WO2022000621A1 - 电容系统及其制备方法 - Google Patents

电容系统及其制备方法 Download PDF

Info

Publication number
WO2022000621A1
WO2022000621A1 PCT/CN2020/103462 CN2020103462W WO2022000621A1 WO 2022000621 A1 WO2022000621 A1 WO 2022000621A1 CN 2020103462 W CN2020103462 W CN 2020103462W WO 2022000621 A1 WO2022000621 A1 WO 2022000621A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
electrode layer
layer
moving electrode
moving
Prior art date
Application number
PCT/CN2020/103462
Other languages
English (en)
French (fr)
Inventor
但强
陶泽
李杨
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022000621A1 publication Critical patent/WO2022000621A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B5/00Devices comprising elements which are movable in relation to each other, e.g. comprising slidable or rotatable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0009Structural features, others than packages, for protecting a device against environmental influences
    • B81B7/0016Protection against shocks or vibrations, e.g. vibration damping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00198Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising elements which are movable in relation to each other, e.g. comprising slidable or rotatable elements

Definitions

  • the present application relates to the technical field of capacitors, and in particular, to a capacitor system and a preparation method thereof.
  • In-plane motion in MEMS devices generally means that the moving direction of the moving parts is in the plane of the wafer.
  • a capacitive system with a comb-tooth structure perpendicular to the plane direction is usually prepared.
  • the capacitance change between the dynamic comb teeth and the static comb teeth is caused.
  • the aspect ratio of the comb teeth is generally controlled within 20:1, and the spacing between the comb teeth is also greater than 1 ⁇ m, which leads to the need to prepare a very large number of comb structures to meet the driving force requirements. .
  • the pitch of the comb teeth is prepared by deep reactive ion etching (DRIE) process
  • the sidewalls of this process have a typical Scallop structure (a typical feature of the Bosch process), and the sidewalls are not 90° vertical to the substrate (spacing). uneven), which can cause problems for comb capacitor systems.
  • DRIE deep reactive ion etching
  • the comb-tooth pair structure is not suitable for large displacement situations.
  • the movable comb teeth move left and right, they are guided by a guiding structure (usually a U-shaped beam). It is difficult to strictly ensure that the movable comb teeth move in a completely horizontal direction (there may be Up and down motion deviation), plus the structural defects brought about by the preparation process of the comb teeth, the collision between the moving comb teeth and the static comb teeth is prone to occur under large displacement, causing reliability problems.
  • a capacitor system includes a first wafer, a dielectric layer, a first static electrode layer, a moving electrode layer and a second wafer stacked in sequence;
  • the movable electrode layer includes a movable electrode block disposed on the first static electrode layer, and the movable electrode block is separated from the first static electrode layer in a vertical direction, so that the movable electrode block can be opposed to each other moving back and forth in the horizontal direction on the first static electrode layer;
  • the first static electrode layer is provided with a first insulating cavity, the first insulating cavity is located below the movable electrode block, and the first insulating cavity separates the first static electrode layer in the horizontal direction or, an insulating cavity is provided on the movable electrode block, and the insulating cavity separates the movable electrode block in a horizontal direction.
  • a preparation method of a capacitor system comprising the following steps:
  • the moving electrode layer is etched, so that the moving electrode layer is transformed into a moving electrode block disposed on the sacrificial layer, the moving electrode block forms a moving electrode layer, and the first insulating cavity is disposed in the Below the moving electrode block;
  • the sacrificial layer is released, so that the movable electrode block is vertically separated from the first static electrode layer, so that the movable electrode block can move back and forth in a horizontal direction relative to the first static electrode layer , resulting in a semi-finished product;
  • a preparation method of a capacitor system comprising the following steps:
  • a moving electrode layer is formed on the sacrificial layer, and then the moving electrode layer is etched, so that the moving electrode layer is transformed into a moving electrode block disposed on the sacrificial layer, and insulation is formed on the moving electrode block a cavity, wherein the movable electrode block forms a movable electrode layer, and the insulating cavity separates the movable electrode block in a horizontal direction;
  • the sacrificial layer is released, so that the movable electrode block is vertically separated from the first static electrode layer, so that the movable electrode block can move back and forth in a horizontal direction relative to the first static electrode layer , resulting in a semi-finished product;
  • the second wafer and the semi-finished product are bonded, so that the second wafer is stacked on the movable electrode layer to obtain the preparation method of the capacitor system.
  • This capacitance system includes a first static electrode layer and a moving electrode layer that are stacked in layers, the moving electrode layer includes a moving electrode block arranged on the first static electrode layer, and the moving electrode block can be moved in a horizontal direction relative to the first static electrode layer.
  • the first static electrode layer is provided with a first insulating cavity under the moving electrode block, or the moving electrode block is provided with an insulating cavity. The capacitance value of this capacitive system will occur with the movement of the moving electrode block. Changes are also available for driving.
  • this capacitor system can realize the first static electrode layer and the moving electrode layer by precisely controlling the thickness of the sacrificial layer formed between the first static electrode layer and the moving electrode layer. The distance between them is precisely controlled, so that the consistency of this capacitive system is very good, and the distance between the first static electrode layer and the moving electrode layer can be lowered to less than 1 ⁇ m.
  • this capacitive system is good, the distance between the first static electrode layer and the moving electrode layer can be lowered to less than 1 ⁇ m, and because the stacked moving electrode block and the first static electrode layer only occur in the horizontal direction Relative movement, since the deformation stiffness in the vertical direction can be much larger than the horizontal direction, this avoids the relative collision between the moving electrode block and the first static electrode layer under large displacement, thus solving the large displacement collision based on the comb-tooth structure. Reliable sexual issues.
  • FIG. 1 is a schematic structural diagram of a capacitor system according to a first embodiment.
  • FIG. 2 is a schematic structural diagram of a capacitor system according to a second embodiment.
  • FIG. 3 is a schematic structural diagram of a capacitor system according to a third embodiment.
  • FIG. 4 is a schematic cross-sectional structure diagram of the capacitor system shown in FIG. 3 along the A-A direction.
  • FIG. 5 is a schematic structural diagram of a capacitor system according to a fourth embodiment.
  • FIG. 6 is a schematic structural diagram of a capacitor system according to a fifth embodiment.
  • FIG. 7 is a schematic structural diagram of a capacitor system according to a sixth embodiment.
  • FIG. 8 is a flowchart of a method for manufacturing the capacitor system according to the first embodiment.
  • FIG. 9 is a schematic diagram of the principle of the manufacturing method of the capacitor system shown in FIG. 8 .
  • FIG. 10 is a flowchart of a manufacturing method of the capacitor system of the second embodiment.
  • FIG. 11 is a schematic diagram of the principle of the manufacturing method of the capacitor system shown in FIG. 10 .
  • FIG. 12 is a flowchart of a manufacturing method of the capacitor system of the third embodiment.
  • FIG. 13 is a schematic diagram of the principle of the manufacturing method of the capacitor system shown in FIG. 12 .
  • FIG. 14 is a flowchart of a manufacturing method of a capacitor system according to a fourth embodiment.
  • FIG. 15 is a schematic diagram of the principle of the manufacturing method of the capacitor system shown in FIG. 14 .
  • FIG. 16 is a flowchart of a manufacturing method of a capacitor system according to a fifth embodiment.
  • FIG. 17 is a schematic diagram of the principle of the manufacturing method of the capacitor system shown in FIG. 16 .
  • FIG. 18 is a flowchart of a manufacturing method of a capacitor system according to a sixth embodiment.
  • FIG. 19 is a schematic diagram of the principle of the manufacturing method of the capacitor system shown in FIG. 18 .
  • the wafers are all SOI silicon wafers.
  • the capacitor system 100 of the first embodiment includes a first wafer 110 , a dielectric layer 120 , a first static electrode layer 130 , a moving electrode layer 140 and a second wafer 150 that are stacked in sequence.
  • the moving electrode layer 140 includes a moving electrode block 142 disposed on the first static electrode layer 130 , and the moving electrode block 142 is separated from the first static electrode layer 130 in a vertical direction, so that the moving electrode block 142 can be opposite to the first static electrode layer 130 .
  • the pole layer 130 moves back and forth in the horizontal direction.
  • the number of movable electrode blocks 142 may be one or several (two or more). In this embodiment, there are several moving electrode blocks 142 , and the several moving electrode blocks 142 are arranged on the first static electrode layer 130 at intervals.
  • the first static electrode layer 130 is provided with a first insulating cavity 132 .
  • the first insulating cavity 132 is located below the movable electrode block 142 , and the first insulating cavity 132 separates the first static electrode layer 130 in a horizontal direction.
  • the capacitor system 100 includes a first static electrode layer 130 and a moving electrode layer 140 that are stacked in layers.
  • the moving electrode layer 140 includes a moving electrode block 142 disposed on the first static electrode layer 130.
  • the moving electrode block 142 may be opposite to the first static electrode layer 140.
  • the static electrode layer 130 moves back and forth in the horizontal direction, and the first static electrode layer 130 is provided with a first insulating cavity 132 located below the moving electrode block 142 . The movement is changed and can also be used for driving.
  • the deformation stiffness in the vertical direction can be much greater than that in the horizontal direction, which avoids the moving electrode blocks 142 and the first electrostatic
  • the relative collision between the pole layers 130 under large displacement solves the reliability problem of large displacement collision based on the comb-tooth structure.
  • the capacitance value of the capacitance system 100 is changed by moving the movable electrode block 142 in the horizontal direction relative to the first static electrode layer 130 .
  • the first static electrode layer 130 is provided with a first insulating cavity 132 .
  • the same purpose can also be achieved by disposing an insulating cavity on the movable electrode block 142 .
  • an insulating material is provided in the first insulating cavity 132 .
  • air may also be provided in the first insulating cavity 132 .
  • the first insulating cavity 132 is disposed below the middle region in the width direction of the movable electrode block 142 .
  • the first insulating cavity 132 is disposed below the middle area of the movable electrode block 142 in the width direction, and this arrangement is beneficial to both driving and detection. In other embodiments, the first insulating cavity 132 may also be disposed below other regions in the width direction of the movable electrode block 142 , as long as the first insulating cavity 132 is located below the movable electrode block 142 .
  • the capacitor system 200 of the second embodiment includes a first wafer 210 , a dielectric layer 220 , a first electrostatic electrode layer 230 , a moving electrode layer 240 , a second electrostatic electrode layer 260 and a second Wafer 250.
  • the moving electrode layer 240 includes a moving electrode block 242 disposed on the first static electrode layer 230, and the moving electrode block 242 is separated from the first static electrode layer 230 in a vertical direction, so that the moving electrode block 242 can be relatively opposite to the first static electrode layer 230.
  • the pole layer 230 moves back and forth in the horizontal direction.
  • the number of movable electrode blocks 242 may be one or several (two or more). In this embodiment, there are several moving electrode blocks 242 , and the several moving electrode blocks 242 are arranged on the first static electrode layer 230 at intervals.
  • the first static electrode layer 230 is provided with a first insulating cavity 232 .
  • the first insulating cavity 232 is located below the movable electrode block 242 , and the first insulating cavity 232 separates the first static electrode layer 230 in a horizontal direction.
  • the second static electrode layer 260 is provided with a second insulating cavity 262 located above the movable electrode block 242 , and the second insulating cavity 262 separates the second static electrode layer 260 in a horizontal direction.
  • the capacitor system 200 includes a first static electrode layer 230 , a moving electrode layer 240 and a second static electrode layer 260 arranged in layers.
  • the moving electrode layer 240 includes a moving electrode block 242 arranged on the first static electrode layer 230 .
  • the block 242 can move back and forth in the horizontal direction relative to the first static electrode layer 230.
  • the first static electrode layer 230 is provided with a first insulating cavity 232 located below the movable electrode block 242
  • the second static electrode layer 260 is provided with a first insulating cavity 232 located below the movable electrode block 242.
  • the second insulating cavity 262 above the movable electrode block 242, the capacitance value of the capacitor system 200 will change with the movement of the movable electrode block 242, and can also be used for driving.
  • the deformation stiffness in the vertical direction can be much greater than that in the horizontal direction, which prevents the moving electrode blocks 242 from interacting with the first static electrode layer 230.
  • the relative collision between the pole layers 230 under large displacement solves the reliability problem of large displacement collision based on the comb-tooth structure.
  • the capacitance value of the capacitance system 200 is changed by moving the movable electrode block 242 in the horizontal direction relative to the first static electrode layer 230.
  • the first static electrode layer 230 is provided with a first insulating cavity 232
  • the The second static electrode layer 260 is provided with a second insulating cavity 262 .
  • an insulating cavity can also be provided on the movable electrode block 242 to achieve the same purpose.
  • an insulating material is provided in the first insulating cavity 232 .
  • air may also be provided in the first insulating cavity 232 .
  • an insulating material is provided in the second insulating cavity 262 .
  • air may also be provided in the second insulating cavity 262 .
  • the second insulating cavity 262 is disposed below the middle region in the width direction of the movable electrode block 242 .
  • the second insulating cavity 262 is disposed above the middle region in the width direction of the movable electrode block 242 .
  • the first insulating cavity 232 is arranged below the middle region in the width direction of the movable electrode block 242, and the second insulating cavity 262 is arranged above the middle region in the width direction of the movable electrode block 242. Testing is beneficial.
  • the first insulating cavity 232 may also be provided below other regions in the width direction of the movable electrode block 242
  • the second insulating cavity 262 may be provided above the other regions in the width direction of the movable electrode block 242 .
  • the capacitor system 300 of the third embodiment includes a first wafer 310 , a dielectric layer 320 , a first static electrode layer 330 , a moving electrode layer 340 and a second wafer 350 that are stacked in sequence.
  • the moving electrode layer 340 includes a moving electrode block 342 disposed on the first static electrode layer 330, and the moving electrode block 342 is separated from the first static electrode layer 330 in a vertical direction, so that the moving electrode block 342 can be relatively opposite to the first static electrode layer 330.
  • the pole layer 330 moves back and forth in the horizontal direction.
  • the number of movable electrode blocks 342 may be one or several (two or more). In this embodiment, there are several moving electrode blocks 342 , and the several moving electrode blocks 342 are arranged on the first static electrode layer 330 at intervals.
  • the movable electrode block 342 is provided with an insulating cavity 3422, and the insulating cavity 3422 separates the movable electrode block 342 in a horizontal direction.
  • the capacitor system 300 includes a first static electrode layer 330 and a moving electrode layer 340 that are stacked in layers.
  • the moving electrode layer 340 includes a moving electrode block 342 disposed on the first static electrode layer 330.
  • the moving electrode block 342 can be opposite to the first static electrode layer 340.
  • the static electrode layer 330 moves back and forth in the horizontal direction, and the movable electrode block 342 is provided with an insulating cavity 3422.
  • the capacitance value of the capacitance system 300 will change with the movement of the movable electrode block 342, and can also be used for driving.
  • the deformation stiffness in the vertical direction can be much greater than that in the horizontal direction, which prevents the moving electrode blocks 342 from interacting with the first static electrode layer 330.
  • the relative collision between the pole layers 330 under large displacement solves the reliability problem of large displacement collision based on the comb-tooth structure.
