确定所述第一高斯函数的顶点对应的第一坐标xt,以及所述第二高斯函数的顶点对应的第二坐标yt,将所述xt和所述yt分别确定为所述定位结果的横坐标和纵坐,其中,所述xt为所述横坐标范围内的横坐标,并且所述yt为所述纵坐标范围内的纵坐标。
在一个示例性实施例中,所述根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位,包括:根据所述预设方向以及所述电磁反射面的位置及高度,确定与每个所述预设方向对应的所述反射波束在所述目标区域中的位置坐标(xi,yi),将与所述预设方向对应的信号测量结果的数值确定为与所述位置坐标对应的竖轴坐标zi,其中,所述i为与所述预设方向对应的反射波束的标识符;根据所述位置坐标(xi,yi)和所述竖轴坐标zi组成的坐标集合(xi,yi,zi)进行二维高斯函数拟合,得到拟合后的二维高斯函数;确定所述二维高斯函数的顶点对应的坐标(xt,yt),将所述坐标(xt,yt)确定为对所述接收装置 进行定位得到的定位结果,其中,所述xt为所述目标区域所在的横坐标范围内的横坐标,并且所述yt为所述目标区域所在的纵坐标范围内的纵坐标。
在一个示例性实施例中,在所述通过所述发射装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位之后,所述方法还包括:通过所述发射装置根据对所述接收装置进行定位得到的定位结果,确定目标方向信息,其中,所述目标方向信息用于指示所述电磁反射面控制单元根据所述目标方向信息控制所述电磁反射面的各电磁单元的反射系数,以使所述发射装置发射的射频信号在所述电磁反射面上形成的反射波束指向所述接收装置。
在一个示例性实施例中,在所述通过所述接收装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位之后,所述方法还包括:通过所述接收装置根据对所述接收装置进行定位得到的定位结果,确定目标方向信息,其中,所述目标方向信息用于指示所述电磁反射面控制单元根据所述目标方向信息控制所述电磁反射面的各电磁单元的反射系数,以使所述发射装置发射的射频信号在所述电磁反射面上形成的反射波束指向所述接收装置。
根据本申请的另一个实施例,还提供了一种接收装置的定位装置,包括:发射模块,设置为通过发射装置向电磁反射面发射导频信号;调控模块,设置为通过所述发射装置向电磁反射面控制单元发送调控信息,其中,所述调控信息包括时序信息以及调控方向信息,所述调控信息用于指示所述电磁反射面控制单元在目标时间段将目标导频信号在所述电磁反射面上形成的反射波束指向预设方向,所述预设方向为与所述目标时间段对应的预设方向信息指示的方向,并且所述预设方向指向目标区域,所述时序信息包括所述目标时间段,所述调控方向信息包括所述预设方向信息,通过所述发射装置发射的导频信号包括所述目标导频信号;定位模块,设置为通过所述发射装置或接收装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位,其中,所述信号测量结果是位于所述目标区域中的所述接收装置对接收到的沿着所述预设方向反射的所述目标导频信号进行测量得到的结果。
根据本申请的又一个实施例,还提供了一种接收装置的定位系统,包括:发射装置、电磁反射面控制单元、电磁反射面,以及接收装置,其中,所述发射装置,设置为向电磁反射面发射导频信号以及设置为向电磁反射面控制单元发送调控信息,其中,所述调控信息包括时序信息以及调控方向信息,所述调控信息用于指示所述电磁反射面控制单元在目标时间段将目标导频信号在所述电磁反射面上形成的反射波束指向预设方向,所述预设方向为与所述目标时间段对应的预设方向信息指示的方向,并且所述预设方向指向目标区域,所述时序信息包括所述目标时间段,所述调控方向信息包括所述预设方向信息,通过所述发射装置发射的导频信号包括所述目标导频信号;所述电磁反射面控制单元,设置为按照所述调控信息在所述目标时间段将所述目标导频信号在所述电磁反射面上形成的反射波束指向所述预设方向;所述接收装置,设置为对接收到的沿着所述预设方向反射的所述目标导频信号进行测量得到信息测量结果,其中,所述接收装置位于所述目标区域中;所述发射装置或所述接收装置,还设置为确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及与所述预 设方向对应的信号测量结果,对所述接收装置进行定位。
根据本申请的又一个实施例,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本申请的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
附图说明
图1是本申请实施例的一种接收装置的定位方法的电子装置的硬件结构框图;
图2是本申请实施例的一种接收装置的定位方法的网络架构图;
图3是本申请实施例的一种接收装置的定位方法的流程图;
图4是本申请实施例的智能电磁反射表面的部署场景平面示意图;
图5是本申请实施例的接收装置记录的无线信号质量示意图;
图6是本申请实施例的无线信号质量对应的时隙与目标区域中的位置坐标的对应关系示意图;
图7是本申请实施例的无线信号质量与目标区域中的位置坐标的二维展示示意图;
图8是本申请实施例的无线信号质量与目标区域中的位置坐标的一维展示示意图;
图9是本申请实施例的x轴方向无线信号质量以及一维高斯曲线拟合示意图(一);
图10是本申请实施例的y轴方向无线信号质量以及一维高斯曲线拟合示意图(二);
图11是本申请另一实施例的接收装置记录的无线信号质量示意图;
图12是本申请另一实施例的无线信号质量对应的时隙与目标区域中的位置坐标的对应关系示意图;
图13是本申请另一实施例的无线信号质量与目标区域中的位置坐标的二维展示示意图;
图14是本申请另一实施例的无线信号质量与目标区域中的位置坐标的一维展示示意图;
图15是本申请另一实施例的x轴方向的无线信号质量以及一维高斯曲线拟合示意图(一);
图16是本申请另一实施例的y轴方向的无线信号质量以及一维高斯曲线拟合示意图(二);
图17是本申请实施例的接收装置的定位装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请的实施例。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例中所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在电子装置上为例,图1是本申请实施例的一种接收装置的定位方法的电子装置的硬件结构框图。如图1所示,电子装置可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和设置为存储数据的存储器104,其中,上述电子装置还可以包括设置为通信功能的传输设 备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,电子装置还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可设置为存储计算机程序,例如,应用软件的软件程序以及模块,如本申请实施例中的接收装置的定位方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至电子装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106设置为经由一个网络接收或者发送数据。上述的网络具体实例可包括通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其设置为通过无线方式与互联网进行通讯。
本申请实施例可以运行于图2所示的网络架构上,如图2所示,该网络架构包括:发射装置(例如,基站),智能电磁反射表面控制单元(即对应本申请实施例中的电磁反射面控制单元)、智能电磁反射表面(即本申请实施例中的电磁反射面)、接收装置(例如,终端)。其中,发射装置包括无线射频单元或天线,发射装置设置为规划、配置并发射特定无线信号,例如发射装置通过无线射频单元向智能电磁反射表面发射射频信号(例如本申请实施例中的导频信号);智能电磁反射表面控制单元,设置为控制智能反射表面中的各电磁单元(或称为电磁反射单元)的反射系数;智能电磁反射表面,由多组反射系数可控的电磁单元所组成,通过控制各电磁单元的反射系数,智能电磁反射表面可以形成预定的反射波束天线方向图(即在智能反射表面形成预定方向的反射波束);接收装置,设置为接收无线信号并可进行对接收的无线信号进行测量、记录或分析。其中,发射装置发射的目标导频信号是由发射装置(例如,基站)预先规划并配置的,并且发射装置向接收装置通知规划的目标导频信号,从而使接收装置能够得知发射装置将会发射的目标导频信号。
在本实施例中提供了一种运行于上述网络架构的接收装置的定位方法,图3是本申请实施例的一种接收装置的定位方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,通过发射装置向电磁反射面发射导频信号;
步骤S304,通过所述发射装置向电磁反射面控制单元发送调控信息,其中,所述调控信息包括时序信息以及调控方向信息,所述调控信息用于指示所述电磁反射面控制单元在目标时间段将目标导频信号在所述电磁反射面上形成的反射波束指向预设方向,所述预设方向为与所述目标时间段对应的预设方向信息指示的方向,并且所述预设方向指向目标区域,所述时序信息包括所述目标时间段,所述调控方向信息包括所述预设方向信息,通过所述发射装置发射的导频信号包括所述目标导频信号;
步骤S306,通过所述发射装置或接收装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位,其中,所述信号测量 结果是位于所述目标区域中的所述接收装置对接收到的沿着所述预设方向反射的所述目标导频信号进行测量得到的结果。
通过上述步骤,通过发射装置向电磁反射面发射导频信号;通过所述发射装置向电磁反射面控制单元发送调控信息,其中,所述调控信息包括时序信息以及调控方向信息,所述调控信息用于指示所述电磁反射面控制单元在目标时间段将目标导频信号在所述电磁反射面上形成的反射波束指向预设方向,所述预设方向为与所述目标时间段对应的预设方向信息指示的方向,并且所述预设方向指向目标区域,所述时序信息包括所述目标时间段,所述调控方向信息包括所述预设方向信息,通过所述发射装置发射的导频信号包括所述目标导频信号;通过所述发射装置或接收装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位,其中,所述信号测量结果是位于所述目标区域中的所述接收装置对接收到的沿着所述预设方向反射的所述目标导频信号进行测量得到的结果。因此,可以解决相关技术中无法利用电磁反射面本身的特性进行终端的定位的技术问题,达到了利用电磁反射面本身的特性进行终端的定位的效果。
