WO2021261367A1 - 撮像装置及び電子機器 - Google Patents

撮像装置及び電子機器 Download PDF

Info

Publication number
WO2021261367A1
WO2021261367A1 PCT/JP2021/022996 JP2021022996W WO2021261367A1 WO 2021261367 A1 WO2021261367 A1 WO 2021261367A1 JP 2021022996 W JP2021022996 W JP 2021022996W WO 2021261367 A1 WO2021261367 A1 WO 2021261367A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
node
capacitance
unit
pixel signal
Prior art date
Application number
PCT/JP2021/022996
Other languages
English (en)
French (fr)
Inventor
英一 中本
大輔 中川
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021039087A external-priority patent/JP2023110120A/ja
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2021261367A1 publication Critical patent/WO2021261367A1/ja
Priority to US18/002,444 priority Critical patent/US20230247328A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/466Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/709Circuitry for control of the power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/778Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/1205Multiplexed conversion systems
    • H03M1/123Simultaneous, i.e. using one converter per channel but with common control or reference circuits for multiple converters

Definitions

  • This disclosure relates to an image pickup device and an electronic device.
  • the image pickup device is equipped with an analog-to-digital converter that converts an analog signal (pixel signal) output from a pixel into a digital signal, and the analog-to-digital converter is a sequential comparison (SAR: Successive Approximation Resistor).
  • SAR Successive Approximation Resistor
  • a type analog-to-digital converter is used (see, for example, Patent Document 1).
  • the successive approximation type analog-to-digital converter is superior to the so-called single slope type analog-to-digital converter in that it can operate at high speed and low power consumption.
  • a column signal processing system including this successive approximation type analog-to-digital converter is desired to operate at higher speed and lower power consumption.
  • the present disclosure provides an image pickup device capable of operating at higher speed and lower power consumption for a column signal processing system including a successive approximation type analog-to-digital converter, and an electronic device having the image pickup device. With the goal.
  • a pixel array unit each having a plurality of pixels including a photoelectric conversion element and a pixel array unit.
  • a column amplifier unit that takes the difference between the reset component and the signal component input from each pixel of the pixel array unit through the signal line and outputs the difference as a pixel signal.
  • a capacitance section that holds a pixel signal input from the column amplifier section, and a capacitance section.
  • a sequential comparison type analog-digital conversion unit that converts the analog pixel signal input from the capacitance unit into a digital signal, and Equipped with The capacitance section differentiates the single-phase pixel signal input from the column amplifier section using a reference voltage that defines the zero voltage of the pixel signal.
  • the column amplifier section is An amplifier in which the potential of the signal line is input to the non-inverting input terminal, A first switch having one end connected to the output terminal of the amplifier and the other end connected to the inverting input terminal of the amplifier. A second switch whose one end is connected to the output terminal of the amplifier, A first capacitive element having one end connected to the other end of the second switch and the other end connected to the other end of the first switch and the inverting input terminal of the amplifier. The other end of the first capacitance element, the second capacitance element connected between the inverting input terminal of the amplifier and the reference potential node, and A third switch in which one end is connected to the other end of the second switch and one end of the first capacitance element and the reference voltage is applied to the other end. May have.
  • the column amplifier section is At the time of inputting the reset component, the reset component is charged to the first capacitance element and the second capacitance element with the first switch closed, and the reference voltage is set to the second with the third switch closed. Apply to the other end of the switch and one end of the first capacitance element.
  • a non-inverting amplifier circuit is configured by the first capacitance element, the second capacitance element, and the amplifier.
  • feedback may be applied so that the voltage of the common connection node between the first capacitance element and the second capacitance element becomes the same voltage as the signal component.
  • the capacity part is It has a configuration of a differential circuit including a positive capacitive element that charges a pixel signal input from the column amplifier unit and a negative capacitive element that charges the reference voltage. It may have a fourth switch that selectively short-circuits each input end of the positive capacitance element and the negative capacitive element.
  • the fourth switch transmits the pixel signal charged in the positive capacitive element and the reference voltage charged in the negative capacitive element to the successive approximation type analog-to-digital converter, the positive side is used.
  • Each input end of the capacitive element and the negative capacitive element may be short-circuited.
  • the capacitance unit may hold the pixel signal input from the column amplifier unit by sampling with the switched capacitor.
  • each potential of a plurality of signal lines is passed through the plurality of column amplifiers corresponding to the plurality of signal lines and the capacitance section. It may be multiplexed and processed.
  • the capacity part is The first node to which the pixel signal input from the column amplifier unit is supplied, and The second node to which the reference voltage is supplied and A positive capacitive element and a negative capacitive element connected in series between the first node and the second node, A fourth switch that selectively short-circuits the first node and the second node, A fifth switch that selectively applies a common mode reference voltage of the successive approximation type analog-to-digital converter to the common connection node of the positive capacitance element and the negative capacitive element. A sixth switch that selectively connects the second node and the first input terminal of the successive approximation type analog-to-digital converter. A seventh switch that selectively connects the first node and the second input end of the successive approximation type analog-to-digital conversion unit may be provided.
  • the fourth switch is temporarily closed immediately before the capacitance unit starts holding the pixel signal, short-circuiting the input ends of the positive capacitance element and the negative capacitive element.
  • the fifth switch temporarily performs the period immediately before the capacitance unit starts holding the pixel signal and the period during which the pixel signal held in the capacitance unit is transferred to the sequential comparison type analog-to-digital conversion unit.
  • the common mode reference voltage of the successive approximation type analog-to-digital conversion unit may be applied to the common connection node of the positive side capacitive element and the negative side capacitive element.
  • the capacity part is The first node to which the pixel signal input from the column amplifier unit is supplied, and The second node to which the reference voltage is supplied and A positive capacitive element and a negative capacitive element that can be connected in series between the first node and the second node, The 4a switch and the 4b switch connected in series between the first node and the second node, A fifth a switch, a positive capacitance element, a negative capacitive element, and a fifth b switch connected in series between the first node and the second node. A fifth c switch that selectively applies a common mode reference voltage of the successive approximation type analog-to-digital converter to the common connection node of the positive capacitance element and the negative capacitive element.
  • a sixth switch that selectively connects the second node and the first input terminal of the successive approximation type analog-to-digital converter.
  • a seventh switch that selectively connects the first node and the second input end of the successive approximation type analog-to-digital conversion unit may be provided.
  • the 4a switch and the 4b switch are immediately before the capacitance unit starts holding the pixel signal and immediately before the pixel signal held in the capacitance unit is transferred to the sequential comparison type analog-to-digital conversion unit. Then, the state is temporarily closed, and the common mode reference voltage of the successive approximation type analog-to-digital converter is applied to the first node and the second node.
  • the 5a switch and the 5b switch are temporarily opened immediately before transferring the pixel signal held in the capacitance unit to the sequential comparison type analog-to-digital conversion unit, and are temporarily opened with the first node. The connection with the positive capacitive element is cut off, and the connection between the second node and the negative capacitive element is cut off.
  • the fifth c switch temporarily has a period immediately before the capacitance unit starts holding the pixel signal and a period during which the pixel signal held in the capacitance unit is transferred to the successive approximation type analog-to-digital conversion unit.
  • the common mode reference voltage of the successive approximation type analog-to-digital conversion unit may be applied to the common connection node of the positive side capacitive element and the negative side capacitive element.
  • the capacity part is The first node to which the pixel signal input from the column amplifier unit is supplied, and The second node to which the reference voltage is supplied and The 4a switch and the 4b switch connected in series between the first node and the second node, A positive capacitive element, a 5a switch, a 5b switch, and a negative capacitive element connected in series between the first node and the second node.
  • a fifth c switch that selectively applies a common mode reference voltage of the successive approximation type analog-to-digital converter to the common connection node of the fifth a switch and the fifth b switch, and the fifth c switch.
  • a sixth switch that selectively connects the second node and the first input terminal of the successive approximation type analog-to-digital converter.
  • a seventh switch that selectively connects the first node and the second input end of the successive approximation type analog-to-digital conversion unit may be provided.
  • the 4a switch and the 4b switch are immediately before the capacitance unit starts holding the pixel signal and immediately before the pixel signal held in the capacitance unit is transferred to the sequential comparison type analog-to-digital conversion unit. Then, the state is temporarily closed, and the common mode reference voltage of the successive approximation type analog-to-digital converter is applied to the first node and the second node.
  • the fifth c switch temporarily has a period immediately before the capacitance unit starts holding the pixel signal and a period during which the pixel signal held in the capacitance unit is transferred to the successive approximation type analog-to-digital conversion unit.
  • the common mode reference voltage of the successive approximation type analog-digital converter is applied to the common connection node of the positive capacitance element and the negative capacitive element.
  • the 5th a switch and the 5b switch are temporarily opened immediately before transferring the pixel signal held in the capacitance section to the successive approximation analog-to-digital conversion section, and the positive capacitance element is temporarily opened. And the connection of the negative capacitance element may be cut off.
  • the capacity part is The first node to which the pixel signal input from the column amplifier unit is supplied, and The second node to which the reference voltage is supplied and A positive capacitive element whose one end is connected to the first node, The third node to which the other end of the positive capacitance element is connected and A negative capacitive element whose one end is connected to the second node, A fourth node to which the other end of the negative capacitive element is connected, The 4a switch and the 4b switch connected in series between the first node and the second node, The 4c switch connected between the first node and the second node, A fifth a switch connected between the third node and the fourth node, A fifth b switch and a fifth c switch connected in series between the third node and the fourth node, A sixth switch that selectively connects the third node and the first input terminal of the successive approximation type analog-to-digital conversion unit.
  • the 4a switch and the 4b switch are temporarily closed during the period in which the pixel signal held in the capacitance section is transferred to the successive approximation type analog-to-digital conversion section, and the first node and the fourth b switch are temporarily closed.
  • a common mode reference voltage of the successive approximation type analog-to-digital converter is applied to the second node.
  • the 4c switch is closed immediately before the capacitance unit starts holding the pixel signal, short-circuiting the first node and the second node.
  • the 5a switch short-circuits the third node and the fourth node during the period in which the capacitance unit holds the pixel signal.
  • the 5b switch and the 5c switch may be closed immediately before the capacitance unit starts holding the pixel signal, and the reference voltage may be applied to the third node and the fourth node. ..
  • the capacity part is The first node to which the pixel signal input from the column amplifier unit is supplied, and The second node to which the reference voltage is supplied and A positive capacitive element whose one end is connected to the first node, The third node to which the other end of the positive capacitance element is connected and A negative capacitive element whose one end is connected to the second node, A fourth node to which the other end of the negative capacitive element is connected, A fourth switch connected between the first node and the second node, A fifth a switch and a fifth b switch connected in series between the third node and the fourth node, A fifth c switch that selectively applies a common mode reference voltage of the successive approximation type analog-to-digital converter to the common connection node of the fifth a switch and the fifth b switch, and the fifth c switch.
  • a sixth switch that selectively connects the third node and the first input terminal of the successive approximation type analog-to-digital conversion unit.
  • a seventh switch for selectively connecting the fourth node and the second input terminal of the successive approximation type analog-to-digital conversion unit may be provided.
  • the fourth switch is closed immediately before the capacitance unit starts holding the pixel signal and during a period in which the pixel signal held in the capacitance unit is transferred to the successive approximation type analog-to-digital conversion unit. Then, the first node and the second node are short-circuited.
  • the 5a switch and the 5b switch are closed from immediately before the period in which the capacitance unit holds the pixel signal until the holding period ends, short-circuiting the third node and the fourth node.
  • the 5c switch is closed immediately before the capacitance unit starts holding the pixel signal, and the sequential comparison type analog-to-digital conversion unit is connected to the common connection node of the 5a switch and the 5b switch.
  • the common mode reference voltage may be selectively applied.
  • the capacity part is The first node to which the pixel signal input from the column amplifier unit is supplied, and The second node to which the reference voltage is supplied and A positive capacitive element whose one end is connected to the first node, The third node to which the other end of the positive capacitance element is connected and A negative capacitive element whose one end is connected to the second node, A fourth node to which the other end of the negative capacitive element is connected, The 4a switch and the 4b switch connected in series between the first node and the second node, A 4c switch that selectively applies the reference voltage to the common connection node of the 4a switch and the 4b switch, and A fifth a switch and a fifth b switch connected in series between the third node and the fourth node, A fifth c switch that selectively applies a common mode reference voltage of the successive approximation type analog-to-digital converter to the common connection node of the fifth a switch and the fifth b switch, and the fifth c switch.
  • a sixth switch that selectively connects the third node and the first input terminal of the successive approximation type analog-to-digital conversion unit.
  • a seventh switch for selectively connecting the fourth node and the second input terminal of the successive approximation type analog-to-digital conversion unit may be provided.
  • the 4a switch and the 4b switch are used immediately before the capacitance unit starts holding the pixel signal and during a period during which the pixel signal held in the capacitance unit is transferred to the sequential comparison type analog-to-digital conversion unit.
  • the first node and the second node are short-circuited by temporarily closing the state immediately before and during the transfer period.
  • the 4c switch is temporarily used immediately before the capacitance unit starts holding the pixel signal and immediately before the period for transferring the pixel signal held in the capacitance unit to the sequential comparison type analog-to-digital conversion unit.
  • the reference voltage is applied to the common connection node of the 4a switch and the 4b switch in a closed state.
  • the 5a switch and the 5b switch are temporarily closed immediately before the capacitance unit starts holding the pixel signal and during the period when the capacitance unit holds the pixel signal.
  • the third node and the fourth node are short-circuited, and the third node and the fourth node are short-circuited.
  • the 5c switch is temporarily closed immediately before the capacitance unit starts holding the pixel signal, and is connected to the common connection node of the 5a switch and the 5b switch in the sequential comparison type analog-digital.
  • the common mode reference voltage of the conversion unit may be applied.
  • an image pickup device that outputs a photoelectrically converted digital signal and A signal processing unit that performs signal processing based on the digital signal.
  • the image pickup device is A pixel array unit, each of which has a plurality of pixels including a photoelectric conversion element, A column amplifier unit that takes the difference between the reset component and the signal component input from each pixel of the pixel array unit through the signal line and outputs the difference as a pixel signal.
  • a capacitance section that holds a pixel signal input from the column amplifier section, and a capacitance section.
  • a sequential comparison type analog-to-digital conversion unit that converts an analog signal input from the capacitance unit into a digital signal, and Equipped with The capacitance section differentiates the single-phase pixel signal input from the column amplifier section using a reference voltage that defines the zero voltage of the pixel signal.
  • Electronic devices are provided.
  • FIG. 1 is a block diagram showing an outline of a basic configuration of a CMOS image sensor which is an example of an image pickup apparatus to which the technique according to the present disclosure is applied.
  • FIG. 2 is a circuit diagram showing an example of a pixel circuit configuration.
  • FIG. 3 is a plan view schematically showing an outline of a horizontal semiconductor chip structure of a CMOS image sensor.
  • FIG. 4 is an exploded perspective view schematically showing an outline of a laminated semiconductor chip structure of a CMOS image sensor.
  • FIG. 5 is a block diagram showing an outline of the configuration of a CMOS image sensor which is an example of the image pickup apparatus according to the first embodiment of the present disclosure.
  • FIG. 6 is a circuit diagram showing an outline of the configuration of the column signal processing system according to the first embodiment.
  • FIG. 7 is a timing chart used for explaining the circuit operation of the column signal processing system according to the first embodiment.
  • FIG. 8 is a circuit diagram showing an outline of the configuration of the column signal processing system according to the second embodiment.
  • FIG. 9 is a diagram used for explaining the level diagram.
  • FIG. 10 is a circuit diagram showing an example of the configuration of a current reuse column amplifier.
  • FIG. 11 is a detailed circuit diagram of a successive approximation type analog-to-digital converter. It is a circuit diagram which shows the internal structure of the capacitance part by 2nd Embodiment. It is a timing diagram of the capacitance part of FIG. The figure which shows the input signal dependence of the differential signal transferred from the capacitance part of FIG. 12 to a sequential comparison type analog-to-digital converter.
  • FIG. 21 The figure which shows the input signal dependence of the differential signal transferred from the capacitance part of FIG. 21 to a sequential comparison type analog-to-digital converter.
  • FIG. 30 is a block diagram showing an example of the system configuration of the indirect TOF type distance image sensor according to the second embodiment of the present disclosure.
  • FIG. 31 is a circuit diagram showing an example of a pixel circuit configuration in the indirect TOF type distance image sensor according to the second embodiment.
  • FIG. 32 is a diagram showing an application example of the technique according to the present disclosure.
  • FIG. 33 is a block diagram showing an outline of a configuration example of an imaging system which is an example of the electronic device of the present disclosure.
  • FIG. 34 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technique according to the present disclosure can be applied.
  • FIG. 35 is a diagram showing an example of an installation position of an image pickup unit in a mobile control system.
  • First Embodiment of the present disclosure (example of CMOS image sensor) 3-1.
  • the first embodiment (an example in which the circuit configuration after the capacitance portion is a differential circuit configuration) 3-1-1.
  • the second embodiment of the present disclosure (example of an indirect TOF type distance image sensor) 4-1.
  • Application example 7. Application example of the technology according to the present disclosure 7-1.
  • the first capacitance element connected to, the other end of the first capacitance element, the second capacitance element connected between the inverting input terminal of the amplifier and the reference potential node, and one end of the other end and the second of the second switch. It can be configured to have a third switch connected to one end of one capacitive element and to which a reference voltage is applied to the other end.
  • the capacitance section the positive capacitance element for charging the pixel signal input from the column amplifier section and the negative capacitance section for charging the reference voltage. It has a configuration of a differential circuit including a side capacitance element, and has a configuration for a differential short-circuit switch (fourth switch) that selectively short-circuits each input end of the positive capacitance element and the negative capacitive element. be able to.
  • each potential of a plurality of signal lines is provided for one successive approximation type analog-to-digital converter of the successive approximation type analog-to-digital conversion unit.
  • CMOS Complementary Metal Oxide Semiconductor
  • a CMOS image sensor is an image sensor made by applying or partially using a CMOS process.
  • FIG. 1 is a block diagram showing an outline of a basic configuration of a CMOS image sensor which is an example of an image pickup apparatus to which the technique according to the present disclosure is applied.
  • the CMOS image sensor 10 has a configuration including a pixel array unit 11 and a peripheral circuit unit of the pixel array unit 11.
  • the pixel array unit 11 is formed by two-dimensionally arranging pixels (pixel circuits) 20 including photoelectric conversion elements in the row direction and the column direction, that is, in a matrix.
  • the row direction means the arrangement direction of the pixels 20 in the pixel row
  • the column direction means the arrangement direction of the pixels 20 in the pixel row.
  • the peripheral circuit units of the pixel array unit 11 include, for example, a row selection unit 12, a constant current source unit 13, a column amplifier unit 14, an analog-to-digital conversion unit 15, a horizontal transfer scanning unit 16, a signal processing unit 17, and timing control. It is composed of parts 18 and the like.
  • pixel control lines 31 (31 1 to 31 m ) are wired along the row direction for each pixel row with respect to the matrix-shaped pixel array.
  • the signal line 32 (32 1 ⁇ 32 n) are wired along the column direction for each pixel column.
  • the pixel control line 31 transmits a drive signal for driving when reading a signal from the pixel 20.
  • the pixel control line 31 is shown as one wiring, but the wiring is not limited to one.
  • One end of the pixel control line 31 is connected to the output end corresponding to each row of the row selection unit 12.
  • the row selection unit 12 is composed of a shift register, an address decoder, and the like, and controls the scanning of the pixel row and the address of the pixel row when selecting each pixel 20 of the pixel array unit 11. Although the specific configuration of the row selection unit 12 is not shown, it generally has two scanning systems, a read scanning system and a sweep scanning system.
  • the read scanning system selectively scans the pixels 20 of the pixel array unit 11 row by row in order to read the pixel signal from the pixels 20.
  • the pixel signal read from the pixel 20 is an analog signal.
  • the sweep scanning system performs sweep scanning in advance of the read scan performed by the read scan system by the time of the shutter speed.
  • the photoelectric conversion element is reset by sweeping out unnecessary charges from the photoelectric conversion element of the pixel 20 in the read row. Then, by sweeping out (resetting) unnecessary charges by this sweeping scanning system, a so-called electronic shutter operation is performed.
  • the electronic shutter operation refers to an operation of discarding the optical charge of the photoelectric conversion element and starting a new exposure (starting the accumulation of the optical charge).
  • the constant current source unit 13 includes a plurality of load current sources I (see FIG. 2) connected to each of the signal lines 32 1 to 32 n for each pixel row, for example, composed of MOS transistors, and the row selection unit 12 A bias current is supplied to each pixel 20 of the pixel row selectively scanned by the above through each of the signal lines 32 1 to 32 n.
  • the column amplifier unit 14 is composed of a set of column amplifiers provided corresponding to each of the signal lines 32 1 to 32 n for each pixel row. Then, each column amplifier of the column amplifier unit 14 amplifies the pixel signal read from each pixel 20 of the pixel array unit 11 and supplied through the signal lines 32 1 to 32 n , and supplies the pixel signal to the analog-to-digital conversion unit 15. do.
  • the analog-to-digital conversion unit 15 is a column-parallel type analog consisting of a set of a plurality of analog-to-digital converters (for example, provided for each pixel array) provided corresponding to the pixel array of the pixel array unit 11.
  • -It is a digital converter.
  • the analog-to-digital conversion unit 15 outputs each of the signal lines 32 1 to 32 n for each pixel sequence, and converts the analog pixel signal amplified by the column amplifier unit 14 into a digital pixel signal.
  • the horizontal transfer scanning unit 16 is composed of a shift register, an address decoder, and the like, and controls the scanning of the pixel string and the address of the pixel string when reading the signal of each pixel 20 of the pixel array unit 11. Under the control of the horizontal transfer scanning unit 16, the pixel signal converted into a digital signal by the analog-digital conversion unit 15 is read out to the horizontal transfer line L in units of pixel rows.
  • the signal processing unit 17 performs predetermined signal processing on the digital pixel signal supplied through the horizontal transfer line L to generate two-dimensional image data. For example, the signal processing unit 17 performs digital signal processing such as correction of vertical line defects and point defects, parallel-serial conversion, compression, coding, addition, averaging, and intermittent operation. The signal processing unit 17 outputs the generated image data as an output signal of the CMOS image sensor 10 to a subsequent device.
  • the timing control unit 18 generates various timing signals, clock signals, control signals, etc., and based on these generated signals, the row selection unit 12, the constant current source unit 13, the column amplifier unit 14, and the analog-digital Drive control of the conversion unit 15, the horizontal transfer scanning unit 16, the signal processing unit 17, and the like is performed.
  • FIG. 2 is a circuit diagram showing an example of the configuration of the pixel (pixel circuit) 20.
  • the pixel 20 has, for example, a photodiode 21 as a photoelectric conversion element.
  • the pixel 20 has a transfer transistor 22, a reset transistor 23, an amplification transistor 24, and a selection transistor 25.
  • the four transistors of the transfer transistor 22, the reset transistor 23, the amplification transistor 24, and the selection transistor 25, for example, an N-channel MOS field effect transistor (FET) is used.
  • FET field effect transistor
  • the combination of the conductive types of the four transistors 22 to 25 exemplified here is only an example, and is not limited to these combinations.
  • a plurality of pixel control lines are commonly wired to each pixel 20 in the same pixel row. These plurality of pixel control lines are connected to the output end corresponding to each pixel row of the row selection unit 12 in pixel row units.
  • the row selection unit 12 appropriately outputs the transfer signal TRG, the reset signal RST, and the selection signal SEL to the plurality of pixel control lines.
  • the anode electrode is connected to a low-potential side power supply (for example, ground), and the received light is photoelectrically converted into a light charge (here, a photoelectron) having a charge amount corresponding to the light amount, and the light thereof is converted. Accumulates electric charge.
  • the cathode electrode of the photodiode 21 is electrically connected to the gate of the amplification transistor 24 via the transfer transistor 22.
  • the region in which the gate of the amplification transistor 24 is electrically connected is a floating diffusion (floating diffusion region / impurity diffusion region) FD.
  • the floating diffusion FD is a charge-voltage conversion unit that converts electric charge into voltage.
  • a transfer signal TRG in which a high level (for example, V DD level) is active is given to the gate of the transfer transistor 22 from the row selection unit 12.
  • the transfer transistor 22 becomes conductive in response to the transfer signal TRG, is photoelectrically converted by the photodiode 21, and transfers the optical charge stored in the photodiode 21 to the floating diffusion FD.
  • the reset transistor 23 is connected between the node of the high potential side power supply voltage V DD and the floating diffusion FD.
  • a reset signal RST in which a high level is active is given to the gate of the reset transistor 23 from the row selection unit 12.
  • the reset transistor 23 becomes conductive in response to the reset signal RST, and resets the floating diffusion FD by discarding the charge of the floating diffusion FD to the node of the voltage V DD.
  • the gate is connected to the floating diffusion FD and the drain is connected to the node of the high potential side power supply voltage VDD.
  • the amplification transistor 24 serves as an input unit for a source follower that reads out a signal obtained by photoelectric conversion in the photodiode 21. That is, the source of the amplification transistor 24 is connected to the signal line 32 via the selection transistor 25.
  • the amplification transistor 24 and the load current source I connected to one end of the signal line 32 form a source follower that converts the voltage of the floating diffusion FD into the potential of the signal line 32.
  • the drain of the selection transistor 25 is connected to the source of the amplification transistor 24, and the source is connected to the signal line 32.
  • a selection signal SEL in which a high level is active is given to the gate of the selection transistor 25 from the row selection unit 12.
  • the selection transistor 25 enters a conduction state in response to the selection signal SEL, so that the signal output from the amplification transistor 24 is transmitted to the signal line 32 with the pixel 20 in the selection state.
  • a 4Tr configuration including a transfer transistor 22, a reset transistor 23, an amplification transistor 24, and a selection transistor 25, that is, a 4Tr configuration consisting of four transistors (Tr) is taken as an example.
  • the selection transistor 25 may be omitted, and the amplification transistor 24 may have a 3Tr configuration in which the function of the selection transistor 25 is provided.
  • the circuit configuration may be 5Tr or more by increasing the number of transistors. can.
  • CMOS image sensor 10 As the semiconductor chip structure of the CMOS image sensor 10 having the above configuration, a horizontal semiconductor chip structure and a laminated semiconductor chip structure can be exemplified.
  • CMOS image sensors 10 having a flat-mounted semiconductor chip structure and a laminated semiconductor chip structure
  • the substrate surface on the side where the wiring layer is arranged is the front surface (front surface) of the pixel 20, the opposite side thereof.
  • a back-illuminated pixel structure that captures light emitted from the back surface side can be used, or a surface-illuminated pixel structure that captures light emitted from the front surface side can be used.
  • the flat-mounted semiconductor chip structure and the laminated semiconductor chip structure will be described below.
  • FIG. 3 is a plan view schematically showing an outline of the horizontal semiconductor chip structure of the CMOS image sensor 10.
  • the horizontal semiconductor chip structure has a circuit portion around the pixel array unit 11 on the same semiconductor chip (semiconductor substrate) 41 as the pixel array unit 11 in which the pixels 20 are arranged in a matrix. It has a structure that forms. Specifically, on the same semiconductor chip 41 as the pixel array unit 11, the row selection unit 12, the constant current source unit 13, the column amplifier unit 14, the analog-to-digital conversion unit 15, the horizontal transfer scanning unit 16, and the signal processing unit 17 , And the timing control unit 18 and the like are formed.
  • FIG. 4 is an exploded perspective view schematically showing an outline of the laminated chip structure of the CMOS image sensor 10.
  • the laminated semiconductor chip structure has a structure in which at least two semiconductor chips (semiconductor substrates) of the first layer semiconductor chip 42 and the second layer semiconductor chip 43 are laminated.
  • the pixel array portion 11 is formed on the semiconductor chip 42 of the first layer.
  • the circuit parts such as the row selection unit 12, the constant current source unit 13, the column amplifier unit 14, the analog-to-digital conversion unit 15, the horizontal transfer scanning unit 16, the signal processing unit 17, and the timing control unit 18 have two layers. It is formed on the semiconductor chip 43 of the eye.
  • the semiconductor chip 42 of the first layer and the semiconductor chip 43 of the second layer are electrically connected to each other through connection portions (VIA) 44A and 44B such as Cu—Cu connection.
  • the size (area) of the semiconductor chip 42 of the first layer can be large enough to form the pixel array portion 11, so that the size (area) of the semiconductor chip 42 of the first layer can be formed. ), As a result, the size of the entire chip can be reduced. Further, since a process suitable for manufacturing the pixel 20 can be applied to the semiconductor chip 42 of the first layer and a process suitable for manufacturing the circuit portion can be applied to the semiconductor chip 43 of the second layer, the CMOS image sensor 10 can be used. There is also the merit of being able to optimize the process during manufacturing. In particular, advanced processes can be applied to the fabrication of circuit parts.
  • the laminated structure is not limited to the two-layer structure.
  • the structure may be three or more layers.
  • a row selection unit 12 a constant current source unit 13, a column amplifier unit 14, an analog-to-digital conversion unit 15, a horizontal transfer scanning unit 16, a signal processing unit 17, and a timing control unit are used.
  • the circuit portion such as 18 can be distributed and formed on the second and subsequent layers of semiconductor chips.
  • a signal with an inclined waveform (ramp wave) that changes linearly with a certain inclination is used as a reference signal.
  • the single-slope analog-to-digital converter compares the analog pixel signal read from the pixel 20 with the reference signal of the lamp wave, amplifies and clips the difference, modulates it into a phase signal, and then samples it to obtain a digital signal. Convert to.
  • This single-slope analog-to-digital converter has the following problems.
  • ⁇ Problem 1 Offset occurs due to the delay in modulation to the phase signal. Therefore, digital CDS (Correlated Double Sampling) for removing the fixed pattern noise of the pixel 20 becomes indispensable, and two analog-digital conversions and additional time for auto-zero are required.
  • ⁇ Problem 2 Through current and kickback occur when the pixel signal and the reference signal of the lamp wave cross. Also, the crossing time depends on the pixel signal level, causing interference of other pixel sequences with the analog-to-digital converter.
  • ⁇ Problem 3 Since the amplification transistor 24 of the pixel 20 is used to hold the voltage during analog-to-digital conversion, the conversion time limits the read speed of the pixel signal.
  • the input amplifier is auto-zeroed (offset cancellation due to input / output short circuit) in order to prevent offset.
  • the DC-like offset can be removed.
  • the reference signal of the ramp wave changes with time, the AC offset due to the delay cannot be removed.
  • the delay can be reduced by widening the band, but the output phase noise increases.
  • Problem 2 is known as a mechanism of interference phenomenon (streaking) from a bright part to a dark part.
  • a single-slope analog-to-digital converter when a plurality of pixel strings have the same brightness, switching occurs all at once, so that the influence of interference becomes large.
  • Problem 3 is a problem caused by not sampling the potential of the signal line 32.
  • the amplification transistor 24 of the pixel 20 consumes a relatively large amount of power to drive the signal line 32 having a large load capacity. Therefore, it is not a good idea to use the amplification transistor 24 only to hold the voltage during analog-to-digital conversion.
  • CMOS image sensor as an example
  • a sequential comparison (SAR) type analog-to-digital converter is used as each analog-to-digital converter of the analog-to-digital converter 15.
  • the successive approximation type analog-to-digital converter can operate at high speed and low power consumption as compared with the single slope type analog-to-digital converter having the above-mentioned various problems.
  • the column signal processing system including the successive approximation type analog-to-digital converter can be operated at higher speed and lower power consumption.
  • FIG. 5 is a block diagram showing an outline of the configuration of a CMOS image sensor which is an example of the image pickup apparatus according to the first embodiment of the present disclosure.
  • the column amplifier unit 14 uses a reference voltage that defines an auto-zero voltage, and a signal component (so-called D) input from each pixel 20 of the pixel array unit 11 through a signal line 32.
  • a capacitance unit 19 is provided after the column amplifier unit 14.
  • the capacitance unit 19 differentiates the single-phase signal output from the column amplifier unit 14 by using a reference voltage that defines the zero voltage of the output of the column amplifier unit 14. Then, the capacitance unit 19 holds the pixel signal input from the column amplifier unit 14, for example, by sampling with a switched capacitor.
  • a sequential comparison type analog-to-digital conversion unit 15A is provided in the subsequent stage of the capacitance unit 19.
  • the successive approximation analog-to-digital converter 15A is composed of a plurality of sequential comparison (SAR) analog-to-digital converters capable of operating at higher speed and lower power consumption than the single slope analog-to-digital converter.
  • the analog pixel signal input from the capacitance unit 19 is converted into a digital pixel signal.
  • the potential VSL of the signal line does not have to wait for analog-to-digital conversion, and sampling is always performed all at once regardless of the potential VSL of the signal line 32, so that interference due to switching occurs.
  • the influence of is also small.
  • the circuit configuration after the capacitance unit 19 can be made into a differential circuit configuration.
  • the CMOS image sensor 10 according to the present embodiment it is possible to construct a column signal processing system having excellent circuit symmetry.
  • the first embodiment is an example in which the circuit configuration after the capacitance portion is the configuration of the differential circuit.
  • FIG. 6 is a circuit diagram showing an outline of the configuration of the column signal processing system according to the first embodiment.
  • the column amplifier unit 14 is composed of column amplifiers 140 for the number of pixel rows provided in the same number as the number of pixel rows, and the capacitance unit 19 is also composed of the capacitance multiplexer 190 for the number of pixel rows.
  • the capacitor unit 19 and the column amplifier 140 operate as a multiplexer.
  • the column amplifier 140 has a configuration including an amplifier 141, a first switch 142, a second switch 143, a third switch 144, a first capacitance element 145, and a second capacitance element 146.
  • the first capacitive element 145 (hereinafter, simply referred to as “capacitive element 145”) has a capacitance value C F
  • the second capacitive element 146 (hereinafter, simply referred to as “capacitive element 146”). Has a capacitance value C S.
  • the amplifier 141 uses the potential VSL (VSL 0 to VSL 7 ) of the signal line 32 as the input of the non-inverting (+) input terminal.
  • the first switch 142 (hereinafter, simply referred to as “switch 142") has one end connected to the output terminal of the amplifier 141 and the other end connected to the inverting (-) input terminal of the amplifier 141, and is switch controlled. according to the polarity (high / low) of the signal S p, performing on (closed) / off (opening) operation.
  • switch 143 One end of the second switch 143 (hereinafter, simply referred to as "switch 143") is connected to the output terminal of the amplifier 141.
  • One end of the capacitive element 145 is connected to the other end of the switch 143, and the other end is connected to the other end of the switch 142 and the inverting input terminal of the amplifier 141.
  • the capacitive element 146 is connected between the other end of the capacitive element 145 and the output terminal of the amplifier 141 and the node of the reference potential (for example, ground).
  • the switch 143 operates on / off according to the polarity of the switch control signal SD.
  • the switch 143, the capacitive element 145, and the capacitive element 146 are connected in series in this order between the output terminal of the amplifier 141 and the node of the reference potential (for example, ground). Further, the common connection node N 1 between the capacitive element 145 and the capacitive element 146 and the other end of the switch 142 are electrically connected.
  • switch 144 One end of the third switch 144 (hereinafter, simply referred to as “switch 144”) is connected to the common connection node N 2 between the switch 143 and the capacitive element 145, and the third switch 144 (hereinafter, simply referred to as “switch 144”) is connected to the common connection node N 2 of the switch 143 and the capacitive element 145, depending on the polarity of the switch control signal S VR. , On / off operation. A reference voltage VR that defines the zero voltage of the output of the column amplifier 140 is applied to the other end of the switch 144. That is, the switch 144 selectively applies the reference voltage VR to the common connection node N 2 between the switch 143 and the capacitive element 145.
  • the capacitive multiplexer 190 constituting the capacitive unit 19 has a differential circuit configuration.
  • the positive side of the differential circuit is composed of a switch 191 _P , a capacitive element 195 _P , a switch 193 _P , and a switch 194 _P .
  • the negative side of the differential circuit is composed of a switch 191 _M , a capacitive element 195 _M , a switch 193 _M , and a switch 194 _M .
  • the switch 191 _P on the positive side performs on (closed) / off (open) operations according to the polarity (high level / low level) of the switch control signal S IN, and is applied to one end when it is turned on.
  • the output voltage CA out of the column amplifier 140 is sampled.
  • the switch 191 _M on the negative side performs an on / off operation according to the polarity of the switch control signal S IN , and when it is turned on, the reference voltage VR applied to one end is sampled.