  • the capacitance value of the capacitance system 300 is changed by moving the movable electrode block 342 in the horizontal direction relative to the first static electrode layer 330.
  • the movable electrode block 342 is provided with an insulating cavity 3422.
  • the same purpose can also be achieved by providing a first insulating cavity in the first static electrode layer 330 .
  • the moving electrode layer 340 is provided with an electrical isolation groove 344
  • the moving electrode block 342 is disposed in the electrical isolation groove 344
  • an insulating material is filled between the electrical isolation groove 344 and the moving electrode block 342 .
  • both ends of the movable electrode block 342 are connected to other stationary movable electrode layers 340 .
  • the setting of the electrical isolation slot 344 is for the purpose that the two parts of the electrodes isolated in the movable electrode block 342 can be individually leaded out to the control circuit at the back end (connecting with different control signals), such as wire bonding to a certain PCB board, so it is necessary to
  • An insulating cavity 3422 is provided on the movable electrode block 342 , and an insulating material is filled between the electrical isolation groove 344 and the movable electrode block 342 .
  • both ends of the movable electrode block 342 are connected to other stationary movable electrode layers 340 , and the movement range of the middle portion of the movable electrode block 342 is relatively limited.
  • elastic structures may be provided where both ends of the movable electrode block 342 are connected to other stationary movable electrode layers 340 , thereby increasing the movable displacement of the movable electrode block 342 .
  • the movable electrode block 342 has opposite first ends 3424 and second ends 3426 in the longitudinal direction, and both the first ends 3424 and the second ends 3426 are disposed in the electrical isolation grooves 344 .
  • the width of the first end 3424 and the width of the second end 3426 are both larger than the width of the middle of the movable electrode block 342 .
  • the movable electrode block 342 is arranged in the electric isolation groove 344, so that the movable electrode block 342 takes the boundary of the electric isolation groove 344 as the movement boundary of the movable electrode block 342 in the horizontal direction, which is only a kind of example given in this application.
  • the movement mode of the movable electrode block 342 may also adopt other movement modes in other embodiments.
  • the insulating cavity 3422 is provided with insulating material. In other embodiments, air may also be provided in the insulating cavity 3422 .
  • the insulating cavity 3422 is disposed in the middle region of the movable electrode block 342 in the width direction.
  • the insulating cavity 3422 is arranged in the middle area of the movable electrode block 342 in the width direction, and this arrangement is beneficial to both driving and detection. In other embodiments, the insulating cavity 3422 may also be provided below other regions in the width direction of the movable electrode block 342 .
  • this design scheme is more favorable for large displacement. As long as the first static electrode layer 330 is made large enough, the displacement of the movable electrode block 342 can be unlimited.
  • the capacitor system 400 of the fourth embodiment includes a first wafer 410 , a dielectric layer 420 , a first electrostatic electrode layer 430 , a moving electrode layer 440 , a second electrostatic electrode layer 460 and a second Wafer 450.
  • the movable electrode layer 440 includes a movable electrode block 442 disposed on the first electrostatic electrode layer 430, and the movable electrode block 442 is separated from the first electrostatic electrode layer 430 in a vertical direction, so that the movable electrode block 442 can be relatively opposite to the first electrostatic electrode layer 430.
  • the pole layer 430 moves back and forth in the horizontal direction.
  • the number of movable electrode blocks 442 may be one or several (two or more). In this embodiment, there are several moving electrode blocks 442 , and the several moving electrode blocks 442 are arranged on the first static electrode layer 430 at intervals.
  • the movable electrode block 442 is provided with an insulating cavity 4422, and the insulating cavity 4422 separates the movable electrode block 442 in the horizontal direction.
  • the capacitor system 400 includes a first static electrode layer 430 and a moving electrode layer 440 that are stacked in layers.
  • the moving electrode layer 440 includes a moving electrode block 442 disposed on the first static electrode layer 430.
  • the moving electrode block 442 may be opposite to the first static electrode layer 440
  • the static electrode layer 430 moves back and forth in the horizontal direction, and the movable electrode block 442 is provided with an insulating cavity 4422.
  • the capacitance value of the capacitance system 400 will change with the movement of the movable electrode block 442, and can also be used for driving.
  • the deformation stiffness in the vertical direction can be much larger than that in the horizontal direction, which prevents the moving electrode blocks 442 from interacting with the first static electrode layer 430.
  • the relative collision between the pole layers 430 under large displacements solves the reliability problem of large displacement collisions based on the comb-tooth structure.
  • the capacitance value of the capacitance system 400 is changed by moving the movable electrode block 442 in the horizontal direction relative to the first static electrode layer 430.
  • the movable electrode block 442 is provided with an insulating cavity 4422.
  • the same purpose can also be achieved by providing a first insulating cavity in the first static electrode layer 430 .
  • the insulating cavity 4422 is provided with insulating material. In other embodiments, air may also be provided in the insulating cavity 4422 .
  • the insulating cavity 4422 is disposed in the middle region of the movable electrode block 442 in the width direction.
  • the insulating cavity 4422 is arranged in the middle area of the movable electrode block 442 in the width direction, and this arrangement is beneficial to both driving and detection. In other embodiments, the insulating cavity 4422 may also be provided below other regions in the width direction of the movable electrode block 442 .
  • this design scheme is more favorable for large displacement. As long as the first static electrode layer 430 is made large enough, the displacement of the movable electrode block 442 can be unlimited.
  • the capacitor system 500 of the fifth embodiment includes a first wafer 510 , a dielectric layer 520 , a first electrostatic electrode layer 530 , a moving electrode layer 540 , a second electrostatic electrode layer 560 and a second Wafer 550.
  • the moving electrode layer 540 includes a moving electrode block 542 disposed on the first static electrode layer 530, and the moving electrode block 542 is separated from the first static electrode layer 530 in a vertical direction, so that the moving electrode block 542 can be opposite to the first static electrode layer 530.
  • the pole layer 530 moves back and forth in the horizontal direction.
  • the number of movable electrode blocks 542 may be one or several (two or more). In this embodiment, there are several moving electrode blocks 542 , and the several moving electrode blocks 542 are arranged on the first static electrode layer 530 at intervals.
  • the movable electrode block 542 is provided with an insulating cavity 5422, and the insulating cavity 5422 separates the movable electrode block 542 in a horizontal direction.
  • the capacitor system 500 includes a first static electrode layer 530 and a moving electrode layer 540 arranged in layers, and the moving electrode layer 540 includes a moving electrode block 542 arranged on the first static electrode layer 530.
  • the static electrode layer 530 moves back and forth in the horizontal direction, and the movable electrode block 542 is provided with an insulating cavity 5422.
  • the capacitance value of the capacitance system 500 changes with the movement of the movable electrode block 542, and can also be used for driving.
  • the deformation stiffness in the vertical direction can be much greater than that in the horizontal direction, which prevents the movable electrode blocks 542 from interacting with the first static electrode layer 530.
  • the relative collision between the pole layers 530 under large displacement solves the reliability problem of large displacement collision based on the comb-tooth structure.
  • the capacitance value of the capacitance system 500 is changed by moving the movable electrode block 542 in the horizontal direction relative to the first static electrode layer 530.
  • the movable electrode block 542 is provided with an insulating cavity 5422.
  • the same purpose can also be achieved by providing a first insulating cavity in the first static electrode layer 530 .
  • the movable electrode block 542 includes a first long block 5424 stacked on the first static electrode layer 530 and a short block 5426 stacked on the first long block 5424.
  • the width of the first long block 5424 Greater than the width of the short block 5426.
  • the moving electrode block 542 is actually in an inverted T shape, which can reduce the quality of the moving electrode block 542 without reducing the driving effect or detection sensitivity, that is, while reducing the quality of the moving electrode block 542 Performance such as capacitance is not degraded.
  • the short block 5426 is located above the middle area in the width direction of the first long block 5424 .
  • the short block 5426 is located above the middle area in the width direction of the first long block 5424, and this arrangement is beneficial to both driving and detection. In other embodiments, the short block 5426 may also be disposed above other regions in the width direction of the first long block 5424 .
  • the insulating cavity 5422 is provided with insulating material. In other embodiments, air may also be provided in the insulating cavity 5422 .
  • the insulating cavity 5422 is disposed in the middle region of the movable electrode block 542 in the width direction.
  • the insulating cavity 5422 is arranged in the middle area of the movable electrode block 542 in the width direction, and this arrangement is beneficial to both driving and detection. In other embodiments, the insulating cavity 5422 may also be provided below other regions in the width direction of the movable electrode block 542 .
  • this design scheme is more favorable for large displacement. As long as the first static electrode layer 530 is made large enough, the displacement of the movable electrode block 542 can be unlimited.
  • the capacitor system 600 of the sixth embodiment includes a first wafer 610 , a dielectric layer 620 , a first electrostatic electrode layer 630 , a moving electrode layer 640 , a second electrostatic electrode layer 660 and a second Wafer 650.
  • the moving electrode layer 640 includes a moving electrode block 642 disposed on the first static electrode layer 630, and the moving electrode block 642 is separated from the first static electrode layer 630 in a vertical direction, so that the moving electrode block 642 can be relatively opposite to the first static electrode layer 630.
  • the pole layer 630 moves back and forth in the horizontal direction.
  • the number of movable electrode blocks 642 may be one or several (two or more). In this embodiment, there are several moving electrode blocks 642 , and the several moving electrode blocks 642 are arranged on the first static electrode layer 630 at intervals.
  • the movable electrode block 642 is provided with an insulating cavity 6422, and the insulating cavity 6422 separates the movable electrode block 642 in a horizontal direction.
  • the capacitor system 600 includes a first static electrode layer 630 and a moving electrode layer 640 that are stacked in layers.
  • the moving electrode layer 640 includes a moving electrode block 642 disposed on the first static electrode layer 630.
  • the moving electrode block 642 may be opposite to the first static electrode layer 640.
  • the static electrode layer 630 moves back and forth in the horizontal direction, and the movable electrode block 642 is provided with an insulating cavity 6422.
  • the capacitance value of the capacitance system 600 changes with the movement of the movable electrode block 642, and can also be used for driving.
  • the capacitance value of the capacitance system 600 is changed by moving the movable electrode block 642 in the horizontal direction relative to the first static electrode layer 630.
  • the movable electrode block 642 is provided with an insulating cavity 6422.
  • the same purpose can also be achieved by providing a first insulating cavity in the first static electrode layer 630 .
  • the movable electrode block 642 includes a first long block 6424 stacked on the first static electrode layer 630 , a short block 6426 stacked on the first long block 6424 , and a short block 6426 stacked on the short block 6426
  • the width of the first long block 6424 is greater than the width of the short block 6426
  • the width of the second long block 6428 is greater than the width of the short block 6426 .
  • the moving electrode block 642 is I-shaped, which can reduce the quality of the moving electrode block 642 without reducing the driving effect or detection sensitivity, that is, the quality of the moving electrode block 642 is not reduced without reducing the capacitance, etc. performance.
  • the I-shaped movable electrode block 642 can further reduce the quality of the electrode block 642 without reducing the driving effect or the purpose of detection sensitivity.
  • the short block 6426 is located above the middle area in the width direction of the first long block 6424 , and the short block 6426 is located below the middle area in the width direction of the second long block 6428 .
  • the short block 6426 is located above the middle area in the width direction of the first long block 6424, and the short block 6426 is located below the middle area in the width direction of the second long block 6428. This arrangement is beneficial to both driving and detection. In other embodiments, the short block 6426 may be disposed above other regions in the width direction of the first long block 6424 , and the short block 6426 may be located below the middle region in the width direction of the second long block 6428 .
  • the width of the first long block 6424 and the width of the second long block 6428 are the same.
  • the insulating cavity 6422 is provided with insulating material. In other embodiments, air may also be provided in the insulating cavity 6422 .
  • the insulating cavity 6422 is disposed in the middle area of the movable electrode block 642 in the width direction.
  • the insulating cavity 6422 is arranged in the middle area of the movable electrode block 642 in the width direction, and this arrangement is beneficial to both driving and detection. In other embodiments, the insulating cavity 6422 may also be provided below other regions in the width direction of the movable electrode block 642 .
  • this design scheme is more favorable for large displacement. As long as the first static electrode layer 630 is made large enough, the displacement of the movable electrode block 642 can be unlimited.
  • each film layer is formed by deposition.
  • the manufacturing method of the capacitor system 100 of the first embodiment includes the following steps:
  • it also includes performing the following operations after the operation of etching the first electrostatic electrode layer 130 : forming a first insulating layer 130 ′ on the first electrostatic electrode layer 130 , and then removing the first insulating layer 130 ′ to the first The top of the static electrode layer 130 , so that the insulating material is provided in the first insulating cavity 132 , and the first insulating layer 130 ′ is not laminated on the first static electrode layer 130 .
  • the operation of removing the first insulating layer 130' may be performed through a polishing process or dry etching.
  • the insulating material is provided in the first insulating cavity 132 .
  • the above-mentioned operations of forming the first insulating layer 130 ′ and then removing the first insulating layer 130 ′ can also be omitted. In this way, the operations of sequentially forming the sacrificial layer 170 on the first static electrode layer 130 through S130 are performed, and then In conjunction with the operation of releasing the sacrificial layer 170 in S150 , air is provided in the first insulating cavity 132 .
  • the moving electrode layer 180 is etched, the moving electrode layer 180 is transformed into a moving electrode block disposed on the sacrificial layer 170 , the moving electrode block 142 forms a moving electrode layer, and the first insulating cavity 132 is disposed below the moving electrode block 142 .
  • the capacitor system 100 can realize the first electrostatic electrode layer by precisely controlling the thickness of the sacrificial layer 170 formed between the first electrostatic electrode layer 130 and the movable electrode layer 140 . Due to the precise control of the distance between the first static electrode layer 130 and the moving electrode layer 140 , the consistency of the capacitive system 100 is very good, and the distance between the first static electrode layer 130 and the moving electrode layer 140 can be down to less than 1 ⁇ m.
  • the capacitance system 100 has good consistency, and the distance between the first static electrode layer 130 and the moving electrode layer 140 can be lowered to less than 1 ⁇ m, and since the level between the stacked moving electrode block 142 and the first static electrode layer 130 only occurs
  • the relative movement in the direction since the deformation stiffness in the vertical direction can be much greater than the horizontal direction, which avoids the relative collision between the movable electrode block 142 and the first static electrode layer 130 under large displacement, thus solving the problem based on the comb-tooth structure.
  • the large displacement collision reliability problem since the deformation stiffness in the vertical direction can be much greater than the horizontal direction, which avoids the relative collision between the movable electrode block 142 and the first static electrode layer 130 under large displacement, thus solving the problem based on the comb-tooth structure.
  • the manufacturing method of the capacitor system 200 of the second embodiment includes the following steps:
  • S220 further includes, after the operation of etching the first electrostatic electrode layer 230 , performing the following operations: forming a first insulating layer 230 ′ on the first electrostatic electrode layer 230 , and then removing the first insulating layer 230 ′ to the first insulating layer 230 ′.