需要说明的是,在本申请实施例中,使用一套系统(即利用一个基站和电磁反射面),并且利用反射面本身的能力就可实现对接收装置的定位,从而能够通过使用一个基站并使用电磁反射面本身的特性就能够完成对接收装置的定位。
在上述实施例中,信号测量结果可以是信号质量、信号场强电平或信号接收功率。
步骤S302和步骤S304的执行顺序是可以互换的,即可以先执行步骤S304,然后再执行S302。
在一个示例性实施例中,在所述通过发射装置向电磁反射面发射导频信号之前,所述方法还包括:在所述通过发射装置向电磁反射面发射导频信号之前,所述方法还包括:通过所述发射装置根据所述目标区域确定所述调控信息;所述根据所述目标区域确定所述调控信息,包括:根据所述目标区域划分得到的多个子区域确定多个所述预设方向信息,以及根据多个所述预设方向信息确定多个所述目标时间段,其中,每个所述预设方向信息与所述多个子区域中的每个子区域一一对应,所述时序信息包括多个所述目标时间段,每个所述目标时间段与每个所述预设方向信息一一对应;或者,确定用于指向所述目标区域的多个所述预设方向,并将每个所述预设方向信息确定为多个所述预设方向中的一个预设方向,以及根据多个所述预设方向信息确定多个所述目标时间段,其中,所述时序信息包括多个所述目标时间段,每个所述目标时间段与每个所述预设方向信息一一对应。
在上述实施例中,发射装置可以通过将目标区域划分为多个子区域,例如,将目标区域划分为子区域1,子区域2,以及子区域3等,并根据划分出的多个子区域确定与每个子区域分别一一对应的预设方向信息,例如预设方向信息1,预设方向信息2,以及预设方向信息3等。其中,所述预设方向信息用于指示电磁反射面控制单元调整电磁反射面的各电磁单元的反射系数,以使在电磁反射面上形成的反射波束指向该预设方向信息对应的子区域,因此通过控制电磁反射面使反射波束依次指向目标区域中的各个子区域,从而实现发射装置对目标区域的扫描。在一个示例性实施例中,发射装置可以根据对目标区域中的子区域的扫描顺序确定与每个子区域对应的预设方向信息,以及根据确定出的预设方向信息确定时序信息(即确定出多个目标时间段,其中,每个目标时间段均具有对应的预设方向信息),例如确定出 的多个预设方向信息为预设方向信息1,预设方向信息2,以及预设方向信息3,则时序信息包括是目标时间段1,目标时间段2以及目标时间段3,其中,目标时间段1对应预设方向信息1,目标时间段2对应预设方向信息2,目标时间段3对应预设方向信息3。
在上述实施例中,发射装置可以直接在目标区域中确定多个预设方向,例如在目标区域中,确定指向目标区域的某一位置的第一预设方向,以及确定指向目标区域的另一位置的第二预设方向,即确定出多个预设方向,并将每个预设方向信息确定为多个预设方向中的一个预设方向,即可以将一个预设方向本身作为一个预设方向信息。在确定出多个预设方向信息后,发射装置可以根据对目标区域的位置的扫描顺序,确定出与扫描顺序对应的目标时间段。例如,时序信息包括了目标时间段1和目标时间段2,其中,目标时间段1对应预设方向信息1,目标时间段2对应预设方向信息2。
需要说明的是,在本申请实施例中,目标时间段可以是时隙号(即时隙序号)对应的时间段,时序信息可以是时隙号对应的时间段(即相应时隙对应的时间段)组成的集合,即时序信息中包括了按照顺序排列的多个时隙所对应的时间段。并且,调控方向信息中包括了多个预设方向信息,其中,时序信息中的每个目标时间段与调控方向信息中的每个预设方向信息一一对应。因此,本申请实施例中,通过向电磁反射面控制单元发送调控信息,从而可以指示所述电磁反射面控制单元在目标时间段将目标导频信号在所述电磁反射面上形成的反射波束指向与该目标时间段对应的预设方向信息所指向的预设方向;以及在该目标时间段的下一个目标时间段到达时(例如,到达下一个目标时间段的起始时间),通过所述电磁反射面控制单元将目标导频信号在所述电磁反射面上形成的反射波束指向与所述下一个目标时间段对应的预设方向信息所指向的预设方向。从而实现了通过电磁反射面控制单元在时序信息中的某一目标时间段内,控制所述电磁反射面的发射波束指向相应的方向,其中,相应的方向为与该某一目标时间段对应的预设方向信息所指示的方向。
在一个示例性实施例中,在所述通过所述发射装置向电磁反射面控制单元发送调控信息之后,所述方法还包括:通过所述电磁反射面控制单元根据所述预设方向信息确定目标反射系数;通过所述电磁反射面控制单元将所述电磁反射面的各电磁单元的反射系数调整至所述目标反射系数,以使所述电磁反射面形成所述预设方向的反射波束;其中,所述各电磁单元的反射系数包括以下至少之一:幅度、相位、极化。
在一个示例性实施例中,在所述预设方向信息为与所述预设方向对应的各电磁单元的目标反射系数的情况下,在所述通过所述发射装置向电磁反射面控制单元发送调控信息之后,所述方法还包括:通过所述电磁反射面控制单元将所述电磁反射面的各电磁单元的反射系数调整至所述目标反射系数,以使所述电磁反射面形成所述预设方向的反射波束,其中,所述各电磁单元的反射系数包括以下至少之一:幅度、相位、极化。
在一个示例性实施例中,在所述预设方向信息为与所述预设方向对应的输入参数的情况下,在所述通过所述发射装置向电磁反射面控制单元发送调控信息之后,所述方法还包括:通过所述电磁反射面控制单元根据所述输入参数确定目标反射系数,并将所述电磁反射面的各电磁单元的反射系数调整至所述目标反射系数,以使所述电磁反射面形成所述预设方向的反射波束,其中,所述输入参数用于确定所述目标反射系数,所述各电磁单元的反射系数包 括以下至少之一:幅度、相位、极化。
在一个示例性实施例中,所述调控信息还包括以下信息之一:波束调控开始时间,其中,所述波束调控开始时间用于指示所述电磁反射面控制单元在所述波束调控开始时间时,开始控制所述电磁反射面的各电磁单元以对所述电磁反射面的反射波束方向进行控制;波束调控结束时间,其中,所述波束调控结束时间用于指示所述电磁反射面控制单元在所述波束调控结束时间时,结束对所述电磁反射面的各电磁单元的控制。
其中,所述电磁反射面控制单元还用于在所述波束调控开始时间时,根据所述时序信息中的第一个目标时间段,将所述电磁反射面的反射系数调整至与第一预设方向对应的目标反射系数,其中,第一预设方向为与第一个目标时间段对应的预设方向信息所指示的方向。
在一个可选实施例中,时序信息中的各个目标时间段组成了一段连续的时间,并且时序信息中的第一个目标时间段的起始时间为所述波束调控开始时间,最后一个目标时间段的结束时间为所述波束调控结束时间,并且每个中间目标时间段(即位于第一个目标时间段和最后一个目标时间段之间的目标时间段)的结束时间为下一个目标时间段的起始时间。例如,时序信息中包括了目标时间段1至目标时间段3,其中,目标时间段1的结束时间为目标时间段2的起始时间,目标时间段2的结束时间为目标时间段3的起始时间,并且目标时间段1的起始时间为所述波束调控开始时间,目标时间段3的结束时间为所述波束调控结束时间。
在一个示例性实施例中,上述时序信息可以是时隙对应的时间段的集合(例如,第1时隙对应的时间段至第180时隙对应的时间段),并且目标时间段为目标时序序号(又称为目标时隙,或目标时隙号,例如第1时隙至第180时隙中的其中一个时隙))所对应的时间段。可选地,发射装置记录目标时间段以及在目标时间段内发射的导频信号的对应关系,并且接收装置在接收到目标导频信号时,同时记录目标时间段以及在目标时间段内接收到的目标导频信号的对应关系。需要说明的是,发射装置记录的目标时间段以及在目标时间段内发射的导频信号的对应关系,与接收装置记录的目标时间段以及在目标时间段内接收到的目标导频信号的对应关系是一致的。
在一个示例性实施例中,在通过所述发射装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位的情况下,在所述通过所述发射装置确定与所述预设方向对应的信号测量结果之前,所述方法还包括:通过所述发射装置接收所述接收装置发送的测量结果集合,其中,所述测量结果集合包括与所述目标时间段对应的信号测量结果;其中,所述通过所述发射装置确定所述与所述预设方向对应的信号测量结果,包括:根据所述目标时间段确定出与所述目标时间段对应的所述预设方向信息所指示的所述预设方向,将与所述目标时间段对应的信号测量结果确定为与所述预设方向对应的信号测量结果。
在一个示例性实施例中,在通过所述接收装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位的情况下,在所述通过所述接收装置确定与所述预设方向对应的信号测量结果之前,所述方法还包括:通过所述接收装置接收所述发射装置发送的对应关系信息,其中,所述对应关系信息为所述预设方向与所述目标时间段的对应关系,或者,所述对应关系信息为所述预设方向与所述目标导频信 号的对应关系;其中,所述通过所述接收装置确定与所述预设方向对应的信号测量结果包括:在所述对应关系信息为所述预设方向与所述目标时间段的对应关系的情况下,将与所述目标时间段对应的信号测量结果确定为与所述预设方向对应的信号测量结果;或者,在所述对应关系信息为所述预设方向与所述目标导频信号的对应关系的情况下,将与所述目标导频信号对应的信号测量结果确定为与所述预设方向对应的信号测量结果。
其中,在上述实施例中,接收装置在接收到沿着所述预设方向反射的所述目标导频信号时,记录该目标导频信号对应的目标时间段(例如第1个时隙对应的时间段),并对目标导频信号进行信号测量得到信号测量结果,信号测量结果可以是信号质量,信号场强电平或信号接收功率。
在一个示例性实施例中,所述根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位,包括:根据所述预设方向以及所述电磁反射面的位置及高度,确定与每个所述预设方向对应的所述反射波束在所述目标区域中的位置坐标(xi,yi),将与所述预设方向对应的信号测量结果的数值确定为与所述位置坐标(xi,yi)对应的竖轴坐标zi,其中,所述i为与所述预设方向对应的反射波束的标识符;根据所述目标区域所在的坐标范围、所述位置坐标(xi,yi)以及所述对应的竖轴坐标zi进行高斯函数拟合,得到拟合后的高斯函数,根据所述拟合后的高斯函数的顶点对应的坐标确定对所述接收装置进行定位的定位结果。
在一个示例性实施例中,所述根据所述目标区域所在的坐标范围、所述位置坐标(xi,yi)以及所述对应的竖轴坐标zi进行高斯函数拟合,得到拟合后的高斯函数,根据所述拟合后的高斯函数的顶点对应的坐标确定对所述接收装置进行定位的定位结果,包括:对所述目标区域所在的横坐标范围和纵坐标范围分别按照预设坐标间隔进行抽样,得到抽样后的横坐标集合和纵坐标集合;从与所述位置坐标(xi,yi)对应的竖轴坐标zi中确定与所述横坐标集合中的每个横坐标xw对应的竖轴坐标zw,以及从与所述位置坐标(xi,yi)对应的竖轴坐标zi中确定与所述纵坐标集合中的每个纵坐标yp对应的竖轴坐标zp,其中,所述w和p为区间[1,n]中的正整数,所述n为抽样的样本数;根据所述横坐标集合和与所述横坐标集合中的每个横坐标xw对应的竖轴坐标zw组成的坐标集合(xw,zw)进行一维高斯函数拟合,得到拟合后的第一高斯函数;并根据所述纵坐标集合和与所述纵坐标集合中的每个纵坐标yp对应的竖轴坐标zp组成的坐标集合(yp,zp)进行一维高斯曲线拟合,得到拟合后的第二高斯函数;确定所述第一高斯函数的顶点对应的第一坐标xt,以及所述第二高斯函数的顶点对应的第二坐标yt,将所述xt和所述yt分别确定为所述定位结果的横坐标和纵坐,其中,所述xt为所述横坐标范围内的横坐标,并且所述yt为所述纵坐标范围内的纵坐标。