  • the reference voltage VR sampled by the switch 191 _M on the negative side is used as the voltage on the negative side of the differential circuit.
  • the capacitive multiplexer 190 the single-phase signal input from the column amplifier 140 can be differentiated by using the reference voltage VR sampled by the switch 191 _M on the negative side as a reference.
  • the circuit configuration after the capacitance unit 19 can be configured as a differential circuit.
  • one end of the capacitive element 195 _P is connected to the other end of the switch 191 _P , and one end of each of the switch 193 _P and the switch 194 _P is connected to the other end of the capacitive element 195 _P. ing.
  • the output voltage CA out of the column amplifier 140 sampled by the switch 191 _P is charged to the capacitive element 195 _P.
  • the other end of the switch 193 _P successive approximation analog later - output common-mode reference voltage V CM of the preamplifier 151 in the digital converter 150 is applied.
  • the other end of the switch 194 _P is the positive output end of the capacitive multiplexer 190.
  • one end of the capacitive element 195 _M is connected to the other end of the switch 191 _M , and one end of each of the switch 193 _M and the switch 194 _M is connected to the other end of the capacitive element 195 _M. ing.
  • the reference voltage VR sampled by the switch 191 _M is charged to the capacitive element 195 _M.
  • the other end of the switch 193 _M the output common-mode reference voltage V CM is applied.
  • the other end of the switch 194 _M is the output end on the negative side of the capacitive multiplexer 190.
  • a differential short-circuit switch (fourth switch) 192 is connected between one end of the positive capacitive element 195 _P and the negative capacitive element 195 _M.
  • the differential short-circuit switch 192 operates on / off according to the polarity of the switch control signal SVMI.
  • the differential short-circuit switch 192 is turned on to short-circuit one end (input end) of the capacitive element 195 _P and one end (input end) of the capacitive element 195 _M .
  • the relatively high voltage on the column amplifier 140 side is increased by the action of the differential short-circuit switch 192. It is important that the influence does not extend to the circuits after the capacitive element 195 _P and the capacitive element 195 _M.
  • each switch of the circuit portion X including the column amplifier 140 and the capacitive multiplexer 190 has a relatively thick thick film height. It can be configured by using a voltage transistor, and each switch of the capacitive multiplexer 190 can be configured by using a low voltage transistor having a relatively thin thin film.
  • the influence of the relatively high voltage on the column amplifier 140 side does not reach the circuits after the capacitive element 195 _P and the capacitive element 195 _M, so in principle.
  • each switch of the capacitive element 195 _P and the capacitive element 195 _M or later of the capacitive multiplexer 190 can also be configured by using a thin low voltage transistor having a relatively thin film thickness.
  • a comparator having a low withstand voltage is used in the successive approximation type analog-to-digital converter 150. Can be done. Further, at the time of analog-to-digital conversion, the differential capacitance (capacitive array unit C DAC ) is separated from the column amplifier 140 and other reference voltages, so that high-speed operation of analog-to-digital conversion becomes possible.
  • the successive approximation analog-to-digital converter 150 has a preamplifier 151, a comparator 152, a SAR logic unit 153, a digital-to-analog converter (DAC) 154, and a capacitive array unit C DAC .
  • the preamplifier 151 comprises an amplifier 1511 and switches 1512 _P , 1512 _M .
  • the analog voltage PAIN + (output voltage CA out of the column amplifier 140) supplied from the capacitance multiplexer 190 is used as the input of the inverting (-) input terminal, and the analog voltage PAIN- (reference voltage VR) is not inverted (+). It is used as the input of the input terminal.
  • Switch 1512 _P, 1512 _M is a switch auto-zero (offset cancellation by output short circuit), depending on the polarity of the switch control signal S AZ, turned on / off.
  • the switch 1512 _P is connected between the inverting input terminal and the output terminal of the preamplifier 151.
  • the switch 1512 _M is connected between the non-inverting input terminal and the output terminal of the preamplifier 151.
  • the comparator 152 compares the magnitude of the analog voltage supplied through the preamplifier 151 with the comparison reference voltage in synchronization with the comparator clock CKI, and supplies the comparison result to the SAR logic unit 153.
  • the SAR logic unit 153 consists of, for example, an N-bit sequential comparison register, stores the comparison result of the comparator 152 for each bit in synchronization with the clock CK, and stores the comparison result of the comparator 152 for each bit, and the digital value D OUT of the N bits after analog-digital conversion. Is output as.
  • the digital-to-analog converter 154 and the capacitive array unit 155 constitute an N-bit capacitive digital-to-analog converter. Then, in this capacitive digital-to-analog converter, the N-bit digital value D OUT output from the SAR logic unit 153 is converted into an analog voltage and given to the inverting ( ⁇ ) input terminal of the amplifier 1511 as its input.
  • circuit operation of column signal processing system Next, regarding the circuit operation of the column signal processing system according to the first embodiment including the column amplifier 140, the capacitance multiplexer 190, and the successive approximation type analog-to-digital converter 150 having the above configuration, the timing chart of FIG. 7 is shown. It will be explained using.
  • the timing chart of FIG. 7 shows the switch control signals S P, S VR, a switch control signal S D, S IN, S VMA , and switch control signals S VMI, the timing relationship of S SUM.
  • the timing chart of FIG. 7 further illustrates a waveform diagram of the potential VSL of the signal line 32, the reference voltage VR, and the output voltage CA out of the column amplifier 140.
  • the switch control signal SP and the switch control signal S VR become low levels, so that the switch 142 and the switch 144 are turned off (open), and at the same time, the switch control signal S D becomes high level. Then, the switch 143 is turned on (closed). At this time, a non-inverting amplifier circuit is configured by the capacitive element 145, the capacitive element 146, and the amplifier 141, and the output voltage V out of the column amplifier 140 is substantially the same as the reference voltage VR.
  • CDS processing for taking the difference between the reset component (P-phase voltage) and the signal component (D-phase voltage) is performed, and the output voltage V out of the column amplifier 140 is the potential VSL of the signal line 32 ( It drops by the voltage amplified by C F + C S ) / C F times. Since the variation of the reference voltage VR is small, the gain of the column amplifier 140 can be large.
  • switch 193 _P, 193 _M is turned on, the capacitor 195 _P, the output side of the 195 _M (successive approximation type analog - digital converter 150 side) providing an output common-mode reference voltage V CM to.
  • Output common-mode reference voltage V CM is successive approximation analog - are set to the same voltage as the common mode voltage of the preamplifier 151 in the digital converter 150.
  • the switch control signal S VMI and the switch control signal S SUM become high levels, so that the switch 192 and the switches 194 _P and 194 _M are turned on, and the capacitive elements 195 _P and 195 _M are charged.
  • the differential voltage is transferred to the successive approximation analog-to-digital converter 150.
  • the switch 192 When the switch 192 is turned on , the input side of the capacitive elements 195 _P and 195 _M becomes a differential short, but the in-phase component becomes an open state. Therefore, the in-phase component of the input is not transmitted to the successive approximation type analog-to-digital converter 150. This makes it possible to configure the preamplifier 151 in the successive approximation analog-to-digital converter 150 with a high-speed thin-film low-voltage transistor.
  • the second embodiment is an implementation example of the column signal processing system, and the capacitance unit 19 (capacitance multiplexer 190) and subsequent examples are examples of the configuration of the differential circuit.
  • FIG. 8 is a circuit diagram showing an outline of the configuration of the column signal processing system according to the second embodiment.
  • the column signal processing system there are a plurality of signal lines 32, for example, eight signal lines 32 for each successive approximation analog-digital converter 150 of the sequential comparison analog-digital converter 15A.
  • An example is a configuration in which potentials VSL 0 to VSL 7 are multiplexed and processed through eight column amplifiers 140 provided in parallel corresponding to eight signal lines 32 and a capacitive multiplexer 190 provided in four parallels. I will explain it by citing it.
  • the potentials VSL 0 to VSL 7 of the eight signal lines 32, the potentials VSL 0 to VSL 3 of the four signal lines 32 in the first half, and the four potentials VSL 3 in the latter half are used.
  • the potentials of the signal line 32 are divided into VSL 4 to VSL 7.
  • FIG. 8 illustrates a column amplifier 140, a capacitive multiplexer 190, and a reference voltage generator 160 that generates a reference voltage used in a successive approximation analog-to-digital converter 150.
  • the reference voltage generation unit 160 includes a first amplifier unit 161, a second amplifier unit 162, and a third amplifier unit 163.
  • the column amplifier 140 outputs a signal in the D phase.
  • three capacitive elements (195 _A, 195 _B, 195 _C) sampling at is performed in only the D-phase.
  • the comparison in the comparator 152 is continuously performed in both the P phase and the D phase.
  • the potentials VSL 0 to VSL 3 of the signal line 32 are analog-digital converted in the P phase immediately after, and the potentials VSL 4 to VSL 7 of the signal line 32 are analog-digital converted in the second D phase.
  • the capacitive element 195 _B analog - because it is used in the digital conversion, the available capacity element 195 _C, and a capacitor 195 _A, samples the output of the column amplifier 140 at that time.
  • the potentials VSL 4 to VSL 7 of the signal line 32 different from the previous time are sampled in the capacitive element 195 _A. By repeating this operation, the same capacitive element is not used for the potential VSL of the specific signal line 32.
  • the first amplifier unit 161 generates a reference voltage VR that defines a zero voltage at the output of the column amplifier 140.
  • the reference voltage VR is supplied to the column amplifier 140 through voltage line L 1.
  • the second amplifier 162 provides an output common-mode reference voltage V CM of the preamplifier 151, the capacitance multiplexer 190 through voltage line L 2.
  • Output common-mode reference voltage V CM is a successive approximation analog through voltage line L 3 - is also supplied to digital converter 150.
  • the third amplifier unit 163 generates a high voltage VH, a medium voltage VM, and a low voltage VL used in the capacitive array unit (C DAC) 155.
  • the high voltage VH, medium voltage VM, and low voltage VL are supplied to the capacitive array unit (C DAC ) 155 through the voltage lines L 4 , L 5 , and L 6.
  • the capacitive element 145 of the column amplifier 140 is charged, and in the D phase, the charge charged in the capacitive element 145 is used as a signal input on the negative side of the capacitive multiplexer (CMUX) 190.
  • the capacitive multiplexer 190 is configured to be differential. Input side of the switch 192 _A, switch 192 _B, and the switch 192 _C may short-circuit the differential when comparing comparator 152, the common node is not connected.
  • the switches 193 _AP , 193 _AM , switches 193 _BP , 193 _BM , and switches 193 _CP , 193 _CM on the output side of the capacitive multiplexer 190 are connected to the voltage line L 2 that transmits the output common mode reference voltage V CM. , Turns on during sampling.
  • Output common-mode reference voltage V CM is the same voltage as the input operating potential of the pre-amplifier 151.
  • the high voltage VH, medium voltage VM, and low voltage VL generated by the third amplifier section 163 are reference voltages of the capacitive array section (C DAC) 155. Since the capacitive array unit (C DAC ) 155 operates at high speed when comparing the comparator 152, it is required that the high voltage VH and the low voltage VL can respond at high speed and have low impedance.
  • the successive approximation type analog-to-digital converter 150 requires high-speed comparison operation, it is desirable that the successive approximation type analog-to-digital converter 150 is composed of a low withstand voltage transistor. However, it is necessary to pay attention to the large leakage current of the low withstand voltage transistor.
  • the channel leak of the switch 1512 of the auto zero affects the linearity, so it is necessary to take measures such as lengthening the channel length L. be. Since the gate leak of the input differential pair of the comparator 152 may also affect the characteristics, it may be necessary to suppress the leak by using a high withstand voltage transistor.
  • FIG. 9 shows the level diagram.
  • the voltage range of the potential VSL of the signal line 32 differs depending on the sensor specifications, but here, it is assumed that the voltage drops according to the brightness with 2V as a reference, and the maximum voltage drops by 450 mV.
  • the potential VSL of the signal line 32 is amplified by the column amplifier 140.
  • the higher the gain the more the noise of the successive approximation type analog-to-digital converter 150 in the subsequent stage is suppressed, and the noise of the column amplifier 140 itself is also reduced. It is desirable to take as large a gain as possible.
  • the power supply voltage is 2.8V, it is necessary to suppress the output of the column amplifier 140 within the range in which the operating range of the circuit and the margin are added.
  • the input of the successive approximation type analog-to-digital converter 150 is a differential voltage, and the negative input is a fixed reference voltage.
  • the differential 0V becomes the input of the successive approximation analog-to-digital converter 150, and a negative differential voltage is applied as it becomes brighter (that is, the potential VSL of the signal line 32 decreases).
  • the relationship with the output code of the successive approximation analog-to-digital converter 150 is such that the differential 1.8V corresponds to 3/4 full scale, and 7/8 full scale is output at 0V input. ing.
  • input conversion noise can be reduced by increasing the gain. As shown in FIG. 9, when the gain is multiplied by 8 ( ⁇ 8), the input range is halved. Further, although the gain can be increased, the input conversion noise is dominated by the contribution of the column amplifier 140, so that the merit of making the gain larger than 8 times is small.
  • switch control signal S D of the switch 143 of the column amplifier 140, and switches 191 _0X capacity multiplexer 190 (X A, B, C) switch control signals S IN0X, the switch 191 _1x the switch control signal S IN1X, It is desirable that the switch control signal S VMIX of the switch 1931 _X is delayed more than other switch control signals while maintaining non-overlap.
  • FIG. 10 shows a circuit diagram of an example of the configuration of the current reuse column amplifier.
  • the current reuse column amplifier 1400 has a configuration including a current amplification transistor 1401, a current source transistor 1402, 1403, a cascode transistor 1404, 1405, a switch 1406, 1407, 1408, a reference side capacitance element 1409, and a feedback capacitance element 1410. There is.
  • a P-channel MOS field effect transistor is used as the current amplification transistor 1401, the current source transistor 1403, and the cascode transistor 1404. Further, as the current source transistor 1402 and the cascode transistor 1405, for example, an N-channel MOS type field effect transistor is used.
  • the current amplification transistor 1401 and the current source transistor 1402 are connected in series between the signal line 32 and the node of the reference potential (for example, ground) in that order. That is, the source electrode of the current amplification transistor 1401 is connected to the signal line 32.
  • a predetermined bias voltage nbias is applied to the gate electrode of the current source transistor 1402.
  • the current source transistor 1402 causes a constant bias current corresponding to a predetermined bias voltage nbias to flow through the signal line 32.
  • the current source transistor 1403, the cascode transistor 1404, and the cascode transistor 1405 are connected in series in this order between the node of the power supply voltage VDD and the drain electrode of the current source transistor 1402.
  • a predetermined bias voltage pbias is applied to the gate electrode of the current source transistor 1403, a predetermined bias voltage pcas is applied to the gate electrode of the cascode transistor 1404, and a predetermined bias voltage is applied to the gate electrode of the cascode transistor 1405.
  • ncas is applied.
  • Switch 1406 includes a gate electrode of the current amplifying transistor 1401 is connected between the drain electrode of the cascode transistor 1404 (the drain electrode of the cascode transistor 1405), depending on the polarity of the switch control signal S P, ON (closed ) / Off (open) operation.
  • the reference side capacitive element 1409 is connected between the gate electrode of the current amplification transistor 1401 and the node of the reference potential (for example, ground).
  • One end of the feedback capacitance element 1410 is connected to the gate electrode of the current amplification transistor 1401.
  • the switch 1047 is connected between the other end of the feedback capacitance element 1410 and the drain electrode of the cascode transistor 1404 (drain electrode of the cascode transistor 1405), and is turned on / off according to the polarity of the switch control signal SD. Do the action.
  • One end of the switch 1408 is connected to the common connection node N 11 between the feedback capacitance element 1410 and the switch 1047, and the switch 1408 operates on / off according to the polarity of the switch control signal S VR.
  • a reference voltage VR is applied to the other end of the switch 1408.
  • the switch 1408 selectively applies the reference voltage VR to the common connection node N 11 under the control of the switch control signal SVR.
  • the source electrode of the current amplification transistor 1401 becomes the (+) input end
  • the gate electrode becomes the (-) input end
  • the common connection node N 12 between the cascode transistor 1404 and the cascode transistor 1405 becomes the output end.
  • a reuse column amplifier 1400 is configured. Since the current amplification transistor 1401 utilizes the bias current of the signal line 32, voltage amplification can be efficiently performed.
  • the switch 1406 corresponds to the switch 142 of FIG. 6, the switch 1407 corresponds to the switch 143 of FIG. 6, and the switch 1408 corresponds to the column amplifier 140 shown in FIG. Corresponds to the switch 144 in FIG. Further, the reference side capacitance element 1409 corresponds to the capacitance element 146 having the capacitance value C S , and the feedback capacitance element 1410 corresponds to the capacitance element 145 having the capacitance value C F.
  • the successive approximation analog-to-digital converter 150 is excellent in power efficiency.
  • a detailed circuit diagram of the successive approximation type analog-to-digital converter 150 is shown in FIG.
  • the circuit of the successive approximation analog-to-digital converter 150 is configured to be completely differential.
  • the input capacitance for sampling the input voltage and the DAC capacitance ( CDAC ) are often integrated, but here they are separated for multiplexing. There is.
  • FIG. 11 also illustrates an input capacitive unit (hereinafter, referred to as “capacity multiplexer 190” for convenience) that also serves as a capacitive multiplexer 190.
  • capacity multiplexer 190 an input capacitive unit that also serves as a capacitive multiplexer 190.
  • FIG. 11 also illustrates an input capacitive unit (hereinafter, referred to as “capacity multiplexer 190” for convenience) that also serves as a capacitive multiplexer 190.
  • capacity multiplexer 190 for convenience
  • the switches 191 _P and 191 _M and the switches 193 _P and 193 _M are turned on (closed) to charge the capacitive elements 195 _P and 195 _M.
  • the switch 192 and the switches 194 _P and 194 _M are turned on (closed), so that the capacitive multiplexer 190 is connected to the serial comparison type analog-to-digital converter 150.
  • the switch 192 is not connected to a particular reference potential, only shorts between the differentials. This is to prevent the common mode potential on the preamplifier 151 side from fluctuating due to the common mode potential of the input. If the output in-phase potential of the preamplifier 151 and the output common mode reference voltage V CM are combined, the input in-phase potential of the preamplifier 151 is always the same as the output common mode reference voltage V CM .
  • the output of the column amplifier 140 is single-ended, the in-phase potential of the input fluctuates depending on the signal, but the input in-phase potential of the preamplifier 151 does not change, so that the linearity is improved.
  • the input side is the output (2.4V to 0.6V) of the column amplifier 140 and the reference voltage VR (2.4V), but the output common mode reference voltage V CM is fixed at about 0.5V, so it is low.
  • a voltage (V DD _L) preamplifier 151 can be used.
  • the input voltage is as high as 1.8 V
  • the input voltage of the preamplifier 151 is sufficiently attenuated because it is connected in series with the DAC capacity (C DAC) during charge transfer.
  • C DAC DAC capacity
  • the preamplifier 151, comparator 152, SAR logic unit 153, and DAC capacity (C DAC ) switch in the comparison loop of the successive approximation analog-to-digital converter 150 all use transistors with the same power supply voltage and the same film thickness. By doing so, high-speed operation becomes possible.
  • the SAR logic unit 153 is completely separated from the column amplifier 140 and reference nodes other than the high voltage VH / low voltage VL when operating. Since these nodes are not so fast and low impedance, it is necessary to prevent them from affecting the settling of the DAC capacitance (CDAC).
  • CDAC DAC capacitance
  • a capacitive array of DAC capacities is composed of 14 capacities grouped by 6-4-4.
  • the first 6-bit group is MSB
  • the middle 4-bit group is LSB1
  • the last 4-bit group is LSB0.
  • Each group is separated by a bridge capacitive element, and the weight per capacitive element changes. Assuming that the weight of MSB is 1, LSB1 is 1/8 and LSB0 is 1/32.
  • the weights of the most significant bit in LSB1 and the least significant bit in MSB are the same value, which provides redundancy.
  • LSB0 also duplicates the most significant bit. Since the redundancy is 2 bits in total, the bit accuracy of the successive approximation type analog-to-digital converter 150 is 12 BIT in the end. Redundancy is to compensate for the lack of settling of the high-order bits and to correct the non-linearity due to the variation of the bridge capacitive element.
  • redundant bits In order to widen the range of redundancy, redundant bits should be inserted at the upper level as much as possible, but there is a trade-off that the number of capacitive elements increases, and noise also increases. Further, in order to correct the variation of the bridge capacitance element, the redundant bit needs to be inserted in each group.
  • the capacitance value C B of the bridge capacitance element is expressed by the following equation, where ⁇ ( ⁇ 1) is the weight ratio with the lower group and C TL is the total capacitance value of the lower group (including the lower real capacitance value). be able to.
  • C B C TL / ⁇ (1 / ⁇ ) -1 ⁇
  • the bridge capacitive element determines the weight of the entire lower bit, non-linearity is brought about when the ratio with the unit capacitive element deviates. Therefore, it is necessary to mount the elements so that they do not shift as much as possible, but it is difficult to match the ratio between the bridge capacitive element and the unit capacitive element because it is not an integral multiple and there is no continuity of the layout. Therefore, it seems necessary to perform digital correction by multiplying each group by a non-integer correction coefficient.
  • the two capacitive elements 195 _P and 195 _M in the capacitive portion 190 of FIG. 6 hold different charges, and when the rear side of the column amplifier 140 is viewed from the signal line VSL, these capacitive elements 195 _P and 195 _M Acts as a load that is twice the gain of the column amplifier 140, and the settling time of the VSL becomes long. Therefore, the capacity unit 190 according to the second embodiment described below is provided with measures for shortening the settling time.
  • FIG. 12 is a circuit diagram showing the internal configuration of the capacitance unit 19 according to the second embodiment.
  • the column amplifier 140 connected to the front stage side of the capacitance unit 19 and the sequential comparison type analog-to-digital converter 150 connected to the rear stage side of the capacitance unit 19 are omitted, but the capacitance unit in FIG. 12 is omitted.
  • a column amplifier 140 similar to that in FIG. 6 and a successive approximation analog-to-digital converter 150 can be connected to 19.
  • the capacitance unit 19 of FIG. 12 includes a first node n1, a second node n2, a positive capacitive element 195 _P , a negative capacitive element 195 _M , a fourth switch 192, a fifth switch 196, and a sixth. It has a switch 194 _P , a seventh switch 194 _M , a switch 191 _P, and a switch 191 _M .
  • a pixel signal from the column amplifier 140 is supplied to the first node n1.
  • a reference voltage VR is supplied to the second node n2. More specifically, the pixel signal input from the column amplifier 140 is supplied to the first node n1 via the switch 191 _P. Further, the reference voltage VR is supplied to the second node n2 via the switch 191 _M.
  • the positive capacitive element 195 _P and the negative capacitive element 195 _M are connected in series between the first node n1 and the second node n2. In this way, by connecting the positive capacitive element 195 _P and the negative capacitive element 195 _M in series between the first node n1 and the second node n2, the rear side of the column amplifier 140 is viewed from the signal line VSL. The effective capacity of the node can be reduced.
  • the fourth switch 192 selectively short-circuits the first node n1 and the second node n2.
  • the fourth switch 192 performs an on / off operation according to the polarity of the switch control signal SREFH.
  • the fourth switch 192 is closed, the first node n1 and the second node n2 are short-circuited.
  • the fifth switch 196 selectively applies the common mode reference voltage VM of the successive approximation analog-to-digital converter 150 to the common connection node n5 of the positive capacitive element 195 _P and the negative capacitive element 195 _M.
  • the fifth switch 196 is closed, the common mode reference voltage VM is applied to the common connection node n5.
  • the sixth switch 194 _P selectively connects the second node n2 and the first input terminal n11 of the successive approximation analog-to-digital converter 150.
  • the seventh switch 194 _M selectively connects the first node n1 and the second input terminal n12 of the successive approximation analog-to-digital converter 150.
  • FIG. 13 is a timing diagram of the capacitance unit 19 of FIG. 13, a column switch control signal S P output switches 142, 144 of the amplifier in the 140, S VR, a switch control signal S D of the switch 143, the switch 191 _P, 191 _M switch control signal SINH, switches the fifth switch 196 control signal SVMH, switch control signal SREFH the fourth switch 192, the switch 194 _P, 194 _M switch control signal SSUMH, successive approximation analog - switch 1512 _P digital converter 150, 1512 timing of the switch control signal SRAZ of _M Is shown.
  • Times t1 to t2 in FIG. 13 are immediately before the period in which the capacitance unit 19 samples the voltage of the signal line VSL.
  • Times t2 to t3 are periods during which the capacitance unit 19 samples the voltage of the signal line VSL.
  • Times t3 to t4 are immediately before the period for transferring the pixel signal held by the capacitance unit 19 to the serial comparison type analog-to-digital converter 150, and are the auto-zero (offset cancellation due to input / output short circuit) period of the preamplifier 151. ..
  • Times t4 to t5 are periods during which the pixel signal held by the capacitance unit 19 is transferred to the sequential comparison type analog-to-digital converter 150.
  • Times t5 to t6 are periods during which the successive approximation analog-to-digital converter 150 performs AD conversion. The series of processes from time t1 to t6 is repeated after time t6.
  • the switches 191 _P and 191 _M are closed during the period from time t1 to t3.
  • the pixel signal and the reference voltage VR output from the column amplifier 140 are supplied to the capacitance section 19 from immediately before the capacitance section 19 samples the voltage of the signal line VSL until the end of the sampling period.
  • the fifth switch 196 is closed during the period from time t1 to t2 and the period from time t4 to t5.
  • the positive capacitance is immediately before the period in which the capacitance unit 19 samples the voltage of the signal line VSL and the period in which the pixel signal held by the capacitance unit 19 is transferred to the successive approximation type analog-to-digital converter 150.
  • a common mode reference voltage VM is applied to the common connection node n5 of the element 195 _P and the negative capacitance element 195 _M.
  • the fourth switch 192 is closed during the period from time t1 to t2.
  • the first node n1 and the second node n2 are temporarily short-circuited immediately before the period in which the capacitance unit 19 samples the voltage of the signal line VSL.
  • the switches 194 _P and 194 _M are closed during the period from time t4 to t5, and the pixel signal held by the capacitance unit 19 is transferred to the sequential comparison type analog-to-digital converter 150.
  • the common connection node n5 has a parasitic capacitance Cp3. Since the fifth switch 196 is turned on at times t1 to t2 immediately before the capacitance unit 19 samples the voltage of the signal line VSL and the common mode reference voltage VM is applied to the common connection node n5, the parasitic capacitance Cp3 of the common connection node n5. The potential of the common connection node n5 can be determined without being affected by.
  • the parasitic capacitances Cp1 and Cp2 also exist in the first node n1 and the second node n2. Due to these parasitic capacitances Cp1 and Cp2, the common voltage of the differential signal transferred to the successive approximation analog-to-digital converter 150 has an input signal dependence.
  • FIG. 14 is a diagram showing the input signal dependence of the differential signal transferred from the capacitance section 19 of FIG. 12 to the successive approximation analog-to-digital converter 150.
  • the horizontal axis of FIG. 14 is the voltage level of the signal line VSL, and the vertical axis is the voltage level of the differential signal.
  • FIG. 14 shows graphs gp1, gp2, and gp3 showing the input signal dependence of the differential signals comppinp and compinn of the nodes n11 and n12 and the common voltage common of the differential signals. As shown in the figure, the larger the voltage level of the signal line VSL, the larger the fluctuation amount of the differential signals comppinp and compinn and the common voltage common of the differential signals.
  • the capacitance unit 19 in FIG. 12 has a positive capacitance element 195 _P between the first node n1 to which the pixel signal from the column amplifier 140 is input and the second node n2 to which the reference voltage VR is supplied. Since the negative side capacitance element 195 _M is connected in series, the effective capacitance when the rear side of the column amplifier 140 is viewed from the signal line VSL can be reduced. However, since the parasitic capacitances Cp1 and Cp2 exist in the first node n1 and the second node n2, the common voltage of the differential signal transferred from the capacitance unit 19 to the successive approximation analog-digital converter 150 is affected by the parasitic capacitances Cp1 and Cp2. It may fluctuate, and the countermeasures are explained below.
  • FIG. 15 is a circuit diagram showing an internal configuration of the capacitance unit 19 according to the first modification of FIG. 12.
  • the capacitance unit 19 of FIG. 15 includes a positive capacitance element 195 _P , a negative capacitive element 195 _M , a 4a switch 192a, a 4b switch 192b, a 5a switch 196a, a 5b switch 196b, and a fifth c. It has a switch 196c, a sixth switch 194 _P , a seventh switch 194 _M , a switch 191 _P, and a switch 191 _M .
  • the differences from the capacitance unit 19 of FIG. 12 will be mainly described.
  • the 4a switch 192a and the 4b switch 192b are connected in series between the first node n1 and the second node n2.
  • the 4a switch 192a and the 4b switch 192b are closed, the first node n1 and the second node n2 are short-circuited.
  • the common mode reference voltage VM of the successive approximation type analog-to-digital converter 150 is applied to the common connection node n10 of the 4th a switch 192a and the 4b switch 192b.
  • the fifth a switch 196a, the positive capacitance element 195 _P , the negative capacitive element 195 _M , and the fifth b switch 196b are connected in series between the first node n1 and the second node n2 in this order.
  • the positive capacitive element 195 _P and the negative capacitive element 195 _M are connected in series between the first node n1 and the second node n2.
  • the fifth c switch 196c selectively applies the common mode reference voltage VM to the common connection node n5 of the positive capacitance element 195 _P and the negative capacitive element 195 _M. When the fifth c switch 196c is closed, the common mode reference voltage VM is applied to the common connection node n5.
  • FIG. 16 is a timing diagram of the capacitance unit 19 of FIG. FIG. 16 has switch control signals RST and SSHT instead of the switch control signal SVMH of FIG.
  • the switch control signal RST controls on / off of the 4a switch 192a and the 4b switch 192b.
  • the switch control signal SSHT controls on / off of the 5a switch 196a and the 5b switch 196b.
  • the switch control signal SREFH controls the on / off of the 5th switch 196c.
  • the 4th a switch 192a and the 4b switch 192b are closed during the period from time t1 to t2 and the period from time t3 to t4.
  • the first is immediately before the period in which the capacitance unit 19 samples the voltage of the signal line VSL and immediately before the period in which the pixel signal held by the capacitance unit 19 is transferred to the successive approximation type analog-to-digital converter 150.
  • the node n1 and the second node n2 are short-circuited, and a common mode reference voltage VM is applied to these nodes.
  • the fifth a switch 196a and the fifth b switch 196b are in the open state during the period from time t3 to t4.
  • the connection between the first node n1 and the positive capacitance element 195 _P is temporarily cut off immediately before the period for transferring the pixel signal held by the capacitance unit 19 to the successive approximation analog-digital converter 150.
  • the connection between the second node n2 and the negative capacitance element 195 _M is temporarily cut off.
  • the 4a switch 192a and the 4b switch 192b are closed, the parasitic capacitances Cp1 and Cp2 of the first node n1 and the second node n2 are reset by the common mode reference voltage VM.
  • the fifth c switch 196c is closed during the period from time t1 to t2 and the period from time t4 to t5.
  • a common mode reference voltage VM is applied to the common connection node n5 of 195 _P and the negative capacitance element 195 _M.
  • the capacitance unit 19 of FIG. 15 has the 4a switch 192a and the 4b switch 192b, the pixel signal held by the capacitance unit 19 is sequentially generated immediately before the period in which the capacitance unit 19 samples the voltage of the signal line VSL.
  • the parasitic capacitances Cp1 and Cp2 of the first node n1 and the second node n2 are reset, and the first node n1 and the second node n2 are set to the common mode reference voltage. It can be set to VM.
  • fluctuations in the common voltage of the differential signal due to the influence of the parasitic capacitances Cp1 and Cp2 of the first node n1 and the second node n2 can be suppressed.
  • the capacitance portion 19 of FIG. 15 has the 4a switch 192a and the 4b switch 192b closed, and the period of resetting the parasitic capacitance of the first node n1 and the second node n2 is the 5a switch 196a.
  • the fifth b switch 196b is opened so that the charges of the positive capacitance element 195 _P and the negative capacitive element 195 _M are not affected by the parasitic capacitances Cp1 and Cp2 of the first node n1 and the second node n2. ..
  • FIG. 17 is a diagram showing the input signal dependence of the differential signal transferred from the capacitance unit 19 of FIG. 15 to the successive approximation type analog-to-digital converter 150.
  • FIG. 17 shows graphs gp1, gp2, and gp3 showing the input signal dependence of the differential signals comppinp and compinn of the nodes n11 and n12 and the common voltage common of the differential signals.
  • the common voltage of the differential signal has an input signal dependence, similarly to the capacitance section 19 of FIG.
  • the size of the parasitic capacitance can be adjusted by devising each circuit element, wiring pattern, and the like constituting the capacitance portion 19. Therefore, even in the capacitance portion 19 of the circuit configuration of FIG. 15, it is possible to reduce the parasitic capacitances Cp3 and Cp4.
  • the capacitance portion 19 of FIG. 15 is provided with the 4a switch 192a, the 4b switch 192b, the 5a switch 196a, and the 5b switch 196b, so that the parasitic capacitance Cp1 of the first node n1 and the second node n2 is provided.
  • Cp2 can be reset and the charges in the positive capacitance element 195 _P and the negative capacitive element 195 _M can be prevented from being affected by the parasitic capacitances Cp1 and Cp2.
  • the capacitance is due to the parasitic capacitance Cp3 of the common connection node n5 between the positive capacitance element 195 _P and the 5a switch 196a and the parasitic capacitance Cp4 of the common connection node n5 between the negative capacitance element 195 _M and the 5b switch 196b.
  • the common voltage of the differential signal transferred from 19 to the successive approximation analog-to-digital converter 150 may fluctuate, and the countermeasures will be described below.
  • FIG. 18 is a circuit diagram showing an internal configuration of the capacitance unit 19 according to the second modification of FIG. 12.
  • the capacitance unit 19 of FIG. 18 includes a positive capacitance element 195 _P , a negative capacitive element 195 _M , a 4a switch 192a, a 4b switch 192b, a 5a switch 196a, a 5b switch 196b, and a fifth c. It has a switch 196c, a sixth switch 194 _P , a seventh switch 194 _M , a switch 191 _P, and a switch 191 _M .
  • the differences from the capacitance unit 19 of FIG. 15 will be mainly described.
  • the positive capacitive element 195 _P , the 5a switch 196a, the 5b switch 196b, and the negative capacitive element 195 _M are connected in series between the first node n1 and the second node n2 in this order.
  • Capacitor section 19 Thus, FIG. 18, as compared with the capacitor portion 19 in FIG. 15, the order of connection of the positive-side capacitive element 195 _P and the 5a switch 196a is reversed, and a negative-side capacitive element 195 _M The connection order with the 5th switch 196b is reversed.
  • FIG. 19 is a timing diagram of the capacitance unit 19 of FIG. As can be seen by comparing FIG. 19 with FIG. 16, the capacitance unit 19 of FIG. 18 operates at the same timing as the capacitance unit 19 of FIG. 15, but the connection order of the positive capacitance element 195 _P and the 5a switch 196a is changed. By reversing and reversing the connection order of the negative capacitance element 195 _M and the 5b switch 196b, different circuit operations are performed.
  • the fiftha switch 196a and the like are reset.
  • the fifth b switch 196b is in the open state.
  • the pixel signals held by the positive capacitance element 195 _P and the negative capacitive element 195 _M are not affected by the parasitic capacitances Cp1 and Cp2 of the first node n1 and the second node n2.
  • the common connection node n3 between the positive capacitance element 195 _P and the 5a switch 196a can be reset, and these nodes n3.
  • ⁇ N5 can be set to the common mode reference voltage VM.
  • FIG. 20 is a diagram showing the input signal dependence of the differential signal transferred from the capacitance unit 19 of FIG. 18 to the successive approximation type analog-to-digital converter 150.
  • FIG. 20 shows graphs gp1, gp2, and gp3 showing the input signal dependence of the differential signals comppinp and compinn of the nodes n11 and n12 and the common voltage common of the differential signals.
  • the capacitance unit 19 of FIG. 18 resets the parasitic capacitances Cp3, Cp4, and Cp7 by closing the 5a switch 196a, the 5b switch 196b, and the 5c switch 196c, so that the common voltage of the differential signal is common.
  • the input signal dependence of the above can be made smaller than that of the capacitance portion 19 of FIG.
  • FIG. 21 is a circuit diagram showing an internal configuration of the capacitance unit 19 according to the third modification of FIG. 12.
  • the capacitance unit 19 of FIG. 21 includes a positive capacitance element 195 _P , a negative capacitive element 195 _M , a 4a switch 192a, a 4b switch 192b, a 4c switch 192c, a fiftha switch 196a, and a fifth b. It has a switch 196b, a fifth c switch 196c, a sixth switch 194 _P , a seventh switch 194 _M , a switch 191 _P, and a switch 191 _M .
  • the differences from the capacitance unit 19 of FIG. 18 will be mainly described.
  • the positive capacitance element 195_P of FIG. 21 is connected between the first node n1 and the third node n3.
  • the negative capacitive element 195 _M is connected between the second node n2 and the fourth node n4.
  • a pixel signal from the column amplifier 140 is supplied to the first node n1.
  • a reference voltage VR is supplied to the second node n2.
  • the 4a switch 192a and the 4b switch 192b are connected in series between the first node n1 and the second node n2.
  • the 4a switch 192a and the 4b switch 192b are closed, the first node n1 and the second node n2 are short-circuited, and a common mode reference voltage VM is applied to these nodes.
  • the 4c switch 192c is connected between the first node n1 and the second node n2. When the 4c switch 192c is closed, the first node n1 and the second node n2 are short-circuited.
  • the 5th a switch 196a is connected between the 3rd node n3 and the 4th node n4. When the fifth a switch 196a is closed, the third node n3 and the fourth node n4 are short-circuited.
  • the 5th b switch 196b and the 5c switch 196c are connected in series between the third node n3 and the fourth node n4.
  • the 5b switch 196b and the 5c switch 196c are closed, the 5b switch 196b and the 5c switch 196c are short-circuited, and a common mode reference voltage VM is applied to these nodes.
  • FIG. 22 is a timing diagram of the capacitance unit 19 of FIG.
  • the switch control signal RST controls on / off of the 4c switch 192c, the 5b switch 196b, and the 5c switch 196c.
  • the switch control signal SVMH controls the on / off of the 5th switch 196a.
  • the switch control signal SREFH controls the on / off of the 4a switch 192a and the 4b switch 192b.
  • the 4th c switch 192c, the 5b switch 196b, and the 5c switch 196c are closed during the period from time t1 to t2.
  • the 4c switch 192c is closed, the first node n1 and the second node n2 are short-circuited.
  • the 5b switch 196b and the 5c switch 196c are closed, the third node n3 and the fourth node n4 are short-circuited, and a common mode reference voltage VM is applied.
  • the parasitic capacitance Cp3 of the third node n3 and the parasitic capacitance Cp4 of the fourth node n4 are reset.
  • the 5th a switch 196a is closed during the period from time t2 to t3, and when the 5a switch 196a is closed, the third node n3 and the fourth node n4 are short-circuited.
  • the 4a switch 192a and the 4b switch 192b are closed during the period from time t4 to t5, and when the 4a switch 192a and the 4b switch 192b are closed, the first node n1 and the second node n2 are short-circuited. Then, the common mode reference voltage VM is applied.
  • the input / output of the positive capacitance element 195 _P is defined as the first node n1 and the third node n3, and the input / output of the negative capacitive element 195 _M is defined as the second node n2 and the fourth node n4.
  • the positive capacitance element 195 _P and the negative capacitive element 195 _M are provided with input / output nodes separately. Since the reference voltage VR is supplied to the first node n1 and the second node n2 immediately before the period in which the capacitance unit 19 samples the voltage of the signal line VSL, the parasitic capacitance of the first node n1 and the second node n2. Cp1 and Cp2 are automatically reset. Therefore, the operation of resetting the parasitic capacitances Cp1 and Cp2 becomes unnecessary.
  • FIG. 23 is a diagram showing the input signal dependence of the differential signal transferred from the capacitance unit 19 of FIG. 21 to the successive approximation type analog-to-digital converter 150.
  • FIG. 23 shows graphs gp1, gp2, and gp3 showing the input signal dependence of the differential signals comppinp and compinn of the nodes n11 and n12 and the common voltage common of the differential signals.
  • the capacitance section 19 of FIG. 21 since the input and output of the positive capacitance element 195 _P and the negative capacitance element 195 _M are set to separate nodes, the capacitance section 19 is the first immediately before the period in which the capacitance section 19 samples the voltage of the signal line VSL.