  • the top of a static electrode layer 230 so that the insulating material is provided in the first insulating cavity 232 , and the first insulating layer 230 ′ is not laminated on the first static electrode layer 230 .
  • the operation of removing the first insulating layer 230' may be accomplished through a polishing process or dry etching.
  • the insulating material is provided in the first insulating cavity 232 .
  • the above-mentioned operations of forming the first insulating layer 230 ′ and then removing the first insulating layer 230 ′ can also be omitted. In this way, the operations of sequentially forming the sacrificial layer 270 on the first static electrode layer 230 through S230 , and then In conjunction with the operation of releasing the sacrificial layer 270 in S250 , air is provided in the first insulating cavity 232 .
  • the moving electrode layer 280 is etched, the moving electrode layer 280 is transformed into a moving electrode block disposed on the sacrificial layer 270, the moving electrode block 242 forms a moving electrode layer, and the first insulating cavity 232 is disposed below the moving electrode block 242 .
  • S260 further includes an operation of forming a second electrostatic electrode layer 260 on the second wafer 250 before the operation of bonding the second wafer 250 and the semi-finished product 200'.
  • the moving electrode layer 240, the second static electrode layer 260, and the second wafer 250 are sequentially stacked.
  • S260 further includes the following operation: etching the second static electrode layer 260 to form a second insulating cavity 262 on the second static electrode layer 260 .
  • the second insulating cavity 262 is used to separate the second static electrode layer 260 in the horizontal direction.
  • the second insulating cavity 262 is located above the movable electrode block 242 .
  • S260 further includes performing the following operations after the operation of etching the second electrostatic electrode layer 260 : forming a second insulating layer 260 ′ on the second electrostatic electrode layer 260 , and then removing the second insulating layer layer 260 ′ to the top of the second static electrode layer 260 , so that insulating material is provided in the second insulating cavity 262 , and the second insulating layer 260 ′ is not laminated on the second static electrode layer 260 .
  • the insulating material is provided in the second insulating cavity 262 .
  • the above-mentioned operations of forming the second insulating layer 260' and then removing the second insulating layer 260' can also be omitted, so that the second insulating cavity 262 is provided with air.
  • the capacitor system 200 can realize the first electrostatic electrode layer by precisely controlling the thickness of the sacrificial layer 270 formed between the first electrostatic electrode layer 230 and the movable electrode layer 240 The distance between the first static electrode layer 230 and the moving electrode layer 240 is precisely controlled, so that the consistency of the capacitive system 200 is very good, and the distance between the first static electrode layer 230 and the moving electrode layer 240 can be lowered to less than 1 ⁇ m.
  • the capacitance system 200 has good consistency, the distance between the first static electrode layer 230 and the moving electrode layer 240 can be lowered to less than 1 ⁇ m, and since the level of the moving electrode block 242 and the first static electrode layer 230 is only horizontal. For the relative movement in the direction, the deformation stiffness in the vertical direction can be much greater than that in the horizontal direction, which avoids the relative collision between the movable electrode block 242 and the first static electrode layer 230 under large displacement, thus solving the problem based on the comb-tooth structure. The large displacement collision reliability problem.
  • the manufacturing method of the capacitor system 300 of the third embodiment includes the following steps:
  • S320 further includes performing the following operations after the operation of etching the moving electrode layer 380 : forming an insulating layer 340 ′ on the moving electrode block 342 , and then removing the insulating layer 340 ′ to the moving electrode block 342 so that the insulating cavity 3422 is provided with insulating material, and the insulating layer 340 ′ is not laminated on the movable electrode block 342 .
  • the operation of removing the insulating layer 340' may be accomplished by a polishing process or dry etching.
  • the insulating cavity 3422 is provided with insulating material.
  • the above operations of forming the insulating layer 340' and then removing the insulating layer 340' can also be omitted, so that the insulating cavity 3422 is provided with air.
  • the capacitor system 300 can realize the first electrostatic electrode layer by precisely controlling the thickness of the sacrificial layer 370 formed between the first electrostatic electrode layer 330 and the movable electrode layer 340 The distance between the first static electrode layer 330 and the moving electrode layer 340 is precisely controlled, so that the consistency of the capacitance system 300 is very good, and the distance between the first static electrode layer 330 and the moving electrode layer 340 can be down to less than 1 ⁇ m.
  • the capacitance system 300 has good consistency, the distance between the first static electrode layer 330 and the moving electrode layer 340 can be lowered to less than 1 ⁇ m, and since the level of the moving electrode block 342 and the first static electrode layer 330 only occurs horizontally. For the relative movement in the direction, since the deformation stiffness in the vertical direction can be much greater than that in the horizontal direction, this avoids the relative collision between the movable electrode block 342 and the first static electrode layer 330 under large displacements, thus solving the problem based on the comb-tooth structure. The large displacement collision reliability problem.
  • the preparation method of the capacitor system 400 of the fourth embodiment includes the following steps:
  • S420 further includes the following operations after the operation of etching the moving electrode layer 480 : forming an insulating layer 440 ′ on the moving electrode block 442 , and then removing the insulating layer 440 ′ to the moving electrode block 442 so that the insulating cavity 4422 is provided with insulating material, and the insulating layer 440 ′ is not laminated on the movable electrode block 442 .
  • the operation of removing the insulating layer 440' may be accomplished through a polishing process or dry etching.
  • the insulating cavity 4422 is provided with insulating material.
  • the operations of forming the insulating layer 440' and then removing the insulating layer 440' can also be omitted, so that the insulating cavity 4422 is provided with air.
  • S440 further includes an operation of forming a second static electrode layer 460 on the second wafer 450 before the operation of combining the second wafer 450 and the semi-finished product 400'.
  • the moving electrode layer 440, the second static electrode layer 460 and the second wafer 450 are stacked in sequence.
  • the capacitor system 400 can realize the first electrostatic electrode layer by precisely controlling the thickness of the sacrificial layer 470 formed between the first electrostatic electrode layer 430 and the movable electrode layer 440 Precise control of the distance between the first static electrode layer 430 and the moving electrode layer 440 makes the capacitance system 400 very consistent, and the distance between the first static electrode layer 430 and the moving electrode layer 440 can be down to less than 1 ⁇ m.
  • the capacitance system 400 has good consistency, and the distance between the first static electrode layer 430 and the moving electrode layer 440 can be lowered to less than 1 ⁇ m, and because the level between the stacked moving electrode block 442 and the first static electrode layer 430 is only horizontal For the relative movement in the direction, since the deformation stiffness in the vertical direction can be much greater than that in the horizontal direction, this avoids the relative collision between the moving electrode block 442 and the first static electrode layer 430 under large displacement, thus solving the problem based on the comb-tooth structure.
  • the large displacement collision reliability problem is the reason for the relative movement in the direction, since the deformation stiffness in the vertical direction can be much greater than that in the horizontal direction, this avoids the relative collision between the moving electrode block 442 and the first static electrode layer 430 under large displacement, thus solving the problem based on the comb-tooth structure.
  • the manufacturing method of the capacitor system 500 of the fifth embodiment includes the following steps:
  • the moving electrode layer 580 is formed on the sacrificial layer 570, and the moving electrode layer 580 is etched, so that the moving electrode layer 580 is transformed into a moving electrode block disposed on the sacrificial layer 570, and the moving electrode block is
  • the operation of forming the insulating cavity 5422 on the 542 is as follows:
  • the moving electrode block 542 is actually in an inverted T shape, which can reduce the quality of the moving electrode block 542 without reducing the driving effect or detection sensitivity, that is, while reducing the quality of the moving electrode block 542 Performance such as capacitance is not degraded.
  • S520 further includes performing the following operations after the operation of etching the moving electrode layer 580 : forming an insulating layer 540 ′ on the moving electrode block 542 , and then removing the insulating layer 540 ′ to the moving electrode block 542
  • the top of the insulating cavity 5422 is provided with insulating material, and the insulating layer 540 ′ is not laminated on the movable electrode block 542 .
  • the operation of removing the insulating layer 540' may be accomplished through a polishing process or dry etching.
  • the insulating cavity 5422 is provided with insulating material.
  • the insulating layer 540' is removed to the top of the movable electrode block 542, and the insulating layer 540' and the second sacrificial layer 574 are removed at the same time.
  • the above operations of forming the insulating layer 540' and then removing the insulating layer 540' can also be omitted, so that the insulating cavity 5422 is provided with air.
  • the operation of releasing the sacrificial layer 570 is as follows: forming a fourth sacrificial layer 578 on the moving electrode block 542, then etching a part of the moving electrode layer 580 adjacent to the moving electrode block 542, and finally removing the first The first sacrificial layer 572, the fourth sacrificial layer 578 and the sacrificial layer 570 are all released.
  • step (l) the middle inverted T structure is surrounded by layers consisting of the sacrificial layer 570, the first sacrificial layer 572 and the first sacrificial layer 572.
  • Four sacrificial layers 578 are composed of sacrificial materials.
  • the steps from (k) to (l) are to remove most of the material of the moving electrode layer 580 in the adjacent area of the moving electrode block 542.
  • the moving electrode block 542 is precisely because of the first sacrificial layer 572, the fourth sacrificial layer 572 The protection of layer 578 and sacrificial layer 570 is preserved.
  • step (l) After the step (l) is completed, the first sacrificial layer 572, the fourth sacrificial layer 578 and the sacrificial layer 570 are released together, and the movable electrode block 542 can be moved at this time (ie, step (m)).
  • the most important thing is to first protect the inverted T-shaped moving electrode block 542 with the first sacrificial layer 572, the fourth sacrificial layer 578 and the sacrificial layer 570, and remove the unnecessary movement.
  • the electrode layer 580, the first sacrificial layer 572, the fourth sacrificial layer 578 and the sacrificial layer 570 can be removed uniformly later, which is the key two-step release process.
  • S540 further includes an operation of forming a second electrostatic electrode layer 560 on the second wafer 550 before the operation of combining the second wafer 550 and the semi-finished product 500'.
  • the moving electrode layer 540, the second static electrode layer 560 and the second wafer 550 are stacked in sequence.
  • the capacitor system 500 can realize the first electrostatic electrode layer by precisely controlling the thickness of the sacrificial layer 570 formed between the first electrostatic electrode layer 530 and the movable electrode layer 540 Due to the precise control of the distance between the first static electrode layer 530 and the moving electrode layer 540 , the consistency of the capacitive system 500 is very good, and the distance between the first static electrode layer 530 and the moving electrode layer 540 can be lowered to less than 1 ⁇ m.
  • the capacitance system 500 has good consistency, and the distance between the first static electrode layer 530 and the moving electrode layer 540 can be lowered to less than 1 ⁇ m, and because the level between the stacked moving electrode block 542 and the first static electrode layer 530 is only horizontal
  • the deformation stiffness in the vertical direction can be much larger than that in the horizontal direction, this avoids the relative collision between the movable electrode block 542 and the first static electrode layer 530 under large displacement, thus solving the problem based on the comb-tooth structure.
  • the large displacement collision reliability problem is the large displacement collision reliability problem.
  • the preparation method of the capacitor system 600 of the sixth embodiment includes the following steps:
  • a moving electrode layer 680 is formed on the sacrificial layer 670 , and the moving electrode layer 680 is etched, so that the moving electrode layer 680 is transformed into a moving electrode block disposed on the sacrificial layer 670 , and the moving electrode block is
  • the operation of forming the insulating cavity 6422 on the 642 is as follows:
  • the moving electrode block 642 is I-shaped, which can reduce the quality of the moving electrode block 642 without reducing the driving effect or detection sensitivity, that is, the quality of the moving electrode block 642 is not reduced without reducing the capacitance, etc. performance.
  • the I-shaped movable electrode block 642 can further reduce the quality of the electrode block 642 without reducing the driving effect or the purpose of detection sensitivity.
  • S620 further includes performing the following operations after the operation of etching the moving electrode layer 680 : forming an insulating layer 640 ′ on the moving electrode block 642 , and then removing the insulating layer 640 ′ to the moving electrode block 642
  • the insulating cavity 6422 is provided with insulating material, and the insulating layer 640 ′ is not laminated on the movable electrode block 642 .
  • the operation of removing the insulating layer 640' may be accomplished through a polishing process or dry etching.
  • the insulating layer 640' is removed to the top of the movable electrode block 642, and the insulating layer 640' and the third sacrificial layer 676 are removed at the same time.
  • the insulating cavity 6422 is provided with insulating material.
  • the operations of forming the insulating layer 640' and then removing the insulating layer 640' can also be omitted, so that the insulating cavity 6422 is provided with air.
  • the operation of releasing the sacrificial layer 670 is: forming a fourth sacrificial layer 678 on the moving electrode block 642 , then etching the partial area of the moving electrode layer 680 adjacent to the moving electrode block 642 , and finally removing the fourth sacrificial layer 678 on the moving electrode block 642
  • the first sacrificial layer 672, the second sacrificial layer 674, the fourth sacrificial layer 678 and the sacrificial layer 670 are all released.
  • step (n) the middle I-shaped structure is surrounded by layers consisting of a sacrificial layer 670, a first sacrificial layer 672, a second sacrificial layer The sacrificial material composed of the sacrificial layer 674 and the fourth sacrificial layer 678 .
  • the steps from (m) to (n) are to remove most of the material of the moving electrode layer 680 in the adjacent area of the moving electrode block 642.
  • the moving electrode block 642 is precisely because of the first sacrificial layer 672, the second sacrificial layer 672 The protection of layer 674, fourth sacrificial layer 678, and sacrificial layer 670 can remain.
  • step (n) the first sacrificial layer 672, the second sacrificial layer 674, the fourth sacrificial layer 678 and the sacrificial layer 670 are released together, and the movable electrode block 642 can be moved at this time (ie (o) step).
  • the most important thing is to first protect the I-shaped moving electrode block 642 with the first sacrificial layer 672, the second sacrificial layer 674, the fourth sacrificial layer 678 and the sacrificial layer 670, and remove it.
  • the first sacrificial layer 672, the second sacrificial layer 674, the fourth sacrificial layer 678 and the sacrificial layer 670 can be removed uniformly later, which is the key two-step release process.
  • S640 further includes an operation of forming a second electrostatic electrode layer 660 on the second wafer 650 before the operation of combining the second wafer 650 and the semi-finished product 600'.
  • the moving electrode layer 640, the second static electrode layer 660 and the second wafer 650 are stacked in sequence.
  • the capacitor system 600 can realize the first electrostatic electrode layer by precisely controlling the thickness of the sacrificial layer 670 formed between the first electrostatic electrode layer 630 and the movable electrode layer 640 Precise control of the distance between the first static electrode layer 630 and the moving electrode layer 640 makes the capacitance system 600 very consistent, and the distance between the first static electrode layer 630 and the moving electrode layer 640 can be down to less than 1 ⁇ m.
  • the capacitance system 600 has good consistency, and the distance between the first static electrode layer 630 and the moving electrode layer 640 can be lowered to less than 1 ⁇ m, and since the level between the stacked moving electrode block 642 and the first static electrode layer 630 is only horizontal For the relative movement in the direction, since the deformation stiffness in the vertical direction can be much greater than that in the horizontal direction, this avoids the relative collision between the movable electrode block 642 and the first static electrode layer 630 under large displacement, thus solving the problem based on the comb-tooth structure. The large displacement collision reliability problem.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