例如,目标区域为:横坐标在[xs,xe]区间范围内,纵坐标在[ys,ye]区间范围内的区域,其中,xs、xe、ys、ye均为实数,且xe>xs,ye>ys,对该目标区域所在的横坐标范围和纵坐标范围分别按照预设坐标间隔进行抽样,得到抽样后的横坐标集合和纵坐标集合,则上述实施例中,xs≤xw≤xe,ys≤yp≤ye;并且得到的定位结果中,xs≤xt≤xe,ys≤yt≤ye。
需要说明的是,在上述实施例中,可以通过两个一维高斯函数拟合的方式(即分别进行两个一维高斯曲线的拟合),分别确定出两个一维高斯函数的顶点(即高斯函数的最大值,也是高斯函数对应的高斯曲线的最大值)所对应的坐标(即,高斯函数取最大值时对应的输 入),从而确定出接收装置的位置坐标(即定位结果)。
其中,所述从与所述位置坐标(xi,yi)对应的竖轴坐标zi中,确定与所述横坐标集合中的每个横坐标xw对应的竖轴坐标zw,以及从与所述位置坐标(xi,yi)对应的竖轴坐标zi中确定与所述纵坐标集合中的每个纵坐标yp对应的竖轴坐标zp,包括:确定所述位置坐标(xi,yi)中横坐标为xw的所有位置坐标对应的竖轴坐标,将所述横坐标为xw的所有位置坐标对应的竖轴坐标中的最大值确定为与所述横坐标xw对应的竖轴坐标zw;以及确定所述位置坐标(xi,yi)中纵坐标为yp的所有位置坐标对应的竖轴坐标,将所述纵坐标为yp的所有位置坐标对应的竖轴坐标中的最大值确定为与所述纵坐标yp对应的竖轴坐标zp。
需要说明的是,在上述实施例中,可以通过两个一维高斯函数拟合的方式(即拟合出两个一维高斯函数,每个一维高斯函数对应一个高斯曲线),确定出接收装置的位置坐标。其中,分别确定出每个高斯曲线的顶点(即高斯曲线对应的高斯函数的最大值)所对应的坐标(即,该高斯曲线取最大值时对应的输入),从而确定出接收装置的位置坐标。
在一个示例性实施例中,所述根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位,包括:根据所述预设方向以及所述电磁反射面的位置及高度,确定与每个所述预设方向对应的所述反射波束在所述目标区域中的位置坐标(xi,yi),将与所述预设方向对应的信号测量结果的数值确定为与所述位置坐标对应的竖轴坐标zi,其中,所述i为与所述预设方向对应的反射波束的标识符;根据所述位置坐标(xi,yi)和所述竖轴坐标zi组成的坐标集合(xi,yi,zi)进行二维高斯函数拟合,得到拟合后的二维高斯函数;确定所述二维高斯函数的顶点对应的坐标(xt,yt),将所述坐标(xt,yt)确定为对所述接收装置进行定位得到的定位结果,其中,所述xt为所述目标区域所在的横坐标范围内的横坐标,并且所述yt为所述目标区域所在的纵坐标范围内的纵坐标。
例如,目标区域对应的横坐标范围为[xs,xe],纵坐标范围为[ys,ye],其中,xs、xe、ys、ye均为实数,且xe>xs,ye>ys,则得到的定位结果中:xs≤xt≤xe,ys≤yt≤ye。
需要说明的是,在上述实施例中,可以通过二维高斯函数拟合的方式(即进行高斯曲面的拟合),确定出接收装置的位置坐标。其中,可以使用最小二乘法、最小均方误差法来实现拟合。
在一个示例性实施例中,在所述通过所述发射装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位之后,所述方法还包括:通过所述发射装置根据对所述接收装置进行定位得到的定位结果,确定目标方向信息,其中,所述目标方向信息用于指示所述电磁反射面控制单元根据所述目标方向信息控制所述电磁反射面的各电磁单元的反射系数,以使所述发射装置发射的射频信号在所述电磁反射面上形成的反射波束指向所述接收装置。
其中,在确定目标方向信息之后,所述发射装置将所述目标方向信息发送给所述电磁反射面控制单元,以指示所述电磁反射面控制单元根据所述目标方向信息控制所述电磁反射面的各电磁单元的反射系数,从而以使射频信号在所述电磁反射面上形成的反射波束指向所述接收装置。
在一个示例性实施例中,在所述通过所述接收装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位之后,所述方法还包括:通过所述接收装置根据对所述接收装置进行定位得到的定位结果,确定目标方向信息,其中,所述目标方向信息用于指示所述电磁反射面控制单元根据所述目标方向信息控制所述电磁反射面的各电磁单元的反射系数,以使所述发射装置发射的射频信号在所述电磁反射面上形成的反射波束指向所述接收装置。
其中,在确定目标方向信息之后,所述接收装置将所述目标方向信息发送给发射装置,并由所述发射装置将所述目标方向信息发送给所述电磁反射面控制单元,以指示所述电磁反射面控制单元根据所述目标方向信息控制所述电磁反射面的各电磁单元的反射系数,从而以使射频信号在所述电磁反射面上形成的反射波束指向所述接收装置。
以下结合一示例对上述实施例中的接收装置的定位方法进行解释说明,但不用于限定本申请实施例的技术方案。
在相关技术中,利用智能超表面(又称为智能电磁反射表面,即上述实施例中的电磁反射面)来增强移动网络的非直射径地区覆盖是一个非常有效且低成本的方法。本申请将给出相关的方法,可以利用智能电磁反射表面本身的特点实现目标波束方位的精确对准,从而使得智能电磁反射表面的部署方案自完备;并且,在智能电磁超表面覆盖增强的非直射径区域中,实现终端位置的精确定位。即本申请实施例中,实现了利用智能电磁反射表面的部署实现利用单站(即单个基站)进行非直射径终端定位。
在本申请实施例中,主要涉及以下节点:
发射装置,设置为确定波束扫描规划,并基于波束扫描规划生成导频序列(即上述实施例中的导频信号)发给发射装置的无线射频单元;其中,所述确定波束扫描规划是指发射装置对目标区域进行网格划分或目标波束指向规划,并将目标区域的二维空间域规划转换为一维时间域规划的过程。例如,发射装置根据对目标区域中的网格(即上述实施例中的子区域)的扫描顺序,确定出对应于时间顺序(该时间顺序即上述实施例中的时序信息)的各个网格,并确定与每个网格对应的预设方向信息。即在上述实施例中,每个预设方向信息均具有对应的目标时间段。其中,发射装置的无线射频单元通过波束调控,将发射装置的射频波束方向指向智能电磁反射表面(即调节波束对准智能电磁反射面),并将收到的导频序列调制后发射。
需要说明的是,在上述实施例中,发射装置发射导频序列是发射装置及接收装置均预先已知的编码序列,该编码序列具有良好的自相关及互相关特性,接收装置基于该导频序列可以进行无线信号质量或强度的测量。在一个示例性实施例中,发射装置在预定的时间窗内,将特定的导频序列发送给发射装置无线射频单元,在该时间窗内,导频序列的内容可以是相同的或分时不同的编码序列。其中,当采用分时不同的导频序列时,将时间窗分段,时间窗中的每个间段对应可以区分的导频序列,并且该导频序列与调控信息中的预设方向信息相对应,即导频信号与智能电磁反射面的目标波束调控方位(即上述实施例中的预设方向)同步并对应。其中,预定的时间窗为波束调控开始时间至波束调控结束时间之间的时间窗;在一个示例性实施例中,发射装置还将波束调控开始时间和波束调控结束时间发送给接收装置。
发射装置,还设置为通过智能电磁反射面控制单元控制智能反射面,即对智能反射面的波束方向进行控制,以及使智能反射面形成的反射波束扫描目标区域;
其中,所述通过智能电磁反射面控制单元控制智能反射面,即对智能反射面的波束方向进行控制,包括:发射装置通过发射装置与智能反射面控制单元之间的接口,将调控信息发给智能反射面控制单元,调控信息包括但不限于以下内容:波束调控起始时间、波束调控方向、各电磁单元的目标反射系数、用于确定各电磁单元的目标反射系数的输入参数,时序信息、波束调控结束时间等。其中,调控信息可以是待调节至的波束目标,也可以是智能电磁反射面各电磁单元的调控指令,当这些指令作用于智能电磁单元时,可以使智能电磁反射表面的电磁单元进行反射系数(又被称为输入反射系数)的改变或调整,从而使电磁反射面上反射的主波束按照预定时间段(即上述实施例中的时序信息中的目标时间段)指向不同的目标方位(即上述实施例中的预设方向)。
接收装置测量并记录一段时间内(即波束调控开始时间至波束调控结束时间之间的时间段)特定导频或导频组内各导频的无线信号质量,即接收装置在该预定的时间窗内,基于已知的导频序列或导频序列组测量接收到的所有导频信号的信号质量或所有导频信号中部分导频信号的信号质量,并记录各信号质量与对应的目标时间段,即接收装置记录的信号测量结果组成的信号测量结合集合是按照时间段顺序排列的各个无线信号质量(即信号测量结果集合是一个时间序列数据),并且该信号测量结果集合与智能电磁反射表面的波束调控时序相对应(即信号测量结果集合中的各个信号测量结果对应的目标时间段组成的时序信息与用于控制电磁反射面的时序信息一致)。
发射装置,或者接收装置,还设置为基于接收装置的测量结果(即上述实施例中的信号测量结果)进行目标波束方向的估计和接收装置的位置定位。
其中,所述基于接收装置的测量结果进行目标波束方向的估计和接收装置的位置定位包括以下步骤:(1)基于接收装置的测量结果与智能电磁反射表面波束调控时序,确定在智能电磁反射表面主调控波束指向不同方位时终端所测量的无线信号质量;(2)基于主调控波束不同方位的无线信号质量进行终端位置估计和目标波束方位的估计。其中,第(2)步的具体实施可在接收装置或发射装置进行。
当第(2)步在接收装置进行时,发射装置向接收装置提供相关的波束方位与目标时间段的对应关系,或相关的波束方位与导频序列的对应关系,该对应关系可以通过公共信道或专用信道发送。当第(2)步在发射装置进行时,接收装置向发射装置上报相关的测量结果,从而使发射装置可以获知各智能电磁反射表面波束方位与终端测量的无线信号质量的集合,其中无线信号质量可以是原始测量结果或经过量化编码后的结果。
在对终端位置进行定位时,可以基于智能电磁表面波束指向及相关测量结果,将一维时间数据转化为二维空间数据,例如通过二维曲面拟合算法(即进行二维高斯函数拟合,得到拟合后的二维高斯函数,其中,二维高斯函数对应高斯曲面)来确定终端位置。所述二维曲面拟合算法包括但并不限定于二维高斯分布曲面,最小二乘法、最小均方误差法等方法,或者,利用两个独立的降维到一维的高斯曲线进行拟合(即分别进行X方向和Y方向的一维高斯函数拟合,得到拟合后的两个一维高斯函数,其中,每个一维高斯函数对应一条高斯曲线)。
图4是本申请实施例的智能电磁反射表面的部署场景平面示意图,其中示出了波束扫描区域(即上述实施例中的目标区域)以及智能电磁反射面(即上述实施例中的电磁反射面)。在本申请一个示例性的应用场景中,
发射装置的各个部署参数如下:
发射装置的天线(即无线射频单元)安装在挂高为43米的建筑物顶部(即发射装置的天线的位置高度为43米);
发射装置的无线射频发射单元中心点的坐标为:[0,0,43](单位为米:m);
水平方位角Az=120度;
俯仰角EL=10度;
旋转角SL=0度。
智能电磁反射表面的各个部署参数如下:
智能电磁反射表面的中心点位置:[21.67,133.2,36.2](单位为m)即上述实施例中的超表面的位置及高度);
水平方位角Az=-60度;
俯仰角EL=0度;
旋转角SL=0度。
其中,发射装置和智能电磁反射面的参数配置如下:
载波频率Fc=28GHz;
极化:垂直极化;
基站等效全向辐射功率(Equivalent Isotropically Radiated Power,简称为EIRP)=43dBm
智能电磁反射表面的尺寸:长20λ×宽20λ,λ为载频的波长;
智能电磁反射表面控制单元尺寸:
Figure PCTCN2021093458-appb-000001
智能电磁反射表面相位控制粒度:2-bits(即使用2个比特来指示超表面的相位,从而存在4个可选相位:[0,π/2,π,3π/2](单位为:弧度);
子载波间隔(Sub-Carrier Space,简称为SCS):30kHz;
无线帧长:10ms;
每无线帧时隙(slot)数目:20;
发射装置设置扫描波束更新频率:每时隙。
在对本申请实施例中的接收装置的定位方法的定位准确性进行测试时,使用目标区域中的位置坐标为[68,88](单位m)处的接收装置为参考,对本申请实施例中的定位方法的定位准确性进行测试。
在本申请实施例中,该定位方法包括以下步骤:
步骤1、发射装置确定波束扫描规划:从第1时隙(第1时隙对应的时间段即第一个目标时间段,同时该第一个目标时间段的起始时间也对应于上述实施例中的波束调控开始时间)开始至第180时隙(即第180个目标时间段,也是时序信息中的最后一个目标时间段,该最后一个目标时间段的结束时间也对应于上述实施例中的波束调控结束时间),进行图4中波束扫描区域(即上述实施例中的目标区域)的波束扫描,发射装置生成导频序列发给无线射频单元;
步骤2、发射装置的无线射频单元调节波束对准智能电磁反射面,并将收到的导频序列调制后发射;
步骤3、发射装置通过智能电磁反射面控制单元对智能反射面的波束方向进行控制,智能电磁反射面波束扫描的方位更新的频度为每时隙,在某时隙反射波束沿着某一预设方向到达波束扫描区域,每次更新后波束将对准下一个新的预定方位(即上述实施例中的预设方向)。步骤4、在一个示例性实施例中,发射装置将波束调控开始时间以及波束调控结束时间发送给接收装置,接收装置在这段时间(即波束调控开始时间至波束调控结束时间的时间段)内测量并记录无线导频信号的无线信号质量,其结果见图5所示;其中,图5示出了接收装置对接收到的发射装置发射的目标导频信号进行测量得到的信号接收强度,其中,横轴为按照顺序排列的各个时隙。其中,由于每个时隙具有一定的时长,从而每个时隙可以对应一个时间段(即上述实施例中的目标时间段)例如,时隙长度为a(单位为毫秒),则时序信息中的第k个目标时间段(即第k个时隙对应的时间段)为t0+(k-1)a,t0+ka之间的时间段,其中,t0为波束调控开始时间(单位为毫秒),k为大于或等于1的整数。
步骤5、基于接收的测量结果进行目标波束方向的估计和接收装置的定位。
其中,在进行接收装置的定位时,在本实施例中由接收装置将一个测量周期内的测量原始结果上报给发射装置,上报内容的格式为:(其中,slotNo表示时隙号(时隙),即上述实施例中的各个目标时间段,RxPwr表示接收电平,即上述实施例中的信号测量结果)
slotNo 1:RxPwr-130;
slotNo 51:RxPwr-86.5;
slotNo 52:RxPwr-91.61;
slotNo 53:RxPwr-83.66;
slotNo 54:RxPwr-75.13;
slotNo 55:RxPwr-73.55;
slotNo 56:RxPwr-75.06;
slotNo 57:RxPwr-87.31;
发射装置将时隙号(即对应的时隙,也就是该时隙对应的目标时间段)映射为目标波束指向,并结合智能电磁反射表面中心的位置和挂高(即上述实施例中的电磁反射面的高度),将图6中的一维时间数据转化为二维空间数据(图7),同时将测量结果映射到波束扫描区域的地面见图8(即图8是图7的平面图)。其中,图6的横轴和纵轴分别表示目标区域的横坐标和目标区域的坐标,图6的每个点“·”旁边的数字表示时隙号(该时隙号也用于表示与该时隙号对应的时间段),例如图6中第二行的两个标注:·31,和·47,其中的“37”和“47”分别表示对应的时隙号为31,和47,根据图6,能够确定出与每个时隙号对应的位置坐标。图7中的横轴和纵轴分别表示目标区域的横坐标和目标区域的坐标,竖轴(z轴)表示接收信号质量。图8中的横轴和纵轴分别表示目标区域的横坐标和目标区域的坐标,图8的每个点“·”表示存在接收信号质量,具体的接收信号质量的大小显示在了图7中的竖轴坐标中。其中,图中的标注“接收装置预测位置”为对接收装置进行定位得到的定位结果(即定位结果中的坐标)。
利用降维方法,分别独立的估计接收装置的X坐标及Y坐标,具体如下:
基于智能反射表面各波束方位及智能反射表面的挂高确定各波束在地面的位置[xi,yi], 其中i为波束标识,在本实施例中等于时隙号;
基于图6、7的数据按X轴及Y轴两个方向进行数据降维:
(1)将X轴方向进行分段(即对横坐标进行分段),各段间隔为2,所有分段的中心点对应的坐标组成的集合为:[62,64,66,…,80](即上述实施例中的横坐标集合);
(2)将Y轴方向进行分段(即对纵坐标进行分段),各段间隔为2,所有分段的中心点对应的坐标组成的集合为:[80,82,84,…,110(即上述实施例中的纵坐标集合)];
(3)对于所有的二维数据,对于X轴各分段的中心点对应的坐标组成的集合[62,64,66,…,80],确定其中每个中心点的坐标对应的降维接收电平(在一个示例性实施例中,将每段中最强的无线信号接收质量确定该段唯一的降维接收电平,即对于某一中心点的坐标xw,确定该坐标xw对应的无线信号接收质量(即接收电平)的最大值(即zw)),结果如下:
[62,RxPwrx1;
64,RxPwrx2;
66,RxPwrx3;
…,;
80,RxPwrx10]
得到的X轴方向的坐标集合以及对应的无线信号质量为图9所示中的各个实测数据。
(4)对于所有的二维数据,按照Y方向分段的结果,将无线信号质量分别归到各自的段中,Y轴各段的中心点的坐标集合为:[80,82,84,…,110],根据每段中最强无线信道接收质量确定该段唯一的降维接收电平(即对于纵坐标集合中的每个纵坐标yp,确定该yp对应的zp;具体确定方式与上述X轴方向的处理方式类似),结果如下:
[80,RxPwry1;
82,RxPwry2;
84,RxPwry3;
…,
110,RxPwry16]
得到的Y轴方向的坐标集合以及对应的无线信号质量为图10所示中的各个实测数据。
(5)定位结果及误差
选一维高斯函数作为拟合曲线,分别进行X方向和Y方向的一维高斯函数拟合(即分别拟合得到一维高斯函数);在一个示例性实施例中,可以利用最小二乘拟合来分别确定X方向对应的一维高斯函数(即一维高斯曲线,可参见图9中的拟合结果)的参数,以及确定其顶点对应的x坐标(即上述实施例中的xt);以及,可以利用最小二乘拟合来确定Y方向对应的一维高斯函数(即一维高斯曲线,可参见图10中的拟合结果)的参数,以及确定其顶点对应的y坐标(即上述实施例中的yt)。根据本申请实施例中的定位方法,确定出的接收装置的位置坐标为:[68.3963,88.3110]m,其与作为参考目标的接收装置的真实坐标位置[68,88]的定位误差为:0.50378m。可见,使用本申请实施例的定位方法,可以得到较为准确的定位结果。
在本申请的又一实施例中,还使用了目标区域中的位置坐标为[64,102](单位m)处的接收装置为参考,对本申请实施例中的定位方法的定位准确性进行测试。在本申请实施例中, 定位方法包括以下步骤:
步骤1、发射装置确定波束扫描规划:从第1时隙开始至第180时隙,进行图4中相关区域的波束扫描,发射装置生成导频序列发给无线射频单元;
步骤2、无线射频单元调节波束对准智能电磁反射面,并将收到的导频序列调制后发射;
步骤3、发射装置通过智能电磁反射面控制单元控制对智能反射面的波束方位进行控制,波束扫描的方位更新的频度为每时隙,每次更新后波束将对准下一个新的预定方位;
步骤4、接收装置在这段时间内测量并记录无线导频信号的无线信号质量,其结果见图11;
步骤5、基于发射装置的测量结果进行目标波束方向的估计和终端定位。
其中,接收装置将一个测量周期内的测量原始结果上报给发射装置,上报内容的格式为时隙号以及对应的信号测量结果(具体格式与上述实施例中的上报内容的格式相同)
步骤6、发射装置将时隙号映射为目标波束指向,并结合智能电磁反射表面中心的位置和挂高,将一维时间数据(即图12中所示的与时隙对应的无线信号质量)转化为图13中所示的二维空间数据,同时将测量结果映射到波束扫描区域的地面(即得到与图13对应的平面图,即图14);
步骤7、利用降维方法,分别独立的估计接收装置的X及Y坐标,估计结果分别如图15和图16所示;
步骤8、定位结果及误差。
选一维高斯函数作为拟合曲线,对于X及Y方向,分别利用最小二乘拟合来分别确定X方向和Y方向的一维高斯函数的参数,其中X方向的高斯曲线的顶点对应的横坐标即为定位结果的横坐标(即xt),Y方向的高斯曲线的顶点对应的纵坐标即为定位结果的纵坐标(即yt);拟合结果可以参见分别图15、图16中所示。
本申请实施例中得到的定位结果:[63.8170,100.6145]m,其与作为参考的接收装置的真实位置坐标之间的定位误差为:1.3975m。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在本实施例中还提供了一种接收装置的定位装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图17是本申请实施例的接收装置的定位装置的结构框图,如图17所示,该定位装置包括:
发射模块211,设置为通过发射装置向电磁反射面发射导频信号;
调控模块213,设置为通过所述发射装置向电磁反射面控制单元发送调控信息,其中, 所述调控信息包括时序信息以及调控方向信息,所述调控信息用于指示所述电磁反射面控制单元在目标时间段将目标导频信号在所述电磁反射面上形成的反射波束指向预设方向,所述预设方向为与所述目标时间段对应的预设方向信息指示的方向,并且所述预设方向指向目标区域,所述时序信息包括所述目标时间段,所述调控方向信息包括所述预设方向信息,通过所述发射装置发射的导频信号包括所述目标导频信号;
定位模块215,设置为通过所述发射装置或接收装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位,其中,所述信号测量结果是位于所述目标区域中的所述接收装置对接收到的沿着所述预设方向反射的所述目标导频信号进行测量得到的结果。