  • the parasitic capacitances Cp1 and Cp2 of the 1st node n1 and the 2nd node n2 can be reset, and the third one immediately before the period for transferring the pixel signal held by the capacitance unit 19 to the sequential comparison type analog-digital converter 150. It is not necessary to reset the parasitic capacitances Cp3 and Cp4 of the node n3 and the fourth node n4. Further, the input signal dependence of the common voltage of the differential signal can be reduced.
  • Each of the above-mentioned capacitance units 19 uses a common mode reference voltage VM when transferring a pixel signal from the capacitance unit 19 to the successive approximation type analog-to-digital converter 150. Since the common mode reference voltage VM is commonly used in all columns, if the common mode reference voltage VM fluctuates during AD conversion in other columns, it will be affected by it. Therefore, it is conceivable not to use the common mode reference voltage VM when transferring the pixel signal.
  • FIG. 24 is a circuit diagram showing an internal configuration of the capacitance unit 19 according to the fourth modification of FIG. 12.
  • the capacitance unit 19 of FIG. 24 includes a positive capacitance element 195 _P , a negative capacitive element 195 _M , a fourth switch 192, a fifth a switch 196a, a fifth b switch 196b, a fifth c switch 196c, and a sixth. It has a switch 194 _P , a seventh switch 194 _M , a switch 191 _P, and a switch 191 _M . In the following, the differences from the capacitance unit 19 of FIG. 21 will be mainly described.
  • the fourth switch 192 is connected between the first node n1 and the second node n2. When the fourth switch 192 is closed, the first node n1 and the second node n2 are short-circuited.
  • the 5th a switch 196a and the 5th b switch 196b are connected in series between the third node n3 and the fourth node n4.
  • the fifth a switch 196a and the fifth b switch 196b are closed, the third node n3 and the fourth node n4 are short-circuited.
  • the 5th switch 196c selectively applies the common mode reference voltage VM of the successive approximation analog-to-digital converter 150 to the common connection node n5 of the 5a switch 196a and the 5b switch 196b.
  • the fifth c switch 196c is closed, the common mode reference voltage VM is applied to the common connection node n5.
  • FIG. 25 is a timing diagram of the capacitance unit 19 of FIG. 24.
  • the switch control signal SVMH controls on / off of the 5a switch 196a and the 5b switch 196b.
  • the switch control signal SREFH controls the on / off of the fourth switch 192.
  • the fourth switch 192 is closed during the period from time t1 to t2. Therefore, the first node n1 and the second node n2 are short-circuited immediately before the period in which the capacitance unit 19 samples the voltage of the signal line VSL.
  • the 5th a switch 196a and the 5b switch 196b are closed during the period from time t1 to t3, and the 5c switch 196c is closed during the period from time t1 to t2. Therefore, immediately before the period in which the capacitance unit 19 samples the voltage of the signal line VSL, the third node n3 and the fourth node n4 are short-circuited, and the common mode reference voltage VM is applied. As a result, the parasitic capacitances Cp3, Cp4, and Cp7 of the third node n3, the fourth node n4, and the common connection node n5 are reset.
  • FIG. 26 is a diagram showing the input signal dependence of the differential signal transferred from the capacitance unit 19 of FIG. 24 to the successive approximation type analog-to-digital converter 150.
  • FIG. 26 shows graphs gp1, gp2, and gp3 showing the input signal dependence of the differential signals comppinp and compinn of the nodes n11 and n12 and the common voltage common of the differential signals.
  • the capacitance unit 19 of FIG. 24 is a sequential comparison analog-due to the influence of the parasitic capacitances Cp1 and Cp2 of the first node n1 and the second node n2 when the pixel signal is transferred to the serial comparison analog-digital converter 150.
  • the common voltage of the differential signal transferred to the digital converter 150 may fluctuate. The countermeasures will be described below.
  • FIG. 27 is a circuit diagram showing an internal configuration of the capacitance unit 19 according to the fifth modification of FIG. 12.
  • the capacitance unit 19 of FIG. 27 includes a positive capacitance element 195 _P , a negative capacitive element 195 _M , a 4a switch 192a, a 4b switch 192b, a 4c switch 192c, a fiftha switch 196a, and a fifth b. It has a switch 196b, a fifth c switch 196c, a sixth switch 194 _P , a seventh switch 194 _M , a switch 191 _P, and a switch 191 _M .
  • the 4a switch 192a and the 4b switch 192b are connected in series between the first node n1 and the second node n2. When the 4a switch 192a and the 4b switch 192b are closed, the first node n1 and the second node n2 are short-circuited.
  • the 4c switch 192c selectively applies the reference voltage VR to the common connection node n10 of the 4a switch 192a and the 4b switch 192b. When the 4c switch 192c is closed, the reference voltage VR is applied to the common connection node n10.
  • the 5th a switch 196a and the 5th b switch 196b are connected in series between the third node n3 and the fourth node n4.
  • the fifth a switch 196a and the fifth b switch 196b are closed, the third node n3 and the fourth node n4 are short-circuited.
  • the 5th switch 196c selectively applies the common mode reference voltage VM of the successive approximation analog-to-digital converter 150 to the common connection node n5 of the 5a switch 196a and the 5b switch 196b.
  • the fifth c switch 196c is closed, the common mode reference voltage VM is applied to the common connection node n5.
  • FIG. 28 is a timing diagram of the capacitance unit 19 of FIG. 27.
  • the switch control signal RST1 controls the on / off of the 5th switch 196c.
  • the switch control signal RST2 controls the on / off of the 4th switch 192c.
  • the switch control signal SVHM controls on / off of the 5a switch 196a and the 5b switch 196b.
  • the switch control signal SREFH controls the on / off of the 4a switch 192a and the 4b switch 192b.
  • the 4a switch 192a, the 4b switch 192b, and the 4c switch 192c are closed during the period from time t1 to t2. Therefore, immediately before the period in which the capacitance unit 19 samples the voltage of the signal line VSL, the first node n1 and the second node n2 are short-circuited, and the reference voltage VR is applied to these nodes.
  • the 5th a switch 196a, the 5b switch 196b, and the 5c switch 196c are closed during the period from time t1 to t2. Therefore, immediately before the period in which the capacitance unit 19 samples the voltage of the signal line VSL, the third node n3 and the fourth node n4 are short-circuited, and the common mode reference voltage VM is applied to these nodes.
  • the parasitic capacitance Cp1 of the first node n1 and the parasitic capacitance Cp2 of the second node n2, and the 4a switch 192a and the 4b switch 192b The parasitic capacitance Cp8 of the common connection node n10, the parasitic capacitance Cp3 of the third node n3, the parasitic capacitance Cp4 of the fourth node n4, and the parasitic capacitance Cp7 of the common connection node n5 of the fifth a switch 196a and the fifth b switch 196b are It will be reset.
  • the 4th a switch 192a, the 4b switch 192b, and the 4c switch 192c are closed even during the period from time t3 to t4. Therefore, immediately before the period for transferring the pixel signal held by the capacitance unit 19 to the successive approximation type analog-to-digital converter 150, the first node n1 and the second node n2 are short-circuited, and the reference voltage VR is connected to these nodes. Is applied, and the above-mentioned parasitic capacitances Cp1, Cp2, and Cp8 are reset.
  • the 5th c switch 196c is in the open state, and the common mode reference voltage VM is not applied to the third node n3 and the fourth node n4, but the fifth a switch 196a and the fifth b. Since the switch is closed, the third node n3 and the fourth node n4 are short-circuited, and the parasitic capacitances Cp3 and Cp4 are reset. Therefore, it is possible to suppress fluctuations in the common voltage during the period in which the pixel signal held by the capacitance unit 19 is transferred to the successive approximation type analog-to-digital converter 150.
  • FIG. 29 is a diagram showing the input signal dependence of the differential signal transferred from the capacitance section 19 of FIG. 27 to the successive approximation type analog-to-digital converter 150.
  • FIG. 26 shows graphs gp1, gp2, and gp3 showing the input signal dependence of the differential signals comppinp and compinn of the nodes n11 and n12 and the common voltage common of the differential signals.
  • the capacitance unit 19 of FIG. 27 does not use the common mode reference voltage VM when transferring the pixel signal to the successive approximation analog-to-digital converter 150, it is not affected by the AD conversion of other columns and is not affected by the AD conversion of other columns.
  • the input signal dependence of the common voltage of the differential signal is reduced. Can be made smaller.
  • the second embodiment of the present disclosure is an example of applying the technique according to the present disclosure to an indirect TOF (Indirect-Time of Flight) type distance image sensor.
  • the indirect TOF method distance image sensor the light emitted from the light source is reflected by the object to be measured (subject), and the light flight time is measured based on the detection of the arrival phase difference of the reflected light to the object to be measured. It is a sensor that measures the distance of.
  • FIG. 30 is a block diagram showing an example of the system configuration of the indirect TOF type distance image sensor according to the second embodiment of the present disclosure.
  • the indirect TOF type distance image sensor 50 the light emitted from the light source 60 is reflected by the measurement target (subject), and the reflected light is incident.
  • the indirect TOF type distance image sensor 50 has a laminated structure including a sensor chip 51 and a circuit chip 52 laminated with respect to the sensor chip 51.
  • the sensor chip 51 and the circuit chip 52 are electrically connected to each other through a connection portion (not shown) such as a via (VIA) or a Cu—Cu connection.
  • FIG. 30 illustrates a state in which the wiring of the sensor chip 51 and the wiring of the circuit chip 52 are electrically connected via the above-mentioned connection portion.
  • a pixel array unit 53 is formed on the sensor chip 51.
  • the pixel array unit 53 includes a plurality of pixels 54 arranged in a matrix (array shape) in a two-dimensional grid pattern on the sensor chip 51.
  • each of the plurality of pixels 54 receives incident light (for example, near-infrared light), performs photoelectric conversion, and outputs an analog pixel signal.
  • Two signal lines VSL 1 and VSL 2 are wired in the pixel array unit 53 for each pixel row. Assuming that the number of pixel rows of the pixel array unit 53 is M (M is an integer), a total of (2 ⁇ M) signal line VSLs are wired to the pixel array unit 53.
  • Each of the plurality of pixels 54 has first and second taps A and B (details thereof will be described later).
  • the signal line VSL 1 outputs an analog pixel signal AIN P1 based on the charge of the first tap A of the pixel 54 of the corresponding pixel sequence.
  • an analog pixel signal AIN P2 based on the charge of the second tap B of the pixel 54 of the corresponding pixel row is output to the signal line VSL 2.
  • the analog pixel signals AIN P1 and AIN P2 will be described later.
  • a row selection unit 55, a column signal processing unit 56, an output circuit unit 57, and a timing control unit 58 are arranged on the circuit chip 52.
  • the row selection unit 55 drives each pixel 54 of the pixel array unit 53 in units of pixel rows, and outputs pixel signals AIN P1 and AIN P2. Under the drive of the row selection unit 55, the analog pixel signals AIN P1 and AIN P2 output from the pixel 54 of the selected row are supplied to the column signal processing unit 56 through the two signal lines VSL 1 and VSL 2. ..
  • the column signal processing unit 56 has a configuration having a plurality of analog-to-digital converters (ADCs) 59 provided corresponding to the pixel rows of the pixel array unit 53 (for example, for each pixel row).
  • the analog-to-digital converter 59 performs analog-digital conversion processing on the analog pixel signals AIN P1 and AIN P2 supplied through the signal lines VSL 1 and VSL 2 , and outputs them to the output circuit unit 57.
  • the output circuit unit 57 performs predetermined signal processing on the digitized pixel signals AIN P1 and AIN P2 output from the column signal processing unit 56, and outputs them to the outside of the circuit chip 52.
  • the timing control unit 58 generates various timing signals, clock signals, control signals, etc., and drives the row selection unit 55, the column signal processing unit 56, the output circuit unit 57, etc. based on these signals. Take control.
  • FIG. 31 is a circuit diagram showing an example of the circuit configuration of the pixels 54 in the indirect TOF type distance image sensor 50 according to the second embodiment.
  • the pixel 54 has, for example, a photodiode 541 as a photoelectric conversion element.
  • the pixels 54 include overflow transistors 542, two transfer transistors 543, 544, two reset transistors 545, 546, two stray diffusion layers 547, 548, two amplification transistors 549, 550, and two. It has a configuration having one selection transistor 551 and 552.
  • the two floating diffusion layers 547 and 548 correspond to the first and second taps A and B (hereinafter, may be simply referred to as "tap A and B") shown in FIG. 30.
  • the photodiode 541 photoelectrically converts the received light to generate an electric charge.
  • the photodiode 541 may have, for example, a back-illuminated pixel structure.
  • the structure is not limited to the back-illuminated type, and a surface-illuminated structure that captures the light emitted from the surface side of the substrate can also be used.
  • the overflow transistor 542 is connected between the cathode electrode of the photodiode 541 and the power supply line of the power supply voltage VDD , and has a function of resetting the photodiode 541. Specifically, the overflow transistor 542 is brought into a conductive state in response to the overflow gate signal TRG supplied from the row selection unit 55, so that the electric charge generated by the photodiode 541 is transferred to the stray diffusion layers 547 and 548. Transfer each sequentially.
  • the floating diffusion layers 547 and 548 corresponding to the first and second taps A and B accumulate the electric charge transferred from the photodiode 541 and convert it into a voltage signal having a voltage value corresponding to the amount of the electric charge to obtain a pixel signal.
  • the two reset transistors 545 and 546 are connected between each of the two stray diffusion layers 547 and 548 and the power supply line of the power supply voltage VDD. Then, the reset transistors 545 and 546 are brought into a conductive state in response to the reset signal RST supplied from the row selection unit 55, so that charges are extracted from each of the floating diffusion layers 347 and 348, and the amount of charges is initialized. do.
  • the two amplification transistors 549 and 550 are connected between the power supply line of the power supply voltage V DD and each of the two selection transistors 551 and 552, and are converted from charge to voltage at each of the stray diffusion layers 547 and 548. Each voltage signal is amplified.
  • the two selection transistors 551 and 552 are connected between each of the two amplification transistors 549 and 550 and each of the signal lines VSL 1 and VSL 2. Then, the selection transistors 551 and 552 become conductive in response to the selection signal SEL supplied from the row selection unit 55, so that the voltage signal amplified by each of the amplification transistors 549 and 550 is converted into an analog pixel signal. Output to two signal lines VSL 1 and VSL 2 as AIN P1 and AIN P2.
  • the two signal lines VSL 1 and VSL 2 are connected to the input end of one analog-to-digital converter 59 in the column signal processing unit 56 for each pixel row, and are output from the pixel 54 for each pixel row.
  • the analog pixel signals AIN P1 and AIN P2 are transmitted to the analog-to-digital converter 59.
  • the circuit configuration of the pixel 54 is not limited to the circuit configuration exemplified in FIG. 31 as long as it is a circuit configuration capable of generating analog pixel signals AIN P1 and AIN P2 by photoelectric conversion.
  • the technique according to the present disclosure can be applied to the column signal processing unit 56 including the analog-digital converter 59. More specifically, as the column signal processing unit 56 including the analog-to-digital converter 59, the column amplifier unit 14, the capacitance unit 19, and the sequential comparison type analog-to-digital conversion unit are the same as in the case of the first embodiment.
  • the column signal processing system according to the first embodiment or the fourth embodiment including 15A can be used.
  • the image pickup device (CMOS image sensor) according to the first embodiment can be used for various devices for sensing light such as visible light, infrared light, ultraviolet light, and X-ray, as shown in FIG. 32, for example. .. Specific examples of various devices are listed below.
  • Devices that take images for viewing such as digital cameras and portable devices with camera functions.
  • Devices used for traffic such as in-vehicle sensors that capture images of the rear, surroundings, and interior of vehicles, surveillance cameras that monitor traveling vehicles and roads, and distance measuring sensors that measure distance between vehicles.
  • Equipment used in home appliances such as TVs, refrigerators, and air conditioners to take pictures and operate the equipment according to the gestures ⁇ Endoscopes, devices that perform angiography by receiving infrared light, etc.
  • Equipment used for medical and healthcare purposes ⁇ Equipment used for security such as surveillance cameras for crime prevention and cameras for person authentication ⁇ Skin measuring instruments for taking pictures of the skin and taking pictures of the scalp Equipment used for beauty such as microscopes ⁇ Equipment used for sports such as action cameras and wearable cameras for sports applications ⁇ Camera for monitoring the condition of fields and crops, etc.
  • Equipment used for agriculture ⁇ Equipment used for medical and healthcare purposes
  • Equipment used for security such as surveillance cameras for crime prevention and cameras for person authentication
  • Skin measuring instruments for taking pictures of the skin and taking pictures of the scalp Equipment used for beauty such as microscopes
  • Equipment used for sports such as action cameras and wearable cameras for sports applications
  • Camera for monitoring the condition of fields and crops, etc.
  • Equipment used for agriculture ⁇ Equipment used for agriculture
  • FIG. 33 is a block diagram showing a configuration example of an imaging system which is an example of the electronic device of the present disclosure.
  • the image pickup system 100 includes an image pickup optical system 101 including a lens group and the like, an image pickup unit 102, a DSP (Digital Signal Processor) circuit 103, a frame memory 104, a display device 105, and a recording device 106. , Operation system 107, power supply system 108, and the like.
  • the DSP circuit 103, the frame memory 104, the display device 105, the recording device 106, the operation system 107, and the power supply system 108 are connected to each other via the bus line 109.
  • the image pickup optical system 101 takes in incident light (image light) from the subject and forms an image on the image pickup surface of the image pickup unit 102.
  • the image pickup unit 102 converts the amount of incident light imaged on the image pickup surface by the optical system 101 into an electric signal in pixel units and outputs it as a pixel signal.
  • the DSP circuit 103 performs general camera signal processing, for example, white balance processing, demosaic processing, gamma correction processing, and the like.
  • the frame memory 104 is appropriately used for storing data in the process of signal processing in the DSP circuit 103.
  • the display device 105 comprises a panel-type display device such as a liquid crystal display device or an organic EL (electroluminescence) display device, and displays a moving image or a still image captured by the image pickup unit 102.
  • the recording device 106 records the moving image or still image captured by the imaging unit 102 on a portable semiconductor memory, an optical disk, a recording medium such as an HDD (Hard Disk Drive), or the like.
  • the operation system 107 issues operation commands for various functions of the image pickup system 100 under the operation of the user.
  • the power supply system 108 appropriately supplies various power sources that serve as operating power sources for the DSP circuit 103, the frame memory 104, the display device 105, the recording device 106, and the operation system 107 to these supply targets.
  • the image pickup apparatus according to the first embodiment described above can be used as the image pickup unit 102.
  • the sequential comparison type analog-digital converter 150 is particularly excellent in power efficiency. Therefore, by using the image pickup apparatus as the image pickup unit 102, the power consumption of the image pickup system 100 can be reduced. Can contribute to.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure refers to any type of movement such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, robots, construction machinery, agricultural machinery (tractors), and the like. It may be realized as an image pickup device mounted on a body.
  • FIG. 34 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technique according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 has a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, turn signals or fog lamps.
  • the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the image pickup unit 12031 is connected to the vehicle outside information detection unit 12030.
  • the vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image.
  • the out-of-vehicle information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received image.
  • the image pickup unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
  • the image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the image pickup unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects the in-vehicle information.
  • a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether or not the driver has fallen asleep.
  • the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generating device, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform coordinated control for the purpose of automatic driving that runs autonomously without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
  • the audio image output unit 12052 transmits an output signal of at least one of audio and image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an onboard display and a head-up display.
  • FIG. 35 is a diagram showing an example of the installation position of the image pickup unit 12031.
  • the vehicle 12100 has image pickup units 12101, 12102, 12103, 12104, 12105 as image pickup units 12031.
  • the image pickup units 12101, 12102, 12103, 12104, 12105 are provided, for example, at positions such as the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100.
  • the image pickup unit 12101 provided in the front nose and the image pickup section 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the image pickup units 12102 and 12103 provided in the side mirror mainly acquire images of the side of the vehicle 12100.
  • the image pickup unit 12104 provided in the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the images in front acquired by the image pickup units 12101 and 12105 are mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 35 shows an example of the shooting range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging range of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • the imaging range 12114 indicates the imaging range.
  • the imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 can be obtained.
  • At least one of the image pickup units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image pickup units 12101 to 12104 may be a stereo camera including a plurality of image pickup devices, or may be an image pickup device having pixels for phase difference detection.
  • the microcomputer 12051 has a distance to each three-dimensional object within the image pickup range 12111 to 12114 based on the distance information obtained from the image pickup unit 12101 to 12104, and a temporal change of this distance (relative speed with respect to the vehicle 12100). By obtaining can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance in front of the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
  • automatic brake control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, electric poles, and other three-dimensional objects based on the distance information obtained from the image pickup units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • At least one of the image pickup units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging unit 12101 to 12104.
  • pedestrian recognition is, for example, a procedure for extracting feature points in an image captured by an image pickup unit 12101 to 12104 as an infrared camera, and pattern matching processing is performed on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine.
  • the audio image output unit 12052 determines the square contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the above is an example of a vehicle control system to which the technology according to the present disclosure can be applied.
  • the technique according to the present disclosure can be applied to, for example, the imaging unit 7910, 7912, 7914, 7916, 7918 and the vehicle outside information detection unit 7920, 7922, 7924, 7926, 7928, 7930 among the configurations described above.
  • the successive approximation type analog-to-digital converter 150 is excellent in power efficiency, it is possible to contribute to the reduction of power consumption of the vehicle control system by applying the technique according to the present disclosure.
  • the present disclosure may also have the following configuration.
  • A. Imaging device ⁇ [A-01] A pixel array unit each having a plurality of pixels including a photoelectric conversion element, and A column amplifier unit that takes the difference between the reset component and the signal component input from each pixel of the pixel array unit through the signal line and outputs the difference as a pixel signal. A capacitance section that holds a pixel signal input from the column amplifier section, and a capacitance section. A sequential comparison type analog-digital conversion unit that converts the analog pixel signal input from the capacitance unit into a digital signal, and Equipped with The capacitance section differentiates the single-phase pixel signal input from the column amplifier section using a reference voltage that defines the zero voltage of the pixel signal. Imaging device.
  • the column amplifier section is An amplifier in which the potential of the signal line is input to the non-inverting input terminal, A first switch having one end connected to the output terminal of the amplifier and the other end connected to the inverting input terminal of the amplifier. A second switch whose one end is connected to the output terminal of the amplifier, A first capacitive element having one end connected to the other end of the second switch and the other end connected to the other end of the first switch and the inverting input terminal of the amplifier.
  • the column amplifier section is At the time of inputting the reset component, the reset component is charged to the first capacitance element and the second capacitance element with the first switch closed, and the reference voltage is set to the second with the third switch closed. Apply to the other end of the switch and one end of the first capacitance element.
  • the image pickup apparatus according to the above [A-02].
  • the capacity section is It has a configuration of a differential circuit including a positive capacitive element that charges a pixel signal input from the column amplifier unit and a negative capacitive element that charges the reference voltage.
  • the image pickup apparatus has a fourth switch that selectively short-circuits each input end of the positive capacitance element and the negative capacitive element.
  • the image pickup apparatus according to the above [A-02] or the above [A-03].
  • the fourth switch transmits the pixel signal charged in the positive capacitive element and the reference voltage charged in the negative capacitive element to the sequential comparison type analog-to-digital converter.
  • the imaging device according to the above [A-04], wherein each input end of the positive capacitance element and the negative capacitive element is short-circuited.
  • the capacitance section holds a pixel signal input from the column amplifier section by sampling by the switched capacitor.
  • the image pickup apparatus according to the above [A-05].
  • each potential of a plurality of signal lines is set to a plurality of the column amplifiers corresponding to the plurality of signal lines. And multiplex processing through the capacitance section, The imaging apparatus according to any one of the above [A-01] to the above [A-06].
  • the capacity section is The first node to which the pixel signal input from the column amplifier unit is supplied, and The second node to which the reference voltage is supplied and A positive capacitive element and a negative capacitive element connected in series between the first node and the second node, A fourth switch that selectively short-circuits the first node and the second node, A fifth switch that selectively applies a common mode reference voltage of the successive approximation type analog-to-digital converter to the common connection node of the positive capacitance element and the negative capacitive element. A sixth switch that selectively connects the second node and the first input terminal of the successive approximation type analog-to-digital converter.
  • a seventh switch for selectively connecting the first node and the second input end of the successive approximation type analog-to-digital conversion unit is provided.
  • the image pickup apparatus according to the above [A-02].
  • the fourth switch is temporarily closed immediately before the capacitance unit starts holding the pixel signal, and inputs the input ends of the positive capacitance element and the negative capacitive element.
  • the fifth switch temporarily performs the period immediately before the capacitance unit starts holding the pixel signal and the period during which the pixel signal held in the capacitance unit is transferred to the sequential comparison type analog-to-digital conversion unit.
  • the capacity section is The first node to which the pixel signal input from the column amplifier unit is supplied, and The second node to which the reference voltage is supplied and A positive capacitive element and a negative capacitive element that can be connected in series between the first node and the second node, The 4a switch and the 4b switch connected in series between the first node and the second node, A fifth a switch, a positive capacitance element, a negative capacitive element, and a fifth b switch connected in series between the first node and the second node.
  • a fifth c switch that selectively applies a common mode reference voltage of the successive approximation type analog-to-digital converter to the common connection node of the positive capacitance element and the negative capacitive element.
  • a sixth switch that selectively connects the second node and the first input terminal of the successive approximation type analog-to-digital converter.
  • a seventh switch for selectively connecting the first node and the second input end of the successive approximation type analog-to-digital conversion unit is provided.
  • the image pickup apparatus according to the above [A-02]. [A-11]
  • the 4a switch and the 4b switch convert the pixel signal held in the capacitance section into the successive approximation analog-digital conversion immediately before the capacitance section starts holding the pixel signal.
  • the state is temporarily closed, and the common mode reference voltage of the successive approximation type analog-to-digital conversion unit is applied to the first node and the second node.
  • the 5a switch and the 5b switch are temporarily opened immediately before transferring the pixel signal held in the capacitance unit to the sequential comparison type analog-to-digital conversion unit, and are temporarily opened with the first node.
  • the connection with the positive capacitive element is cut off, and the connection between the second node and the negative capacitive element is cut off.
  • the fifth c switch temporarily has a period immediately before the capacitance unit starts holding the pixel signal and a period during which the pixel signal held in the capacitance unit is transferred to the successive approximation type analog-to-digital conversion unit.
  • the image pickup apparatus according to the above [A-10].
  • the capacity section is The first node to which the pixel signal input from the column amplifier unit is supplied, and The second node to which the reference voltage is supplied and The 4a switch and the 4b switch connected in series between the first node and the second node, A positive capacitive element, a 5a switch, a 5b switch, and a negative capacitive element connected in series between the first node and the second node.
  • a fifth c switch that selectively applies a common mode reference voltage of the successive approximation type analog-to-digital converter to the common connection node of the fifth a switch and the fifth b switch, and the fifth c switch.
  • a sixth switch that selectively connects the second node and the first input terminal of the successive approximation type analog-to-digital converter.
  • a seventh switch for selectively connecting the first node and the second input end of the successive approximation type analog-to-digital conversion unit is provided.
  • the image pickup apparatus according to the above [A-02]. [A-13]
  • the 4a switch and the 4b switch convert the pixel signal held in the capacitance section into the successive approximation analog-digital conversion immediately before the capacitance section starts holding the pixel signal.
  • the state is temporarily closed, and the common mode reference voltage of the successive approximation type analog-to-digital conversion unit is applied to the first node and the second node.
  • the fifth c switch temporarily has a period immediately before the capacitance unit starts holding the pixel signal and a period during which the pixel signal held in the capacitance unit is transferred to the successive approximation type analog-to-digital conversion unit.
  • the common mode reference voltage of the successive approximation type analog-digital converter is applied to the common connection node of the positive capacitance element and the negative capacitive element.
  • the 5th a switch and the 5b switch are temporarily opened immediately before transferring the pixel signal held in the capacitance section to the successive approximation analog-to-digital conversion section, and the positive capacitance element is temporarily opened. And disconnecting the negative capacitive element, The image pickup apparatus according to the above [A-12].
  • the capacity section is The first node to which the pixel signal input from the column amplifier unit is supplied, and The second node to which the reference voltage is supplied and A positive capacitive element whose one end is connected to the first node, The third node to which the other end of the positive capacitance element is connected and A negative capacitive element whose one end is connected to the second node, A fourth node to which the other end of the negative capacitive element is connected, The 4a switch and the 4b switch connected in series between the first node and the second node, The 4c switch connected between the first node and the second node, A fifth a switch connected between the third node and the fourth node, A fifth b switch and a fifth c switch connected in series between the third node and the fourth node, A sixth switch that selectively connects the third node and the first input terminal of the successive approximation type analog-to-digital conversion unit.
  • a seventh switch for selectively connecting the fourth node and the second input end of the successive approximation type analog-to-digital conversion unit is provided.
  • the 4a switch and the 4b switch are temporarily closed during the period of transferring the pixel signal held in the capacitance unit to the sequential comparison type analog-to-digital conversion unit.
  • a common mode reference voltage of the successive approximation type analog-to-digital converter is applied to the first node and the second node.
  • the 4c switch is closed immediately before the capacitance unit starts holding the pixel signal, short-circuiting the first node and the second node.
  • the 5a switch short-circuits the third node and the fourth node during the period in which the capacitance unit holds the pixel signal.
  • the 5b switch and the 5c switch are closed immediately before the capacitance unit starts holding the pixel signal, and the reference voltage is applied to the third node and the fourth node.
  • the capacity section is The first node to which the pixel signal input from the column amplifier unit is supplied, and The second node to which the reference voltage is supplied and A positive capacitive element whose one end is connected to the first node, The third node to which the other end of the positive capacitance element is connected and A negative capacitive element whose one end is connected to the second node, A fourth node to which the other end of the negative capacitive element is connected, A fourth switch connected between the first node and the second node, A fifth a switch and a fifth b switch connected in series between the third node and the fourth node, A fifth c switch that selectively applies a common mode reference voltage of the successive approximation type analog-to-digital converter to the common connection node of the fifth a switch and the fifth b switch, and the fifth c switch.
  • a sixth switch that selectively connects the third node and the first input terminal of the successive approximation type analog-to-digital conversion unit.
  • a seventh switch for selectively connecting the fourth node and the second input end of the successive approximation type analog-to-digital conversion unit is provided.
  • the image pickup apparatus according to the above [A-02]. [A-17]
  • the fourth switch has a period immediately before the capacity unit starts holding the pixel signal and a period during which the pixel signal held in the capacity unit is transferred to the sequential comparison type analog-to-digital conversion unit. In the closed state, the first node and the second node are short-circuited.
  • the 5a switch and the 5b switch are closed from immediately before the period in which the capacitance unit holds the pixel signal until the holding period ends, short-circuiting the third node and the fourth node.
  • the 5c switch is closed immediately before the capacitance unit starts holding the pixel signal, and the sequential comparison type analog-to-digital conversion unit is connected to the common connection node of the 5a switch and the 5b switch. Selectively apply the common mode reference voltage, The image pickup apparatus according to the above [A-16].
  • the capacity section is The first node to which the pixel signal input from the column amplifier unit is supplied, and The second node to which the reference voltage is supplied and A positive capacitive element whose one end is connected to the first node, The third node to which the other end of the positive capacitance element is connected and A negative capacitive element whose one end is connected to the second node, A fourth node to which the other end of the negative capacitive element is connected, The 4a switch and the 4b switch connected in series between the first node and the second node, A 4c switch that selectively applies the reference voltage to the common connection node of the 4a switch and the 4b switch, and A fifth a switch and a fifth b switch connected in series between the third node and the fourth node, A fifth c switch that selectively applies a common mode reference voltage of the successive approximation type analog-to-digital converter to the common connection node of the fifth a switch and the fifth b switch, and the fifth c switch.
  • a sixth switch that selectively connects the third node and the first input terminal of the successive approximation type analog-to-digital conversion unit.
  • a seventh switch for selectively connecting the fourth node and the second input end of the successive approximation type analog-to-digital conversion unit is provided.
  • the image pickup apparatus according to the above [A-02]. [A-19] The 4a switch and the 4b switch convert the pixel signal held in the capacitance section into the successive approximation analog-digital conversion immediately before the capacitance section starts holding the pixel signal. Immediately before the transfer period to the unit and the transfer period, the first node and the second node are short-circuited.
  • the 4c switch is temporarily used immediately before the capacitance unit starts holding the pixel signal and immediately before the period for transferring the pixel signal held in the capacitance unit to the sequential comparison type analog-to-digital conversion unit.
  • the reference voltage is applied to the common connection node of the 4a switch and the 4b switch in a closed state.
  • the 5a switch and the 5b switch are temporarily closed immediately before the capacitance unit starts holding the pixel signal and during the period when the capacitance unit holds the pixel signal.
  • the third node and the fourth node are short-circuited, and the third node and the fourth node are short-circuited.
  • the 5c switch is temporarily closed immediately before the capacitance unit starts holding the pixel signal, and is connected to the common connection node of the 5a switch and the 5b switch in the sequential comparison type analog-digital. Apply the common mode reference voltage of the converter, The image pickup apparatus according to the above [A-18].
  • An image pickup device that outputs a photoelectrically converted digital signal, and A signal processing unit that performs signal processing based on the digital signal is provided.
  • the image pickup device is A pixel array unit, each of which has a plurality of pixels including a photoelectric conversion element, A column amplifier unit that takes the difference between the reset component and the signal component input from each pixel of the pixel array unit through the signal line and outputs the difference as a pixel signal.
  • a capacitance section that holds a pixel signal input from the column amplifier section, and a capacitance section.
  • a sequential comparison type analog-to-digital conversion unit that converts an analog signal input from the capacitance unit into a digital signal, and Equipped with The capacitance section differentiates the single-phase pixel signal input from the column amplifier section using a reference voltage that defines the zero voltage of the pixel signal.
  • the column amplifier section is An amplifier in which the potential of the signal line is input to the non-inverting input terminal, A first switch having one end connected to the output terminal of the amplifier and the other end connected to the inverting input terminal of the amplifier.
  • a second switch whose one end is connected to the output terminal of the amplifier, A first capacitive element having one end connected to the other end of the second switch and the other end connected to the other end of the first switch and the inverting input terminal of the amplifier.
  • the column amplifier section is At the time of inputting the reset component, the reset component is charged to the first capacitance element and the second capacitance element with the first switch closed, and the reference voltage is set to the second with the third switch closed. Apply to the other end of the switch and one end of the first capacitance element.
  • a non-inverting amplifier circuit is configured by the first capacitance element, the second capacitance element, and the amplifier.
  • feedback is applied so that the voltage of the common connection node between the first capacitance element and the second capacitance element becomes the same voltage as the signal component.
  • the capacity portion is It has a configuration of a differential circuit including a positive capacitive element that charges a pixel signal input from the column amplifier unit and a negative capacitive element that charges the reference voltage. It has a fourth switch that selectively short-circuits each input end of the positive capacitance element and the negative capacitive element.
  • the fourth switch transmits the pixel signal charged in the positive capacitive element and the reference voltage charged in the negative capacitive element to the sequential comparison type analog-to-digital converter. When, the input ends of the positive capacitance element and the negative capacitive element are short-circuited.
  • the capacitance unit holds a pixel signal input from the column amplifier unit by sampling with the switched capacitor.
  • the electronic device according to the above [B-05].
  • [B-07] For one successive approximation type analog-to-digital converter of the sequential comparison type analog-to-digital conversion unit, each potential of a plurality of signal lines is set to a plurality of the column amplifiers corresponding to the plurality of signal lines. And multiplex processing through the capacitance section, The electronic device according to any one of the above [B-01] to the above [B-06].
  • indirect TOF range image sensor 60 ... light source, 100 ... imaging systems, 140 ... Column amplifier, 150 ... Sequential comparison analog-to-digital converter, 160 ... Reference voltage generator, 190 ... Capacitive multiplexer, 1400 ... Current reuse column amplifier (CRCA), VR ... ⁇ Reference voltage, V CM ⁇ ⁇ ⁇ Output common mode reference voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