本申请提供了一种电容系统及其制备方法,电容系统包括依次层叠的第一晶圆、介质层、第一静电极层、动电极层和第二晶圆;所述动电极层包括设置在所述第一静电极层上的动电极块,所述动电极块与所述第一静电极层在竖直方向上分离,从而使得所述动电极块可相对于所述第一静电极层在水平方向上来回运动;所述动电极块上设有绝缘空腔,所述绝缘空腔将所述动电极块在水平方向上分隔。这种电容系统的层叠的动电极块与第一静电极层之间只发生水平方向上的相对运动,由于垂直方向上的变形刚度可以远大于水平方向,这就避免了动电极块与第一静电极层之间大位移下的相对碰撞,从而解决了基于梳齿结构的大位移碰撞可靠性问题。

Description

电容系统及其制备方法 技术领域
本申请涉及电容技术领域,尤其涉及一种电容系统及其制备方法。
背景技术
MEMS器件中的面内运动一般是指运动部件的运动方向在晶圆的平面内,对于这种平面内运动的检测或驱动,通常是制备沿着与平面方向垂直的梳齿结构的电容系统来实现,通过动梳齿和静梳齿在平面方向上的相对运动,导致动梳齿和静梳齿之间的电容变化。
技术问题
然而,受到工艺极限的限制,梳齿的深宽比一般控制在20:1以内,梳齿对的间距也会大于1μm,这都导致需要制备极多数量的梳齿结构才能满足驱动力的要求。
并且,梳齿的间距都是通过深反应离子刻蚀工艺(DRIE)制备的,这种工艺的侧壁都具有典型Scallop结构(博世工艺典型特征),以及侧壁并不是90°垂直基板(间距不均匀),这些都会给梳齿电容系统带来问题。
此外,梳齿对结构不适合用于大位移情况,动梳齿在左右运动的时候是靠导向结构(一般是U型梁)导向的,很难严格保证动梳齿完全水平方向运动(会存在上下的运动偏差),加上梳齿制备工艺带来的结构上的缺陷,大位移下容易发生动梳齿与静梳齿的碰撞,引起可靠性问题。
技术解决方案
基于此,有必要提供一种可以解决上述问题的电容系统。
此外,还有必要提供一种上述电容系统的制备方法。
一种电容系统,包括依次层叠的第一晶圆、介质层、第一静电极层、动电极层和第二晶圆;
所述动电极层包括设置在所述第一静电极层上的动电极块,所述动电极块与所述第一静电极层在竖直方向上分离,从而使得所述动电极块可相对于所述第一静电极层在水平方向上来回运动;
所述第一静电极层设有第一绝缘空腔,所述第一绝缘空腔位于所述动电极块的下方,所述第一绝缘空腔将所述第一静电极层在水平方向上分隔;或者,所述动电极块上设有绝缘空腔,所述绝缘空腔将所述动电极块在水平方向上分隔。
一种电容系统的制备方法,包括如下步骤:
在第一晶圆上依次形成介质层和第一静电极层;
刻蚀所述第一静电极层,从而在所述第一静电极层形成第一绝缘空腔,其中,所述第一绝缘空腔将所述第一静电极层在水平方向上分隔形成彼此绝缘的不同区域;
在所述第一静电极层上依次形成牺牲层和运动电极层;
刻蚀所述运动电极层,使得所述运动电极层转变为设置在所述牺牲层上的动电极块,所述动电极块形成动电极层,并且所述第一绝缘空腔设置在所述动电极块的下方;
释放所述牺牲层,使得所述动电极块与所述第一静电极层在竖直方向上分离,从而使得所述动电极块可相对于所述第一静电极层在水平方向上来回运动,得到半成品;以及
将第二晶圆和所述半成品键合,使得所述第二晶圆层叠在所述动电极层上,得到所述的电容系统。
一种电容系统的制备方法,包括如下步骤:
在第一晶圆上依次形成介质层、第一静电极层和牺牲层;
在所述牺牲层上形成运动电极层,接着刻蚀所述运动电极层,使得所述运动电极层转变为设置在所述牺牲层上的动电极块,并且在所述动电极块上形成绝缘空腔,其中,所述动电极块形成动电极层,所述绝缘空腔将所述动电极块在水平方向上分隔;
释放所述牺牲层,使得所述动电极块与所述第一静电极层在竖直方向上分离,从而使得所述动电极块可相对于所述第一静电极层在水平方向上来回运动,得到半成品;以及
将第二晶圆和所述半成品键合,使得所述第二晶圆层叠在所述动电极层上,得到所述的电容系统的制备方法。
有益效果
这种电容系统包括层叠设置的第一静电极层和动电极层,动电极层包括设置在第一静电极层上的动电极块,动电极块可相对于第一静电极层在水平方向上来回运动,第一静电极层设有位于动电极块的下方的第一绝缘空腔,或者动电极块上设有绝缘空腔,这种电容系统的电容值会随着动电极块的运动发生改变,同时也可用于驱动。
相对于传统的梳齿结构的电容系统,这种电容系统可以通过对第一静电极层和动电极层之间形成的牺牲层的厚度的精准控制,来实现第一静电极层和动电极层之间的间距的精准控制,从而这种电容系统的一致性非常好,并且第一静电极层和动电极层之间的间距可以下探到1μm以下。
这种电容系统的一致性好,第一静电极层和动电极层之间的间距可以下探到1μm以下,并且由于层叠的动电极块与第一静电极层之间只发生水平方向上的相对运动,由于垂直方向上的变形刚度可以远大于水平方向,这就避免了动电极块与第一静电极层之间大位移下的相对碰撞,从而解决了基于梳齿结构的大位移碰撞可靠性问题。
附图说明
图1为第一实施方式的电容系统的结构示意图。
图2为第二实施方式的电容系统的结构示意图。
图3为第三实施方式的电容系统的结构示意图。
图4为如图3所示的电容系统的A-A向的剖面结构示意图。
图5为第四实施方式的电容系统的结构示意图。
图6为第五实施方式的电容系统的结构示意图。
图7为第六实施方式的电容系统的结构示意图。
图8为第一实施方式的电容系统的制备方法的流程图。
图9为如图8所示的电容系统的制备方法的原理示意图。
图10为第二实施方式的电容系统的制备方法的流程图。
图11为如图10所示的电容系统的制备方法的原理示意图。
图12为第三实施方式的电容系统的制备方法的流程图。
图13为如图12所示的电容系统的制备方法的原理示意图。
图14为第四实施方式的电容系统的制备方法的流程图。
图15为如图14所示的电容系统的制备方法的原理示意图。
图16为第五实施方式的电容系统的制备方法的流程图。
图17为如图16所示的电容系统的制备方法的原理示意图。
图18为第六实施方式的电容系统的制备方法的流程图。
图19为如图18所示的电容系统的制备方法的原理示意图。
本发明的实施方式
下面结合附图和实施方式对本申请作进一步说明。
以下为电容系统100、200、300、400、500、600的介绍,在本申请中,如果没有特别说明,采用的晶圆(第一晶圆、第二晶圆)均为SOI硅片。
如图1所示的第一实施方式的电容系统100,包括依次层叠的第一晶圆110、介质层120、第一静电极层130、动电极层140和第二晶圆150。
动电极层140包括设置在第一静电极层130上的动电极块142,动电极块142与第一静电极层130在竖直方向上分离,从而使得动电极块142可相对于第一静电极层130在水平方向上来回运动。
动电极块142可以为一个或若干个(两个或两个以上)。本实施方式中,动电极块142为若干个,若干个动电极块142间隔设置在第一静电极层130上。
第一静电极层130设有第一绝缘空腔132,第一绝缘空腔132位于动电极块142的下方,第一绝缘空腔132将第一静电极层130在水平方向上分隔。
这种电容系统100包括层叠设置的第一静电极层130和动电极层140,动电极层140包括设置在第一静电极层130上的动电极块142,动电极块142可相对于第一静电极层130在水平方向上来回运动,第一静电极层130设有位于动电极块142的下方的第一绝缘空腔132,这种电容系统100的电容值会随着动电极块142的运动发生改变,同时也可用于驱动。
由于层叠的动电极块142与第一静电极层130之间只发生水平方向上的相对运动,由于垂直方向上的变形刚度可以远大于水平方向,这就避免了动电极块142与第一静电极层130之间大位移下的相对碰撞,从而解决了基于梳齿结构的大位移碰撞可靠性问题。
通过动电极块142相对于第一静电极层130在水平方向的运动来实现电容系统100的电容值的改变,本实施方式中,第一静电极层130设有第一绝缘空腔132,在其他的实施方式中,也可以通过在动电极块142上设置绝缘空腔来达到相同的目的。
结合附图,本实施方式中,第一绝缘空腔132内设有绝缘材料。在其他的实施方式中,第一绝缘空腔132内也可以设有空气。
结合附图,本实施方式中,第一绝缘空腔132设置在动电极块142的宽度方向的中间区域的下方。
第一绝缘空腔132设置在动电极块142的宽度方向的中间区域的下方,这种设置方式对于对驱动和检测都有好处。在其他的实施方式中,也可以第一绝缘空腔132设置在动电极块142的宽度方向的其他区域的下方,只要保证第一绝缘空腔132位于动电极块142的下方即可。
如图2所示的第二实施方式的电容系统200,包括依次层叠的第一晶圆210、介质层220、第一静电极层230、动电极层240、第二静电极层260和第二晶圆250。
动电极层240包括设置在第一静电极层230上的动电极块242,动电极块242与第一静电极层230在竖直方向上分离,从而使得动电极块242可相对于第一静电极层230在水平方向上来回运动。
动电极块242可以为一个或若干个(两个或两个以上)。本实施方式中,动电极块242为若干个,若干个动电极块242间隔设置在第一静电极层230上。
第一静电极层230设有第一绝缘空腔232,第一绝缘空腔232位于动电极块242的下方,第一绝缘空腔232将第一静电极层230在水平方向上分隔。
第二静电极层260设有第二绝缘空腔262,第二绝缘空腔262位于动电极块242的上方,第二绝缘空腔262将第二静电极层260在水平方向上分隔。
这种电容系统200包括层叠设置的第一静电极层230、动电极层240和第二静电极层260,动电极层240包括设置在第一静电极层230上的动电极块242,动电极块242可相对于第一静电极层230在水平方向上来回运动,第一静电极层230设有位于动电极块242的下方的第一绝缘空腔232,第二静电极层260设有位于动电极块242的上方的第二绝缘空腔262,这种电容系统200的电容值会随着动电极块242的运动发生改变,同时也可用于驱动。
由于层叠的动电极块242与第一静电极层230之间只发生水平方向上的相对运动,由于垂直方向上的变形刚度可以远大于水平方向,这就避免了动电极块242与第一静电极层230之间大位移下的相对碰撞,从而解决了基于梳齿结构的大位移碰撞可靠性问题。
通过动电极块242相对于第一静电极层230在水平方向的运动来实现电容系统200的电容值的改变,本实施方式中,第一静电极层230设有第一绝缘空腔232,第二静电极层260设有第二绝缘空腔262,在其他的实施方式中,也可以通过在动电极块242上设置绝缘空腔来达到相同的目的。
结合附图,本实施方式中,第一绝缘空腔232内设有绝缘材料。在其他的实施方式中,第一绝缘空腔232内也可以设有空气。
结合附图,本实施方式中,第二绝缘空腔262内设有绝缘材料。在其他的实施方式中,第二绝缘空腔262内也可以设有空气。
结合附图,本实施方式中,第二绝缘空腔262设置在动电极块242的宽度方向的中间区域的下方。
结合附图,本实施方式中,第二绝缘空腔262设置在动电极块242的宽度方向的中间区域的上方。
第一绝缘空腔232设置在动电极块242的宽度方向的中间区域的下方,第二绝缘空腔262设置在动电极块242的宽度方向的中间区域的上方,这种设置方式对于对驱动和检测都有好处。在其他的实施方式中,也可以第一绝缘空腔232设置在动电极块242的宽度方向的其他区域的下方,第二绝缘空腔262设置在动电极块242的宽度方向的其他区域的上方,只要保证第一绝缘空腔232位于动电极块242的下方即可,只要保证第二绝缘空腔262位于动电极块242的上方即可。
如图3和图4所示的第三实施方式的电容系统300,包括依次层叠的第一晶圆310、介质层320、第一静电极层330、动电极层340和第二晶圆350。