通过本申请,通过发射装置向电磁反射面发射导频信号;通过所述发射装置向电磁反射面控制单元发送调控信息,其中,所述调控信息包括时序信息以及调控方向信息,所述调控信息用于指示所述电磁反射面控制单元在目标时间段将目标导频信号在所述电磁反射面上形成的反射波束指向预设方向,所述预设方向为与所述目标时间段对应的预设方向信息指示的方向,并且所述预设方向指向目标区域,所述时序信息包括所述目标时间段,所述调控方向信息包括所述预设方向信息,通过所述发射装置发射的导频信号包括所述目标导频信号;通过所述发射装置或接收装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位,其中,所述信号测量结果是位于所述目标区域中的所述接收装置对接收到的沿着所述预设方向反射的所述目标导频信号进行测量得到的结果。因此,可以解决相关技术中无法利用电磁反射面本身的特性进行终端的定位的技术问题,达到了利用电磁反射面本身的特性进行终端的定位的效果。
在一个示例性实施例中,所述装置,还包括:第一确定模块,设置为通过所述发射装置根据所述目标区域确定所述调控信息;所述第一确定模块,还设置为:根据所述目标区域划分得到的多个子区域确定多个所述预设方向信息,以及根据多个所述预设方向信息确定多个所述目标时间段,其中,每个所述预设方向信息与所述多个子区域中的每个子区域一一对应,所述时序信息包括多个所述目标时间段,每个所述目标时间段与每个所述预设方向信息一一对应;或者,确定设置为指向所述目标区域的多个所述预设方向,并将每个所述预设方向信息确定为多个所述预设方向中的一个预设方向,以及根据多个所述预设方向信息确定多个所述目标时间段,其中,所述时序信息包括多个所述目标时间段,每个所述目标时间段与每个所述预设方向信息一一对应。
在一个示例性实施例中,所述装置还包括:调整模块,设置为:通过所述电磁反射面控制单元根据所述预设方向信息确定目标反射系数;通过所述电磁反射面控制单元将所述电磁反射面的各电磁单元的反射系数调整至所述目标反射系数,以使所述电磁反射面形成所述预设方向的反射波束;其中,所述各电磁单元的反射系数包括以下至少之一:幅度、相位、极化。
在一个示例性实施例中,所述装置还包括:调整模块,设置为:在所述预设方向信息为与所述预设方向对应的各电磁单元的目标反射系数的情况下,通过所述电磁反射面控制单元将所述电磁反射面的各电磁单元的反射系数调整至所述目标反射系数,以使所述电磁反射面 形成所述预设方向的反射波束,其中,所述各电磁单元的反射系数包括以下至少之一:幅度、相位、极化。
在一个示例性实施例中,所述装置还包括:调整模块,设置为:在所述预设方向信息为与所述预设方向对应的输入参数的情况下,通过所述电磁反射面控制单元根据所述输入参数确定目标反射系数,并将所述电磁反射面的各电磁单元的反射系数调整至所述目标反射系数,以使所述电磁反射面形成所述预设方向的反射波束,其中,所述输入参数用于确定所述目标反射系数,所述各电磁单元的反射系数包括以下至少之一:幅度、相位、极化。
在一个示例性实施例中,所述调控信息还包括以下信息之一:波束调控开始时间,其中,所述波束调控开始时间用于指示所述电磁反射面控制单元在所述波束调控开始时间时,开始控制所述电磁反射面的各电磁单元以对所述电磁反射面的反射波束方向进行控制;波束调控结束时间,其中,所述波束调控结束时间用于指示所述电磁反射面控制单元在所述波束调控结束时间时,结束对所述电磁反射面的各电磁单元的控制。
在一个示例性实施例中,所述定位模块215,还设置为:在通过所述发射装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位的情况下,通过所述发射装置接收所述接收装置发送的测量结果集合,其中,所述测量结果集合包括与所述目标时间段对应的信号测量结果;其中,所述通过所述发射装置确定所述与所述预设方向对应的信号测量结果,包括:根据所述目标时间段确定出与所述目标时间段对应的所述预设方向信息所指示的所述预设方向,将与所述目标时间段对应的信号测量结果确定为与所述预设方向对应的信号测量结果。
在一个示例性实施例中,所述定位模块215,还设置为:在通过所述接收装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位的情况下,在所述通过所述接收装置确定与所述预设方向对应的信号测量结果之前,通过所述接收装置接收所述发射装置发送的对应关系信息,其中,所述对应关系信息为所述预设方向与所述目标时间段的对应关系,或者,所述对应关系信息为所述预设方向与所述目标导频信号的对应关系;其中,所述通过所述接收装置确定与所述预设方向对应的信号测量结果包括:在所述对应关系信息为所述预设方向与所述目标时间段的对应关系的情况下,将与所述目标时间段对应的信号测量结果确定为与所述预设方向对应的信号测量结果;或者,在所述对应关系信息为所述预设方向与所述目标导频信号的对应关系的情况下,将与所述目标导频信号对应的信号测量结果确定为与所述预设方向对应的信号测量结果。
在一个示例性实施例中,所述定位模块215,还设置为:根据所述预设方向以及所述电磁反射面的位置及高度,确定与每个所述预设方向对应的所述反射波束在所述目标区域中的位置坐标(xi,yi),将与所述预设方向对应的信号测量结果的数值确定为与所述位置坐标(xi,yi)对应的竖轴坐标zi,其中,所述i为与所述预设方向对应的反射波束的标识符;根据所述目标区域所在的坐标范围、所述位置坐标(xi,yi)以及所述对应的竖轴坐标zi进行高斯函数拟合,得到拟合后的高斯函数,根据所述拟合后的高斯函数的顶点对应的坐标确定对所述接收装置进行定位的定位结果。
在一个示例性实施例中,所述定位模块215,还设置为:对所述目标区域所在的横坐标 范围和纵坐标范围分别按照预设坐标间隔进行抽样,得到抽样后的横坐标集合和纵坐标集合;从与所述位置坐标(xi,yi)对应的竖轴坐标zi中确定与所述横坐标集合中的每个横坐标xw对应的竖轴坐标zw,以及从与所述位置坐标(xi,yi)对应的竖轴坐标zi中确定与所述纵坐标集合中的每个纵坐标yp对应的竖轴坐标zp,其中,所述w和p为区间[1,n]中的正整数,所述n为抽样的样本数;根据所述横坐标集合和与所述横坐标集合中的每个横坐标xw对应的竖轴坐标zw组成的坐标集合(xw,zw)进行一维高斯函数拟合,得到拟合后的第一高斯函数;并根据所述纵坐标集合和与所述纵坐标集合中的每个纵坐标yp对应的竖轴坐标zp组成的坐标集合(yp,zp)进行一维高斯曲线拟合,得到拟合后的第二高斯函数;确定所述第一高斯函数的顶点对应的第一坐标xt,以及所述第二高斯函数的顶点对应的第二坐标yt,将所述xt和所述yt分别确定为所述定位结果的横坐标和纵坐,其中,所述xt为所述横坐标范围内的横坐标,并且所述yt为所述纵坐标范围内的纵坐标。
在一个示例性实施例中,所述定位模块215,还设置为:根据所述预设方向以及所述电磁反射面的位置及高度,确定与每个所述预设方向对应的所述反射波束在所述目标区域中的位置坐标(xi,yi),将与所述预设方向对应的信号测量结果的数值确定为与所述位置坐标对应的竖轴坐标zi,其中,所述i为与所述预设方向对应的反射波束的标识符;根据所述位置坐标(xi,yi)和所述竖轴坐标zi组成的坐标集合(xi,yi,zi)进行二维高斯函数拟合,得到拟合后的二维高斯函数;确定所述二维高斯函数的顶点对应的坐标(xt,yt),将所述坐标(xt,yt)确定为对所述接收装置进行定位得到的定位结果,其中,所述xt为所述目标区域所在的横坐标范围内的横坐标,并且所述yt为所述目标区域所在的纵坐标范围内的纵坐标。
在一个示例性实施例中,所述装置还包括第二确定模块,设置为:在所述通过所述发射装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位之后,通过所述发射装置根据对所述接收装置进行定位得到的定位结果,确定目标方向信息,其中,所述目标方向信息用于指示所述电磁反射面控制单元根据所述目标方向信息控制所述电磁反射面的各电磁单元的反射系数,以使所述发射装置发射的射频信号在所述电磁反射面上形成的反射波束指向所述接收装置。
在一个示例性实施例中,所述装置还包括第二确定模块,设置为:在所述通过所述接收装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位之后,通过所述接收装置根据对所述接收装置进行定位得到的定位结果,确定目标方向信息,其中,所述目标方向信息用于指示所述电磁反射面控制单元根据所述目标方向信息控制所述电磁反射面的各电磁单元的反射系数,以使所述发射装置发射的射频信号在所述电磁反射面上形成的反射波束指向所述接收装置。
在本实施例中还提供了一种接收装置的定位系统,该系统用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。该系统包括:发射装置、电磁反射面控制单元、电磁反射面,以及接收装置,其中,所述发射装置,设置为向电磁反射面发射导频信号以及用于向电磁反射面控制单元发送调控信息,其中,所述调控信息包括时序信息以及调控方向信息,所述调控信息用于指示所述电磁反射面控制单元在目标时间段将目标导频信号在所述电磁反 射面上形成的反射波束指向预设方向,所述预设方向为与所述目标时间段对应的预设方向信息指示的方向,并且所述预设方向指向目标区域,所述时序信息包括所述目标时间段,所述调控方向信息包括所述预设方向信息,通过所述发射装置发射的导频信号包括所述目标导频信号;所述电磁反射面控制单元,设置为按照所述调控信息在所述目标时间段将所述目标导频信号在所述电磁反射面上形成的反射波束指向所述预设方向;所述接收装置,设置为对接收到的沿着所述预设方向反射的所述目标导频信号进行测量得到信息测量结果,其中,所述接收装置位于所述目标区域中;所述发射装置或所述接收装置,还设置为确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及与所述预设方向对应的信号测量结果,对所述接收装置进行定位。
通过本申请,通过发射装置向电磁反射面发射导频信号;通过所述发射装置向电磁反射面控制单元发送调控信息,其中,所述调控信息包括时序信息以及调控方向信息,所述调控信息用于指示所述电磁反射面控制单元在目标时间段将目标导频信号在所述电磁反射面上形成的反射波束指向预设方向,所述预设方向为与所述目标时间段对应的预设方向信息指示的方向,并且所述预设方向指向目标区域,所述时序信息包括所述目标时间段,所述调控方向信息包括所述预设方向信息,通过所述发射装置发射的导频信号包括所述目标导频信号;通过所述发射装置或接收装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位,其中,所述信号测量结果是位于所述目标区域中的所述接收装置对接收到的沿着所述预设方向反射的所述目标导频信号进行测量得到的结果。因此,可以解决相关技术中无法利用电磁反射面本身的特性进行终端的定位的技术问题,达到了利用电磁反射面本身的特性进行终端的定位的效果。