[課題]逐次比較型アナログ-デジタル変換器を含むカラム信号処理系について、より高速・低消費電力での動作が可能な撮像装置を提供する。 [解決手段]本開示の撮像装置は、それぞれが光電変換素子を含む複数の画素を有する画素アレイ部と、前記画素アレイ部の各画素から信号線を通して入力されるリセット成分と信号成分との差分をとり、その差分を画素信号として出力するカラムアンプ部と、前記カラムアンプ部から入力される画素信号を保持する容量部と、前記容量部から入力されるアナログの前記画素信号をデジタル信号に変換する逐次比較型アナログ-デジタル変換部と、を備え、前記容量部は、前記カラムアンプ部から入力される単相の前記画素信号を、前記画素信号のゼロ電圧を規定する基準電圧を用いて差動化する。

Description

撮像装置及び電子機器
 本開示は、撮像装置及び電子機器に関する。
 撮像装置には、画素から出力されるアナログ信号(画素信号)をデジタル信号に変換するアナログ-デジタル変換器が搭載されており、当該アナログ-デジタル変換器として、逐次比較(SAR:Successive Approximation Resistor)型アナログ-デジタル変換器が用いられている(例えば、特許文献1参照)。
特開2019-092143号公報
 逐次比較型アナログ-デジタル変換器は、所謂、シングルスロープ型アナログ-デジタル変換器と比較して、高速・低消費電力での動作が可能である点で優れている。この逐次比較型アナログ-デジタル変換器を含むカラム信号処理系には、より高速・低消費電力での動作が望まれている。
 そこで、本開示は、逐次比較型アナログ-デジタル変換器を含むカラム信号処理系について、より高速・低消費電力での動作が可能な撮像装置、及び、当該撮像装置を有する電子機器を提供することを目的とする。
 本開示によれば、それぞれが光電変換素子を含む複数の画素を有する画素アレイ部と、
 前記画素アレイ部の各画素から信号線を通して入力されるリセット成分と信号成分との差分をとり、その差分を画素信号として出力するカラムアンプ部と、
 前記カラムアンプ部から入力される画素信号を保持する容量部と、
 前記容量部から入力されるアナログの前記画素信号をデジタル信号に変換する逐次比較型アナログ-デジタル変換部と、
を備え、
 前記容量部は、前記カラムアンプ部から入力される単相の前記画素信号を、前記画素信号のゼロ電圧を規定する基準電圧を用いて差動化する、
撮像装置が提供される。
 前記カラムアンプ部は、
 非反転入力端子に信号線の電位が入力される増幅器と、
 一端が前記増幅器の出力端子に接続され、他端が前記増幅器の反転入力端子に接続された第1スイッチと、
 一端が前記増幅器の出力端子に接続された第2スイッチと、
 一端が前記第2スイッチの他端に接続され、他端が前記第1スイッチの他端及び増幅器の反転入力端子に接続された第1容量素子と、
 前記第1容量素子の他端及び前記増幅器の反転入力端子と基準電位ノードとの間に接続された第2容量素子と、
 一端が前記第2スイッチの他端及び前記第1容量素子の一端に接続され、他端に前記基準電圧が印加される第3スイッチと、
を有してもよい。
 前記カラムアンプ部は、
 前記リセット成分の入力時には、前記第1スイッチを閉状態として前記リセット成分を前記第1容量素子及び前記第2容量素子にチャージするとともに、前記第3スイッチを閉状態として前記基準電圧を前記第2スイッチの他端及び前記第1容量素子の一端に印加し、
 次に、前記第1スイッチ及び前記第3スイッチを開状態、前記第2スイッチを閉状態として、前記第1容量素子及び前記第2容量素子と前記増幅器とによって非反転増幅回路を構成し、
 前記信号成分の入力時には、前記第1容量素子と前記第2容量素子との共通接続ノードの電圧が、前記信号成分と同じ電圧になるようにフィードバックをかけてもよい。
 前記容量部は、
 前記カラムアンプ部から入力される画素信号をチャージする正側容量素子、及び、前記基準電圧をチャージする負側容量素子を含む差動回路の構成となっており、
 前記正側容量素子及び前記負側容量素子の各入力端を選択的に短絡する第4スイッチを有してもよい。
 前記第4スイッチは、前記正側容量素子にチャージされた画素信号、及び、前記負側容量素子にチャージされた前記基準電圧を前記逐次比較型アナログ-デジタル変換部に伝送するとき、前記正側容量素子及び前記負側容量素子の各入力端を短絡してもよい。
 前記容量部は、前記カラムアンプ部から入力される画素信号を、前記スイッチトキャパシタによるサンプリングによって保持してもよい。
 前記逐次比較型アナログ-デジタル変換部の1つの逐次比較型アナログ-デジタル変換器につき、複数本の信号線の各電位を、複数本の信号線に対応した複数の前記カラムアンプ及び前記容量部を通して多重化して処理してもよい。
 前記容量部は、
 前記カラムアンプ部から入力される画素信号が供給される第1ノードと、
 前記基準電圧が供給される第2ノードと、
 前記第1ノード及び前記第2ノードの間に直列に接続される正側容量素子及び負側容量素子と、
 前記第1ノード及び前記第2ノードを選択的に短絡する第4スイッチと、
 前記正側容量素子及び前記負側容量素子の共通接続ノードに、前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を選択的に印加する第5スイッチと、
 前記第2ノードと、前記逐次比較型アナログ-デジタル変換部の第1入力端とを選択的に接続する第6スイッチと、
 前記第1ノードと、前記逐次比較型アナログ-デジタル変換部の第2入力端とを選択的に接続する第7スイッチと、を備えてもよい。
 前記第4スイッチは、前記容量部が前記画素信号の保持を開始する直前に一時的に閉状態となって、前記正側容量素子及び前記負側容量素子の各入力端を短絡し、
 前記第5スイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間とに一時的に閉状態となって、前記正側容量素子及び前記負側容量素子の共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加してもよい。
 前記容量部は、
 前記カラムアンプ部から入力される画素信号が供給される第1ノードと、
 前記基準電圧が供給される第2ノードと、
 前記第1ノード及び前記第2ノードの間に直列に接続可能な正側容量素子及び負側容量素子と、
 前記第1ノード及び前記第2ノードの間に直列に接続される第4aスイッチ及び第4bスイッチと、
 前記第1ノード及び前記第2ノードの間に直列に接続される、第5aスイッチ、正側容量素子、負側容量素子、及び第5bスイッチと、
 前記正側容量素子及び前記負側容量素子の共通接続ノードに、前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を選択的に印加する第5cスイッチと、
 前記第2ノードと、前記逐次比較型アナログ-デジタル変換部の第1入力端とを選択的に接続する第6スイッチと、
 前記第1ノードと、前記逐次比較型アナログ-デジタル変換部の第2入力端とを選択的に接続する第7スイッチと、を備えてもよい。
 前記第4aスイッチ及び前記第4bスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する直前とに一時的に閉状態となって、前記第1ノード及び前記第2ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加し、
 前記第5aスイッチ及び前記第5bスイッチは、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する直前に一時的に開状態となって、前記第1ノードと前記正側容量素子との接続を遮断するとともに、前記第2ノードと前記負側容量素子との接続を遮断し、
 前記第5cスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間とに一時的に閉状態となって、前記正側容量素子及び前記負側容量素子の共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加してもよい。
 前記容量部は、
 前記カラムアンプ部から入力される画素信号が供給される第1ノードと、
 前記基準電圧が供給される第2ノードと、
 前記第1ノード及び前記第2ノードの間に直列に接続される第4aスイッチ及び第4bスイッチと、
 前記第1ノード及び前記第2ノードの間に直列に接続される、正側容量素子、第5aスイッチ、第5bスイッチ、及び負側容量素子と、
 前記第5aスイッチ及び前記第5bスイッチの共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を選択的に印加する第5cスイッチと、
 前記第2ノードと、前記逐次比較型アナログ-デジタル変換部の第1入力端とを選択的に接続する第6スイッチと、
 前記第1ノードと、前記逐次比較型アナログ-デジタル変換部の第2入力端とを選択的に接続する第7スイッチと、を備えてもよい。
 前記第4aスイッチ及び前記第4bスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する直前とに一時的に閉状態となって、前記第1ノード及び前記第2ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加し、
 前記第5cスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間とに一時的に閉状態となって、前記正側容量素子及び前記負側容量素子の共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加し、
 前記第5aスイッチ及び前記第5bスイッチは、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する直前に一時的に開状態となって、前記正側容量素子及び前記負側容量素子の接続を遮断してもよい。
 前記容量部は、
 前記カラムアンプ部から入力される画素信号が供給される第1ノードと、
 前記基準電圧が供給される第2ノードと、
 前記第1ノードに一端が接続される正側容量素子と、
 前記正側容量素子の他端が接続される第3ノードと、
 前記第2ノードに一端が接続される負側容量素子と、
 前記負側容量素子の他端が接続される第4ノードと、
 前記第1ノード及び前記第2ノードの間に直列に接続される第4aスイッチ及び第4bスイッチと、
 前記第1ノード及び前記第2ノードの間に接続される第4cスイッチと、
 前記第3ノード及び前記第4ノードの間に接続される第5aスイッチと、
 前記第3ノード及び前記第4ノードの間に直列に接続される、第5bスイッチ及び第5cスイッチと、
 前記第3ノードと、前記逐次比較型アナログ-デジタル変換部の第1入力端とを選択的に接続する第6スイッチと、
 前記第4ノードと、前記逐次比較型アナログ-デジタル変換部の第2入力端とを選択的に接続する第7スイッチと、を備えてもよい。
 前記第4aスイッチ及び前記第4bスイッチは、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間に一時的に閉状態となって、前記第1ノード及び前記第2ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加し、
 前記第4cスイッチは、前記容量部が前記画素信号の保持を開始する直前に閉状態となって、前記第1ノード及び前記第2ノードを短絡し、
 前記第5aスイッチは、前記容量部が前記画素信号を保持する期間に前記第3ノード及び前記第4ノードを短絡し、
 前記第5bスイッチ及び前記第5cスイッチは、前記容量部が前記画素信号の保持を開始する直前に閉状態となって、前記第3ノード及び前記第4ノードに前記基準電圧を印加してもよい。
 前記容量部は、
 前記カラムアンプ部から入力される画素信号が供給される第1ノードと、
 前記基準電圧が供給される第2ノードと、
 前記第1ノードに一端が接続される正側容量素子と、
 前記正側容量素子の他端が接続される第3ノードと、
 前記第2ノードに一端が接続される負側容量素子と、
 前記負側容量素子の他端が接続される第4ノードと、
 前記第1ノード及び前記第2ノードの間に接続される第4スイッチと、
 前記第3ノード及び前記第4ノードの間に直列に接続される第5aスイッチ及び第5bスイッチと、
 前記第5aスイッチ及び前記第5bスイッチの共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を選択的に印加する第5cスイッチと、
 前記第3ノードと、前記逐次比較型アナログ-デジタル変換部の第1入力端とを選択的に接続する第6スイッチと、
 前記第4ノードと、前記逐次比較型アナログ-デジタル変換部の第2入力端とを選択的に接続する第7スイッチと、を備えてもよい。
 前記第4スイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間とに閉状態となって、前記第1ノード及び前記第2ノードを短絡し、
 前記第5aスイッチ及び前記第5bスイッチは、前記容量部が前記画素信号を保持する期間の直前から保持期間が終了するまで閉状態となって、前記第3ノード及び前記第4ノードを短絡し、
 前記第5cスイッチは、前記容量部が前記画素信号の保持を開始する直前に閉状態となって、前記第5aスイッチ及び前記第5bスイッチの共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を選択的に印加してもよい。
 前記容量部は、
 前記カラムアンプ部から入力される画素信号が供給される第1ノードと、
 前記基準電圧が供給される第2ノードと、
 前記第1ノードに一端が接続される正側容量素子と、
 前記正側容量素子の他端が接続される第3ノードと、
 前記第2ノードに一端が接続される負側容量素子と、
 前記負側容量素子の他端が接続される第4ノードと、
 前記第1ノード及び前記第2ノードの間に直列に接続される第4aスイッチ及び第4bスイッチと、
 前記第4aスイッチ及び前記第4bスイッチの共通接続ノードに前記基準電圧を選択的に印加する第4cスイッチと、
 前記第3ノード及び前記第4ノードの間に直列に接続される第5aスイッチ及び第5bスイッチと、
 前記第5aスイッチ及び前記第5bスイッチの共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を選択的に印加する第5cスイッチと、
 前記第3ノードと、前記逐次比較型アナログ-デジタル変換部の第1入力端とを選択的に接続する第6スイッチと、
 前記第4ノードと、前記逐次比較型アナログ-デジタル変換部の第2入力端とを選択的に接続する第7スイッチと、を備えてもよい。
 前記第4aスイッチ及び前記第4bスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間の直前と、前記転送する期間とに一時的に閉状態となって、前記第1ノード及び前記第2ノードを短絡し、
 前記第4cスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間の直前とに一時的に閉状態となって、前記第4aスイッチ及び前記第4bスイッチの共通接続ノードに前記基準電圧を印加し、
 前記第5aスイッチ及び前記第5bスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部が前記画素信号を保持している期間とに一時的に閉状態となって、前記第3ノード及び前記第4ノードを短絡し、
 前記第5cスイッチは、前記容量部が前記画素信号の保持を開始する直前に一時的に閉状態となって、前記第5aスイッチ及び前記第5bスイッチの共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加してもよい。
 本開示によれば、光電変換されたデジタル信号を出力する撮像装置と、
 前記デジタル信号に基づいて信号処理を行う信号処理部と、を備え、
 前記撮像装置は、
 それぞれが光電変換素子を含む複数の画素を有する画素アレイ部と、
 前記画素アレイ部の各画素から信号線を通して入力されるリセット成分と信号成分との差分をとり、その差分を画素信号として出力するカラムアンプ部と、
 前記カラムアンプ部から入力される画素信号を保持する容量部と、
 前記容量部から入力されるアナログ信号をデジタル信号に変換する逐次比較型アナログ-デジタル変換部と、
を備え、
 前記容量部は、前記カラムアンプ部から入力される単相の前記画素信号を、前記画素信号のゼロ電圧を規定する基準電圧を用いて差動化する、
電子機器が提供される。
図1は、本開示に係る技術が適用される撮像装置の一例であるCMOSイメージセンサの基本的な構成の概略を示すブロック図である。 図2は、画素の回路構成の一例を示す回路図である。 図3は、CMOSイメージセンサの平置型の半導体チップ構造の概略を模式的に示す平面図である。 図4は、CMOSイメージセンサの積層型の半導体チップ構造の概略を模式的に示す分解斜視図である。 図5は、本開示の第1実施形態に係る撮像装置の一例であるCMOSイメージセンサの構成の概略を示すブロック図である。 図6は、第1の実施形態に係るカラム信号処理系の構成の概略を示す回路図である。 図7は、第1の実施形態に係るカラム信号処理系の回路動作の説明に供するタイミングチャートである。 図8は、実施例2に係るカラム信号処理系の構成の概略を示す回路図である。 図9は、レベルダイヤグラムの説明に供する図である。 図10は、電流リユースカラムアンプの構成の一例を示す回路図である。 図11は、逐次比較型アナログ-デジタル変換器の詳細回路図である。 第2の実施形態による容量部の内部構成を示す回路図である。 図12の容量部のタイミング図である。 図12の容量部から逐次比較型アナログ-デジタル変換器に転送される差動信号の入力信号依存性を示す図。 図12の第1変形例による容量部の内部構成を示す回路図。 図15の容量部のタイミング図である。 図15の容量部から逐次比較型アナログ-デジタル変換器に転送される差動信号の入力信号依存性を示す図。 図12の第2変形例による容量部の内部構成を示す回路図。 図18の容量部のタイミング図である。 図18の容量部から逐次比較型アナログ-デジタル変換器に転送される差動信号の入力信号依存性を示す図。 図12の第3変形例による容量部の内部構成を示す回路図。 図21の容量部のタイミング図である。 図21の容量部から逐次比較型アナログ-デジタル変換器に転送される差動信号の入力信号依存性を示す図。 図12の第4変形例による容量部の内部構成を示す回路図。 図24の容量部のタイミング図である。 図24の容量部から逐次比較型アナログ-デジタル変換器に転送される差動信号の入力信号依存性を示す図。 図12の第5変形例による容量部の内部構成を示す回路図。 図27の容量部のタイミング図である。 図27の容量部から逐次比較型アナログ-デジタル変換器に転送される差動信号の入力信号依存性を示す図。 図30は、本開示の第2実施形態に係る間接TOF方式距離画像センサのシステム構成の一例を示すブロック図である。 図31は、第2実施形態に係る間接TOF方式距離画像センサにおける画素の回路構成の一例を示す回路図である。 図32は、本開示に係る技術の適用例を示す図である。 図33は、本開示の電子機器の一例である撮像システムの構成例の概略を示すブロック図である。 図34は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 図35は、移動体制御システムにおける撮像部の設置位置の例を示す図である。
 以下、本開示に係る技術を実施するための形態(以下、「実施形態」と記述する)について図面を用いて詳細に説明する。本開示に係る技術は実施形態に限定されるものではなく、実施形態における種々の数値などは例示である。以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。尚、説明は以下の順序で行う。
1.本開示の撮像装置及び電子機器、全般に関する説明
2.本開示に係る技術が適用される撮像装置
 2-1.CMOSイメージセンサの構成例
 2-2.画素の回路構成例
 2-3.半導体チップ構造
  2-3-1.平置型の半導体チップ構造
  2-3-2.積層型の半導体チップ構造
 2-4.シングルスロープ型アナログ-デジタル変換器について
3.本開示の第1実施形態(CMOSイメージセンサの例)
 3-1.第1の実施形態(容量部以降の回路構成を差動回路の構成とする例)
  3-1-1.カラムアンプの構成例
  3-1-2.容量マルチプレクサの構成例
  3-1-3.逐次比較型アナログ-デジタル変換器の構成例
  3-1-4.カラム信号処理系の回路動作
 3-2.実施例2(カラム信号処理系の実装例)
  3-2-1.電源電圧と使用トランジスタについて
  3-2-2.レベルダイヤグラムについて
  3-2-3.タイミングについて
  3-2-4.カラムアンプの構成例
  3-2-5.逐次比較型アナログ-デジタル変換器の構成例
4.本開示の第2実施形態(間接TOF方式距離画像センサの例)
 4-1.システム構成例
 4-2.画素の回路構成例
5.変形例
6.応用例
7.本開示に係る技術の適用例
 7-1.本開示の電子機器(撮像装置の例)
 7-2.移動体への応用例
8.本開示がとることができる構成
*** クレーム-02 
<本開示の撮像装置及び電子機器、全般に関する説明>
 本開示の撮像装置及び電子機器にあっては、カラムアンプ部について、非反転入力端子に信号線の電位が入力される増幅器、一端が増幅器の出力端子に接続され、他端が増幅器の反転入力端子に接続された第1スイッチ、一端が増幅器の出力端子に接続された第2スイッチ、一端が第2スイッチの他端に接続され、他端が第1スイッチの他端及び増幅器の反転入力端子に接続された第1容量素子、第1容量素子の他端及び増幅器の反転入力端子と基準電位ノードとの間に接続された第2容量素子、及び、一端が第2スイッチの他端及び第1容量素子の一端に接続され、他端に基準電圧が印加される第3スイッチを有する構成とすることができる。
*** クレーム-03 
 上述した好ましい構成を含む本開示の撮像装置及び電子機器にあっては、カラムアンプ部において、リセット成分の入力時は、第1スイッチを閉状態としてリセット成分を第1容量素子及び第2容量素子にチャージするとともに、第3スイッチを閉状態として基準電圧を取り込み、次に、第1スイッチ及び第3スイッチを開状態、第2スイッチを閉状態として、第1容量素子及び第2容量素子と増幅器とによって非反転増幅回路を構成し、信号成分の入力時、第1容量素子と第2容量素子との共通接続ノードの電圧が、信号成分と同じ電圧になるようにフィードバックをかける構成とすることができる。
*** クレーム-04 
 また、上述した好ましい構成を含む本開示の撮像装置及び電子機器にあっては、容量部について、カラムアンプ部から入力される画素信号をチャージする正側容量素子、及び、基準電圧をチャージする負側容量素子を含む差動回路の構成となっており、正側容量素子及び負側容量素子の各入力端を選択的に短絡する差動間短絡用スイッチ(第4スイッチ)を有する構成とすることができる。
*** クレーム-05、クレーム-06 
 また、上述した好ましい構成を含む本開示の撮像装置及び電子機器にあっては、差動間短絡用スイッチ(第4スイッチ)について、正側容量素子にチャージされた画素信号、及び、負側容量素子にチャージされた基準電圧を逐次比較型アナログ-デジタル変換部に伝送するとき、正側容量素子及び負側容量素子の各入力端を短絡する構成とすることができる。また、容量部について、カラムアンプ部から入力される画素信号を、スイッチトキャパシタによるサンプリングによって保持する構成とすることができる。
*** クレーム-07 
 また、上述した好ましい構成を含む本開示の撮像装置及び電子機器にあっては、逐次比較型アナログ-デジタル変換部の1つの逐次比較型アナログ-デジタル変換器につき、複数本の信号線の各電位を、複数本の信号線に対応した複数のカラムアンプ及び容量部を通して多重化して処理する構成とすることができる。
<本開示に係る技術が適用される撮像装置>
 先ず、本開示に係る技術が適用される撮像装置の基本的な構成について説明する。ここでは、撮像装置として、X-Yアドレス方式の撮像装置の一種であるCMOS(Complementary Metal Oxide Semiconductor)イメージセンサを例に挙げて説明する。CMOSイメージセンサは、CMOSプロセスを応用して、又は、部分的に使用して作製されたイメージセンサである。
[CMOSイメージセンサの構成例]
 図1は、本開示に係る技術が適用される撮像装置の一例であるCMOSイメージセンサの基本的な構成の概略を示すブロック図である。
 本例に係るCMOSイメージセンサ10は、画素アレイ部11及び当該画素アレイ部11の周辺回路部を有する構成となっている。画素アレイ部11は、光電変換素子を含む画素(画素回路)20が行方向及び列方向に、即ち、行列状に2次元配置されて成る。ここで、行方向とは、画素行の画素20の配列方向を言い、列方向とは、画素列の画素20の配列方向を言う。画素20は、光電変換を行うことにより、受光した光量に応じた光電荷を生成し、蓄積する。
 画素アレイ部11の周辺回路部は、例えば、行選択部12、定電流源部13、カラムアンプ部14、アナログ-デジタル変換部15、水平転送走査部16、信号処理部17、及び、タイミング制御部18等によって構成されている。
 画素アレイ部11において、行列状の画素配列に対し、画素行毎に画素制御線31(311~31m)が行方向に沿って配線されている。また、画素列毎に信号線32(321~32n)が列方向に沿って配線されている。画素制御線31は、画素20から信号を読み出す際の駆動を行うための駆動信号を伝送する。図1では、画素制御線31について1本の配線として図示しているが、1本に限られるものではない。画素制御線31の一端は、行選択部12の各行に対応した出力端に接続されている。
 以下に、画素アレイ部11の周辺回路部の各構成要素、即ち、行選択部12、定電流源部13、カラムアンプ部14、アナログ-デジタル変換部15、水平転送走査部16、信号処理部17、及び、タイミング制御部18について説明する。
 行選択部12は、シフトレジスタやアドレスデコーダなどによって構成され、画素アレイ部11の各画素20の選択に際して、画素行の走査や画素行のアドレスを制御する。この行選択部12は、その具体的な構成については図示を省略するが、一般的に、読出し走査系と掃出し走査系の2つの走査系を有する構成となっている。
 読出し走査系は、画素20から画素信号を読み出すために、画素アレイ部11の画素20を行単位で順に選択走査する。画素20から読み出される画素信号はアナログ信号である。掃出し走査系は、読出し走査系によって読出し走査が行われる読出し行に対して、その読出し走査よりもシャッタスピードの時間分だけ先行して掃出し走査を行う。
 この掃出し走査系による掃出し走査により、読出し行の画素20の光電変換素子から不要な電荷が掃き出されることによって当該光電変換素子がリセットされる。そして、この掃出し走査系による不要電荷の掃き出す(リセットする)ことにより、所謂、電子シャッタ動作が行われる。ここで、電子シャッタ動作とは、光電変換素子の光電荷を捨てて、新たに露光を開始する(光電荷の蓄積を開始する)動作のことを言う。
 定電流源部13は、画素列毎に信号線321~32nの各々に接続された、例えばMOSトランジスタから成る複数の負荷電流源I(図2参照)を備えており、行選択部12によって選択走査された画素行の各画素20に対し、信号線321~32nの各々を通してバイアス電流を供給する。
 カラムアンプ部14は、画素列毎に信号線321~32nの各々に対応して設けられたカラムアンプの集合から成る。そして、カラムアンプ部14の各カラムアンプは、画素アレイ部11の各画素20から読み出され、信号線321~32nを通して供給される画素信号を増幅してアナログ-デジタル変換部15に供給する。
 アナログ-デジタル変換部15は、画素アレイ部11の画素列に対応して設けられた(例えば、画素列毎に設けられた)複数のアナログ-デジタル変換器の集合から成る、列並列型のアナログ-デジタル変換部である。アナログ-デジタル変換部15は、画素列毎に信号線321~32nの各々を通して出力され、カラムアンプ部14で増幅されたアナログの画素信号をデジタルの画素信号に変換する。
 水平転送走査部16は、シフトレジスタやアドレスデコーダなどによって構成され、画素アレイ部11の各画素20の信号の読出しに際して、画素列の走査や画素列のアドレスを制御する。この水平転送走査部16による制御の下に、アナログ-デジタル変換部15でデジタル信号に変換された画素信号が画素列単位で水平転送線Lに読み出される。
 信号処理部17は、水平転送線Lを通して供給されるデジタルの画素信号に対して、所定の信号処理を行い、2次元の画像データを生成する。例えば、信号処理部17は、縦線欠陥や点欠陥の補正、パラレル-シリアル変換、圧縮、符号化、加算、平均、及び、間欠動作などのデジタル信号処理を行う。信号処理部17は、生成した画像データを、本CMOSイメージセンサ10の出力信号として後段の装置に出力する。
 タイミング制御部18は、各種のタイミング信号、クロック信号、及び、制御信号等を生成し、これら生成した信号を基に、行選択部12、定電流源部13、カラムアンプ部14、アナログ-デジタル変換部15、水平転送走査部16、及び、信号処理部17等の駆動制御を行う。
[画素の回路構成例]
 図2は、画素(画素回路)20の構成の一例を示す回路図である。画素20は、光電変換素子として、例えば、フォトダイオード21を有している。画素20は、フォトダイオード21の他に、転送トランジスタ22、リセットトランジスタ23、増幅トランジスタ24、及び、選択トランジスタ25を有する構成となっている。
 転送トランジスタ22、リセットトランジスタ23、増幅トランジスタ24、及び、選択トランジスタ25の4つのトランジスタとしては、例えば、NチャネルのMOS型電界効果トランジスタ(Field Effect Transistor;FET)を用いている。但し、ここで例示した4つのトランジスタ22~25の導電型の組み合わせは一例に過ぎず、これらの組み合わせに限られるものではない。
 この画素20に対して、先述した画素制御線31として、複数の画素制御線が同一画素行の各画素20に対して共通に配線されている。これら複数の画素制御線は、行選択部12の各画素行に対応した出力端に画素行単位で接続されている。行選択部12は、複数の画素制御線に対して転送信号TRG、リセット信号RST、及び、選択信号SELを適宜出力する。
 フォトダイオード21は、アノード電極が低電位側電源(例えば、グランド)に接続されており、受光した光をその光量に応じた電荷量の光電荷(ここでは、光電子)に光電変換してその光電荷を蓄積する。フォトダイオード21のカソード電極は、転送トランジスタ22を介して増幅トランジスタ24のゲートと電気的に接続されている。ここで、増幅トランジスタ24のゲートが電気的に繋がった領域は、フローティングディフュージョン(浮遊拡散領域/不純物拡散領域)FDである。フローティングディフュージョンFDは、電荷を電圧に変換する電荷電圧変換部である。
 転送トランジスタ22のゲートには、高レベル(例えば、VDDレベル)がアクティブとなる転送信号TRGが行選択部12から与えられる。転送トランジスタ22は、転送信号TRGに応答して導通状態となることで、フォトダイオード21で光電変換され、当該フォトダイオード21に蓄積された光電荷をフローティングディフュージョンFDに転送する。
 リセットトランジスタ23は、高電位側電源電圧VDDのノードとフローティングディフュージョンFDとの間に接続されている。リセットトランジスタ23のゲートには、高レベルがアクティブとなるリセット信号RSTが行選択部12から与えられる。リセットトランジスタ23は、リセット信号RSTに応答して導通状態となり、フローティングディフュージョンFDの電荷を電圧VDDのノードに捨てることによってフローティングディフュージョンFDをリセットする。
 増幅トランジスタ24は、ゲートがフローティングディフュージョンFDに、ドレインが高電位側電源電圧VDDのノードにそれぞれ接続されている。増幅トランジスタ24は、フォトダイオード21での光電変換によって得られる信号を読み出すソースフォロワの入力部となる。すなわち、増幅トランジスタ24は、ソースが選択トランジスタ25を介して信号線32に接続される。そして、増幅トランジスタ24と、信号線32の一端に接続される負荷電流源Iとは、フローティングディフュージョンFDの電圧を信号線32の電位に変換するソースフォロワを構成している。
 選択トランジスタ25は、ドレインが増幅トランジスタ24のソースに接続され、ソースが信号線32に接続されている。選択トランジスタ25のゲートには、高レベルがアクティブとなる選択信号SELが行選択部12から与えられる。選択トランジスタ25は、選択信号SELに応答して導通状態となることで、画素20を選択状態として増幅トランジスタ24から出力される信号を信号線32に伝達する。
 尚、上記の回路例では、画素20の回路構成として、転送トランジスタ22、リセットトランジスタ23、増幅トランジスタ24、及び、選択トランジスタ25から成る、即ち4つのトランジスタ(Tr)から成る4Tr構成を例に挙げたが、これに限られるものではない。例えば、選択トランジスタ25を省略し、増幅トランジスタ24に選択トランジスタ25の機能を持たせる3Tr構成とすることもできるし、必要に応じて、トランジスタの数を増やした5Tr以上の回路構成とすることもできる。
[半導体チップ構造]
 上記の構成のCMOSイメージセンサ10の半導体チップ構造としては、平置型の半導体チップ構造及び積層型の半導体チップ構造を例示することができる。平置型の半導体チップ構造及び積層型の半導体チップ構造のいずれのCMOSイメージセンサ10においても、画素20について、配線層が配される側の基板面を表面(正面)とするとき、その反対側の裏面側から照射される光を取り込む裏面照射型の画素構造とすることができるし、表面側から照射される光を取り込む表面照射型の画素構造とすることができる。以下に、平置型の半導体チップ構造及び積層型の半導体チップ構造について説明する。