动电极层340包括设置在第一静电极层330上的动电极块342,动电极块342与第一静电极层330在竖直方向上分离,从而使得动电极块342可相对于第一静电极层330在水平方向上来回运动。
动电极块342可以为一个或若干个(两个或两个以上)。本实施方式中,动电极块342为若干个,若干个动电极块342间隔设置在第一静电极层330上。
动电极块342上设有绝缘空腔3422,绝缘空腔3422将动电极块342在水平方向上分隔。
这种电容系统300包括层叠设置的第一静电极层330和动电极层340,动电极层340包括设置在第一静电极层330上的动电极块342,动电极块342可相对于第一静电极层330在水平方向上来回运动,动电极块342上设有绝缘空腔3422,这种电容系统300的电容值会随着动电极块342的运动发生改变,同时也可用于驱动。
由于层叠的动电极块342与第一静电极层330之间只发生水平方向上的相对运动,由于垂直方向上的变形刚度可以远大于水平方向,这就避免了动电极块342与第一静电极层330之间大位移下的相对碰撞,从而解决了基于梳齿结构的大位移碰撞可靠性问题。
通过动电极块342相对于第一静电极层330在水平方向的运动来实现电容系统300的电容值的改变,本实施方式中,动电极块342上设有绝缘空腔3422,在其他的实施方式中,也可以通过在第一静电极层330设有第一绝缘空腔来达到相同的目的。
结合图4,本实施方式中,动电极层340上设有电隔离槽344,动电极块342设置在电隔离槽344内,并且电隔离槽344和动电极块342之间填充有绝缘材料。
具体来说,动电极块342的两端与其他不动的动电极层340连接。电隔离槽344的设置,是为了动电极块342中被隔离的两部分电极可以单独引线出来到后端的控制电路(连接不同的控制信号),比如引线键合到某个PCB板上,所以需要在动电极块342上设绝缘空腔3422,以及在电隔离槽344和动电极块342之间填充绝缘材料。
结合图4,本实施方式中,动电极块342的两端与其他不动的动电极层340连接,动电极块342的中间部分的运动范围相对有限。在其他的实施方式中,动电极块342的两端与其他不动的动电极层340连接的地方可以设置弹性结构,从而增大动电极块342的可运动位移。
本实施方式中,动电极块342在长度方向上具有相对的第一端3424和第二端3426,第一端3424和第二端3426均设置在电隔离槽344内。
结合附图,本实施方式中,第一端3424的宽度和第二端3426的宽度均大于动电极块342的中间的宽度。
动电极块342设置在电隔离槽344内,从而使得动电极块342以电隔离槽344的边界为动电极块342在水平方向上的运动边界,仅仅为本申请中作为举例给出的一种动电极块342的运动方式,在其他的实施方式中,也可以采用其他的运动方式。
结合附图,本实施方式中,绝缘空腔3422内设有绝缘材料。在其他的实施方式中,绝缘空腔3422内也可以设有空气。
结合附图,本实施方式中,绝缘空腔3422设置在动电极块342的宽度方向的中间区域。
绝缘空腔3422设置在动电极块342的宽度方向的中间区域,这种设置方式对于对驱动和检测都有好处。在其他的实施方式中,也可以绝缘空腔3422设置在动电极块342的宽度方向的其他区域的下方。
此外,通过在动电极块342上设置绝缘空腔3422,这种设计方案更有利于大位移情况,只要第一静电极层330做的足够大,动电极块342的位移可以无限制。
如图5所示的第四实施方式的电容系统400,包括依次层叠的第一晶圆410、介质层420、第一静电极层430、动电极层440、第二静电极层460和第二晶圆450。
动电极层440包括设置在第一静电极层430上的动电极块442,动电极块442与第一静电极层430在竖直方向上分离,从而使得动电极块442可相对于第一静电极层430在水平方向上来回运动。
动电极块442可以为一个或若干个(两个或两个以上)。本实施方式中,动电极块442为若干个,若干个动电极块442间隔设置在第一静电极层430上。
动电极块442上设有绝缘空腔4422,绝缘空腔4422将动电极块442在水平方向上分隔。
这种电容系统400包括层叠设置的第一静电极层430和动电极层440,动电极层440包括设置在第一静电极层430上的动电极块442,动电极块442可相对于第一静电极层430在水平方向上来回运动,动电极块442上设有绝缘空腔4422,这种电容系统400的电容值会随着动电极块442的运动发生改变,同时也可用于驱动。
由于层叠的动电极块442与第一静电极层430之间只发生水平方向上的相对运动,由于垂直方向上的变形刚度可以远大于水平方向,这就避免了动电极块442与第一静电极层430之间大位移下的相对碰撞,从而解决了基于梳齿结构的大位移碰撞可靠性问题。
通过动电极块442相对于第一静电极层430在水平方向的运动来实现电容系统400的电容值的改变,本实施方式中,动电极块442上设有绝缘空腔4422,在其他的实施方式中,也可以通过在第一静电极层430设有第一绝缘空腔来达到相同的目的。
结合附图,本实施方式中,绝缘空腔4422内设有绝缘材料。在其他的实施方式中,绝缘空腔4422内也可以设有空气。
结合附图,本实施方式中,绝缘空腔4422设置在动电极块442的宽度方向的中间区域。
绝缘空腔4422设置在动电极块442的宽度方向的中间区域,这种设置方式对于对驱动和检测都有好处。在其他的实施方式中,也可以绝缘空腔4422设置在动电极块442的宽度方向的其他区域的下方。
此外,通过在动电极块442上设置绝缘空腔4422,这种设计方案更有利于大位移情况,只要第一静电极层430做的足够大,动电极块442的位移可以无限制。
如图6所示的第五实施方式的电容系统500,包括依次层叠的第一晶圆510、介质层520、第一静电极层530、动电极层540、第二静电极层560和第二晶圆550。
动电极层540包括设置在第一静电极层530上的动电极块542,动电极块542与第一静电极层530在竖直方向上分离,从而使得动电极块542可相对于第一静电极层530在水平方向上来回运动。
动电极块542可以为一个或若干个(两个或两个以上)。本实施方式中,动电极块542为若干个,若干个动电极块542间隔设置在第一静电极层530上。
动电极块542上设有绝缘空腔5422,绝缘空腔5422将动电极块542在水平方向上分隔。
这种电容系统500包括层叠设置的第一静电极层530和动电极层540,动电极层540包括设置在第一静电极层530上的动电极块542,动电极块542可相对于第一静电极层530在水平方向上来回运动,动电极块542上设有绝缘空腔5422,这种电容系统500的电容值会随着动电极块542的运动发生改变,同时也可用于驱动。
由于层叠的动电极块542与第一静电极层530之间只发生水平方向上的相对运动,由于垂直方向上的变形刚度可以远大于水平方向,这就避免了动电极块542与第一静电极层530之间大位移下的相对碰撞,从而解决了基于梳齿结构的大位移碰撞可靠性问题。
通过动电极块542相对于第一静电极层530在水平方向的运动来实现电容系统500的电容值的改变,本实施方式中,动电极块542上设有绝缘空腔5422,在其他的实施方式中,也可以通过在第一静电极层530设有第一绝缘空腔来达到相同的目的。
结合附图,本实施方式中,动电极块542包括层叠在第一静电极层530上的第一长块5424以及层叠在第一长块5424上的短块5426,第一长块5424的宽度大于短块5426的宽度。
本实施方式中,动电极块542实际上成倒置的T字形,这样可以达到降低动电极块542的质量,且不降低驱动效果或检测灵敏度的目的,即在降低动电极块542的质量的同时没有降低电容等性能。
优选的,短块5426位于在第一长块5424的宽度方向的中间区域的上方。
短块5426位于在第一长块5424的宽度方向的中间区域的上方,这种设置方式对于对驱动和检测都有好处。在其他的实施方式中,也可以短块5426设置在第一长块5424的宽度方向的其他区域的上方。
结合附图,本实施方式中,绝缘空腔5422内设有绝缘材料。在其他的实施方式中,绝缘空腔5422内也可以设有空气。
结合附图,本实施方式中,绝缘空腔5422设置在动电极块542的宽度方向的中间区域。
绝缘空腔5422设置在动电极块542的宽度方向的中间区域,这种设置方式对于对驱动和检测都有好处。在其他的实施方式中,也可以绝缘空腔5422设置在动电极块542的宽度方向的其他区域的下方。
此外,通过在动电极块542上设置绝缘空腔5422,这种设计方案更有利于大位移情况,只要第一静电极层530做的足够大,动电极块542的位移可以无限制。
如图7所示的第六实施方式的电容系统600,包括依次层叠的第一晶圆610、介质层620、第一静电极层630、动电极层640、第二静电极层660和第二晶圆650。
动电极层640包括设置在第一静电极层630上的动电极块642,动电极块642与第一静电极层630在竖直方向上分离,从而使得动电极块642可相对于第一静电极层630在水平方向上来回运动。
动电极块642可以为一个或若干个(两个或两个以上)。本实施方式中,动电极块642为若干个,若干个动电极块642间隔设置在第一静电极层630上。
动电极块642上设有绝缘空腔6422,绝缘空腔6422将动电极块642在水平方向上分隔。
这种电容系统600包括层叠设置的第一静电极层630和动电极层640,动电极层640包括设置在第一静电极层630上的动电极块642,动电极块642可相对于第一静电极层630在水平方向上来回运动,动电极块642上设有绝缘空腔6422,这种电容系统600的电容值会随着动电极块642的运动发生改变,同时也可用于驱动。
由于层叠的动电极块642与第一静电极层630之间只发生水平方向上的相对运动,由于垂直方向上的变形刚度可以远大于水平方向,这就避免了动电极块642与第一静电极层630之间大位移下的相对碰撞,从而解决了基于梳齿结构的大位移碰撞可靠性问题。
通过动电极块642相对于第一静电极层630在水平方向的运动来实现电容系统600的电容值的改变,本实施方式中,动电极块642上设有绝缘空腔6422,在其他的实施方式中,也可以通过在第一静电极层630设有第一绝缘空腔来达到相同的目的。
结合附图,本实施方式中,动电极块642包括层叠在第一静电极层630上的第一长块6424、层叠在第一长块6424上的短块6426以及层叠在短块6426上的第二长块6428,第一长块6424的宽度大于短块6426的宽度,第二长块6428的宽度大于短块6426的宽度。
本实施方式中,动电极块642为工字形,这样可以达到降低动电极块642的质量,且不降低驱动效果或检测灵敏度的目的,即在降低动电极块642的质量的同时没有降低电容等性能。
相对于倒置的T字形,工字型的动电极块642可以进一步降低电极块642的质量,且不降低驱动效果或检测灵敏度的目的。
优选的,短块6426位于在第一长块6424的宽度方向的中间区域的上方,短块6426位于第二长块6428的宽度方向的中间区域的下方。
短块6426位于在第一长块6424的宽度方向的中间区域的上方,短块6426位于第二长块6428的宽度方向的中间区域的下方,这种设置方式对于对驱动和检测都有好处。在其他的实施方式中,也可以短块6426设置在第一长块6424的宽度方向的其他区域的上方,短块6426位于第二长块6428的宽度方向的中间区域的下方。
优选的,本实施方式中,第一长块6424的宽度和第二长块6428的宽度相同。
结合附图,本实施方式中,绝缘空腔6422内设有绝缘材料。在其他的实施方式中,绝缘空腔6422内也可以设有空气。