在一个示例性实施例中,所述发射装置还设置为根据所述目标区域确定所述调控信息;其中,所述发射装置还设置为通过以下方式根据所述目标区域确定所述调控信息:根据所述目标区域划分得到的多个子区域确定多个所述预设方向信息,以及根据多个所述预设方向信息确定多个所述目标时间段,其中,每个所述预设方向信息与所述多个子区域中的每个子区域一一对应,所述时序信息包括多个所述目标时间段,每个所述目标时间段与每个所述预设方向信息一一对应;或者,确定设置为指向所述目标区域的多个所述预设方向,并将每个所述预设方向信息确定为多个所述预设方向中的一个预设方向,以及根据多个所述预设方向信息确定多个所述目标时间段,其中,所述时序信息包括多个所述目标时间段,每个所述目标时间段与每个所述预设方向信息一一对应。
在一个示例性实施例中,所述电磁反射面控制单元,还设置为:根据所述预设方向信息确定目标反射系数;将所述电磁反射面的各电磁单元的反射系数调整至所述目标反射系数,以使所述电磁反射面形成所述预设方向的反射波束;其中,所述各电磁单元的反射系数包括以下至少之一:幅度、相位、极化。
在一个示例性实施例中,所述电磁反射面控制单元,还设置为:在所述预设方向信息为与所述预设方向对应的各电磁单元的目标反射系数的情况下,将所述电磁反射面的各电磁单元的反射系数调整至所述目标反射系数,以使所述电磁反射面形成所述预设方向的反射波束,其中,所述各电磁单元的反射系数包括以下至少之一:幅度、相位、极化。
在一个示例性实施例中,所述电磁反射面控制单元,还设置为:在所述预设方向信息为与所述预设方向对应的输入参数的情况下,根据所述输入参数确定目标反射系数,并将所述电磁反射面的各电磁单元的反射系数调整至所述目标反射系数,以使所述电磁反射面形成所述预设方向的反射波束,其中,所述输入参数用于确定所述目标反射系数,所述各电磁单元的反射系数包括以下至少之一:幅度、相位、极化。
在一个示例性实施例中,所述调控信息还包括以下信息之一:波束调控开始时间,其中,所述波束调控开始时间用于指示所述电磁反射面控制单元在所述波束调控开始时间时,开始控制所述电磁反射面的各电磁单元以对所述电磁反射面的反射波束方向进行控制;波束调控结束时间,其中,所述波束调控结束时间用于指示所述电磁反射面控制单元在所述波束调控结束时间时,结束对所述电磁反射面的各电磁单元的控制。
在一个示例性实施例中,所述发射装置还设置为接收所述接收装置发送的测量结果集合,其中,所述测量结果集合包括与所述目标时间段对应的信号测量结果;其中,所述发射装置,还设置为据所述目标时间段确定出与所述目标时间段对应的所述预设方向信息所指示的所述预设方向,将与所述目标时间段对应的信号测量结果确定为与所述预设方向对应的信号测量结果。
在一个示例性实施例中,所述接收装置,还设置为接收所述发射装置发送的对应关系信息,其中,所述对应关系信息为所述预设方向与所述目标时间段的对应关系,或者,所述对应关系信息为所述预设方向与所述目标导频信号的对应关系;其中,所述接收装置,还设置为在所述对应关系信息为所述预设方向与所述目标时间段的对应关系的情况下,将与所述目标时间段对应的信号测量结果确定为与所述预设方向对应的信号测量结果;或者,在所述对应关系信息为所述预设方向与所述目标导频信号的对应关系的情况下,将与所述目标导频信号对应的信号测量结果确定为与所述预设方向对应的信号测量结果。
在一个示例性实施例中,所述发射装置或所述接收装置,还设置为:根据所述预设方向以及所述电磁反射面的位置及高度,确定与每个所述预设方向对应的所述反射波束在所述目标区域中的位置坐标(xi,yi),将与所述预设方向对应的信号测量结果的数值确定为与所述位置坐标(xi,yi)对应的竖轴坐标zi,其中,所述i为与所述预设方向对应的反射波束的标识符;根据所述目标区域所在的坐标范围、所述位置坐标(xi,yi)以及所述对应的竖轴坐标zi进行高斯函数拟合,得到拟合后的高斯函数,根据所述拟合后的高斯函数的顶点对应的坐标确定对所述接收装置进行定位的定位结果。
在一个示例性实施例中,所述根据所述目标区域所在的坐标范围、所述位置坐标(xi,yi)以及所述对应的竖轴坐标zi进行高斯函数拟合,得到拟合后的高斯函数,根据所述拟合后的高斯函数的顶点对应的坐标确定对所述接收装置进行定位的定位结果,包括:对所述目标区域所在的横坐标范围和纵坐标范围分别按照预设坐标间隔进行抽样,得到抽样后的横坐标集合和纵坐标集合;从与所述位置坐标(xi,yi)对应的竖轴坐标zi中确定与所述横坐标集合中的每个横坐标xw对应的竖轴坐标zw,以及从与所述位置坐标(xi,yi)对应的竖轴坐标zi中确定与所述纵坐标集合中的每个纵坐标yp对应的竖轴坐标zp,其中,所述w和p为区间[1,n]中的正整数,所述n为抽样的样本数;根据所述横坐标集合和与所述横坐标集合 中的每个横坐标xw对应的竖轴坐标zw组成的坐标集合(xw,zw)进行一维高斯函数拟合,得到拟合后的第一高斯函数;并根据所述纵坐标集合和与所述纵坐标集合中的每个纵坐标yp对应的竖轴坐标zp组成的坐标集合(yp,zp)进行一维高斯曲线拟合,得到拟合后的第二高斯函数;确定所述第一高斯函数的顶点对应的第一坐标xt,以及所述第二高斯函数的顶点对应的第二坐标yt,将所述xt和所述yt分别确定为所述定位结果的横坐标和纵坐,其中,所述xt为所述横坐标范围内的横坐标,并且所述yt为所述纵坐标范围内的纵坐标。
在一个示例性实施例中,所述发射装置或所述接收装置,还设置为:根据所述预设方向以及所述电磁反射面的位置及高度,确定与每个所述预设方向对应的所述反射波束在所述目标区域中的位置坐标(xi,yi),将与所述预设方向对应的信号测量结果的数值确定为与所述位置坐标对应的竖轴坐标zi,其中,所述i为与所述预设方向对应的反射波束的标识符;根据所述位置坐标(xi,yi)和所述竖轴坐标zi组成的坐标集合(xi,yi,zi)进行二维高斯函数拟合,得到拟合后的二维高斯函数;确定所述二维高斯函数的顶点对应的坐标(xt,yt),将所述坐标(xt,yt)确定为对所述接收装置进行定位得到的定位结果,其中,所述xt为所述目标区域所在的横坐标范围内的横坐标,并且所述yt为所述目标区域所在的纵坐标范围内的纵坐标。
在一个示例性实施例中,在所述发射装置设置为确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位的情况下,所述发射装置还设置为:根据对所述接收装置进行定位得到的定位结果,确定目标方向信息,其中,所述目标方向信息用于指示所述电磁反射面控制单元根据所述目标方向信息控制所述电磁反射面的各电磁单元的反射系数,以使所述发射装置发射的射频信号在所述电磁反射面上形成的反射波束指向所述接收装置。
在一个示例性实施例中,在所述接收装置设置为确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位的情况下,所述接收装置,还设置为:根据对所述接收装置进行定位得到的定位结果,确定目标方向信息,其中,所述目标方向信息用于指示所述电磁反射面控制单元根据所述目标方向信息控制所述电磁反射面的各电磁单元的反射系数,以使所述发射装置发射的射频信号在所述电磁反射面上形成的反射波束指向所述接收装置。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本申请的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本申请的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种接收装置的定位方法,包括:
    通过发射装置向电磁反射面发射导频信号;
    通过所述发射装置向电磁反射面控制单元发送调控信息,其中,所述调控信息包括时序信息以及调控方向信息,所述调控信息用于指示所述电磁反射面控制单元在目标时间段将目标导频信号在所述电磁反射面上形成的反射波束指向预设方向,所述预设方向为与所述目标时间段对应的预设方向信息指示的方向,并且所述预设方向指向目标区域,所述时序信息包括所述目标时间段,所述调控方向信息包括所述预设方向信息,通过所述发射装置发射的导频信号包括所述目标导频信号;
    通过所述发射装置或接收装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位,其中,所述信号测量结果是位于所述目标区域中的所述接收装置对接收到的沿着所述预设方向反射的所述目标导频信号进行测量得到的结果。
  2. 根据权利要求1所述的方法,其中,
    在所述通过发射装置向电磁反射面发射导频信号之前,所述方法还包括:通过所述发射装置根据所述目标区域确定所述调控信息;
    所述根据所述目标区域确定所述调控信息,包括:根据所述目标区域划分得到的多个子区域确定多个所述预设方向信息,以及根据多个所述预设方向信息确定所述时序信息,其中,每个所述预设方向信息与所述多个子区域中的每个子区域一一对应,所述时序信息包括多个所述目标时间段,每个所述目标时间段与每个所述预设方向信息一一对应;或者,确定用于指向所述目标区域的多个所述预设方向,并将每个所述预设方向信息确定为多个所述预设方向中的一个预设方向,以及根据多个所述预设方向信息确定所述时序信息,其中,所述时序信息包括多个所述目标时间段,每个所述目标时间段与每个所述预设方向信息一一对应。
  3. 根据权利要求1所述的方法,其中,在所述通过所述发射装置向电磁反射面控制单元发送调控信息之后,所述方法还包括:
    通过所述电磁反射面控制单元根据所述预设方向信息确定目标反射系数;
    通过所述电磁反射面控制单元将所述电磁反射面的各电磁单元的反射系数调整至所述目标反射系数,以使所述电磁反射面形成所述预设方向的反射波束;其中,所述各电磁单元的反射系数包括以下至少之一:幅度、相位、极化。
  4. 根据权利要求1所述的方法,其中,在所述预设方向信息为与所述预设方向对应的各电磁单元的目标反射系数的情况下,在所述通过所述发射装置向电磁反射面控制单元发送调控信息之后,所述方法还包括:
    通过所述电磁反射面控制单元将所述电磁反射面的所述各电磁单元的反射系数调整至所述目标反射系数,以使所述电磁反射面形成所述预设方向的反射波束,其中,所述各电磁单 元的反射系数包括以下至少之一:幅度、相位、极化。
  5. 根据权利要求1所述的方法,其中,在所述预设方向信息为与所述预设方向对应的输入参数的情况下,在所述通过所述发射装置向电磁反射面控制单元发送调控信息之后,所述方法还包括:
    通过所述电磁反射面控制单元根据所述输入参数确定目标反射系数,并将所述电磁反射面的各电磁单元的反射系数调整至所述目标反射系数,以使所述电磁反射面形成所述预设方向的反射波束,其中,所述输入参数用于确定所述目标反射系数,所述各电磁单元的反射系数包括以下至少之一:幅度、相位、极化。
  6. 根据权利要求1所述的方法,其中,所述调控信息还包括以下信息之一:
    波束调控开始时间,其中,所述波束调控开始时间用于指示所述电磁反射面控制单元在所述波束调控开始时间时,开始控制所述电磁反射面的各电磁单元以对所述电磁反射面的反射波束方向进行控制;
    波束调控结束时间,其中,所述波束调控结束时间用于指示所述电磁反射面控制单元在所述波束调控结束时间时,结束对所述电磁反射面的各电磁单元的控制。
  7. 根据权利要求1所述的方法,其中,在通过所述发射装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位的情况下,在所述通过所述发射装置确定与所述预设方向对应的信号测量结果之前,所述方法还包括:
    通过所述发射装置接收所述接收装置发送的测量结果集合,其中,所述测量结果集合包括与所述目标时间段对应的信号测量结果;
    其中,所述通过所述发射装置确定所述与所述预设方向对应的信号测量结果,包括:
    根据所述目标时间段确定出与所述目标时间段对应的所述预设方向信息所指示的所述预设方向,将与所述目标时间段对应的信号测量结果确定为与所述预设方向对应的信号测量结果。
  8. 根据权利要求1所述的方法,其中,在通过所述接收装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位的情况下,在所述通过所述接收装置确定与所述预设方向对应的信号测量结果之前,所述方法还包括:
    通过所述接收装置接收所述发射装置发送的对应关系信息,其中,所述对应关系信息为所述预设方向与所述目标时间段的对应关系,或者,所述对应关系信息为所述预设方向与所述目标导频信号的对应关系;
    其中,所述通过所述接收装置确定与所述预设方向对应的信号测量结果包括:在所述对应关系信息为所述预设方向与所述目标时间段的对应关系的情况下,将与所述目标时间段对应的信号测量结果确定为与所述预设方向对应的信号测量结果;或者,在所述对应关系信息为所述预设方向与所述目标导频信号的对应关系的情况下,将与所述目标导频信号对应的信 号测量结果确定为与所述预设方向对应的信号测量结果。
  9. 根据权利要求1所述的方法,其中,所述根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位,包括:
    根据所述预设方向以及所述电磁反射面的位置及高度,确定与每个所述预设方向对应的所述反射波束在所述目标区域中的位置坐标(xi,yi),将与所述预设方向对应的信号测量结果的数值确定为与所述位置坐标(xi,yi)对应的竖轴坐标zi,其中,所述i为与所述预设方向对应的反射波束的标识符;
    根据所述目标区域所在的坐标范围、所述位置坐标(xi,yi)以及所述对应的竖轴坐标zi进行高斯函数拟合,得到拟合后的高斯函数,根据所述拟合后的高斯函数的顶点对应的坐标确定对所述接收装置进行定位的定位结果。
  10. 根据权利要求9所述的方法,其中,所述根据所述目标区域所在的坐标范围、所述位置坐标(xi,yi)以及所述对应的竖轴坐标zi进行高斯函数拟合,得到拟合后的高斯函数,根据所述拟合后的高斯函数的顶点对应的坐标确定对所述接收装置进行定位的定位结果,包括:
    对所述目标区域所在的横坐标范围和纵坐标范围分别按照预设坐标间隔进行抽样,得到抽样后的横坐标集合和纵坐标集合;
    从与所述位置坐标(xi,yi)对应的竖轴坐标zi中确定与所述横坐标集合中的每个横坐标xw对应的竖轴坐标zw,以及从与所述位置坐标(xi,yi)对应的竖轴坐标zi中确定与所述纵坐标集合中的每个纵坐标yp对应的竖轴坐标zp,其中,所述w和p为区间[1,n]中的正整数,所述n为抽样的样本数;
    根据所述横坐标集合和与所述横坐标集合中的每个横坐标xw对应的竖轴坐标zw组成的坐标集合(xw,zw)进行一维高斯函数拟合,得到拟合后的第一高斯函数;并根据所述纵坐标集合和与所述纵坐标集合中的每个纵坐标yp对应的竖轴坐标zp组成的坐标集合(yp,zp)进行一维高斯曲线拟合,得到拟合后的第二高斯函数;
    确定所述第一高斯函数的顶点对应的第一坐标xt,以及所述第二高斯函数的顶点对应的第二坐标yt,将所述xt和所述yt分别确定为所述定位结果的横坐标和纵坐,其中,所述xt为所述横坐标范围内的横坐标,并且所述yt为所述纵坐标范围内的纵坐标。
  11. 根据权利要求1所述的方法,其中,所述根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位,包括:
    根据所述预设方向以及所述电磁反射面的位置及高度,确定与每个所述预设方向对应的所述反射波束在所述目标区域中的位置坐标(xi,yi),将与所述预设方向对应的信号测量结果的数值确定为与所述位置坐标对应的竖轴坐标zi,其中,所述i为与所述预设方向对应的反射波束的标识符;
    根据所述位置坐标(xi,yi)和所述竖轴坐标zi组成的坐标集合(xi,yi,zi)进行二维高斯函数拟合,得到拟合后的二维高斯函数;
    确定所述二维高斯函数的顶点对应的坐标(xt,yt),将所述坐标(xt,yt)确定为对所述接收装置进行定位得到的定位结果,其中,所述xt为所述目标区域所在的横坐标范围内的横坐标,并且所述yt为所述目标区域所在的纵坐标范围内的纵坐标。
  12. 根据权利要求1所述的方法,其中,在所述通过所述发射装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位之后,所述方法还包括:
    通过所述发射装置根据对所述接收装置进行定位得到的定位结果,确定目标方向信息,其中,所述目标方向信息用于指示所述电磁反射面控制单元根据所述目标方向信息控制所述电磁反射面的各电磁单元的反射系数,以使所述发射装置发射的射频信号在所述电磁反射面上形成的反射波束指向所述接收装置。
  13. 根据权利要求1所述的方法,其中,在所述通过所述接收装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位之后,所述方法还包括:
    通过所述接收装置根据对所述接收装置进行定位得到的定位结果,确定目标方向信息,其中,所述目标方向信息用于指示所述电磁反射面控制单元根据所述目标方向信息控制所述电磁反射面的各电磁单元的反射系数,以使所述发射装置发射的射频信号在所述电磁反射面上形成的反射波束指向所述接收装置。
  14. 一种接收装置的定位装置,包括:
    发射模块,设置为通过发射装置向电磁反射面发射导频信号;
    调控模块,设置为通过所述发射装置向电磁反射面控制单元发送调控信息,其中,所述调控信息包括时序信息以及调控方向信息,所述调控信息用于指示所述电磁反射面控制单元在目标时间段将目标导频信号在所述电磁反射面上形成的反射波束指向预设方向,所述预设方向为与所述目标时间段对应的预设方向信息指示的方向,并且所述预设方向指向目标区域,所述时序信息包括所述目标时间段,所述调控方向信息包括所述预设方向信息,通过所述发射装置发射的导频信号包括所述目标导频信号;
    定位模块,设置为通过所述发射装置或接收装置确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及所述信号测量结果,对所述接收装置进行定位,其中,所述信号测量结果是位于所述目标区域中的所述接收装置对接收到的沿着所述预设方向反射的所述目标导频信号进行测量得到的结果。
  15. 一种接收装置的定位系统,包括:发射装置、电磁反射面控制单元、电磁反射面,以及接收装置,其中,
    所述发射装置,设置为向电磁反射面发射导频信号以及用于向电磁反射面控制单元发送调控信息,其中,所述调控信息包括时序信息以及调控方向信息,所述调控信息用于指示所述电磁反射面控制单元在目标时间段将目标导频信号在所述电磁反射面上形成的反射波束指向预设方向,所述预设方向为与所述目标时间段对应的预设方向信息指示的方向,并且所述 预设方向指向目标区域,所述时序信息包括所述目标时间段,所述调控方向信息包括所述预设方向信息,通过所述发射装置发射的导频信号包括所述目标导频信号;
    所述电磁反射面控制单元,设置为按照所述调控信息在所述目标时间段将所述目标导频信号在所述电磁反射面上形成的反射波束指向所述预设方向;
    所述接收装置,设置为对接收到的沿着所述预设方向反射的所述目标导频信号进行测量得到信息测量结果,其中,所述接收装置位于所述目标区域中;
    所述发射装置或所述接收装置,还设置为确定与所述预设方向对应的信号测量结果,并根据所述预设方向以及与所述预设方向对应的信号测量结果,对所述接收装置进行定位。
  16. 一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至13任一项中所述的方法。
  17. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至13任一项中所述的方法。
PCT/CN2021/093458 2020-06-30 2021-05-12 接收装置的定位方法及装置、系统、存储介质和电子装置 WO2022001401A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/013,590 US20230292277A1 (en) 2020-06-30 2021-05-12 Positioning method, device and system for receiving device, storage medium, and electronic device
KR1020237001644A KR20230030627A (ko) 2020-06-30 2021-05-12 수신 장치의 포지셔닝 방법과 장치, 시스템, 저장 매체 및 전자 장치
EP21832721.1A EP4175328A4 (en) 2020-06-30 2021-05-12 METHOD, DEVICE AND POSITIONING SYSTEM FOR RECEIVING DEVICE, STORAGE MEDIUM AND ELECTRONIC DEVICE
AU2021301699A AU2021301699A1 (en) 2020-06-30 2021-05-12 Positioning method, device and system for receiving device, storage medium, and electronic device
JP2022580533A JP2023532073A (ja) 2020-06-30 2021-05-12 受信装置の測位方法及び装置、システム、記憶媒体並びに電子装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010617374.3 2020-06-30
CN202010617374.3A CN111866726A (zh) 2020-06-30 2020-06-30 接收装置的定位方法及装置、系统、存储介质和电子装置

Publications (1)

Publication Number Publication Date
WO2022001401A1 true WO2022001401A1 (zh) 2022-01-06

Family

ID=72989859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093458 WO2022001401A1 (zh) 2020-06-30 2021-05-12 接收装置的定位方法及装置、系统、存储介质和电子装置

Country Status (7)

Country Link
US (1) US20230292277A1 (zh)
EP (1) EP4175328A4 (zh)
JP (1) JP2023532073A (zh)
KR (1) KR20230030627A (zh)
CN (1) CN111866726A (zh)
AU (1) AU2021301699A1 (zh)
WO (1) WO2022001401A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115460619A (zh) * 2022-11-09 2022-12-09 荣耀终端有限公司 一种信号控制方法及电子设备

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111866726A (zh) * 2020-06-30 2020-10-30 中兴通讯股份有限公司 接收装置的定位方法及装置、系统、存储介质和电子装置
JPWO2022024230A1 (zh) * 2020-07-28 2022-02-03
CN114584185A (zh) * 2020-12-01 2022-06-03 华为技术有限公司 通信方法、设备及系统
CN112735111B (zh) * 2020-12-16 2022-04-08 中兴通讯股份有限公司 智能面板调控方法、装置、系统、智能面板和存储介质
WO2022133952A1 (en) 2020-12-24 2022-06-30 Huawei Technologies Co., Ltd. Systems and methods for mimo communication with controllable environments
CN114697980B (zh) * 2020-12-25 2024-04-16 大唐移动通信设备有限公司 信号发送方法、目标感知方法、设备和存储介质
BR112023012673A2 (pt) * 2021-01-04 2023-12-05 Qualcomm Inc Silenciamento em nível de recurso de tempo e frequência de superfícies inteligentes reconfiguráveis
WO2022183394A1 (en) * 2021-03-03 2022-09-09 Qualcomm Incorporated Measurement of sounding reference signal reflections off of reconfigurable intelligent surfaces
CN115052282A (zh) * 2021-03-09 2022-09-13 维沃移动通信有限公司 传输方法、装置、设备及可读存储介质
CN115442005A (zh) * 2021-06-03 2022-12-06 中兴通讯股份有限公司 网络节点的控制方法、装置及计算机可读存储介质
CN115441912A (zh) * 2021-06-03 2022-12-06 索尼集团公司 用于无线通信的电子设备和方法、计算机可读存储介质
EP4309445A1 (en) * 2021-07-05 2024-01-24 ZTE Corporation Beamforming indication techniques
CN113804961B (zh) * 2021-10-11 2024-04-12 中国电信股份有限公司 智能表面设备和系统,以及控制方法、装置和系统
CN114051209B (zh) * 2021-11-18 2024-01-05 东南大学 一种基于智能反射面和场景几何模型的指纹定位方法
CN116156415A (zh) * 2021-11-23 2023-05-23 华为技术有限公司 一种通信方法、装置及计算机可读存储介质
CN114143810B (zh) * 2021-11-29 2023-04-28 中国电信股份有限公司 智能表面控制方法及其相关设备
CN116193568A (zh) * 2021-11-29 2023-05-30 华为技术有限公司 室内定位方法、通信系统、相关设备
CN117014083A (zh) * 2022-04-27 2023-11-07 中兴通讯股份有限公司 调控方法、信息处理方法、信号调节装置、设备及介质
CN115549734B (zh) * 2022-09-19 2024-01-09 华工未来科技(江苏)有限公司 一种基于智能反射面辅助的DoA估计方法、系统、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150378104A1 (en) * 2013-03-07 2015-12-31 Olympus Corporation Coupling optical system
CN111050277A (zh) * 2019-12-23 2020-04-21 华中科技大学 一种irs辅助的无线通信系统的优化方法及装置
CN111181615A (zh) * 2019-11-29 2020-05-19 广东工业大学 一种基于智能反射面的多小区无线通信方法
CN111245494A (zh) * 2020-01-13 2020-06-05 东南大学 基于智能反射面的定位信息辅助波束控制方法
CN111866726A (zh) * 2020-06-30 2020-10-30 中兴通讯股份有限公司 接收装置的定位方法及装置、系统、存储介质和电子装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10638479B2 (en) * 2015-11-17 2020-04-28 Futurewei Technologies, Inc. System and method for multi-source channel estimation
US10547116B2 (en) * 2017-08-01 2020-01-28 University Of Cyprus Wireless communication paradigm: realizing programmable wireless environments through software-controlled metasurfaces
CN111050276B (zh) * 2019-12-23 2020-11-24 华中科技大学 基于角度信息的irs辅助通信系统的优化方法及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150378104A1 (en) * 2013-03-07 2015-12-31 Olympus Corporation Coupling optical system
CN111181615A (zh) * 2019-11-29 2020-05-19 广东工业大学 一种基于智能反射面的多小区无线通信方法
CN111050277A (zh) * 2019-12-23 2020-04-21 华中科技大学 一种irs辅助的无线通信系统的优化方法及装置
CN111245494A (zh) * 2020-01-13 2020-06-05 东南大学 基于智能反射面的定位信息辅助波束控制方法
CN111866726A (zh) * 2020-06-30 2020-10-30 中兴通讯股份有限公司 接收装置的定位方法及装置、系统、存储介质和电子装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4175328A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115460619A (zh) * 2022-11-09 2022-12-09 荣耀终端有限公司 一种信号控制方法及电子设备
CN115460619B (zh) * 2022-11-09 2024-06-11 荣耀终端有限公司 一种信号控制方法及电子设备

Also Published As

Publication number Publication date
EP4175328A4 (en) 2023-12-06
EP4175328A1 (en) 2023-05-03
JP2023532073A (ja) 2023-07-26
US20230292277A1 (en) 2023-09-14
KR20230030627A (ko) 2023-03-06
CN111866726A (zh) 2020-10-30
AU2021301699A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2022001401A1 (zh) 接收装置的定位方法及装置、系统、存储介质和电子装置
WO2022001402A1 (zh) 发射装置的定位方法及装置、系统、存储介质和电子装置
US20230258759A1 (en) Determining a Position of User Equipment by using Adaptive Phase-Changing Devices
KR102650668B1 (ko) 방법 및 측정 환경, 테스트될 장치
EP3101818B1 (en) Wireless access service method and device
CN110515101B (zh) 一种卫星快速捕获方法及相控阵天线系统
López-Pastor et al. Wi-Fi RTT-based active monopulse RADAR for single access point localization
CN103743960A (zh) 数字阵二次雷达天线方向图的远场测试系统及其测试方法
CN110412623B (zh) 一种基于多波束宽度的卫星捕获方法及天线系统
CN112995888B (zh) 一种基于阵列天线的定位方法、系统、电子设备及存储介质
EP3855211B1 (en) Multistatic radar utilizing 5g signals
CN111294129B (zh) 信号无线电波分布测量与无线电特征估算的方法及系统
CN109633577A (zh) 一种弹载相控阵雷达二维s曲线的测试方法及装置
CN114980308A (zh) 一种定位方法、定位设备及计算机存储介质
WO2017190441A1 (zh) 一种定位方法、装置及定位设备
CN113056000B (zh) 一种基于超表面的定位系统、方法及装置
CN111430912B (zh) 一种相控阵天线的控制系统和方法
JP2019068284A (ja) 制御装置
CN116260531A (zh) 功率测量方法及其装置、存储介质、程序产品
CN113207106A (zh) 一种无人机融合控制方法及装置
CN112346003A (zh) 一种基于等势寻优的单波束测向系统
WO2020133280A1 (zh) 一种基于移动平台的天线测试方法、装置及信息处理设备
KR102577520B1 (ko) 무선 환경 변화 수용을 위한 위치 측위 방법 및 장치
JP2019068285A (ja) 通信装置
RU2691378C1 (ru) Способ контроля диаграммы направленности активной фазированной антенной решётки

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580533

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237001644

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021301699

Country of ref document: AU

Date of ref document: 20210512

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021832721

Country of ref document: EP

Effective date: 20230130