(平置型の半導体チップ構造)
 図3は、CMOSイメージセンサ10の平置型の半導体チップ構造の概略を模式的に示す平面図である。図3に示すように、平置型の半導体チップ構造は、画素20が行列状に配置されて成る画素アレイ部11と同じ半導体チップ(半導体基板)41上に、画素アレイ部11の周辺の回路部分を形成した構造となっている。具体的には、画素アレイ部11と同じ半導体チップ41上に、行選択部12、定電流源部13、カラムアンプ部14、アナログ-デジタル変換部15、水平転送走査部16、信号処理部17、及び、タイミング制御部18等が形成されている。
(積層型の半導体チップ構造)
 図4は、CMOSイメージセンサ10の積層型のチップ構造の概略を模式的に示す分解斜視図である。図4に示すように、積層型の半導体チップ構造は、1層目の半導体チップ42及び2層目の半導体チップ43の少なくとも2つの半導体チップ(半導体基板)が積層された構造となっている。この積層構造において、画素アレイ部11は、1層目の半導体チップ42に形成される。また、行選択部12、定電流源部13、カラムアンプ部14、アナログ-デジタル変換部15、水平転送走査部16、信号処理部17、及び、タイミング制御部18等の回路部分は、2層目の半導体チップ43に形成される。そして、1層目の半導体チップ42と2層目の半導体チップ43とは、Cu-Cu接続などの接続部(VIA)44A,44Bを通して電気的に接続される。
 この積層構造のCMOSイメージセンサ10によれば、1層目の半導体チップ42として画素アレイ部11を形成できるだけの大きさ(面積)のもので済むため、1層目の半導体チップ42のサイズ(面積)、ひいては、チップ全体のサイズを小さくできる。更に、1層目の半導体チップ42には画素20の作製に適したプロセスを適用でき、2層目の半導体チップ43には回路部分の作製に適したプロセスを適用できるため、CMOSイメージセンサ10の製造に当たって、プロセスの最適化を図ることができるメリットもある。特に、回路部分の作製に当たっては、先端プロセスの適用が可能になる。
 尚、ここでは、1層目の半導体チップ42及び2層目の半導体チップ43が積層されて成る2層構造の積層構造を例示したが、積層構造としては、2層構造に限られるものではなく、3層以上の構造とすることもできる。そして、3層以上の積層構造の場合、行選択部12、定電流源部13、カラムアンプ部14、アナログ-デジタル変換部15、水平転送走査部16、信号処理部17、及び、タイミング制御部18等の回路部分については、2層目以降の半導体チップに分散して形成することができる。
[シングルスロープ型アナログ-デジタル変換器について]
 上記の構成のCMOSイメージセンサ10において、アナログ-デジタル変換部15におけるアナログ-デジタル変換器としては、例えば、シングルスロープ型アナログ-デジタル変換器が一般的に使われてきた。ここで、シングルスロープ型アナログ-デジタル変換器について説明する。
 シングルスロープ型アナログ-デジタル変換器では、ある傾斜を持って線形に変化する傾斜状波形(ランプ波)の信号が基準信号として用いられる。シングルスロープ型アナログ-デジタル変換器は、画素20から読み出されるアナログの画素信号とランプ波の基準信号とを比較し、その差を増幅・クリップすることによって位相信号へ変調した後にサンプリングしてデジタル信号への変換を行う。このシングルスロープ型アナログ-デジタル変換器には、次のような問題点がある。
・問題点1
 位相信号へ変調する際の遅延によってオフセットが生じる。よって、画素20の固定パターンノイズを除去するためのデジタルCDS(Correlated Double Sampling;相関二重サンプリング)が不可欠となり、2回のアナログ-デジタル変換とオートゼロのための追加の時間が必要となる。
・問題点2
 画素信号とランプ波の基準信号とがクロスするときに、貫通電流やキックバックが生じる。また、クロスする時間は画素信号レベルに依存し、他の画素列のアナログ-デジタル変換器への干渉を生じる。
・問題点3
 アナログ-デジタル変換時の電圧の保持に、画素20の増幅トランジスタ24を利用するため、変換時間が画素信号の読み出し速度を制限する。
 問題点1について、シングルスロープ型アナログ-デジタル変換器では、オフセットを防ぐために入力アンプのオートゼロ(入出力ショートによるオフセットキャンセル)を行う。これにより、DC的なオフセットについては除去することができる。しかし、ランプ波の基準信号は時間的に変化するため、遅延によるAC的なオフセットについては除去することができない。遅延については帯域を広げることで減らすことができる反面、出力位相雑音が増えてしまう。
 問題点2については、明るい部分から暗い部分への干渉現象(ストリーキング)のメカニズムとして知られている。シングルスロープ型アナログ-デジタル変換器では、複数の画素列が同じ明るさのとき、一斉にスイッチングが起こってしまうため干渉の影響が大きくなってしまう。
 問題点3については、信号線32の電位のサンプリングを行わないことで生じる問題である。画素20の増幅トランジスタ24では、負荷容量の大きい信号線32を駆動するために比較的大きい電力が消費されている。従って、アナログ-デジタル変換時に、電圧を保持するためだけに増幅トランジスタ24を使用するのは得策ではない。
*** クレーム-01 
<本開示の第1実施形態>
 本開示の第1実施形態に係る撮像装置(一例であるCMOSイメージセンサ)では、アナログ-デジタル変換部15の各アナログ-デジタル変換器として、逐次比較(SAR)型アナログ-デジタル変換器を用いている。逐次比較型アナログ-デジタル変換器は、上記の種々の問題点を有するシングルスロープ型アナログ-デジタル変換器に比べて、高速・低消費電力での動作が可能である。本実施形態では、逐次比較型アナログ-デジタル変換器を含むカラム信号処理系について、より高速・低消費電力での動作を可能とする。
 図5は、本開示の第1実施形態に係る撮像装置の一例であるCMOSイメージセンサの構成の概略を示すブロック図である。
 本実施形態に係るCMOSイメージセンサ10において、カラムアンプ部14は、オートゼロ電圧を規定する基準電圧を用いて、画素アレイ部11の各画素20から信号線32を通して入力される信号成分(所謂、D相電圧)と、輝度成分であるリセット成分(所謂、P相電圧)との差分をとる処理(CDS処理)を行い、その差分を画素信号として出力する。カラムアンプ部14の後段には、容量部19が設けられている。
*** クレーム-01、クレーム-06 
 容量部19は、カラムアンプ部14から出力される単相信号を、カラムアンプ部14の出力のゼロ電圧を規定する基準電圧を用いて差動化する。そして、容量部19は、カラムアンプ部14から入力される画素信号を、例えば、スイッチトキャパシタによるサンプリングによって保持する。容量部19の後段には、逐次比較型アナログ-デジタル変換部15Aが設けられている。逐次比較型アナログ-デジタル変換部15Aは、シングルスロープ型アナログ-デジタル変換器に比べて、高速・低消費電力での動作が可能な複数の逐次比較(SAR)型アナログ-デジタル変換器から成り、容量部19から入力されるアナログの画素信号をデジタルの画素信号に変換する。
*** クレーム-01 
 本実施形態に係るCMOSイメージセンサ10によれば、逐次比較型アナログ-デジタル変換部15Aの各逐次比較型アナログ-デジタル変換器は、二分探索を行うため,単体でみると原理的にはスイープを行うシングルスロープ型アナログ-デジタル変換器よりも効率的である。また、従来、アナログ-デジタル変換器において2回のアナログ-デジタル変換で行われていたCDS処理を、アナログ回路系のカラムアンプ部14で行うようにすることで、アナログ-デジタル変換回数を半減できる。更に、スイッチトキャパシタによるサンプリングを導入することにより、信号線の電位VSLはアナログ-デジタル変換を待つ必要がなくなり、サンプリングが信号線32の電位VSLによらず常に一斉に行われるために、スイッチングによる干渉の影響も小さい。
 また、容量部19において、カラムアンプ部14から出力される単相信号を差動化することにより、容量部19以降の回路構成を差動回路の構成とすることができる。これにより、本実施形態に係るCMOSイメージセンサ10にあっては、回路の対称性に優れたカラム信号処理系を構築することができる。
 以下に、第1実施形態に係るCMOSイメージセンサ10におけるカラム信号処理系、具体的には、カラムアンプ部14、容量部19、及び、アナログ-デジタル変換部15を含むカラム信号処理系の具体的な実施例について説明する。
*** クレーム-01 
[第1の実施形態]
 第1の実施形態は、容量部以降の回路構成を差動回路の構成とする例である。図6は、第1の実施形態に係るカラム信号処理系の構成の概略を示す回路図である。カラムアンプ部14は、画素列数と同じ数だけ設けられた画素列数分のカラムアンプ140から成り、容量部19も画素列数分の容量マルチプレクサ190から成る。尚、容量部19及びカラムアンプ140が、一つのアナログ-デジタル変換器に対して複数配置されることで、マルチプレクサとして動作することになる。
*** クレーム-02 
(カラムアンプの構成例)
 カラムアンプ140は、増幅器141、第1スイッチ142、第2スイッチ143、第3スイッチ144、第1容量素子145、及び、第2容量素子146を有する構成となっている。第1容量素子145(以下、単に、「容量素子145」と記述する)は、容量値CFを有しており、第2容量素子146(以下、単に、「容量素子146」と記述する)は、容量値CSを有している。
*** クレーム-02 
 増幅器141は、信号線32の電位VSL(VSL0~VSL7)を非反転(+)入力端子の入力とする。第1スイッチ142(以下、単に、「スイッチ142」と記述する)は、一端が増幅器141の出力端子に接続され、他端が増幅器141の反転(-)入力端子に接続されており、スイッチ制御信号Spの極性(高レベル/低レベル)に応じて、オン(閉)/オフ(開)動作を行う。
*** クレーム-02 
 第2スイッチ143(以下、単に、「スイッチ143」と記述する)は、一端が増幅器141の出力端子に接続されている。容量素子145は、一端がスイッチ143の他端に接続され、他端がスイッチ142の他端及び増幅器141の反転入力端子に接続されている。容量素子146は、容量素子145の他端及び増幅器141の出力端子と基準電位(例えば、グランド)のノードとの間に接続されている。スイッチ143は、スイッチ制御信号SDの極性に応じて、オン/オフ動作を行う。
*** クレーム-02 
 すなわち、スイッチ143、容量素子145、及び、容量素子146は、増幅器141の出力端子と基準電位(例えば、グランド)のノードとの間に、その順に直列に接続されている。また、容量素子145と容量素子146との共通接続ノードN1とスイッチ142の他端とは、電気的に接続されている。
*** クレーム-02 
 第3スイッチ144(以下、単に、「スイッチ144」と記述する)は、一端がスイッチ143と容量素子145との共通接続ノードN2に接続されており、スイッチ制御信号SVRの極性に応じて、オン/オフ動作を行う。スイッチ144の他端には、カラムアンプ140の出力のゼロ電圧を規定する基準電圧VRが印加される。すなわち、スイッチ144は、スイッチ143と容量素子145との共通接続ノードN2に、基準電圧VRを選択的に与える。
*** クレーム-04 
(容量マルチプレクサの構成例)
 容量部19を構成する容量マルチプレクサ190は、差動回路の構成となっている。差動回路の正側は、スイッチ191_P、容量素子195_P、スイッチ193_P、及び、スイッチ194_Pによって構成されている。差動回路の負側は、スイッチ191_M、容量素子195_M、スイッチ193_M、及び、スイッチ194_Mによって構成されている。
 正側のスイッチ191_Pは、スイッチ制御信号SINの極性(高レベル/低レベル)に応じてオン(閉)/オフ(開)動作を行い、オン状態になることで、一端に印加されるカラムアンプ140の出力電圧CAoutをサンプリングする。負側のスイッチ191_Mは、スイッチ制御信号SINの極性に応じてオン/オフ動作を行い、オン状態になることで、一端に印加される基準電圧VRをサンプリングする。
 ここで、負側のスイッチ191_Mによってサンプリングされた基準電圧VRは、差動回路の負側の電圧として用いられる。このように、容量マルチプレクサ190では、負側のスイッチ191_Mによってサンプリングした基準電圧VRを基準として用いることで、カラムアンプ140から入力される単相信号を差動化することができる。その結果、容量部19以降の回路構成を差動回路の構成とすることができる。
 差動回路の正側において、スイッチ191_Pの他端には、容量素子195_Pの一端が接続され、容量素子195_Pの他端には、スイッチ193_P及びスイッチ194_Pの各一端が接続されている。スイッチ191_Pによってサンプリングされたカラムアンプ140の出力電圧CAoutは、容量素子195_Pにチャージされる。スイッチ193_Pの他端には、後述する逐次比較型アナログ-デジタル変換器150におけるプリアンプ151の出力コモンモード参照電圧VCMが印加される。スイッチ194_Pの他端は、容量マルチプレクサ190の正側の出力端となる。
 差動回路の負側において、スイッチ191_Mの他端には、容量素子195_Mの一端が接続され、容量素子195_Mの他端には、スイッチ193_M及びスイッチ194_Mの各一端が接続されている。スイッチ191_Mによってサンプリングされた基準電圧VRは、容量素子195_Mにチャージされる。スイッチ193_Mの他端には、出力コモンモード参照電圧VCMが印加される。スイッチ194_Mの他端は、容量マルチプレクサ190の負側の出力端となる。
*** クレーム-04、クレーム-05 
 正側の容量素子195_P及び負側の容量素子195_Mの各一端間には、差動間短絡用スイッチ(第4スイッチ)192が接続されている。差動間短絡用スイッチ192は、スイッチ制御信号SVMIの極性に応じてオン/オフ動作を行う。具体的には、容量素子195_Pに保持したカラムアンプ140の出力電圧CAout、及び、容量素子195_Mに保持した基準電圧VRを、スイッチ194_P及びスイッチ194_Mを通して後段の逐次比較型アナログ-デジタル変換器150に転送する際に、差動間短絡用スイッチ192は、オン状態となって容量素子195_Pの一端(入力端)と容量素子195_Mの一端(入力端)とを短絡する。
*** クレーム-04 
 このように、差動間短絡用スイッチ192によって、容量素子195_P及び容量素子195_Mの入力端間(差動間)を短絡することにより、カラムアンプ140側の電圧(同相成分)の影響が、容量素子195_P及び容量素子195_M以降の回路に及ばないようにすることができる。因みに、カラムアンプ140側では相対的に高い電圧が用いられる。一方、容量マルチプレクサ190の後段の逐次比較型アナログ-デジタル変換器150には、低電圧で、高速動作が要求される。従って、逐次比較型アナログ-デジタル変換器150に要求される低電圧で、高速動作を保証するためには、差動間短絡用スイッチ192の作用により、カラムアンプ140側の相対的に高い電圧の影響が、容量素子195_P及び容量素子195_M以降の回路に及ばないようにすることが重要である。
 図6に示すカラム信号処理系において、差動間短絡用スイッチ192の作用により、カラムアンプ140及び容量マルチプレクサ190を含む回路部分Xの各スイッチについては、相対的に膜厚が厚い厚膜の高電圧トランジスタを用いて構成することができ、容量マルチプレクサ190の各スイッチについては、相対的に膜厚が薄い薄膜の低電圧トランジスタを用いて構成することができる。但し、差動間短絡用スイッチ192の作用により、カラムアンプ140側の相対的に高い電圧の影響が、容量素子195_P及び容量素子195_M以降の回路に及ばない訳であることから、原理的には、容量マルチプレクサ190の容量素子195_P及び容量素子195_M以降の各スイッチについても、相対的に膜厚が薄い薄膜の低電圧トランジスタを用いて構成することができる。
 また、差動間短絡用スイッチ192の作用により、カラムアンプ140側の電圧(同相成分)を低電圧へシフトすることにより、逐次比較型アナログ-デジタル変換器150において、耐圧の低いコンパレータを使うことができる。更に、アナログ-デジタル変換時に、差動容量(容量アレイ部CDAC)がカラムアンプ140や他の基準電圧から切り離されることで、アナログ-デジタル変換の高速動作が可能になる。
(逐次比較型アナログ-デジタル変換器の構成例)
 逐次比較型アナログ-デジタル変換器150は、プリアンプ151、コンパレータ152、SARロジック部153、デジタル-アナログ変換器(DAC)154、及び、容量アレイ部CDACを有する構成となっている。
 プリアンプ151は、増幅器1511及びスイッチ1512_P,1512_Mから成る。増幅器1511は、容量マルチプレクサ190から供給されるアナログ電圧PAIN+(カラムアンプ140の出力電圧CAout)を反転(-)入力端子の入力とし、アナログ電圧PAIN-(基準電圧VR)を非反転(+)入力端子の入力とする。
 スイッチ1512_P,1512_Mは、オートゼロ(入出力ショートによるオフセットキャンセル)のスイッチであり、スイッチ制御信号SAZの極性に応じて、オン/オフ動作を行う。スイッチ1512_Pは、プリアンプ151の反転入力端子と出力端子との間に接続されている。スイッチ1512_Mは、プリアンプ151の非反転入力端子と出力端子との間に接続されている。
 コンパレータ152は、コンパレータクロックCKIに同期して、プリアンプ151を通して供給されるアナログ電圧と比較基準電圧との大小を比較し、その比較結果をSARロジック部153に供給する。
 SARロジック部153は、例えば、Nビットの逐次比較レジスタから成り、クロックCKに同期して、各ビット毎にコンパレータ152の比較結果を格納し、アナログ-デジタル変換後のNビットのデジタル値DOUTとして出力する。
 デジタル-アナログ変換器154及び容量アレイ部155は、Nビットの容量性デジタル-アナログ変換器を構成している。そして、この容量性デジタル-アナログ変換器において、SARロジック部153から出力されるNビットのデジタル値DOUTをアナログ電圧に変換し、増幅器1511の反転(-)入力端子にその入力として与える。
(カラム信号処理系の回路動作)
 続いて、上記の構成のカラムアンプ140、容量マルチプレクサ190、及び、逐次比較型アナログ-デジタル変換器150から成る第1の実施形態に係るカラム信号処理系の回路動作について、図7のタイミングチャートを用いて説明する。
 図7のタイミングチャートには、スイッチ制御信号SP,SVR、スイッチ制御信号SD,SIN、SVMA、及び、スイッチ制御信号SVMI,SSUMのタイミング関係を示している。図7のタイミングチャートには、更に、信号線32の電位VSL、基準電圧VR、及び、カラムアンプ140の出力電圧CAoutの波形図を図示している。
*** クレーム-03 
 期間T1では、信号線32の電位VSLがリセット成分(P相電圧)の状態で、スイッチ制御信号SP及びスイッチ制御信号SVRが高レベルになることで、スイッチ142及びスイッチ144がオン(閉)状態となる。これにより、リセット成分(P相電圧)が容量素子145及び容量素子146にチャージされる。このとき、スイッチ143と容量素子145との共通接続ノードN2の電圧は、基準電圧VRと同じ電圧となる。リセット成分(P相電圧)は、画素20によって大きくばらつく(精度が低い)が、基準電圧VRは、カラムアンプ140側で生成されるために、ばらつきが小さい(精度が高い)。
*** クレーム-03 
 次に、期間T2では、スイッチ制御信号SP及びスイッチ制御信号SVRが低レベルになることで、スイッチ142及びスイッチ144がオフ(開)状態となり、同時に、スイッチ制御信号SDが高レベルになることで、スイッチ143がオン(閉)状態となる。このとき、容量素子145及び容量素子146と増幅器141とによって非反転増幅回路が構成され、カラムアンプ140の出力電圧Voutは、基準電圧VRとほぼ同じ電圧となる。
*** クレーム-03 
 信号線32の電位VSLが、輝度成分である信号成分(D相電圧)に降下すると、容量素子145と容量素子146との共通接続ノードN1の電圧が、信号成分(D相電圧)と同じ電圧になるようにフィードバックがかかる。
 この一連の動作により、リセット成分(P相電圧)と信号成分(D相電圧)との差分をとるCDS処理が行われ、カラムアンプ140の出力電圧Voutは、信号線32の電位VSLの(CF+CS)/CF倍に増幅された電圧だけ降下する。基準電圧VRのばらつきが小さいため、カラムアンプ140のゲインを大きくとることができる。
*** クレーム-03 
 期間T2では、スイッチ制御信号SDと同時に、スイッチ制御信号SIN及びスイッチ制御信号SVMAが高レベルになる。これにより、スイッチ191_P,191_Mがオン状態となり、カラムアンプ140の出力電圧Vout及び基準電圧VRを差動電圧としてサンプリングし、容量素子195_P,195_Mにチャージする。
 このとき同時に、スイッチ193_P,193_Mがオン状態となり、容量素子195_P,195_Mの出力側(逐次比較型アナログ-デジタル変換器150側)に出力コモンモード参照電圧VCMを与える。出力コモンモード参照電圧VCMは、逐次比較型アナログ-デジタル変換器150におけるプリアンプ151の同相電圧と同じ電圧に設定される。
 その後、期間T3では、スイッチ制御信号SVMI及びスイッチ制御信号SSUMが高レベルになることで、スイッチ192及びスイッチ194_P,194_Mがオン状態となり、容量素子195_P,195_Mにチャージされた差動電圧が、逐次比較型アナログ-デジタル変換器150に転送される。
 スイッチ192がオン状態となることで、容量素子195_P,195_Mの入力側は差動ショートとなるが、同相成分としては開放状態になる。そのため、入力の同相成分は、逐次比較型アナログ-デジタル変換器150へは伝わらない。これにより、逐次比較型アナログ-デジタル変換器150におけるプリアンプ151を高速な薄膜の低電圧トランジスタで構成することができる。
*** クレーム-03 
 逐次比較型アナログ-デジタル変換器150に容量素子195_P,195_Mにチャージされた差動電圧が伝送されたら、コンパレータ152にコンパレータクロックCKIを入力して比較を開始する。コンパレータ152の比較結果は、SARロジック部153を介してデジタル-アナログ変換器154にフィードバックされ、プリアンプ151の入力が0Vになるように二分探索される。最終的に、容量マルチプレクサ190の容量素子195_P,195_Mに蓄積された電荷がほぼ全て容量アレイ部CDACへ転送され、そのときのデジタル-アナログ変換器154の入力が出力コードとして得られる。
[実施例2]
 実施例2は、カラム信号処理系の実装例であり、容量部19(容量マルチプレクサ190)以降が差動回路の構成の例である。図8は、実施例2に係るカラム信号処理系の構成の概略を示す回路図である。
*** クレーム-07 
 実施例2に係るカラム信号処理系では、逐次比較型アナログ-デジタル変換部15Aの1つの逐次比較型アナログ-デジタル変換器150につき、複数本の信号線32、例えば8本の信号線32の各電位VSL0~VSL7を、8本の信号線32に対応した8つ並列に設けられたカラムアンプ140、及び、4つ並列に設けられた容量マルチプレクサ190を通して多重化して処理する構成を例に挙げて説明する。
 また、実施例2に係るカラム信号処理系では、8本の信号線32の各電位VSL0~VSL7を、前半の4つの信号線32の電位VSL0~VSL3、及び、後半の4つの信号線32の電位VSL4~VSL7に分けて扱う。
 図8には、カラムアンプ140、容量マルチプレクサ190、及び、逐次比較型アナログ-デジタル変換器150で用いる基準電圧を生成する基準電圧生成部160を図示している。基準電圧生成部160は、第1アンプ部161、第2アンプ部162、及び、第3アンプ部163から成る。カラムアンプ140は、D相で信号を出力する。よって、3つの容量素子(195_A、195_B、195_C)でのサンプリングはD相のみで行われる。一方、コンパレータ152での比較はP相とD相の両方で連続的に行われる。信号線32の電位VSL0~VSL3は、直後のP相でアナログ-デジタル変換され、信号線32の電位VSL4~VSL7は、2回目のD相でアナログ-デジタル変換される。2回目のD相では、容量素子195_Bがアナログ-デジタル変換に使われているため、利用可能な容量素子195_C及び容量素子195_Aに、そのときのカラムアンプ140の出力をサンプリングする。このとき、容量素子195_Aには、前回と異なる信号線32の電位VSL4~VSL7がサンプリングされる。この動作を繰り返すことで、特定の信号線32の電位VSLに対して同じ容量素子が使用されなくなる。
 第1アンプ部161は、カラムアンプ140の出力のゼロ電圧を規定する基準電圧VRを生成する。基準電圧VRは、電圧線L1を通してカラムアンプ140に供給される。第2アンプ部162は、プリアンプ151の出力コモンモード参照電圧VCMを、電圧線L2を通して容量マルチプレクサ190に供給する。出力コモンモード参照電圧VCMは、電圧線L3を通して逐次比較型アナログ-デジタル変換器150にも供給される。第3アンプ部163は、容量アレイ部(CDAC)155で使用する高電圧VH、中電圧VM、低電圧VLを生成する。高電圧VH、中電圧VM、低電圧VLは、電圧線L4,L5,L6を通して容量アレイ部(CDAC)155に供給される。
 P相時は、カラムアンプ140の容量素子145をチャージし、D相では、容量素子145にチャージされた電荷は、容量マルチプレクサ(CMUX)190の負側の信号入力として使用される。容量マルチプレクサ190は差動で構成されている。入力側のスイッチ192_A、スイッチ192_B、及び、スイッチ192_Cは、コンパレータ152の比較時に差動間をショートし、共通ノードには接続されない。こうすることで、コンパレータ152の比較時に容量マルチプレクサ190の入力側が完全に分離されるため、逐次比較型アナログ-デジタル変換器150内の容量アレイ部(CDAC)155のセトリングを早くすることができる。
 容量マルチプレクサ190の出力側のスイッチ193_AP,193_AM、スイッチ193_BP,193_BM、及び、スイッチ193_CP,193_CMは、出力コモンモード参照電圧VCMを伝送する電圧線L2に接続されており、サンプリング時にオン状態となる。出力コモンモード参照電圧VCMは、プリアンプ151の入力動作電位と同じ電圧になる。
 第3アンプ部163で生成される高電圧VH、中電圧VM、及び、低電圧VLは、容量アレイ部(CDAC)155の基準電圧である。容量アレイ部(CDAC)155は、コンパレータ152の比較時に高速動作するため、高電圧VHと低電圧VLは高速に応答可能、且つ、低インピーダンスであることが求められる。
(電源電圧と使用トランジスタについて)
 ここでは、電源電圧の仕様については、例えば、2.8V(VDD_H)及び0.8V(VDD_L)を想定している。2.8Vは、画素20で使われる電圧と同じであり、高耐圧トランジスタの回路に使用する。0.8Vは、ロジック回路で使われる電圧を想定している。信号線32の電位VSLは最大2V以上になるため、低耐圧トランジスタでは扱うことができない。そのため、カラムアンプ140については、高耐圧トランジスタで構成する必要がある。逐次比較型アナログ-デジタル変換器150については、高速な比較動作が必要なため、低耐圧トランジスタで構成されることが望ましい。但し、低耐圧トランジスタの大きなリーク電流には注意が必要である。
 逐次比較型アナログ-デジタル変換器150のプリアンプ151において、オートゼロ(入出力ショートによるオフセットキャンセル)のスイッチ1512のチャネルリークは線形性に影響を及ぼすため、チャネル長Lを長くするなどの対策が必要である。コンパレータ152の入力差動対のゲートリークも特性に影響を及ぼす可能性があるため、場合によっては、高耐圧トランジスタを使用してリークを抑える必要がある。
 また、逐次比較型アナログ-デジタル変換器150のループの間に複数の電源がからむと異電源間のばらつきを吸収するための動作マージンが必要となるため、単一電源で構成することが重要である。高電圧VH/低電圧VLについては、容量アレイ部(CDAC)155を構成するスイッチに十分ゲート電圧をかけたいため、それぞれ0.8V(VDD_L)及びグランドと同じ電圧としている。カラムアンプ140の出力は電圧が高いため、容量マルチプレクサ190を構成するスイッチについては全て高耐圧トランジスタで構成している。
(レベルダイヤグラムについて)
 図9にレベルダイヤグラムを示す。信号線32の電位VSLの電圧範囲はセンサ仕様によって異なるが、ここでは、2Vを基準として明度に応じて電圧が下がり、最大で450mV電圧降下するとしている。この信号線32の電位VSLをカラムアンプ140で増幅する訳であるが、ゲインが高いほど後段の逐次比較型アナログ-デジタル変換器150のノイズが抑制され、カラムアンプ140自体のノイズも減るため、なるべく大きなゲインをとることが望ましい。但し、電源電圧は2.8Vであるため、それに回路の動作範囲とマージンを加えた範囲内にカラムアンプ140の出力を抑える必要がある。
 ここでは、ゲインを4倍とし、2.8Vに対して1.8Vをレンジとしている。逐次比較型アナログ-デジタル変換器150の入力は、差動電圧で負側入力が参照電圧固定となる。画素20が明度ゼロのときは、差動0Vが逐次比較型アナログ-デジタル変換器150の入力となり、明るくなる(即ち、信号線32の電位VSLが下がる)につれてマイナスの差動電圧が加わる。逐次比較型アナログ-デジタル変換器150の出力コードとの関係は、差動1.8Vが3/4フルスケールに相当するようにし、0V入力のときに7/8フルスケールが出力されるようにしている。
 小さい入力信号に対しては、ゲインを上げることで入力換算ノイズを減らすことができる。図9のように、ゲインを8倍(×8)にすると入力レンジは半分になる。更に、ゲインを上げることもできるが、入力換算ノイズは、カラムアンプ140の寄与分が支配的であるために、8倍よりも大きいゲインにすることのメリットは小さい。
(タイミングについて)
 カラム信号処理系を駆動する動的な信号は全て差動信号として実装する必要がある。カラムアンプ140側がスイッチの場合は差動信号を使ってインジェクションをキャンセルするダミーを用意する。このことが守られていないと、制御信号のリターンが共通電源などを経由してしまい、予期せぬ干渉を生じかねない。また、スイッチのゲート信号(スイッチ制御信号)に関しては、違う位相のスイッチが同時にオンしない(ノンオーバーラップ)ようにする必要がある。
 更に、カラムアンプ140のスイッチ143のスイッチ制御信号SD、並びに、容量マルチプレクサ190のスイッチ191_0X(X=A,B,C)のスイッチ制御信号SIN0X、スイッチ191_1Xのスイッチ制御信号SIN1X、及び、スイッチ1931_Xのスイッチ制御信号SVMIXに関しては他のスイッチ制御信号より、ノンオーバーラップを保った上で遅延させることが望ましい。
 以下に、カラムアンプ140及び逐次比較型アナログ-デジタル変換器150の具体的な構成例について説明する。
(カラムアンプの構成例)
 ここでは、カラムアンプ140の具体的な構成の一例として、電流リユースカラムアンプ(Current Reuse Column Amp:CRCA)を例示する。電流リユースカラムアンプは、信号線32のバイアス電流を利用して電圧増幅を行うため、低消費電力な非反転カラムアンプを実現できる。電流リユースカラムアンプの構成の一例の回路図を図10に示す。
 電流リユースカラムアンプ1400は、電流増幅トランジスタ1401、電流源トランジスタ1402,1403、カスコードトランジスタ1404,1405、スイッチ1406,1407,1408、基準側容量素子1409、及び、帰還容量素子1410を有する構成となっている。
 ここでは、電流増幅トランジスタ1401、電流源トランジスタ1403、及び、カスコードトランジスタ1404として、例えば、PチャネルのMOS型電界効果トランジスタを用いている。また、電流源トランジスタ1402及びカスコードトランジスタ1405として、例えば、NチャネルのMOS型電界効果トランジスタを用いている。
 電流増幅トランジスタ1401と電流源トランジスタ1402とは、信号線32と基準電位(例えば、グランド)のノードとの間にその順に直列に接続されている。すなわち、電流増幅トランジスタ1401は、ソース電極が信号線32に接続されている。電流源トランジスタ1402のゲート電極には、所定のバイアス電圧nbiasが印加される。これにより、電流源トランジスタ1402は、所定のバイアス電圧nbiasに応じた一定のバイアス電流を信号線32に流す。
 電流源トランジスタ1403、カスコードトランジスタ1404、及び、カスコードトランジスタ1405は、電源電圧VDDのノードと電流源トランジスタ1402のドレイン電極との間に、その順に直列に接続されている。電流源トランジスタ1403のゲート電極には、所定のバイアス電圧pbiasが印加され、カスコードトランジスタ1404のゲート電極には、所定のバイアス電圧pcasが印加され、カスコードトランジスタ1405のゲート電極には、所定のバイアス電圧ncasが印加される。
 スイッチ1406は、電流増幅トランジスタ1401のゲート電極と、カスコードトランジスタ1404のドレイン電極(カスコードトランジスタ1405のドレイン電極)との間に接続されており、スイッチ制御信号SPの極性に応じて、オン(閉)/オフ(開)動作を行う。
 基準側容量素子1409は、電流増幅トランジスタ1401のゲート電極と基準電位(例えば、グランド)のノードとの間に接続されている。帰還容量素子1410は、一端が電流増幅トランジスタ1401のゲート電極に接続されている。
 スイッチ1047は、帰還容量素子1410の他端と、カスコードトランジスタ1404のドレイン電極(カスコードトランジスタ1405のドレイン電極)との間に接続されており、スイッチ制御信号SDの極性に応じて、オン/オフ動作を行う。