结合附图,本实施方式中,绝缘空腔6422设置在动电极块642的宽度方向的中间区域。
绝缘空腔6422设置在动电极块642的宽度方向的中间区域,这种设置方式对于对驱动和检测都有好处。在其他的实施方式中,也可以绝缘空腔6422设置在动电极块642的宽度方向的其他区域的下方。
此外,通过在动电极块642上设置绝缘空腔6422,这种设计方案更有利于大位移情况,只要第一静电极层630做的足够大,动电极块642的位移可以无限制。
以下为上述电容系统100、200、300、400、500、600的制备方法,在本申请中,如果没有特别说明,各个膜层均通过沉积的方式形成。
结合图8和图9,第一实施方式的电容系统100的制备方法,包括如下步骤:
S110、在第一晶圆110上依次形成介质层120和第一静电极层130。
S120、刻蚀第一静电极层130,从而在第一静电极层130形成第一绝缘空腔132,第一绝缘空腔132将第一静电极层130在水平方向上分隔形成彼此绝缘的不同区域。
结合图9,还包括在刻蚀第一静电极层130的操作之后,进行如下操作:在第一静电极层130上形成第一绝缘层130’,接着去除第一绝缘层130’至第一静电极层130的顶部,从而使得第一绝缘空腔132内设有绝缘材料,第一静电极层130上未层叠第一绝缘层130’。
去除第一绝缘层130’的操作可以通过抛光工艺或干法刻蚀完成。
经过上述操作后,第一绝缘空腔132内设有绝缘材料。
在其他的实施方式中,上述形成第一绝缘层130’,接着去除第一绝缘层130’的操作也可以省略,这样通过S130在第一静电极层130上依次形成牺牲层170的操作,再配合S150的释放牺牲层170的操作,使得第一绝缘空腔132内设有空气。
S130、在第一静电极层130上依次形成牺牲层170和运动电极层180。
S140、刻蚀运动电极层180,运动电极层180转变为设置在牺牲层170上的动电极块,动电极块142形成动电极层,并且第一绝缘空腔132设置在动电极块142的下方。
S150、释放牺牲层170,使得动电极块142与第一静电极层130在竖直方向上分离,从而使得动电极块142可相对于第一静电极层130在水平方向上来回运动,得到半成品100’。
S160、将第二晶圆150和半成品100’键合,使得第二晶圆150层叠在动电极层140上,得到电容系统100。
相对于传统的梳齿结构的电容系统,这种电容系统100可以通过对第一静电极层130和动电极层140之间形成的牺牲层170的厚度的精准控制,来实现第一静电极层130和动电极层140之间的间距的精准控制,从而这种电容系统100的一致性非常好,并且第一静电极层130和动电极层140之间的间距可以下探到1μm以下。
这种电容系统100的一致性好,第一静电极层130和动电极层140的间距可以下探到1μm以下,并且由于层叠的动电极块142与第一静电极层130之间只发生水平方向上的相对运动,由于垂直方向上的变形刚度可以远大于水平方向,这就避免了动电极块142与第一静电极层130之间大位移下的相对碰撞,从而解决了基于梳齿结构的大位移碰撞可靠性问题。
结合图10和图11,第二实施方式的电容系统200的制备方法,包括如下步骤:
S210、在第一晶圆210上依次形成介质层220和第一静电极层230。
S220、刻蚀第一静电极层230,从而在第一静电极层230形成第一绝缘空腔232,第一绝缘空腔232将第一静电极层230在水平方向上分隔形成彼此绝缘的不同区域。
结合图11,S220还包括在刻蚀第一静电极层230的操作之后,进行如下操作:在第一静电极层230上形成第一绝缘层230’,接着去除第一绝缘层230’至第一静电极层230的顶部,从而使得第一绝缘空腔232内设有绝缘材料,第一静电极层230上未层叠第一绝缘层230’。
去除第一绝缘层230’的操作可以通过抛光工艺或干法刻蚀完成。
经过上述操作后,第一绝缘空腔232内设有绝缘材料。
在其他的实施方式中,上述形成第一绝缘层230’,接着去除第一绝缘层230’的操作也可以省略,这样通过S230在第一静电极层230上依次形成牺牲层270的操作,再配合S250的释放牺牲层270的操作,使得第一绝缘空腔232内设有空气。
S230、在第一静电极层230上依次形成牺牲层270和运动电极层280。
S240、刻蚀运动电极层280,运动电极层280转变为设置在牺牲层270上的动电极块,动电极块242形成动电极层,并且第一绝缘空腔232设置在动电极块242的下方。
S250、释放牺牲层270,使得动电极块242与第一静电极层230在竖直方向上分离,从而使得动电极块242可相对于第一静电极层230在水平方向上来回运动,得到半成品200’。
S260、将第二晶圆250和半成品200’键合,使得第二晶圆250层叠在动电极层240上,得到电容系统200。
本实施方式中,S260还包括在将第二晶圆250和半成品200’键合的操作之前,在第二晶圆250上形成第二静电极层260的操作。
在电容系统200中,动电极层240、第二静电极层260和第二晶圆250依次层叠。
本实施方式中,S260还包括如下操作:刻蚀第二静电极层260,从而在第二静电极层260上形成第二绝缘空腔262。其中,第二绝缘空腔262用于将第二静电极层260在水平方向上分隔。
在电容系统200中,第二绝缘空腔262位于动电极块242的上方。
结合图11,本实施方式中,S260还包括在刻蚀第二静电极层260的操作之后,进行如下操作:在第二静电极层260上形成第二绝缘层260’,接着去除第二绝缘层260’至第二静电极层260的顶部,从而使得第二绝缘空腔262内设有绝缘材料,第二静电极层260上未层叠第二绝缘层260’。
经过上述操作后,第二绝缘空腔262内设有绝缘材料。
在其他的实施方式中,上述形成第二绝缘层260’,接着去除第二绝缘层260’的操作也可以省略,这样使得第二绝缘空腔262内设有空气。
相对于传统的梳齿结构的电容系统,这种电容系统200可以通过对第一静电极层230和动电极层240之间形成的牺牲层270的厚度的精准控制,来实现第一静电极层230和动电极层240之间的间距的精准控制,从而这种电容系统200的一致性非常好,并且第一静电极层230和动电极层240之间的间距可以下探到1μm以下。
这种电容系统200的一致性好,第一静电极层230和动电极层240的间距可以下探到1μm以下,并且由于层叠的动电极块242与第一静电极层230之间只发生水平方向上的相对运动,由于垂直方向上的变形刚度可以远大于水平方向,这就避免了动电极块242与第一静电极层230之间大位移下的相对碰撞,从而解决了基于梳齿结构的大位移碰撞可靠性问题。
结合图12和图13,第三实施方式的电容系统300的制备方法,包括如下步骤:
S310、在第一晶圆310上依次形成介质层320、第一静电极层330和牺牲层370。
S320、在牺牲层370上形成运动电极层380,接着刻蚀运动电极层380,运动电极层380转变为设置在牺牲层370上的动电极块342,并且在动电极块342上形成绝缘空腔3422,其中,动电极块342形成动电极层340,绝缘空腔3422将动电极块342在水平方向上分隔。
结合图13,本实施方式中,S320还包括在刻蚀运动电极层380的操作之后,进行如下操作:在动电极块342上形成绝缘层340’,接着去除绝缘层340’至动电极块342的顶部,从而使得绝缘空腔3422内设有绝缘材料,动电极块342上未层叠绝缘层340’。
去除绝缘层340’的操作可以通过抛光工艺或干法刻蚀完成。
经过上述操作后,绝缘空腔3422内设有绝缘材料。
在其他的实施方式中,上述形成绝缘层340’,接着去除绝缘层340’的操作也可以省略,这样使得绝缘空腔3422内设有空气。
S330、释放牺牲层370,使得动电极块342与第一静电极层330在竖直方向上分离,从而使得动电极块342可相对于第一静电极层330在水平方向上来回运动,得到半成品300’。
S340、将第二晶圆350和半成品300’键合,使得第二晶圆350层叠在动电极层340上,得到电容系统300。
相对于传统的梳齿结构的电容系统,这种电容系统300可以通过对第一静电极层330和动电极层340之间形成的牺牲层370的厚度的精准控制,来实现第一静电极层330和动电极层340之间的间距的精准控制,从而这种电容系统300的一致性非常好,并且第一静电极层330和动电极层340之间的间距可以下探到1μm以下。
这种电容系统300的一致性好,第一静电极层330和动电极层340的间距可以下探到1μm以下,并且由于层叠的动电极块342与第一静电极层330之间只发生水平方向上的相对运动,由于垂直方向上的变形刚度可以远大于水平方向,这就避免了动电极块342与第一静电极层330之间大位移下的相对碰撞,从而解决了基于梳齿结构的大位移碰撞可靠性问题。
结合图14和图15,第四实施方式的电容系统400的制备方法,包括如下步骤:
S410、在第一晶圆410上依次形成介质层420、第一静电极层430和牺牲层470。
S420、在牺牲层470上形成运动电极层480,接着刻蚀运动电极层480,运动电极层480转变为设置在牺牲层470上的动电极块442,并且在动电极块442上形成绝缘空腔4422,其中,动电极块442形成动电极层440,绝缘空腔4422将动电极块442在水平方向上分隔。
结合图15,本实施方式中,S420还包括在刻蚀运动电极层480的操作之后,进行如下操作:在动电极块442上形成绝缘层440’,接着去除绝缘层440’至动电极块442的顶部,从而使得绝缘空腔4422内设有绝缘材料,动电极块442上未层叠绝缘层440’。
去除绝缘层440’的操作可以通过抛光工艺或干法刻蚀完成。
经过上述操作后,绝缘空腔4422内设有绝缘材料。
在其他的实施方式中,上述形成绝缘层440’,接着去除绝缘层440’的操作也可以省略,这样使得绝缘空腔4422内设有空气。
S430、释放牺牲层470,使得动电极块442与第一静电极层430在竖直方向上分离,从而使得动电极块442可相对于第一静电极层430在水平方向上来回运动,得到半成品400’。
S440、将第二晶圆450和半成品400’键合,使得第二晶圆450层叠在动电极层440上,得到电容系统400。
本实施方式中,S440还包括在将第二晶圆450和半成品400’的操作之前,在第二晶圆450上形成第二静电极层460的操作。
电容系统400中,动电极层440、第二静电极层460和第二晶圆450依次层叠。
相对于传统的梳齿结构的电容系统,这种电容系统400可以通过对第一静电极层430和动电极层440之间形成的牺牲层470的厚度的精准控制,来实现第一静电极层430和动电极层440之间的间距的精准控制,从而这种电容系统400的一致性非常好,并且第一静电极层430和动电极层440之间的间距可以下探到1μm以下。
这种电容系统400的一致性好,第一静电极层430和动电极层440的间距可以下探到1μm以下,并且由于层叠的动电极块442与第一静电极层430之间只发生水平方向上的相对运动,由于垂直方向上的变形刚度可以远大于水平方向,这就避免了动电极块442与第一静电极层430之间大位移下的相对碰撞,从而解决了基于梳齿结构的大位移碰撞可靠性问题。
结合图16和图17,第五实施方式的电容系统500的制备方法,包括如下步骤:
S510、在第一晶圆510上依次形成介质层520、第一静电极层530和牺牲层570。
S520、在牺牲层570上形成运动电极层580,接着刻蚀运动电极层580,运动电极层580转变为设置在牺牲层570上的动电极块542,并且在动电极块542上形成绝缘空腔5422,其中,动电极块542形成动电极层540,绝缘空腔5422将动电极块542在水平方向上分隔。