 スイッチ1408は、一端が帰還容量素子1410とスイッチ1047との共通接続ノードN11に接続されており、スイッチ制御信号SVRの極性に応じて、オン/オフ動作を行う。スイッチ1408の他端には、基準電圧VRに印加される。これにより、スイッチ1408は、スイッチ制御信号SVRによる制御の下に、共通接続ノードN11に対して選択的に基準電圧VRを与える。
 上記の構成によって、電流増幅トランジスタ1401のソース電極が(+)入力端となり、ゲート電極が(-)入力端となり、カスコードトランジスタ1404とカスコードトランジスタ1405との共通接続ノードN12が出力端となる電流リユースカラムアンプ1400が構成されている。電流増幅トランジスタ1401は、信号線32のバイアス電流を利用するため、効率よく電圧増幅を行うことができる。
 上記の構成の電流リユースカラムアンプ1400において、図6に示すカラムアンプ140との対応関係では、スイッチ1406が図6のスイッチ142に対応し、スイッチ1407が図6のスイッチ143に対応し、スイッチ1408が図6のスイッチ144に対応している。また、基準側容量素子1409が容量値CSの容量素子146に対応し、帰還容量素子1410が容量値CFの容量素子145に対応している。
(逐次比較型アナログ-デジタル変換器の構成例)
 逐次比較型アナログ-デジタル変換器150は、電力効率に優れている。逐次比較型アナログ-デジタル変換器150の詳細回路図を図11に示す。
 逐次比較型アナログ-デジタル変換器150の回路は、完全な差動で構成されている。一般的な逐次比較型アナログ-デジタル変換器は、入力電圧をサンプリングする入力容量とDAC容量(CDAC)とが一体化していることが多いが、ここでは多重化のためにそれらを分離している。
 図11には、容量マルチプレクサ190の役割を兼ねる入力容量部(以下、便宜上、「容量マルチプレクサ190」と記述する)についても図示している。ここでは、入力容量部(190)について、簡単のために、複数あるうちの1個だけ図示している。
 容量マルチプレクサ190において、サンプリング時は、スイッチ191_P,191_M及びスイッチ193_P,193_Mがオン(閉)状態となって容量素子195_P,195_Mに電荷をチャージする。アナログ-デジタル変換時は、スイッチ192及びスイッチ194_P,194_Mがオン(閉)状態となることで、容量マルチプレクサ190が逐次比較型アナログ-デジタル変換器150と接続される。
 スイッチ192は、特定の参照電位に接続されずに、差動間をショートするだけになっている。これは入力の同相電位によってプリアンプ151側の同相電位が変動することを防ぐためである。プリアンプ151の出力同相電位と出力コモンモード参照電圧VCMとを合わせておけば、プリアンプ151の入力同相電位が常に出力コモンモード参照電圧VCMと同じになる。
 カラムアンプ140の出力はシングルエンドであるため、入力の同相電位は信号依存で変動するが、プリアンプ151の入力同相電位は変わらないため線形性が良くなる。入力側は、カラムアンプ140の出力(2.4V~0.6V)と基準電圧VR(2.4V)であるが、出力コモンモード参照電圧VCMは0.5V程度で固定となるため,低電圧(VDD_L)のプリアンプ151を使うことができる。
 入力電圧は1.8Vと高いが、電荷転送時はDAC容量(CDAC)と直列に接続されるため、プリアンプ151の入力電圧は十分減衰される。このように、同相・差動電圧を管理することで、容量マルチプレクサ190以外は、相対的に膜厚が薄い薄膜の低電圧トランジスタで構成することができる。因みに、容量マルチプレクサ190のスイッチは全て、相対的に膜厚が厚い膜厚の高電圧トランジスタで構成される。
 逐次比較型アナログ-デジタル変換器150の比較ループ内のプリアンプ151、コンパレータ152、SARロジック部153、及び、DAC容量(CDAC)のスイッチが全て同電源電圧、且つ、同じ膜厚のトランジスタを使用することにより、高速動作が可能となる。
 また、SARロジック部153の動作時にカラムアンプ140や、高電圧VH/低電圧VL以外のリファレンスノードから完全に分離されていることも重要である。これらのノードはそれほど高速・低インピーダンスではないため、DAC容量(CDAC)のセトリングに影響を与えないようにする必要がある。
 図11に示すように、DAC容量(CDAC)の容量アレイは、6-4-4でグループ分けされた14個の容量で構成されている。最初の6bitのグループをMSBとし、真ん中の4bitのグループをLSB1とし、最後の4bitのグループをLSB0する。各グループはブリッジ容量素子によって分離され、1容量素子当たりの重みが変わる。MSBの重みを1とすると、LSB1は1/8、LSB0は1/32となっている。
 LSB1の中の最上位ビットとMSBの最下位ビットの重みは同じ値となっており、冗長を持たせている。LSB0も同様に最上位ビットを重複させる。冗長は計2ビットであるため、最終的に、逐次比較型アナログ-デジタル変換器150のビット精度は12BITとなる。冗長は上位ビットのセトリング不足を補うためと、ブリッジ容量素子のばらつきによる非線形性を補正するためにある。
 冗長の範囲を広げるにはなるべく上位で冗長ビットを挿入すべきであるが、容量素子が増えるトレードオフがあるし、ノイズも増える。また、ブリッジ容量素子のばらつきを補正するには、冗長ビットは各グループ内に挿入される必要がある。
 ブリッジ容量素子の容量値CBは、下位グループとの重みの比をα(<1)、下位グループの総容量値(更に下位の実質容量値を含む)をCTLとすると、次式で表すことができる。
  CB=CTL/{(1/α)-1}
 ブリッジ容量素子は、下位ビット全体の重みを決めているため、単位容量素子との比がずれると非線形性をもたらす。従って、なるべくずれないように実装する必要があるが、整数倍でない上にレイアウトの連続性もないため、ブリッジ容量素子と単位容量素子との比を合わせることは難しい。そこで、グループ毎に、非整数の補正係数を乗算するデジタル補正を行うことが必要であると思われる。
<本開示の第2実施形態>
 図6の容量部190内の2つの容量素子195_P、195_Mは、それぞれ異なる電荷を保持しており、信号線VSLからカラムアンプ140の後段側を見ると、これら容量素子195_P、195_Mはカラムアンプ140のゲイン倍の負荷として作用し、VSLのセトリング時間が長くなる。そこで、以下に説明する第2実施形態による容量部190は、セトリング時間を短縮する対策を施したものである。
 図12は第2の実施形態による容量部19の内部構成を示す回路図である。図12では、容量部19の前段側に接続されるカラムアンプ140と、容量部19の後段側に接続される逐次比較型アナログ-デジタル変換器150を省略しているが、図12の容量部19には、図6と同様のカラムアンプ140と逐次比較型アナログ-デジタル変換器150が接続可能である。
 図12の容量部19は、第1ノードn1と、第2ノードn2と、正側容量素子195_Pと、負側容量素子195_Mと、第4スイッチ192と、第5スイッチ196と、第6スイッチ194_Pと、第7スイッチ194_Mと、スイッチ191_Pと、スイッチ191_Mとを有する。
 第1ノードn1には、カラムアンプ140からの画素信号が供給される。第2ノードn2には、基準電圧VRが供給される。より詳細には、カラムアンプ140から入力される画素信号は、スイッチ191_Pを介して第1ノードn1に供給される。また、基準電圧VRは、スイッチ191_Mを介して第2ノードn2に供給される。
 正側容量素子195_P及び負側容量素子195_Mは、第1ノードn1と第2ノードn2の間に直列に接続されている。このように、第1ノードn1と第2ノードn2の間に正側容量素子195_P及び負側容量素子195_Mを直列に接続することで、信号線VSLからカラムアンプ140の後段側を見たときの実効容量を下げることができる。
 第4スイッチ192は、第1ノードn1及び第2ノードn2を選択的に短絡する。第4スイッチ192は、スイッチ制御信号SREFHの極性に応じて、オン/オフ動作を行う。第4スイッチ192が閉状態になると、第1ノードn1及び第2ノードn2は短絡する。
 第5スイッチ196は、正側容量素子195_P及び負側容量素子195_Mの共通接続ノードn5に、逐次比較型アナログ-デジタル変換器150のコモンモード参照電圧VMを選択的に印加する。第5スイッチ196が閉状態になると、共通接続ノードn5にコモンモード参照電圧VMが印加される。
 第6スイッチ194_Pは、第2ノードn2と逐次比較型アナログ-デジタル変換器150の第1入力端n11とを選択的に接続する。第7スイッチ194_Mは、第1ノードn1と逐次比較型アナログ-デジタル変換器150の第2入力端n12とを選択的に接続する。
 図13は図12の容量部19のタイミング図である。図13は、カラムアンプ140内のスイッチ142,144のスイッチ制御信号SP、SVR、スイッチ143のスイッチ制御信号SD、スイッチ191_P、191_Mのスイッチ制御信号SINH、第5スイッチ196のスイッチ制御信号SVMH、第4スイッチ192のスイッチ制御信号SREFH、スイッチ194_P、194_Mのスイッチ制御信号SSUMH、逐次比較型アナログ-デジタル変換器150内のスイッチ1512_P、1512_Mのスイッチ制御信号SRAZのタイミングを示している。
 図13の時刻t1~t2は、容量部19が信号線VSLの電圧をサンプリングする期間の直前である。時刻t2~t3は、容量部19が信号線VSLの電圧をサンプリングする期間である。時刻t3~t4は、容量部19が保持している画素信号を逐次比較型アナログ-デジタル変換器150に転送する期間の直前であり、プリアンプ151のオートゼロ(入出力ショートによるオフセットキャンセル)期間である。時刻t4~t5は、容量部19が保持している画素信号を逐次比較型アナログ-デジタル変換器150に転送する期間である。時刻t5~t6は逐次比較型アナログ-デジタル変換器150がAD変換を行う期間である。時刻t1~t6の一連の処理は、時刻t6以降に繰り返される。
 スイッチ191_P、191_Mは、時刻t1~t3の期間に閉状態になる。これにより、容量部19が信号線VSLの電圧をサンプリングする直前から、サンプリング期間が終了するまでの間、カラムアンプ140から出力された画素信号と基準電圧VRは容量部19に供給される。
 第5スイッチ196は、時刻t1~t2の期間と時刻t4~t5の期間に閉状態になる。これにより、容量部19が信号線VSLの電圧をサンプリングする期間の直前と、容量部19が保持している画素信号を逐次比較型アナログ-デジタル変換器150に転送する期間とに、正側容量素子195_Pと負側容量素子195_Mの共通接続ノードn5にコモンモード参照電圧VMが印加される。
 第4スイッチ192は、時刻t1~t2の期間に閉状態になる。これにより、容量部19が信号線VSLの電圧をサンプリングする期間の直前に、第1ノードn1と第2ノードn2は一時的に短絡される。
 スイッチ194_P、194_Mは、時刻t4~t5の期間に閉状態となり、容量部19が保持している画素信号は逐次比較型アナログ-デジタル変換器150に転送される。
 図12に破線で示すように、共通接続ノードn5には寄生容量Cp3が存在する。容量部19が信号線VSLの電圧をサンプリングする直前の時刻t1~t2に第5スイッチ196がオンして共通接続ノードn5にコモンモード参照電圧VMを印加するため、共通接続ノードn5の寄生容量Cp3の影響を受けることなく、共通接続ノードn5の電位を決定できる。
 しかしながら、図12に破線で示すように、第1ノードn1と第2ノードn2にも寄生容量Cp1、Cp2が存在する。これらの寄生容量Cp1、Cp2により、逐次比較型アナログ-デジタル変換器150に転送される差動信号のコモン電圧が入力信号依存性を持ってしまう。
 図14は、図12の容量部19から逐次比較型アナログ-デジタル変換器150に転送される差動信号の入力信号依存性を示す図である。図14の横軸は信号線VSLの電圧レベル、縦軸は差動信号の電圧レベルである。図14には、ノードn11、n12の差動信号compinp、compinnと、差動信号のコモン電圧commonの入力信号依存性を示すグラフgp1、gp2、gp3が図示されている。図示のように、信号線VSLの電圧レベルが大きいほど、差動信号compinp、compinnと、差動信号のコモン電圧commonの変動量が大きくなる。
 このように、図12の容量部19は、カラムアンプ140からの画素信号が入力される第1ノードn1と、基準電圧VRが供給される第2ノードn2との間に正側容量素子195_Pと負側容量素子195_Mを直列に接続するため、信号線VSLからカラムアンプ140の後段側を見たときの実効容量を小さくできる。ただし、第1ノードn1と第2ノードn2に寄生容量Cp1、Cp2が存在するため、その影響で、容量部19から逐次比較型アナログ-デジタル変換器150に転送された差動信号のコモン電圧が変動するおそれがあり、その対策について以下に説明する。
 (容量部19の第1変形例)
 図15は図12の第1変形例による容量部19の内部構成を示す回路図である。図15の容量部19は、正側容量素子195_Pと、負側容量素子195_Mと、第4aスイッチ192aと、第4bスイッチ192bと、第5aスイッチ196aと、第5bスイッチ196bと、第5cスイッチ196cと、第6スイッチ194_Pと、第7スイッチ194_Mと、スイッチ191_Pと、スイッチ191_Mとを有する。以下では、図12の容量部19との相違点を中心に説明する。
 第4aスイッチ192a及び第4bスイッチ192bは、第1ノードn1と第2ノードn2の間に直列に接続されている。第4aスイッチ192a及び第4bスイッチ192bが閉状態になると、第1ノードn1と第2ノードn2は短絡される。第4aスイッチ192aと第4bスイッチ192bの共通接続ノードn10には、逐次比較型アナログ-デジタル変換器150のコモンモード参照電圧VMが印加されている。
 第5aスイッチ196a、正側容量素子195_P、負側容量素子195_M、及び第5bスイッチ196bは、この順で、第1ノードn1及び第2ノードn2の間に直列に接続されている。第5aスイッチ196aと第5bスイッチ196bが閉状態になると、第1ノードn1と第2ノードn2の間に、正側容量素子195_Pと負側容量素子195_Mが直列に接続される。
 第5cスイッチ196cは、正側容量素子195_P及び負側容量素子195_Mの共通接続ノードn5に、コモンモード参照電圧VMを選択的に印加する。第5cスイッチ196cが閉状態になると、共通接続ノードn5にコモンモード参照電圧VMが印加される。
 図16は図15の容量部19のタイミング図である。図16は、図13のスイッチ制御信号SVMHの代わりに、スイッチ制御信号RST、SSHTを有する。スイッチ制御信号RSTは、第4aスイッチ192aと第4bスイッチ192bのオン/オフを制御する。スイッチ制御信号SSHTは、第5aスイッチ196aと第5bスイッチ196bのオン/オフを制御する。スイッチ制御信号SREFHは、第5cスイッチ196cのオン/オフを制御する。
 第4aスイッチ192aと第4bスイッチ192bは、時刻t1~t2の期間と時刻t3~t4の期間に閉状態になる。これにより、容量部19が信号線VSLの電圧をサンプリングする期間の直前と、容量部19が保持している画素信号を逐次比較型アナログ-デジタル変換器150に転送する期間の直前に、第1ノードn1と第2ノードn2は短絡され、かつこれらノードにはコモンモード参照電圧VMが印加される。
 第5aスイッチ196aと第5bスイッチ196bは、時刻t3~t4の期間に開状態になる。これにより、容量部19が保持している画素信号を逐次比較型アナログ-デジタル変換器150に転送する期間の直前に、第1ノードn1と正側容量素子195_Pとの接続が一時的に遮断され、かつ第2ノードn2と負側容量素子195_Mとの接続が一時的に遮断される。このとき、第4aスイッチ192aと第4bスイッチ192bが閉状態になるため、第1ノードn1と第2ノードn2の寄生容量Cp1、Cp2は、コモンモード参照電圧VMによりリセットされる。
 第5cスイッチ196cは、時刻t1~t2の期間と時刻t4~t5の期間に閉状態になる。これにより、容量部19が信号線VSLの電圧をサンプリングする期間の直前と、容量部19が保持している画素信号を逐次比較型アナログ-デジタル変換器150に転送する期間に、正側容量素子195_Pと負側容量素子195_Mの共通接続ノードn5にコモンモード参照電圧VMが印加される。
 図15の容量部19は、第4aスイッチ192aと第4bスイッチ192bを有するため、容量部19が信号線VSLの電圧をサンプリングする期間の直前と、容量部19が保持している画素信号を逐次比較型アナログ-デジタル変換器150に転送する期間の直前に、第1ノードn1及び第2ノードn2の寄生容量Cp1、Cp2をリセットして、第1ノードn1及び第2ノードn2をコモンモード参照電圧VMに設定することができる。これにより、第1ノードn1及び第2ノードn2の寄生容量Cp1、Cp2の影響による差動信号のコモン電圧の変動を抑制できる。
 また、図15の容量部19は、第4aスイッチ192aと第4bスイッチ192bを閉状態にして、第1ノードn1及び第2ノードn2の寄生容量をリセットしている期間は、第5aスイッチ196aと第5bスイッチ196bを開状態にして、正側容量素子195_Pと負側容量素子195_Mの電荷が第1ノードn1と第2ノードn2の寄生容量Cp1、Cp2の影響を受けないようにしている。
 しかしながら、正側容量素子195_Pと第5aスイッチ196aとの共通接続ノードn5の寄生容量Cp3と、負側容量素子195_Mと第5bスイッチ196bとの共通接続ノードn5の寄生容量Cp4の影響により、容量部19から逐次比較型アナログ-デジタル変換器150に転送された差動信号のコモン電圧が入力信号依存性を持ってしまう。
 図17は図15の容量部19から逐次比較型アナログ-デジタル変換器150に転送される差動信号の入力信号依存性を示す図である。図17には、ノードn11、n12の差動信号compinp、compinnと、差動信号のコモン電圧commonの入力信号依存性を示すグラフgp1、gp2、gp3が図示されている。図示のように、図15の容量部19は、図12の容量部19と同様に、差動信号のコモン電圧が入力信号依存性を持っている。なお、容量部19を構成する各回路素子や配線パターン等を工夫することで、寄生容量の大きさを調整することができる。よって、図15の回路構成の容量部19であっても、寄生容量Cp3、Cp4を低減することが可能である。
 このように、図15の容量部19は、第4aスイッチ192a、第4bスイッチ192b、第5aスイッチ196a、及び第5bスイッチ196bを設けることで、第1ノードn1及び第2ノードn2の寄生容量Cp1、Cp2をリセットし、かつ正側容量素子195_Pと負側容量素子195_M内の電荷が寄生容量Cp1、Cp2の影響を受けないようにすることができる。ただし、正側容量素子195_Pと第5aスイッチ196aとの共通接続ノードn5の寄生容量Cp3と、負側容量素子195_Mと第5bスイッチ196bとの共通接続ノードn5の寄生容量Cp4により、容量部19から逐次比較型アナログ-デジタル変換器150に転送された差動信号のコモン電圧が変動するおそれがあり、その対策について以下に説明する。
 (容量部19の第2変形例)
 図18は図12の第2変形例による容量部19の内部構成を示す回路図である。図18の容量部19は、正側容量素子195_Pと、負側容量素子195_Mと、第4aスイッチ192aと、第4bスイッチ192bと、第5aスイッチ196aと、第5bスイッチ196bと、第5cスイッチ196cと、第6スイッチ194_Pと、第7スイッチ194_Mと、スイッチ191_Pと、スイッチ191_Mとを有する。以下では、図15の容量部19との相違点を中心に説明する。
 正側容量素子195_P、第5aスイッチ196a、第5bスイッチ196b、及び負側容量素子195_Mは、この順で、第1ノードn1と第2ノードn2の間に直列に接続されている。このように、図18の容量部19は、図15の容量部19と比べて、正側容量素子195_Pと第5aスイッチ196aとの接続順序が逆であり、かつ負側容量素子195_Mと第5bスイッチ196bとの接続順序が逆である。
 図19は図18の容量部19のタイミング図である。図19を図16と比較すればわかるように、図18の容量部19は図15の容量部19と同じタイミングで動作するが、正側容量素子195_Pと第5aスイッチ196aとの接続順序を逆にし、かつ負側容量素子195_Mと第5bスイッチ196bとの接続順序を逆にすることで、異なる回路動作を行う。
 第4aスイッチ192aと第4bスイッチ192bが閉状態となって、第1ノードn1と第2ノードn2の寄生容量Cp1、Cp2をリセットしている期間(時刻t3~t4)に、第5aスイッチ196aと第5bスイッチ196bは開状態になる。これにより、正側容量素子195_Pと負側容量素子195_Mに保持される画素信号は、第1ノードn1と第2ノードn2の寄生容量Cp1、Cp2の影響を受けなくなる。
 また、時刻t1~t2の期間には、第5aスイッチ196a、第5bスイッチ196b、及び第5cスイッチ196cは閉状態になるため、正側容量素子195_Pと第5aスイッチ196aとの共通接続ノードn3、負側容量素子195_Mと第5bスイッチ196bとの共通接続ノードn4、及び第5aスイッチ196aと第5bスイッチ196bとの共通接続ノードn5の寄生容量Cp3、Cp4、Cp7をリセットでき、これらノードn3~n5をコモンモード参照電圧VMに設定できる。
 図20は図18の容量部19から逐次比較型アナログ-デジタル変換器150に転送される差動信号の入力信号依存性を示す図である。図20には、ノードn11、n12の差動信号compinp、compinnと、差動信号のコモン電圧commonの入力信号依存性を示すグラフgp1、gp2、gp3が図示されている。
 図18の容量部19は、第5aスイッチ196a、第5bスイッチ196b、及び第5cスイッチ196cを閉状態にすることで、寄生容量Cp3、Cp4、Cp7をリセットするため、差動信号のコモン電圧commonの入力信号依存性を図15の容量部19よりも小さくできる。
 (容量部19の第3変形例)
 上述した図15、及び図18の容量部19は、正側容量素子195Pと負側容量素子195Mのリセットと寄生容量のリセットを別々のタイミングで行っていたが、これらの動作を一括で行うことも可能である。
 図21は図12の第3変形例による容量部19の内部構成を示す回路図である。図21の容量部19は、正側容量素子195_Pと、負側容量素子195_Mと、第4aスイッチ192aと、第4bスイッチ192bと、第4cスイッチ192cと、第5aスイッチ196aと、第5bスイッチ196bと、第5cスイッチ196cと、第6スイッチ194_Pと、第7スイッチ194_Mと、スイッチ191_Pと、スイッチ191_Mとを有する。以下では、図18の容量部19との相違点を中心に説明する。
 図21の正側容量素子195_Pは、第1ノードn1と第3ノードn3の間に接続されている。負側容量素子195_Mは、第2ノードn2と第4ノードn4の間に接続されている。第1ノードn1には、カラムアンプ140からの画素信号が供給される。第2ノードn2には、基準電圧VRが供給される。
 第4aスイッチ192a及び第4bスイッチ192bは、第1ノードn1及び第2ノードn2の間に直列に接続されている。第4aスイッチ192aと第4bスイッチ192bが閉状態になると、第1ノードn1と第2ノードn2は短絡され、これらノードにはコモンモード参照電圧VMが印加される。
 第4cスイッチ192cは、第1ノードn1及び第2ノードn2の間に接続されている。第4cスイッチ192cが閉状態になると、第1ノードn1と第2ノードn2は短絡される。
 第5aスイッチ196aは、第3ノードn3及び第4ノードn4の間に接続される。第5aスイッチ196aが閉状態になると、第3ノードn3と第4ノードn4は短絡される。
 第5bスイッチ196b及び第5cスイッチ196cは、第3ノードn3及び第4ノードn4の間に直列に接続されている。第5bスイッチ196bと第5cスイッチ196cが閉状態になると、第5bスイッチ196bと第5cスイッチ196cは短絡され、これらノードにはコモンモード参照電圧VMが印加される。
 図22は図21の容量部19のタイミング図である。スイッチ制御信号RSTは、第4cスイッチ192cと、第5bスイッチ196bと、第5cスイッチ196cのオン/オフを制御する。スイッチ制御信号SVMHは、第5aスイッチ196aのオン/オフを制御する。スイッチ制御信号SREFHは、第4aスイッチ192aと第4bスイッチ192bのオン/オフを制御する。
 第4cスイッチ192c、第5bスイッチ196b、及び第5cスイッチ196cは、時刻t1~t2の期間に閉状態になる。第4cスイッチ192cが閉状態になると、第1ノードn1と第2ノードn2は短絡される。第5bスイッチ196bと第5cスイッチ196cが閉状態になると、第3ノードn3と第4ノードn4は短絡されて、コモンモード参照電圧VMが印加される。これにより、第3ノードn3の寄生容量Cp3と第4ノードn4の寄生容量Cp4がリセットされる。
 第5aスイッチ196aは、時刻t2~t3の期間に閉状態になり、第5aスイッチ196aが閉状態になると、第3ノードn3と第4ノードn4が短絡される。
 第4aスイッチ192aと第4bスイッチ192bは、時刻t4~t5の期間に閉状態になり、第4aスイッチ192aと第4bスイッチ192bが閉状態になると、第1ノードn1と第2ノードn2が短絡されて、コモンモード参照電圧VMが印加される。
 図21の容量部19は、正側容量素子195_Pの入出力を第1ノードn1と第3ノードn3とし、負側容量素子195_Mの入出力を第2ノードn2と第4ノードn4としており、正側容量素子195_Pと負側容量素子195_Mは、入出力ノードを別個に設けている。容量部19が信号線VSLの電圧をサンプリングする期間の直前に、第1ノードn1と第2ノードn2には基準電圧VRが供給されることから、第1ノードn1と第2ノードn2の寄生容量Cp1、Cp2は自動的にリセットされる。よって、寄生容量Cp1、Cp2をリセットする動作は不要となる。
 図23は図21の容量部19から逐次比較型アナログ-デジタル変換器150に転送される差動信号の入力信号依存性を示す図である。図23には、ノードn11、n12の差動信号compinp、compinnと、差動信号のコモン電圧commonの入力信号依存性を示すグラフgp1、gp2、gp3が図示されている。
 図21の容量部19は、正側容量素子195_Pと負側容量素子195_Mの入出力を別々のノードにするため、容量部19が信号線VSLの電圧をサンプリングする期間の直前に、第1ノードn1と第2ノードn2の寄生容量Cp1、Cp2をリセットすることができ、容量部19が保持している画素信号を逐次比較型アナログ-デジタル変換器150に転送する期間の直前に第3ノードn3と第4ノードn4の寄生容量Cp3、Cp4をリセットしなくてもよくなる。また、差動信号のコモン電圧の入力信号依存性も小さくできる。
 (容量部19の第4変形例)
 上述した各容量部19は、容量部19から逐次比較型アナログ-デジタル変換器150に画素信号を転送する際にコモンモード参照電圧VMを使用している。コモンモード参照電圧VMは、すべてのカラムで共通に使用されるため、他のカラムでのAD変換時にコモンモード参照電圧VMが変動すると、その影響を受けてしまう。そこで、画素信号の転送時にコモンモード参照電圧VMを使用しないようにすることも考えられる。
 図24は図12の第4変形例による容量部19の内部構成を示す回路図である。図24の容量部19は、正側容量素子195_Pと、負側容量素子195_Mと、第4スイッチ192と、第5aスイッチ196aと、第5bスイッチ196bと、第5cスイッチ196cと、第6スイッチ194_Pと、第7スイッチ194_Mと、スイッチ191_Pと、スイッチ191_Mとを有する。以下では、図21の容量部19との相違点を中心に説明する。
 第4スイッチ192は、第1ノードn1及び第2ノードn2の間に接続されている。第4スイッチ192が閉状態になると、第1ノードn1と第2ノードn2が短絡される。
 第5aスイッチ196a及び第5bスイッチ196bは、第3ノードn3及び第4ノードn4の間に直列に接続されている。第5aスイッチ196aと第5bスイッチ196bが閉状態になると、第3ノードn3と第4ノードn4が短絡される。
 第5cスイッチ196cは、第5aスイッチ196a及び第5bスイッチ196bの共通接続ノードn5に逐次比較型アナログ-デジタル変換器150のコモンモード参照電圧VMを選択的に印加する。第5cスイッチ196cが閉状態になると、共通接続ノードn5にコモンモード参照電圧VMが印加される。
 図25は図24の容量部19のタイミング図である。スイッチ制御信号SVMHは、第5aスイッチ196aと第5bスイッチ196bのオン/オフを制御する。スイッチ制御信号SREFHは、第4スイッチ192のオン/オフを制御する。
 第4スイッチ192は、時刻t1~t2の期間に閉状態になる。よって、容量部19が信号線VSLの電圧をサンプリングする期間の直前に、第1ノードn1と第2ノードn2は短絡される。
 また、第5aスイッチ196aと第5bスイッチ196bは、時刻t1~t3の期間に閉状態になり、第5cスイッチ196cは、時刻t1~t2の期間に閉状態になる。よって、容量部19が信号線VSLの電圧をサンプリングする期間の直前に、第3ノードn3と第4ノードn4は短絡されて、コモンモード参照電圧VMが印加される。これにより、第3ノードn3、第4ノードn4、及び共通接続ノードn5の寄生容量Cp3、Cp4、Cp7がリセットされる。
 一方、容量部19が保持している画素信号を逐次比較型アナログ-デジタル変換器150に転送する期間の直前(t3~t4)には、第3ノードn3と第4ノードn4にはコモンモード参照電圧VMが印加されない。よって、他のカラムのAD変換によりコモンモード参照電圧VMが変動しても、その影響を受けなくなる。ただし、第1ノードn1と第2ノードn2の寄生容量Cp1、Cp2の影響で、逐次比較型アナログ-デジタル変換器に転送された差動信号のコモン電圧が変動するおそれがある。
 図26は図24の容量部19から逐次比較型アナログ-デジタル変換器150に転送される差動信号の入力信号依存性を示す図である。図26には、ノードn11、n12の差動信号compinp、compinnと、差動信号のコモン電圧commonの入力信号依存性を示すグラフgp1、gp2、gp3が図示されている。
 図24の容量部19は、逐次比較型アナログ-デジタル変換器150に画素信号を転送する際に、第1ノードn1と第2ノードn2の寄生容量Cp1、Cp2の影響により、逐次比較型アナログ-デジタル変換器150に転送された差動信号のコモン電圧が変動するおそれがある。その対策について以下に説明する。
 (容量部19の第5変形例)
 図27は図12の第5変形例による容量部19の内部構成を示す回路図である。図27の容量部19は、正側容量素子195_Pと、負側容量素子195_Mと、第4aスイッチ192aと、第4bスイッチ192bと、第4cスイッチ192cと、第5aスイッチ196aと、第5bスイッチ196bと、第5cスイッチ196cと、第6スイッチ194_Pと、第7スイッチ194_Mと、スイッチ191_Pと、スイッチ191_Mとを有する。
 第4aスイッチ192a及び第4bスイッチ192bは、第1ノードn1及び第2ノードn2の間に直列に接続される。第4aスイッチ192a及び第4bスイッチ192bが閉状態になると、第1ノードn1及び第2ノードn2は短絡される。
 第4cスイッチ192cは、第4aスイッチ192a及び第4bスイッチ192bの共通接続ノードn10に基準電圧VRを選択的に印加する。第4cスイッチ192cが閉状態になると、共通接続ノードn10に基準電圧VRが印加される。
 第5aスイッチ196a及び第5bスイッチ196bは、第3ノードn3及び第4ノードn4の間に直列に接続される。第5aスイッチ196a及び第5bスイッチ196bが閉状態になると、第3ノードn3及び第4ノードn4は短絡される。
 第5cスイッチ196cは、第5aスイッチ196a及び第5bスイッチ196bの共通接続ノードn5に逐次比較型アナログ-デジタル変換器150のコモンモード参照電圧VMを選択的に印加する。第5cスイッチ196cが閉状態になると、共通接続ノードn5にコモンモード参照電圧VMが印加される。
 図28は図27の容量部19のタイミング図である。スイッチ制御信号RST1は、第5cスイッチ196cのオン/オフを制御する。スイッチ制御信号RST2は、第4cスイッチ192cのオン/オフを制御する。スイッチ制御信号SVHMは、第5aスイッチ196aと第5bスイッチ196bのオン/オフを制御する。スイッチ制御信号SREFHは、第4aスイッチ192aと第4bスイッチ192bのオン/オフを制御する。
 第4aスイッチ192a、第4bスイッチ192b、及び第4cスイッチ192cは、時刻t1~t2の期間に閉状態になる。よって、容量部19が信号線VSLの電圧をサンプリングする期間の直前に、第1ノードn1と第2ノードn2は短絡されて、これらノードに基準電圧VRが印加される。
 また、第5aスイッチ196a、第5bスイッチ196b、及び第5cスイッチ196cは、時刻t1~t2の期間に閉状態になる。よって、容量部19が信号線VSLの電圧をサンプリングする期間の直前に、第3ノードn3と第4ノードn4は短絡されて、これらノードにコモンモード参照電圧VMが印加される。
 これにより、容量部19が信号線VSLの電圧をサンプリングする期間の直前に、第1ノードn1の寄生容量Cp1と、第2ノードn2の寄生容量Cp2と、第4aスイッチ192a及び第4bスイッチ192bの共通接続ノードn10の寄生容量Cp8と、第3ノードn3の寄生容量Cp3と、第4ノードn4の寄生容量Cp4と、第5aスイッチ196a及び第5bスイッチ196bの共通接続ノードn5の寄生容量Cp7は、リセットされる。
 また、第4aスイッチ192a、第4bスイッチ192b、及び第4cスイッチ192cは、時刻t3~t4の期間にも閉状態になる。よって、容量部19が保持している画素信号を逐次比較型アナログ-デジタル変換器150に転送する期間の直前に、第1ノードn1と第2ノードn2は短絡されて、これらノードに基準電圧VRが印加され、上述した寄生容量Cp1、Cp2、Cp8がリセットされる。
 一方、時刻t3~t4の期間には、第5cスイッチ196cは開状態であり、第3ノードn3と第4ノードn4には、コモンモード参照電圧VMは印加されないが、第5aスイッチ196aと第5bスイッチは閉状態になるため、第3ノードn3と第4ノードn4は短絡され、寄生容量Cp3、Cp4がリセットされる。よって、容量部19が保持している画素信号を逐次比較型アナログ-デジタル変換器150に転送する期間内のコモン電圧の変動を抑制できる。
 図29は図27の容量部19から逐次比較型アナログ-デジタル変換器150に転送される差動信号の入力信号依存性を示す図である。図26には、ノードn11、n12の差動信号compinp、compinnと、差動信号のコモン電圧commonの入力信号依存性を示すグラフgp1、gp2、gp3が図示されている。
 図27の容量部19は、逐次比較型アナログ-デジタル変換器150に画素信号を転送する際にコモンモード参照電圧VMを使用しないため、他のカラムのAD変換の影響を受けることがなく、また、逐次比較型アナログ-デジタル変換器150に画素信号を転送する前に第1ノードn1と第2ノードn2の寄生容量Cp1、Cp2をリセットするため、差動信号のコモン電圧の入力信号依存性を小さくできる。
<本開示の第2実施形態>
 本開示の第2実施形態は、本開示に係る技術を間接TOF(Indirect-Time of Flight)方式距離画像センサに対して適用する例である。間接TOF方式距離画像センサは、光源から発せられた光が測定対象物(被写体)で反射し、その反射光の到達位相差の検出に基づいて光飛行時間を計測することによって、測定対象物までの距離を測定するセンサである。
[システム構成例]
 図30は、本開示の第2実施形態に係る間接TOF方式距離画像センサのシステム構成の一例を示すブロック図である。
 間接TOF方式距離画像センサ50は、光源60から発せられた光が測定対象物(被写体)で反射し、その反射光が入射する。間接TOF方式距離画像センサ50は、センサチップ51、及び、当該センサチップ51に対して積層された回路チップ52を含む積層構造を有している。この積層構造において、センサチップ51と回路チップ52とは、ビア(VIA)やCu-Cu接続などの接続部(図示せず)を通して電気的に接続される。尚、図30では、センサチップ51の配線と回路チップ52の配線とが、上記の接続部を介して電気的に接続された状態を図示している。
 センサチップ51上には、画素アレイ部53が形成されている。画素アレイ部53は、センサチップ51上に2次元のグリッドパターンで行列状(アレイ状)に配置された複数の画素54を含んでいる。画素アレイ部53において、複数の画素54はそれぞれ、入射光(例えば、近赤外光)を受光し、光電変換を行ってアナログ画素信号を出力する。画素アレイ部53には、画素列毎に、2本の信号線VSL1,VSL2が配線されている。画素アレイ部53の画素列の数をM(Mは、整数)とすると、合計で(2×M)本の信号線VSLが画素アレイ部53に配線されている。
 複数の画素54はそれぞれ、第1,第2のタップA,B(その詳細については後述する)を有している。2本の信号線VSL1,VSL2のうち、信号線VSL1には、対応する画素列の画素54の第1のタップAの電荷に基づくアナログの画素信号AINP1が出力される。また、信号線VSL2には、対応する画素列の画素54の第2のタップBの電荷に基づくアナログの画素信号AINP2が出力される。アナログの画素信号AINP1,AINP2については後述する。
 回路チップ52上には、行選択部55、カラム信号処理部56、出力回路部57、及び、タイミング制御部58が配置されている。行選択部55は、画素アレイ部53の各画素54を画素行の単位で駆動し、画素信号AINP1,AINP2を出力させる。行選択部55による駆動の下に、選択行の画素54から出力されたアナログの画素信号AINP1,AINP2は、2本の信号線VSL1,VSL2を通してカラム信号処理部56に供給される。
 カラム信号処理部56は、画素アレイ部53の画素列に対応して(例えば、画素列毎に)設けられた複数のアナログ-デジタル変換器(ADC)59を有する構成となっている。アナログ-デジタル変換器59は、信号線VSL1,VSL2を通して供給されるアナログの画素信号AINP1,AINP2に対して、アナログ-デジタル変換処理を施し、出力回路部57に出力する。出力回路部57は、カラム信号処理部56から出力されるデジタル化された画素信号AINP1,AINP2に対して所定の信号処理を施し、回路チップ52外へ出力する。
 タイミング制御部58は、各種のタイミング信号、クロック信号、及び、制御信号等を生成し、これらの信号を基に、行選択部55、カラム信号処理部56、及び、出力回路部57等の駆動制御を行う。
[画素の回路構成例]
 図31は、第2実施形態に係る間接TOF方式距離画像センサ50における画素54の回路構成の一例を示す回路図である。
 本例に係る画素54は、光電変換素子として、例えば、フォトダイオード541を有している。画素54は、フォトダイオード541の他、オーバーフロートランジスタ542、2つの転送トランジスタ543,544、2つのリセットトランジスタ545,546、2つの浮遊拡散層547,548、2つの増幅トランジスタ549、550、及び、2つの選択トランジスタ551,552を有する構成となっている。2つの浮遊拡散層547,548は、図30に示す第1,第2のタップA,B(以下、単に、「タップA,B」と記述する場合がある)に相当する。
 フォトダイオード541は、受光した光を光電変換して電荷を生成する。フォトダイオード541については、例えば、裏面照射型の画素構造とすることができる。但し、裏面照射型の構造に限られるものではなく、基板表面側から照射される光を取り込む表面照射型の構造とすることもできる。
 オーバーフロートランジスタ542は、フォトダイオード541のカソード電極と電源電圧VDDの電源ラインとの間に接続されており、フォトダイオード541をリセットする機能を持つ。具体的には、オーバーフロートランジスタ542は、行選択部55から供給されるオーバーフローゲート信号TRGに応答して導通状態になることで、フォトダイオード541で生成された電荷を、浮遊拡散層547,548にそれぞれシーケンシャルに転送する。
 第1,第2のタップA,Bに相当する浮遊拡散層547,548は、フォトダイオード541から転送された電荷を蓄積し、その電荷量に応じた電圧値の電圧信号に変換し、画素信号AINP1,AINP2を生成する。
 2つのリセットトランジスタ545,546は、2つの浮遊拡散層547,548のそれぞれと電源電圧VDDの電源ラインとの間に接続されている。そして、リセットトランジスタ545,546は、行選択部55から供給されるリセット信号RSTに応答して導通状態になることで、浮遊拡散層347,348のそれぞれから電荷を引き抜いて、電荷量を初期化する。
 2つの増幅トランジスタ549、550は、電源電圧VDDの電源ラインと2つの選択トランジスタ551,552のそれぞれとの間に接続されており、浮遊拡散層547,548のそれぞれで電荷から電圧に変換された電圧信号をそれぞれ増幅する。
 2つの選択トランジスタ551,552は、2つの増幅トランジスタ549、550のそれぞれと信号線VSL1,VSL2のそれぞれとの間に接続されている。そして、選択トランジスタ551,552は、行選択部55から供給される選択信号SELに応答して導通状態になることで、増幅トランジスタ549、550のそれぞれで増幅された電圧信号を、アナログの画素信号AINP1,AINP2として2本の信号線VSL1,VSL2に出力する。
 2本の信号線VSL1,VSL2は、画素列毎に、カラム信号処理部56内の1つのアナログ-デジタル変換器59の入力端に接続されており、画素列毎に画素54から出力されるアナログの画素信号AINP1,AINP2をアナログ-デジタル変換器59に伝送する。
 尚、画素54の回路構成については、光電変換によってアナログの画素信号AINP1,AINP2を生成することができる回路構成であれば、図31に例示した回路構成に限定されるものではない。
 上記の構成の間接TOF方式距離画像センサ50において、アナログ-デジタル変換器59を含むカラム信号処理部56に対して、本開示に係る技術を適用することができる。より具体的には、アナログ-デジタル変換器59を含むカラム信号処理部56として、第1実施形態の場合と同様に、カラムアンプ部14、容量部19、及び、逐次比較型アナログ-デジタル変換部15Aを含む、第1の実施形態又は実施例4に係るカラム信号処理系を用いることができる。
<変形例>
 以上、本開示に係る技術について、好ましい実施形態に基づき説明したが、本開示に係る技術は当該実施形態に限定されるものではない。上記の実施形態において説明したCMOSイメージセンサや間接TOF方式距離画像センサの構成、構造は例示であり、適宜、変更することができる。
<応用例>
 第1実施形態に係る撮像装置(CMOSイメージセンサ)は、例えば図32に示すように、可視光、赤外光、紫外光、X線等の光をセンシングする様々な装置に使用することができる。様々な装置の具体例について以下に列挙する。
 ・デジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
 ・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
 ・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
 ・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
 ・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
 ・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供され装置
 ・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
 ・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
<本開示に係る技術の適用例>
 本開示に係る技術は、様々な製品に適用することができる。以下に、より具体的な適用例について説明する。
*** クレーム-08 
[本開示の電子機器]
 ここでは、デジタルスチルカメラやビデオカメラ等の撮像システムや、携帯電話機などの撮像機能を有する携帯端末装置や、画像読取部に撮像装置を用いる複写機などの電子機器に適用する場合について説明する。
(撮像システムの例)
 図33は、本開示の電子機器の一例である撮像システムの構成例を示すブロック図である。
 図33に示すように、本例に係る撮像システム100は、レンズ群等を含む撮像光学系101、撮像部102、DSP(Digital Signal Processor)回路103、フレームメモリ104、表示装置105、記録装置106、操作系107、及び、電源系108等を有している。そして、DSP回路103、フレームメモリ104、表示装置105、記録装置106、操作系107、及び、電源系108がバスライン109を介して相互に接続された構成となっている。
 撮像光学系101は、被写体からの入射光(像光)を取り込んで撮像部102の撮像面上に結像する。撮像部102は、光学系101によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。DSP回路103は、一般的なカメラ信号処理、例えば、ホワイトバランス処理、デモザイク処理、ガンマ補正処理などを行う。
 フレームメモリ104は、DSP回路103での信号処理の過程で適宜データの格納に用いられる。表示装置105は、液晶表示装置や有機EL(electro luminescence)表示装置等のパネル型表示装置から成り、撮像部102で撮像された動画または静止画を表示する。記録装置106は、撮像部102で撮像された動画または静止画を、可搬型の半導体メモリや、光ディスク、HDD(Hard Disk Drive)等の記録媒体に記録する。
 操作系107は、ユーザによる操作の下に、本撮像システム100が持つ様々な機能について操作指令を発する。電源系108は、DSP回路103、フレームメモリ104、表示装置105、記録装置106、及び、操作系107の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。
 上記の構成の撮像システム100において、撮像部102として、先述した第1実施形態に係る撮像装置を用いることができる。第1実施形態に係る撮像装置において、特に、逐次比較型アナログ-デジタル変換器150は電力効率に優れているため、当該撮像装置を撮像部102として用いることで、撮像システム100の低消費電力化に寄与することができる。
[移動体への応用例]
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される撮像装置として実現されてもよい。
 図34は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図34に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図34の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図35は、撮像部12031の設置位置の例を示す図である。
 図35では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 尚、図35には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像装置からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像装置であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部7910,7912,7914,7916,7918や車外情報検出部7920,7922,7924,7926,7928,7930に適用され得る。そして、特に、逐次比較型アナログ-デジタル変換器150は電力効率に優れているため、本開示に係る技術を適用することにより、車両制御システムの低消費電力化に寄与することができる。
<本開示がとることができる構成>
 尚、本開示は、以下のような構成をとることもできる。
≪A.撮像装置≫
 [A-01]それぞれが光電変換素子を含む複数の画素を有する画素アレイ部と、
 前記画素アレイ部の各画素から信号線を通して入力されるリセット成分と信号成分との差分をとり、その差分を画素信号として出力するカラムアンプ部と、
 前記カラムアンプ部から入力される画素信号を保持する容量部と、
 前記容量部から入力されるアナログの前記画素信号をデジタル信号に変換する逐次比較型アナログ-デジタル変換部と、
を備え、
 前記容量部は、前記カラムアンプ部から入力される単相の前記画素信号を、前記画素信号のゼロ電圧を規定する基準電圧を用いて差動化する、
撮像装置。
 [A-02]前記カラムアンプ部は、
 非反転入力端子に信号線の電位が入力される増幅器と、
 一端が前記増幅器の出力端子に接続され、他端が前記増幅器の反転入力端子に接続された第1スイッチと、
 一端が前記増幅器の出力端子に接続された第2スイッチと、
 一端が前記第2スイッチの他端に接続され、他端が前記第1スイッチの他端及び増幅器の反転入力端子に接続された第1容量素子と、
 前記第1容量素子の他端及び前記増幅器の反転入力端子と基準電位ノードとの間に接続された第2容量素子と、
 一端が前記第2スイッチの他端及び前記第1容量素子の一端に接続され、他端に前記基準電圧が印加される第3スイッチと、
を有する、
上記[A-01]に記載の撮像装置。
 [A-03]前記カラムアンプ部は、
 前記リセット成分の入力時には、前記第1スイッチを閉状態として前記リセット成分を前記第1容量素子及び前記第2容量素子にチャージするとともに、前記第3スイッチを閉状態として前記基準電圧を前記第2スイッチの他端及び前記第1容量素子の一端に印加し、
 次に、前記第1スイッチ及び前記第3スイッチを開状態、前記第2スイッチを閉状態として、前記第1容量素子及び前記第2容量素子と前記増幅器とによって非反転増幅回路を構成し、
 前記信号成分の入力時には、前記第1容量素子と前記第2容量素子との共通接続ノードの電圧が、前記信号成分と同じ電圧になるようにフィードバックをかける、
上記[A-02]に記載の撮像装置。
 [A-04]前記容量部は、
 前記カラムアンプ部から入力される画素信号をチャージする正側容量素子、及び、前記基準電圧をチャージする負側容量素子を含む差動回路の構成となっており、
 前記正側容量素子及び前記負側容量素子の各入力端を選択的に短絡する第4スイッチを有する、
上記[A-02]又は上記[A-03]に記載の撮像装置。
 [A-05]前記第4スイッチは、前記正側容量素子にチャージされた画素信号、及び、前記負側容量素子にチャージされた前記基準電圧を前記逐次比較型アナログ-デジタル変換部に伝送するとき、前記正側容量素子及び前記負側容量素子の各入力端を短絡する、上記[A-04]に記載の撮像装置。
 [A-06]前記容量部は、前記カラムアンプ部から入力される画素信号を、前記スイッチトキャパシタによるサンプリングによって保持する、
上記[A-05]に記載の撮像装置。
 [A-07]前記逐次比較型アナログ-デジタル変換部の1つの逐次比較型アナログ-デジタル変換器につき、複数本の信号線の各電位を、複数本の信号線に対応した複数の前記カラムアンプ及び前記容量部を通して多重化して処理する、
上記[A-01]乃至上記[A-06]のいずれかに記載の撮像装置。
 [A-08]前記容量部は、
 前記カラムアンプ部から入力される画素信号が供給される第1ノードと、
 前記基準電圧が供給される第2ノードと、
 前記第1ノード及び前記第2ノードの間に直列に接続される正側容量素子及び負側容量素子と、
 前記第1ノード及び前記第2ノードを選択的に短絡する第4スイッチと、
 前記正側容量素子及び前記負側容量素子の共通接続ノードに、前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を選択的に印加する第5スイッチと、
 前記第2ノードと、前記逐次比較型アナログ-デジタル変換部の第1入力端とを選択的に接続する第6スイッチと、
 前記第1ノードと、前記逐次比較型アナログ-デジタル変換部の第2入力端とを選択的に接続する第7スイッチと、を備える、
上記[A-02]に記載の撮像装置。
 [A-09]前記第4スイッチは、前記容量部が前記画素信号の保持を開始する直前に一時的に閉状態となって、前記正側容量素子及び前記負側容量素子の各入力端を短絡し、
 前記第5スイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間とに一時的に閉状態となって、前記正側容量素子及び前記負側容量素子の共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加する、
上記[A-08]に記載の撮像装置。
 [A-10]前記容量部は、
 前記カラムアンプ部から入力される画素信号が供給される第1ノードと、
 前記基準電圧が供給される第2ノードと、
 前記第1ノード及び前記第2ノードの間に直列に接続可能な正側容量素子及び負側容量素子と、
 前記第1ノード及び前記第2ノードの間に直列に接続される第4aスイッチ及び第4bスイッチと、
 前記第1ノード及び前記第2ノードの間に直列に接続される、第5aスイッチ、正側容量素子、負側容量素子、及び第5bスイッチと、
 前記正側容量素子及び前記負側容量素子の共通接続ノードに、前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を選択的に印加する第5cスイッチと、
 前記第2ノードと、前記逐次比較型アナログ-デジタル変換部の第1入力端とを選択的に接続する第6スイッチと、
 前記第1ノードと、前記逐次比較型アナログ-デジタル変換部の第2入力端とを選択的に接続する第7スイッチと、を備える、
上記[A-02]に記載の撮像装置。
 [A-11]前記第4aスイッチ及び前記第4bスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する直前とに一時的に閉状態となって、前記第1ノード及び前記第2ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加し、
 前記第5aスイッチ及び前記第5bスイッチは、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する直前に一時的に開状態となって、前記第1ノードと前記正側容量素子との接続を遮断するとともに、前記第2ノードと前記負側容量素子との接続を遮断し、
 前記第5cスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間とに一時的に閉状態となって、前記正側容量素子及び前記負側容量素子の共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加する、
上記[A-10]に記載の撮像装置。
 [A-12]前記容量部は、
 前記カラムアンプ部から入力される画素信号が供給される第1ノードと、
 前記基準電圧が供給される第2ノードと、
 前記第1ノード及び前記第2ノードの間に直列に接続される第4aスイッチ及び第4bスイッチと、
 前記第1ノード及び前記第2ノードの間に直列に接続される、正側容量素子、第5aスイッチ、第5bスイッチ、及び負側容量素子と、
 前記第5aスイッチ及び前記第5bスイッチの共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を選択的に印加する第5cスイッチと、
 前記第2ノードと、前記逐次比較型アナログ-デジタル変換部の第1入力端とを選択的に接続する第6スイッチと、
 前記第1ノードと、前記逐次比較型アナログ-デジタル変換部の第2入力端とを選択的に接続する第7スイッチと、を備える、
上記[A-02]に記載の撮像装置。
 [A-13]前記第4aスイッチ及び前記第4bスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する直前とに一時的に閉状態となって、前記第1ノード及び前記第2ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加し、
 前記第5cスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間とに一時的に閉状態となって、前記正側容量素子及び前記負側容量素子の共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加し、
 前記第5aスイッチ及び前記第5bスイッチは、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する直前に一時的に開状態となって、前記正側容量素子及び前記負側容量素子の接続を遮断する、
上記[A-12]に記載の撮像装置。
 [A-14]前記容量部は、
 前記カラムアンプ部から入力される画素信号が供給される第1ノードと、
 前記基準電圧が供給される第2ノードと、
 前記第1ノードに一端が接続される正側容量素子と、
 前記正側容量素子の他端が接続される第3ノードと、
 前記第2ノードに一端が接続される負側容量素子と、
 前記負側容量素子の他端が接続される第4ノードと、
 前記第1ノード及び前記第2ノードの間に直列に接続される第4aスイッチ及び第4bスイッチと、
 前記第1ノード及び前記第2ノードの間に接続される第4cスイッチと、
 前記第3ノード及び前記第4ノードの間に接続される第5aスイッチと、
 前記第3ノード及び前記第4ノードの間に直列に接続される、第5bスイッチ及び第5cスイッチと、
 前記第3ノードと、前記逐次比較型アナログ-デジタル変換部の第1入力端とを選択的に接続する第6スイッチと、
 前記第4ノードと、前記逐次比較型アナログ-デジタル変換部の第2入力端とを選択的に接続する第7スイッチと、を備える、
上記[A-02]に記載の撮像装置。
 [A-15]前記第4aスイッチ及び前記第4bスイッチは、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間に一時的に閉状態となって、前記第1ノード及び前記第2ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加し、
 前記第4cスイッチは、前記容量部が前記画素信号の保持を開始する直前に閉状態となって、前記第1ノード及び前記第2ノードを短絡し、
 前記第5aスイッチは、前記容量部が前記画素信号を保持する期間に前記第3ノード及び前記第4ノードを短絡し、
 前記第5bスイッチ及び前記第5cスイッチは、前記容量部が前記画素信号の保持を開始する直前に閉状態となって、前記第3ノード及び前記第4ノードに前記基準電圧を印加する、
上記[A-14]に記載の撮像装置。
 [A-16]前記容量部は、
 前記カラムアンプ部から入力される画素信号が供給される第1ノードと、
 前記基準電圧が供給される第2ノードと、
 前記第1ノードに一端が接続される正側容量素子と、
 前記正側容量素子の他端が接続される第3ノードと、
 前記第2ノードに一端が接続される負側容量素子と、
 前記負側容量素子の他端が接続される第4ノードと、
 前記第1ノード及び前記第2ノードの間に接続される第4スイッチと、
 前記第3ノード及び前記第4ノードの間に直列に接続される第5aスイッチ及び第5bスイッチと、
 前記第5aスイッチ及び前記第5bスイッチの共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を選択的に印加する第5cスイッチと、
 前記第3ノードと、前記逐次比較型アナログ-デジタル変換部の第1入力端とを選択的に接続する第6スイッチと、
 前記第4ノードと、前記逐次比較型アナログ-デジタル変換部の第2入力端とを選択的に接続する第7スイッチと、を備える、
上記[A-02]に記載の撮像装置。
 [A-17]前記第4スイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間とに閉状態となって、前記第1ノード及び前記第2ノードを短絡し、
 前記第5aスイッチ及び前記第5bスイッチは、前記容量部が前記画素信号を保持する期間の直前から保持期間が終了するまで閉状態となって、前記第3ノード及び前記第4ノードを短絡し、
 前記第5cスイッチは、前記容量部が前記画素信号の保持を開始する直前に閉状態となって、前記第5aスイッチ及び前記第5bスイッチの共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を選択的に印加する、
上記[A-16]に記載の撮像装置。
 [A-18]前記容量部は、
 前記カラムアンプ部から入力される画素信号が供給される第1ノードと、
 前記基準電圧が供給される第2ノードと、
 前記第1ノードに一端が接続される正側容量素子と、
 前記正側容量素子の他端が接続される第3ノードと、
 前記第2ノードに一端が接続される負側容量素子と、
 前記負側容量素子の他端が接続される第4ノードと、
 前記第1ノード及び前記第2ノードの間に直列に接続される第4aスイッチ及び第4bスイッチと、
 前記第4aスイッチ及び前記第4bスイッチの共通接続ノードに前記基準電圧を選択的に印加する第4cスイッチと、
 前記第3ノード及び前記第4ノードの間に直列に接続される第5aスイッチ及び第5bスイッチと、
 前記第5aスイッチ及び前記第5bスイッチの共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を選択的に印加する第5cスイッチと、
 前記第3ノードと、前記逐次比較型アナログ-デジタル変換部の第1入力端とを選択的に接続する第6スイッチと、
 前記第4ノードと、前記逐次比較型アナログ-デジタル変換部の第2入力端とを選択的に接続する第7スイッチと、を備える、
上記[A-02]に記載の撮像装置。
 [A-19]前記第4aスイッチ及び前記第4bスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間の直前と、前記転送する期間とに一時的に閉状態となって、前記第1ノード及び前記第2ノードを短絡し、
 前記第4cスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間の直前とに一時的に閉状態となって、前記第4aスイッチ及び前記第4bスイッチの共通接続ノードに前記基準電圧を印加し、
 前記第5aスイッチ及び前記第5bスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部が前記画素信号を保持している期間とに一時的に閉状態となって、前記第3ノード及び前記第4ノードを短絡し、
 前記第5cスイッチは、前記容量部が前記画素信号の保持を開始する直前に一時的に閉状態となって、前記第5aスイッチ及び前記第5bスイッチの共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加する、
上記[A-18]に記載の撮像装置。
≪B.電子機器≫
[B-01]光電変換されたデジタル信号を出力する撮像装置と、
 前記デジタル信号に基づいて信号処理を行う信号処理部と、を備え、
 前記撮像装置は、
 それぞれが光電変換素子を含む複数の画素を有する画素アレイ部と、
 前記画素アレイ部の各画素から信号線を通して入力されるリセット成分と信号成分との差分をとり、その差分を画素信号として出力するカラムアンプ部と、
 前記カラムアンプ部から入力される画素信号を保持する容量部と、
 前記容量部から入力されるアナログ信号をデジタル信号に変換する逐次比較型アナログ-デジタル変換部と、
を備え、
 前記容量部は、前記カラムアンプ部から入力される単相の前記画素信号を、前記画素信号のゼロ電圧を規定する基準電圧を用いて差動化する、
電子機器。
[B-02]前記カラムアンプ部は、
 非反転入力端子に信号線の電位が入力される増幅器と、
 一端が前記増幅器の出力端子に接続され、他端が前記増幅器の反転入力端子に接続された第1スイッチと、
 一端が前記増幅器の出力端子に接続された第2スイッチと、
 一端が前記第2スイッチの他端に接続され、他端が前記第1スイッチの他端及び増幅器の反転入力端子に接続された第1容量素子と、
 前記第1容量素子の他端及び前記増幅器の反転入力端子と基準電位ノードとの間に接続された第2容量素子と、
 一端が前記第2スイッチの他端及び前記第1容量素子の一端に接続され、他端に前記基準電圧が印加される第3スイッチと、
を有する、
上記[B-01]に記載の電子機器。
[B-03]前記カラムアンプ部は、
 前記リセット成分の入力時には、前記第1スイッチを閉状態として前記リセット成分を前記第1容量素子及び前記第2容量素子にチャージするとともに、前記第3スイッチを閉状態として前記基準電圧を前記第2スイッチの他端及び前記第1容量素子の一端に印加し、
 次に、前記第1スイッチ及び前記第3スイッチを開状態、前記第2スイッチを閉状態として、前記第1容量素子及び前記第2容量素子と前記増幅器とによって非反転増幅回路を構成し、
 前記信号成分の入力時には、前記第1容量素子と前記第2容量素子との共通接続ノードの電圧が、前記信号成分と同じ電圧になるようにフィードバックをかける、
上記[B-02]に記載の電子機器。
[B-04]前記容量部は、
 前記カラムアンプ部から入力される画素信号をチャージする正側容量素子、及び、前記基準電圧をチャージする負側容量素子を含む差動回路の構成となっており、
 前記正側容量素子及び前記負側容量素子の各入力端を選択的に短絡する第4スイッチを有する、
上記[B-02]又は上記[B-03]に記載の電子機器。
[B-05]前記第4スイッチは、前記正側容量素子にチャージされた画素信号、及び、前記負側容量素子にチャージされた前記基準電圧を前記逐次比較型アナログ-デジタル変換部に伝送するとき、前記正側容量素子及び前記負側容量素子の各入力端を短絡する、
上記[B-04]に記載の電子機器。
[B-06]前記容量部は、前記カラムアンプ部から入力される画素信号を、前記スイッチトキャパシタによるサンプリングによって保持する、
上記[B-05]に記載の電子機器。
[B-07]前記逐次比較型アナログ-デジタル変換部の1つの逐次比較型アナログ-デジタル変換器につき、複数本の信号線の各電位を、複数本の信号線に対応した複数の前記カラムアンプ及び前記容量部を通して多重化して処理する、
上記[B-01]乃至上記[B-06]のいずれかに記載の電子機器。
 10・・・CMOSイメージセンサ、11・・・画素アレイ部、12・・・行選択部、13・・・定電流源部、14・・・カラムアンプ部、15・・・アナログ-デジタル変換部、15A・・・逐次比較型アナログ-デジタル変換部、16・・・水平転送走査部、17・・・信号処理部、18・・・タイミング制御部、19・・・容量部、20・・・画素(画素回路)、21・・・フォトダイオード(光電変換素子)、22・・・転送トランジスタ、23・・・リセットトランジスタ、24・・・増幅トランジスタ、25・・・選択トランジスタ、31(311~31m)・・・画素制御線、32(321~32n)・・・信号線、50・・・間接TOF方式距離画像センサ、60・・・光源、100・・・撮像システム、140・・・カラムアンプ、150・・・逐次比較型アナログ-デジタル変換器、160・・・基準電圧生成部、190・・・容量マルチプレクサ、1400・・・電流リユースカラムアンプ(CRCA)、VR・・・基準電圧、VCM・・・出力コモンモード参照電圧