结合图17,本实施方式中,在牺牲层570上形成运动电极层580,刻蚀运动电极层580,使得运动电极层580转变为设置在牺牲层570上的动电极块,并且在动电极块542上形成绝缘空腔5422的操作为:
S521、在牺牲层570上形成第一运动电极层582,接着刻蚀第一运动电极层582,使得第一运动电极层582转变为设置在牺牲层570上的第一长块5424。
S522、在第一长块5424上形成第一牺牲层572,接着刻蚀第一牺牲层572,将第一长块5424上层叠的第一牺牲层572去除一部分,从而使得第一长块5424上部分层叠有第一牺牲层572,第一长块5424上部分未层叠第一牺牲层572。
S523、在第一长块5424上形成第二运动电极层584,接着刻蚀第二运动电极层584,使得第二运动电极层584转变为设置在第一长块5424上的短块5426,其中,短块5426与第一长块5424的连接处为第一长块5424上未层叠第一牺牲层572的区域,第一长块5424的宽度大于短块5426的宽度,第一运动电极层582和第二运动电极层584共同组成运动电极层580。
S524、在短块5426上形成第二牺牲层574,接着刻蚀第二牺牲层574,将短块5426上层叠的第二牺牲层574去除一部分,从而使得短块5426上部分层叠有第二牺牲层574,短块5426上部分未层叠第二牺牲层574,其中,第一长块5424和短块5426共同组成动电极块542。
S525、刻蚀动电极块542,形成依次贯穿短块5426和第一长块5424的绝缘空腔5422,其中,绝缘空腔5422的开口为短块5426上部分未层叠第二牺牲层574的区域。
本实施方式中,动电极块542实际上成倒置的T字形,这样可以达到降低动电极块542的质量,且不降低驱动效果或检测灵敏度的目的,即在降低动电极块542的质量的同时没有降低电容等性能。
结合图17,本实施方式中,S520还包括在刻蚀运动电极层580的操作之后,进行如下操作:在动电极块542上形成绝缘层540’,接着去除绝缘层540’至动电极块542的顶部,从而使得绝缘空腔5422内设有绝缘材料,动电极块542上未层叠绝缘层540’。
去除绝缘层540’的操作可以通过抛光工艺或干法刻蚀完成。
经过上述操作后,绝缘空腔5422内设有绝缘材料。
结合图17,去除绝缘层540’至动电极块542的顶部,同时将绝缘层540’和第二牺牲层574去除了。
在其他的实施方式中,上述形成绝缘层540’,接着去除绝缘层540’的操作也可以省略,这样使得绝缘空腔5422内设有空气。
S530、释放牺牲层570,使得动电极块542与第一静电极层530在竖直方向上分离,从而使得动电极块542可相对于第一静电极层530在水平方向上来回运动,得到半成品500’。
结合图17,S530中,释放牺牲层570的操作为:在动电极块542上形成第四牺牲层578,接着刻蚀运动电极层580中与动电极块542相邻的部分区域,最后将第一牺牲层572、第四牺牲层578和牺牲层570全部释放。
具体来说,结合图17中(j)到(l)这几步,(l)步中,可以看到中间的倒T型结构周围包裹着层由牺牲层570、第一牺牲层572和第四牺牲层578组成的牺牲材料。从(k)到(l)这步,是要去掉动电极块542相邻的区域的大部分的运动电极层580的材料,动电极块542正是因为有第一牺牲层572、第四牺牲层578和牺牲层570的保护才能保留下来。当完成(l)步后,再把第一牺牲层572、第四牺牲层578和牺牲层570一起释放掉,这时候动电极块542就可以动了(即(m)步骤)。
制备上述倒T字形的动电极块542,最核心的就是先要将倒T字形的动电极块542用第一牺牲层572、第四牺牲层578和牺牲层570保护起来,去掉不需要的运动电极层580的其他材料,后面再统一去掉第一牺牲层572、第四牺牲层578和牺牲层570就可以了,也就是关键的两步释放工艺。
S540、将第二晶圆550和半成品500’键合,使得第二晶圆550层叠在动电极层540上,得到电容系统500。
本实施方式中,S540还包括在将第二晶圆550和半成品500’的操作之前,在第二晶圆550上形成第二静电极层560的操作。
电容系统500中,动电极层540、第二静电极层560和第二晶圆550依次层叠。
相对于传统的梳齿结构的电容系统,这种电容系统500可以通过对第一静电极层530和动电极层540之间形成的牺牲层570的厚度的精准控制,来实现第一静电极层530和动电极层540之间的间距的精准控制,从而这种电容系统500的一致性非常好,并且第一静电极层530和动电极层540之间的间距可以下探到1μm以下。
这种电容系统500的一致性好,第一静电极层530和动电极层540的间距可以下探到1μm以下,并且由于层叠的动电极块542与第一静电极层530之间只发生水平方向上的相对运动,由于垂直方向上的变形刚度可以远大于水平方向,这就避免了动电极块542与第一静电极层530之间大位移下的相对碰撞,从而解决了基于梳齿结构的大位移碰撞可靠性问题。
结合图18和图19,第六实施方式的电容系统600的制备方法,包括如下步骤:
S610、在第一晶圆610上依次形成介质层620、第一静电极层630和牺牲层670。
S620、在牺牲层670上形成运动电极层680,接着刻蚀运动电极层680,运动电极层680转变为设置在牺牲层670上的动电极块642,并且在动电极块642上形成绝缘空腔6422,其中,动电极块642形成动电极层640,绝缘空腔6422将动电极块642在水平方向上分隔。
结合图19,本实施方式中,在牺牲层670上形成运动电极层680,刻蚀运动电极层680,使得运动电极层680转变为设置在牺牲层670上的动电极块,并且在动电极块642上形成绝缘空腔6422的操作为:
S621、在牺牲层670上形成第一运动电极层682,接着刻蚀第一运动电极层682,使得第一运动电极层682转变为设置在牺牲层670上的第一长块6424。
S622、在第一长块6424上形成第一牺牲层672,接着刻蚀第一牺牲层672,将第一长块6424上层叠的第一牺牲层672去除一部分,从而使得第一长块6424上部分层叠有第一牺牲层672,第一长块6424上部分未层叠第一牺牲层672。
S623、在第一长块6424上形成第二运动电极层684,接着刻蚀第二运动电极层684,使得第二运动电极层684转变为设置在第一长块6424上的短块,其中,短块6426与第一长块6424的连接处为第一长块6424上未层叠第一牺牲层672的区域,第一长块6424的宽度大于短块6426的宽度。
S624、在短块6426上形成第二牺牲层674,接着刻蚀第二牺牲层674,将短块6426上层叠的第二牺牲层674去除,从而使得短块6426未层叠第一牺牲层672。
S625、在短块6426上形成第三运动电极层686,接着刻蚀第三运动电极层686,使得第三运动电极层686转变为设置在短块6426上的第二长块6428,其中,第二长块6428的宽度大于短块6426的宽度,第一运动电极层682、第二运动电极层684和第三运动电极层686组成运动电极层680。
S626、在第二长块6428上形成第三牺牲层676,并且刻蚀第三牺牲层676,将第二长块6428上层叠的第三牺牲层676去除一部分,从而使得第二长块6428上部分层叠有第三牺牲层676,第二长块6428上部分未层叠第三牺牲层676,第二长块6428上部分未层叠第三牺牲层676的区域位于短块6426的上方,其中,第二长块6428、短块6426和第一长块6424共同组成动电极块642。
S627、刻蚀动电极块642,形成依次贯穿第二长块6428、短块6426和第一长块6424的绝缘空腔6422,其中,绝缘空腔6422的开口为第二长块6428上部分未层叠第三牺牲层676的区域。
本实施方式中,动电极块642为工字形,这样可以达到降低动电极块642的质量,且不降低驱动效果或检测灵敏度的目的,即在降低动电极块642的质量的同时没有降低电容等性能。
相对于倒置的T字形,工字型的动电极块642可以进一步降低电极块642的质量,且不降低驱动效果或检测灵敏度的目的。
结合图19,本实施方式中,S620还包括在刻蚀运动电极层680的操作之后,进行如下操作:在动电极块642上形成绝缘层640’,接着去除绝缘层640’至动电极块642的顶部,从而使得绝缘空腔6422内设有绝缘材料,动电极块642上未层叠绝缘层640’。
去除绝缘层640’的操作可以通过抛光工艺或干法刻蚀完成。
结合图19,去除绝缘层640’至动电极块642的顶部,同时将绝缘层640’和第三牺牲层676去除了。
经过上述操作后,绝缘空腔6422内设有绝缘材料。
在其他的实施方式中,上述形成绝缘层640’,接着去除绝缘层640’的操作也可以省略,这样使得绝缘空腔6422内设有空气。
S630、释放牺牲层670,使得动电极块642与第一静电极层630在竖直方向上分离,从而使得动电极块642可相对于第一静电极层630在水平方向上来回运动,得到半成品600’。
结合图19,S630中,释放牺牲层670的操作为:在动电极块642上形成第四牺牲层678,接着刻蚀运动电极层680中与动电极块642相邻的部分区域,最后将第一牺牲层672、第二牺牲层674、第四牺牲层678和牺牲层670全部释放。
具体来说,结合图19中(l)到(n)这几步,(n)步中,可以看到中间的工字形结构周围包裹着层由牺牲层670、第一牺牲层672、第二牺牲层674和第四牺牲层678组成的牺牲材料。从(m)到(n)这步,是要去掉动电极块642相邻的区域的大部分的运动电极层680的材料,动电极块642正是因为有第一牺牲层672、第二牺牲层674、第四牺牲层678和牺牲层670的保护才能保留下来。当完成(n)步后,再把第一牺牲层672、第二牺牲层674、第四牺牲层678和牺牲层670一起释放掉,这时候动电极块642就可以动了(即(o)步骤)。
制备上述工字形的动电极块642,最核心的就是先要将工字形的动电极块642用第一牺牲层672、第二牺牲层674、第四牺牲层678和牺牲层670保护起来,去掉不需要的运动电极层680的其他材料,后面再统一去掉第一牺牲层672、第二牺牲层674、第四牺牲层678和牺牲层670就可以了,也就是关键的两步释放工艺。
S640、将第二晶圆650和半成品600’键合,使得第二晶圆650层叠在动电极层640上,得到电容系统600。
本实施方式中,S640还包括在将第二晶圆650和半成品600’的操作之前,在第二晶圆650上形成第二静电极层660的操作。
电容系统600中,动电极层640、第二静电极层660和第二晶圆650依次层叠。
相对于传统的梳齿结构的电容系统,这种电容系统600可以通过对第一静电极层630和动电极层640之间形成的牺牲层670的厚度的精准控制,来实现第一静电极层630和动电极层640之间的间距的精准控制,从而这种电容系统600的一致性非常好,并且第一静电极层630和动电极层640之间的间距可以下探到1μm以下。
这种电容系统600的一致性好,第一静电极层630和动电极层640的间距可以下探到1μm以下,并且由于层叠的动电极块642与第一静电极层630之间只发生水平方向上的相对运动,由于垂直方向上的变形刚度可以远大于水平方向,这就避免了动电极块642与第一静电极层630之间大位移下的相对碰撞,从而解决了基于梳齿结构的大位移碰撞可靠性问题。
以上所述的仅是本申请的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本申请创造构思的前提下,还可以做出改进,但这些均属于本申请的保护范围。

Claims (26)

  1. 一种电容系统,其特征在于,包括依次层叠的第一晶圆、介质层、第一静电极层、动电极层和第二晶圆;
    所述动电极层包括设置在所述第一静电极层上的动电极块,所述动电极块与所述第一静电极层在竖直方向上分离,从而使得所述动电极块可相对于所述第一静电极层在水平方向上来回运动;
    所述第一静电极层设有第一绝缘空腔,所述第一绝缘空腔位于所述动电极块的下方,所述第一绝缘空腔将所述第一静电极层在水平方向上分隔;或者,所述动电极块上设有绝缘空腔,所述绝缘空腔将所述动电极块在水平方向上分隔。
  2. 根据权利要求1所述的电容系统,其特征在于,所述动电极块包括层叠在所述第一静电极层上的第一长块以及层叠在所述第一长块上的短块,所述第一长块的宽度大于所述短块的宽度。
  3. 根据权利要求2所述的电容系统,其特征在于,所述短块位于在所述第一长块的宽度方向的中间区域的上方。
  4. 根据权利要求2所述的电容系统,其特征在于,所述动电极块还包括层叠在所述短块上的第二长块,所述第二长块的宽度大于所述短块的宽度。
  5. 根据权利要求4所述的电容系统,其特征在于,所述短块位于所述第二长块的宽度方向的中间区域的下方。
  6. 根据权利要求4所述的电容系统,其特征在于,所述第一长块的宽度和所述第二长块的宽度相同。
  7. 根据权利要求1所述的电容系统,其特征在于,所述动电极层上设有电隔离槽,所述动电极块设置在所述电隔离槽内,并且所述电隔离槽和所述动电极块之间填充有所述绝缘材料。
  8. 根据权利要求7所述的电容系统,其特征在于,所述动电极块在长度方向上具有相对的第一端和第二端,所述第一端和所述第二端均设置在所述电隔离槽内。
  9. 根据权利要求8所述的电容系统,其特征在于,所述第一端的宽度和所述第二端的宽度均大于所述动电极块的中间的宽度。
  10. 根据权利要求1所述的电容系统,其特征在于,所述第一绝缘空腔内设有绝缘材料或空气;或者,所述绝缘空腔内设有绝缘材料或空气。
  11. 根据权利要求1所述的电容系统,其特征在于,所述第一绝缘空腔设置在所述动电极块的宽度方向的中间区域的下方;或者,所述绝缘空腔设置在所述动电极块的宽度方向的中间区域。
  12. 根据权利要求1-11中任意一项所述的电容系统,其特征在于,所述电容系统还包括设置在所述动电极层和所述第二晶圆之间的第二静电极层。
  13. 根据权利要求12所述的电容系统,其特征在于,所述第一静电极层设有第一绝缘空腔时,所述第二静电极层设有第二绝缘空腔,所述第二绝缘空腔位于所述动电极块的上方,所述第二绝缘空腔用于将所述第二静电极层在水平方向上分隔。
  14. 根据权利要求13所述的电容系统,其特征在于,所述第二绝缘空腔内设有绝缘材料或空气;或者,所述第二绝缘空腔设置在所述动电极块的宽度方向的中间区域的上方。
  15. 一种电容系统的制备方法,其特征在于,包括如下步骤:
    在第一晶圆上依次形成介质层和第一静电极层;
    刻蚀所述第一静电极层,从而在所述第一静电极层形成第一绝缘空腔,其中,所述第一绝缘空腔将所述第一静电极层在水平方向上分隔形成彼此绝缘的不同区域;
    在所述第一静电极层上依次形成牺牲层和运动电极层;
    刻蚀所述运动电极层,使得所述运动电极层转变为设置在所述牺牲层上的动电极块,所述动电极块形成动电极层,并且所述第一绝缘空腔设置在所述动电极块的下方;
    释放所述牺牲层,使得所述动电极块与所述第一静电极层在竖直方向上分离,从而使得所述动电极块可相对于所述第一静电极层在水平方向上来回运动,得到半成品;以及
    将第二晶圆和所述半成品键合,使得所述第二晶圆层叠在所述动电极层上,得到所述的电容系统。
  16. 根据权利要求15所述的电容系统的制备方法,其特征在于,还包括在所述刻蚀所述第一静电极层的操作之后,进行如下操作:在所述第一静电极层上形成第一绝缘层,接着去除所述第一绝缘层至所述第一静电极层的顶部,从而使得所述第一绝缘空腔内设有绝缘材料,所述第一静电极层上未层叠所述第一绝缘层。
  17. 根据权利要求15或16所述的电容系统的制备方法,其特征在于,还包括在所述将第二晶圆和所述半成品键合的操作之前,在所述第二晶圆上形成第二静电极层的操作;
    所述电容系统中,所述动电极层、所述第二静电极层以及所述第二晶圆依次层叠。
  18. 根据权利要求17所述的电容系统的制备方法,其特征在于,还包括在所述第二晶圆上形成第二静电极层的操作之后,进行如下操作:刻蚀所述第二静电极层,从而在所述第二静电极层上形成第二绝缘空腔,其中,所述第二绝缘空腔用于将所述第二静电极层在水平方向上分隔;
    所述电容系统中,所述第二绝缘空腔位于所述动电极块的上方。
  19. 根据权利要求18所述的电容系统的制备方法,其特征在于,还包括在所述刻蚀所述第二静电极层的操作之后,进行如下操作:在所述第二静电极层上形成第二绝缘层,接着去除所述第二绝缘层至所述第二静电极层的顶部,从而使得所述第二绝缘空腔内设有绝缘材料,所述第二静电极层上未层叠所述第二绝缘层。
  20. 一种电容系统的制备方法,其特征在于,包括如下步骤:
    在第一晶圆上依次形成介质层、第一静电极层和牺牲层;
    在所述牺牲层上形成运动电极层,接着刻蚀所述运动电极层,使得所述运动电极层转变为设置在所述牺牲层上的动电极块,并且在所述动电极块上形成绝缘空腔,其中,所述动电极块形成动电极层,所述绝缘空腔将所述动电极块在水平方向上分隔;
    释放所述牺牲层,使得所述动电极块与所述第一静电极层在竖直方向上分离,从而使得所述动电极块可相对于所述第一静电极层在水平方向上来回运动,得到半成品;以及
    将第二晶圆和所述半成品键合,使得所述第二晶圆层叠在所述动电极层上,得到所述的电容系统。
  21. 根据权利要求20所述的电容系统的制备方法,其特征在于,在所述牺牲层上形成运动电极层,刻蚀所述运动电极层,使得所述运动电极层转变为设置在所述牺牲层上的动电极块,并且在所述动电极块上形成绝缘空腔的操作为:
    在所述牺牲层上形成第一运动电极层,接着刻蚀所述第一运动电极层,使得所述第一运动电极层转变为设置在所述牺牲层上的第一长块;
    在所述第一长块上形成第一牺牲层,接着刻蚀所述第一牺牲层,将所述第一长块上层叠的所述第一牺牲层去除一部分,从而使得所述第一长块上部分层叠有所述第一牺牲层,所述第一长块上部分未层叠所述第一牺牲层;
    在所述第一长块上形成第二运动电极层,接着刻蚀所述第二运动电极层,使得所述第二运动电极层转变为设置在所述第一长块上的短块,其中,所述短块与所述第一长块的连接处为所述第一长块上未层叠所述第一牺牲层的区域,所述第一长块的宽度大于所述短块的宽度,所述第一运动电极层和所述第二运动电极层共同组成所述运动电极层;
    在所述短块上形成第二牺牲层,接着刻蚀所述第二牺牲层,将所述短块上层叠的所述第二牺牲层去除一部分,从而使得所述短块上部分层叠有所述第二牺牲层,所述短块上部分未层叠所述第二牺牲层,其中,所述第一长块和所述短块共同组成所述动电极块;
    刻蚀所述动电极块,形成依次贯穿所述短块和所述第一长块的绝缘空腔,其中,所述绝缘空腔的开口为所述短块上部分未层叠所述第二牺牲层的区域。
  22. 根据权利要求21所述的电容系统的制备方法,其特征在于,所述释放所述牺牲层的操作为:在所述动电极块上形成第四牺牲层,接着刻蚀所述运动电极层中与所述动电极块相邻的部分区域,最后将所述第一牺牲层、所述第四牺牲层和所述牺牲层全部释放。
  23. 根据权利要求20所述的电容系统的制备方法,其特征在于,在所述牺牲层上形成运动电极层,刻蚀所述运动电极层,使得所述运动电极层转变为设置在所述牺牲层上的动电极块,并且在所述动电极块上形成绝缘空腔的操作为:
    在所述牺牲层上形成第一运动电极层,接着刻蚀所述第一运动电极层,使得所述第一运动电极层转变为设置在所述牺牲层上的第一长块;
    在所述第一长块上形成第一牺牲层,接着刻蚀所述第一牺牲层,将所述第一长块上层叠的所述第一牺牲层去除一部分,从而使得所述第一长块上部分层叠有所述第一牺牲层,所述第一长块上部分未层叠所述第一牺牲层;
    在所述第一长块上形成第二运动电极层,接着刻蚀所述第二运动电极层,使得所述第二运动电极层转变为设置在所述第一长块上的短块,其中,所述短块与所述第一长块的连接处为所述第一长块上未层叠所述第一牺牲层的区域,所述第一长块的宽度大于所述短块的宽度;
    在所述短块上形成第二牺牲层,接着刻蚀所述第二牺牲层,将所述短块上层叠的所述第二牺牲层去除,从而使得所述短块未层叠所述第一牺牲层;
    在所述短块上形成第三运动电极层,接着刻蚀所述第三运动电极层,使得所述第三运动电极层转变为设置在所述短块上的第二长块,其中,所述第二长块的宽度大于所述短块的宽度,所述第一运动电极层、所述第二运动电极层和所述第三运动电极层组成所述运动电极层;
    在所述第二长块上形成第三牺牲层,并且刻蚀所述第三牺牲层,将所述第二长块上层叠的所述第三牺牲层去除一部分,从而使得所述第二长块上部分层叠有所述第三牺牲层,所述第二长块上部分未层叠所述第三牺牲层,所述第二长块上部分未层叠所述第三牺牲层的区域位于所述短块的上方,其中,所述第二长块、所述短块和所述第一长块共同组成所述动电极块;
    刻蚀所述动电极块,形成依次贯穿所述第二长块、所述短块和所述第一长块的绝缘空腔,其中,所述绝缘空腔的开口为所述第二长块上部分未层叠所述第三牺牲层的区域。
  24. 根据权利要求23所述的电容系统的制备方法,其特征在于,所述释放所述牺牲层的操作为:在所述动电极块上形成第四牺牲层,接着刻蚀所述运动电极层中与所述动电极块相邻的部分区域,最后将所述第一牺牲层、所述第二牺牲层、所述第四牺牲层和所述牺牲层全部释放。
  25. 根据权利要求20所述的电容系统的制备方法,其特征在于,还包括在刻蚀所述运动电极层的操作之后,进行如下操作:在所述动电极块上形成绝缘层,接着去除所述绝缘层至所述动电极块的顶部,从而使得所述绝缘空腔内设有绝缘材料,所述动电极块上未层叠所述绝缘层。
  26. 根据权利要求20所述的电容系统的制备方法,其特征在于,还包括在所述将第二晶圆和所述半成品键合的操作之前,在所述第二晶圆上形成第二静电极层的操作;
    所述电容系统中,所述动电极层、所述第二静电极层以及所述第二晶圆依次层叠。
PCT/CN2020/103462 2020-07-03 2020-07-22 电容系统及其制备方法 WO2022000621A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010631458.2 2020-07-03
CN202010631458.2A CN111825053B (zh) 2020-07-03 2020-07-03 电容系统及其制备方法

Publications (1)

Publication Number Publication Date
WO2022000621A1 true WO2022000621A1 (zh) 2022-01-06

Family

ID=72899687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103462 WO2022000621A1 (zh) 2020-07-03 2020-07-22 电容系统及其制备方法

Country Status (2)

Country Link
CN (1) CN111825053B (zh)
WO (1) WO2022000621A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907637A (zh) * 2010-06-29 2010-12-08 瑞声声学科技(深圳)有限公司 三轴差分加速度计及其制作方法
CN102323669A (zh) * 2011-09-29 2012-01-18 上海丽恒光微电子科技有限公司 Mems光调制器像素单元及其制作方法
CN104113810A (zh) * 2014-07-18 2014-10-22 瑞声声学科技(深圳)有限公司 Mems麦克风及其制备方法与电子设备
CN105338457A (zh) * 2014-07-30 2016-02-17 中芯国际集成电路制造(上海)有限公司 Mems麦克风及其形成方法
US20160194198A1 (en) * 2015-01-07 2016-07-07 Semiconductor Manufacturing International (Shanghai) Corporation Semiconductor structures and fabrication method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2713801B2 (ja) * 1990-06-26 1998-02-16 松下電工株式会社 静電リレーおよびその製造方法
JPH0875781A (ja) * 1994-09-06 1996-03-22 Tokin Corp 加速度センサ
JP4410085B2 (ja) * 2004-11-24 2010-02-03 日本電信電話株式会社 可変容量素子及びその製造方法
JP4605087B2 (ja) * 2006-04-28 2011-01-05 パナソニック電工株式会社 静電容量式センサ
JP5471640B2 (ja) * 2010-03-12 2014-04-16 富士通株式会社 Memsデバイスの製造方法および基板
CN102275857B (zh) * 2010-06-11 2014-04-16 上海丽恒光微电子科技有限公司 微机电装置及其制造方法
US9099982B2 (en) * 2012-01-25 2015-08-04 International Business Machines Corporation Method of manufacturing switching filters and design structures
CN108281286B (zh) * 2012-09-20 2020-04-07 维斯普瑞公司 微机电系统(mems)可变电容器装置及相关方法
CN103350983B (zh) * 2013-07-01 2015-07-15 广东合微集成电路技术有限公司 一种集成晶圆级真空封装的mems器件及其制造方法
CN104216598A (zh) * 2014-08-29 2014-12-17 合肥鑫晟光电科技有限公司 触摸基板及其制作方法、触摸显示装置
CN104865726B (zh) * 2015-06-04 2018-08-14 上海天马微电子有限公司 一种阵列基板、显示面板、显示装置以及制备方法
JP6555238B2 (ja) * 2016-08-08 2019-08-07 株式会社デンソー 力学量センサおよびその製造方法
US11099696B2 (en) * 2017-05-09 2021-08-24 Boe Technology Group Co., Ltd. Touch substrate, touch control display panel, touch control display apparatus, and method of fabricating touch substrate
CN109273481A (zh) * 2017-07-17 2019-01-25 上海和辉光电有限公司 一种显示面板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907637A (zh) * 2010-06-29 2010-12-08 瑞声声学科技(深圳)有限公司 三轴差分加速度计及其制作方法
CN102323669A (zh) * 2011-09-29 2012-01-18 上海丽恒光微电子科技有限公司 Mems光调制器像素单元及其制作方法
CN104113810A (zh) * 2014-07-18 2014-10-22 瑞声声学科技(深圳)有限公司 Mems麦克风及其制备方法与电子设备
CN105338457A (zh) * 2014-07-30 2016-02-17 中芯国际集成电路制造(上海)有限公司 Mems麦克风及其形成方法
US20160194198A1 (en) * 2015-01-07 2016-07-07 Semiconductor Manufacturing International (Shanghai) Corporation Semiconductor structures and fabrication method thereof

Also Published As

Publication number Publication date
CN111825053A (zh) 2020-10-27
CN111825053B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
US5616514A (en) Method of fabricating a micromechanical sensor
US10676346B2 (en) MEMS component and production method for a MEMS component
US7736931B1 (en) Wafer process flow for a high performance MEMS accelerometer
US6901804B2 (en) Method of manufacturing a membrane sensor
US7074635B2 (en) MEMS structure and method for fabricating the same
US10800649B2 (en) Planar processing of suspended microelectromechanical systems (MEMS) devices
JP2006266873A (ja) 加速度センサおよびその製造方法
WO2022111039A1 (zh) 三维存储器及其制作方法
EP1433199B1 (en) Method for forming a cavity structure in an soi substrate and cavity structure formed in an soi substrate
EP2019081A2 (en) Boron doped shell for MEMS device
US20120107545A1 (en) Micromachined structures
WO2022000621A1 (zh) 电容系统及其制备方法
CN103149684A (zh) 可双向扭转的交错梳齿静电驱动可变光衰减器及制备方法
JP2007192588A (ja) 3次元配線を有する力学量センサおよび力学量センサの製造方法
RU2403647C1 (ru) Способ формирования электрически изолированных областей кремния в объеме кремниевой пластины
JP5167652B2 (ja) Mems素子
KR101573518B1 (ko) 초음파 트랜스듀서 및 그 제조 방법
EP3896838B1 (en) Vibration power generation element
CN111943127B (zh) 一种梳齿结构、其制备方法及麦克风
US20230258686A1 (en) Mems sensor
KR100405176B1 (ko) 선택적 에스오아이 구조를 이용한 단결정 실리콘마이크로일렉트로미케니컬 시스템을 위한 절연 방법
Giridhar et al. An X band RF MEMS switch based on silicon-on-glass architecture
JP3569950B2 (ja) 振動型半導体素子の製造方法
US6781735B2 (en) Fabry-Perot cavity manufactured with bulk micro-machining process applied on supporting substrate
US20190023563A1 (en) Semiconductor device production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942587

Country of ref document: EP

Kind code of ref document: A1