Claims (20)

  1.  それぞれが光電変換素子を含む複数の画素を有する画素アレイ部と、
     前記画素アレイ部の各画素から信号線を通して入力されるリセット成分と信号成分との差分をとり、その差分を画素信号として出力するカラムアンプ部と、
     前記カラムアンプ部から入力される画素信号を保持する容量部と、
     前記容量部から入力されるアナログの前記画素信号をデジタル信号に変換する逐次比較型アナログ-デジタル変換部と、
    を備え、
     前記容量部は、前記カラムアンプ部から入力される単相の前記画素信号を、前記画素信号のゼロ電圧を規定する基準電圧を用いて差動化する、
    撮像装置。
  2.  前記カラムアンプ部は、
     非反転入力端子に信号線の電位が入力される増幅器と、
     一端が前記増幅器の出力端子に接続され、他端が前記増幅器の反転入力端子に接続された第1スイッチと、
     一端が前記増幅器の出力端子に接続された第2スイッチと、
     一端が前記第2スイッチの他端に接続され、他端が前記第1スイッチの他端及び増幅器の反転入力端子に接続された第1容量素子と、
     前記第1容量素子の他端及び前記増幅器の反転入力端子と基準電位ノードとの間に接続された第2容量素子と、
     一端が前記第2スイッチの他端及び前記第1容量素子の一端に接続され、他端に前記基準電圧が印加される第3スイッチと、
    を有する、
    請求項1に記載の撮像装置。
  3.  前記カラムアンプ部は、
     前記リセット成分の入力時には、前記第1スイッチを閉状態として前記リセット成分を前記第1容量素子及び前記第2容量素子にチャージするとともに、前記第3スイッチを閉状態として前記基準電圧を前記第2スイッチの他端及び前記第1容量素子の一端に印加し、
     次に、前記第1スイッチ及び前記第3スイッチを開状態、前記第2スイッチを閉状態として、前記第1容量素子及び前記第2容量素子と前記増幅器とによって非反転増幅回路を構成し、
     前記信号成分の入力時には、前記第1容量素子と前記第2容量素子との共通接続ノードの電圧が、前記信号成分と同じ電圧になるようにフィードバックをかける、
    請求項2に記載の撮像装置。
  4.  前記容量部は、
     前記カラムアンプ部から入力される画素信号をチャージする正側容量素子、及び、前記基準電圧をチャージする負側容量素子を含む差動回路の構成となっており、
     前記正側容量素子及び前記負側容量素子の各入力端を選択的に短絡する第4スイッチを有する、
    請求項2に記載の撮像装置。
  5.  前記第4スイッチは、前記正側容量素子にチャージされた画素信号、及び、前記負側容量素子にチャージされた前記基準電圧を前記逐次比較型アナログ-デジタル変換部に伝送するとき、前記正側容量素子及び前記負側容量素子の各入力端を短絡する、
    請求項4に記載の撮像装置。
  6.  前記容量部は、前記カラムアンプ部から入力される画素信号を、スイッチトキャパシタによるサンプリングによって保持する、
    請求項5に記載の撮像装置。
  7.  前記逐次比較型アナログ-デジタル変換部の1つの逐次比較型アナログ-デジタル変換器につき、複数本の信号線の各電位を、複数本の信号線に対応した複数の前記カラムアンプ部及び前記容量部を通して多重化して処理する、
    請求項1に記載の撮像装置。
  8.  前記容量部は、
     前記カラムアンプ部から入力される画素信号が供給される第1ノードと、
     前記基準電圧が供給される第2ノードと、
     前記第1ノード及び前記第2ノードの間に直列に接続される正側容量素子及び負側容量素子と、
     前記第1ノード及び前記第2ノードを選択的に短絡する第4スイッチと、
     前記正側容量素子及び前記負側容量素子の共通接続ノードに、前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を選択的に印加する第5スイッチと、
     前記第2ノードと、前記逐次比較型アナログ-デジタル変換部の第1入力端とを選択的に接続する第6スイッチと、
     前記第1ノードと、前記逐次比較型アナログ-デジタル変換部の第2入力端とを選択的に接続する第7スイッチと、を備える、
    請求項2に記載の撮像装置。
  9.  前記第4スイッチは、前記容量部が前記画素信号の保持を開始する直前に一時的に閉状態となって、前記正側容量素子及び前記負側容量素子の各入力端を短絡し、
     前記第5スイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間とに一時的に閉状態となって、前記正側容量素子及び前記負側容量素子の共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加する、
    請求項8に記載の撮像装置。
  10.  前記容量部は、
     前記カラムアンプ部から入力される画素信号が供給される第1ノードと、
     前記基準電圧が供給される第2ノードと、
     前記第1ノード及び前記第2ノードの間に直列に接続可能な正側容量素子及び負側容量素子と、
     前記第1ノード及び前記第2ノードの間に直列に接続される第4aスイッチ及び第4bスイッチと、
     前記第1ノード及び前記第2ノードの間に直列に接続される、第5aスイッチ、正側容量素子、負側容量素子、及び第5bスイッチと、
     前記正側容量素子及び前記負側容量素子の共通接続ノードに、前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を選択的に印加する第5cスイッチと、
     前記第2ノードと、前記逐次比較型アナログ-デジタル変換部の第1入力端とを選択的に接続する第6スイッチと、
     前記第1ノードと、前記逐次比較型アナログ-デジタル変換部の第2入力端とを選択的に接続する第7スイッチと、を備える、
    請求項2に記載の撮像装置。
  11.  前記第4aスイッチ及び前記第4bスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する直前とに一時的に閉状態となって、前記第1ノード及び前記第2ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加し、
     前記第5aスイッチ及び前記第5bスイッチは、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する直前に一時的に開状態となって、前記第1ノードと前記正側容量素子との接続を遮断するとともに、前記第2ノードと前記負側容量素子との接続を遮断し、
     前記第5cスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間とに一時的に閉状態となって、前記正側容量素子及び前記負側容量素子の共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加する、
    請求項10に記載の撮像装置。
  12.  前記容量部は、
     前記カラムアンプ部から入力される画素信号が供給される第1ノードと、
     前記基準電圧が供給される第2ノードと、
     前記第1ノード及び前記第2ノードの間に直列に接続される第4aスイッチ及び第4bスイッチと、
     前記第1ノード及び前記第2ノードの間に直列に接続される、正側容量素子、第5aスイッチ、第5bスイッチ、及び負側容量素子と、
     前記第5aスイッチ及び前記第5bスイッチの共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を選択的に印加する第5cスイッチと、
     前記第2ノードと、前記逐次比較型アナログ-デジタル変換部の第1入力端とを選択的に接続する第6スイッチと、
     前記第1ノードと、前記逐次比較型アナログ-デジタル変換部の第2入力端とを選択的に接続する第7スイッチと、を備える、
    請求項2に記載の撮像装置。
  13.  前記第4aスイッチ及び前記第4bスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する直前とに一時的に閉状態となって、前記第1ノード及び前記第2ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加し、
     前記第5cスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間とに一時的に閉状態となって、前記正側容量素子及び前記負側容量素子の共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加し、
     前記第5aスイッチ及び前記第5bスイッチは、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する直前に一時的に開状態となって、前記正側容量素子及び前記負側容量素子の接続を遮断する、
    請求項12に記載の撮像装置。
  14.  前記容量部は、
     前記カラムアンプ部から入力される画素信号が供給される第1ノードと、
     前記基準電圧が供給される第2ノードと、
     前記第1ノードに一端が接続される正側容量素子と、
     前記正側容量素子の他端が接続される第3ノードと、
     前記第2ノードに一端が接続される負側容量素子と、
     前記負側容量素子の他端が接続される第4ノードと、
     前記第1ノード及び前記第2ノードの間に直列に接続される第4aスイッチ及び第4bスイッチと、
     前記第1ノード及び前記第2ノードの間に接続される第4cスイッチと、
     前記第3ノード及び前記第4ノードの間に接続される第5aスイッチと、
     前記第3ノード及び前記第4ノードの間に直列に接続される、第5bスイッチ及び第5cスイッチと、
     前記第3ノードと、前記逐次比較型アナログ-デジタル変換部の第1入力端とを選択的に接続する第6スイッチと、
     前記第4ノードと、前記逐次比較型アナログ-デジタル変換部の第2入力端とを選択的に接続する第7スイッチと、を備える、
    請求項2に記載の撮像装置。
  15.  前記第4aスイッチ及び前記第4bスイッチは、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間に一時的に閉状態となって、前記第1ノード及び前記第2ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加し、
     前記第4cスイッチは、前記容量部が前記画素信号の保持を開始する直前に閉状態となって、前記第1ノード及び前記第2ノードを短絡し、
     前記第5aスイッチは、前記容量部が前記画素信号を保持する期間に前記第3ノード及び前記第4ノードを短絡し、
     前記第5bスイッチ及び前記第5cスイッチは、前記容量部が前記画素信号の保持を開始する直前に閉状態となって、前記第3ノード及び前記第4ノードに前記基準電圧を印加する、
    請求項14に記載の撮像装置。
  16.  前記容量部は、
     前記カラムアンプ部から入力される画素信号が供給される第1ノードと、
     前記基準電圧が供給される第2ノードと、
     前記第1ノードに一端が接続される正側容量素子と、
     前記正側容量素子の他端が接続される第3ノードと、
     前記第2ノードに一端が接続される負側容量素子と、
     前記負側容量素子の他端が接続される第4ノードと、
     前記第1ノード及び前記第2ノードの間に接続される第4スイッチと、
     前記第3ノード及び前記第4ノードの間に直列に接続される第5aスイッチ及び第5bスイッチと、
     前記第5aスイッチ及び前記第5bスイッチの共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を選択的に印加する第5cスイッチと、
     前記第3ノードと、前記逐次比較型アナログ-デジタル変換部の第1入力端とを選択的に接続する第6スイッチと、
     前記第4ノードと、前記逐次比較型アナログ-デジタル変換部の第2入力端とを選択的に接続する第7スイッチと、を備える、
    請求項2に記載の撮像装置。
  17.  前記第4スイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間とに閉状態となって、前記第1ノード及び前記第2ノードを短絡し、
     前記第5aスイッチ及び前記第5bスイッチは、前記容量部が前記画素信号を保持する期間の直前から保持期間が終了するまで閉状態となって、前記第3ノード及び前記第4ノードを短絡し、
     前記第5cスイッチは、前記容量部が前記画素信号の保持を開始する直前に閉状態となって、前記第5aスイッチ及び前記第5bスイッチの共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を選択的に印加する、請求項16に記載の撮像装置。
  18.  前記容量部は、
     前記カラムアンプ部から入力される画素信号が供給される第1ノードと、
     前記基準電圧が供給される第2ノードと、
     前記第1ノードに一端が接続される正側容量素子と、
     前記正側容量素子の他端が接続される第3ノードと、
     前記第2ノードに一端が接続される負側容量素子と、
     前記負側容量素子の他端が接続される第4ノードと、
     前記第1ノード及び前記第2ノードの間に直列に接続される第4aスイッチ及び第4bスイッチと、
     前記第4aスイッチ及び前記第4bスイッチの共通接続ノードに前記基準電圧を選択的に印加する第4cスイッチと、
     前記第3ノード及び前記第4ノードの間に直列に接続される第5aスイッチ及び第5bスイッチと、
     前記第5aスイッチ及び前記第5bスイッチの共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を選択的に印加する第5cスイッチと、
     前記第3ノードと、前記逐次比較型アナログ-デジタル変換部の第1入力端とを選択的に接続する第6スイッチと、
     前記第4ノードと、前記逐次比較型アナログ-デジタル変換部の第2入力端とを選択的に接続する第7スイッチと、を備える、
    請求項2に記載の撮像装置。
  19.  前記第4aスイッチ及び前記第4bスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間の直前と、前記転送する期間とに一時的に閉状態となって、前記第1ノード及び前記第2ノードを短絡し、
     前記第4cスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部に保持された前記画素信号を前記逐次比較型アナログ-デジタル変換部に転送する期間の直前とに一時的に閉状態となって、前記第4aスイッチ及び前記第4bスイッチの共通接続ノードに前記基準電圧を印加し、
     前記第5aスイッチ及び前記第5bスイッチは、前記容量部が前記画素信号の保持を開始する直前と、前記容量部が前記画素信号を保持している期間とに一時的に閉状態となって、前記第3ノード及び前記第4ノードを短絡し、
     前記第5cスイッチは、前記容量部が前記画素信号の保持を開始する直前に一時的に閉状態となって、前記第5aスイッチ及び前記第5bスイッチの共通接続ノードに前記逐次比較型アナログ-デジタル変換部のコモンモード参照電圧を印加する、
    請求項18に記載の撮像装置。
  20.  光電変換されたデジタル信号を出力する撮像装置と、
     前記デジタル信号に基づいて信号処理を行う信号処理部と、を備え、
     前記撮像装置は、
     それぞれが光電変換素子を含む複数の画素を有する画素アレイ部と、
     前記画素アレイ部の各画素から信号線を通して入力されるリセット成分と信号成分との差分をとり、その差分を画素信号として出力するカラムアンプ部と、
     前記カラムアンプ部から入力される画素信号を保持する容量部と、
     前記容量部から入力されるアナログ信号をデジタル信号に変換する逐次比較型アナログ-デジタル変換部と、
    を備え、
     前記容量部は、前記カラムアンプ部から入力される単相の前記画素信号を、前記画素信号のゼロ電圧を規定する基準電圧を用いて差動化する、
    電子機器。
PCT/JP2021/022996 2020-06-25 2021-06-17 撮像装置及び電子機器 WO2021261367A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/002,444 US20230247328A1 (en) 2020-06-25 2022-06-17 Imaging device and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-109367 2020-06-25
JP2020109367 2020-06-25
JP2021039087A JP2023110120A (ja) 2020-06-25 2021-03-11 撮像装置及び電子機器
JP2021-039087 2021-03-11

Publications (1)

Publication Number Publication Date
WO2021261367A1 true WO2021261367A1 (ja) 2021-12-30

Family

ID=79281352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022996 WO2021261367A1 (ja) 2020-06-25 2021-06-17 撮像装置及び電子機器

Country Status (2)

Country Link
US (1) US20230247328A1 (ja)
WO (1) WO2021261367A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206971A (ja) * 2007-02-01 2008-09-11 Canon Inc 放射線撮像装置、その制御方法及び放射線撮像システム
JP2019012933A (ja) * 2017-06-30 2019-01-24 ルネサスエレクトロニクス株式会社 Ad変換器および固体撮像素子
JP2019092143A (ja) * 2017-11-10 2019-06-13 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206971A (ja) * 2007-02-01 2008-09-11 Canon Inc 放射線撮像装置、その制御方法及び放射線撮像システム
JP2019012933A (ja) * 2017-06-30 2019-01-24 ルネサスエレクトロニクス株式会社 Ad変換器および固体撮像素子
JP2019092143A (ja) * 2017-11-10 2019-06-13 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法

Also Published As

Publication number Publication date
US20230247328A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
US11418749B2 (en) Solid-state image pick-up device and electronic device
JP7029890B2 (ja) 撮像素子、撮像素子の制御方法、及び、電子機器
CN111164965B (zh) 固态摄像器件和电子设备
JP7225127B2 (ja) 撮像素子及び電子機器
JP2018182496A (ja) 信号処理装置、及び、固体撮像装置
WO2021215105A1 (ja) 固体撮像素子
JP7331180B2 (ja) 撮像素子及び電子機器
JP7068796B2 (ja) 固体撮像装置、駆動方法、および電子機器
WO2018096955A1 (ja) 固体撮像装置、駆動方法、および電子機器
WO2022030207A1 (ja) 撮像装置及び電子機器
WO2020031439A1 (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
JPWO2019198586A1 (ja) 撮像素子及び電子機器
US11671728B2 (en) Sensing device, electronic apparatus, and method for controlling sensing device
WO2021261375A1 (ja) 撮像装置及び電子機器
US20230326940A1 (en) Imaging device and electronic apparatus
WO2021261367A1 (ja) 撮像装置及び電子機器
JP2023110120A (ja) 撮像装置及び電子機器
JP2022087529A (ja) 撮像装置及び電子機器
WO2023067924A1 (ja) 撮像装置および電子機器
WO2023218774A1 (ja) 撮像素子および電子機器
WO2022118630A1 (ja) 撮像装置及び電子機器
WO2023062935A1 (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
WO2023007772A1 (ja) 固体撮像素子
US20230362510A1 (en) Imaging device and imaging system
TWI840361B (zh) 固態攝像元件、攝像裝置及固態攝像元件之控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP